pyarrow.RecordBatch#
- classpyarrow.RecordBatch#
Bases:
_TabularBatch of rows of columns of equal length
Warning
Do not call this class’s constructor directly, use one of the
RecordBatch.from_*functions instead.Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>names=["n_legs","animals"]
Constructing a RecordBatch from arrays:
>>>pa.RecordBatch.from_arrays([n_legs,animals],names=names)pyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,2,4,4,5,100]animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]>>>pa.RecordBatch.from_arrays([n_legs,animals],names=names).to_pandas() n_legs animals0 2 Flamingo1 2 Parrot2 4 Dog3 4 Horse4 5 Brittle stars5 100 Centipede
Constructing a RecordBatch from pandas DataFrame:
>>>importpandasaspd>>>df=pd.DataFrame({'year':[2020,2022,2021,2022],...'month':[3,5,7,9],...'day':[1,5,9,13],...'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>pa.RecordBatch.from_pandas(df)pyarrow.RecordBatchyear: int64month: int64day: int64n_legs: int64animals: string----year: [2020,2022,2021,2022]month: [3,5,7,9]day: [1,5,9,13]n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]>>>pa.RecordBatch.from_pandas(df).to_pandas() year month day n_legs animals0 2020 3 1 2 Flamingo1 2022 5 5 4 Horse2 2021 7 9 5 Brittle stars3 2022 9 13 100 Centipede
Constructing a RecordBatch from pylist:
>>>pylist=[{'n_legs':2,'animals':'Flamingo'},...{'n_legs':4,'animals':'Dog'}]>>>pa.RecordBatch.from_pylist(pylist).to_pandas() n_legs animals0 2 Flamingo1 4 Dog
You can also construct a RecordBatch using
pyarrow.record_batch():>>>pa.record_batch([n_legs,animals],names=names).to_pandas() n_legs animals0 2 Flamingo1 2 Parrot2 4 Dog3 4 Horse4 5 Brittle stars5 100 Centipede
>>>pa.record_batch(df)pyarrow.RecordBatchyear: int64month: int64day: int64n_legs: int64animals: string----year: [2020,2022,2021,2022]month: [3,5,7,9]day: [1,5,9,13]n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- __init__(*args,**kwargs)#
Methods
__init__(*args, **kwargs)add_column(self, int i, field_, column)Add column to RecordBatch at position i.
append_column(self, field_, column)Append column at end of columns.
cast(self, Schema target_schema[, safe, options])Cast record batch values to another schema.
column(self, i)Select single column from Table or RecordBatch.
copy_to(self, destination)Copy the entire RecordBatch to destination device.
drop_columns(self, columns)Drop one or more columns and return a new Table or RecordBatch.
drop_null(self)Remove rows that contain missing values from a Table or RecordBatch.
equals(self, other, bool check_metadata=False)Check if contents of two record batches are equal.
field(self, i)Select a schema field by its column name or numeric index.
filter(self, mask[, null_selection_behavior])Select rows from the table or record batch based on a boolean mask.
from_arrays(list arrays[, names, schema, ...])Construct a RecordBatch from multiple pyarrow.Arrays
from_pandas(cls, df, Schema schema=None[, ...])Convert pandas.DataFrame to an Arrow RecordBatch
from_pydict(cls, mapping[, schema, metadata])Construct a Table or RecordBatch from Arrow arrays or columns.
from_pylist(cls, mapping[, schema, metadata])Construct a Table or RecordBatch from list of rows / dictionaries.
from_struct_array(StructArray struct_array)Construct a RecordBatch from a StructArray.
get_total_buffer_size(self)The sum of bytes in each buffer referenced by the record batch
itercolumns(self)Iterator over all columns in their numerical order.
remove_column(self, int i)Create new RecordBatch with the indicated column removed.
rename_columns(self, names)Create new record batch with columns renamed to provided names.
replace_schema_metadata(self[, metadata])Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata
select(self, columns)Select columns of the RecordBatch.
serialize(self[, memory_pool])Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema.
set_column(self, int i, field_, column)Replace column in RecordBatch at position.
slice(self[, offset, length])Compute zero-copy slice of this RecordBatch
sort_by(self, sorting, **kwargs)Sort the Table or RecordBatch by one or multiple columns.
take(self, indices)Select rows from a Table or RecordBatch.
to_pandas(self[, memory_pool, categories, ...])Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
to_pydict(self, *[, maps_as_pydicts])Convert the Table or RecordBatch to a dict or OrderedDict.
to_pylist(self, *[, maps_as_pydicts])Convert the Table or RecordBatch to a list of rows / dictionaries.
to_string(self, *[, show_metadata, preview_cols])Return human-readable string representation of Table or RecordBatch.
to_struct_array(self)Convert to a struct array.
to_tensor(self, bool null_to_nan=False, ...)Convert to a
Tensor.validate(self, *[, full])Perform validation checks.
Attributes
Names of the Table or RecordBatch columns.
List of all columns in numerical order.
The device type where the arrays in the RecordBatch reside.
Whether the RecordBatch's arrays are CPU-accessible.
Total number of bytes consumed by the elements of the record batch.
Number of columns
Number of rows
Schema of the RecordBatch and its columns
Dimensions of the table or record batch: (#rows, #columns).
- __dataframe__(self,nan_as_null:bool=False,allow_copy:bool=True)#
Return the dataframe interchange object implementing the interchange protocol.
- Parameters:
- Returns:
DataFrameinterchangeobjectThe object which consuming library can use to ingress the dataframe.
Notes
Details on the interchange protocol:https://data-apis.org/dataframe-protocol/latest/index.htmlnan_as_null currently has no effect; once support for nullable extensiondtypes is added, this value should be propagated to columns.
- add_column(self,inti,field_,column)#
Add column to RecordBatch at position i.
A new record batch is returned with the column added, the original record batchobject is left unchanged.
- Parameters:
- Returns:
RecordBatchNew record batch with the passed column added.
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>batch=pa.RecordBatch.from_pandas(df)
Add column:
>>>year=[2021,2022,2019,2021]>>>batch.add_column(0,"year",year)pyarrow.RecordBatchyear: int64n_legs: int64animals: string----year: [2021,2022,2019,2021]n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Original record batch is left unchanged:
>>>batchpyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- append_column(self,field_,column)#
Append column at end of columns.
- Parameters:
- Returns:
TableorRecordBatchNew table or record batch with the passed column added.
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)
Append column at the end:
>>>year=[2021,2022,2019,2021]>>>table.append_column('year',[year])pyarrow.Tablen_legs: int64animals: stringyear: int64----n_legs: [[2,4,5,100]]animals: [["Flamingo","Horse","Brittle stars","Centipede"]]year: [[2021,2022,2019,2021]]
- cast(self,Schematarget_schema,safe=None,options=None)#
Cast record batch values to another schema.
- Parameters:
- Returns:
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>batch=pa.RecordBatch.from_pandas(df)>>>batch.scheman_legs: int64animals: string-- schema metadata --pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ...
Define new schema and cast batch values:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.duration('s')),...pa.field('animals',pa.string())]...)>>>batch.cast(target_schema=my_schema)pyarrow.RecordBatchn_legs: duration[s]animals: string----n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- column(self,i)#
Select single column from Table or RecordBatch.
- Parameters:
- Returns:
- column
Array(forRecordBatch) orChunkedArray(forTable)
- column
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)
Select a column by numeric index:
>>>table.column(0)<pyarrow.lib.ChunkedArray object at ...>[ [ 2, 4, 5, 100 ]]
Select a column by its name:
>>>table.column("animals")<pyarrow.lib.ChunkedArray object at ...>[ [ "Flamingo", "Horse", "Brittle stars", "Centipede" ]]
- column_names#
Names of the Table or RecordBatch columns.
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>table=pa.Table.from_arrays([[2,4,5,100],...["Flamingo","Horse","Brittle stars","Centipede"]],...names=['n_legs','animals'])>>>table.column_names['n_legs', 'animals']
- columns#
List of all columns in numerical order.
- Returns:
- columns
listofArray(forRecordBatch) orlistofChunkedArray(forTable)
- columns
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[None,4,5,None],...'animals':["Flamingo","Horse",None,"Centipede"]})>>>table=pa.Table.from_pandas(df)>>>table.columns[<pyarrow.lib.ChunkedArray object at ...>[ [ null, 4, 5, null ]], <pyarrow.lib.ChunkedArray object at ...>[ [ "Flamingo", "Horse", null, "Centipede" ]]]
- copy_to(self,destination)#
Copy the entire RecordBatch to destination device.
This copies each column of the record batch to createa new record batch where all underlying buffers for the columns havebeen copied to the destination MemoryManager.
- Parameters:
- destination
pyarrow.MemoryManagerorpyarrow.Device The destination device to copy the array to.
- destination
- Returns:
- device_type#
The device type where the arrays in the RecordBatch reside.
- Returns:
DeviceAllocationType
- drop_columns(self,columns)#
Drop one or more columns and return a new Table or RecordBatch.
- Parameters:
- Returns:
TableorRecordBatchA tabular object without the column(s).
- Raises:
KeyErrorIf any of the passed column names do not exist.
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)
Drop one column:
>>>table.drop_columns("animals")pyarrow.Tablen_legs: int64----n_legs: [[2,4,5,100]]
Drop one or more columns:
>>>table.drop_columns(["n_legs","animals"])pyarrow.Table...----
- drop_null(self)#
Remove rows that contain missing values from a Table or RecordBatch.
See
pyarrow.compute.drop_null()for full usage.- Returns:
TableorRecordBatchA tabular object with the same schema, with rows containingno missing values.
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'year':[None,2022,2019,2021],...'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse",None,"Centipede"]})>>>table=pa.Table.from_pandas(df)>>>table.drop_null()pyarrow.Tableyear: doublen_legs: int64animals: string----year: [[2022,2021]]n_legs: [[4,100]]animals: [["Horse","Centipede"]]
- equals(self,other,boolcheck_metadata=False)#
Check if contents of two record batches are equal.
- Parameters:
- other
pyarrow.RecordBatch RecordBatch to compare against.
- check_metadatabool, default
False Whether schema metadata equality should be checked as well.
- other
- Returns:
- are_equalbool
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch_0=pa.record_batch([])>>>batch_1=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"],...metadata={"n_legs":"Number of legs per animal"})>>>batch.equals(batch)True>>>batch.equals(batch_0)False>>>batch.equals(batch_1)True>>>batch.equals(batch_1,check_metadata=True)False
- field(self,i)#
Select a schema field by its column name or numeric index.
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)>>>table.field(0)pyarrow.Field<n_legs: int64>>>>table.field(1)pyarrow.Field<animals: string>
- filter(self,mask,null_selection_behavior='drop')#
Select rows from the table or record batch based on a boolean mask.
The Table can be filtered based on a mask, which will be passed to
pyarrow.compute.filter()to perform the filtering, or it canbe filtered through a booleanExpression- Parameters:
- mask
Arrayorarray-likeorExpression The boolean mask or the
Expressionto filter the table with.- null_selection_behavior
str, default “drop” How nulls in the mask should be handled, does nothing ifan
Expressionis used.
- mask
- Returns:
- filtered
TableorRecordBatch A tabular object of the same schema, with only the rows selectedby applied filtering
- filtered
Examples
Using a Table (works similarly for RecordBatch):
>>>importpyarrowaspa>>>table=pa.table({'year':[2020,2022,2019,2021],...'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})
Define an expression and select rows:
>>>importpyarrow.computeaspc>>>expr=pc.field("year")<=2020>>>table.filter(expr)pyarrow.Tableyear: int64n_legs: int64animals: string----year: [[2020,2019]]n_legs: [[2,5]]animals: [["Flamingo","Brittle stars"]]
Define a mask and select rows:
>>>mask=[True,True,False,None]>>>table.filter(mask)pyarrow.Tableyear: int64n_legs: int64animals: string----year: [[2020,2022]]n_legs: [[2,4]]animals: [["Flamingo","Horse"]]>>>table.filter(mask,null_selection_behavior='emit_null')pyarrow.Tableyear: int64n_legs: int64animals: string----year: [[2020,2022,null]]n_legs: [[2,4,null]]animals: [["Flamingo","Horse",null]]
- staticfrom_arrays(listarrays,names=None,schema=None,metadata=None)#
Construct a RecordBatch from multiple pyarrow.Arrays
- Parameters:
- arrays
listofpyarrow.Array One for each field in RecordBatch
- names
listofstr, optional Names for the batch fields. If not passed, schema must be passed
- schema
Schema, defaultNone Schema for the created batch. If not passed, names must be passed
- metadata
dictor Mapping, defaultNone Optional metadata for the schema (if inferred).
- arrays
- Returns:
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>names=["n_legs","animals"]
Construct a RecordBatch from pyarrow Arrays using names:
>>>pa.RecordBatch.from_arrays([n_legs,animals],names=names)pyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,2,4,4,5,100]animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]>>>pa.RecordBatch.from_arrays([n_legs,animals],names=names).to_pandas() n_legs animals0 2 Flamingo1 2 Parrot2 4 Dog3 4 Horse4 5 Brittle stars5 100 Centipede
Construct a RecordBatch from pyarrow Arrays using schema:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.int64()),...pa.field('animals',pa.string())],...metadata={"n_legs":"Number of legs per animal"})>>>pa.RecordBatch.from_arrays([n_legs,animals],schema=my_schema).to_pandas() n_legs animals0 2 Flamingo1 2 Parrot2 4 Dog3 4 Horse4 5 Brittle stars5 100 Centipede>>>pa.RecordBatch.from_arrays([n_legs,animals],schema=my_schema).scheman_legs: int64animals: string-- schema metadata --n_legs: 'Number of legs per animal'
- classmethodfrom_pandas(cls,df,Schemaschema=None,preserve_index=None,nthreads=None,columns=None)#
Convert pandas.DataFrame to an Arrow RecordBatch
- Parameters:
- df
pandas.DataFrame - schema
pyarrow.Schema, optional The expected schema of the RecordBatch. This can be used toindicate the type of columns if we cannot infer it automatically.If passed, the output will have exactly this schema. Columnsspecified in the schema that are not found in the DataFrame columnsor its index will raise an error. Additional columns or indexlevels in the DataFrame which are not specified in the schema willbe ignored.
- preserve_indexbool, optional
Whether to store the index as an additional column in the resulting
RecordBatch. The default of None will store the index as acolumn, except for RangeIndex which is stored as metadata only. Usepreserve_index=Trueto force it to be stored as a column.- nthreads
int, defaultNone If greater than 1, convert columns to Arrow in parallel usingindicated number of threads. By default, this follows
pyarrow.cpu_count()(may use up to system CPU count threads).- columns
list, optional List of column to be converted. If None, use all columns.
- df
- Returns:
Examples
>>>importpandasaspd>>>df=pd.DataFrame({'year':[2020,2022,2021,2022],...'month':[3,5,7,9],...'day':[1,5,9,13],...'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})
Convert pandas DataFrame to RecordBatch:
>>>importpyarrowaspa>>>pa.RecordBatch.from_pandas(df)pyarrow.RecordBatchyear: int64month: int64day: int64n_legs: int64animals: string----year: [2020,2022,2021,2022]month: [3,5,7,9]day: [1,5,9,13]n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Convert pandas DataFrame to RecordBatch using schema:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.int64()),...pa.field('animals',pa.string())],...metadata={"n_legs":"Number of legs per animal"})>>>pa.RecordBatch.from_pandas(df,schema=my_schema)pyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Convert pandas DataFrame to RecordBatch specifying columns:
>>>pa.RecordBatch.from_pandas(df,columns=["n_legs"])pyarrow.RecordBatchn_legs: int64----n_legs: [2,4,5,100]
- classmethodfrom_pydict(cls,mapping,schema=None,metadata=None)#
Construct a Table or RecordBatch from Arrow arrays or columns.
- Parameters:
- Returns:
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>n_legs=pa.array([2,4,5,100])>>>animals=pa.array(["Flamingo","Horse","Brittle stars","Centipede"])>>>pydict={'n_legs':n_legs,'animals':animals}
Construct a Table from a dictionary of arrays:
>>>pa.Table.from_pydict(pydict)pyarrow.Tablen_legs: int64animals: string----n_legs: [[2,4,5,100]]animals: [["Flamingo","Horse","Brittle stars","Centipede"]]>>>pa.Table.from_pydict(pydict).scheman_legs: int64animals: string
Construct a Table from a dictionary of arrays with metadata:
>>>my_metadata={"n_legs":"Number of legs per animal"}>>>pa.Table.from_pydict(pydict,metadata=my_metadata).scheman_legs: int64animals: string-- schema metadata --n_legs: 'Number of legs per animal'
Construct a Table from a dictionary of arrays with pyarrow schema:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.int64()),...pa.field('animals',pa.string())],...metadata={"n_legs":"Number of legs per animal"})>>>pa.Table.from_pydict(pydict,schema=my_schema).scheman_legs: int64animals: string-- schema metadata --n_legs: 'Number of legs per animal'
- classmethodfrom_pylist(cls,mapping,schema=None,metadata=None)#
Construct a Table or RecordBatch from list of rows / dictionaries.
- Parameters:
- Returns:
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>pylist=[{'n_legs':2,'animals':'Flamingo'},...{'n_legs':4,'animals':'Dog'}]
Construct a Table from a list of rows:
>>>pa.Table.from_pylist(pylist)pyarrow.Tablen_legs: int64animals: string----n_legs: [[2,4]]animals: [["Flamingo","Dog"]]
Construct a Table from a list of rows with metadata:
>>>my_metadata={"n_legs":"Number of legs per animal"}>>>pa.Table.from_pylist(pylist,metadata=my_metadata).scheman_legs: int64animals: string-- schema metadata --n_legs: 'Number of legs per animal'
Construct a Table from a list of rows with pyarrow schema:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.int64()),...pa.field('animals',pa.string())],...metadata={"n_legs":"Number of legs per animal"})>>>pa.Table.from_pylist(pylist,schema=my_schema).scheman_legs: int64animals: string-- schema metadata --n_legs: 'Number of legs per animal'
- staticfrom_struct_array(StructArraystruct_array)#
Construct a RecordBatch from a StructArray.
Each field in the StructArray will become a column in the resulting
RecordBatch.- Parameters:
- struct_array
StructArray Array to construct the record batch from.
- struct_array
- Returns:
Examples
>>>importpyarrowaspa>>>struct=pa.array([{'n_legs':2,'animals':'Parrot'},...{'year':2022,'n_legs':4}])>>>pa.RecordBatch.from_struct_array(struct).to_pandas() animals n_legs year0 Parrot 2 NaN1 None 4 2022.0
- get_total_buffer_size(self)#
The sum of bytes in each buffer referenced by the record batch
An array may only reference a portion of a buffer.This method will overestimate in this case and return thebyte size of the entire buffer.
If a buffer is referenced multiple times then it willonly be counted once.
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.get_total_buffer_size()120
- is_cpu#
Whether the RecordBatch’s arrays are CPU-accessible.
- itercolumns(self)#
Iterator over all columns in their numerical order.
- Yields:
Array(forRecordBatch) orChunkedArray(forTable)
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[None,4,5,None],...'animals':["Flamingo","Horse",None,"Centipede"]})>>>table=pa.Table.from_pandas(df)>>>foriintable.itercolumns():...print(i.null_count)...21
- nbytes#
Total number of bytes consumed by the elements of the record batch.
In other words, the sum of bytes from all buffer ranges referenced.
Unlikeget_total_buffer_size this method will account for arrayoffsets.
If buffers are shared between arrays then the sharedportion will only be counted multiple times.
The dictionary of dictionary arrays will always be counted in theirentirety even if the array only references a portion of the dictionary.
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.nbytes116
- num_columns#
Number of columns
- Returns:
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.num_columns2
- num_rows#
Number of rows
Due to the definition of a RecordBatch, all columns have the samenumber of rows.
- Returns:
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.num_rows6
- remove_column(self,inti)#
Create new RecordBatch with the indicated column removed.
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>batch=pa.RecordBatch.from_pandas(df)>>>batch.remove_column(1)pyarrow.RecordBatchn_legs: int64----n_legs: [2,4,5,100]
- rename_columns(self,names)#
Create new record batch with columns renamed to provided names.
- Parameters:
- names
list[str] ordict[str,str] List of new column names or mapping of old column names to new column names.
If a mapping of old to new column names is passed, then all columns which arefound to match a provided old column name will be renamed to the new column name.If any column names are not found in the mapping, a KeyError will be raised.
- names
- Returns:
- Raises:
KeyErrorIf any of the column names passed in the names mapping do not exist.
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>batch=pa.RecordBatch.from_pandas(df)>>>new_names=["n","name"]>>>batch.rename_columns(new_names)pyarrow.RecordBatchn: int64name: string----n: [2,4,5,100]name: ["Flamingo","Horse","Brittle stars","Centipede"]>>>new_names={"n_legs":"n","animals":"name"}>>>batch.rename_columns(new_names)pyarrow.RecordBatchn: int64name: string----n: [2,4,5,100]name: ["Flamingo","Horse","Brittle stars","Centipede"]
- replace_schema_metadata(self,metadata=None)#
Create shallow copy of record batch by replacing schemakey-value metadata with the indicated new metadata (which may be None,which deletes any existing metadata
- Parameters:
- Returns:
- shallow_copy
RecordBatch
- shallow_copy
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])
Constructing a RecordBatch with schema and metadata:
>>>my_schema=pa.schema([...pa.field('n_legs',pa.int64())],...metadata={"n_legs":"Number of legs per animal"})>>>batch=pa.RecordBatch.from_arrays([n_legs],schema=my_schema)>>>batch.scheman_legs: int64-- schema metadata --n_legs: 'Number of legs per animal'
Shallow copy of a RecordBatch with deleted schema metadata:
>>>batch.replace_schema_metadata().scheman_legs: int64
- schema#
Schema of the RecordBatch and its columns
- Returns:
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.scheman_legs: int64animals: string
- select(self,columns)#
Select columns of the RecordBatch.
Returns a new RecordBatch with the specified columns, and metadatapreserved.
- Parameters:
- columnslist-like
The column names or integer indices to select.
- Returns:
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.record_batch([n_legs,animals],...names=["n_legs","animals"])
Select columns my indices:
>>>batch.select([1])pyarrow.RecordBatchanimals: string----animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]
Select columns by names:
>>>batch.select(["n_legs"])pyarrow.RecordBatchn_legs: int64----n_legs: [2,2,4,4,5,100]
- serialize(self,memory_pool=None)#
Write RecordBatch to Buffer as encapsulated IPC message, which does notinclude a Schema.
To reconstruct a RecordBatch from the encapsulated IPC message Bufferreturned by this function, a Schema must be passed separately. SeeExamples.
- Parameters:
- memory_pool
MemoryPool, defaultNone Uses default memory pool if not specified
- memory_pool
- Returns:
- serialized
Buffer
- serialized
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>buf=batch.serialize()>>>buf<pyarrow.Buffer address=0x... size=... is_cpu=True is_mutable=True>
Reconstruct RecordBatch from IPC message Buffer and original Schema
>>>pa.ipc.read_record_batch(buf,batch.schema)pyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,2,4,4,5,100]animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]
- set_column(self,inti,field_,column)#
Replace column in RecordBatch at position.
- Parameters:
- Returns:
RecordBatchNew record batch with the passed column set.
Examples
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>batch=pa.RecordBatch.from_pandas(df)
Replace a column:
>>>year=[2021,2022,2019,2021]>>>batch.set_column(1,'year',year)pyarrow.RecordBatchn_legs: int64year: int64----n_legs: [2,4,5,100]year: [2021,2022,2019,2021]
- shape#
Dimensions of the table or record batch: (#rows, #columns).
Examples
>>>importpyarrowaspa>>>table=pa.table({'n_legs':[None,4,5,None],...'animals':["Flamingo","Horse",None,"Centipede"]})>>>table.shape(4, 2)
- slice(self,offset=0,length=None)#
Compute zero-copy slice of this RecordBatch
- Parameters:
- Returns:
- sliced
RecordBatch
- sliced
Examples
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>batch=pa.RecordBatch.from_arrays([n_legs,animals],...names=["n_legs","animals"])>>>batch.to_pandas() n_legs animals0 2 Flamingo1 2 Parrot2 4 Dog3 4 Horse4 5 Brittle stars5 100 Centipede>>>batch.slice(offset=3).to_pandas() n_legs animals0 4 Horse1 5 Brittle stars2 100 Centipede>>>batch.slice(length=2).to_pandas() n_legs animals0 2 Flamingo1 2 Parrot>>>batch.slice(offset=3,length=1).to_pandas() n_legs animals0 4 Horse
- sort_by(self,sorting,**kwargs)#
Sort the Table or RecordBatch by one or multiple columns.
- Parameters:
- Returns:
TableorRecordBatchA new tabular object sorted according to the sort keys.
Examples
Table (works similarly for RecordBatch)
>>>importpandasaspd>>>importpyarrowaspa>>>df=pd.DataFrame({'year':[2020,2022,2021,2022,2019,2021],...'n_legs':[2,2,4,4,5,100],...'animal':["Flamingo","Parrot","Dog","Horse",..."Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)>>>table.sort_by('animal')pyarrow.Tableyear: int64n_legs: int64animal: string----year: [[2019,2021,2021,2020,2022,2022]]n_legs: [[5,100,4,2,4,2]]animal: [["Brittle stars","Centipede","Dog","Flamingo","Horse","Parrot"]]
- take(self,indices)#
Select rows from a Table or RecordBatch.
See
pyarrow.compute.take()for full usage.- Parameters:
- indices
Arrayorarray-like The indices in the tabular object whose rows will be returned.
- indices
- Returns:
TableorRecordBatchA tabular object with the same schema, containing the taken rows.
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>importpandasaspd>>>df=pd.DataFrame({'year':[2020,2022,2019,2021],...'n_legs':[2,4,5,100],...'animals':["Flamingo","Horse","Brittle stars","Centipede"]})>>>table=pa.Table.from_pandas(df)>>>table.take([1,3])pyarrow.Tableyear: int64n_legs: int64animals: string----year: [[2022,2021]]n_legs: [[4,100]]animals: [["Horse","Centipede"]]
- to_pandas(self,memory_pool=None,categories=None,boolstrings_to_categorical=False,boolzero_copy_only=False,boolinteger_object_nulls=False,booldate_as_object=True,booltimestamp_as_object=False,booluse_threads=True,booldeduplicate_objects=True,boolignore_metadata=False,boolsafe=True,boolsplit_blocks=False,boolself_destruct=False,strmaps_as_pydicts=None,types_mapper=None,boolcoerce_temporal_nanoseconds=False)#
Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
- Parameters:
- memory_pool
MemoryPool, defaultNone Arrow MemoryPool to use for allocations. Uses the default memorypool if not passed.
- categories
list, defaultempty List of fields that should be returned as pandas.Categorical. Onlyapplies to table-like data structures.
- strings_to_categoricalbool, default
False Encode string (UTF8) and binary types to pandas.Categorical.
- zero_copy_onlybool, default
False Raise an ArrowException if this function call would require copyingthe underlying data.
- integer_object_nullsbool, default
False Cast integers with nulls to objects
- date_as_objectbool, default
True Cast dates to objects. If False, convert to datetime64 dtype withthe equivalent time unit (if supported). Note: in pandas version< 2.0, only datetime64[ns] conversion is supported.
- timestamp_as_objectbool, default
False Cast non-nanosecond timestamps (np.datetime64) to objects. This isuseful in pandas version 1.x if you have timestamps that don’t fitin the normal date range of nanosecond timestamps (1678 CE-2262 CE).Non-nanosecond timestamps are supported in pandas version 2.0.If False, all timestamps are converted to datetime64 dtype.
- use_threadsbool, default
True Whether to parallelize the conversion using multiple threads.
- deduplicate_objectsbool, default
True Do not create multiple copies Python objects when created, to saveon memory use. Conversion will be slower.
- ignore_metadatabool, default
False If True, do not use the ‘pandas’ metadata to reconstruct theDataFrame index, if present
- safebool, default
True For certain data types, a cast is needed in order to store thedata in a pandas DataFrame or Series (e.g. timestamps are alwaysstored as nanoseconds in pandas). This option controls whether itis a safe cast or not.
- split_blocksbool, default
False If True, generate one internal “block” for each column whencreating a pandas.DataFrame from a RecordBatch or Table. While thiscan temporarily reduce memory note that various pandas operationscan trigger “consolidation” which may balloon memory use.
- self_destructbool, default
False EXPERIMENTAL: If True, attempt to deallocate the originating Arrowmemory while converting the Arrow object to pandas. If you use theobject after calling to_pandas with this option it will crash yourprogram.
Note that you may not see always memory usage improvements. Forexample, if multiple columns share an underlying allocation,memory can’t be freed until all columns are converted.
- maps_as_pydicts
str, optional, defaultNone Valid values areNone, ‘lossy’, or ‘strict’.The default behavior (None), is to convert Arrow Map arrays toPython association lists (list-of-tuples) in the same order as theArrow Map, as in [(key1, value1), (key2, value2), …].
If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts.This can change the ordering of (key, value) pairs, and willdeduplicate multiple keys, resulting in a possible loss of data.
If ‘lossy’, this key deduplication results in a warning printedwhen detected. If ‘strict’, this instead results in an exceptionbeing raised when detected.
- types_mapperfunction, default
None A function mapping a pyarrow DataType to a pandas ExtensionDtype.This can be used to override the default pandas type for conversionof built-in pyarrow types or in absence of pandas_metadata in theTable schema. The function receives a pyarrow DataType and isexpected to return a pandas ExtensionDtype or
Noneif thedefault conversion should be used for that type. If you havea dictionary mapping, you can passdict.getas function.- coerce_temporal_nanosecondsbool, default
False Only applicable to pandas version >= 2.0.A legacy option to coerce date32, date64, duration, and timestamptime units to nanoseconds when converting to pandas. This is thedefault behavior in pandas version 1.x. Set this option to True ifyou’d like to use this coercion when using pandas version >= 2.0for backwards compatibility (not recommended otherwise).
- memory_pool
- Returns:
pandas.Seriesorpandas.DataFramedepending ontypeof object
Examples
>>>importpyarrowaspa>>>importpandasaspd
Convert a Table to pandas DataFrame:
>>>table=pa.table([...pa.array([2,4,5,100]),...pa.array(["Flamingo","Horse","Brittle stars","Centipede"])...],names=['n_legs','animals'])>>>table.to_pandas() n_legs animals0 2 Flamingo1 4 Horse2 5 Brittle stars3 100 Centipede>>>isinstance(table.to_pandas(),pd.DataFrame)True
Convert a RecordBatch to pandas DataFrame:
>>>importpyarrowaspa>>>n_legs=pa.array([2,4,5,100])>>>animals=pa.array(["Flamingo","Horse","Brittle stars","Centipede"])>>>batch=pa.record_batch([n_legs,animals],...names=["n_legs","animals"])>>>batchpyarrow.RecordBatchn_legs: int64animals: string----n_legs: [2,4,5,100]animals: ["Flamingo","Horse","Brittle stars","Centipede"]>>>batch.to_pandas() n_legs animals0 2 Flamingo1 4 Horse2 5 Brittle stars3 100 Centipede>>>isinstance(batch.to_pandas(),pd.DataFrame)True
Convert a Chunked Array to pandas Series:
>>>importpyarrowaspa>>>n_legs=pa.chunked_array([[2,2,4],[4,5,100]])>>>n_legs.to_pandas()0 21 22 43 44 55 100dtype: int64>>>isinstance(n_legs.to_pandas(),pd.Series)True
- to_pydict(self,*,maps_as_pydicts=None)#
Convert the Table or RecordBatch to a dict or OrderedDict.
- Parameters:
- maps_as_pydicts
str, optional, defaultNone Valid values areNone, ‘lossy’, or ‘strict’.The default behavior (None), is to convert Arrow Map arrays toPython association lists (list-of-tuples) in the same order as theArrow Map, as in [(key1, value1), (key2, value2), …].
If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts.
If ‘lossy’, whenever duplicate keys are detected, a warning will be printed.The last seen value of a duplicate key will be in the Python dictionary.If ‘strict’, this instead results in an exception being raised when detected.
- maps_as_pydicts
- Returns:
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>n_legs=pa.array([2,2,4,4,5,100])>>>animals=pa.array(["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"])>>>table=pa.Table.from_arrays([n_legs,animals],names=["n_legs","animals"])>>>table.to_pydict(){'n_legs': [2, 2, 4, 4, 5, 100], 'animals': ['Flamingo', 'Parrot', ..., 'Centipede']}
- to_pylist(self,*,maps_as_pydicts=None)#
Convert the Table or RecordBatch to a list of rows / dictionaries.
- Parameters:
- maps_as_pydicts
str, optional, defaultNone Valid values areNone, ‘lossy’, or ‘strict’.The default behavior (None), is to convert Arrow Map arrays toPython association lists (list-of-tuples) in the same order as theArrow Map, as in [(key1, value1), (key2, value2), …].
If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts.
If ‘lossy’, whenever duplicate keys are detected, a warning will be printed.The last seen value of a duplicate key will be in the Python dictionary.If ‘strict’, this instead results in an exception being raised when detected.
- maps_as_pydicts
- Returns:
Examples
Table (works similarly for RecordBatch)
>>>importpyarrowaspa>>>data=[[2,4,5,100],...["Flamingo","Horse","Brittle stars","Centipede"]]>>>table=pa.table(data,names=["n_legs","animals"])>>>table.to_pylist()[{'n_legs': 2, 'animals': 'Flamingo'}, {'n_legs': 4, 'animals': 'Horse'}, ...
- to_string(self,*,show_metadata=False,preview_cols=0)#
Return human-readable string representation of Table or RecordBatch.
- to_struct_array(self)#
Convert to a struct array.
- to_tensor(self,boolnull_to_nan=False,boolrow_major=True,MemoryPoolmemory_pool=None)#
Convert to a
Tensor.RecordBatches that can be converted have fields of type signed or unsignedinteger or float, including all bit-widths.
null_to_nanisFalseby default and this method will raise an error in caseany nulls are present. RecordBatches with nulls can be converted withnull_to_nanset toTrue. In this case null values are converted toNaNand integer typearrays are promoted to the appropriate float type.- Parameters:
Examples
>>>importpyarrowaspa>>>batch=pa.record_batch(...[...pa.array([1,2,3,4,None],type=pa.int32()),...pa.array([10,20,30,40,None],type=pa.float32()),...],names=["a","b"]...)
>>>batchpyarrow.RecordBatcha: int32b: float----a: [1,2,3,4,null]b: [10,20,30,40,null]
Convert a RecordBatch to row-major Tensor with null valueswritten as``NaN``s
>>>batch.to_tensor(null_to_nan=True)<pyarrow.Tensor>type: doubleshape: (5, 2)strides: (16, 8)>>>batch.to_tensor(null_to_nan=True).to_numpy()array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]])
Convert a RecordBatch to column-major Tensor
>>>batch.to_tensor(null_to_nan=True,row_major=False)<pyarrow.Tensor>type: doubleshape: (5, 2)strides: (8, 40)>>>batch.to_tensor(null_to_nan=True,row_major=False).to_numpy()array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]])

