pyarrow.MapType#
- classpyarrow.MapType#
Bases:
DataTypeConcrete class for map data types.
Examples
Create an instance of MapType:
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32())MapType(map<string, int32>)>>>pa.map_(pa.string(),pa.int32(),keys_sorted=True)MapType(map<string, int32, keys_sorted>)
- __init__(*args,**kwargs)#
Methods
__init__(*args, **kwargs)equals(self, other, *[, check_metadata])Return true if type is equivalent to passed value.
field(self, i)to_pandas_dtype(self)Return the equivalent NumPy / Pandas dtype.
Attributes
Bit width for fixed width type.
Byte width for fixed width type.
If True, the number of expected buffers is only lower-bounded by num_buffers.
The field for items in the map entries.
The data type of items in the map entries.
The field for keys in the map entries.
The data type of keys in the map entries.
Should the entries be sorted according to keys.
Number of data buffers required to construct Array type excluding children.
The number of child fields.
- bit_width#
Bit width for fixed width type.
Examples
>>>importpyarrowaspa>>>pa.int64()DataType(int64)>>>pa.int64().bit_width64
- byte_width#
Byte width for fixed width type.
Examples
>>>importpyarrowaspa>>>pa.int64()DataType(int64)>>>pa.int64().byte_width8
- equals(self,other,*,check_metadata=False)#
Return true if type is equivalent to passed value.
- Parameters:
- Returns:
- is_equalbool
Examples
>>>importpyarrowaspa>>>pa.int64().equals(pa.string())False>>>pa.int64().equals(pa.int64())True
- has_variadic_buffers#
If True, the number of expected buffers is onlylower-bounded by num_buffers.
Examples
>>>importpyarrowaspa>>>pa.int64().has_variadic_buffersFalse>>>pa.string_view().has_variadic_buffersTrue
- id#
- item_field#
The field for items in the map entries.
Examples
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32()).item_fieldpyarrow.Field<value: int32>
- item_type#
The data type of items in the map entries.
Examples
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32()).item_typeDataType(int32)
- key_field#
The field for keys in the map entries.
Examples
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32()).key_fieldpyarrow.Field<key: string not null>
- key_type#
The data type of keys in the map entries.
Examples
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32()).key_typeDataType(string)
- keys_sorted#
Should the entries be sorted according to keys.
Examples
>>>importpyarrowaspa>>>pa.map_(pa.string(),pa.int32(),keys_sorted=True).keys_sortedTrue
- num_buffers#
Number of data buffers required to construct Array typeexcluding children.
Examples
>>>importpyarrowaspa>>>pa.int64().num_buffers2>>>pa.string().num_buffers3
- num_fields#
The number of child fields.
Examples
>>>importpyarrowaspa>>>pa.int64()DataType(int64)>>>pa.int64().num_fields0>>>pa.list_(pa.string())ListType(list<item: string>)>>>pa.list_(pa.string()).num_fields1>>>struct=pa.struct({'x':pa.int32(),'y':pa.string()})>>>struct.num_fields2
- to_pandas_dtype(self)#
Return the equivalent NumPy / Pandas dtype.
Examples
>>>importpyarrowaspa>>>pa.int64().to_pandas_dtype()<class 'numpy.int64'>

