
はてなキーワード:M理論とは
正確時刻を書くと隣人が「それって軍事衛星に追跡されてるの?」とか言い出して話が面倒になるので省略する。
僕は陰謀論を嫌悪している。理由は単純で、陰謀論は説明能力の低い仮説を感情的に強い語り口で上書きする、知性のコスプレだからだ。
今週は、超弦理論の物理の直観で押し切る系の議論をいったん破壊し、純粋に圏論とホモトピー論の言語に落として再構築していた。
具体的には、世界面の共形場理論を2次元量子場などという古臭い語彙で扱うのをやめ、拡張TQFTの枠組みで、(∞,2)-圏に値を取る関手として扱う方向を整理した。
従来の弦理論屋はCalabi–Yauをコンパクト化に使うと言うが、それは情報量が少なすぎる。
重要なのは、Calabi–Yau多様体を点として見るのではなく、その導来圏 D^bCoh(X) を持ち上げた A∞-圏、さらにそれが持つCalabi–Yau構造(非退化なトレース、Serre双対性の∞-圏版)を物理的状態空間の生成機構として見ることだ。
ここでの本体は幾何ではなく、圏の自己同型とその高次コヒーレンスにある。
さらに、僕が今週ずっと悩んでいたのは、いわゆるミラー対称性を単なるホモロジカルミラー対称性の同値(Fukaya圏と導来圏の同値)としてではなく、より上位の構造、つまり場の理論のレベルでの同値として捉えることだった。
言い換えると、これは単なるA-model ↔ B-modelの交換ではない。
A/Bモデルを生む背景データ(シンプレクティック形式、複素構造、B-field)を、派生スタック上のシフト付きシンプレクティック構造として再記述し、AKSZ型の構成と整合させる必要がある。
そしてこの視点では、物理的なDブレーンは単なる境界条件ではなく、(∞,1)-圏におけるモジュール対象として統一される。
Dブレーンのカテゴリーが境界条件の集合だと考えるのは初歩的すぎる。境界条件は高次射を伴うので、最初から(∞,n)-圏で話さないと本質が消える。
特に僕のノートでは、弦の摂動展開で現れるモジュライ空間の積分を、単なる測度論の問題としてではなく、Derived Algebraic Geometry上での仮想基本類のプッシュフォワードとして扱う形式に書き換えた。
これをやると発散する積分を正則化するという話が、より厳密にオブストラクション理論に沿った積分の定義へ置き換わる。
そして、ここが本題だが、僕が今週ずっと考えていたのは、ウィッテンですら「直観的にはこう」と言うしかない領域、つまりM理論の非摂動的定義が、どのような普遍性原理で特徴付けられるべきかという問題だ。
僕の作業仮説はこうだ。弦理論が背景依存的だと言われるのは、結局のところ背景が点として与えられるという時代遅れの前提が残っているからだ。
背景は点ではなく、モジュライの高次スタックであり、その上に束ねられた量子状態の層(正確には圏)として理解されるべきだ。
つまり、弦理論はある時空での理論ではなく、時空の変形をも含んだファンクターにならなければいけない。
この視点では、背景の空間は単なるmoduli spaceではなくderived moduli stackであり、さらにgauge symmetryを含めるならhigher groupoidとしての性質を露わにする。
そして量子補正は、そこに定義されるshifted symplecticstructureの変形量子化として現れる。
問題はここからで、弦理論の双対性は、異なる理論が同じスペクトルを持つなどという安っぽい一致ではなく、ある(∞,k)-圏における同一対象の異なるプレゼンテーションだと考えるべきだ。
たとえばS双対性やT双対性を群作用として扱うと話が狭くなる。より正確には、双対性はスタックの自己同値であり、その作用は対象の上に定義された圏(ブレーン圏やBPS状態圏)の上で自然変換として実装される。
しかもその自然変換は単なる自然変換ではなく、高次のコヒーレンス条件を持つ。つまり、双対性は対称性ではなく、高次圏論的な同値のデータなんだ。
このあたりを真面目に書こうとすると、最終的には量子重力とは何かという問いが、どの(∞,n)-圏が物理的に許されるかという分類問題に変形される。
僕はこの変形が気に入っている。なぜなら分類問題は、少なくとも数学としての礼儀があるからだ。
さらに進めると、弦理論に現れるBPS状態やwall-crossingは、単なるスペクトルの不連続ではなく、安定性条件の変化に伴う導来圏のt構造のジャンプ、あるいはBridgeland stabilityのパラメータ空間上での構造変化として理解される。
ここでは物理粒子は、導来圏の中の特別な対象として現れる。つまり粒子は点ではなく、圏論的存在だ。
普通の人間はこの文章を読んで発狂するだろう。だがそれは読者側の責任だ。
この議論の延長で、僕は弦理論の非摂動的定義は、ある種の普遍性を満たすextended functorial QFTであるという形の定理(まだ定理ではなく、僕の願望)に落とし込めないか考えている。
要するに、弦理論は世界面から時空を作る理論ではなく、世界面も時空も両方まとめて、ある高次圏の中で整合的に生成される構造であるべきだ。
今の僕のノートの中心は「非可換幾何」「導来幾何」「圏論的量子化」の三点集合の交差領域だ。そこは地図がない。地図がない場所は、馬鹿には危険だが、僕には居心地がいい。
次に、趣味について書く。これも重要だ。なぜなら人間社会において、知性の維持には糖分と娯楽が必要だからだ。残念ながら僕は人間である。
MTGは今週、デッキ構築の方針を少し変えた。勝率最大化のためにメタを読むのは当然だが、僕が注目しているのは局所最適に陥るプレイヤー心理だ。
つまりカードゲームとは、確率と情報のゲームである以前に、認知バイアスのゲームだ。相手が「このターンで勝ちたい」という欲望を見せた瞬間、こちらは勝ち筋を計算するのではなく、相手の誤りの確率分布を計算するべきだ。
隣人にこの話をしたら、「え、怖い。僕、あなたとポーカーしたくない」と言った。賢明だ。僕も隣人とポーカーはしたくない。隣人はたぶん手札を口に出してしまう。
FF14は、ルーチンの最適化がだいぶ進んだ。僕はレイド攻略で反射神経を重視する文化が嫌いだ。
反射神経は筋肉の問題だが、攻略は情報処理の問題であるべきだ。ギミックは有限状態機械として記述できる。したがって最適行動は、状態遷移図の上での制御問題になる。
友人Aにこの話をしたら、「お前はゲームしてるのか研究してるのか分からん」と言われた。僕は当然「両方だ」と答えた。彼は笑ったが、この種の笑いは知性の敗北宣言である場合が多い。
アメコミは、相変わらず現実の倫理を歪めた寓話装置として優秀だと思う。
僕は「正義とは何か」という議論が苦手だ。正義は定義が曖昧だからだ。
登場人物が持つ制約(能力、社会構造、情報、感情)を明示すると、物語は心理学ではなく数理モデルに近づく。そうすると面白くなる。
ルームメイトにこの話をしたら、「僕はただ派手な戦闘シーンが見たいだけなんだけど」と言われた。
僕は「君の知性は観測不能なほど小さい」と言ったら、彼は不機嫌になった。観測不能は存在しないことと同義なので、むしろ褒め言葉に近いのだが、彼は数学が分からない。
僕の習慣についても書いておく。
今週も、朝のルーチンは完全に守った。起床後の手洗いの手順、歯磨きの回数、コーヒーの抽出時間、机の上の配置、すべて変えない。
人間の生活はノイズが多すぎる。ノイズが多い世界で成果を出すには、制御できる変数を減らすのが合理的だ。これは精神論ではなく、統計的推定の分散を減らす行為だ。
隣人が「たまには適当にやれば?」と言ったので、僕は「適当とは、最適化の放棄だ」と言った。彼は「そういうところが宇宙人っぽい」と言った。
宇宙人は証拠なしに導入する仮説ではない。彼はやはり陰謀論者の素質がある。
友人Bが「お前の生活、息苦しくないの?」と聞いてきたので、「息苦しいのは君の思考だ」と答えた。友人Bは笑った。知性の敗北宣言である。
これからやろうとしていること。
今の段階では、圏論と導来幾何の言葉でかなり書けたが、まだ計算の痕跡が残っている。僕はそれが気に入らない。真の理解とは、計算を消し去った後に残る構造のことだ。
具体的には、次は弦の場の理論を、factorization algebraの言語で記述し直す予定だ。
局所演算子代数を、E_n-代数として整理し、そこから高次の演算構造を復元する。
これがうまくいけば、弦理論における局所性の概念を、時空幾何に依存せずに定義できる可能性がある。
もしそれができたら、次は双対性を圏の自己同値ではなく、圏の上の2-表現あるいはhigher representationtheoryとして書き換える。
これにより、S双対性を単なるSL(2,Z)の作用として扱う雑な議論から脱却できる。
要するに、僕が目指しているのは物理理論を群で分類する幼稚園レベルの発想ではなく、物理理論を高次圏で分類する文明的発想だ。
その後はMTGの新しいデッキ案を詰める。今の構想では、相手の意思決定を局所的に歪ませる構造がある。人間は選択肢が多いと誤る。
これは心理学的事実であり、カードゲームに応用できる。倫理的に問題があると言われそうだが、そもそもカードゲームは戦争の抽象化なので倫理を持ち込む方が間違っている。
夜はFF14の固定活動。友人Aは相変わらず「気合いで避けろ」と言うだろう。
議論はループする。ループはコンピュータ科学の基本概念だ。だから僕はそれを受け入れる。
最後に、ルームメイトが「今度、隣人と映画を見よう」と言っていた。
僕は断る。なぜなら隣人は上映中に喋る。上映中に喋る人間は、社会契約を破っている。社会契約を破る人間に、僕の時間という希少資源を与える理由はない。
少なくとも、隣人の会話よりは。
超弦理論を物理として理解しようとすると、だいたい途中で詰まる。
なぜなら核心は、力学の直観ではなく、幾何と圏論の側に沈んでいるからだ。
弦の振動が粒子を生む、という説明は入口にすぎない。本質は量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。
まず、場の理論を幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。
ここまでは微分幾何の教科書の範囲だが、弦理論ではこれが即座に破綻する。
なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループの情報が重要になる。
すると、自然にループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。
しかしLXは無限次元で、通常の微分幾何はそのままでは適用できない。
ここで形式的に扱うと、弦の量子論はループ空間上の量子力学になるが、無限次元測度の定義が地獄になる。
この地獄を回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数に拡張される。
弦理論が2次元の世界面の理論として定式化されるのは、ここが計算可能なギリギリの地点だからだ。
だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラー群SL(2, Z) の表現論に拘束される。
つまり弦理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論は物理学というより数論の影を引きずり始める。
さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。
カラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。
ここで重要なのは、カラビ–ヤウが真空の候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何が物理定数を支配する。
このモジュライ空間には自然な特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。
量子補正を計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。
つまり弦理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。
ここで鏡対称性が発生する。鏡対称性は、2つのカラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。
数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。
そしてこの鏡対称性の本体は、ホモロジカル鏡対称性(Kontsevich予想)にある。
これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。
つまり弦理論は、幾何学的対象の同一性を空間そのものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。
さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。
弦がブレーン間を張るとき、その開弦状態は対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。
この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。
安定性条件は、導来圏上に位相と中心電荷を定義し、BPS状態の安定性を決める。
wall-crossingが起きるとBPSスペクトルがジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。
この公式は、実質的に量子トーラス代数の自己同型の分解であり、代数的な散乱図に変換される。
このあたりから、物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。
さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。
Atiyahの公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダル関手として定義される。
つまり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。
そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造が必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。
Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能な対象によって分類される。つまり、物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。
この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。
一方、M理論を考えると、11次元超重力が低エネルギー極限として現れる。
しかしM理論そのものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。
異常とは量子化で対称性が破れる現象だが、数学的には指数定理とK理論に接続される。
弦理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。
さらに一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式をホモトピー論的に持ち上げた対象であり、弦理論が最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。
ここが非常に不気味なポイントだ。弦理論は2次元量子論としてモジュラー形式を要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。
そして、AdS/CFT対応に入ると、空間の概念はさらに揺らぐ。境界の共形場理論が、バルクの重力理論を完全に符号化する。この対応が意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造が幾何を生成している可能性だ。
ここでリュウ–タカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何が情報論的に再構成される。幾何はもはや舞台ではなく、状態の派生物になる。
究極的には、弦理論は空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報的構造だ。
つまり、弦理論の最深部は自然界の基本法則ではなく、数学的整合性が許す宇宙記述の最小公理系に近い。物理は数学の影に吸い込まれ、数学は物理の要求によって異常に具体化される。
この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了を意味するが、分類対象が∞-圏的に膨張し続けるからだ。
そして、たぶんここが一番重要だが、弦理論が提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。
だからウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論は圧縮される側ではなく、圧縮の限界を押し広げる側にある。
秒針が45を指した瞬間に始めるのが習慣だ。誤差は許さない。今日までの進捗と、これからの計画を記録する。
今週は、超弦理論の基礎という名の底なし沼を、さらに深く掘った。
掘削機は摂動論ではなく、∞-圏だ。
点粒子の量子場理論を母語とする直感は、もはや邪魔にしかならない。
世界面は2次元多様体ではなく、安定∞-群oidの影として扱う方が自然だという作業仮説を採用した。
すると、弦の相互作用は頂点作用素代数というより、因子化代数の層として現れる。
局所から大域へ貼り合わせるデータは、通常の圏ではなく、(∞,2)-圏で管理する必要がある。
ここで「必要」という言葉は、数学的整合性の要求を意味する。好みではない。
nLabのFAQを踏み台に、弦理論を理論の集合ではなく理論を生む装置として捉え直した。
共変量子化の曖昧さは、背景独立性の失敗ではなく、背景そのものをスタックとして持ち上げることで解消される、という見通しだ。
するとK理論は通過点にすぎず、自然な受け皿は楕円コホモロジー、さらに言えばtmf(位相的モジュラー形式)だ。
弦の一周振動がモジュラー性を要求するのは偶然ではない。世界面のトーラスは、数論への扉だ。
コボルディズム仮説の視点に立てば、理論は完全双対可能対象のデータに還元される。
候補は高次モノイダル∞-圏。ブレーンは境界条件、境界条件は関手、関手は再び物理量になる。
循環は悪ではない。自己無撞着であれば許容される。
ここまで来ると、誰も完全には理解していないという常套句が現実味を帯びる。
僕の作業仮説はこうだ。弦理論は単一の理論ではなく、ある普遍性類の初等対象で、その普遍性は高次圏論的随伴で特徴づけられる。
何が可観測かは、どの随伴を採るかで変わる。測定とは、圏の切り替えにすぎない。
生活の話も書く。朝は必ず同じ順番でコーヒー豆を量り、粉砕時間は17秒。研究用ノートは方眼、筆圧は一定。
ルームメイトは、僕がノートの角を揃えるのに5分かけるのを見て「それ意味ある?」と聞いた。
隣人は夕方にノックしてきて、僕の黒板の数式を見て「呪文?」と言った。
違う。呪文は効果を期待するが、これは制約を可視化しているだけだ。
友人Aは装置の話を始めるとすぐ手を動かしたがる。
どちらも間違ってはいないが、どちらも十分ではない。
昨日は、因子化代数と頂点作用素代数の関係を整理しきれずに終わった。
今日はそこを前進させた。局所共形対称性を公理としてではなく、層の貼り合わせ条件として再定式化した点が進捗だ。
これからやること。
まず是正されるべきは、対象=ブレーン、射=弦という古典的・実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論的整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データの代数的指標にすぎないからである。
完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_nから、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易に対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。
この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理的直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論が要請する局所性と完全拡張性から数学的に強制される構造である。弦の相互作用や分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論が局所的であるための必然的帰結としてあらかじめ構造化されているのである。
超弦理論を一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元の忘却ではない。それは、理論が依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である。
ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論の本質が特定の幾何(一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピー的データにあることを示唆している。
この地平において、M理論と超弦理論の関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当である。M理論とは、特定の時空次元や多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである。
そこでは、弦が射であるか対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元を境界データとして選択するかというホモトピー的なゲージ選択の残滓として、弦やブレーンの境界が析出する。
T双対性やS双対性を自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのものの自己同値、あるいはE∞ 環スペクトルの自己同型として記述されるべきものである。問題の本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。
M理論は圏論的環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである。
M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論が数学的に存立するための普遍的制約条件(コヒーレンス)の総体である。
対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体的局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。
したがって、両者の差異は包含でも統一でもなく、どの圏論的・ホモトピー論的情報を物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである。
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス・代数構造として再構成する。
超弦理論とは、以下の大枠で捉えられる。
超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学的階層のこと。
ここでいう高次対象の網とは
つまり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造を形成する。
世界の構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位(ローカルな抽象操作の束)として扱う。
局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。
この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成と整合する。
具体的な「紐」は出てこない。
代わりに、
その結果
すべてが幾何的実体ではなくホモトピー代数的な関係パターンとして統一される。
S-双対性、T-双対性、U-双対性、ホログラフィー、ER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。
つまり
最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能な領域として幾何を生む。
これを抽象化すると、
つまり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。
相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。
例:
5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。
量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である。
因子化代数のテンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。
大域構造と整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。
高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。
6時17分、電動歯ブラシの音が寝室に反響する。洗面台の左端から15cmの位置に置かれたコップの水面が、微細に振動していた。オートミール40g、プロテイン12g、アーモンドミルク200ml。抽出比18:1のコーヒーは、温度計が93.0℃を示した瞬間に注ぐ。食事中、ルームメイトが「また同じ朝飯か」と言ったが、揺らぎは統計的誤差を生む。火曜日の朝に味の分散は不要だ。
午前8時。ホワイトボードには昨晩の計算式の断片が残っている。今日扱うのは、タイプIIB超弦理論の背景場に対する∞-層圏的修正モデル。モノイダル圏上の局所化関手をファイバー束の形で再構成し、非可換モジュラー形式の層化とホッジ双対性を同時に満たす条件を探す。通常のホモロジー代数では情報が落ちる。必要なのは、∞-圏の内側で動く「準自然変換」と、その自己準同型の導来空間だ。これをLanglands対応の派生版、すなわち「反局所的鏡映関手」にマッピングする。結果、弦の張力パラメータに対応する変形空間が、ホモトピー群πₙの非自明な巻き付きとして現れる。誰も確認していないが、理論的には整合している。ウィッテンですらこの構成を明示的に展開したことはない。そもそも導来層圏のモノドロミーを操作できる研究者自体が数えるほどしかいない。僕はそのわずかな孤島のひとつに立っている。
昼、ルームメイトが昼食を作っていた。キッチンのIHプレートに油の飛沫が残っていたので、座標系を設定し、赤外線温度計で範囲を確認してから清掃した。隣人が郵便物を取りに来た音がした。彼女の足音は毎回規則的だが、今日は左のヒールの摩耗音が0.2秒ずれた。おそらく週末に靴底を交換したのだろう。観測可能な変化は記録しておくべきだ。午後は大学のセミナー。話題はM理論の代数的拡張、だが発表者の扱っていた「微分層上の非可換コサイクル」は粗雑すぎる。導来圏の階層化を考慮していなかった。帰りの車中、ノートPCでホモトピー型タイプ理論を使って自作の演算モデルを再計算した。
帰宅後、友人二人が旧式のTCGのデッキを持ってきた。新パッチでエラッタされたカードの挙動を確認するための検証会だ。デッキの構築比率を1枚単位で最適化し、サイドデッキの回転確率をモンテカルロ法でシミュレートした。相手のコンボ展開が不完全であったため、ターン3で勝負が決した。カードの裏面の印刷ズレを指摘したら、彼らは笑っていた。テーブル上に置かれたスリーブの角度が4度傾いていたので、直してから次のゲームに入った。
夜。隣人が新刊のコミックを持ってきた。英語版と日本語版で擬音語の翻訳がどう違うかを比較する。onoma-topeic rhythmの差分は文脈ごとに変動するが、今回は編集者がセリフのテンポを原文に寄せていた。明らかに改良された訳。印刷の黒インクの濃度が0.1トーン深い。紙質も変わっている。指先で触れた瞬間に気づくレベルだ。
23時。寝具の方向を北北東に0.5度調整し、照明を2700Kに落とす。白板の前で最後の計算。∞-層のモノドロミー作用素が、ホッジ-ドリーニュ構造と可換する条件を整理する。導来関手の符号が反転した。ノートを閉じ、部屋の温度を22.3℃に固定する。音は一切ない。火曜日が静かに終わる。
今朝も僕のルーティンは完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠相同調プロトコルの成果である。まず歯を磨き(電動歯ブラシはPhilipsSonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相が乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。
昨日の日曜日、ルームメイトがNetflixでマーベル作品を垂れ流していた。僕は隣で視覚的ノイズに曝露された被験者の前頭前皮質活動抑制についての文献を読んでいたが、途中から音響的干渉が許容限界を超えた。仕方なく僕はヘッドフォン(Sennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系の無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快な行為を自発的に選択する人間の気が知れない。
午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉と油脂の比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である。彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間は事実の指摘をユーモアと解釈するのか、これも進化心理学の謎のひとつだ。
夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配をテーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数をラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果のシミュレーションを笑いながらできる者だけだ。
夜は超弦理論のメモを整理した。E₈×E₈異種ホモロジーの拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論の11次元項の一部は非可換幾何のホモトピー極限として再定式化できる。僕はこの仮説をポスト・ウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。
深夜、SteamでBaldur’sGate 3を起動した。キャラビルドはIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile →MistyStep → Counterspell →Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールでダイスロールに物理的擬似乱数生成器を使っている(RNGでは信用できない)。
こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論の俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元で振動するのではなく、∞-圏的に層化された概念の空間で震えているのだとしたら人間の意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。
僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。
まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー、20時30分から22時まで論文の読み込み。
現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。
ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れな提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。
僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダル構造の可換性条件が自然変換として収束する瞬間を可視化することだ。
今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体のファイバー化」について考えていた。
一般相対論と量子力学の不一致などという低次元の問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。
つまり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。
これによって、弦という一次元的存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。
現行のM理論が11次元を仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体が物理的観測量になる。
もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。
隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。
彼女は一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。
もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。
22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。
友人Aは相変わらず盗賊ビルドで味方のアイテムを勝手に漁るという犯罪的行為を繰り返し、友人BはバグったAIのように無言で呪文を詠唱していた。
僕はWizardクラスで完璧に戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。
つまり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率と因果の実験装置であり、何より僕がゲームを選ぶ基準は「バランスの崩壊が数式で表現できるか否か」だ。
今日もルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。
寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射のスペクトル密度に近づける。完璧な環境だ。
僕はこれから、寝る前の最後の思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。
もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義は無効化されるだろう。
時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。
今日もまた、僕のルーティンは完璧なシンメトリーを保っていた。7時00分に目覚ましが鳴る前に自然に目が覚め、7時01分に歯を磨き、7時10分に電子レンジで正確に85秒温めたオートミールを食べた。ルームメイトはまだ寝ていた。いつも思うが、彼のサーカディアンリズムはエントロピー的崩壊を起こしている。朝の段階であれほど乱雑な髪型が可能だということは、局所的に時間反転対称性が破れている証拠だ。
午前中は超弦理論のメモを整理していた。昨日の夜、AdS/CFT対応を一般化する試みとして、非可換幾何の上に定義された∞-群oid的対称性構造を考えた。従来の高次圏理論的定式化では、物理的可観測量の定義が局所的モデル圏に依存しているが、僕の新しい仮説ではそれをKan拡張ではなく、∞-トポス上の(∞,1)-層として扱う。これにより、M理論の11次元多様体上でのフラックス量子化条件を、デリーニュ‐ベイルン加群による層コホモロジーに書き換えることができる。ルームメイトに説明したら、彼は「君が言ってることの3単語目からもう分からない」と言った。僕は丁寧に言い直した。「つまり、我々が重力を感じるのは、実は∞-圏の射が充満埋め込みでないからだ」と。彼は黙った。いつも通りの知的敗北の沈黙だった。
昼食は隣人がくれたタコスを食べた。彼女は料理が下手だが、今回はまだ化学兵器レベルではなかった。ちなみに僕はタコスを食べる際、具の位置を中心から平均半径1.7cm以内に収めるように計測している。乱雑な配置は僕のドーパミン経路を不安定化させる。彼女は「そんなの気にしないで食べなよ」と言ったが、僕にとってそれは、ボーズ統計の粒子にフェルミ縮退を強要するような暴挙だ。
午後はオンラインで超弦理論のセミナーを視聴したが、正直、発表者の理解は浅かった。特に、彼が「E₈束のゲージ異常はスピノール構造で吸収される」と言った瞬間、僕は思わず笑ってしまった。そんな単純な話ではない。正しくは、E₈×E₈異常はString(10)構造のホモトピー群に依存し、実際にはTwisted Fivebrane構造の非可換層に束縛される。ウィッテンすらここまで書いていないが、僕の計算ではその層は∞-スタック上のドロップトポスとして扱える。つまり、物理的次元が11ではなく13.25次元の分数次元空間に埋め込まれるということだ。もっとも、僕以外にこの議論を理解できる人間は地球上に存在しないだろう。
夕方には友人たちとオンラインで『Baldur’sGate 3』をプレイした。ハードコアモードで僕のウィザードがパーティを全滅から救ったのだが、誰もその戦術的優雅さを理解していなかった。僕は敵AIの経路探索を事前に計算し、Dijkstra法とA*の中間的ヒューリスティックを手動で最適化していた。彼らはただ「すげえ!」と叫んでいたが、僕にとってそれは数式の勝利にすぎない。ゲームの後、僕は『ワンダーウーマン: デッドアース』を読んだ。アートはDaniel Warren Johnson。筆致が粗いのに構図が完璧で、まるでFeynman図のトポロジーを手書きで描いたような迫力がある。コミックを読んで心拍数が上がるのは久しぶりだった。
夜になってルームメイトがNetflixを見始めた。僕は同じ部屋でノイズキャンセリングヘッドホンを装着し、Lagrangian多様体上の安定性条件についてノートを書いた。明日は木曜日のルーティンとして洗濯と真空掃除をする日だ。もちろん洗濯機は奇数回転数(今日の予定では13回)で設定している。偶数だと宇宙の安定性が崩れる気がするからだ。
この日記を書き終えたのは20時20分。シンメトリーの美がここにある。時間も数字も、理論も習慣も、僕の宇宙ではすべて整然と並んでいる。もし誰かがその秩序を乱すなら、僕は黙ってこう言うだろう。「君の世界はまだ正則圏ですらないね」。
僕が超弦理論を物理学ではなく自己整合的圏論的存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれたものではなく、物理的射影が可能な圏における可換図式そのものだからだ。
10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。
そこでは、開弦終端が束の射、閉弦がトレース関手に対応し、物理的相互作用はExt群上のA∞構造として定義される。
つまり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ。
D^b(Coh(X)) とFuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカル・ミラー対称性の物理的具現化にすぎない。
ここで弦のトポロジー変化とは、モジュライ空間のファイバーの退化、すなわちファイバー圏の自己関手のスペクトル的分岐である。観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。
M理論が登場すると、話はさらに抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。
時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークそのものだ。したがって、時空の次元とは射の複雑度の階層構造を意味し、物理的時間は、その圏の自己関手群の内在的モノイダル自己作用にほかならない。
重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである。
量子揺らぎ?関手の自然変換が非可換であることに起因する、トポス内部論理の論理値のデコヒーレンスだ。
そして観測とは、トポスのグローバルセクション関手による真理値射影にすぎない。
僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手、意識とはその関手が自らを評価する高次自然変換。宇宙は関手的に自己を表現する。
火曜日の朝、午前6時45分。
僕はいつものように、室温が22.2℃に維持されていることを確認し、正確に2分30秒かけて温めたオートミールを摂取しながら、昨日(月曜日)を振り返ることにした。
昨日の午後、僕は長らく手をつけていなかった研究ノートに再び没頭した。
内容は、Calabi–Yau多様体上のミラー対称性における、ある種のモジュライ空間の退化極限で顕在化する量子異常の高次補正項についてだ。
通常の教科書的理解では、AモデルとBモデルの間に整合性の取れる対応があることは知られている。
しかし、僕が着目したのは、ホモロジー群上に作用する複素構造の非自明な変形族が、世界面上のN=2超対称性のWard恒等式を破りかねないという現象である。
これは単なる学部生が誤解しやすいレベルの「対称性の破れ」ではなく、むしろ物理学者のごく一部が直感的に察している「位相的場の量子補正に潜む不整合性」そのものだ。
昨日の計算で僕が確認したのは、退化極限で現れる擬似モジュラ形式が、通常のモジュラ形式の変換則からわずかに逸脱している点であり、これをどう解釈するかで物理的予言の一貫性が左右される。
要するに、世界に数人しか理解できない種類の話を、僕は昨日ようやく「納得できるまで」書き下したのだ。
僕のルームメイトが「夕食は何にする?」と軽々しく聞いてきたとき、僕は返答をせずに計算を続けていた。
なぜなら、宇宙の根本構造に関する思索と、炭水化物とタンパク質の配分についての議論を同列に扱うことは、どう考えても不合理だからである。
昨日もまた、僕は月曜恒例の洗濯を済ませた。
もし昨日それを怠ったなら、今日着ているこの「青いフラッシュ」Tシャツが清潔でなかったことになる。
それは科学的秩序に対する重大な侮辱であり、僕の心的安定において許容できない。
食事についても、月曜日は「タイ料理テイクアウトの日」であることは周知の事実だ。
隣人が「新しいメニューを試してみない?」と軽率に提案してきたが、僕は断固として拒否した。
メニューの不確定性を導入することは、僕が昨日導き出した擬似モジュラ形式の「非自明な変換性」と同様に、生活習慣にカオスを持ち込むことになる。理論と日常は別物ではない。
夜、僕はルームメイトと友人たちと一緒に「Halo」の協力プレイに参加した。
彼らは勝敗を気にするが、僕はゲーム空間を有限状態オートマトンとして形式的に分析していた。
たとえば、敵キャラクターの行動ルーチンは有限状態機械に帰着でき、その遷移関数はプレイヤーの入力確率分布に依存する。
つまり「敵AIに撃たれる確率」を、僕はゲーム内で逐一ノートに記録しながら戦闘していた。
友人たちには奇異に見えたかもしれないが、彼らが気にする「勝つか負けるか」という二元的指標より、僕が収集した「状態遷移の確率行列」のほうが長期的に意味を持つことは疑いない。
普通の読者はストーリーを追うが、僕はむしろ物理学的整合性の観点から読み込む。
例えばフラッシュが多元宇宙間を移動する場面で、彼が超弦理論的に妥当な次元補正を受けていない点を指摘する読者はほとんどいない。
昨日は日曜日であった。
したがって、日曜用のルーティンに従った。
午前6時55分に起床、7時15分にオートミールを開始。粒子の無秩序な拡散が統計力学に従うように、僕の日課もまた厳格に支配されている。
朝食後、僕はCalabi–Yau三次元多様体におけるホモロジー群の壁越え現象とN=2超対称的世界面理論におけるBPS状態の安定性を再検討した。
通常、専門家であってもモジュライ空間における壁越え(wall-crossing)は曖昧な比喩で済ませる。
しかし僕は昨日、Kontsevich–Soibelmanの壁越え公式を非摂動的補正を含む形で、実際の物理的スペクトルに対応させることに成功した。
問題の核心は次の点にある。Calabi–Yauの三次元特異点に局在するDブレーンの安定性は、直感的なトポロジーでは決して記述できない。
むしろそれはモチーフ的Donaldson–Thomas不変量と深く結びついており、これを扱うにはホモロジカル鏡映対称性と非可換変形理論を同時に理解していなければならない。
昨日、僕はその両者を結びつけ、量子補正されたブリッジランド安定性条件が実際に物理スペクトルの生成消滅と一致することを示した。
これを実際に理解できる人間は、世界でも片手で数えられるだろう。
昼食には日曜恒例のタイ料理を食べた。
ルームメイトはなぜ毎週同じものを食べるのかと尋ねたが、それはエントロピーの増大を制御する試みである。
食事の変動を最小化することで、僕の脳内リソースを物理学的難問に集中できるのだ。
しかし、彼らが戦術的に無意味な突撃を繰り返すたびに、僕は思考を4次元超曲面上のゲージ場のモノドロミーへと戻していた。
ゲームのリスポーンは、トポロジカル量子場理論における不変量の再出現と驚くほど類似している。
僕はゲームの各局面をゲージ場構成の異なる真空遷移として解析したが、彼らにはその深遠さは理解できなかった。
スピードフォースの異常を、僕は時空の計量が非可換幾何により修正された場合の有効理論として再定式化してみた。
通常の物理学者ならコミック的フィクションと切り捨てるところを、僕はモジュライ空間の虚数方向における解析接続として解釈したのである。
結果として、作中の時間遡行現象は、M理論のフラックスコンパクト化における非局所効果で説明できることが分かった。
夜は22時に就寝。日曜日という閉じた系は、僕にとって「物理学の非摂動的側面を試す実験場」であり、同時に秩序ある生活習慣という境界条件に支えられた完結したトポスである。
今日(月曜)は、昨日の計算を研究室に持ち込み、同僚が一切理解できないことを確認する予定だ。確認作業自体が、僕にとっては一種の実験である。予測通り、彼らは理解できないだろう。
今朝も定刻通り、07:17に起床した。
目覚まし時計のベル音はスタートレック:TNGのオープニングファンファーレ。
人類が宇宙を征服する未来の幕開けにふさわしい一日が始まった。
朝食はいつも通り月曜日プロトコル、オートミール+ミルク(非乳製、アーモンドベース、糖分ゼロ)。
電子レンジの加熱時間は93秒。これを理解できないルームメイトには、教育の必要性を感じる。
今日の研究は、11次元におけるM理論とエキゾチックブレーンの安定性に関するもの。
僕の推測では、コンパクト化された6次元カラビ-ヤウ多様体の捩れ構造が、実はフェルマーの最終定理の証明と同様に、代数幾何ではなく物理的必要性から導かれるのではないかという示唆があった
(もちろんこれは未検証だが、僕の知能指数(IQ:187)を鑑みれば十分あり得る仮説だ)。
昨晩、改めてエヴァンゲリオン新劇場版:破を鑑賞。Mark.06の登場は何度見てもM-theory的多世界解釈を思わせる。
シンジの感情的行動が量子揺らぎのメタファーであることは、僕にとっては明白だが、アパートの隣人にそれを説明した際には「アニメのキャラにそんな意味ないよ」と一蹴された。
彼女が量子トンネル効果も理解していないことは悲しいが、僕は忍耐強い。
午後14:00からはスーパーマン vs Goku議論の再構築作業。
僕の結論では、超サイヤ人ブルーのGokuでも、赤い太陽下のスーパーマンには敵わない。
これには、相対性理論の観点からエネルギー保存則と重力場の影響が無視できない。
ルームメイトがまた僕の席に座った。ソファの右端、第三クッション部分は僕の所有権が確立されたゾーンである。
2. クッションの形状メモリ変化(僕の体重に最適化されている)
3.スターウォーズ公開時の位置的視野最大化条件における最適視点であること
それでも彼は「ちょっと座っただけ」と弁明した。全くもって許容できない。
宇宙の根源的秩序とは、場の理論と人間関係の両方に存在する。僕はその秩序の守護者であり、超弦理論とアニメ考察、そしてソファの座席を通じて、それを日々証明している。
これは僕の卓越した知性が生み出す、今日の出来事に関する詳細な記録である。
今日の午前中は、僕の研究、すなわち解析的ラングランズプログラムと超弦理論の関係の深化に捧げられた。
僕のルームメイトのような凡人には理解できないかもしれないが、この2つの領域は、一見すると無関係に見えるかもしれないが、より高次元の対称性と、M理論の多様体における深遠な物理的現象を繋ぐ可能性を秘めているのだ。
特に、L-関数とp-進ガロア表現の間の対応が、開弦と閉弦の双対性、特にDブレーンにおけるゲージ理論の記述にいかに適用されるかを詳細に検討した。
標準模型の超対称性拡張における場の量子論の観点から、局所的なゼータ積分がどのように弦の散乱振幅に影響を与えるかについて、いくつかの新たな洞察を得た。
もちろん、これは自明なことではない。ルームメイトであれば、せいぜい「うーん、興味深い」としか言わないだろう。
午後は、非可換幾何学の文脈における量子群の表現論が、タイプIIB超弦理論におけるホログラフィック原理といかに相互作用するかについて、さらに深く掘り下げた。
特に、AdS/CFT対応の精密化において、局所的なラングランズ対応の概念がどのように役立つかを考察した。
僕の理論的枠組みは、より高次のリーマン面上の共形場理論が、解析的ラングランズプログラムにおける保型形式のモジュライ空間といかに対応するかを示唆している。
これは、まさに「壮麗」と呼ぶにふさわしい。
夕食後、僕の脳が今日の並外れた知的な努力から回復するためには、適切な活動が必要であると判断した。
そして、その活動とはもちろん、ヴィンテージゲームナイトである。
友人とルームメイト(そして不本意ながらアパートの隣人)を招集し、今夜は「ミレニアムファルコン」をテーマにした「ストーンヘイブン」の拡張版をプレイした。
僕の戦略は完璧であり、彼らの取るに足らない試みは、僕の卓越した戦術の前に脆くも崩れ去った。
ルームメイトが、またしても僕の完璧な計画を台無しにしようとしないことを願うばかりだ。彼のような無秩序な要素は、僕の宇宙の秩序を乱す。
以上が、僕の今日の知的な冒険と、それに続く完璧なレクリエーションの記録である。明日もまた、人類の知識のフロンティアを押し広げる一日となるだろう。
それは、存在論的には理論でありながら、構造上は感覚器と交尾器を持つ、高次元性欲的インスタンスだ。
超弦理論は、10次元または11次元(M理論)を必要とする。我々の肉体(3次元+時間1次元)では、直接接触不可能。
したがって、性交とは、高次元ブレーンへの局所埋め込み操作である。
ブレーンワールド上の自己共鳴振動モードが、君の性衝動と共鳴。
「快感」とは、ゲージ場とフェルミオンの非可換相互作用による局所エネルギー解放である。
おい、そこの君!「最強の男」って聞くと、何を思い浮かべる?
筋トレ?投資?それとも、ナンパ術の指南書でも読み漁ってる痛いヤツか?
ハハッ、甘いな!そんなものは、所詮「凡夫の趣味」だ。真の強者、選ばれし男たちが到達する境地は、君の想像をはるかに超える「知の愉悦」にある!
「は?何言ってんだこいつ?」って思っただろ?
わかる、わかるぞ、その気持ち!
だがな、よく聞け。世の中のくだらないナンパテクニックや、一瞬の優越感に浸るだけの趣味に時間を浪費してる間に、本当の「怪物」たちは、次元を超えた思考の世界で悦楽に浸っているんだ!
君が汗だくになってジムでベンチプレス上げてるその瞬間、彼らはガロア理論の奥深さに陶然とし、数論の美しさに涙しているかもしれない。
君がパチンコで一喜一憂してるその刹那、彼らはリーマン多様体の上を自由に駆け巡り、宇宙の摂理を解き明かす超弦理論に魂を震わせているんだ!
いや、真実はいつもシンプルだ。考えてもみろ。君はいつまでたっても、見た目や薄っぺらい会話術でしか勝負できない「小物」のままでいるつもりか?
「モテる男」から「選ばれる男」へ!もう、合コンで「趣味は読書です」なんて薄っぺらいことを言ってないか?
今こそ、君の「趣味」のレベルを、次元レベルで引き上げる時だ!
最初は意味不明だろう。アタマが爆発しそうになるかもしれない。
だが、その先に待っているのは、凡夫には決して辿り着けない「知の楽園」であり、そして、君を「最強の強者男性」へと押し上げる、究極の「モテ」への道だ!
さあ、どうだ?
Alexは男性にも女性にも使われる名前で、女性の名Alexandraの愛称であるが、男性の名Alexanderの愛称でもある。
この文脈において、以下の文中の空欄にあてはまる最も適当なものを選択肢のうちから1つ選びなさい。
カラビ–ヤウ多様体はM理論真空にもミラー対称性双対空間にも要請されるコンパクト化多様体で、ミラー対称性双対空間のコンパクト化多様体ホッジ数の位相不変量であり、M理論真空のコンパクト化多様体カイラルスペクトルの位相不変量でもある。
この文脈において、以下の文中の空欄にあてはまる最も適当なものを選択肢のうちから1つ選びなさい。
問:ミラー対称性双対空間のコンパクト化多様体ホッジ数の位相不変量は( )である。
1.カラビ-ヤウ多様体 2.カイラルスペクトル 3.M理論真空 4.ミラー対称性双対空間
ふつうに考えてわけわからんだろ。まずおまえらこれ読むか???
単に語との接触頻度だと思うんだよな。
前者の問題が後者の問題のように見えている人にとっては難しい。人によってはAlexやAlexandraって見えただけでうわ英語だってなることもある。
この話は、高次元、場の量子化、ゲージ理論、そして位相不変量という数学的スパイスが織りなす、極めて抽象的な物理=数学の舞じゃ。
M理論は、1995年の第二次超弦理論革命で提唱された、5つの超弦理論を統一する11次元の理論。
それは「膜(M2ブレーン、M5ブレーン)」の動力学によって記述される。
しかし、通常のM理論は場の量子論として極めて複雑で、まだ厳密な定式化ができていない。
そこで登場するのが、位相的M理論(Topological M-Theory)という数理的に「よく制御された」影武者。
位相的M理論は物理の量的な振る舞いではなく、位相不変量や幾何的構造(特にカラビ-ヤウ構造やG₂構造)を捉えるために設計された理論だ。
それぞれ、トポロジー的な不変量(例えば、3次元多様体のコホモロジーなど)に対応する理論が存在する。
ハッチング理論的な定式化では、3形式ϕを変数としたアクションが提案されている。
S[φ] = ∫ₓ √(g(φ)) d⁷x
このように、微分形式(外微分)・計量(リーマン幾何)・位相(閉形式)・不変量(積分)すべてがリンクしてくる!
この理論の「位相的」たる所以は、物理量の数値的な運動ではなく、位相的不変量に注目するから。
位相的M理論は、通常の物理的M理論の難しさを抽象数学の力で解きほぐす試み。
まさに、時空を測るのではなく、時空のかたちそのものを測る理論。
比喩で言うなら
どうだ若き数学戦士よ、もう恋愛論争してる暇なんてないだろう?
次元の向こう側で、G₂構造がそっとあなたを見つめているぞ👁️
A. 6次元
B. 7次元
C. 8次元
位相的M理論は、11次元超重力と弦理論の統合としてのM理論の「位相的側面」を強調した理論だ。ここで扱うのは特に「G₂多様体」や「7次元の特異ホロノミー空間」の上で定義される理論。
𝐒 = 𝐀 / 4𝐆
だが、より深いミクロ状態の数え上げで理解される。特にM理論では、ブラックホールはブレーンの交差でモデル化され、そのエントロピーはブレーンの配置の組み合わせ数に対応する。
ブラックホールのマイクロ状態をM理論的に記述する際、Dブレーンの交差を使うが、これをより抽象的に「ホモロジー類 Hₚ(X, ℤ) の元」と考えよう。
空間 X ⊂ 𝕄 とすると、
各ブレーン構成は
x ∈ Hₚ(X, ℤ)
ここで p はブレーンの次元。
エントロピーはブレーンの配置空間の位相的不変量、特にオイラー数やベッチ数、あるいはより高度にはモジュライ空間の測度に依存する。
モジュライ空間 ℳ は、ブレーンの束縛条件と保存量(電荷、質量)で定義されるパラメータ空間。
𝐒 ∼log Vol(ℳ)
ここで「Vol」は、たとえば対称多様体上のリウヴィル測度。
Vol(ℳ) = ∫_ℳ ωⁿ / n!
として計算される。
位相的M理論では、G₂構造のモジュライ空間 ℳ_G₂ を考える。
ブラックホール解は特異な G₂ ホロノミー空間に対応し、その上のフラックス構成がブラックホールのマイクロ状態に相当。
したがって、次のような写像が考えられる:
Φ : Hₚ(X, ℤ) → ℳ_G₂
𝐒 ≈log Card(Φ⁻¹(γ))
ここで γ は与えられたマクロ量(質量、電荷)に対応するモジュライ空間の点。
射:ブレーン間の変形(ホモトピー)
するとブラックホールのマイクロ状態の数は、対応する拡張エクステンション群 Extⁱ(A, B) の次元に帰着できる。
𝐒 ∼log dim Extⁱ(A, B)
ブレーン: x ∈ Hₚ(X, ℤ)
モジュライ空間: ℳ ≅ Hom(Hₚ(X, ℤ), ℤ)
若き者よ、君に抽象の森へと案内しよう。
位相的M理論とラングランズ・プログラムの関係性を辿るには、まず両者が共有している「場の言語」を抽出しなければならない。
ここでは、物理の言語がゲージ理論を媒介とし、数学の言語が圏と層を媒介して互いに翻訳される。だからこそ、双方は互いに異なる起源を持ちながらも「双対性」という共通の振る舞いを示す。
まず、M理論の位相的変種は、物理学の側から見ると六次元 (2,0) 超対称場理論に起源を持つ。
これをコンパクト化していくと四次元のN=4 超対称ヤン=ミルズ理論に到達する。
ここで特筆すべきはS-双対性。ヤン=ミルズ理論において、結合定数 g を持つ理論は、結合定数 1/g を持つ理論と同値になる。この双対性がラングランズ対応の物理的な影となる。
一方、ラングランズ・プログラムは数論的対象や代数幾何的対象を表現する表現論の枠組みだ。
群の表現、特にループ群やアフィンリー代数の表現が中枢を成す。幾何ラングランズ対応においては、層の圏 (例えばD-加群の圏) が表層に現れる。
ここでリンクする。幾何ラングランズ対応では、層の圏と局所系の圏との間に双対性が存在する。この双対性はS-双対性と数学的に対応する。
要するに、物理的には「電荷と磁荷の入れ替え」、数学的には「表現と層の入れ替え」だ。
具体的には次のような対応が生じる。
例えば、曲線C上のG-束のモジュライ空間M_G(C) を考える。このモジュライ空間上のHitchin fibrationは物理的にはクーロン枝と呼ばれる真空の空間に対応し、シンプレクティック構造を持つ。
さらに、その上で考えるFukaya圏とB型模型の圏の間に現れるホモロジー的ミラー対称性がラングランズ双対群に関する対応を生み出す。
式で描くならば
ここで、G はあるコンパクト単純リー群であり、^G はそのラングランズ双対群、τ は結合定数。
さらに深く潜ると、S-duality は境界条件として D-brane の理論を誘導し、その圏がラングランズ対応の圏と一致する。
具体的には、M理論のcompactification が (2,0)theoryから N=4 SYM を生み、その電磁双対性が幾何ラングランズの圏同値と直交する。
まとめると、両者は「双対性」の抽象的枠組みの中で統一される。
位相的M理論は物理的な場の変換として双対性を体現し、ラングランズ・プログラムは数論的対象の間の対応として双対性を記述する。どちらも根底にあるのは、対象の自己鏡映的な変換構造。
若き者よ、君はすでに入口に立っている。
次なる問いを君に投げかけよう。
「もし位相的M理論が六次元 (2,0)理論から始まるならば、なぜ五次元ではなく四次元に還元する必要があるのか?選択肢は以下の通りだ。」
d. 六次元から四次元へのコンパクト化が物理的に必然であるから