
はてなキーワード:the plugとは
VitaにCFWを導入するにあたり、情報が散乱していたのでまとめる
・2022年末に革新的進歩があり、VITA単体でCFW導入できるようになった(通称 HENlo)
・にも関わらず古いCFW導入方法を案内しているブログが大量にある
・しかもタイトルの"20XX年最新"だけ更新し続けているから、最新記事に見える
↓
PC使用が前提になっているブログは全部古いので無視した方が良いです。
・『HENlo』について触れている
この2つが押さえられてれば最新情報です。(2025年5月現在)
ただし、現状だと実は『PC操作が一部必要』という罠があります。
その問題について書いている記事が見当たらないので、ここに残しておきます。
超具体的には
「HENkaku、VitaDeploy、VitaShellは導入できた」
「けどEnso導入ができない/つまづいている」 エラー:failed togetfwversion please disableallthe plugins andtryagain
5chでもRedditでも
『プラグインを無効にしろ』『0syscall6を無効にしろ』って書いてあったのですが、実はEnsoのバージョン変えれば解決します。(後述)
この記事が役に立ちました
[Vita]2023年最新手順【HENlo】3.65-3.74PC不要でCFW(HENkaku)導入
https://re-doing.com/vita-henlo-hack/
(一応魚拓:https://web.archive.org/web/20250226111105/https://re-doing.com/vita-henlo-hack/)
・HENkaku (カスタムファームウェア 3.65 変革 -2)
・VitaDeploy
・VitaShell
・最悪文鎮化する可能性があるのでセーブデータバックアップを取ったほうが良い
・VITAのセーブデータは特殊で、PCと繋ぐだけでは取り出せない
・バックアップにはいくつか方法があるが、PCのコンテンツ管理アシスタントは既に使えないと思ったほうが良い。PS Plusのクラウドバックアップが最も良いはず
・記事の内容を実施する前にバックアップ取るのを強くおすすめする
これをインストールすることで、電源を切ってからもCFW状態を維持できます。
VitaDeploy内のApp downloaderメニューからEnsoをインストールできますが、実はこのバージョンが古いです。※重要※
そのためVitaDeployからインストールすると先程のエラー(failed togetfwversion please disableallthe plugins andtryagain)が必ず出ます。
「PC不要になった」と書いてあったので盲点ですが、ここからPC必要です。
正しい方法は以下です
1,PC操作:GithubからEnso最新版のenso.vpkファイルをダウンロード(現在v1.1)
https://github.com/TheOfficialFloW/enso/releases
2,PCとVitaをUSBケーブルで繋げる ※データ転送対応ケーブルを使うこと。相性もある
5,PC操作:USBドライブとしてVITAのデータが表示されるので、ダウンロードしていたenso.vpkファイルを置く(フォルダはどこでもOK。自分はルート直下に置きました)
7,Vita操作:VitaShellでenso.vpkを見つける(さっきルートに置いたなら恐らくux0:にある)
9.Vita操作:Doyou want toinstall this package? → ◯ボタン
10.Vita操作:~~~ Wouldyoulike tocontinue theinstall? ※意訳:「失敗したら文鎮化するけど自己責任だけど続ける?」 → ◯ボタン
11. 進行バーが消えたらインストール完了 ホーム画面に戻ってOK
Ensoはファームウェアが3.60か3.65じゃないとインストールできないです。(3.65 変革 -2は3.65扱い)
先程の記事の通り進めていたら3.65 変革 -2 になっているはずですが、実行前に再確認して下さい。
1, ~~~ PressCIRCLE toaccept these terms orany otherkey to notaccept. → ◯ボタンを押す(=CIRCLE )
2, Options:
CROSS Install /reinstall thehack.
SQUARE Fix bootconfiguration (choose this if taiHEN isn't loadingon boot).
CIRCLE Exit without doinganything.
Locking sustem ..
(中略)
Theinstallationwas completed successfully.
suocess.
MBRwas detected butinstllation checksum dose notmatch.
Adumpwas createdat ux0:data/blocks.bin.
Press X tocontinue,any othekey toexit.
意訳:「ちょい待った。思ってた構成じゃないから危ないかもしれんわ。続ける?」
→✕ボタンを押す ※結局原因分かってないので自己責任でお願いします※
4,Locking sustem ..
(中略)
Theinstallationwas completed successfully.
suocess.
Enso導入が成功していると
・ファームウェアが3.65 変革 -2のままなっている
お疲れ様でした。
記事の本題は以上です。
VITAのセーブデータは暗号化されており、吸い出せてもエミュレータで使えないらしい。本体機体とセットで揃わないと使えない仕様。
調べたらセーブデータをここまでキツく縛ってるハードは他にない
だからメモリーカードのデータ管理でもPSPのセーブデータしか項目がなかったのか…
不便すぎる
当時の仮説
・HENkaku設定が悪さをしているのではないか(PSNの偽装を有効化、バージョンの偽装を有効化) →オフにしたが関係なかった
・本体にSD2VITAを刺しているのが良くないのではないか →抜いたが関係なかった
・enso.vpkの置き場所がルート(ux0:)が良くなかったのではないか →関係なかった
・VITAにメモリーカードを刺しているのが良くないのではないか →関係なかったが、データ保護的には抜くのが良さそう
・ゴミデータが残っていて悪さしているのではないか(手順を間違えたデータや古いデータなど) →関係ある可能性はある。最後までわからず
・Ensoのバージョンが古いのではないか →これが主要因だった
ゴミデータを疑った自分は正規のファームウェアに戻して、CFW化をやり直したりもした。
その際HENkakuすら入れられなくなってしまったので、抜け方を書いておく。
ENSO実行
↓
~~~ PressCIRCLE toaccept these terms orany otherkey to notaccept. → ◯ボタンを押す(=CIRCLE )
↓
Options:
CROSS Install /reinstall thehack.
SQUARE Fix bootconfiguration (choose this if taiHEN isn't loadingon boot).
CIRCLE Exit without doinganything.
→ △ボタンを押す(=TRIANGLE Uninstall thehack.)
↓
↓
↓
ファームウェアアップデートが促され、アップデートしないとメモリースティックが使えない
↓
↓
↓
HENloメニュー
・Exit
↓
「Eiting in 3」 の後に、以下のエラーメッセージがでて固まってしまう
Ifyou are stuckon thisscreen, hold downthe power button untilyourVita turns off, then turnit backon.
原因:恐らく余計なデータと衝突を起こしてる
(さっきのエラーメッセージ画面で)
↓
セーフモードが起動する
↓
↓
↓
HENloメニュー
・Exit
↓
その後
Install HENkaku、InstallVitaDeployを選択して、Exitを選択
この記事を書き終えた後に見つけたのですが、以下の記事の『改造方法』というところに情報がかなりまとまっています
Vita バージョンが低くてもPSNにサインイン&PSストアにアクセス(エラーNW-8942-3回避)&機器認証する方法(2025最新)
https://yyoossk.blogspot.com/2024/10/vitapsnps2024.html
今回VITAのセーブデータバックアップが主目的だったから、徒労でしかなかった
指摘、補足、最新情報あれば反応もらえるとありがたいです
When thediesel generators weregone, the reactor operators switched to emergencybatterypower. The batteries were designedas one of the backups to the backups, to providepower forcooling thecore for 8 hours. And they did.
Within the 8 hours,anotherpower source had to be found andconnected to thepowerplant. Thepower gridwas down due to the earthquake. Thediesel generators were destroyed by thetsunami. So mobilediesel generators were trucked in.
This is where things started togo seriously wrong.The externalpower generators could not beconnected to thepowerplant (the plugs did notfit). So after the batteries ranout, the residualheat could not be carriedaway anymore.
At thispoint theplant operatorsbegin to follow emergency procedures that are in place for a “loss ofcooling event”. It isagain a step along the “Depth of Defense” lines. Thepower to thecooling systems should never have failed completely, but it did, so they “retreat” to thenext line of defense.All of this, however shocking it seems to us, is part of the day-to-day trainingyougo throughas an operator, right through to managing acore meltdown.
Itwasat this stage that people started to talk aboutcore meltdown. Becauseat the end of the day, ifcooling cannot be restored, thecore will eventually melt (after hours ordays), and the last line of defense, thecore catcher and third containment, would come into play.
But thegoalat this stagewas to manage thecore while itwasheating up, and ensure that the first containment (the Zircaloytubes that contains the nuclearfuel),as wellas the second containment (our pressure cooker) remain intact and operational foras longas possible, to give the engineerstime tofix thecooling systems.
Becausecooling thecore is such abig deal, the reactorhas anumber ofcooling systems, each in multiple versions (the reactor watercleanup system, the decayheat removal, the reactorcore isolatingcooling, the standby liquidcooling system, and the emergencycorecooling system). Whichone failed when or did not fail is not clearat thispoint intime.
So imagine our pressure cookeron the stove,heatonlow, buton. The operators use whatevercooling system capacity they have toget rid ofas muchheatas possible, but the pressure starts building up. The priority now is to maintain integrity of the first containment (keep temperature of thefuel rods below 2200°C),as wellas the second containment, the pressure cooker. In order to maintain integrity of the pressure cooker (the second containment), the pressurehas to be released fromtime totime. Because the ability to do that in an emergency is so important, the reactorhas11 pressure release valves. The operators now started ventingsteam fromtime totime to control the pressure. The temperatureat this stagewas about 550°C.
This is when the reports about “radiation leakage” starting coming in. Ibelieve I explained abovewhy venting thesteam is theoretically the sameas releasing radiation into the environment, butwhy itwas and is not dangerous. The radioactive nitrogenas wellas the noblegases do not pose a threat tohuman health.
At some stage during this venting,the explosion occurred.The explosion took placeoutside of the third containment (our “last line of defense”), and the reactor building. Remember that the reactor buildinghas no function in keeping the radioactivity contained. It is not entirely clear yet whathas happened, but this isthe likely scenario: The operators decided to vent thesteam from the pressure vessel not directly into the environment, but into the space between the third containment and the reactor building (to give the radioactivity in thesteammoretime to subside). The problem is thatat the high temperatures that thecore hadreachedat this stage, water molecules can “disassociate” into oxygen and hydrogen – an explosive mixture. And it did explode,outside the third containment, damaging the reactor building around. Itwas that sort ofexplosion, but inside the pressure vessel (because itwas badly designed and not managed properly by the operators) thatlead tothe explosion of Chernobyl. Thiswas never a riskatFukushima. The problem of hydrogen-oxygen formation isone of thebiggies whenyou design apowerplant (ifyou are not Soviet, that is), so the reactor is build and operated in a way it cannot happen inside the containment. It happenedoutside, whichwas not intended but a possible scenario and OK, because it did not pose a risk for the containment.
So the pressurewas under control,assteamwas vented. Now, ifyou keep boilingyour pot, the problem is that the waterlevel will keepfalling andfalling. Thecore is covered by several meters of water in order toallow for sometime to pass (hours,days) before itgets exposed.Once the rods start to be exposedat thetop,the exposed parts willreach the critical temperature of 2200 °C after about 45 minutes. This is when the first containment, the Zircaloytube, would fail.
And this started to happen. Thecooling could not be restored before therewas some (very limited, but still)damage to the casing of some of thefuel. The nuclear material itselfwas still intact, but the surrounding Zircaloy shell had started melting. What happened now is that some of the byproducts of the uranium decay – radioactive Cesium and Iodine – started to mix with thesteam. Thebig problem, uranium,was still under control, because the uranium oxide rods weregood until 3000 °C. It is confirmed that a very smallamount of Cesium and Iodinewas measured in thesteam thatwas released into theatmosphere.
It seems thiswas the “gosignal” for amajorplan B. The smallamounts of Cesium that were measured told the operators that the first containmentonone of the rods somewherewas about to give. The Plan A had been to restoreone of the regularcooling systems to thecore.Why that failed is unclear.One plausible explanation is that thetsunami also tookaway / pollutedall theclean water needed for the regularcooling systems.
The water used in thecooling system is veryclean, demineralized (like distilled) water.The reason to use pure water is the above mentioned activation by the neutrons from the Uranium: Pure waterdoes notget activated much, sostays practically radioactive-free. Dirt orsalt in the water willabsorb the neutrons quicker, becomingmore radioactive. Thishas no effect whatsoeveron thecore – itdoes not care what it iscooled by. But it makeslifemore difficult for the operators and mechanics when they have to deal with activated (i.e. slightly radioactive) water.
But Plan A had failed –cooling systems down or additionalclean water unavailable – soPlan B came into effect. This is what it looks like happened:
In order to prevent acore meltdown, the operators started to use sea water tocool thecore. Iam not quite sure if they flooded our pressure cooker with it (the second containment), or if they flooded the third containment, immersing the pressure cooker. But that is not relevant for us.
Thepoint is that the nuclearfuelhas now beencooled down. Because thechain reactionhas been stopped a longtime ago, there isonly verylittle residualheatbeing produced now. The largeamount ofcooling water thathas been used is sufficient totake up thatheat. Because it is a lot of water, thecoredoes not produce sufficientheat anymore to produce any significant pressure. Also, boricacidhas been added to the seawater. Boricacid is “liquid control rod”. Whatever decay is stillgoingon, the Boron will capture the neutrons and further speed up thecooling down of thecore.
Theplant came close to acore meltdown. Here is theworst-case scenario thatwas avoided: If the seawater could not have been used for treatment, the operators would have continued to vent the watersteam to avoid pressure buildup. The third containment would then have been completely sealed toallow thecore meltdown to happen without releasing radioactive material. After the meltdown, there would have been a waiting period for the intermediate radioactive materials to decay inside the reactor,and all radioactive particles to settleon asurface inside the containment. Thecooling system would have been restored eventually, and the moltencorecooled to a manageable temperature. The containment would have beencleaned upon the inside. Then a messy job of removing the moltencore from the containment would have begun, packing the (now solidagain)fuelbit bybit into transportation containers to be shipped toprocessingplants. Dependingon thedamage, the block of theplant would then either be repaired or dismantled.
・Theplant is safe now and willstay safe.
・Japan is lookingat an INESLevel 4Accident: Nuclearaccident with local consequences. That is bad for the company that owns theplant, but not for anyone else.
・Some radiationwas released when the pressure vesselwas vented.All radioactive isotopes from the activatedsteam havegone (decayed). A very smallamount of Cesiumwas released,as wellas Iodine. Ifyou were sittingontop of theplants’ chimney when they were venting,you should probably give up smoking to return toyour formerlife expectancy. The Cesium and Iodine isotopes were carriedout to the sea and will never be seenagain.
・Therewas some limiteddamage to the first containment. That means that someamounts of radioactive Cesium and Iodine will also be released into thecooling water, but no Uranium or other nasty stuff (the Uranium oxidedoes not “dissolve” in the water). There are facilities for treating thecooling water inside the third containment. The radioactive Cesium and Iodine will be removed there and eventually storedas radioactivewaste in terminal storage.
・The seawater usedascooling water will be activated to some degree. Because the control rods are fully inserted, the Uraniumchain reaction is not happening. That means the “main” nuclear reaction is not happening, thus not contributing to the activation. The intermediate radioactive materials (Cesium and Iodine) are also almostgoneat this stage, because the Uranium decaywas stopped a longtime ago. This further reduces the activation. Thebottom line is that there will be somelowlevel of activation of the seawater, which will also be removed by the treatment facilities.
・The seawater will then be replacedover time with the “normal”cooling water
・The reactorcore will then be dismantled and transported to aprocessing facility, just like during a regularfuelchange.
・Fuel rods and the entireplant will be checked for potentialdamage. This willtake about 4-5 years.
・The safety systemsonallJapaneseplants will be upgraded to withstand a 9.0 earthquake andtsunami (or worse)
・Ibelievethe most significant problem will be a prolongedpower shortage. About half ofJapan’s nuclear reactors will probably have to be inspected, reducing the nation’spower generating capacity by 15%. This will probably be covered by runninggaspowerplants that are usuallyonly used forpeak loads to cover some of thebase loadas well. That will increaseyour electricity bill,as wellaslead to potentialpower shortages duringpeak demand, inJapan.
Ifyou want tostay informed, please forget the usual mediaoutlets and consult the following websites:
http://www.world-nuclear-news.org/RS_Battle_to_stabilise_earthquake_reactors_1203111.html
http://bravenewclimate.com/2011/03/12/japan-nuclear-earthquake/
http://ansnuclearcafe.org/2011/03/11/media-updates-on-nuclear-power-stations-in-japan/