こんにちは。今年は冬休みをとても長くとったのですが、肉や蟹や餅や酒を連日消費しているうちに人体が終わっていき、気持ちになったので(様々な方向に感極まった状態のことを「気持ちになる」と表します)、世間で流行っているらしいディープラーニングの関連情報をつまみ食いしてチャットボットを作ってみることにしました。 入力文に対しニューラルネット(RNN)で応答文を生成して返事します。 @neural_chatbot というtwitterアカウントで動かしています。 ご興味があればぜひ@neural_chatbotに話しかけてみてください。 あらすじ ニューラルネットというものがあり、関数を近似することができ、知られています。 Recurrent NeuralNetwork (RNN)というものがあり、内部状態を持つことができ、自然言語を含む可変長の系列を取り扱うのに便利で、知られています。 Sequ

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? この記事について DeepMind が Nature に投稿した論文 Hybrid computing using a neuralnetwork with dynamic external memory で使用されている "Differentiable Neural Computing (DNC)" について解説します。ロジックの説明がメインですが、Python - Chainer による実装例も紹介します。 Differentiable Neural Computing (DNC)とは sequential data を Neur

このブログで何回も取り上げているように、ニューラルネットワークを用いた機械学習はかなりの力を発揮します。畳み込みニューラルネットワーク(convolutional neuralnetwork,CNN)は画像中で近くにあるピクセル同士の関係に注目するなど画像の特徴をうまくとらえたネットワークを構築することでかなりの成功を収めています。ノーフリーランチ定理が示唆するように万能の機械学習器は存在しないため、対象とするデータの特徴を捉えた学習器を構築することが機械学習の精度を上げる上で重要になります。 そこで今回は時系列データの解析に向いた回帰結合ニューラルネットワーク(recurrent neuralnetwork, RNN)の精度を上げるのに重要なLSTMを取り上げます。 この記事では誤差逆伝搬などのニューラルネットワークの基本知識は説明しません。誤差逆伝搬についてはPRMLの5章やNe

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Christopher Olah氏のブログ記事 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ の翻訳です。 翻訳の誤りなどあればご指摘お待ちしております。 リカレントニューラルネットワーク 人間は毎秒ゼロから思考を開始することはありません。このエッセイを読んでいる間、あなたは前の単語の理解に基づいて、各単語を理解します。すべてを捨てて、またゼロから思考を開始してはいません。あなたの思考は持続性を持っています。 従来のニューラルネットワークは、これを行うことができません

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く