الفِيزِيَاءُ[1] أوعِلْمُ الفِيزِيَاءِ[2] أوالفِيزِيقَا (بالإغريقية:φυσική)،[3][4][5] وتُسَمَّى أيضًا بـالطَبِيعِيَّاتِ أوعِلْمِ الطَبِيعَةِ[2]، هو العلم الذي يدرس المفاهيم الأساسية مثل:الطاقة،القوة،(1)والزمان، وكل ما ينبع من هذا، مثلالكتلة،المادة وحركتها.(2) وعلى نطاق أوسع، هو التحليل العام للطبيعة، والذي يهدف إلى فهم كيف يعملالكون.
وتحاول الفيزياء أن تفهم الظواهر الطبيعية، والقوى والحركة المؤثرة في سيرها، وصياغة المعرفة في قوانين لا تفسر العمليات السالفة فقط بل التنبؤ بمسيرة العمليات الطبيعية بنماذج تقترب رويدًا رويدًا من الواقع.
يُعتبر علم الفيزياء من أحد أقدم التّخصصات الأكاديمية، فقد بدأت بالبزوغ منذالعصور الوسطى، وتميّزتكعلمٍ حديثٍ فيالقرن السابع عشر، وباعتبار أن أحد فروعها، وهوعلم الفلك، يعد من أعرق العلومِ الكونيةِ على الإطلاقِ.[6] خلال معظم الألفي سنةِ الماضيةِ، كانت الفيزياء (علم الطبيعة)والكيمياءوعلم الأحياء وبعض فروعالرياضيات، جزءً من الفلسفة الطبيعية، ولكن خلال الثورة العلمية فيالقرن السابع عشر ظهرت هذه العلوم الطبيعية كمساعي بحثية فريدة في حد ذاتها. تتقاطع الفيزياء مع العديد من مجالات البحث متعددة التخصصات، مثلالفيزياء الحيويةوالكيمياء الكمومية، وحدود الفيزياء التي لم تُعرَّف تعريفاً صارماً. غالبًا ما تشرح الأفكار الجديدة في الفيزياء الآليات الأساسية التي تدرسها علوم أخرى وتقترح طرقًا جديدة للبحث في التخصصات الأكاديمية مثلالرياضياتوالفلسفة.
وللفيزياء مكانة متميزة في الفكر الإنساني، وكما تأثرت بأفرع المعرفة الإنسانية الأخرى؛ فقد كان لها أيضا الأثر الحاسم في بعض الحقول المعرفية والعلمية الأخرى مثلالفلسفةوالرياضياتوعلم الأحياء. ولقد تجسدت أغلب التّطورات التي أحدثتها بشكل عملي في عدّة قطاعات منالتقنيةوالطب. فعلى سبيل المثال، أدى التّقدم في فهمالكهرطيسية إلى الانتشار الواسع في استخدام الأجهزة الكهربائية مثلالتلفازوالحاسوب، وكذلك تطبيقاتالديناميكا الحرارية إلى التطور المذهل في مجالالمحركات ووسائل النقل الحديثة،وميكانيكا الكم إلى اختراع معدات مثلالمجهر الإلكتروني، كما كانلعصر الذرة -بجانب آثاره المدمرة- استعمالات هامة لتطويع الإشعاع في علاجالسرطان وتشخيص الأمراض.[8]
معظم الفيزيائيين اليوم هم عادة متخصصون في مجالين متكاملين وهماالفيزياء النظريةوالفيزياء التجريبية، وتهتم الأولى بصياغة النظريات باعتمادنماذج رياضية، فيما تهتم الثانية بإجراء الاختبارات على تلك النظريات، بالإضافة إلى اكتشاف ظواهر طبيعية جديدة. وبالرغم من الكم الهائل من الاكتشافات المهمّة التي حققتها الفيزياء في القرون الأربعة الماضية، إلا أن العديد من المسائل لا تزال بدون جواب إلى حد الآن، كما أن هناك مجالات نظرية وتطبيقية تشهد نشاطًا وأبحاثًا مكثّفة.
كلمة فيزياء مأخودة من اللغة الإغريقية «φυσική فيزياء» وهي مكونة من كلمتين "ἐπιστήμη epistḗmē" وتعني «معرفة الطبيعة».[3][4][5] في البداية عرِّبت من الإغريقية إلىفيزيقا[9] واستخدم عدد من العلماء العرب في فجر الإسلام هذا الاسم، كما استخدم بعضُهم لفظَ فيزياء سجعًا مع لفظ كيمياء. والآن لفظ فيزيقا لم يعد يستعمل وبقي لفظ فيزياء هو المستخدم، وقد عُرِّب أيضاً من علم الطبيعة إلى طبيعياء، سجعاً مع لفظ فيزياء ولفظ كيمياء.
يتضح علم الفلك المصري القديم في آثار مثل سقف قبر سينيموت من الأسرة الثامنة عشرة لمصر.
علم الفلك هو واحد من أقدم العلوم الطبيعية. كانت الحضارات المبكرة التي يعود تاريخها إلى ما قبل 3000 سنة قبل الميلاد، مثلالسومريينوالمصريين القدماء وحضارةوادي السند، لديهم معرفة تنبؤية وفهم أساسي لحركاتالشمسوالقمروالنجوم. كانت النجوم والكواكب تعبد في كثير من الأحيان، ويعتقد أنها تمثل آلهة. في حين أن التفسيرات للمواقف المرصودة للنجوم كانت في كثير من الأحيان غير علمية وتفتقر إلى الأدلة، وضعت هذه الملاحظات المبكرة الأساس لعلم الفلك في وقت لاحق، فقد عُثِر على النجوم لاجتياز دوائر كبيرة عبر السماء، والتي لم تفسر مدارات الكواكب.
وفقًالآسغر آبو، يمكن العثور على أصولعلم الفلك الغربي فيبلاد ما بين النهرين، وكل الجهود الغربية في العلوم الدقيقة تنحدر من علم الفلك البابلي المتأخر.[10] ترك علماء الفلك المصريون آثارًا تُظهر معرفة الأبراج وحركات الأجرام السماوية،[11] في حين كتب الشاعر اليوناني هوميروس العديد من الأجرام السماوية في كتابه «الإلياذة» و«الأوديسة»؛ في وقت لاحق قدم علماء الفلك اليوناني أسماء، والتي لا تزال تستخدم حتى اليوم، بالنسبة لمعظم الأبراج المرئية من نصف الكرة الشمالي.[12]
تعود أصول الفلسفة الطبيعية إلىاليونان خلال العصر القديم (650 قبل الميلاد - 480 قبل الميلاد)، عندما رفض فلاسفة ما قبلسقراط مثلتاليس تفسيرات غير طبيعية للظواهر الطبيعية وأعلنوا أن كل حدث له سبب طبيعي.[13] اقترحوا أفكارًا يمكن التحقق منها عن طريق العقل والملاحظة، وأثبتت العديد من فرضياتها نجاحها في التجربة؛[14] على سبيل المثال، عُثِر علىالمذهب الذري الصحيح قرابة 2000 سنة بعد أن اقترحهليوكيبوس وتلميذهديموقريطوس.
الفيزياء في العصور الوسطى الأوروبية والعالم الإسلامي
في القرن السادس عشر، تساءلجون فيلوبونوس، وهو عالم بيزنطي، عن تعاليمأرسطو للفيزياء وأشار إلى عيوبها. قدم نظرية الزخم. لم تفحص فيزياء أرسطو حتى ظهرجون فيلوبونوس، وعلى عكس أرسطو الذي بنى فيزياءه على الحجة اللفظية، اعتمد فيلوبونس على الملاحظة. في فيزياء أرسطو كتبجون فيلوبونوس:
«لكن هذا خاطئ تمامًا، وقد تُدعَم وجهة نظرنا من خلال الملاحظة الفعلية بشكل أكثر فعالية من أي نوع من الحجة الكلامية. فإذا تركت الأجسام تسقط من الارتفاع نفسه حيث أحدهما أكثر وزنا من الآخر، فسترى أن نسبة المرات المطلوبة للحركة لا تعتمد على نسبة الأوزان، لكن الفرق في الوقت هو صغير جدا. وهكذا، إذا لم يكن الفرق في الأوزان كبيرًا، وهذا يعني أن أحدهما، نقول، ضاعف الآخر، لن يكون هناك فرق، وإلا سيكون هناك اختلاف غير محسوس، في الوقت المناسب، على الرغم من أن الفرق في الوزن لا يعني ذلك، مع وزن جسم واحد ضعف وزن الجسم الآخر.[16]»
كان نقد جون فيلوبونوس لمبادئ الفيزياء الأرسطية بمثابة مصدر إلهاملغاليليو غاليلي بعد عشرة قرون،(4) خلال الثورة العلمية. استشهد غاليليو بفيلوبونوس بشكل كبير في أعماله عندما جادل بأن الفيزياء الأرسطية كانت معيبة.[17][18] في القرن الثالث عشر الميلادي، طوّرجان بوريدان، وهو مدرس في كلية الآداببجامعة باريس، مفهومالزخم. لقد كانت خطوة نحو الأفكار الحديثة عن الجمود والزخم.[19]
ورث علماء العصر الإسلامي الفيزياء الأرسطية منالإغريق وخلالالعصر الذهبي الإسلامي طورتها أكثر، خاصة مع التركيز على الملاحظة والتفكير المسبق، وتطوير أشكال مبكرة منالمنهج العلمي.
كانت أبرز الابتكارات في مجالالبصريات والرؤية، والتي جاءت من أعمال العديد من العلماء مثلابن سهلوالكنديوابن الهيثموكمال الدين الفارسيوابن سينا. كان العمل الأكثر بروزًا هو كتاب البصريات، الذي كتبه ابن الهيثم، والذي دحض فيه بشكل قاطع الفكرة اليونانية القديمة عن الرؤية، لكنه توصل أيضًا إلى نظرية جديدة. في الكتاب، قدم دراسة لظاهرةالكاميرا المظلمة (نسخة عمرها ألف سنة من الكاميرا ذات الثقب) وتعمق أكثر في الطريقة التي تعمل بها العين نفسها. باستخدام التشريح ومعرفة العلماء السابقين، تمكن من البدء في شرح كيف يدخل الضوء إلى العين. أكد أن أشعة الضوء مركّزة، لكن التفسير الفعلي لكيفية إضاءة الضوء المرتقب على الجزء الخلفي من العين كان ينتظر حتى عام 1604. وقد أوضحت أطروحته على ضوء الكاميرا المظلمة، قبل مئات السنين من التطور الحديث للتصوير الفوتوغرافي.[20]
أثر كتاب البصريات المؤلف من سبعة مجلدات بشكل كبير على التفكير عبر تخصصات من نظرية الإدراك البصري إلى طبيعة المنظور في فنالعصور الوسطى،[21] في كل من الشرق والغرب، لأكثر من 600 عام. كان العديد من العلماء الأوروبيين في وقت لاحق وزملائه من الذين كانوا يمتلكون الموهبةالرياضية، منروبرت جروسيتيستوليوناردو دافنشي إلىرينيه ديكارتويوهانز كيبلروإسحاق نيوتن، في دَينهِ. في الواقع، فإن تأثير ابن الهيثم للبصريات يصنف إلى جانب تأثير نيوتن الذي يحمل نفس العنوان، والذي نُشِر بعد 700 عام.
كان لترجمة كتاب البصريات تأثير كبير علىأوروبا. حيث ساهم في تمكن العلماء الأوروبيون لاحقًا من بناء أجهزة طورت بناء على الأجهزة التي أنشأها ابن الهيثم، كما ساهم أيضا في فهم طريقة عمل الضوء. الشيء الذي ساعد على تطوير أدوات مهمة مثلالنظاراتوالعدسات المكبرةوالالمقاريبوالآلات التصوير.
إسحاق نيوتن وألبرت أينشتاين آباء الفيزياء التقليدية والحديثة
أصبحت الفيزياء علمًا منفصلاً عندما استخدم الأوروبيون الحديثون الأوائل الأساليب التجريبية والكمية لاكتشاف ما يُعتبر الآن قوانين الفيزياء.
تشمل التطورات الرئيسية في هذه الفترة الاستعاضة عن نموذج مركز الأرض للنظام الشمسي بنموذجكوبرنيكوس الشمسي، والقوانين التي تحكم حركة الهيئات الكوكبية التي حددهايوهانس كيبلر بين عامي 1609 و1619، والعمل الرائد في مجال المقاريب وعلم الفلك الرصدي بواسطةغاليليو غاليلي في القرنين السادس عشر والسابع عشر، واكتشافإسحاق نيوتن وتوحيد قوانين الحركة والجاذبية العالمية التي ستحمل اسمه.[22] طور نيوتن أيضاحساب التفاضل والتكامل، الدراسة الرياضية للتغيير، والتي قدمت أساليب رياضية جديدة لحل المسائل الفيزيائية.[23]
نتج اكتشاف قوانين جديدة فيالديناميكا الحراريةوالكيمياءوالكهرطيسية عن جهود بحثية أكبر خلال الثورة الصناعية مع زيادة احتياجات الطاقة.[24] تظل القوانين التي تضم الفيزياء التقليدية مستخدمة على نطاق واسع جدًا للكائنات ذات المقاييس اليومية التي تنتقل بسرعات غير نسبية، نظرًا لأنها توفر تقريبًا وثيقًا للغاية في مثل هذه الحالات، كما أن النظريات مثلميكانيكا الكمونظرية النسبية تبسط إلى نظيراتها التقليدية عند هذا الحد. ومع ذلك، أدت عدم الدقة في الميكانيكا التقليدية للأجسام الصغيرة جدًا والسرعات العالية جدًا إلى تطورالفيزياء الحديثة في القرن العشرين.
بدأت الفيزياء الحديثة في أوائل القرن العشرين بعملماكس بلانك فينظرية الكمونظرية النسبيةلألبرت أينشتاين. كل من هذه النظريات جاءت بسبب عدم الدقة فيالميكانيكا الكلاسيكية في بعض الحالات. تنبأت الميكانيكا الكلاسيكية بسرعة متفاوتة من الضوء، والتي لا يمكن حلها بالسرعة الثابتة التي تتنبأ بهامعادلات ماكسويل الكهرطيسية؛ صُحح هذا التناقض من خلالنظرية النسبية الخاصة لآينشتاين، والتي حلت محل الميكانيكا الكلاسيكية للأجسام سريعة الحركة والسماح لسرعة ثابتة من الضوء.[25] قدمتإشعاعات الجسم الأسود مشكلة أخرى للفيزياء الكلاسيكية، والتي صُححت عندما اقترح بلانك أن إثارة مذبذبات المواد غير ممكن إلا في خطوات منفصلة تتناسب مع ترددها؛ هذا، إلى جانبالتأثير الكهروضوئي ونظرية كاملة تتنبأ بمستويات الطاقة المنفصلة للمدارات الإلكترونية، أدى إلى نظريةميكانيكا الكم التي تولت من الفيزياء الكلاسيكية بمقاييس صغيرة للغاية.[26]سيأتي دورميكانيكا الكم بواسطةفيرنر هايزنبرغ،إرفين شرودنغروبول ديراك.[26] من هذا العمل المبكر، والعمل في المجالات ذات الصلة، اُشتق النموذج القياسيلفيزياء الجسيمات.[27] بعد اكتشاف جسيم له خصائص تتوافق معبوزون هيجز فيسيرن في عام2012،[28] يبدو أن جميع الجزيئات الأساسية التي تنبأ بها النموذج القياسي، وليس غيرها، موجودة؛ ومع ذلك، فإن الفيزياء خارج النموذج القياسي، مع نظريات مثلالتناظر الفائق، هي مجال نشط للبحث.[29] مجالات الرياضيات بشكل عام مهمة في هذا المجال، مثل دراسةالاحتمالاتوالمجموعات.
في نواح كثيرة، تنبع الفيزياء من الفلسفة اليونانية القديمة. من محاولةطاليس الأولى لتوصيف المادة، إلىديموقريطوس،وعلم الفلك البطلمي الخاص بمركزية الأرض، وكتاب فيزياءأرسطو (كتاب مبكر عن الفيزياء، والذي حاول تحليل وتحديد الحركة من وجهة نظر فلسفية)، قدم العديد من الفلاسفة اليونانيين نظرياتهم الخاصة للطبيعة. عرفت الفيزياء بالفلسفة الطبيعية حتى أواخر القرن الثامن عشر.[30]
بحلول القرن التاسع عشر، أصبحت الفيزياء تخصصًا متميزًا عن الفلسفة والعلوم الأخرى. تعتمد الفيزياء، كما هو الحال مع بقية العلوم، علىفلسفة العلوم و«طريقتها العلمية» لتعزيز معرفتنا بالعالم المادي.[31] توظف الطريقة العلمية المنطق المسبق وكذلك المنطق الخلفي واستخدامالاستدلال البايزي لقياس صحة نظرية ما.[32]
لقد أجاب تطور الفيزياء عن العديد من أسئلة الفلاسفة الأوائل، ولكنه أثار أيضًا أسئلة جديدة. تتضمن دراسة المسائل الفلسفية المحيطة بالفيزياء،وفلسفة الفيزياء، قضايا مثل طبيعة المكان والزمان، والحتمية، والتوقعات الميتافيزيقية مثل التجريبية، والواقعية.[33]
كتب العديد من علماء الفيزياء عن الآثار الفلسفية لعملهم، على سبيل المثاللابلاس، الذي دافع عن الحتمية السببية،[34]وإرفين شرودنغر، الذي كتب عنميكانيكا الكم.[35][36] كان الفيزيائي الرياضيروجر بنروز قد أطلق عليهستيفن هوكينج،[37] وهو رأي يناقشه بينروز في كتابه «الطريق إلى الواقع».[38] أشار هوكينج إلى نفسه على أنه «مختزل لا يخجل» وأثار مشكلة بينروز.[39]
بينما تعمل الفيزياء على تفسير القوانين الطبيعة بوجه عام تفسر كل نظرية منها مجالا محصورا. فمثلا نجد أن قوانين الميكانيكا الكلاسيكية تصف بدقة أنظمة يكون حجمها أكبر منالذرة وتكون السرعات فيها أقل بكثير عنسرعة الضوء. أما خارج تلك الحدود فنجد أن المشاهدة لا تتطابق مع الحسابات.
ولم ينجح حتى الآن ربطنظرية النسبية العامة مع النظريات الأخرى، ولكن العلماء يعملون على هذا الطريق أي ربط النسبية العامة (وهي نظرية الأنظمة الكبيرة جدا) معنظرية الكم (وهي النظرية التي تصف الأنظمة الذرية وتحت الذرية) وتوجد حاليا عدة نظريات مقترحةللجاذبية الكمومية ولكن الأمر لم يفصل بعد.
تشملالفيزياء التقليدية الفروع والمواضيع التقليدية التي اُعترِف بها وطورت تطويراً جيدًا قبل بداية القرن العشرين (الميكانيكا التقليدية،الصوتيات،البصريات،الديناميكا الحرارية،والكهرطيسية). تهتم الميكانيكا التقليدية بالأجسام التي تعمل بواسطة القوى والأجسام المتحركة ويمكن تقسيمها إلىالسكونيات (دراسة القوى على الجسم أو الهيئات التي لا تخضع لتسارع)،علم الحركة (دراسة الحركة دون النظر إلى أسبابها)،وعلم التحريك (دراسة الحركة والقوى التي تؤثر عليه)؛ يمكن أيضًا تقسيم الميكانيكا إلى ميكانيكا صلبةوميكانيكا الموائع (المعروفة معًا باسم ميكانيكا الاستمرارية)، وتشمل هذه الأخيرة فروعًا مثلالالموائع الساكنة، وهيدروديناميكا الماء،والديناميكا الهوائية،والهوائيات. الصوتيات هي دراسة كيفية إنتاج الصوت والتحكم فيه ونقله واستقباله.[41] تشمل الفروع الحديثة المهمة للصوتيات الموجات فوق الصوتية ودراسة الموجات الصوتية عالية التردد التي تتجاوز نطاق السمع البشري؛ الصوتيات الحيوية، فيزياء المكالمات والسمع الحيوانية،[42] والصوتيات الكهربائية، والتلاعب بالموجات الصوتية المسموعة باستخدام الإلكترونيات.[43]علم البصريات، والذي يختص بدراسةالضوء، لا يتعلق فقط بالضوء المرئي ولكن أيضًابالأشعة تحت الحمراءوالأشعة فوق البنفسجية، والتي تظهر جميع ظواهر الضوء المرئي باستثناء الرؤية، على سبيل المثال،الانعكاس،الانكسار،التداخل،الحيود،التشتت،واستقطاب الضوء.الحرارة هي شكل من أشكال الطاقة، الطاقة الداخلية التي تمتلكها الجزيئات التي تتكون منها المادة؛الديناميكا الحرارية تتعامل مع العلاقات بين الحرارة وغيرها من أشكال الطاقة. تمت دراسةالكهرباءوالمغناطيسية كفرع واحد للفيزياء منذ اكتشاف العلاقة الوطيدة بينهما في أوائل القرن التاسع عشر؛ ينتج عنالتيار الكهربائيمجال مغناطيسي، ويحدث المجال المغناطيسي المتغير تيارًا كهربائيًا. تتعامل الإلكتروستاتيات مع الشحنات الكهربية أثناء السكون، والديناميكا الكهربائية ذات الشحنات المتحركة، والكهرباء المغناطيسية مع الأقطاب المغناطيسية الباقي.
صورة لبندول نيوتن وهو نظام يوضح مفهوما أساسيا في الميكانيكا التقليدية يتمثل في مبدئ حفظزخم الحركةوالطاقة.
تصف الميكانيكا التقليديةالقوى التي تؤثر على حالة الأجسام المادية وحركتها.[44] وغالبا ما يشار إليها باسم «المِيكانيكا النيُوتُنية» نسبة إلىإسحاق نيوتن وقوانينه في الحركة. تتفرع الميكانيكا التقليدية إلى؛السكونيات أو «الإستاتيكا» وهو يصف الأجسام ساكنة وشروط توازنها،وعلم الحركة أو «الكينماتيكا» وهو يهتم بوصف حركة الأجسام دون النظر إلى مسبباتها،وعلم التحريك أو «الديناميكا» الذي يدرس حركة الأجسام وماهية القوى المسببة لها. تقوم الميكانيكا التقليدية بشكل أولي على افتراض أن الجسم المادي المراد دراسته يكون صلبًا وفي شكل نقطة (أي أن الأبعاد بين النقاط المكونة للجسم لا تتغير مع الزمن). وتتولى على صعيد آخر،الميكانيكا الاستمرارية وصف المادة المتصلة والمستمرة مثل الأجسام الصلبة والسائلة والغازية، وهي تنقسم بدورها إلى قسمين؛ميكانيكا المواد الصلبةوميكانيكا الموائع. وتدرس ميكانيكا المواد الصلبة سلوك هذه الأجسام أمام عوامل عديدة مثل الضغط وتغير درجة الحرارة والتذبذب، وغيرها. فيما تدرس ميكانيكا الموائع فيزيائيةالسوائلوالغازات، وهي تتناول مواضيع كثيرة منها توازن السوائل فيعلم سكون الموائع، وتدفقها فيجريان الموائع، وحركة الغازات وانتشارها إلى جانب تأثيرها على السطوح والأجسام المتحركة فيالديناميكا الهوائية.
أحد المفاهيم الهامة في الميكانيكا التقليدية هي مبادئ حفظزخم الحركةوالطاقة، وقد دفع هذا الأمر إلى إعادة الصياغة الرياضية لقوانين نيوتن للحركة فيميكانيكا لاجرانجوميكانيكا هاملتون باعتماد هذه المبدئ. وتقف الصياغتان الميكانيكية في وصف سلوك الأجسام على نفس المقدار من الدقة، ولكن بطريقة مستقلة عن منظومة القوى المسلطة عليها والتي تكون بعض الأحيان غير عملية في تشكيل معادلات الحركة.
تعطينا الميكانيكا التقليدية نتائج وتنبوات رقمية ذات دقة عالية، تتماشى مع المشاهدة، وذلك بنسبة لأنظمة ذات أبعاد عادية وضمن مجال سرعات تقل بكثير عنسرعة الضوء. أما عندما تكون الأجسام موضع الدراسة جسيمات أولية أو أن سرعتها عالية، تكاد تقارب منسرعة الضوء، فهنا تحل محل الميكانيكا التقليدية تباعاالميكانيكا الكموميةوالميكانيكا النسبية. ومع ذلك تجد الميكانيكا التقليدية مجالا لتطبيقها في وصف سلوك أنظمة دقيقة، فعلى سبيل المثال فيالنظرية الحركية للغازات وضغط الغاز تسري القوانين التي تحكم حركة أجسام ذات حجم العادي على الجزيئات المكونة للغازات وهو ما يُمَكن من استنتاج خصائص عيانية مثل درجة الحرارة والضغط والحجم. وفي أنظمة عالية التعقيد يمكن فيها لتغييرات طفيفة أن تنتج آثارًا كبيرة (مثلالغلاف الجوي أو مسألة الأجسام الثلاثة) تصير قدرة معادلات الميكانيكا التقليدية على التنبئ محدودة. وتختص بدراسة هذه الأنظمة، التي توصف بأنها لاخطية،نظرية الشواش.[45]
أوجدت قوانين الميكانيكا التقليدية نظرة موحدة وشاملة لظواهر طبيعية قد تبدو ظاهريًا غير متصلة، مثل وقوع تفاحة من غصن شجرة أو دوران القمر حول الأرض. فعلى سبيل المثال؛قوانين كيبلر لحركة الكواكب، أو السرعة التي يجب أن يبلغهاصاروخ للتحرر من حقل الجاذبية الأرضية (سرعة الإفلات)،[46] يمكن استنتاجهما رياضيًا منقانون نيوتن العام للجاذبية. وقد ساهمت هذه الفكرة ومفادها أن التوصل لقوانين كليّة يمكنها وصف الظواهر الكونية على اختلافها أمر ممكن، إلى بروز الميكانيكا التقليدية عنصراً هاماً في الثورة العلمية وذلك خلال القرنين السابع والثامن عشر.[47][48][49]
تعدقوانين نيوتن في الحركة أحد أهم قوانين وأساسالميكانيكا التقليدية، وهي عبارة عن ثلاثة قوانين وتربط هذه القوانين القوى المؤثرة على الجسم وحركته. وضعهاإسحاق نيوتن ليصف حركة الأجسام والعديد من الظواهر الفيزيائية. يصفقانون نيوتن الأول على أنه إذا كانتالقوة المحصلة (المجموع الاتجاهي للقوى المؤثرة على الجسم) تساوي صفر، فإنسرعة الجسم تكون ثابتة. تعتبر السرعة كمية متجهة يُعبَّر عنها بمقدار هو سرعة الجسم واتجاه هو اتجاه حركة الجسم. عندما نقول أن سرعة الجسم ثابتة فإننا نعني أن كلا من المقدار والاتجاه ثابتين.[50][51] ويمكن وصفه رياضيا:
أماقانون نيوتن الثاني فينص على، إذا أثرت قوة على جسم ما فإنها تكسبه تسارعاً، يتناسب طردياً مع قوته وعكسياً مع كتلته. يمكن التعبير عن القانون الثاني باستخدام تسارع الجسم. يُطبَّق القانون الثاني على الأنظمة ثابتة الكتلة[52] لذا فإن m تكون كمية ثابتة وبالتالي لا تدخل في نطاق عملية التفاضل طبقا لنظرية المعامل الثابت في التفاضل:
حيث F هي القوة المحصلة، m هي كتلة الجسم وa هي تسارع الجسم. القوة المؤثرة على الجسم ينتج عنها تسارع في حركة الجسم ويمكن التعبير عنها أيضا أنه إذا كان الجسم في حالة تسارع فإنه يؤثر عليه قوة.
وأخيراقانون نيوتن الثالث ينص على أن لكل (قوة) فعل (قوة) رد فعل، مساوٍ له في المقدار ومعاكس له في الاتجاه. القانون الثالث ينص على أن جميع القوى بين جسمين تكون متساوية في المقدار ومتضادة في الاتجاه: إذا وجد جسم A يؤثر بقوةFA لجسم آخر B يؤثر بقوةFB على الجسم A والقوتين متساويتان في المقدار ومتضادتان في الاتجاهFA = −FB.[53][54]
تهتم الكهرباء الساكنة بدراسة الظواهر المرتبطة بالأجسام المشحونة في حالة السكون، والقوى التي توجهها على بعضها البعض كما يصفهاقانون كولوم. ويمكن تحليل سلوك هذه الأجسام من تجاذب أو تنافر من خلال معرفةالقطبيةوالمجال الكهربائي المحيط بها، حيث يكون متناسباً مع مقدار الشحنة والأبعاد التي تفصلها. للكهرباء الساكنة عدة تطبيقات، بدءاً من تحليل الظواهر الكهرطيسية مثل العواصف الرعدية إلىالمكثفات التي تستعملالهندسة الكهربائية.
وعندما تتحرك الأجسام المشحونة كهربيًا فيمجال كهرطيسي فإنها تنتج مجالاً مغناطيسياً يحيط بها فتختص الديناميكا الكهربائية بوصف الأثار التي تنتج عن ذلك من مغناطيسية وإشعاع كهرطيسيوتحريض كهرطيسي. وتنطوي هذه المواضيع ضمن ما يعرف بالديناميكا الكهربائية التقليدية، حيث تشرحمعادلات ماكسويل هذه الظواهر بطريقة جيدة وعامة، وتؤدي هذه النظريات إلى تطبيقات مهمة ومنهاالمولدات الكهربائيةوالمحركات الكهربائية. وفي العشرينيات من القرن العشرين، ظهرت نظريةالديناميكا الكهربائية الكمومية وهي تتضمن قوانينميكانيكا الكم، وتصف التفاعل بين الإشعاع الكهرطيسي والمادة عن طريق تبادلالفوتونات. وهناك صياغةنسبية تقدم تصحيحات لحساب حركة الأجسام التي تسير بسرعات تقارب سرعة الضوء، والتي تظهر بشكل مباشر فيمعجلات الجسيمات والأنابيب الكهربائية التي تحملفروق جهد وتيارات كهربائية عالية.
لتحويلجرام منالثلج، درجة حرارتهدرجة مئوية، إلى ماء سائل، في ظروفالضغط العادية، نحتاج إلى طاقة مقدارها حواليسعرة حرارية (أي ما يعادلجول).نظام التحريك الحراري المثالي -تنتقل الحرارة من ساخنة (غلاية) إلى باردة (مكثّف)- وينتج عنها شغل.
تختص الديناميكا الحرارية أو «الثرموديناميك» بدراسة انتقالالطاقة وتحولها في النّظم الفيزيائية، والعلاقة بينالحرارةوالشغلوالضغطوالحجم. تقدم الديناميكا الحرارية التقليدية وصفا عيانيا لهذه الظواهر دون الخوض في التفاصيل مجهرية الكامنة ورائها. فيما تخوضالميكانيكا الإحصائية في تحليل السلوك المعقد للمكونات المجهرية (ذرات، جزيئات) وتستنج منها كَمِيًا الخصائص العيانية للنظام وذلك بواسطة طرقإحصائية. وضعت أسس الديناميكا الحرارية خلال القرنين الثامن والتاسع عشر، وذلك نتيجة للحاجة الملحة في زيادة كفاءةالمحركات البخارية.[57]
يتأسس فهم ديناميكية الطاقة والمتغيرات في نظام معين على أربعة مبادئ أساسية تسمىقوانين الديناميكا الحرارية. وتعملمعادلات الحالة على تحديد العلاقة بين نوعين من متغيرات العيانية التي تعرف حالة الأنظمة؛ متغيرات الامتداد مثلالكتلة والحجم والحرارة، ومتغيرات الشدّة مثلالكثافة ودرجة الحرارة والضغطوالكمون الكيميائي.[58] ويمكن من خلال قياس هذه المتغيرات التعرف إلى حالة التوازن أو التحول التلقائي في النظام.
ينصالقانون الأول للديناميكا الحرارية على مبدئ حفظ الطاقة، وذلك بأن التغير فيالطاقة الداخلية لنظام مغلق وساكن، يساوي كمية الطاقة المتبادلة مع الوسط الخارجي على شكل حرارة أو عمل. فيما ينصالقانون الثاني على أن الحرارة لا يمكنها المرور بطريقة تلقائية من جسم ذي درجة حرارة منخفضة إلى آخر ذي درجة حرارة مرتفعة بدون الإتيان بشغل. وذلك يعني أنه من غير الممكن الحصول على شغل دون أن تفقد منه كمية على شكل الحرارة. وتوصل لهذين القانونين الفيزيائي الفرنسيسادي كارنو في بداية القرن التاسع عشر. وفي سنة1865، أدخل الفيزيائي الألمانيرودلف کلاوزیوس دالةالاعتلاج، ومن خلالها يصاغ القانون الثاني على أن «التحول التلقائي في نظام معين لا يمكن أن يتحقق بدون أن ترتفع هذه القيمة فيه وفيما حوله». يُعبرالاعتلاج، من وجهة نظر عيانية، على عدم إمكانية تسخير كل الطاقة في نظام ما للقيام بعمل ميكانيكي. وتصفها الميكانيكا الإحصائية على أنها قياس لحالة الفوضى للمكونات المجهرية للنظام من ذرات وجزيئات.[59][60][61]
تهتمالفيزياء التقليدية عمومًا بالمادة والطاقة على النطاق الطبيعي للمراقبة، بينما تهتم الكثير من أفرعالفيزياء الحديثة بسلوك المادة والطاقة في ظل الظروف القاسية أو على نطاق كبير جدًا أو صغير جدًا. على سبيل المثال، دراساتالفيزياء الذريةوالنووية تهم على نطاق صغير يمكن من خلاله تحديد العناصر الكيميائية. فيزياءالجسيمات الأولية تكون على نطاق أصغر لأنها تهتم بأبسط وحدات المادة؛ يُعرف هذا الفرع من الفيزياء أيضًا باسم فيزياء الطاقة العالية بسبب الطاقات العالية للغاية اللازمة لإنتاج العديد من أنواع الجزيئات في مسرعات الجسيمات. على هذا المقياس، لم تعد المفاهيم العادية المنطقية للفضاء والوقت والمادة والطاقة صالحة.[67]
تقدم نظريتان رئيسيتان للفيزياء الحديثة صورة مختلفة عن مفاهيم الفضاء والوقت والمادة عن تلك التي تقدمهاالفيزياء التقليدية. تقاربالميكانيكا التقليدية الطبيعة باعتبارها مستمرة، في حين تهتمنظرية الكم بالطبيعة المنفصلة للعديد من الظواهر على المستوى الذري ودون الذري ومع الجوانب التكميلية للجزيئات والأمواج في وصف هذه الظواهر. تهتمنظرية النسبية بوصف الظواهر التي تحدث في إطار مرجعي يتحرك بالنسبة للمراقب؛ تتعلقنظرية النسبية الخاصة بالحركة في غياب حقول الجاذبيةونظرية النسبية العامة بالحركة وعلاقتها بالجاذبية. كلا نظرية الكم ونظرية النسبية تجد تطبيقات في جميع مجالات الفيزياء الحديثة.[68]
اقترح نظرية النسبية الخاصة الفيزيائي الألمانيألبرت أينشتاين، سنة1905، في ورقة بحثية شهيرة بعنوان «حول الديناميكا الكهربائية للأجسام المتحركة»[70] بناء على المساهمات الهامةلهندريك لورنتسوهنري بوانكاريه. ويتطرق هذا المقال إلى أن نظرية النسبية الخاصة تجد حلا لعدم الاتساق بينمعادلات ماكسويل والميكانيكا التقليدية. وتقوم النظرية على مسلمتين هما؛ أنالقوانين الفيزيائية لا تتغير بتغيرالإطار المرجعي العطالي للنظم،(5) وأنسرعة الضوء في الفراغ هي مقدار ثابت وغير متصل بحركة مصدر الضوء أو بالمشاهد. الدمج بين هاتين المسلمتين يقود إلى افتراض علاقة بين أمرين منفصلين في الميكانيكا التقليدية، وهما المكان والزمان ويجمع بينهما في بنية تسمىالزمكان.
إحدى التداعيات الهامة للنسبية الخاصة، والتي تبدو مخالفة للبديهة وإن كانت أثبتتها عدة تجارب، هي انعدام مكان أو زمان مطلق، أي منفصل عن الإطار المرجعي للمشاهد (ومن هنا يأتي مصطلح النسبية). وهذا يعني أنالكتلةوالأبعادوالزمن تتغير بتغير سرعة الجسم، وذلك ملائمةً لثبات سرعة الضوء. قد تكون هذه الظواهر غير محسوسة بمجال السرعات في حياتنا اليومية وتبقى بذلك قوانين نيوتن سارية، ولكنها تصير ذات تأثير لا يستهان به عندما ترتفع السرعة وتقارب سرعة الضوء.
حيث E هيالطاقة، و m هيالكتلة، و c هيسرعة الضوء في الفراغ (2 فوق سرعة الضوء تعني أن الطاقة تتناسب طرديًا معمربع هذه السرعة). بعبارة أخرى تُنبئنا هذه الصيغة الرياضية أن لكل جسم ذي كتلةٍ طاقةٌ مرتبطة به، والعكس بالعكس.
النسبية العامة هي نظرية ذات طابع هندسي، توصل إليها ألبرت أينشتاين بشكل منفرد ونشرها في15\1916، وذلك بأنه قام بتوحيد النسبية الخاصةوقانون نيوتن العام للجاذبية. تنص هذه النظرية على أنالجاذبية يمكن وصفها على أنها انحناء في بنيةالزمكان تسببه الكتلة أو الطاقة. على الصعيد الرياضي، تتميز النسبية العامة عن غيرها من النظريات الحديثة التي تصف الجاذبية بأنها تستعملمعادلات أينشتاين للمجال لوصف محتوى الزمكان من مادة أو طاقة وأثر ذلك على انحنائه. وتعتمد في ذلك بشكل أساسي علىموتر الإجهاد-الطاقة،(6) وهو كائن هندسي يصف عبر مكوناته عدة كميات فيزيائية مثلالكثافة،والتدفق،والطاقة،والزخم،والزمكان. ويمكن القول بطريقة مبسطة، أن موتر الإجهاد-الطاقة هو سبب وجود مجال تثاقلي في زمكان معين وذلك بشكل أعم من ما تفعله الكتلة وحدها فيقانون نيوتن الكلاسيكي للجاذبية.
محاكاة رقميةلتأثير النفق الكمي. البقعة المضيئة في اليسار تمثل حزمة موجيةلإلكترون تقوم بالإنعكاس على حاجز طاقة. لاحظ إلى اليمين انتقال بقعة قاتمة، وهذا هو الجزء اليسير من الحزمة الموجية التي استطاعت الإنفاق من خلال حاجز تحجر تخطيه مبادئ الميكانيكا التقليدية. ويستعمل هذا المفعول في مجهر المسح النفقي الذي يقوم بتصوير سطوح المواد على المستوى الذري كما تبين الصورة (في الأسفل) إعادة تكوين صورة الذرات على سطح ورقة منالذهب.معادلة شرودنغرلإرفين شرودنغر التي تعتبر بمثابةقانون التحريك الثاني لنيوتن الذي بدوره يعتبر أساسيا فيالفيزياء التقليدية.
تتعاملالميكانيكا الكمومية مع نظم ذات أحجام ذرية أو تحت الذرية؛ مثلالجزيئاتوالذراتوالإلكتروناتوالبروتونات وغيرها منالجسيمات الأولية.[71] وقد أدت بعض الصعوبات التي واجهت الميكانيكا الكلاسيكية في أواخر القرن التاسع عشر، مثل إشكالية إشعاعالجسم الأسود[72] واستقرار الإلكترونات على مداراتها، إلى التفكير بأن جميع أشكالالطاقة تتنقل على شكل حزم متقطعة غير قابلة للتجزئة، وتسمى كُمُومَات أو «كوانتوم».[73] وقد قام بتشكيل هذا المفهوم، الفيزيائي الألمانيماكس بلانك سنة1900، وقدم من خلاله ألبرت أينشتاين تفسيرًاللتأثير الكهروضوئي والذي يتبين من خلاله بأن الموجات الكهرطيسية تتصرف في بعض الأحيان بطريقة تشبه تصرف الجسيمات.[74][75]
وضعت مبادئ الميكانيكا الكمومية خلال العشرينات من القرن الماضي، من قبل مجموعة متميزة من الفيزيائيين. في سنة1924، توصللويس دي بروليه إلى إدراك أن الأجسام أيضا يمكنها أن تتصرف على أنها موجات، وهو ما يعبر عنهبمثنوية الموجة والجسيم. وقدمت على خلفية ذلك صياغتان رياضيتان مختلفتان وهما؛الميكانيكا الموجية التي وضعهاإرفين شرودنغر وهي تنطوي على استخدام كائن رياضي يسمىدالة الموجة، يصف احتمال وجود جسيم في بقعة ما من الفضاءوميكانيكا المصفوفات التي أنشأهافيرنر هايزنبرغوماكس بورن، وهي تصف الجسيمات على أنهامصفوفات تتغير مع الزمن. ومع أن هذه الأخيرة لا تشير إلى دالة موجة أو مفاهيم مماثلة، إلا أنها تتوافق مع معادلة شرودنغر ومع الملاحظات التجريبية.[76][77]وقد شكلمبدأ عدم اليقين الذي صاغههايزنبرغ في سنة1927 أحد أهم مبادئ الميكانيكا الكمومية،[78] وهو ينص على محدودية قدرتنا في قياس خاصيتين معينتين لجسيم ما في نفس الوقت وبدرجة عالية من الدّقة. ويضع هذا حدًا لمبدأالحتمية المطلقة الذي يشير إلى إمكانية التنبؤ بشكل دقيق بحالة نظام انطلاقا من حالته السابقة، حيث أن الظواهر الكمومية لا يمكن تفسيرها إلا بطريقةاحتمالية. وقد أدى هذا الأمر إلى جدال علمي كبير دار بين أعظم فيزيائيي القرن العشرين، بما فيهمألبرت أينشتاين الذي عارض هذاالتفسير الاحتمالي بالرغم من إسهاماته الهامة في تأسيس الميكانيكا الكمومية.[79](7)
وفي سنة1928، قام الفيزيائي البريطانيبول ديراك بوضع الميكانيكا الكمومية بصيغتيها الموجية والخطية (المصفوفات) ضمن صياغة أشمل في إطار نظريةالنسبية الخاصة. وقد تنبأت صياغته بوجودالجسيمات المضادة. وتم تأكيد هذا الأمر تجريبيا سنة1932، باكتشاف مضاد الإلكترون أوالبوزيترون.
تستخدم الفيزياء الرياضيات[84] لتنظيم وصياغة النتائج التجريبية. من هذه النتائج، يمكن حساب حلول دقيقة أو مقدرة، لنتائج كمية يمكن من خلالها التنبؤات الجديدة وتأكيدها أو إنكارها تجريبياً. النتائج من تجارب الفيزياء هي بيانات رقمية، مع وحدات القياس وتقديرات الأخطاء في القياسات. جعلت التقنيات القائمة على الرياضيات، مثلالحوسبة،الفيزياء الحاسوبية مجالًا نشطًا للبحث.
علم الوجود هو شرط أساسي للفيزياء، ولكن ليس للرياضيات. وهذا يعني أن الفيزياء تهتم في النهاية بتوصيفات العالم الواقعي، بينما تهتم الرياضيات بأنماط مجردة، حتى خارج العالم الحقيقي. وهكذا تكون البيانات الفيزيائية تركيبية، بينما تكون البيانات الرياضية تحليلية. تحتوي الرياضيات علىفرضيات، بينما تحتوي الفيزياء علىنظريات. يجب أن تكون عبارات الرياضيات صحيحة منطقيا فقط، في حين أن تنبؤات بيانات الفيزياء يجب أن تتطابق مع البيانات الملاحظة والتجريبية.
التمييز واضح، لكن ليس دائمًا واضح. على سبيل المثال،الفيزياء الرياضية هي تطبيق الرياضيات في الفيزياء. طرقها رياضية، ولكن موضوعها مادي.(10) تبدأ المشكلات في هذا الحقل ب«نموذج رياضي للحالة المادية» (نظام) و«وصف رياضي لقانون مادي» سيُطبَّق على هذا النظام. كل عبارة رياضية تستخدم للحل لها معنى مادي يصعب العثور عليه. الحل الرياضي النهائي له معنى يسهل العثور عليه، لأنه ما يبحث عنه المحلل.
الفيزياء هي فرع من العلوم الأساسية، وليسالعلوم التطبيقية. تسمى الفيزياء أيضًا «العلم الأساسي» لأن موضوع دراسة جميع فروع العلوم الطبيعية مثلالكيمياءوعلم الفلكوالجيولوجياوالبيولوجيا مقيدة بقوانين الفيزياء،[85] على غرار كيفية تسميةالكيمياء في كثير من الأحيان بالعلم المركزي بسبب دورها في ربط العلوم الفيزيائية. على سبيل المثال، تدرس الكيمياء خواص المادة وهياكلها وردود أفعالها (تركيز الكيمياء على المقياس الذري يميزها عن الفيزياء). تتشكل الهياكل لأن الجزيئات تمارس قوى كهربائية على بعضها البعض، وتشمل الخصائص الفيزيائية لمواد معينة، وتكون التفاعلات ملزمة بقوانين الفيزياء، مثل الحفاظ على الطاقة والكتلة والشحنة.
تعتبرالفيزياء التطبيقية مصطلحًا عامًا لأبحاث الفيزياء وهو مخصص لاستخدام معين. يحتوي منهج الفيزياء التطبيقية عادةً على عدد قليل من الفصول في تخصص تطبيقي، مثلالجيولوجيا أوالهندسة الكهربائية. عادة ما يختلف عن الهندسة في أن الفيزيائي التطبيقي قد لا يصمم شيئًا خاصًا، بل يستخدم الفيزياء أو إجراء أبحاث الفيزياء بهدف تطوير تكنولوجيات جديدة أو حل مشكلة.
النهج مماثل لنهجالرياضيات التطبيقية. يستخدم علماء الفيزياء التطبيقية الفيزياء في البحث العلمي. على سبيل المثال، قد يسعى الأشخاص الذين يعملون فيفيزياء المسرعات إلى بناء أجهزة الكشف عن الجسيمات بشكل أفضل للبحث في الفيزياء النظرية.
تستخدم الفيزياء بكثافة فيالهندسة. على سبيل المثال، يستخدمعلم السكون، وهو حقل فرعي منالميكانيكا، في بناء الجسور والهياكل الثابتة الأخرى.[86] يؤدي فهمالصوتيات واستخدامها إلى التحكم في الصوت وقاعات الحفلات الموسيقية بشكل أفضل؛ وبالمثل، فإن استخدامالبصريات يخلق أجهزة بصرية أفضل. إن فهم الفيزياء يجعل أجهزة محاكاة الطيران أكثر واقعية وألعاب الفيديو والأفلام، وغالبًا ما يكون حاسمًا في التحقيقات الجنائية.
مع الإجماع القياسي على أن قوانين الفيزياء عالمية ولا تتغير مع مرور الوقت، يمكن استخدام الفيزياء لدراسة الأشياء التي عادة ما تكون غارقة في عدم اليقين. على سبيل المثال، في دراسة أصل الأرض، يمكن للمرء أن يصور بشكل معقولكتلة الأرضودرجة الحرارة ومعدل الدوران، كدالة من الزمن تسمح للشخص باستقراء للأمام أو للخلف في الوقت المناسب وبالتالي توقع الأحداث المستقبلية أو السابقة. كما يسمح بإجراء عمليات محاكاة في الهندسة والتي تسرع بشكل كبير من تطوير تقنية جديدة.
ولكن هناك أيضًا العديد من التخصصات المتعددة في أساليب الفيزيائي، حيث تتأثر العديد من المجالات الهامة الأخرى بالفيزياء (على سبيل المثال، مجالاتالفيزياء الاقتصاديةوالفيزياء الاجتماعية).
يستخدم الفيزيائيونالمنهج العلمي لاختبار صحة النظرية الفيزيائية. باستخدام المنهجية لمقارنة الآثار المترتبة على نظرية ما مع الاستنتاجات المستخلصة من التجارب والملاحظات ذات الصلة، يكون الفيزيائيون أكثر قدرة على اختبار صحة النظرية بطريقة منطقية وغير متحيزة ومتكررة. تحقيقا لهذه الغاية، تُجرى التجارب وإجراء الملاحظات من أجل تحديد صحة أو بطلان النظرية.[87]
يسعى النظريون إلى تطوير نماذج رياضية تتفق مع التجارب الحالية وتتنبأ بنجاح النتائج التجريبية المستقبلية، في حين أن التجريبيين يبتكرون ويجرون تجارب لاختبار التنبؤات النظرية واستكشاف ظواهر جديدة. على الرغم من تطوير النظرية والتجربة بشكل منفصل، فهي شديدة الاعتماد بعضها على بعض. يحدث التقدم في الفيزياء بشكل متكرر عندما يكتشف علماء التجارب أن النظريات الموجودة لا يمكن تفسيرها، أو عندما تولد نظريات جديدة تنبؤات قابلة للاختبار تجريبيًا، والتي تلهم تجارب جديدة.[89]
يُطلق على الفيزيائيين الذين يعملون عند التفاعل بين النظرية والتجربة، علماء الظواهر، الذين يدرسون الظواهر المعقدة التي لوحظت في التجربة ويعملون على ربطها بنظرية أساسية.[90]
استلهمت الفيزياء النظرية تاريخيا من الفلسفة. وحِّدتالكهرطيسية بهذه الطريقة. وراءالكون المعروف، يتعامل مجالالفيزياء النظرية أيضًا مع قضايا افتراضية، مثلالأكوان المتوازية،الأكوان المتعددة،والأبعاد العليا. يحتج المنظرون بهذه الأفكار على أمل حل مشاكل معينة مع النظريات الموجودة. ثم يستكشفون عواقب هذه الأفكار ويعملون على عمل تنبؤات قابلة للاختبار.
لائحة توضح الجسيمات الأولية طبقا للتصنيف القياسي وخواص كل منها.
تغطي الفيزياء مجموعة واسعة من الظواهر، منالجزيئات الأولية (مثلالكواركاتوالنيوتريوناتوالإلكترونات) إلى أكبر المجموعات الفائقة منالمجرات. المدرجة في هذه الظواهر هي الأشياء الأساسية التي تشكل كل الأشياء الأخرى. لذلك، تسمى الفيزياء أحيانًا «العلم الأساسي».[85] تهدف الفيزياء إلى وصف الظواهر المختلفة التي تحدث في الطبيعة من حيث الظواهر الأبسط. وبالتالي، تهدف الفيزياء إلى ربط الأشياء التي يمكن ملاحظتهابالبشر بالأسباب الجذرية، ثم ربط هذه الأسباب معًا.
على سبيل المثال، لاحظالصينيون القدامى أن بعض الصخور (الحجر الجيريوالمغنتيت) تنجذب إلى بعضها البعض بقوة غير مرئية. سمي هذا التأثير فيما بعدبالمغناطيسية، والتي تمت دراستها لأول مرة بدقة فيالقرن السابع عشر. ولكن حتى قبل اكتشاف الصينيين للمغناطيسية، عرفالإغريق القدماء عن أشياء أخرى مثلالكهرمان، أنه عندما يفرك الفراء من شأنه أن يسبب جاذبية غير مرئية مماثلة بين الاثنين.[91] وقد تمت دراسة هذا الأمر أيضًا لأول مرة في القرن السابع عشر وأصبح يسمىالكهرباء. وهكذا، أصبحت الفيزياء لفهم ملاحظتين للطبيعة من حيث بعض الأسباب الجذرية (الكهرباء والمغناطيسية). ومع ذلك، كشف المزيد من العمل في القرن التاسع عشر أن هاتين القوتين كانتا مجرد جانبين مختلفين لقوة واحدة وهيالكهرطيسية. تستمر عملية «توحيد» القوى هذه اليوم، وتعدالكهرطيسيةوالقوة النووية الضعيفة الآن جانبين من جوانبالتآثر الكهروضعيف. تأمل الفيزياء في إيجاد سبب نهائي (نظرية كل شيء) لسبب الطبيعة كما هي.[92]
منذ القرن العشرين، أصبحت مجالات الفيزياء الفردية متخصصة بشكل متزايد، واليوم يعمل معظم الفيزيائيين في حقل واحد طوال حياتهم المهنية. أصبحت ظاهرة «العالميون» مثلألبرت أينشتاين (1879-1955)وليف لانداو (1908-1968)، الذين عملوا في مجالات متعددة من الفيزياء، نادرة جدًا الآن.
المجالات الرئيسة للبحوث الفيزيائية، جنبا إلى جنب مع الحقول الفرعية والنظريات والمفاهيم التي توظفها، موضحة في الجدول التالي.
فيزياء الجسيمات هي دراسة المكونات الأوليةللمادةوالطاقة والتفاعلات بينهما.[94] بالإضافة إلى ذلك، يقوم فيزيائي الجسيمات بتصميم وتطوير مسرعات الطاقة العالية،[95]والكاشفات،[96] وبرامج الحاسوب[97] اللازمة لهذا البحث. يُسمى الحقل أيضًا «فيزياء الطاقة العالية» لأن العديد منالجزيئات الأولية لا تحدث بشكل طبيعي ولكن تُنشَأ فقط خلال تصادمات الطاقة العالية لجزيئات أخرى.[98]
حاليا، تُوصَف تفاعلات الجسيمات الأولية والحقول بواسطةالنموذج القياسي.[99] يفسر النموذج الجزيئات الإثني عشر المعروفة للمادة (الكواركاتواللبتونات) التي تتفاعل عبر القوى الأساسية القوية والضعيفة والكهرطيسية.[99] تُوصَف الديناميكيات من حيث جسيمات المادة التي تتبادل بوزونات المقياس (الغلونات،بوزونات W وZ،والفوتونات، على التوالي).[100] يتنبأ النموذج القياسي أيضًا بوجود جسيم يعرف باسمبوزون هيجز. فييوليو2012، أعلنتسيرن، المختبر الأوروبي لفيزياء الجسيمات، عن اكتشاف جسيم متوافق مع بوزون هيجز،[101] وهو جزء لا يتجزأ من آلية هيجز.
الفيزياء الذريةوالجزيئيةوالبصرية (AMO) هي دراسة تفاعلاتالمادةوالمادة الضوئية على مقياسالذراتوالجزيئات المفردة. تُجمَّع المناطق الثلاثة معًا نظرًا لعلاقاتها المتبادلة، وتشابه الطرق المستخدمة، وترابط مقاييس الطاقة ذات الصلة. جميع المجالات الثلاثة تشمل كلا من العلاجات التقليدية وشبه التقليدية والكمية؛ يمكنهم علاج موضوعهم من وجهة نظر مجهرية (على عكس وجهة نظر مجهرية).
تدرسالفيزياء الذريةالأغلفة الإلكترونية للذرات. يركز البحث الحالي على أنشطة التحكم في الكم، والتبريد، ومحاصرة الذرات والأيونات،[102][103][104] وديناميات التصادم منخفضة الحرارة وتأثير الارتباط الإلكتروني على الهيكل والديناميات. تتأثر الفيزياء الذرية بالنواة، لكن الظواهر داخل النووية مثل الانشطار والاندماج تعتبر جزءًا منالفيزياء النووية.
تركزالفيزياء الجزيئية على الهياكل متعددة الذرات وتفاعلاتها الداخلية والخارجية معالمادةوالضوء. تختلف الفيزياء الضوئية عن البصريات من حيث أنها تميل إلى التركيز ليس على التحكم في حقول الضوء التقليدية بواسطة الأجسام المجهرية ولكن على الخصائص الأساسيةللمجالات البصرية وتفاعلاتها مع المادة في المجال المجهري.
فيزياء المواد المكثفة هي مجال الفيزياء الذي يتعامل مع الخواص الفيزيائية العيانيةللمادة.[105] على وجه الخصوص، تهتم بالمراحل «المكثفة» التي تظهر كلما كان عددالجسيمات في النظام كبيرًا للغاية والتفاعلات قوية بينها.[106]
الأمثلة الأكثر شيوعًا للمراحل المكثفة هي المواد الصلبة والسوائل، والتي تنشأ عن الترابط عن طريق القوةالكهرطيسية بين الذرات.[107] تشمل المراحل الأكثر تكثيفًا الغريبةالميوعة فائقة[108]ومكثفات بوز-أينشتاين[109] الموجودة في بعض الأنظمة الذرية عند درجة حرارة منخفضة جدًا، ومرحلةالتوصيل الفائق التي تظهرها إلكترونات التوصيل في بعض المواد،[110] والمراحل المغناطيسية والمضادة للحرارة المغناطيسية في الدورات الشبكية الذرية.[111]
من المتوقع ظهور العديد من الاحتمالات والاكتشافات من بيانات جديدة منمرصد فيرمي الفضائي لأشعة غاما على مدى العقد المقبل وتنقيح أو توضيح النماذج الحالية للكون بشكل كبير.[115][116] على وجه الخصوص، إمكانية اكتشاف هائل حول المادة المظلمة ممكنة على مدى السنوات القليلة القادمة.[117] سوف يبحث فيرمي عن دليل على أن المادة المظلمة تتألف منجسيمات التفاعل الضعيف الضخمة، لتكمل تجارب مماثلة معمصادم الهدرونات الكبير وكاشفات أخرى تحت الأرض.
الفيزياء التطبيقية هي تطبيق النظريات الفيزيائية على حل المشكلات. وتعني استخدام المعرفة النظرية لخصائص الأجسام المادية بقصد تحقيق هدف تقني أو عملي معين. وعادة ما يعتبر أيضًا جسرًا أو صلة بين الفيزياءوالهندسة.
تتميز كلمة «التطبيقية» عن «البحتة» بمجموعة دقيقة من العوامل، مثل دوافع الباحثين وموقفهم وطبيعة العلاقة بالتكنولوجيا أو العلم التي قد تتأثر بالعمل. الفيزياء التطبيقية متجذرة في الحقائق الأساسية والمفاهيم الأساسية للعلوم الفيزيائية، ولكنها تهتم باستخدام المبادئ العلمية في الأجهزة والأنظمة العملية، وفي تطبيق الفيزياء في مجالات العلوم الأخرى.[118]
الفيزياء الطبية (وتسمى أيضًا الفيزياء الطبية الحيوية، الفيزياء الحيوية الطبية، الفيزياء التطبيقية في الطب، تطبيقات الفيزياء في العلوم الطبية، الفيزياء الإشعاعية أو الفيزياء الراديوية بالمستشفيات)[119][120][121] هي بشكل عام تطبيق مفاهيم الفيزياء والنظريات وأساليبالطب أوالرعاية الصحية. يمكن العثور على أقسام الفيزياء الطبية فيالمستشفيات أوالجامعات.
أقسام التخصص فيالجامعة هي من نوعين. النوع الأول يهتم بإعداد الطلاب لمهنة كفيزيائي طبي في المستشفى ويركز البحث على تحسين ممارسة المهنة. أما النوع الثاني (يسمى بشكل متزايد «فيزياء الطب الحيوي»)[122][123]فيحتوي على نطاق أوسع بكثير وقد يشمل البحث في أي تطبيقات للفيزياء على الطب من دراسةالتركيب الجزيئي الحيوي إلىالفحص المجهريوالطب النانوي. على سبيل المثال، نظري الفيزياءريتشارد فاينمان تحدث حول مستقبلالطب النانوي. كتب عن فكرة الاستخدام الطبيللآلات البيولوجية. اقترح فاينمان وألبرت هيبس أن بعض آلات الإصلاح قد يُخفَّض حجمها في يوم من الأيام إلى الحد الذي يصبح من الممكن (كما قال فاينمان) «أن يكون بحجم نانوي». نوقشت الفكرة في مقالة فينمان لعام 1959 «هناك مساحة كافية في الأسفل».[124]
تقانة الجزيئات متناهية الصغر أوتقانة الصغائر أوتقانة النانو هي العلم الذي يهتم بدراسة معالجة المادة على المقياسالذريوالجزيئي.[125][126][127] تهتم تقانة النانو بابتكار تقنيات ووسائل جديدة تقاس أبعادهابالنانومتر وهو جزء من الألف منالميكرومتر أي جزء من المليون منالميليمتر.عادة تتعامل تقانة النانو مع قياسات بين 1 إلى 100نانومتر أي تتعامل مع تجمعاتذرية تتراوح بين خمس ذرات إلى ألف ذرة. وهي أبعاد أقل كثيرا من أبعادالبكتيرياوالخلية الحية. حتى الآن لا تختص هذه التقنيةبعلم الأحياء بل تهتمبخواص المواد، وتتنوع مجالاتها بشكل واسع منأشباه الموصلات إلى طرق حديثة تماما معتمدة علىالتجميع الذاتي الجزيئي.[128][129] هذا التحديد بالقياس يقابله اتساع في طبيعة المواد المستخدمة، فتقانة النانو تتعامل مع أي ظواهر أو بنايات على مستوى النانو الصغير. مثل هذه الظواهر النانوية يمكن أن تتضمنالتقييد الكمي التي تؤدي إلى ظواهركهرطيسية وبصرية جديدة للمادة التي يبلغ حجمها بين حجمالجزيء وحجم المادة الصلبة المرئي. تتضمن الظواهر النانوية أيضاتأثير غيبس طومسون وهو انخفاض درجة انصهار مادة ما عندما يصبح قياسها نانويا، أما عن بنايات النانو فأهمهاأنابيب النانو الكربونية.[130]
مع أن التقدم الذي أُحرِز فيفيزياء الجسيماتوالكموالفيزياء الفلكية كبير، إلا أن العديد من الظواهر اليومية التي تنطوي علىالتعقيد[134] أوالفوضى[135] أوالاضطراب[136] لا تزال غير مفهومة جيدًا. المشاكل المعقدة التي تبدو وكأنها يمكن حلها عن طريق تطبيق ذكي للديناميات والميكانيكا تبقى دون حل؛ ومن الأمثلة على ذلك تشكيل الكتل الرملية والعقد في المياه المتدفقة وشكل قطرات الماء وآلياتكوارثالتوتر السطحي والفرز الذاتي في مجموعات متجانسة غير متجانسة.[137]
حظيت هذه الظواهر المعقدة باهتمام متزايد منذ سبعينيات القرن الماضي لعدة أسباب، بما في ذلك توافر الأساليب الرياضية الحديثة وأجهزة الحاسوب، والتي مكنت من صياغةالنظم المعقدة بطرق جديدة. أصبحت الفيزياء المعقدة جزءًا من الأبحاث متعددة التخصصات على نحو متزايد، كما يتضح من دراسة الاضطراب في الديناميكا الهوائية ومراقبة تكوين الأنماط في النظم البيولوجية. في المراجعة السنوية لعام 1932لميكانيكا الموائع، قالهوراس لامب:[138]
«أنا رجل عجوز الآن، وعندما أموت وأذهب إلى الجنة، هناك أمران آمل في التنوير عنهما؛ الأول هوالديناميكا الكهربائية الكمية، والآخر هوالجريان المضطرب للسوائل، وحول ما سبق أنا متفائل إلى حد ما.»
يشير تعليم الفيزياء إلى طرقالتعليم المستخدمة حاليًالتدريس الفيزياء. تسمى المهنة معلم الفيزياء أو مدرس الفيزياء. يشيربحث تعليم الفيزياء إلى مجال البحث التربوي الذي يسعى إلى تحسين تلك الأساليب. تاريخيًا، جرى تدريس الفيزياء على مستوى المدرسة الثانوية والكلية بشكل أساسي من خلال طريقة المحاضرة جنبًا إلى جنب مع التدريبات المعملية التي تهدف إلى التحقق من المفاهيم التي تدرس في المحاضرات. تستوعب هذه المفاهيم بشكل أفضل عندما تكون المحاضرات مصحوبة بالشرح والتجارب العملية والأسئلة التي تتطلب من الطلاب التفكير في ما سيحدث في التجربة ولماذا. يتعلم الطلاب الذين يشاركون فيالتعلم النشط على سبيل المثال من خلال التجارب العملية من خلال اكتشاف الذات. عن طريق التجربة والخطأ يتعلمون تغيير تصوراتهم المسبقة حول الظواهر في الفيزياء واكتشاف المفاهيم الأساسية. يعد تعليم الفيزياء جزءًا من المجال الأوسعلتعليم العلوم.
الفيزيائي هوعالم متخصص في مجال الفيزياء، والذي يشمل تفاعلات المادة والطاقة في جميع مقاييس الطول والوقت في الكون المادي.[139][140] يهتم الفيزيائيون عمومًا بالأسباب الجذرية أو النهائيةللظواهر، وعادة ما يؤطرون فهمهم من منظور رياضي. يعمل الفيزيائيون عبر مجموعة واسعة من مجالات البحث، تمتد على جميع المقاييس الطول: من فيزياء ما دونالذرةوالجسيمات، من خلالالفيزياء الحيوية، إلى مقاييس الطولالكونية التي تشملالكون ككل. يشتمل المجال بشكل عام على نوعين من الفيزيائيين:الفيزيائيون التجريبيون المتخصصون في مراقبة الظواهر الطبيعية وتطوير التجارب وتحليلها،والفيزيائيون النظريون المتخصصون في النمذجة الرياضية للأنظمة الفيزيائية لترشيد الظواهر الطبيعية وشرحها والتنبؤ بها.[139]
1. «العلوم الفيزيائية هي قسم المعرفة الذي يرتبط بمفاهيم الطبيعة، أو بمعنى آخر، التسلسل المنتظم للأحداث.»[144]
2. «إذا حدثت بعض الكوارث، واختفت كل المعرفة العلمية باستثناء جملة واحدة ما هو هذا البيان الذي يحتوي على معظم المعلومات في أقل عدد من الكلمات؟ أعتقد أن ذلك البيان سيكون... أن كل الأشياء تتكون من ذرات؛ جسيمات صغيرة تتحرك في حركة دائمة، وتجذب بعضها البعض عندما تكون على مسافة قصيرة، ولكنها تتنافر عند الضغط على بعضها البعض...»[145]
3. مقولة مجازية تنسب للفيلسوف الفرنسيديكارت: «أعطني المادة والحركة، وسأبني لك الكون.»
4. "من أجل فهم أفضل لمدى توضيح مظاهر أرسطو الحاسمة، في رأيي، قد ننكر كل من افتراضاته. وأولًا، أشك بشدة في أن أرسطو قد اختبر من خلال التجربة ما إذا كان صحيحًا أن حجرين، أحدهما يزن عشرة أضعاف وزن الآخر، إذا سمح له بالسقوط، في نفس الوقت، من ارتفاع، على سبيل المثال، 100 ذراعا، سوف تختلف في السرعة بحيث عندما يصل الأثقل إلى الأرض، لن يكون الآخر سقط أكثر من 10 ذراعا.
يبدو أن لغته تشير إلى أنه قد جرب التجربة، لأنه يقول: إننا نرى الأثقل؛ الآن تظهر الكلمة انظر أنه قام بالتجربة.
لكنني، أؤكد لكم أن كرة مدفع تزن مائة أو مائتي رطل، أو حتى أكثر، لن تصل إلى الأرض بقدر امتدادها قبل كرة مسك تزن نصف رطل فقط، شريطة يُسقَط كليهما من ارتفاع 200 ذراعا."[146]
5. هذه المسلمة في الحقيقة تعميم لنظرية نسبيةغاليليو غاليلي، فعلى سبيل المثال شخص يركب عربة معزولة عن العالم الخارجي بإحكام، ومتحركة بسرعة ثابتة، لا يمكنه إجراء أي تجربة تمكنه من معرفة سرعته المطلقة، وإلا فإن العربة تصبح إطارا مرجعيا مطلقا وهو أمر غير ممكن حسب هذه المسلمة.
7. «لكل من الأطوال الموجية الكبيرة والصغيرة، كل من المادة والإشعاع لهما جوانب جسيمية وموجية... لكن الجوانب الموجية تصبح حركتها أكثر صعوبة حيث تصبح أطوالها الموجية أقصر.... بالنسبة للجسيمات العيانية العادية تكون الكتلة كبيرة بحيث يكون الزخم دائمًا كبيرًا بما يكفي لجعل الطول الموجيلموجة مادية صغيرًا بما يكفي ليكون خارج نطاق الاكتشاف التجريبي، وتسود الميكانيكا الكلاسيكية.»[147]
8. «على الرغم من أنه عادة ما يُذكر اليوم بصفةفيلسوف، إلا أنأفلاطون كان أيضًا أحد أهم رعاة الرياضيات فياليونان القديمة. مستوحاة منفيثاغورس، أسس أكاديميته فيأثينا في عام 387 قبل الميلاد، حيث شدد على الرياضيات كوسيلة لفهم المزيد عن الواقع. على وجه الخصوص، كان مقتنعا بأن الهندسة هي مفتاح فتح أسرار الكون. تقول اللافتة الموجودة أعلى مدخل الأكاديمية:» فقط من يفهم الهندسة، يدخل هنا"."[148]
9. «الفلسفة مكتوبة في هذا الكتاب العظيم الذي يكمن أمام أعيننا. أعني الكون، لكننا لا نستطيع أن نفهمه إذا لم نتعلم اللغة أولاً وفهمنا الرموز المكتوبة. هذا الكتاب مكتوب باللغة الرياضية، والرموز هي مثلثات ودوائر وشخصيات هندسية أخرى، وبدون مساعدتها يكون من المستحيل إنسانيًا فهم كلمة واحدة منها، وبدونها يتجول المرء دون جدوى عبر متاهة مظلمة.»–غاليليو غاليلي (1623).[149]
10. «الفيزياء الرياضية: أي تطبيق الرياضيات على مشاكل الفيزياء وتطوير طرق رياضية مناسبة لمثل هذه التطبيقات ولصياغة النظريات الفيزيائية.»[150]
11. «في الواقع، يتمتع التجريبيون بشخصية فردية معينة. وهم كثيرًا ما يجرون تجاربهم في منطقة يعلم الناس فيها أن النظريون لم يضعوا فيها أي تخمينات.»[151]
^A.Yu. Loskutov (2007). Dynamical chaos: systems of classical mechanics.Physics-Uspekhi., 50(939) ,Abstract.نسخة محفوظة 01 يوليو 2016 على موقعواي باك مشين.
^Resnick؛ Halliday (1977).Physics (ط. Third). John Wiley & Sons. ص. 78–79. مؤرشف منالأصل في 29 نوفمبر 2020.Any single force is only one aspect of a mutual interaction betweentwo bodies.{{استشهاد بكتاب}}:تحقق من التاريخ في:|سنة= لا يطابق|تاريخ= (مساعدة) وتجاهل المحلل الوسيط|last-author-amp= لأنه غير معروف، ويقترح استخدام|name-list-style= (مساعدة)
^Clausius، Rudolf (1850).On the Motive Power of Heat, and on the Laws which can be deduced from it for the 'Theory of Heat'. Poggendorff's Annalen der Physik, LXXIX (Dover Reprint).ISBN:978-0-486-59065-3.{{استشهاد بكتاب}}:استعمال الخط المائل أو الغليظ غير مسموح:|ناشر= (مساعدة)
^Duhem, P.M.M. (1886).Le Potential Thermodynamique et ses Applications, Hermann, Paris.
^Guggenheim, E.A. (1949/1967).Thermodynamics. An Advanced Treatment for Chemists and Physicists, 1st edition 1949, 5th edition 1967, North-Holland, Amsterdam.
^Guggenheim, E.A. (1933).Modern Thermodynamics by the Methods of J.W. Gibbs, Methuen, London.
^Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954).Chemical Thermodynamics. Longmans, Green & Co., London. Includes classical non-equilibrium thermodynamics.{{استشهاد بكتاب}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
^Camilleri, K. (2009).Heisenberg and the Interpretation of Quantum Mechanics: the Physicist as Philosopher, Cambridge University Press, Cambridge UK, (ردمك978-0-521-88484-6).
^Preparata, G. (2002).An Introduction to a Realistic Quantum Physics, World Scientific, River Edge NJ, (ردمك978-981-238-176-7).
^K. Jensen, W. Mickelson, A. Kis, and A. Zettl. Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Phys. Rev. B 76, 195436 (2007)