拙著『達人に学ぶSQL徹底指南書』の中で、EXISTS述語の使い方を解説している章があるのだが、そこでEXISTS述語だけが唯一SQLの中で二階の述語である、ということを説明している。これはEXISTS述語だけが行の集合を引数にとる述語だからである。それは分かるのだが、なぜ述語論理を考えた人(具体的にはゴットロープ・フレーゲ。タイトル画像のおじさんである)はこんな着想を得たのか、そこが分かりにくいという質問をしばしば受けることがある。確かに、数ある述語の中でなぜ「存在する」だけが二階の述語であるのか、というは直観的にすこし分かりにくい。なぜフレーゲはこんなことを考えたのだろう? この点について、述語論理の創始者でもあるフレーゲの議論を参照しながらかみ砕いて見ていきたいと思う。かなり理論的かつ哲学的な話になるので、興味ない方は読み飛ばしてもらってかまわない。とくにSQLの理解に支障のある話


この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "アブダクション" – ニュース · 書籍 · スカラー · CiNii · J-STAGE ·NDL · dlib.jp · ジャパンサーチ · TWL (2023年3月) アブダクション(古代ギリシア語: ἀπαγωγή[注釈 1]、英: abductive reasoning、retroduction、逆推論、逆行推論[注釈 2])とは、演繹法が前提となる事象に規則を適用して結論を得るのに対し、結論となる事象に規則を適用して前提を推論する方法である。論理的には後件肯定と呼ばれる誤謬であるが、帰納法と並び仮説形成に重要な役割を演じている。この推論方法は古代より指摘されており、チャールズ・サンダース・パースによって論理学に体
様相論理(ようそうろんり、英: modallogic)または実相論理(じっそうろんり)は、いわゆる古典論理の対象でない、様相(modality)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができる[1]:138が、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子と、「~は可能である」ことを意味する可能性演算子のふたつの演算子が追加される。 様相論理は真理論的(形而上学的、論理的)様相の文脈で語られることが最も多い。この様相においては「~は必然的である」、「~は可能である」といった言明が扱われるが、これは認識論的様相と混
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く