Statistics schema#

Warning

This specification should be considered experimental.

Rationale#

Statistics are useful for fast query processing. Many query enginesuse statistics to optimize their query plan.

Apache Arrow format doesn’t have statistics but other formats that canbe read as Apache Arrow data may have statistics. For example, theApache Parquet C++ implementation can read an Apache Parquet file asApache Arrow data and the Apache Parquet file may have statistics.

We standardize the representation of statistics as an Apache Arrowarray for ease of exchange.

Use case#

One ofThe Arrow C stream interface use cases is the following:

  1. Module A reads Apache Parquet file as Apache Arrow data.

  2. Module A passes the read Apache Arrow data to module B through theArrow C stream interface.

  3. Module B processes the passed Apache Arrow data.

If module A can pass the statistics associated with the Apache Parquetfile to module B, module B can use the statistics to optimize itsquery plan.

For example, DuckDB uses this approach but DuckDB couldn’t usestatistics because there wasn’t a standardized way to representstatistics for the Apache Arrow data.

Goals#

  • Establish a standard way to represent statistics as an Apache Arrowarray.

Non-goals#

  • Establish a standard way to pass an Apache Arrow array thatrepresents statistics.

  • Establish a standard way to embed statistics into an Apache Arrowarray itself.

Schema#

This specification provides only the schema for statistics. This isthe canonical schema to represent statistics about an Apache Arrowdataset as Apache Arrow data.

Here is the outline of the schema for statistics:

struct<column:int32,statistics:map<key:dictionary<values:utf8,indices:int32>,items:dense_union<...allneededtypes...>>>

Here is the details of top-levelstruct:

Name

Data type

Nullable

Notes

column

int32

true

The zero-based column index, or null if the statisticsdescribe the whole table or record batch.

The column index is computed as the same rule used byRecordBatch message.

statistics

map

false

Statistics for the target column, table or record batch. Seethe separate table below for details.

Here is the details of themap of thestatistics:

Key or items

Data type

Nullable

Notes

key

dictionary<values:utf8,indices:int32>

false

The string key is the name of thestatistic. Dictionary-encoding is used for efficiency as thesame statistic may be repeated for different columns.Different keys are assigned for exact and approximate statisticvalues. Each statistic has their own description below.

items

dense_union

false

Statistics value is dense union. It has at least all neededtypes based on statistics kinds in the keys. For example, youneed at leastint64 andfloat64 types when you have aint64 distinct count statistic and afloat64 averagebyte width statistic. See the description of each statistic below.

Dense union arrays have names for each field but we don’t standardizefield names for these because we can access the properfield by type code instead. So we can use any valid name forthe fields.

Standard statistics#

Each statistic kind has a name that appears as a key in the statisticsmap for each column or entire table.dictionary<values:utf8,indices:int32> is used to encode the name for space-efficiency.

We assign different names for variations of the same statistic insteadof using flags. For example, we assign different statistic names forexact and approximate values of the “distinct count” statistic.

The colon symbol: is to be used as a namespace separator likeCustom Application Metadata. It can be used multiple times in a name.

TheARROW prefix is a reserved namespace for pre-defined statisticnames in current and future versions of this specification.User-defined statistics must not use it. For example, you can use yourproduct name as namespace such asMY_PRODUCT:my_statistics:exact.

Here are pre-defined statistics names:

Name

Data type

Notes

ARROW:average_byte_width:exact

float64

The average size in bytes of a row in the targetcolumn. (exact)

ARROW:average_byte_width:approximate

float64

The average size in bytes of a row in the targetcolumn. (approximate)

ARROW:distinct_count:exact

int64

The number of distinct values in the target column. (exact)

ARROW:distinct_count:approximate

float64

The number of distinct values in the targetcolumn. (approximate)

ARROW:max_byte_width:exact

int64

The maximum size in bytes of a row in the targetcolumn. (exact)

ARROW:max_byte_width:approximate

float64

The maximum size in bytes of a row in the targetcolumn. (approximate)

ARROW:max_value:exact

Target dependent

The maximum value in the target column. (exact)

ARROW:max_value:approximate

Target dependent

The maximum value in the target column. (approximate)

ARROW:min_value:exact

Target dependent

The minimum value in the target column. (exact)

ARROW:min_value:approximate

Target dependent

The minimum value in the target column. (approximate)

ARROW:null_count:exact

int64

The number of nulls in the target column. (exact)

ARROW:null_count:approximate

float64

The number of nulls in the target column. (approximate)

ARROW:row_count:exact

int64

The number of rows in the target table, record batch orarray. (exact)

ARROW:row_count:approximate

float64

The number of rows in the target table, record batch orarray. (approximate)

If you find a statistic that might be useful to multiple systems,please propose it on theApache Arrow development mailing-list.

Interoperability improves when producers and consumers of statisticsfollow a previously agreed upon statistic specification.

Examples#

Here are some examples to help you understand.

Simple record batch#

Schema:

vendor_id:int32passenger_count:int64

Data:

vendor_id:[5,1,5,1,5]passenger_count:[1,1,2,0,null]

Statistics:

Target

Name

Value

Record batch

The number of rows

5

vendor_id

The number of nulls

0

The number of distinct values

2

The max value

5

The min value

1

passenger_count

The number of nulls

1

The number of distinct values

3

The max value

2

The min value

0

Column indexes:

Index

Target

0

vendor_id

1

passenger_count

Statistics schema:

struct<column:int32,statistics:map<key:dictionary<values:utf8,indices:int32>,items:dense_union<0:int64>>>

Statistics array:

column:[null,# record batch0,# vendor_id1,# passenger_count]statistics:offsets:[0,1,# record batch: 1 value: [0]5,# vendor_id: 4 values: [1, 2, 3, 4]9,# passenger_count: 4 values: [5, 6, 7, 8]]key:values:["ARROW:row_count:exact","ARROW:null_count:exact","ARROW:distinct_count:exact","ARROW:max_value:exact","ARROW:min_value:exact",]indices:[0,# "ARROW:row_count:exact"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"3,# "ARROW:max_value:exact"4,# "ARROW:min_value:exact"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"3,# "ARROW:max_value:exact"4,# "ARROW:min_value:exact"]items:children:0:[# int645,# record batch: "ARROW:row_count:exact"0,# vendor_id: "ARROW:null_count:exact"2,# vendor_id: "ARROW:distinct_count:exact"5,# vendor_id: "ARROW:max_value:exact"1,# vendor_id: "ARROW:min_value:exact"1,# passenger_count: "ARROW:null_count:exact"3,# passenger_count: "ARROW:distinct_count:exact"2,# passenger_count: "ARROW:max_value:exact"0,# passenger_count: "ARROW:min_value:exact"]types:[# all values are int640,0,0,0,0,0,0,0,0,]offsets:[0,1,2,3,4,5,6,7,8,]

Complex record batch#

This uses nested types.

Schema:

col1:struct<a:int32,b:list<item:int64>,c:float64>col2:utf8

Data:

col1:[{a:1,b:[20,30,40],c:2.9},{a:2,b:null,c:-2.9},{a:3,b:[99],c:null},]col2:["x",null,"z"]

Statistics:

Target

Name

Value

Record batch

The number of rows

3

col1

The number of nulls

0

col1.a

The number of nulls

0

The number of distinct values

3

The approximate max value

5

The approximate min value

0

col1.b

The number of nulls

1

col1.b.item

The max value

99

The min value

20

col1.c

The number of nulls

1

The approximate max value

3.0

The approximate min value

-3.0

col2

The number of nulls

1

The number of distinct values

2

Column indexes:

Index

Target

0

col1

1

col1.a

2

col1.b

3

col1.b.item

4

col1.c

5

col2

See alsoRecordBatch message how to compute column indexes.

Statistics schema:

struct<column:int32,statistics:map<key:dictionary<values:utf8,indices:int32>,items:dense_union<# For the number of rows, the number of nulls and so on.0:int64,# For the max/min values of col1.c.1:float64>>>

Statistics array:

column:[null,# record batch0,# col11,# col1.a2,# col1.b3,# col1.b.item4,# col1.c5,# col2]statistics:offsets:[0,1,# record batch: 1 value: [0]2,# col1: 1 value: [1]6,# col1.a: 4 values: [2, 3, 4, 5]7,# col1.b: 1 value: [6]9,# col1.b.item: 2 values: [7, 8]12,# col1.c: 3 values: [9, 10, 11]14,# col2: 2 values: [12, 13]]key:values:["ARROW:row_count:exact","ARROW:null_count:exact","ARROW:distinct_count:exact","ARROW:max_value:approximate","ARROW:min_value:approximate","ARROW:max_value:exact","ARROW:min_value:exact",]indices:[0,# "ARROW:row_count:exact"1,# "ARROW:null_count:exact"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"3,# "ARROW:max_value:approximate"4,# "ARROW:min_value:approximate"1,# "ARROW:null_count:exact"5,# "ARROW:max_value:exact"6,# "ARROW:min_value:exact"1,# "ARROW:null_count:exact"3,# "ARROW:max_value:approximate"4,# "ARROW:min_value:approximate"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"]items:children:0:[# int643,# record batch: "ARROW:row_count:exact"0,# col1: "ARROW:null_count:exact"0,# col1.a: "ARROW:null_count:exact"3,# col1.a: "ARROW:distinct_count:exact"5,# col1.a: "ARROW:max_value:approximate"0,# col1.a: "ARROW:min_value:approximate"1,# col1.b: "ARROW:null_count:exact"99,# col1.b.item: "ARROW:max_value:exact"20,# col1.b.item: "ARROW:min_value:exact"1,# col1.c: "ARROW:null_count:exact"1,# col2: "ARROW:null_count:exact"2,# col2: "ARROW:distinct_count:exact"]1:[# float643.0,# col1.c: "ARROW:max_value:approximate"-3.0,# col1.c: "ARROW:min_value:approximate"]types:[0,# int64: record batch: "ARROW:row_count:exact"0,# int64: col1: "ARROW:null_count:exact"0,# int64: col1.a: "ARROW:null_count:exact"0,# int64: col1.a: "ARROW:distinct_count:exact"0,# int64: col1.a: "ARROW:max_value:approximate"0,# int64: col1.a: "ARROW:min_value:approximate"0,# int64: col1.b: "ARROW:null_count:exact"0,# int64: col1.b.item: "ARROW:max_value:exact"0,# int64: col1.b.item: "ARROW:min_value:exact"0,# int64: col1.c: "ARROW:null_count:exact"1,# float64: col1.c: "ARROW:max_value:approximate"1,# float64: col1.c: "ARROW:min_value:approximate"0,# int64: col2: "ARROW:null_count:exact"0,# int64: col2: "ARROW:distinct_count:exact"]offsets:[0,# int64: record batch: "ARROW:row_count:exact"1,# int64: col1: "ARROW:null_count:exact"2,# int64: col1.a: "ARROW:null_count:exact"3,# int64: col1.a: "ARROW:distinct_count:exact"4,# int64: col1.a: "ARROW:max_value:approximate"5,# int64: col1.a: "ARROW:min_value:approximate"6,# int64: col1.b: "ARROW:null_count:exact"7,# int64: col1.b.item: "ARROW:max_value:exact"8,# int64: col1.b.item: "ARROW:min_value:exact"9,# int64: col1.c: "ARROW:null_count:exact"0,# float64: col1.c: "ARROW:max_value:approximate"1,# float64: col1.c: "ARROW:min_value:approximate"10,# int64: col2: "ARROW:null_count:exact"11,# int64: col2: "ARROW:distinct_count:exact"]

Simple array#

Schema:

int64

Data:

[1,1,2,0,null]

Statistics:

Target

Name

Value

Array

The number of rows

5

The number of nulls

1

The number of distinct values

3

The max value

2

The min value

0

Column indexes:

Index

Target

0

Array

Statistics schema:

struct<column:int32,statistics:map<key:dictionary<values:utf8,indices:int32>,items:dense_union<0:int64>>>

Statistics array:

column:[0,# array]statistics:offsets:[0,5,# array: 5 values: [0, 1, 2, 3, 4]]key:values:["ARROW:row_count:exact","ARROW:null_count:exact","ARROW:distinct_count:exact","ARROW:max_value:exact","ARROW:min_value:exact",]indices:[0,# "ARROW:row_count:exact"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"3,# "ARROW:max_value:exact"4,# "ARROW:min_value:exact"]items:children:0:[# int645,# array: "ARROW:row_count:exact"1,# array: "ARROW:null_count:exact"3,# array: "ARROW:distinct_count:exact"2,# array: "ARROW:max_value:exact"0,# array: "ARROW:min_value:exact"]types:[# all values are int640,0,0,0,0,]offsets:[0,1,2,3,4,]

Complex array#

This uses nested types.

Schema:

struct<a:int32,b:list<item:int64>,c:float64>

Data:

[{a:1,b:[20,30,40],c:2.9},{a:2,b:null,c:-2.9},{a:3,b:[99],c:null},]

Statistics:

Target

Name

Value

Array

The number of rows

3

The number of nulls

0

a

The number of nulls

0

The number of distinct values

3

The approximate max value

5

The approximate min value

0

b

The number of nulls

1

b.item

The max value

99

The min value

20

c

The number of nulls

1

The approximate max value

3.0

The approximate min value

-3.0

Column indexes:

Index

Target

0

Array

1

a

2

b

3

b.item

4

c

See alsoRecordBatch message how to compute column indexes.

Statistics schema:

struct<column:int32,statistics:map<key:dictionary<values:utf8,indices:int32>,items:dense_union<# For the number of rows, the number of nulls and so on.0:int64,# For the max/min values of c.1:float64>>>

Statistics array:

column:[0,# array1,# a2,# b3,# b.item4,# c]statistics:offsets:[0,2,# array: 2 values: [0, 1]6,# a: 4 values: [2, 3, 4, 5]7,# b: 1 value: [6]9,# b.item: 2 values: [7, 8]12,# c: 3 values: [9, 10, 11]]key:values:["ARROW:row_count:exact","ARROW:null_count:exact","ARROW:distinct_count:exact","ARROW:max_value:approximate","ARROW:min_value:approximate","ARROW:max_value:exact","ARROW:min_value:exact",]indices:[0,# "ARROW:row_count:exact"1,# "ARROW:null_count:exact"1,# "ARROW:null_count:exact"2,# "ARROW:distinct_count:exact"3,# "ARROW:max_value:approximate"4,# "ARROW:min_value:approximate"1,# "ARROW:null_count:exact"5,# "ARROW:max_value:exact"6,# "ARROW:min_value:exact"1,# "ARROW:null_count:exact"3,# "ARROW:max_value:approximate"4,# "ARROW:min_value:approximate"]items:children:0:[# int643,# array: "ARROW:row_count:exact"0,# array: "ARROW:null_count:exact"0,# a: "ARROW:null_count:exact"3,# a: "ARROW:distinct_count:exact"5,# a: "ARROW:max_value:approximate"0,# a: "ARROW:min_value:approximate"1,# b: "ARROW:null_count:exact"99,# b.item: "ARROW:max_value:exact"20,# b.item: "ARROW:min_value:exact"1,# c: "ARROW:null_count:exact"]1:[# float643.0,# c: "ARROW:max_value:approximate"-3.0,# c: "ARROW:min_value:approximate"]types:[0,# int64: array: "ARROW:row_count:exact"0,# int64: array: "ARROW:null_count:exact"0,# int64: a: "ARROW:null_count:exact"0,# int64: a: "ARROW:distinct_count:exact"0,# int64: a: "ARROW:max_value:approximate"0,# int64: a: "ARROW:min_value:approximate"0,# int64: b: "ARROW:null_count:exact"0,# int64: b.item: "ARROW:max_value:exact"0,# int64: b.item: "ARROW:min_value:exact"0,# int64: c: "ARROW:null_count:exact"1,# float64: c: "ARROW:max_value:approximate"1,# float64: c: "ARROW:min_value:approximate"]offsets:[0,# int64: array: "ARROW:row_count:exact"1,# int64: array: "ARROW:null_count:exact"2,# int64: a: "ARROW:null_count:exact"3,# int64: a: "ARROW:distinct_count:exact"4,# int64: a: "ARROW:max_value:approximate"5,# int64: a: "ARROW:min_value:approximate"6,# int64: b: "ARROW:null_count:exact"7,# int64: b.item: "ARROW:max_value:exact"8,# int64: b.item: "ARROW:min_value:exact"9,# int64: c: "ARROW:null_count:exact"0,# float64: c: "ARROW:max_value:approximate"1,# float64: c: "ARROW:min_value:approximate"]