pyarrow.fixed_shape_tensor#
- pyarrow.fixed_shape_tensor(DataTypevalue_type,shape,dim_names=None,permutation=None)#
Create instance of fixed shape tensor extension type with shape and optionalnames of tensor dimensions and indices of the desired logicalordering of dimensions.
- Parameters:
- value_type
DataType Data type of individual tensor elements.
- shape
tupleorlistofintegers The physical shape of the contained tensors.
- dim_names
tupleorlistofstrings, defaultNone Explicit names to tensor dimensions.
- permutation
tupleorlistintegers, defaultNone Indices of the desired ordering of the original dimensions.The indices contain a permutation of the values
[0,1,..,N-1]whereN is the number of dimensions. The permutation indicates which dimensionof the logical layout corresponds to which dimension of the physical tensor.For more information on this parameter seeFixed shape tensor.
- value_type
- Returns:
Examples
Create an instance of fixed shape tensor extension type:
>>>importpyarrowaspa>>>tensor_type=pa.fixed_shape_tensor(pa.int32(),[2,2])>>>tensor_typeFixedShapeTensorType(extension<arrow.fixed_shape_tensor[value_type=int32, shape=[2,2]]>)
Inspect the data type:
>>>tensor_type.value_typeDataType(int32)>>>tensor_type.shape[2, 2]
Create a table with fixed shape tensor extension array:
>>>arr=[[1,2,3,4],[10,20,30,40],[100,200,300,400]]>>>storage=pa.array(arr,pa.list_(pa.int32(),4))>>>tensor=pa.ExtensionArray.from_storage(tensor_type,storage)>>>pa.table([tensor],names=["tensor_array"])pyarrow.Tabletensor_array: extension<arrow.fixed_shape_tensor[value_type=int32, shape=[2,2]]>----tensor_array: [[[1,2,3,4],[10,20,30,40],[100,200,300,400]]]
Create an instance of fixed shape tensor extension type with namesof tensor dimensions:
>>>tensor_type=pa.fixed_shape_tensor(pa.int8(),(2,2,3),...dim_names=['C','H','W'])>>>tensor_type.dim_names['C', 'H', 'W']
Create an instance of fixed shape tensor extension type withpermutation:
>>>tensor_type=pa.fixed_shape_tensor(pa.int8(),(2,2,3),...permutation=[0,2,1])>>>tensor_type.permutation[0, 2, 1]

