
はてなキーワード:部分代数とは
ただし以下では、ヒルベルト空間を物理空間と見なす素朴な解釈を禁止し、より高次の数学的構造として扱う。
この時点で、量子系は 単なる線形代数ではなく、圏としての性質が主役になる。
これが後に分離できない系(エンタングルメント)の直接的原因になる。
つまり状態とは作用素代数の構造を部分的に保持しつつ、全情報は保持できない制約付き汎関数であり、これが測定前の状態という概念の数学的本体になる。
観測は波束収縮ではなく、全体の作用素代数から可換部分代数への冪等射(自己合成しても変わらない射)として定義される。
これは「観測値が一意に定まらない」ことを全代数を可換部分代数に強制射影すると情報が失われるという構造的事実として表現しただけである。
量子干渉とは、状態に対して複数の可換部分代数が存在する。それぞれの部分代数に制限したときの汎関数が整合的でない。この整合性の欠如が「干渉」と呼ばれる現象になる
つまり干渉は可換部分代数の選び方が複数あり、それらが同時に満たす一つのグローバル汎関数が存在しないという前層(presheaf)の非可約性の問題である。
系 A と B の複合系が与えられるとき、通常はテンソル積によって分離できるはずだが、量子系では一般に失敗する。
その理由は状態汎関数がテンソル積空間上で積状に分解する自然変換を持たない、単純な部分空間の直積から構成される位相構造が存在しない、分離関手が圏の構造を保存しないから。
したがってエンタングルメントとはテンソル積空間の構造が、2つの部分系の圏論的生成子に分解できないことに過ぎない。
抽象化すると、時間発展は全作用素代数の自己同型の族、ただし逆が常に存在するとは限らないため、一般には半群。観測が入ると逆方向の自己同型が消滅する。これが「不可逆性」の正体である。
つまり時間とは、自己同型の完全群構造が壊れ、半群に退化した結果発生するパラメータにすぎない。
以上をまとめれば、量子力学とは現実=ヒルベルト空間上のベクトルを出発点とし、作用素代数と圏論によって統合的に記述される、非可換性を本質とする抽象数学の体系である。
物理的に測定可能な操作は代数の元に対応。代数は積、随伴(複素共役に対応する操作)などの構造を持つ代数的オブジェクト。
物理的な期待値は代数に対する線型汎関数として定式化。これが確率/期待を与える。
ある観測者が見られる演算子群は、全体代数の部分代数として表される。重力のとき、この部分代数は空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。
代数と状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質が表現の性質(分解可能性・因子のタイプ)を決めること。
対象:各物理状況に対応する代数(C*-代数やフォン・ノイマン代数のようなもの)。
射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。
状態は自然変換的な役割を持ちうる:ある意味で代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。
GNSは圏論的なファンクタ:代数と状態のペアからヒルベルト空間と表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ→幾何(表現空間)を与える操作として抽象化。
エンタングルメント=幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応。
具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。
逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。
代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造の差異(中心の有無、トレースの存在可否など)として表現される。
物理的にはこの差が「純粋状態の存在」「系の分解可能性」「エントロピーの定義可能性」を左右。従ってどの圏の部分圏にいるかが物理的位相や重力的性質に相当する。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPYコードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのがit from qubits の数学的内容である。
さらに情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。