Should I be using Keras vs. TensorFlow for my project? Is TensorFlow or Keras better? Should I invest my time studying TensorFlow? Or Keras? The above are all examples of questions I hear echoed throughout my inbox, social media, and even in-person conversations with deep learning researchers, practitioners, and engineers. I even receive questions related to my book, Deep Learning for Computer Vis

この記事は移転しました。約2秒後に新記事へ移動します。移動しない場合はココをクリックしてください。 こんなことをしてみたい ↑これがしたいpythonによる機械学習の勉強をしたので、実践ということで、人気アイドル「乃木坂46」の個人的に好きな5人のメンバーを区別して見ました。大きな流れはこんな感じです。 web上から五人の画像を100枚ずつ取ってくる 画像から顔部分を取り出して保存、テストデータの取り出し 画像の水増し モデルを定義して、学習 テスト(顔を四角く囲って、その人の名前を出力) 説明はこんなもんにして、彼女らの可愛さについて語りたいところですが、そういうブログではないので、少し技術的なことを書きます。 今回はjupyterを使って作業を進めました。notebook形式なので結果が見やすく初心者にはいい環境でした。環境は以下。macOS:10.13.1python:3.6.

結論 下記4つがオススメ上から順に見ていく事をオススメします。 【4日で体験】 TensorFlow xPython 3 で学ぶディープラーニング入門 みんなのAI講座 ゼロからPythonで学ぶ人工知能と機械学習 ゼロから作るニューラルネットワーク【Python 3 + NumPyでバックプロップを徹底マスター】 アプリケーション開発者のための機械学習実践講座 大前提 この記事を書いてる人本職Railsサーバーエンジニア(iphoneアプリ プログラマでもある) 三十半ば、三十歳過ぎてからプログラマになった。 変わり種とか突然変異と言われてる。 今後は比較的短期間(一年位)でデータサイエンティストになり さらなる給料アップを企んでいる。 想定している読者機械学習だけでなくプログラミング自体も初心者に向けています。 前置きUdemyと動画学習についてUdemyとは?Udemy

Photo via Visual Hunt 少し前のことですが、AlphaGoという囲碁の人工知能プログラムがイ・セドル九段に勝利したことで話題になりました。*1 また、一部のゲームにおいて「DQN(Deep Q-network)」が人間よりも上手くプレイするようになったというニュースも話題になっていましたね。*2 今回はこれらの事例で使われている「深層強化学習」という仕組みを使って、FXのシステムトレードができないかと思い、調べてみました。 注意:強化学習もFXも勉強し始めたばかりなので、色々間違っている箇所があるかもしれません。ご指摘いただけると幸いです。 今回の内容 1.強化学習について 1-1.強化学習 1-2.Reinforcement Learning: An Introduction (2nd Edition) 1-3.UCL Course on RL 1-4.強化学習につい

TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました

今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです!Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c

こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。本日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイトGitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。Python のライブラリとして提供(要Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコードGPU をサポートし、複数GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く