Arrays#

Base classes#

classArrayStatistics#

Statistics for anArray.

Apache Arrow format doesn’t have statistics but data source such as Apache Parquet may have statistics. Statistics associated with data source can be read unified API via this class.

Public Types

usingValueType=std::variant<bool,int64_t,uint64_t,double,std::string>#

The type for maximum and minimum values.

If the target value exists, one of them is used.std::nullopt is used otherwise.

Public Functions

inlineconststd::shared_ptr<DataType>&MinArrowType(conststd::shared_ptr<DataType>&array_type)#

Compute Arrow type of the minimum value.

IfValueType isstd::string,array_type may be used. Ifarray_type is a binary-like type such asarrow::binary andarrow::large_utf8,array_type is returned.arrow::utf8 is returned otherwise.

IfValueType isn’tstd::string,array_type isn’t used.

Parameters:

array_type – The Arrow type of the associated array.

Returns:

arrow::null if the minimum value isstd::nullopt, Arrow type based onValueType of themin otherwise.

inlineconststd::shared_ptr<DataType>&MaxArrowType(conststd::shared_ptr<DataType>&array_type)#

Compute Arrow type of the maximum value.

IfValueType isstd::string,array_type may be used. Ifarray_type is a binary-like type such asarrow::binary andarrow::large_utf8,array_type is returned.arrow::utf8 is returned otherwise.

IfValueType isn’tstd::string,array_type isn’t used.

Parameters:

array_type – The Arrow type of the associated array.

Returns:

arrow::null if the maximum value isstd::nullopt, Arrow type based onValueType of themax otherwise.

inlineboolEquals(constArrayStatistics&other)const#

Check two statistics for equality.

inlinebooloperator==(constArrayStatistics&other)const#

Check two statistics for equality.

inlinebooloperator!=(constArrayStatistics&other)const#

Check two statistics for not equality.

Public Members

std::optional<int64_t>null_count=std::nullopt#

The number of null values, may not be set.

std::optional<int64_t>distinct_count=std::nullopt#

The number of distinct values, may not be set.

std::optional<ValueType>min=std::nullopt#

The minimum value, may not be set.

boolis_min_exact=false#

Whether the minimum value is exact or not.

std::optional<ValueType>max=std::nullopt#

The maximum value, may not be set.

boolis_max_exact=false#

Whether the maximum value is exact or not.

classArrayData#

Mutable container for generic Arrow array data.

This data structure is a self-contained representation of the memory and metadata inside an Arrow array data structure (called vectors in Java). The classesarrow::Array and its subclasses provide strongly-typed accessors with support for the visitor pattern and other affordances.

This class is designed for easy internal data manipulation, analytical data processing, and data transport to and from IPC messages. For example, we could cast from int64 to float64 like so:

Int64Array arr = GetMyData(); auto new_data = arr.data()->Copy(); new_data->type =arrow::float64(); DoubleArray double_arr(new_data);

This object is also useful in an analytics setting where memory may be reused. For example, if we had a group of operations all returning doubles, say:

Log(Sqrt(Expr(arr)))

Then the low-level implementations of each of these functions could have the signatures

void Log(const ArrayData& values, ArrayData* out);

As another example a function may consume one or more memory buffers in an input array and replace them with newly-allocated data, changing the output data type as well.

Public Functions

Result<std::shared_ptr<ArrayData>>CopyTo(conststd::shared_ptr<MemoryManager>&to)const#

Copy all buffers and children recursively to destinationMemoryManager.

This utilizesMemoryManager::CopyBuffer to create a newArrayData object recursively copying the buffers and all child buffers to the destination memory manager. This includes dictionaries if applicable.

Result<std::shared_ptr<ArrayData>>ViewOrCopyTo(conststd::shared_ptr<MemoryManager>&to)const#

View or Copy thisArrayData to destination memory manager.

Tries to view the buffer contents on the given memory manager’s device if possible (to avoid a copy) but falls back to copying if a no-copy view isn’t supported.

std::shared_ptr<ArrayData>Slice(int64_toffset,int64_tlength)const#

Construct a zero-copy slice of the data with the given offset and length.

The associatedArrayStatistics is always discarded in a slicedArrayData. BecauseArrayStatistics in the originalArrayData may be invalid in a slicedArrayData. If you want to reuse statistics in the originalArrayData, you need to do it by yourself.

If the specified slice range has the same range as the originalArrayData, we can reuse statistics in the originalArrayData. Because it has the same data as the originalArrayData. But the associatedArrayStatistics is discarded in this case too. UseCopy() instead for the case.

Result<std::shared_ptr<ArrayData>>SliceSafe(int64_toffset,int64_tlength)const#

Input-checking variant of Slice.

An InvalidStatus is returned if the requested slice falls out of bounds. Note that unlike Slice,length isn’t clamped to the available buffer size.

int64_tGetNullCount()const#

Return physical null count, or compute and set it if it’s not known.

inlineboolMayHaveNulls()const#

Return true if the data has a validity bitmap and the physical null count is known to be non-zero or not yet known.

Note that this is not the same as MayHaveLogicalNulls, which also checks for the presence of nulls in child data for types like unions and run-end encoded types.

inlineboolHasValidityBitmap()const#

Return true if the data has a validity bitmap.

inlineboolMayHaveLogicalNulls()const#

Return true if the validity bitmap may have 0’s in it, or if the child arrays (in the case of types without a validity bitmap) may have nulls, or if the dictionary of dictionary array may have nulls.

This is not a drop-in replacement for MayHaveNulls, as historicallyMayHaveNulls() has been used to check for the presence of a validity bitmap that needs to be checked.

Code that previously usedMayHaveNulls() and then dealt with the validity bitmap directly can be fixed to handle all types correctly without performance degradation when handling most types by adopting HasValidityBitmap and MayHaveLogicalNulls.

Before:

uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;for (int64_t i = 0; i < array.length; ++i) {  if (validity && !bit_util::GetBit(validity, i)) {    continue;  // skip a NULL  }  ...}
After:
bool all_valid = !array.MayHaveLogicalNulls();uint8_t* validity = array.HasValidityBitmap() ? array.buffers[0].data : NULLPTR;for (int64_t i = 0; i < array.length; ++i) {  bool is_valid = all_valid ||                  (validity && bit_util::GetBit(validity, i)) ||                  array.IsValid(i);  if (!is_valid) {    continue;  // skip a NULL  }  ...}

int64_tComputeLogicalNullCount()const#

Computes the logical null count for arrays of all types including those that do not have a validity bitmap like union and run-end encoded arrays.

If the array has a validity bitmap, this function behaves the same as GetNullCount. For types that have no validity bitmap, this function will recompute the null count every time it is called.

See also

GetNullCount

DeviceAllocationTypedevice_type()const#

Return the device_type of the underlying buffers and children.

If there are no buffers in thisArrayData object, it just returns DeviceAllocationType::kCPU as a default. We also assume that all buffers should be allocated on the same device type and perform DCHECKs to confirm this in debug mode.

Returns:

DeviceAllocationType

classArray#

Array base type Immutable data array with some logical type and some length.

Any memory is owned by the respectiveBuffer instance (or its parents).

The base class is only required to have a null bitmap buffer if the null count is greater than 0

If known, the null count can be provided in the baseArray constructor. If the null count is not known, pass -1 to indicate that the null count is to be computed on the first call tonull_count()

Subclassed byarrow::VarLengthListLikeArray< LargeListType >,arrow::VarLengthListLikeArray< LargeListViewType >,arrow::VarLengthListLikeArray< ListType >,arrow::VarLengthListLikeArray< ListViewType >,arrow::DictionaryArray,arrow::ExtensionArray,arrow::FixedSizeListArray, arrow::FlatArray, arrow::RunEndEncodedArray,arrow::StructArray,arrow::UnionArray,arrow::VarLengthListLikeArray< TYPE >

Public Functions

inlineboolIsNull(int64_ti)const#

Return true if value at index is null. Does not boundscheck.

inlineboolIsValid(int64_ti)const#

Return true if value at index is valid (not null).

Does not boundscheck

Result<std::shared_ptr<Scalar>>GetScalar(int64_ti)const#

Return aScalar containing the value of this array at i.

inlineint64_tlength()const#

Size in the number of elements this array contains.

inlineint64_toffset()const#

A relative position into another array’s data, to enable zero-copy slicing.

This value defaults to zero

int64_tnull_count()const#

The number of null entries in the array.

If the null count was not known at time of construction (and set to a negative value), then the null count will be computed and cached on the first invocation of this function

int64_tComputeLogicalNullCount()const#

Computes the logical null count for arrays of all types including those that do not have a validity bitmap like union and run-end encoded arrays.

If the array has a validity bitmap, this function behaves the same asnull_count(). For types that have no validity bitmap, this function will recompute the null count every time it is called.

See also

GetNullCount

inlineconststd::shared_ptr<Buffer>&null_bitmap()const#

Buffer for the validity (null) bitmap, if any.

Note that Union types never have a null bitmap.

Note that fornull_count==0 or for null type, this will be null. This buffer does not account for any slice offset

inlineconstuint8_t*null_bitmap_data()const#

Raw pointer to the null bitmap.

Note that fornull_count==0 or for null type, this will be null. This buffer does not account for any slice offset

boolEquals(constArray&arr,constEqualOptions&=EqualOptions::Defaults())const#

Equality comparison with another array.

std::stringDiff(constArray&other)const#

Return the formatted unified diff of arrow::Diff between thisArray and anotherArray.

boolApproxEquals(conststd::shared_ptr<Array>&arr,constEqualOptions&=EqualOptions::Defaults())const#

Approximate equality comparison with another array.

epsilon is only used if this is FloatArray or DoubleArray

boolRangeEquals(int64_tstart_idx,int64_tend_idx,int64_tother_start_idx,constArray&other,constEqualOptions&=EqualOptions::Defaults())const#

Compare if the range of slots specified are equal for the given array and this array.

end_idx exclusive. This methods does not bounds check.

StatusAccept(ArrayVisitor*visitor)const#

Apply theArrayVisitor::Visit() method specialized to the array type.

Result<std::shared_ptr<Array>>View(conststd::shared_ptr<DataType>&type)const#

Construct a zero-copy view of this array with the given type.

This method checks if the types are layout-compatible. Nested types are traversed in depth-first order. Data buffers must have the same item sizes, even though the logical types may be different. An error is returned if the types are not layout-compatible.

Result<std::shared_ptr<Array>>CopyTo(conststd::shared_ptr<MemoryManager>&to)const#

Construct a copy of the array with all buffers on destination Memory Manager.

This method recursively copies the array’s buffers and those of its children onto the destinationMemoryManager device and returns the newArray.

Result<std::shared_ptr<Array>>ViewOrCopyTo(conststd::shared_ptr<MemoryManager>&to)const#

Construct a new array attempting to zero-copy view if possible.

Like CopyTo this method recursively goes through all of the array’s buffers and those of it’s children and first attempts to create zero-copy views on the destinationMemoryManager device. If it can’t, it falls back to performing a copy. SeeBuffer::ViewOrCopy.

std::shared_ptr<Array>Slice(int64_toffset,int64_tlength)const#

Construct a zero-copy slice of the array with the indicated offset and length.

Parameters:
  • offset[in] the position of the first element in the constructed slice

  • length[in] the length of the slice. If there are not enough elements in the array, the length will be adjusted accordingly

Returns:

a new object wrapped in std::shared_ptr<Array>

std::shared_ptr<Array>Slice(int64_toffset)const#

Slice from offset until end of the array.

Result<std::shared_ptr<Array>>SliceSafe(int64_toffset,int64_tlength)const#

Input-checking variant ofArray::Slice.

Result<std::shared_ptr<Array>>SliceSafe(int64_toffset)const#

Input-checking variant ofArray::Slice.

std::stringToString()const#
Returns:

PrettyPrint representation of array suitable for debugging

StatusValidate()const#

Perform cheap validation checks to determine obvious inconsistencies within the array’s internal data.

This is O(k) where k is the number of descendents.

Returns:

Status

StatusValidateFull()const#

Perform extensive validation checks to determine inconsistencies within the array’s internal data.

This is potentially O(k*n) where k is the number of descendents and n is the array length.

Returns:

Status

inlineDeviceAllocationTypedevice_type()const#

Return the device_type that this array’s data is allocated on.

This just delegates to calling device_type on the underlyingArrayData object which backs thisArray.

Returns:

DeviceAllocationType

inlineconststd::shared_ptr<ArrayStatistics>&statistics()const#

Return the statistics of thisArray.

This just delegates to calling statistics on the underlyingArrayData object which backs thisArray.

Returns:

const std::shared_ptr<ArrayStatistics>&

Factory functions#

std::shared_ptr<Array>MakeArray(conststd::shared_ptr<ArrayData>&data)#

Create a strongly-typedArray instance from genericArrayData.

Parameters:

data[in] the array contents

Returns:

the resultingArray instance

Result<std::shared_ptr<Array>>MakeArrayOfNull(conststd::shared_ptr<DataType>&type,int64_tlength,MemoryPool*pool=default_memory_pool())#

Create a strongly-typedArray instance with all elements null.

Parameters:
  • type[in] the array type

  • length[in] the array length

  • pool[in] the memory pool to allocate memory from

Result<std::shared_ptr<Array>>MakeArrayFromScalar(constScalar&scalar,int64_tlength,MemoryPool*pool=default_memory_pool())#

Create anArray instance whose slots are the given scalar.

Parameters:
  • scalar[in] the value with which to fill the array

  • length[in] the array length

  • pool[in] the memory pool to allocate memory from

Result<std::shared_ptr<Array>>MakeEmptyArray(std::shared_ptr<DataType>type,MemoryPool*pool=default_memory_pool())#

Create an emptyArray of a given type.

The outputArray will be of the given type.

Parameters:
  • type[in] the data type of the emptyArray

  • pool[in] the memory pool to allocate memory from

Returns:

the resultingArray

Concrete array subclasses#

Primitive and temporal#

classNullArray:publicarrow::FlatArray#

Degenerate null typeArray.

classBooleanArray:publicarrow::PrimitiveArray#

ConcreteArray class for boolean data.

Public Functions

int64_tfalse_count()const#

Return the number of false (0) values among the valid values.

Result is not cached.

int64_ttrue_count()const#

Return the number of true (1) values among the valid values.

Result is not cached.

usingDecimalArray=Decimal128Array#
classDecimal32Array:publicarrow::FixedSizeBinaryArray#
#include <arrow/array/array_decimal.h>

ConcreteArray class for 32-bit decimal data.

Public Functions

explicitDecimal32Array(conststd::shared_ptr<ArrayData>&data)#

ConstructDecimal32Array fromArrayData instance.

classDecimal64Array:publicarrow::FixedSizeBinaryArray#
#include <arrow/array/array_decimal.h>

ConcreteArray class for 64-bit decimal data.

Public Functions

explicitDecimal64Array(conststd::shared_ptr<ArrayData>&data)#

ConstructDecimal64Array fromArrayData instance.

classDecimal128Array:publicarrow::FixedSizeBinaryArray#
#include <arrow/array/array_decimal.h>

ConcreteArray class for 128-bit decimal data.

Public Functions

explicitDecimal128Array(conststd::shared_ptr<ArrayData>&data)#

ConstructDecimal128Array fromArrayData instance.

classDecimal256Array:publicarrow::FixedSizeBinaryArray#
#include <arrow/array/array_decimal.h>

ConcreteArray class for 256-bit decimal data.

Public Functions

explicitDecimal256Array(conststd::shared_ptr<ArrayData>&data)#

ConstructDecimal256Array fromArrayData instance.

template<typenameTYPE>
classNumericArray:publicarrow::PrimitiveArray#
#include <arrow/array/array_primitive.h>

ConcreteArray class for numeric data with a corresponding C type.

This class is templated on the correspondingDataType subclass for the given data, for example NumericArray<Int8Type> or NumericArray<Date32Type>.

Note that convenience aliases are available for all accepted types (for example Int8Array for NumericArray<Int8Type>).

classDayTimeIntervalArray:publicarrow::PrimitiveArray#
#include <arrow/array/array_primitive.h>

Array of Day and Millisecond values.

DayTimeArray

classMonthDayNanoIntervalArray:publicarrow::PrimitiveArray#
#include <arrow/array/array_primitive.h>

Array of Month, Day and nanosecond values.

Binary-like#

template<typenameTYPE>
classBaseBinaryArray:publicarrow::FlatArray#
#include <arrow/array/array_binary.h>

Base class for variable-sized binary arrays, regardless of offset size and logical interpretation.

Public Functions

inlineconstuint8_t*GetValue(int64_ti,offset_type*out_length)const#

Return the pointer to the given elements bytes.

inlinestd::string_viewGetView(int64_ti)const#

Get binary value as a string_view.

Parameters:

i – the value index

Returns:

the view over the selected value

inlinestd::string_viewValue(int64_ti)const#

Get binary value as a string_view Provided for consistency with other arrays.

Parameters:

i – the value index

Returns:

the view over the selected value

inlinestd::stringGetString(int64_ti)const#

Get binary value as a std::string.

Parameters:

i – the value index

Returns:

the value copied into a std::string

inlinestd::shared_ptr<Buffer>value_offsets()const#

Note that this buffer does not account for any slice offset.

inlinestd::shared_ptr<Buffer>value_data()const#

Note that this buffer does not account for any slice offset.

inlineoffset_typevalue_offset(int64_ti)const#

Return the data buffer absolute offset of the data for the value at the passed index.

Does not perform boundschecking

inlineoffset_typevalue_length(int64_ti)const#

Return the length of the data for the value at the passed index.

Does not perform boundschecking

inlineoffset_typetotal_values_length()const#

Return the total length of the memory in the data buffer referenced by this array.

If the array has been sliced then this may be less than the size of the data buffer (data_->buffers[2]).

classBinaryArray:publicarrow::BaseBinaryArray<BinaryType>#
#include <arrow/array/array_binary.h>

ConcreteArray class for variable-size binary data.

Subclassed byarrow::StringArray

classStringArray:publicarrow::BinaryArray#
#include <arrow/array/array_binary.h>

ConcreteArray class for variable-size string (utf-8) data.

Public Functions

StatusValidateUTF8()const#

Validate that this array contains only valid UTF8 entries.

This check is also implied byValidateFull()

classLargeBinaryArray:publicarrow::BaseBinaryArray<LargeBinaryType>#
#include <arrow/array/array_binary.h>

ConcreteArray class for large variable-size binary data.

Subclassed byarrow::LargeStringArray

classLargeStringArray:publicarrow::LargeBinaryArray#
#include <arrow/array/array_binary.h>

ConcreteArray class for large variable-size string (utf-8) data.

Public Functions

StatusValidateUTF8()const#

Validate that this array contains only valid UTF8 entries.

This check is also implied byValidateFull()

classBinaryViewArray:publicarrow::FlatArray#
#include <arrow/array/array_binary.h>

ConcreteArray class for variable-size binary view data using theBinaryViewType::c_type struct to reference in-line or out-of-line string values.

Subclassed byarrow::StringViewArray

classStringViewArray:publicarrow::BinaryViewArray#
#include <arrow/array/array_binary.h>

ConcreteArray class for variable-size string view (utf-8) data usingBinaryViewType::c_type to reference in-line or out-of-line string values.

Public Functions

StatusValidateUTF8()const#

Validate that this array contains only valid UTF8 entries.

This check is also implied byValidateFull()

classFixedSizeBinaryArray:publicarrow::PrimitiveArray#
#include <arrow/array/array_binary.h>

ConcreteArray class for fixed-size binary data.

Subclassed byarrow::Decimal128Array,arrow::Decimal256Array,arrow::Decimal32Array,arrow::Decimal64Array

Nested#

template<typenameTYPE>
classVarLengthListLikeArray:publicarrow::Array#
#include <arrow/array/array_nested.h>

Base class for variable-sized list and list-view arrays, regardless of offset size.

Subclassed byarrow::BaseListArray< TYPE >,arrow::BaseListViewArray< TYPE >

Public Functions

inlineconststd::shared_ptr<Array>&values()const#

Return array object containing the list’s values.

Note that this buffer does not account for any slice offset or length.

inlineconststd::shared_ptr<Buffer>&value_offsets()const#

Note that this buffer does not account for any slice offset or length.

inlineconstoffset_type*raw_value_offsets()const#

Return pointer to raw value offsets accounting for any slice offset.

virtualoffset_typevalue_length(int64_ti)const=0#

Return the size of the value at a particular index.

Since non-empty null lists and list-views are possible, avoid calling this function when the list at slot i is null.

Pre:

IsValid(i)

inlinestd::shared_ptr<Array>value_slice(int64_ti)const#
Pre:

IsValid(i)

inlineResult<std::shared_ptr<Array>>FlattenRecursively(MemoryPool*memory_pool=default_memory_pool())const#

Flatten all level recursively until reach a non-list type, and return a non-list typeArray.

See also

internal::FlattenLogicalListRecursively

template<typenameTYPE>
classBaseListArray:publicarrow::VarLengthListLikeArray<TYPE>#
#include <arrow/array/array_nested.h>

Public Functions

inlinevirtualoffset_typevalue_length(int64_ti)constfinal#

Return the size of the value at a particular index.

Since non-empty null lists are possible, avoid calling this function when the list at slot i is null.

Pre:

IsValid(i)

classListArray:publicarrow::BaseListArray<ListType>#
#include <arrow/array/array_nested.h>

ConcreteArray class for list data.

Subclassed byarrow::MapArray

Public Functions

Result<std::shared_ptr<Array>>Flatten(MemoryPool*memory_pool=default_memory_pool())const#

Return anArray that is a concatenation of the lists in this array.

Note that it’s different fromvalues() in that it takes into consideration of this array’s offsets as well as null elements backed by non-empty lists (they are skipped, thus copying may be needed).

std::shared_ptr<Array>offsets()const#

Return list offsets as an Int32Array.

The returned array will not have a validity bitmap, so you cannot expect to pass it toListArray::FromArrays() and get back the same list array if the original one has nulls.

Public Static Functions

staticResult<std::shared_ptr<ListArray>>FromArrays(constArray&offsets,constArray&values,MemoryPool*pool=default_memory_pool(),std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructListArray from array of offsets and child value array.

This function does the bare minimum of validation of the offsets and input types, and will allocate a new offsets array if necessary (i.e. if the offsets contain any nulls). If the offsets do not have nulls, they are assumed to be well-formed.

If a null_bitmap is not provided, the nulls will be inferred from the offsets’ null bitmap. But if a null_bitmap is provided, the offsets array can’t have nulls.

And when a null_bitmap is provided, the offsets array cannot be a slice (i.e. an array withoffset() > 0).

Parameters:
  • offsets[in]Array containing n + 1 offsets encoding length and size. Must be of int32 type

  • values[in]Array containing list values

  • pool[in]MemoryPool in case new offsets array needs to be allocated because of null values

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

staticResult<std::shared_ptr<ListArray>>FromListView(constListViewArray&source,MemoryPool*pool)#

Build aListArray from aListViewArray.

classLargeListArray:publicarrow::BaseListArray<LargeListType>#
#include <arrow/array/array_nested.h>

ConcreteArray class for large list data (with 64-bit offsets)

Public Functions

Result<std::shared_ptr<Array>>Flatten(MemoryPool*memory_pool=default_memory_pool())const#

Return anArray that is a concatenation of the lists in this array.

Note that it’s different fromvalues() in that it takes into consideration of this array’s offsets as well as null elements backed by non-empty lists (they are skipped, thus copying may be needed).

std::shared_ptr<Array>offsets()const#

Return list offsets as an Int64Array.

Public Static Functions

staticResult<std::shared_ptr<LargeListArray>>FromArrays(constArray&offsets,constArray&values,MemoryPool*pool=default_memory_pool(),std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructLargeListArray from array of offsets and child value array.

This function does the bare minimum of validation of the offsets and input types, and will allocate a new offsets array if necessary (i.e. if the offsets contain any nulls). If the offsets do not have nulls, they are assumed to be well-formed.

If a null_bitmap is not provided, the nulls will be inferred from the offsets’ null bitmap. But if a null_bitmap is provided, the offsets array can’t have nulls.

And when a null_bitmap is provided, the offsets array cannot be a slice (i.e. an array withoffset() > 0).

Parameters:
  • offsets[in]Array containing n + 1 offsets encoding length and size. Must be of int64 type

  • values[in]Array containing list values

  • pool[in]MemoryPool in case new offsets array needs to be allocated because of null values

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

staticResult<std::shared_ptr<LargeListArray>>FromListView(constLargeListViewArray&source,MemoryPool*pool)#

Build aLargeListArray from aLargeListViewArray.

template<typenameTYPE>
classBaseListViewArray:publicarrow::VarLengthListLikeArray<TYPE>#
#include <arrow/array/array_nested.h>

Public Functions

inlineconststd::shared_ptr<Buffer>&value_sizes()const#

Note that this buffer does not account for any slice offset or length.

inlineconstoffset_type*raw_value_sizes()const#

Return pointer to raw value offsets accounting for any slice offset.

inlinevirtualoffset_typevalue_length(int64_ti)constfinal#

Return the size of the value at a particular index.

This should not be called if the list-view at slot i is null. The returned size in those cases could be any value from 0 to the length of the child values array.

Pre:

IsValid(i)

classListViewArray:publicarrow::BaseListViewArray<ListViewType>#
#include <arrow/array/array_nested.h>

ConcreteArray class for list-view data.

Public Functions

Result<std::shared_ptr<Array>>Flatten(MemoryPool*memory_pool=default_memory_pool())const#

Return anArray that is a concatenation of the list-views in this array.

Note that it’s different fromvalues() in that it takes into consideration this array’s offsets (which can be in any order) and sizes. Nulls are skipped.

This function invokes Concatenate() if list-views are non-contiguous. It will try to minimize the number of array slices passed to Concatenate() by maximizing the size of each slice (containing as many contiguous list-views as possible).

std::shared_ptr<Array>offsets()const#

Return list-view offsets as an Int32Array.

The returned array will not have a validity bitmap, so you cannot expect to pass it toListArray::FromArrays() and get back the same list array if the original one has nulls.

std::shared_ptr<Array>sizes()const#

Return list-view sizes as an Int32Array.

The returned array will not have a validity bitmap, so you cannot expect to pass it toListViewArray::FromArrays() and get back the same list array if the original one has nulls.

Public Static Functions

staticResult<std::shared_ptr<ListViewArray>>FromArrays(constArray&offsets,constArray&sizes,constArray&values,MemoryPool*pool=default_memory_pool(),std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructListViewArray from array of offsets, sizes, and child value array.

Construct aListViewArray using buffers from offsets and sizes arrays that project views into the child values array.

This function does the bare minimum of validation of the offsets/sizes and input types. The offset and length of the offsets and sizes arrays must match and that will be checked, but their contents will be assumed to be well-formed.

If a null_bitmap is not provided, the nulls will be inferred from the offsets’s null bitmap. But if a null_bitmap is provided, the offsets array can’t have nulls.

And when a null_bitmap is provided, neither the offsets or sizes array can be a slice (i.e. an array withoffset() > 0).

Parameters:
  • offsets[in] An array of int32 offsets into the values array. NULL values are supported if the corresponding values in sizes is NULL or 0.

  • sizes[in] An array containing the int32 sizes of every view. NULL values are taken to represent a NULL list-view in the array being created.

  • values[in]Array containing list values

  • pool[in]MemoryPool

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

staticResult<std::shared_ptr<ListViewArray>>FromList(constListArray&list_array,MemoryPool*pool)#

Build aListViewArray from aListArray.

classLargeListViewArray:publicarrow::BaseListViewArray<LargeListViewType>#
#include <arrow/array/array_nested.h>

ConcreteArray class for large list-view data (with 64-bit offsets and sizes)

Public Functions

Result<std::shared_ptr<Array>>Flatten(MemoryPool*memory_pool=default_memory_pool())const#

Return anArray that is a concatenation of the large list-views in this array.

Note that it’s different fromvalues() in that it takes into consideration this array’s offsets (which can be in any order) and sizes. Nulls are skipped.

std::shared_ptr<Array>offsets()const#

Return list-view offsets as an Int64Array.

The returned array will not have a validity bitmap, so you cannot expect to pass it toLargeListArray::FromArrays() and get back the same list array if the original one has nulls.

std::shared_ptr<Array>sizes()const#

Return list-view sizes as an Int64Array.

The returned array will not have a validity bitmap, so you cannot expect to pass it toLargeListViewArray::FromArrays() and get back the same list array if the original one has nulls.

Public Static Functions

staticResult<std::shared_ptr<LargeListViewArray>>FromArrays(constArray&offsets,constArray&sizes,constArray&values,MemoryPool*pool=default_memory_pool(),std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructLargeListViewArray from array of offsets, sizes, and child value array.

Construct anLargeListViewArray using buffers from offsets and sizes arrays that project views into the values array.

This function does the bare minimum of validation of the offsets/sizes and input types. The offset and length of the offsets and sizes arrays must match and that will be checked, but their contents will be assumed to be well-formed.

If a null_bitmap is not provided, the nulls will be inferred from the offsets’ or sizes’ null bitmap. Only one of these two is allowed to have a null bitmap. But if a null_bitmap is provided, the offsets array and the sizes array can’t have nulls.

And when a null_bitmap is provided, neither the offsets or sizes array can be a slice (i.e. an array withoffset() > 0).

Parameters:
  • offsets[in] An array of int64 offsets into the values array. NULL values are supported if the corresponding values in sizes is NULL or 0.

  • sizes[in] An array containing the int64 sizes of every view. NULL values are taken to represent a NULL list-view in the array being created.

  • values[in]Array containing list values

  • pool[in]MemoryPool

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

staticResult<std::shared_ptr<LargeListViewArray>>FromList(constLargeListArray&list_array,MemoryPool*pool)#

Build aLargeListViewArray from aLargeListArray.

classMapArray:publicarrow::ListArray#
#include <arrow/array/array_nested.h>

ConcreteArray class for map data.

NB: “value” in this context refers to a pair of a key and the corresponding item

Public Functions

inlineconststd::shared_ptr<Array>&keys()const#

Return array object containing all map keys.

inlineconststd::shared_ptr<Array>&items()const#

Return array object containing all mapped items.

Public Static Functions

staticResult<std::shared_ptr<Array>>FromArrays(conststd::shared_ptr<Array>&offsets,conststd::shared_ptr<Array>&keys,conststd::shared_ptr<Array>&items,MemoryPool*pool=default_memory_pool(),std::shared_ptr<Buffer>null_bitmap=NULLPTR)#

ConstructMapArray from array of offsets and child key, item arrays.

This function does the bare minimum of validation of the offsets and input types, and will allocate a new offsets array if necessary (i.e. if the offsets contain any nulls). If the offsets do not have nulls, they are assumed to be well-formed

Parameters:
  • offsets[in]Array containing n + 1 offsets encoding length and size. Must be of int32 type

  • keys[in]Array containing key values

  • items[in]Array containing item values

  • pool[in]MemoryPool in case new offsets array needs to be

  • null_bitmap[in] Optional validity bitmap allocated because of null values

staticStatusValidateChildData(conststd::vector<std::shared_ptr<ArrayData>>&child_data)#

Validate child data before constructing the actualMapArray.

classFixedSizeListArray:publicarrow::Array#
#include <arrow/array/array_nested.h>

ConcreteArray class for fixed size list data.

Public Functions

conststd::shared_ptr<Array>&values()const#

Return array object containing the list’s values.

inlineint32_tvalue_length(int64_ti=0)const#

Return the fixed-size of the values.

No matter the value of the index parameter, the result is the same. So even when the value at slot i is null, this function will return a non-zero size.

Pre:

IsValid(i)

inlinestd::shared_ptr<Array>value_slice(int64_ti)const#
Pre:

IsValid(i)

Result<std::shared_ptr<Array>>Flatten(MemoryPool*memory_pool=default_memory_pool())const#

Return anArray that is a concatenation of the lists in this array.

Note that it’s different fromvalues() in that it takes into consideration null elements (they are skipped, thus copying may be needed).

inlineResult<std::shared_ptr<Array>>FlattenRecursively(MemoryPool*memory_pool=default_memory_pool())const#

Flatten all level recursively until reach a non-list type, and return a non-list typeArray.

See also

internal::FlattenLogicalListRecursively

Public Static Functions

staticResult<std::shared_ptr<Array>>FromArrays(conststd::shared_ptr<Array>&values,int32_tlist_size,std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructFixedSizeListArray from child value array and value_length.

Parameters:
  • values[in]Array containing list values

  • list_size[in] The fixed length of each list

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

Returns:

Will have length equal to values.length() / list_size

staticResult<std::shared_ptr<Array>>FromArrays(conststd::shared_ptr<Array>&values,std::shared_ptr<DataType>type,std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount)#

ConstructFixedSizeListArray from child value array and type.

Parameters:
  • values[in]Array containing list values

  • type[in] The fixed sized list type

  • null_bitmap[in] Optional validity bitmap

  • null_count[in] Optional null count in null_bitmap

Returns:

Will have length equal to values.length() / type.list_size()

classStructArray:publicarrow::Array#
#include <arrow/array/array_nested.h>

ConcreteArray class for struct data.

Public Functions

std::shared_ptr<Array>GetFieldByName(conststd::string&name)const#

Returns null if name not found.

StatusCanReferenceFieldByName(conststd::string&name)const#

Indicate if field namedname can be found unambiguously in the struct.

StatusCanReferenceFieldsByNames(conststd::vector<std::string>&names)const#

Indicate if fields namednames can be found unambiguously in the struct.

Result<ArrayVector>Flatten(MemoryPool*pool=default_memory_pool())const#

Flatten this array as a vector of arrays, one for each field.

Parameters:

pool[in] The pool to allocate null bitmaps from, if necessary

Result<std::shared_ptr<Array>>GetFlattenedField(intindex,MemoryPool*pool=default_memory_pool())const#

Get one of the child arrays, combining its null bitmap with the parent struct array’s bitmap.

Parameters:
  • index[in] Which child array to get

  • pool[in] The pool to allocate null bitmaps from, if necessary

Public Static Functions

staticResult<std::shared_ptr<StructArray>>Make(constArrayVector&children,conststd::vector<std::string>&field_names,std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount,int64_toffset=0)#

Return aStructArray from child arrays and field names.

The length and data type are automatically inferred from the arguments. There should be at least one child array.

staticResult<std::shared_ptr<StructArray>>Make(constArrayVector&children,constFieldVector&fields,std::shared_ptr<Buffer>null_bitmap=NULLPTR,int64_tnull_count=kUnknownNullCount,int64_toffset=0)#

Return aStructArray from child arrays and fields.

The length is automatically inferred from the arguments. There should be at least one child array. This method does not check that field types and child array types are consistent.

classUnionArray:publicarrow::Array#
#include <arrow/array/array_nested.h>

Base class forSparseUnionArray andDenseUnionArray.

Subclassed byarrow::DenseUnionArray,arrow::SparseUnionArray

Public Functions

inlineconststd::shared_ptr<Buffer>&type_codes()const#

Note that this buffer does not account for any slice offset.

inlinetype_code_ttype_code(int64_ti)const#

The logical type code of the value at index.

inlineintchild_id(int64_ti)const#

The physical child id containing value at index.

std::shared_ptr<Array>field(intpos)const#

Return the given field as an individual array.

For sparse unions, the returned array has its offset, length and null count adjusted.

classSparseUnionArray:publicarrow::UnionArray#
#include <arrow/array/array_nested.h>

ConcreteArray class for sparse union data.

Public Functions

Result<std::shared_ptr<Array>>GetFlattenedField(intindex,MemoryPool*pool=default_memory_pool())const#

Get one of the child arrays, adjusting its null bitmap where the union array type code does not match.

Parameters:
  • index[in] Which child array to get (i.e. the physical index, not the type code)

  • pool[in] The pool to allocate null bitmaps from, if necessary

Public Static Functions

staticinlineResult<std::shared_ptr<Array>>Make(constArray&type_ids,ArrayVectorchildren,std::vector<type_code_t>type_codes)#

ConstructSparseUnionArray from type_ids and children.

This function does the bare minimum of validation of the input types.

Parameters:
  • type_ids[in] An array of logical type ids for the union type

  • children[in] Vector of children Arrays containing the data for each type.

  • type_codes[in] Vector of type codes.

staticResult<std::shared_ptr<Array>>Make(constArray&type_ids,ArrayVectorchildren,std::vector<std::string>field_names={},std::vector<type_code_t>type_codes={})#

ConstructSparseUnionArray with custom field names from type_ids and children.

This function does the bare minimum of validation of the input types.

Parameters:
  • type_ids[in] An array of logical type ids for the union type

  • children[in] Vector of children Arrays containing the data for each type.

  • field_names[in] Vector of strings containing the name of each field.

  • type_codes[in] Vector of type codes.

classDenseUnionArray:publicarrow::UnionArray#
#include <arrow/array/array_nested.h>

ConcreteArray class for dense union data.

Note that union types do not have a validity bitmap

Public Functions

inlineconststd::shared_ptr<Buffer>&value_offsets()const#

Note that this buffer does not account for any slice offset.

Public Static Functions

staticinlineResult<std::shared_ptr<Array>>Make(constArray&type_ids,constArray&value_offsets,ArrayVectorchildren,std::vector<type_code_t>type_codes)#

ConstructDenseUnionArray from type_ids, value_offsets, and children.

This function does the bare minimum of validation of the offsets and input types.

Parameters:
  • type_ids[in] An array of logical type ids for the union type

  • value_offsets[in] An array of signed int32 values indicating the relative offset into the respective child array for the type in a given slot. The respective offsets for each child value array must be in order / increasing.

  • children[in] Vector of children Arrays containing the data for each type.

  • type_codes[in] Vector of type codes.

staticResult<std::shared_ptr<Array>>Make(constArray&type_ids,constArray&value_offsets,ArrayVectorchildren,std::vector<std::string>field_names={},std::vector<type_code_t>type_codes={})#

ConstructDenseUnionArray with custom field names from type_ids, value_offsets, and children.

This function does the bare minimum of validation of the offsets and input types.

Parameters:
  • type_ids[in] An array of logical type ids for the union type

  • value_offsets[in] An array of signed int32 values indicating the relative offset into the respective child array for the type in a given slot. The respective offsets for each child value array must be in order / increasing.

  • children[in] Vector of children Arrays containing the data for each type.

  • field_names[in] Vector of strings containing the name of each field.

  • type_codes[in] Vector of type codes.

Dictionary-encoded#

classDictionaryArray:publicarrow::Array#

Array type for dictionary-encoded data with a data-dependent dictionary.

A dictionary array contains an array of non-negative integers (the “dictionary indices”) along with a data type containing a “dictionary” corresponding to the distinct values represented in the data.

For example, the array

[“foo”, “bar”, “foo”, “bar”, “foo”, “bar”]

with dictionary [“bar”, “foo”], would have dictionary array representation

indices: [1, 0, 1, 0, 1, 0] dictionary: [“bar”, “foo”]

The indices in principle may be any integer type.

Public Functions

Result<std::shared_ptr<Array>>Transpose(conststd::shared_ptr<DataType>&type,conststd::shared_ptr<Array>&dictionary,constint32_t*transpose_map,MemoryPool*pool=default_memory_pool())const#

Transpose thisDictionaryArray.

This method constructs a new dictionary array with the given dictionary type, transposing indices using the transpose map. The type and the transpose map are typically computed using DictionaryUnifier.

Parameters:
  • type[in] the new type object

  • dictionary[in] the new dictionary

  • transpose_map[in] transposition array of this array’s indices into the target array’s indices

  • pool[in] a pool to allocate the array data from

boolCanCompareIndices(constDictionaryArray&other)const#

Determine whether dictionary arrays may be compared without unification.

conststd::shared_ptr<Array>&dictionary()const#

Return the dictionary for this array, which is stored as a member of theArrayData internal structure.

int64_tGetValueIndex(int64_ti)const#

Return the ith value of indices, cast to int64_t.

Not recommended for use in performance-sensitive code. Does not validate whether the value is null or out-of-bounds.

Public Static Functions

staticResult<std::shared_ptr<Array>>FromArrays(conststd::shared_ptr<DataType>&type,conststd::shared_ptr<Array>&indices,conststd::shared_ptr<Array>&dictionary)#

ConstructDictionaryArray from dictionary and indices array and validate.

This function does the validation of the indices and input type. It checks if all indices are non-negative and smaller than the size of the dictionary.

Parameters:
  • type[in] a dictionary type

  • dictionary[in] the dictionary with same value type as the type object

  • indices[in] an array of non-negative integers smaller than the size of the dictionary

Extension arrays#

classExtensionArray:publicarrow::Array#

Base array class for user-defined extension types.

Subclassed by arrow::extension::Bool8Array, arrow::extension::FixedShapeTensorArray, arrow::extension::OpaqueArray, arrow::extension::UuidArray

Public Functions

explicitExtensionArray(conststd::shared_ptr<ArrayData>&data)#

Construct anExtensionArray from anArrayData.

TheArrayData must have the rightExtensionType.

ExtensionArray(conststd::shared_ptr<DataType>&type,conststd::shared_ptr<Array>&storage)#

Construct anExtensionArray from a type and the underlying storage.

inlineconststd::shared_ptr<Array>&storage()const#

The physical storage for the extension array.

Chunked Arrays#

classChunkedArray#

A data structure managing a list of primitive Arrow arrays logically as one large array.

Data chunking is treated throughout this project largely as an implementation detail for performance and memory use optimization.ChunkedArray allowsArray objects to be collected and interpreted as a single logical array without requiring an expensive concatenation step.

In some cases, data produced by a function may exceed the capacity of anArray (likeBinaryArray orStringArray) and so returning multiple Arrays is the only possibility. In these cases, we recommend returning aChunkedArray instead of vector of Arrays or some alternative.

When data is processed in parallel, it may not be practical or possible to create large contiguous memory allocations and write output into them. With some data types, like binary and string types, it is not possible at all to produce non-chunked array outputs without requiring a concatenation step at the end of processing.

Application developers may tune chunk sizes based on analysis of performance profiles but many developer-users will not need to be especially concerned with the chunking details.

Preserving the chunk layout/sizes in processing steps is generally not considered to be a contract in APIs. A function may decide to alter the chunking of its result. Similarly, APIs accepting multipleChunkedArray inputs should not expect the chunk layout to be the same in each input.

Public Functions

inlineexplicitChunkedArray(std::shared_ptr<Array>chunk)#

Construct a chunked array from a singleArray.

explicitChunkedArray(ArrayVectorchunks,std::shared_ptr<DataType>type=NULLPTR)#

Construct a chunked array from a vector of arrays and an optional data type.

The vector elements must have the same data type. If the data type is passed explicitly, the vector may be empty. If the data type is omitted, the vector must be non-empty.

inlineint64_tlength()const#
Returns:

the total length of the chunked array; computed on construction

inlineint64_tnull_count()const#
Returns:

the total number of nulls among all chunks

inlineintnum_chunks()const#
Returns:

the total number of chunks in the chunked array

inlineconststd::shared_ptr<Array>&chunk(inti)const#
Returns:

chunk a particular chunk from the chunked array

inlineconstArrayVector&chunks()const#
Returns:

an ArrayVector of chunks

DeviceAllocationTypeSetdevice_types()const#
Returns:

The set of device allocation types used by the chunks in this chunked array.

inlineboolis_cpu()const#
Returns:

true if all chunks are allocated on CPU-accessible memory.

std::shared_ptr<ChunkedArray>Slice(int64_toffset,int64_tlength)const#

Construct a zero-copy slice of the chunked array with the indicated offset and length.

Parameters:
  • offset[in] the position of the first element in the constructed slice

  • length[in] the length of the slice. If there are not enough elements in the chunked array, the length will be adjusted accordingly

Returns:

a new object wrapped in std::shared_ptr<ChunkedArray>

std::shared_ptr<ChunkedArray>Slice(int64_toffset)const#

Slice from offset until end of the chunked array.

Result<std::vector<std::shared_ptr<ChunkedArray>>>Flatten(MemoryPool*pool=default_memory_pool())const#

Flatten this chunked array as a vector of chunked arrays, one for each struct field.

Parameters:

pool[in] The pool for buffer allocations, if any

Result<std::shared_ptr<ChunkedArray>>View(conststd::shared_ptr<DataType>&type)const#

Construct a zero-copy view of this chunked array with the given type.

CallsArray::View on each constituent chunk. Always succeeds if there are zero chunks

inlineconststd::shared_ptr<DataType>&type()const#

Return the type of the chunked array.

Result<std::shared_ptr<Scalar>>GetScalar(int64_tindex)const#

Return aScalar containing the value of this array at index.

boolEquals(constChunkedArray&other,constEqualOptions&opts=EqualOptions::Defaults())const#

Determine if two chunked arrays are equal.

Two chunked arrays can be equal only if they have equal datatypes. However, they may be equal even if they have different chunkings.

boolEquals(conststd::shared_ptr<ChunkedArray>&other,constEqualOptions&opts=EqualOptions::Defaults())const#

Determine if two chunked arrays are equal.

boolApproxEquals(constChunkedArray&other,constEqualOptions&=EqualOptions::Defaults())const#

Determine if two chunked arrays approximately equal.

std::stringToString()const#
Returns:

PrettyPrint representation suitable for debugging

StatusValidate()const#

Perform cheap validation checks to determine obvious inconsistencies within the chunk array’s internal data.

This is O(k*m) where k is the number of array descendents, and m is the number of chunks.

Returns:

Status

StatusValidateFull()const#

Perform extensive validation checks to determine inconsistencies within the chunk array’s internal data.

This is O(k*n) where k is the number of array descendents, and n is the length in elements.

Returns:

Status

Public Static Functions

staticResult<std::shared_ptr<ChunkedArray>>MakeEmpty(std::shared_ptr<DataType>type,MemoryPool*pool=default_memory_pool())#

Create an emptyChunkedArray of a given type.

The outputChunkedArray will have one chunk with an empty array of the given type.

Parameters:
  • type[in] the data type of the emptyChunkedArray

  • pool[in] the memory pool to allocate memory from

Returns:

the resultingChunkedArray

usingarrow::ChunkLocation=TypedChunkLocation<int64_t>#
template<typenameIndexType>
structTypedChunkLocation#

Public Members

IndexTypechunk_index=0#

Index of the chunk in the array of chunks.

The value is always in the range[0,chunks.size()].chunks.size() is used to represent out-of-bounds locations.

IndexTypeindex_in_chunk=0#

Index of the value in the chunk.

The value is UNDEFINED ifchunk_index>=chunks.size()

classChunkResolver#

An utility that incrementally resolves logical indices into physical indices in a chunked array.

Public Functions

inlineexplicitChunkResolver(std::vector<int64_t>offsets)noexcept#

Construct aChunkResolver from a vector of chunks.size() + 1 offsets.

The first offset must be 0 and the last offset must be the logical length of the chunked array. Each offset before the last represents the starting logical index of the corresponding chunk.

inlineChunkLocationResolve(int64_tindex)const#

Resolve a logical index to a ChunkLocation.

The returned ChunkLocation contains the chunk index and the within-chunk index equivalent to the logical index.

Parameters:

index – The logical index to resolve

Pre:

index>=0

Post:

location.chunk_index in[0,chunks.size()]

Returns:

ChunkLocation with a valid chunk_index if index is within bounds, or withchunk_index==chunks.size() if logical index is>=chunked_array.length().

inlineChunkLocationResolveWithHint(int64_tindex,ChunkLocationhint)const#

Resolve a logical index to a ChunkLocation.

The returned ChunkLocation contains the chunk index and the within-chunk index equivalent to the logical index.

Parameters:
  • index – The logical index to resolve

  • hint – ChunkLocation{} or the last ChunkLocation returned by thisChunkResolver.

Pre:

index>=0

Post:

location.chunk_index in[0,chunks.size()]

Returns:

ChunkLocation with a valid chunk_index if index is within bounds, or withchunk_index==chunks.size() if logical index is>=chunked_array.length().

template<typenameIndexType>
inlineboolResolveMany(int64_tn_indices,constIndexType*logical_index_vec,TypedChunkLocation<IndexType>*out_chunk_location_vec,IndexTypechunk_hint=0)const#

Resolven_indices logical indices to chunk indices.

Parameters:
  • n_indices – The number of logical indices to resolve

  • logical_index_vec – The logical indices to resolve

  • out_chunk_location_vec – The output array where the locations will be written

  • chunk_hint – 0 or the last chunk_index produced by ResolveMany

Pre:

0 <= logical_index_vec[i] < logical_array_length() (for well-defined and valid chunk index results)

Pre:

out_chunk_location_vec has space forn_indices locations

Pre:

chunk_hint in [0, chunks.size()]

Post:

out_chunk_location_vec[i].chunk_index in [0, chunks.size()] for i in [0, n)

Post:

if logical_index_vec[i] >= chunked_array.length(), then out_chunk_location_vec[i].chunk_index == chunks.size() and out_chunk_location_vec[i].index_in_chunk is UNDEFINED (can be out-of-bounds)

Post:

if logical_index_vec[i] < 0, then both values in out_chunk_index_vec[i] are UNDEFINED

Returns:

false iff chunks.size() > std::numeric_limits<IndexType>::max()

Public Static Functions

staticinlineint32_tBisect(int64_tindex,constint64_t*offsets,int32_tlo,int32_thi)#

Find the index of the chunk that contains the logical index.

Any non-negative index is accepted. Whenhi=num_offsets, the largest possible return value isnum_offsets-1 which is equal tochunks.size(). Which is returned when the logical index is greater or equal the logical length of the chunked array.

Pre:

index >= 0 (otherwise, when index is negative, hi-1 is returned)

Pre:

lo < hi

Pre:

lo >= 0 && hi <= offsets_.size()

Utilities#

classArrayVisitor#

Abstract array visitor class.

Subclass this to create a visitor that can be used with theArray::Accept() method.

Public Functions

virtual~ArrayVisitor()=default#
virtualStatusVisit(constNullArray&array)#
virtualStatusVisit(constBooleanArray&array)#
virtualStatusVisit(constInt8Array&array)#
virtualStatusVisit(constInt16Array&array)#
virtualStatusVisit(constInt32Array&array)#
virtualStatusVisit(constInt64Array&array)#
virtualStatusVisit(constUInt8Array&array)#
virtualStatusVisit(constUInt16Array&array)#
virtualStatusVisit(constUInt32Array&array)#
virtualStatusVisit(constUInt64Array&array)#
virtualStatusVisit(constHalfFloatArray&array)#
virtualStatusVisit(constFloatArray&array)#
virtualStatusVisit(constDoubleArray&array)#
virtualStatusVisit(constStringArray&array)#
virtualStatusVisit(constStringViewArray&array)#
virtualStatusVisit(constBinaryArray&array)#
virtualStatusVisit(constBinaryViewArray&array)#
virtualStatusVisit(constLargeStringArray&array)#
virtualStatusVisit(constLargeBinaryArray&array)#
virtualStatusVisit(constFixedSizeBinaryArray&array)#
virtualStatusVisit(constDate32Array&array)#
virtualStatusVisit(constDate64Array&array)#
virtualStatusVisit(constTime32Array&array)#
virtualStatusVisit(constTime64Array&array)#
virtualStatusVisit(constTimestampArray&array)#
virtualStatusVisit(constDayTimeIntervalArray&array)#
virtualStatusVisit(constMonthDayNanoIntervalArray&array)#
virtualStatusVisit(constMonthIntervalArray&array)#
virtualStatusVisit(constDurationArray&array)#
virtualStatusVisit(constDecimal32Array&array)#
virtualStatusVisit(constDecimal64Array&array)#
virtualStatusVisit(constDecimal128Array&array)#
virtualStatusVisit(constDecimal256Array&array)#
virtualStatusVisit(constListArray&array)#
virtualStatusVisit(constLargeListArray&array)#
virtualStatusVisit(constListViewArray&array)#
virtualStatusVisit(constLargeListViewArray&array)#
virtualStatusVisit(constMapArray&array)#
virtualStatusVisit(constFixedSizeListArray&array)#
virtualStatusVisit(constStructArray&array)#
virtualStatusVisit(constSparseUnionArray&array)#
virtualStatusVisit(constDenseUnionArray&array)#
virtualStatusVisit(constDictionaryArray&array)#
virtualStatusVisit(constRunEndEncodedArray&array)#
virtualStatusVisit(constExtensionArray&array)#