個人的には最近聞いた話の中でひさびさにワクワクした話。 「医療」「教育」「農業」のようなIT未開の分野に黙々と取り組んでいる人達はヒーローに見えるGoogle Cloud Platform Japan 公式ブログ: キュウリ農家とディープラーニングをつなぐ TensorFlow 約三行要約エンジニア職だった方が実家のキュウリ農場でtensorflowを使った自動の「キュウリの品質仕分け機」を自作している 家族(仕分け担当はお母さん)が9段階に仕分けしたキュウリを撮影し学習用画像データ(80×80px)としている。画像7000枚分。 収穫のピーク時には一日 8 時間ずっと仕分け作業に追われる。それを自動化したい。 Web カメラによる画像撮影は Raspberry Pi 3 で制御し、そこで TensorFlow による小規模なニューラルネットによってキュウリのあり・なしを判断 学習と計

家のキュウリが枯れてしまってから知りました。 ある程度パラメータがはっきりすれば 大規模なFPGAで処理できるかもしれません。 12月3日の大垣ミニメーカーズフェアでデジタルフィルタの人と会えたら話してみます。 返信削除

Rebuild: Aftershow 126: Everything Except Mayonnaise (higepon)で紹介したプロジェクト。Machine Learning | Coursera で機械学習のクラスを修了した。理解を確認するために小さなプロジェクトを作っていたので紹介。実用性はいまのところない。 まとめ Pebble Time Round(スマートウォッチ)の加速度系データ (x, y, z) を入力にしてヨガのポーズを区別できるようになるか試してみた Supervised Learning なので training/test/validation set データを手動で作成 Hidden layer 1 つのニューラルネットワークで学習させた ヨガ以外の活動(徒歩、スマホをいじってる)、Downward dog ポーズ、Warrior 2 ポーズの 3 つをある程

機械学習プロフェッショナルシリーズ輪読会の発表スライドをまとめたページです。 随時更新します。機械学習プロフェッショナルシリーズ輪読会 Conpass URL: http://ml-professional.connpass.com 1冊目:「深層学習」 2冊目:「異常検知と変化検知」 #1「深層学習」編 http://bookclub.kodansha.co.jp/product?isbn=9784061529021 [正誤表] (http://www.kspub.co.jp/download/1529021a.pdf) chapter 1: はじめに @a_macabee http://www.slideshare.net/beeEaMa/chapter-01-49404580 Chapter 2:順伝播型ニューラルネットワーク @a_macabee http://www.slide

はてなアプリケーションエンジニアの id:takuya-a です。はてなでは、 BrandSafeはてな や、はてなブックマーク のカテゴリ分類など、様々なところで機械学習を利用していますが、今月の初めより、 Coursera の機械学習のコースを参加者全員が修了する ことを目的とした勉強会を開催しています。 今回は、その機械学習勉強会についてご紹介します。機械学習の学習をするうえでの課題機械学習は、独力で勉強するのが難しい分野です。 教科書を一人で読み通すのは大変でしょうし、体系的な知識を得るのはさらに困難です。 各地で機械学習の輪読会が開かれているようですが、 発表の準備が大変 参加者に詳しい人がいないと、わからないまま終わってしまう箇所がある 参加者の理解度を測るのが難しい 発表を聞いているだけだと、身につかない(実体験として) といった課題があります。その点、 Course
追記(2017年7月) こちらのスキル要件ですが、2017年版を新たに書きましたので是非そちらをご覧ください。 「データサイエンティストというかデータ分析職に就くためのスキル要件」という話題が某所であったんですが、僕にとって馴染みのあるTokyoR界隈で実際に企業のデータ分析職で活躍している人たちのスキルを眺めてみるに、 みどりぼん程度の統計学の知識 はじパタ程度の機械学習の知識 RかPythonでコードが組めるSQLが書ける というのが全員の最大公約数=下限ラインかなぁと。そんなわけで、ちょろっと色々与太話を書いてみます。なお僕の周りの半径5mに限った真実かもしれませんので、皆さん自身がどこかのデータサイエンティスト()募集に応募して蹴られたとしても何の保証もいたしかねますので悪しからず。 統計学の知識は「みどりぼん以上」 データ解析のための統計モデリング入門――一般化線形モデル・階層

概要 私が機械学習の勉強を始めた頃、何から手を付ければ良いのかよく分からず、とても悩んだ覚えがあります。同じような悩みを抱えている方の参考になればと思い、自分が勉強していった方法を記事にしたいと思います。 目標としては、機械学習全般について、コンパクトなイメージを持てるようになることです。 そのためにも、簡単な本から始めて、少しずつ難しい本に挑戦して行きましょう。 入門書 何はともあれ、まずは機械学習のイメージを掴むことが大切です。 最初の一冊には、フリーソフトでつくる音声認識システムがおすすめします。フリーソフトでつくる音声認識システム - パターン認識・機械学習の初歩から対話システムまで 作者: 荒木雅弘出版社/メーカー: 森北出版発売日: 2007/10/17メディア: 単行本(ソフトカバー)購入: 45人 クリック: 519回この商品を含むブログ (38件) を見るレビュー :

「入門機械学習」を献本していただきました。ありがとうございました。 というわけで早速読み終わったので感想を書いておく。機械学習の入門書ではない本書はタイトルから連想されるような機械学習に入門するような内容は書かれていない。一切数式は登場せずアルゴリズムはすべてブラックボックス化されている。では本書はダメな本なのかというとそんなことは全くない。少なくとも「入門機械学習」というタイトルに興味をもって本書を手にとった人にとっては大変有益な本だと思う。 大きなデータを扱って何かしたい人が最初に読むべき本 繰り返すが本書は機械学習の仕組みについては書いていない。仕組みはブラックボックスとして割り切ることで従来の機械学習の入門書が触れていない部分を非常に大きく扱っている。それは何かというと「汚いデータからどうやって機械学習の入力データを作るか」「機械学習の手法をどのように選択するか」「機械学習に
最近では企業における機械学習の認知度も高まっていてエンジニアの求人募集でも「望ましいスキル:機械学習」というのをよく見かける。特にweb系の企業だと当たり前のように機械学習を活用した魅力的なサービスが生み出されているようだ。 そんなわけで先日書いた機械学習の入門記事もそれなりに好評で末尾の教科書リストも結構参考にしていただいた様子。ということで、これから機械学習をはじめる人のためにオススメの教科書を10冊ほどピックアップしてみた。 幸いにして機械学習の分野には良書が多い。5年前はナイーブベイズすら知らなかった私も、これらの教科書のおかげでなんとか機械学習を使えるようになりました!(個人の体験談です。効果には個人差があります) 参考:機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei 最初に既存の機械学習の教科書まとめを挙げておくの
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く