pyarrow.Tensor#
- classpyarrow.Tensor#
Bases:
_WeakrefableA n-dimensional array a.k.a Tensor.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])<pyarrow.Tensor>type: int32shape: (2, 3)strides: (12, 4)
- __init__(*args,**kwargs)#
Methods
__init__(*args, **kwargs)dim_name(self, i)Returns the name of the i-th tensor dimension.
equals(self, Tensor other)Return true if the tensors contains exactly equal data.
from_numpy(obj[, dim_names])Create a Tensor from a numpy array.
to_numpy(self)Convert arrow::Tensor to numpy.ndarray with zero copy
Attributes
Names of this tensor dimensions.
Is this tensor contiguous in memory.
Is this tensor mutable or immutable.
The dimension (n) of this tensor.
The shape of this tensor.
The size of this tensor.
Strides of this tensor.
- dim_name(self,i)#
Returns the name of the i-th tensor dimension.
- Parameters:
- i
int The physical index of the tensor dimension.
- i
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.dim_name(0)'dim1'>>>tensor.dim_name(1)'dim2'
- dim_names#
Names of this tensor dimensions.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.dim_names['dim1', 'dim2']
- equals(self,Tensorother)#
Return true if the tensors contains exactly equal data.
- Parameters:
- other
Tensor The other tensor to compare for equality.
- other
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>y=np.array([[2,2,4],[4,5,10]],np.int32)>>>tensor2=pa.Tensor.from_numpy(y,dim_names=["a","b"])>>>tensor.equals(tensor)True>>>tensor.equals(tensor2)False
- staticfrom_numpy(obj,dim_names=None)#
Create a Tensor from a numpy array.
- Parameters:
- obj
numpy.ndarray The source numpy array
- dim_names
list, optional Names of each dimension of the Tensor.
- obj
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])<pyarrow.Tensor>type: int32shape: (2, 3)strides: (12, 4)
- is_contiguous#
Is this tensor contiguous in memory.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.is_contiguousTrue
- is_mutable#
Is this tensor mutable or immutable.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.is_mutableTrue
- ndim#
The dimension (n) of this tensor.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.ndim2
- shape#
The shape of this tensor.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.shape(2, 3)
- size#
The size of this tensor.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.size6
- strides#
Strides of this tensor.
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.strides(12, 4)
- to_numpy(self)#
Convert arrow::Tensor to numpy.ndarray with zero copy
Examples
>>>importpyarrowaspa>>>importnumpyasnp>>>x=np.array([[2,2,4],[4,5,100]],np.int32)>>>tensor=pa.Tensor.from_numpy(x,dim_names=["dim1","dim2"])>>>tensor.to_numpy()array([[ 2, 2, 4], [ 4, 5, 100]], dtype=int32)
- type#

