الجيروسكوب يبقى شاقولياً أثناء دورانه بتأثير العزم الزاوي
فيالفيزياء يعرفالزخم الزاوي بأنه المشابه الدوراني لـزخم الحركة الخطية، كما يعرف أحيانا بمصطلحعزم الدوران لكمية الحركة أوالعزم الزاوي أوالعزم الحركي أوكمية الحركة الدورانية.[4][5][6] يعد الزخم الزاوي كمية فيزيائية مهمة لكونه كمية محفوظة – فالزخم الزاوي لنظام يظل ثابتاً ما لم يؤثر عليهلَيّ خارجي.
تعريف الزخم الزاوي علىجسيم نقطي هوشبيه متجهr×p أي حاصلالضرب الاتجاهي لمتجه موضع النقطة r (بالنسبة لمركز ما) مع متجهكمية الحركةp = mv. هذا التعريف يمكن تطبيقه على كل نقطة في المُتَّصَلِ مثل المواد الصلبة والسوائل، أو على الحقول الفيزيائية. بعكس كمية الحركة فإن الزخم الزاوي يعتمد على مكان اختيار مركز الإحداثيات، بما أن موضع النقطة يقاس منها. يمكن ربط الزخم الزاوي لجسم بالـسرعة الزواية ω للجسم (سرعة دورانها حول محور) عن طريقعزم القصور الذاتي I (والذي يعتمد على شكل وتوزيع الكتلة حولمحور الدوران). لكن في حين أن ω دائماً تشير في اتجاه محور الدوران فإن الزخم الزاوي L يمكن أن يشير في إتجاه مختلف اعتماداَ على كيفية توزيع الكتلة.
الزخم الزاوي جمعي – فالزخم الزاوي الإجمالي لمنظومة هو المجموع الاتجاهي (شبه الاتجاهي) للزُخُم الزاوية. وفي الأجسام المتصلة والحقول نستخدمالتكامل. الزخم الزاوي الإجمالي لأي شئ يمكن دائماً أن يقسم لمجموع عنصريين أساسيين: زخم زاوي «مداري» حول محور خارج الجسم، وزخم زاوي «برمي» حول محور يمر بمركز ثقل الجسم.
من الممكن تعريف الليّ أو عزم الدوران كمعدل تغيُّر الزخم الزاوي، مشابهة بالـقوة. حفظ الزخم الزاوي يساعدنا في تفسير ظواهر مشاهدة، على سبيل المثال زيادة سرعة دوران لاعبة تزحلق عندما تقرب ذراعيها إلى جسمها، ومعدلات السرعة العاليةللنجم النيوتروني، ومشكلة القطة التي تسقط، ومبادرة النحلة والجيروسكوبات. التطبيقات تتضمنالبوصلة الدوارة، الجيروسكوبات ذات التحكم في عزم الدوران، نظم التوجيه بالقصور الذاتي، عجلات ردود الفعل، الإسطوانات الطائرة (الفريسبي)، ودوران الأرض. بشكل عام، يحد الحفظ من الحركة المتاحة للنظام، ولكنها لا تحدد بشكل إستثنائي ماهية الحركة.
في ميكانيكا الكم الزخم الزاوي هو مؤثر بقيم ذاتية كمومية. الزخم الزاوي خاضع لمبدأعدم التأكد – بمعنى أن مركبة واحدة يمكن قياسها بدقة واضحة، في حين أن هذا غير متاح للمركبتين الأخريين. كما أن، «برم» الجسيمات الأولية لا يطابق حرفياً الحركة البرمِيَّة.
العلاقة بين متجهات القوة F وعزم الدوران (τ)و القوة F والمسافة بين الجسم ومركز الدوران r وكذلك بين زخم الدوران L والزخم p والمسافة بين الجسم ومركز الدوران r لجسم يدور حول محور.
تُعرّف كمية الحركة الزاوية (أو الزخم الزاوي) لجسم يتحرك دائريا حول محور بالعلاقة:
حيث:
كمية الحركة الزاوية للجسم،
بعد متجة المسافة بين الجسم عن مركز الدوران،
كمية الحركة الخطية للجسم وهي قيمة متجهه ٍ حيث أن ّ يعتبر جداء (أي حاصل الضرب).
وحدة الزخم الزاوي [نيوتن.متر.ثانية] ، أو kg·m2s−1 وبالتاليجول.ثانية.
L يتبين ان الزخم الزاوي كمية متجهه وتكون عمودية على كل من اتجاه حركة الجسمp ومتجه المسافة بينه وبين المركزr. وذلك لأنه ناتج الضرب الإتجاهي واتجاهL يتبع قاعدة اليد اليمنى كما في الشكل.
تنطبق تلك المعادلات بصفة أساسية سواء كان الجسم كبيرا أم صغيرا في حجم الذرة، إلا أنه في حالة الذرات فنجد أن الزخم الزاوي لدوران الإلكترون لا يمكن ان يتخذ قيماً مستمرة كما نعهد في حياتنا اليومية مع الأجسام الكبيرة وإنما يأخذ الزخم الزاوي للإلكترون قيماً منفصلة، وكذلك بالنسبة إلى اتجاهه فتكون أيضا اتجاهات معينة منفصلة، ويقال عن ذلك قيم واتجاهاتكمومية و«يقفز» الإلكترون بينها.
فيالفيزياء النظرية الحديثة (القرن الـ20)، وصِف الزخم الزاوي باستخدام توصيف آخر بدلاً من الشبه متجه. في هذا التوصيف، الزخم الزاوي هوشحنة نويثر بصيغة من الرتبة الثانية مرتبطة بثبات دوراني. نتيجة لذلك لا يحفَظُ الزخم الزاوي في الـزمكان المنحني، إلا إذا كان ذو ثبات دورانيمقارب.
في الميكانيكا الكلاسيكية، يمكن أن يعاد تفسير الزخم الزاوي لجسيم كعنصر مستوي:
حيث أن حاصل الضرب الخارجي∧ يحل محل حاصلالضرب الاتجاهي× (حاصلي الضرب هذين لهما خصائص مشتركة لكنهما ليسا سواء).
لهذا التعريف ميزة إعطاء تفسير هندسي أدق كعنصر مستوي، معرف من متجه الـx والـp ، كما أن هذا التعبير يظل صحيحاً في أي عدد منالأبعاد (اثنان أو أكثر).
التعريف الكلاسيكي للزخم الزاوي كـ يمكن نقله أيضاً لميكانيكا الكم، عن طريق إعادة ترجمة r كمؤثر كمي للموضع وp كمؤثر كمي لكمية الحركة. وتصبح L مؤثر يدعى «مؤثر الزخم الزاوي المداري».
في كل حال، في الفيزياء الكمية، يوجد نوع أخر من الزخم الزاوي يدعى «الزخم الزاوي البرمي»، ويمثل بالمؤثر البرمي S. تقريباً كلالجسيمات الأولية لديها برم. يوصف البرم عادة كما لو كان الجسيم يدور حول محور، لكن هذه صورة خادعة وغير دقيقة، فالبرم هو صفة أصيلة للجسيم، لا ترتبط بأي حركة من أي نوع في الفراغ، وتختلف جذرياً عن الزخم الزاوي المداري. كل الجسيمات الأولية لديها برم خاص بها، فعلى سبيل المثالالإلكترونات لديها «برم 2/1» في حين أنالفوتونات لديها «برم 1».
أخيراً، يوجد الزخم الزاوي الإجمالي J، والذي يجمع الزخم الزاوي البرمي والمداري لكل الجسيمات والحقول. (لجسيم واحد، J = L + S.) حفظ الزخم الزاوي ينطبق على J، ولكن ليس على L ولا S. على سبيل المثال، التفاعل البرمي -المداري يسمح للزخم الزاوي أن ينقل ذهاباً وإياباً ما بين L وS، والمجموع يبقى ثابتاً. الإلكترونات والفوتونات لا تحتاج لقيم عددية صحيحة للزخم الزاوي الإجمالي، لكن من الممكن أيضاً أن تأخذ قيم كسرية.[7]
في ميكانيكا الكم، الزخم الزاوي كمومي – لا يستطيع أن يتغير بصورة مستمرة، ولكن فقط في «قفزات» ما بين قيم محددة. وحيث أن قيمهم تعتمد علىثابت بلانك المخفض ħ والذي بدوره صغير جداً بمقاييس الحياة اليومية (حوالي10−34) وبالتالي هذا لا يؤثر تأثير ملحوظ على العالم الظاهري، ولكنه مهم جداً في العالم المجهري. على سبيل المثال، تكوينالمدارات الإلكترونية والمدارات الفرعية في الكيمياء يتأثر بشكل ملحوظ بتحويل الزخم الزاوي لصيغة كمومية.
في التعريف،المؤثرات الست متضمنة: مؤثرات الموضعrx،ry،rz، ومؤثرات كمية الحركةpx،py،pz. لكنمبدأ هيزينبرج لعدم التأكد يخبرنا أنه من غير المستطاع أن نعرف الستة في آن واحد بدقة اختيارية. لذا يوجد حدود لما يمكن معرفته أو قياسه عن الزخم الزاوي لجسيم. يتضح أن أفضل ما يمكن فعله هو قياس آني لقيمة متجه زخم الحركة ومركبته على محور واحد.
عدم التأكد يرتبط ارتباط وثيق لحقيقة أن المركبات المختلفة لمؤثر الزخم الزاوي ليست تبادلية. على سبيل المثال،.
نفرق في علم الفلك بالنسبة إلى جرم سماوي مثلكوكب بين «زخم مداري» بسبب دوران الكوكب حولنجم كالشمس، وبين «زخم مغزلي» حيث يلف الكوكب حول محوره (مثلما تفعل الأرض، فهي تدور حول الشمس في مدار «زخم مداري» وتلف في نفس الوقت حول محورها «زخم مغزلي». يشكل مجموعهماكمتجهين «الزخم الزاوي الكلي». ويرمز له أيضا بمتجه. وتستخدم تلك الاصطلاحات أيضا في ميكانيكا الكم لوصف حركة الإلكترون في الذرة.
لمح نيوتن في كتابه «الأصول» عن الزخم الزاوي في أمثلته عن قانون الحركة الأول:
النحلة التي أجزائها تسحب جانباً على الدوام من حركات خطية بتماسكهم، لا توقف حركتها، إلا إذا تأخرت بفعل الهواء. الأجسام الأكبر للكواكب والمذنبات مقابلة مقاومة أقل في الفضاء الأكثر فراغاً، تحتفظ بحركتها التقدمية والدائرية لمدة أطول.
لم يحقق أكثر عن الزخم الزاوي بصورة مباشرة في «الأصول»:
من هذه الأنواع من الانعكاسات أحياناً تتصاعد الحركة الدائرية للأجسام حول مراكزها. لكن هذه حالات لم أخذ باعتبارها في الأتى، كما سيكون مضجراً أن أوضح كل شئ يرتبط بهذا الموضوع.[8]
لكن، على كل حال، إثباته الهندسي لقانون المساحات مثال عظيم لعبقرية نيوتن، وتثبت بطريقة غير مباشرة حفظ الزخم الزاوي في حالة القوة المركزية.
حين يدور كوكب حول الشمس، الخط الواصل ما بين الشمس والكوكب يقطع مساحات متساوية في أزمنة متساوية. هذا كان معروف منذ كيبلر في قانونه الثاني لحركة الكواكب. إشتق نيوتن إثبات هندسي خاص، ومن ثم بدأ في توضيح أن القوة الجاذبة للشمس هي سبب كل قوانين كيبلر.
في الفترة الأولى من الوقت، يتحرك جسم من نقطة A إلى نقطة B. إذا لم يتم تعطيله، سيكمل مسيره إلى نقطة c في الفترة الثانية من الزمن. عندما يصل الجسم إلى النقطة B، يستقبل دفعة موجهة إلى النقطة S. هذه الدفعة تعطيه سرعة إضافية صغيرة في تجاه S، بحيث أن إذا كانت هذه هي سرعته الوحيدة، سيتحرك من B إلى V في الفترة الثانية من الزمن. بقوانين تكوين السرعات، هاتان السرعتان تجمعان، والنقطة C توجد عن طريق إنشاء متوازي الأضلاع BcCV. لذا ينحرف مسار الجسم بفعل الدفعة حتى يصل إلى النقطة C في نهاية الفترة الثانية. وبما أن المثلثان SBc و SBC لديهم نفس القاعدة SB ونفس الارتفاع Bc أو VC، إذاً لديهم أيضاً نفس المساحة. وبالتماثل، المثلث SBc أيضاً لديه نفس مساحة المثلث SAB، لذلك يقطع الجسم نفس المساحة SAB وSBC في نفس الوقت.
عند النقطة C، يستقبل الجسم دفعة أخرى في إتجاه S، والتي من ثم تحيد مساره مجدداً في الفترة الثالثة من الوقت من d إلى D. ومن ثم، تكمل إلى E وما بعدها، المثلثات SAB، SBc، SBC، SCd، SCD، SDe، SDE لديهم جميعاً نفس المساحات. وعند السماح للفترات الزمنية أن تصبح أقل فأقل، المسار ABCDE يقترب مالانهائياً إلى منحنى مستمر.
لاحظ أن بما أن هذا الاشتقاق هندسي، ولا توجد قوة معينة محددة، لذا تثبت قانون أكثر عمومية عن قانون كيبلر الثاني لحركة الكواكب. فهى توضح أن قانون المساحات يمكن تطبيقه على أي قوة مركزية، تجاذبية أو تنافرية، متصلة أو غير متصلة، أو صفرية.
تناسب الزخم الزاوي مع المساحة المقطوعة بجسم متحرك يمكن إدراكها عن طريق ملاحظة أن قواعد المثلثلات، أي الخطوط الواصلة من S إلى الجسم، متكافئة مع نصف القطرr، وارتفاع المثلثات متناسب مع المركبة العمودية للسرعةv⊥. لذلك، إذا كانت المساحة المقطوعة في وحدة الزمن ثابتة، إذاَ بصيغة مساحة المثلث (2/1)(القاعدة)(الارتفاع)، المضروب (القاعدة)(الارتفاع)، وبالتالي مضروبrv⊥ ثابت: أي إذا قلr وطول القاعدة، لابد وأن تزيدv⊥ وطول الارتفاع. الوزن ثابت، إذاً الزخم الزاويrmv⊥ محفوظ بهذا التبادل بين السرعة والمسافة.
في حالة المثلث SBC، المساحة تساوي (1/2)(SB)(VC). أياً كان مكان تواجد C في النهاية بسبب الدفعة المطبقة عند B، فالمضروب (SB)(VC)، وبالتاليrmv⊥ يبقى ثابتاً. وهكذا لكل مثلث.
عرَفويليام رانكين في «كتيب عن الميكانيكا التطبيقية» الزخم الزاوي بمنظوره الحديث لأول مرة:
... خط طوله متناسب مع قيمة الزخم الزاوي، وإتجاهه عمودي على مستوى حركة الجسم والنقطة الثابتة، بحيث أن، عندما ينظر إلى حركة الجسم من أقصى الخط، يبدو متجه نصف القطر كأن لديه دوران يميني اليد[12]
في نسخة أخرى من نفس الكتب في سنة 1872، كتبرانكين أن«لفظ الزخم الزاوي تم تقديمه من قبل الأستاذ هايورد،» غالباً بإشارة عن مقالةر.ب.هايورد عن «الطريقة المباشرة لتقدير السرعات، والعجل، وكل القيم بالنسبة إلى محاور متحركة بأي صورة في الفراغ مع التطبيقات»[13]، والذي قدم في 1856، وتم نشره في 1864. ولكنرانكين كان مخطأ، لأن عدة منشورات منذ نهاية القرن الـ18 إلى بداية القرن الـ19 عرضت المصطلح. ولكن، مقالةهايورد كانت كما يبدو أول استخدام لهذا المصطلح والمفهوم في معظم البلاد المتحدثة الإنجليزية. قبل هذا كان يشار إلى الزخم الزاوي بـ«كمية حركة الدوران.»