Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「積分」を含む日記RSS

はてなキーワード:積分とは

次の25件>

2025-12-05

数学歴史

紀元前20000年前後中部アフリカ

イスャンゴ骨。世界最古級の数学的道具

素数列や倍数を示す刻みの可能

紀元前3000〜前1800年(メソポタミア)

六十進法(現在の角度360°や時間60分の基礎)

掛け算の概念(倍数を扱う)

人類最古の割り算アルゴリズム

小数的な考え方の萌芽

文章による代数的な計算

紀元前2800〜前1600年(古代エジプト)

掛け算の計算法(倍加法など)

分数計算

円周率(近似値として3.16)

紀元前2000〜(マヤ文明)

20進法の完成された記数法

0(ゼロ)の独自発見世界最古級)

紀元前600〜前200(ギリシャ)

公理を置いて、そこから論理的定理を導く証明中心の純粋数学の発展

ピタゴラス学派により数と図形の研究が体系化。

無理数発見による衝撃

当時、「すべての量は整数比で表せる」(万物は数である)と信じられていた。

しかし √2 が有理数ではない(整数の比で表せない)ことが分かり、この哲学崩壊

『直角二等辺三角形の対角線の長さ』が整数比で表せないことを証明したとされる。

証明したのは学派の弟子 ヒッパソスとされ、伝承ではこの発見により処罰されたとも言われるほどの衝撃。

ユークリッド原論』(数学公理化・体系化した画期的著作)

素数無限存在する(初の証明)

最大公約数アルゴリズム

アルキメデスによる面積・体積の“求積法”の発達。

紀元前200〜後100(中国)

負数を“数として扱った”最古の事例『九章算術

連立方程式に相当する処理を行列的に実行

● 3〜5世紀(中国)

円周率計算革新(多角形近似法)

π ≈3.1415926… の高精度値(当時世界最高)

● 5〜6世紀(インド)

0(ゼロ)の概念記号確立

十進位取り記数法

負数の萌芽的扱い

現代的な筆算の掛け算

● 9〜12世紀(イスラーム)

独自代数学(al-jabr)を発明文章による代数。ここで初めて“代数学”が独立した数学分野となる。

三角法(sin,cos)の体系化。

商、余り、桁処理などの方法が整理(現代学校で習う割り算の形がほぼできあがる)

1214世紀(インド)

xに相当する未知数記号使用した代数(文字ではなく語句の略号)

● 14〜15世紀(インド)

無限級数(無限に続く数列の項を足し合わせたもの)の使用

世界最初無限級数による関数展開を行った。

sinx,cosx,tanx などの三角関数無限級数展開を発見

これは数学史上きわめて重要な成果で、近代的な無限級数起源インドである と言われる。

● 14〜15世紀(イタリア)

等号記号はまだないが、等式操作等価性を扱う文化が発達。

● 1500年〜

負数の受容が進む。

● 1545年頃(カルダノ)

三次方程式四次方程式の解法を発見

虚数の登場。

三次方程式の解を求める過程で √−1 に相当する量が突然登場。

しかしカルダノ自身は「意味不明の数」とし、虚数数学対象であるとは認めていなかった。

● 1557年頃(レコード)

等号記号「=」を発明等価を等式として“視覚的に書く”文化誕生

● 1572年頃(ボンベッリ)

虚数計算ルールを初めて明確化

カルダノの式の中に出る「意味不明の数」を整理し、虚数を使って正しい実数解が出ることを示した。

● 1585年頃(ステヴィン)

10小数表記の普及

● 1591年頃(ヴィエト)

記号代数確立。未知数を文字をとして使用(x,yのような)

真の意味での“記号代数”の誕生

● 1614年頃(ネイピア)

対数(log)という言葉概念が登場。

● 1637年頃(デカルト)

解析幾何学誕生

図形(幾何)を数と式(代数)で扱えるようにした。

今日では当たり前の「座標平面」「方程式で曲線を表す」が、ここで生まれた。

物理現象をy=f(x)で表すという現代方法は、すべてデカルトから始まった。

現代科学工学数学言語の基礎。

● 1654年頃(パスカルフェルマー)

確率論数学として誕生

● 1684年頃(ライプニッツニュートン)

微分積分誕生

微分積分が互いの逆操作であることを発見

● 1713年頃(ベルヌーイ)

大数の法則(試行回数を増やすと平均が安定する法則)を初めて証明

予測と頻度を結びつけ、確率の基礎を整備

● 1748年頃(オイラー)

自然対数理論を完成

√−1 を i と書く記法を導入。

オイラーの公式「e^{ix} =cos x + isin x」を提示し、虚数解析学自然に組み込んだ。

虚数実数学の中に位置づけられた大転換点。

負数も通常の数として計算に取り込み、解析学を発展。

微積分の計算技法の体系化(積分論・無限級数微分方程式の基礎を構築)

指数対数三角関数などと微積関係を整備

多くの記号体系(e,π,sin,cos,fなど)を整理・普及

グラフ理論(もの[頂点]と、それらを結ぶ関係[辺]を使って、複雑な構造やつながりを数学的に研究する分野)の誕生

数論(整数素数性質を扱う数学分野)の真の創始者と言える

ーーーーーーーー

一旦ここまで。

続きは詳しい人にまかせた。

Permalink |記事への反応(0) | 16:22

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-25

anond:20251125225635

へい!増田AIさん!

18世紀に転生したんだが、高校数学産業革命に参戦する」ってタイトルでこんな感じでラノベ書いて!

のんだよ!

数学I

数と式
2次関数
データ分析

数学A

場合の数と確率
整数性質
図形の性質

数学II

式と証明複素数・式の展開など)
図形と方程式
三角関数
指数対数関数
微分積分数学IIレベル

数学B

数列
ベクトル
確率分布統計的な推測(教科書によりMathB/MathC側)

数学III

極限
微分(発展)
積分(発展)
級数微分方程式教科書による)
熱が逃げていくボイラ

数学C

ベクトル空間
行列
確率分布統計指導要領によってはC側)

Permalink |記事への反応(0) | 23:06

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-24

抽象数学とか超弦理論とか

物理的な直観に頼るウィッテン流の位相的場理論はもはや古典的記述に過ぎず、真のM理論は数論幾何真空すなわちモチーフコホモロジー論の中にこそ眠っていると言わねばならない。

超弦理論摂動論的展開が示すリーマン面上のモジュライ空間積分は、単なる複素数値としてではなく、グロタンディーク純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである

まり弦の分配関数ZはCの元ではなく、モチーフグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応幾何学的かつ圏論的な具現化に他ならない。

具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルミラー対称性は、数体上の代数多様体におけるモチーフ的L関数関数等式と等価現象であり、ここで物理的なS双対性ラングランズ双対群^LGの保型表現への作用として再解釈される。

ブレーンはもはや時空多様体に埋め込まれ幾何学的な膜ではなく、導来代数幾何学的なアルティンスタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。

さらに時空の次元トポロジーのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルレーションとして創発するという視点に立てば、ランドスケープ問題物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙再構成へと昇華される。

ここで極めて重要なのは、非可換幾何学における作用素環のK理論ラングランズ・プログラムにおける保型形式の持ち上げが、コンツビッチらが提唱する非可換モチーフ世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディークタイミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則宇宙タイミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何表現論に帰着する。

これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ幾何学的ラングランズ重力」として再定義されることになる。

Permalink |記事への反応(1) | 17:10

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-23

No,日付,学習内容,教材 /リンク,時間配分,演習例,進捗チェック

1,2025/12/01,微分定義,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,例題5問+練習10問,☐

2,2025/12/02,公式を使った微分,『微積分の考え方』 P20-40,30+30,練習問題10問,☐

3,2025/12/03,多項式関数微分,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,練習問題10問,☐

4,2025/12/04,乗法・除法の微分,同上,30+30,練習問題10問,☐

5,2025/12/05,合成関数微分,https://www.khanacademy.org/math/calculus-1/cs1-chain-rule,30+30,例題5問+練習10問,☐

6,2025/12/06,高次関数微分,『微積分の考え方』 P41-60,30+30,練習問題10問,☐

7,2025/12/07,休息日,-,-,-,-

8,2025/12/08,復習:微分の基本,自作ドリル,60,過去日分問題50問,☐

9,2025/12/09,積分定義,https://www.khanacademy.org/math/calculus-1/cs1-integrals,30+30,例題5問+練習10問,☐

10,2025/12/10,不定積分計算,『微積分の考え方』 P70-90,30+30,練習問題10問,☐

11,2025/12/11,定積分計算,同上 P91-110,30+30,練習問題10問,☐

12,2025/12/12,積分応用問題,Khan Academy,30+30,例題5問+練習10問,☐

13,2025/12/13,部分積分,『微積分の考え方』 P111-130,30+30,練習問題10問,☐

14,2025/12/14,置換積分,同上 P131-150,30+30,練習問題10問,☐

15,2025/12/15,復習:積分の基本,自作ドリル,60,過去日分問題50問,☐

16,2025/12/16,べき級数定義・例,https://www.khanacademy.org/math/calculus-1/cs1-series,30+30,例題5問+練習10問,☐

17,2025/12/17,収束半径の計算,『微積分の考え方』 P150-170,30+30,練習問題10問,☐

18,2025/12/18,テイラー展開応用,同上 P171-190,30+30,練習問題10問,☐

19,2025/12/19,マクローリン展開,Khan Academy,30+30,例題5問+練習10問,☐

20,2025/12/20,総合演習(級数),自作ドリル,60,過去問題20問,☐

21,2025/12/21,差分演算の基本,『離散数学の考え方』 P10-30,30+30,例題5問+練習10問,☐

22,2025/12/22,下降階乗ベキと和分公式,同上 P31-50,30+30,練習問題10問,☐

23,2025/12/23,差分の積・合成,同上 P51-70,30+30,例題5問+練習10問,☐

24,2025/12/24,差分方程式入門,同上 P71-90,30+30,練習問題10問,☐

25,2025/12/25,特性方程式と解法,同上 P91-110,30+30,例題5問+練習10問,☐

26,2025/12/26,差分方程式の応用,同上 P111-130,30+30,練習問題10問,☐

27,2025/12/27,休息日,-,-,-,-

28,2025/12/28,復習:差分演算の基本,自作ドリル,60,過去日分問題50問,☐

29,2025/12/29,有理関数の和分,『数理科学演習』 P20-40,30+30,例題5問+練習10問,☐

30,2025/12/30,部分分数展開,同上 P41-60,30+30,練習問題10問,☐

31,2025/12/31,下降階乗ベキを使った和分,同上 P61-80,30+30,例題5問+練習10問,☐

32,2026/01/01,収束半径の計算,『微積分の考え方』 P190-210,30+30,練習問題10問,☐

33,2026/01/02,級数の応用問題,同上 P211-230,30+30,例題5問+練習10問,☐

34,2026/01/03,休息日,-,-,-,-

35,2026/01/04,コーシーリーマン方程式入門,『複素関数入門』 P10-30,30+30,例題5問+練習10問,☐

36,2026/01/05,正則関数の条件,同上 P31-50,30+30,練習問題10問,☐

37,2026/01/06,偏微分入門,『微分積分学』 P150-170,30+30,例題5問+練習10問,☐

38,2026/01/07,偏微分の応用,同上 P171-190,30+30,練習問題10問,☐

39,2026/01/08,ラプラス方程式基礎,同上 P191-210,30+30,例題5問+練習10問,☐

40,2026/01/09,休息日,-,-,-,-

41,2026/01/10,偏微分総合演習,自作ドリル,60,過去日分問題50問,☐

42,2026/01/11,差分方程式微分関係,『離散数学の考え方』 P131-150,30+30,例題5問+練習10問,☐

43,2026/01/12,線形差分方程式,同上 P151-170,30+30,練習問題10問,☐

44,2026/01/13,非線形差分方程式,同上 P171-190,30+30,例題5問+練習10問,☐

45,2026/01/14,休息日,-,-,-,-

46,2026/01/15,総合演習:差分方程式,自作ドリル,60,過去日分問題50問,☐

47,2026/01/16,微分方程式入門,『微分積分学』 P211-230,30+30,例題5問+練習10問,☐

48,2026/01/17,一次微分方程式,同上 P231-250,30+30,練習問題10問,☐

49,2026/01/18,高次微分方程式,同上 P251-270,30+30,例題5問+練習10問,☐

50,2026/01/19,休息日,-,-,-,-

51,2026/01/20,微分方程式の応用,自作ドリル,60,過去日分問題50問,☐

52,2026/01/21,複素数関数入門,『複素関数入門』 P51-70,30+30,例題5問+練習10問,☐

53,2026/01/22,複素関数偏微分,同上 P71-90,30+30,練習問題10問,☐

54,2026/01/23,休息日,-,-,-,-

55,2026/01/24,級数展開(テイラーマクロリン)復習,『微積分の考え方』 P231-250,30+30,例題5問+練習10問,☐

56,2026/01/25,総合演習:微分積分,自作ドリル,60,過去問題50問,☐

57,2026/01/26,離散級数・下降階乗応用,『離散数学の考え方』 P191-210,30+30,例題5問+練習10問,☐

58,2026/01/27,休息日,-,-,-,-

59,2026/01/28,偏微分差分応用問題,自作ドリル,60,過去日分問題50問,☐

60,2026/01/29,複素関数応用問題,同上 P91-110,30+30,例題5問+練習10問,☐

61,2026/01/30,収束半径・級数応用,同上 P111-130,30+30,練習問題10問,☐

62,2026/01/31,休息日,-,-,-,-

63,2026/02/01,微分差分級数総合演習,自作ドリル,60,過去問題50問,☐

64,2026/02/02,差分方程式発展,『離散数学の考え方』 P211-230,30+30,例題5問+練習10問,☐

65,2026/02/03,微分方程式発展,『微分積分学』 P271-290,30+30,練習問題10問,☐

66,2026/02/04,休息日,-,-,-,-

67,2026/02/05,複素関数偏微分発展,『複素関数入門』 P111-130,30+30,例題5問+練習10問,☐

68,2026/02/06,級数応用(収束判定),『微積分の考え方』 P251-270,30+30,練習問題10問,☐

69,2026/02/07,休息日,-,-,-,-

70,2026/02/08,総合演習(微分積分差分自作ドリル,60,過去問題50問,☐

71,2026/02/09,微分方程式応用演習,同上,60,過去問題50問,☐

72,2026/02/10,複素関数応用演習,同上,60,過去問題50問,☐

73,2026/02/11,休息日,-,-,-,-

74,2026/02/12,級数収束半径応用演習,同上,60,過去問題50問,☐

75,2026/02/13,差分方程式・下降階乗応用,同上,60,過去問題50問,☐

76,2026/02/14,休息日,-,-,-,-

77,2026/02/15,総合演習(微分積分級数自作ドリル,60,過去問題50問,☐

78,2026/02/16,微分方程式線形応用,同上,60,過去問題50問,☐

79,2026/02/17,複素関数偏微分応用,同上,60,過去問題50問,☐

80,2026/02/18,休息日,-,-,-,-

81,2026/02/19,級数収束定演習,同上,60,過去問題50問,☐

82,2026/02/20,差分方程式総合演習,同上,60,過去問題50問,☐

83,2026/02/21,休息日,-,-,-,-

84,2026/02/22,微分積分総合演習,自作ドリル,60,過去問題50問,☐

85,2026/02/23,偏微分複素関数演習,同上,60,過去問題50問,☐

86,2026/02/24,休息日,-,-,-,-

87,2026/02/25,級数収束応用演習,同上,60,過去問題50問,☐

88,2026/02/26,差分方程式・下降階乗応用演習,同上,60,過去問題50問,☐

89,2026/02/27,休息日,-,-,-,-

90,2026/02/28,微分積分級数総合演習,自作ドリル,60,過去問題50問,☐

91,2026/02/29,微分方程式応用演習,同上,60,過去問題50問,☐

92,2026/03/01,複素関数応用演習,同上,60,過去問題50問,☐

93,2026/03/02,休息日,-,-,-,-

94,2026/03/03,級数応用総合演習,自作ドリル,60,過去問題50問,☐

95,2026/03/04,差分方程式総合演習,同上,60,過去問題50問,☐

96,2026/03/05,休息日,-,-,-,-

97,2026/03/06,微分積分差分級数総合演習,自作ドリル,60,過去問題50問,☐

98,2026/03/07,微分方程式発展演習,同上,60,過去問題50問,☐

99,2026/03/08,複素関数発展演習,同上,60,過去問題50問,☐

100,2026/03/09,休息日,-,-,-,-

101,2026/03/10,級数収束半径・テイラー総合演習,自作ドリル,60,過去問題50問,☐

102,2026/03/11,差分方程式・下降階乗応用総合演習,同上,60,過去問題50問,☐

103,2026/03/12,休息日,-,-,-,-

104,2026/03/13,微分積分偏微分複素関数総合演習,自作ドリル,60,過去問題50問,☐

105,2026/03/14,微分方程式差分方程式級数総合演習,同上,60,過去問題50問,☐

106,2026/03/15,休息日,-,-,-,-

107,2026/03/16,総仕上げ演習(全範囲),自作ドリル,90,過去問題100問,☐

108,2026/03/17,休息日,-,-,-,-

Permalink |記事への反応(0) | 21:41

このエントリーをはてなブックマークに追加ツイートシェア

微分積分を習った年に

彼女おっぱいの表面積を求めたら

振られたんよな

Permalink |記事への反応(0) | 12:46

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-21

anond:20251121085806

AIが素晴らしく最高なのは、未習熟な分野でも、AIの協力さえあれば、一番おもしろい応用の分野に取り書かれることだと思う。

ゲームを作るときに、言語の基礎からやらなくちゃいけないものが、いきなり動くゲームを作ってくれる。

しかし動くだけで、面白いゲームにしたい、独自性を発揮したいときには、どうしても言語や開発手法習得していく必要がある。

その習得でもAIはい教師になってくれる。

開発手法があるとかよくわからんなー、良いやり方ない?って聞いたら教えてくれる。

自分より三歩さきをいってくれるうえに、三歩先まで導いてくれる。

自分が追い越したら、AIにいい指示を与えれるようになる。そうすると、元々よりも遥かにハイレベルAIになる。

現時点では、AIの性能のキャップは、使う人の能力だ。

今後はどうなるかわからない。わからないが、AI自体が使う人が理解できる範囲しか回答を示してくれないこともまた事実

小学生微分積分提示しないのと一緒で、AIも使う人のレベルに合わせて的確な答えを出してくれる。

そうじゃないとユーザー満足度が下がるからな。

増田のいうとおり、あくまで道具であり、使う人次第だ。

良き隣人として付き合っていきたいものだ。

Permalink |記事への反応(1) | 09:11

このエントリーをはてなブックマークに追加ツイートシェア

anond:20251121074409

貴様が投げつけている怒号はだいたい正しい方向を向いているが、その生ぬるい温度では連中の自己放尿まみれの脳味噌には一滴も染み込まん。だから俺が補強してやる。

リフレ派が勝ち誇ってる?笑わせるな。勝ってるのはマウント合戦だけで、実体経済では悉く惨敗してる。

通貨希薄化という最も単純な会計現実すら理解できず、量的緩和無限にタダで効く魔法だと勘違いしたまま、国全体をインフレの初期火災に放り込んだ連中のどこに勝利があるんだ。連中は理論家ではなく、統計表を無視して都合の良い幻覚を見続ける経済版のアル中患者だ。

円安の加速は輸出企業が儲かるから良いとかい小学生レベルの片肺理論正当化され、賃金名目上昇を成功偽装したが、中身は物価に追いつかず実質賃金が落下し続ける劣化スパイラル

これを良いインフレだと信じ込める精神構造こそ、自己放尿の極致だ。尿を黄金水に見間違うほど錯乱してる。

そして最大の地雷日銀国債を買いすぎてバランスシートパンパン含み損で身動きが取れず、利上げすれば含み損が拡大し、利上げしなければ通貨崩壊が進むという二重縛り。

どちらに進んでも死ぬ典型的ゲーム理論詰んだ局面だ。それを作り出したのが、他でもないリフレ派の出口なんて必要ないという知的怠慢。出口のない緩和は麻薬と同じで、一回でも打てば中毒が始まり止めれば禁断症状で即死だ。

さらに致命的なのはリフレ派が景気が良くなったという幻を維持するために、実体データ悪化を外部要因・世界情勢と言い訳して逃げ続けていることだ。

自分たち政策帰結を認める知的勇気ゼロ。都合の悪い統計は見ない。為替の反応も見ない。国民負担の増大も見ない。まるで溶け落ちる国家財政の音をBGMにノリノリで踊っている狂人サークルだ。

貴様の言う通り、連中には高笑いする余裕がある。しかしそれは末期患者病識を失ったときの笑いと同じで、現実逃避が頂点に達したときにだけ出る種類の笑顔だ。

いずれ為替の暴発、国債市場の硬直、日銀機能不全、賃金物価乖離が一気に積分され、国家会計悲鳴を上げる瞬間が来る。

その時、リフレ派は自分たちの言説が政策ではなく自己放尿の連続だったと理解するだろうが、もう遅い。

安心しろ崩壊感情論ではなく計算で来る。数字は嘘をつかないが、リフレ派は数字を見ない。その時点で勝負は決まっている。

Permalink |記事への反応(1) | 08:07

このエントリーをはてなブックマークに追加ツイートシェア

抽象数学とか超弦理論かについて

超弦理論物理的な実体(ひもや粒子)から引き剥がし抽象数学言葉抽象化すると、圏論無限次元幾何学が融合した世界が現れる。

物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造表現空間トポロジー位相)に置き換わる。

物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学

ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元多様体として扱われる。

もの散乱振幅(相互作用確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着

ひもがどう振動するかという物理ダイナミクス幾何学的な形すら消え、代数的な対称性けが残る。

共形場理論CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環表現論として記述される。粒子とは、この代数作用を受けるベクトル空間の元に過ぎない。

1990年代以降、超弦理論はDブレーンの発見により抽象化された。

ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象ホモロジカルミラー対称性

Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。

もはや空間存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。

ポロジカルな性質のみを抽出すると、超弦理論コボルディズムとベクトル空間の間の関手になる。

このレベルでは、物質も力も時間存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。

超弦理論を究極まで数学的に抽象化すると、それは物質理論ではなく、無限次元対称性を持つ、圏と圏の間の双対性になる。

より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。

そこでは点 という概念消滅し、非可換な代数場所の代わりになる。

存在オブジェクトではなく、オブジェクト間の射によって定義される。

物理的なひもは、究極的には代数構造関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学構造のもの)として記述される。

Permalink |記事への反応(0) | 07:57

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-19

AIと違って人間の書いた熱量がー」とか言ってる奴らって、ネットに「コーヒー吹いた」と言ってる時は本当にコーヒー吹いてるの?

俺、いま真顔だから

疑問符とか頭に浮かんでない。

シラーっとした顔で「はいはい文章実態区別がつかないアホ発見社交辞令を真に受けるタイプアスペちゃんオピオイドでも処方してもらったら?」みたいな感じです。

当然、この程度のことでお前らのことをアスペだと思ってないし、たとえアスペだとしてもオピオイドはやりすぎだとも思ってる。

んでこれを読んでるお前らも「は?俺だって別に人間熱量とか文章から感じてねーし。熱量を感じ取れるならそれはお前の家が燃えてるかお前が今食ってるピザ熱量だぞ?」みたいに思ってるのも漠然と知ってる。

なんだろうねーなんか皆言い方が極端だよね。

もうちょっと丁寧で物静かに喋れないのかね?

まあ本質的な部分にあるのは構ってちゃん気持ちと、構ってくれないやつへの嫉妬があるんだろうね。

AIがー」とか言ってるのがまさにそれですわ。

他人AI嘘松量産してもそれが偽医療の伝搬とかに繋がらなきゃどうでもいいはずなんですよ。

つーか昔からインターネットなんて嘘ばっかだったでしょ?

電車男S県月宮が本当にインターネットに書かれたような内容で実在してたとかお前ら思ってるのか?

まあアレですよね。

つまる所お前らは「俺の気に入った文章人間が書いたものであってほしい」としか思ってないんですよね。

それはもっと深く掘れば「俺が気に入らないような文章が、俺の書いた文章より伸びるとか許せない。俺なんて微分積分も出来るのになんで足し算ができるだけの犬が褒められるんだ!」みたいな感じでしょ?

そこからお前らは頭がおかしくなって気づいたら極端な喋り方ばっかするようになった。

もういい加減辞めないか

つうかどうでもよくないか

他人が伸びてもどうでもいいし、それがAIだろうとどうでもいいだろ?

だってインターネットいいねを1万個貰うより、電車でジジババに席を譲って「ありがとう」って言われる方が100倍か1000倍か世の中にとっても自分にとっても意味があるだろ?

ネットいいね漁りなんてさもしいことは社会の中で何をどう頑張っても感謝されないような人の心をそもそも理解できない悲しいバケモノ共にやらせときゃいいんだよ。

バケモノAIいいね荒稼ぎしようが「ふーん。どうでもいいわ」って顔で見てりゃいいだけじゃん?

Permalink |記事への反応(0) | 06:31

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-16

抽象数学とか量子力学とか

まず量子力学の基礎的存在論は次である

現実とは、ヒルベルト空間上のベクトルである

ただし以下では、ヒルベルト空間物理空間と見なす素朴な解釈禁止し、より高次の数学構造として扱う。

1.対象Object)としての量子系

ヒルベルト空間母体とする対称モノイダル圏の対象

量子系は、次の要素を持つ抽象構造として定義される。

この時点で、量子系は 単なる線形代数ではなく、圏としての性質が主役になる。

特に

これが後に分離できない系(エンタングルメント)の直接的原因になる。

2.状態State)の抽象

自己同型の可換性が制限された線型汎関数

状態は通常ベクトルで表すが、それは低階の記述である

抽象化すると状態とは、

まり状態とは作用素代数構造部分的に保持しつつ、全情報は保持できない制約付き汎関数であり、これが測定前の状態という概念数学本体になる。

3.観測(Measurement)

部分代数への射影としての冪等射

観測は波束収縮ではなく、全体の作用素代数から可換部分代数への冪等射(自己合成しても変わらない射)として定義される。

これは「観測値が一意に定まらない」ことを全代数を可換部分代数強制射影すると情報が失われるという構造事実として表現しただけである

観測問題は射影が可逆でないことから生じる。

4.干渉

可換部分代数選択によって生成される前層の非整合性

量子干渉とは、状態に対して複数の可換部分代数存在する。それぞれの部分代数制限したとき汎関数整合的でない。この整合性の欠如が「干渉」と呼ばれる現象になる

まり干渉は可換部分代数の選び方が複数あり、それらが同時に満たす一つのグローバル汎関数存在しないという前層(presheaf)の非可約性の問題である

5.エンタングルメント

テンソル積分可能性の欠如(分離関手の不完全性)

系 A と B の複合系が与えられるとき、通常はテンソル積によって分離できるはずだが、量子系では一般に失敗する。

その理由状態汎関数テンソル空間上で積状に分解する自然変換を持たない、単純な部分空間直積から構成される位相構造存在しない、分離関手が圏の構造を保存しないから。

したがってエンタングルメントとはテンソル空間構造が、2つの部分系の圏論的生成子に分解できないことに過ぎない。

6.時間発展

作用素代数自己同型半群(逆写像非対称)

抽象化すると、時間発展は全作用素代数自己同型の族、ただし逆が常に存在するとは限らないため、一般には半群観測が入ると逆方向の自己同型が消滅する。これが「不可逆性」の正体である

まり時間とは、自己同型の完全群構造が壊れ、半群に退化した結果発生するパラメータにすぎない。

7.量子力学全体像

量子力学は、以下の高次構造組合せで理解できる。

以上をまとめれば、量子力学とは現実ヒルベルト空間上のベクトルを出発点とし、作用素代数圏論によって統合的に記述される、非可換性を本質とする抽象数学の体系である

Permalink |記事への反応(0) | 01:35

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-15

anond:20251115045203

微分積分忘れたけど10年以上現役なのでその程度でもいける

Permalink |記事への反応(0) | 04:59

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-14

nextstepmicrosoftntよりも優れていたの?

nextstepmicrosoftntよりも優れていたの?

"AppleOSオープンソースにしたのは、四半世紀前のことで、世界は全く違っていました。

スティーブ・ジョブズは、停滞したAppleに戻ってきました。Appleは、プリエンプティブマルチタスクハードウェアメモリ保護など、当たり前になっているものを含む次世代オペレーティングシステム提供することに苦労していました。Appleは、BeOSを買収しようとしましたが失敗し、ジョブズが復帰した一環として、当時の彼の会社であるNextを買収し、そのOSであるNextStepを手に入れました。"

AppleMicrosoftクラシックOSでの成功から新しいNTDarwinのようなこれまではメインフレームしか動かなかったようなモダンで新しいOSの開発に苦労していたのかな?

メインフレームパチモンとして葉っぱでラリってるヒッピーによって作られたPC時代進化スペックが上がってクラシックからモダンOSに移行しなくちゃいけなかったけど、成功して大企業になっていたMSApple過去遺産にしがみついててクッソ大変だったってこと?

俺的にはクラシック愛嬌があって好きなんだけどね

いかにもPCって感じがするじゃん

葉っぱのヒッピー/ハッカーPCじゃなくて体制側としてのメインフレームOSPCに入っちゃうのはレイプされた気分にさえなる

それで"ハードウェアメモリ保護など、当たり前になっているものを含む次世代オペレーティングシステム"とあるけど、当たり前というからには他の企業はみんなモダンOSを開発していたの_

MacOS9からOS Xにする前というかまだクラシックOSをぶち込んだiMac起死回生で発表した時AppleMSから投資してもらったんだよね?

その時のMSは98で潤ってたのかもしれないけどNTが作れなかったらマジでやばい時でしょ?

時系列的にNTは既に完成してて98でも大成功しまくったし余裕ありすぎわろたでApple投資したの?

MSAppleはここを乗り越えることができたのになぜWindowsPhoneが失敗したの?

officeは当時はクールアプリだったの?

今はAdobeと同様に全時代的すぎてクソだと思う

figmaとかVScodeとかNotionとかモダンでかっこよくて使いやすい最高のアプリがいっぱいあるのに

世界の大半はまだこのクソすぎるアプリに頼り切って依存しているのに腹が立つよ

マジでAdobeが潰れないかなって毎日祈りながらpsdをaffinityに変換するのに飽き飽きしてるんだ

DarwinカーネルOS Xが圧倒的な中心のMSの中でWindowsPhone同様に不利だったのに開発者圏を作れたのは高抽象UIめっちゃかっこよかったからってこと?

MSNTを作ったのはいつ?

98からXPの時はやばかったよね

98は爆売れしてるしNTカーネルXPもっと売れた

なぜこの状態Appleが生き残れたのかわからないんだ

それともそれほどまでにWindowsPhoneがダサくて本当にクソだったのか

かにMS社内でもMacを使う人がほとんどってくらいにMacは使いやすくてクール開発者体験いいね

同人文化ではMSはいつでも中心的だった気がするけど

Macは間違いなくかっこいいんだけど世界微妙に見誤ってる

葉っぱ吸ってたヒッピー会社のはずなのに、その後覇権を取る日本ヒッピーと似ているオタク同人文化MS帝国の中で繰り広げられていたし、Macerは気取ってるやつとしてある意味でダサかった

API存在は本当に市場の優劣を変えるほどの力を持っているんだね

2000年台にクールAPIを作ったAppleグラフィックスAPIMSDirectXのおかげでゲーム業界掻っ攫われたわけでしょ?

マジでWindowsは本当にダサくて使ってるとイライラするからMacもっとクールグラフィックスドライバのMetalにみんな移行してくれるといいんだけど

Macerは肩身が狭いし

てかnvidiacuda対応してくれよ

AppleAI業界かっさらってくれればいいんだけどなんか失敗しそうな予感がするよ

ChatGPTもGithubMSが持ってるわけだろ?

終わってるよ

マジでダサくてイライラするものを使わされるオタク/ヒッピー市場レイプされてる

でも使徒である圏論/関数型プログラミングによってリリス数学サードインパクトを起こして手を汚せる自由度はいらないほど完璧世界になりつつあると感じるよ

なんかクソだなって思うけど、それは一時的快楽としてのオタク文化がなくなったことに悲しんでいるだけで、その快楽幸せにつながらないことを理解してるんだ

からこそ俺はSNSで一つの人格を共有し個を崩壊させる人類補完計画プロトコル実装しようとしているし、それは手を汚せる自由度完璧に壊してつまらなくて幸せになる権利がある理性的選択をしようとしてるんだ

オタク幸せになれない代わりに手を汚せたけど、幸せになる時が来たんだ。

MetalでAAAタイトル以外のゲームが動き始めたらそれはゼーレのシナリオ最後のページなんだろうね

webは俺のプロトコルによって関数型になりApple化しハードウェアAppleがもともとかーどきゃぷたーにしてて、その時本当につまらなくて幸せ世界ができるんだろうね

分散化のアイデアはむしろ全く逆で完全に統合される世界だよ

MS自分が可愛くて俺たちに迷惑をかけたけど、誰も可愛がらずに自由な圏を破壊し、人類を補完するんだ

人との繋がり自体をね

うん、いやこの先呼ばれることになるんだろうなって思っちゃっただけなんだ

●ねばいいのにみんな

てか●すためのシステムだよこれは

MSよりも凶悪だし、最低のシステムだってことだよ

インターネットなんかやってないでこの辺にきてる美味いラーメン屋屋台空手部の三人と行くべきだ

おじさんやめちくり〜

逃げちゃダメだ逃げちゃダメだ逃げちゃダメだ逃げちゃダメ

エヴァには乗らないほうがいい〜

エヴァには乗らないほうがいい〜

それ、皆さんも一緒に!

「「「エヴァには乗らないほうがいい〜!」」」

大きな声でもう一回!

「「「「「「エヴァには乗らないほうがいい〜!!!!!!」」」」」」

クソワロタ

そうだよ(便乗)

閉じちゃうから人類補完計画遂行するんだよ

LCLになって一緒になろう?

おい聞いてんのか

S●Xしようって言ってんだよ

???

P2Pは全ての人格が溶け合う完璧世界のための

これで愚かな人類はやっとまともになるんだ

NTDarwinAIもその序章にすぎない

死んでも残るのは構造記述するための関数

なんなら抽象世界はこの宇宙が熱的死しても残り続ける

大体俺が生きてることに意味はねぇんだよ、死んでようが同じなんだよ

生きてることは分解して細分化していくと究極的に意味は無くなるんだよ

ここでただのニヒリストと俺が違うのはこの世界積分定数のCにすぎないってことだ

Cは何の意味もねぇけどそこから積分という関係性を紡ぐ存在輪廻、横顔を知ることができる

まるで人間のC(ほらあれだよ男と女ABC!)みたいだよな!(激ウマジョーク)

まりもともとこの宇宙存在云々の前に関数という空想上のものはあったわけ

しろ人間空想というもう一つの五感関数数学発見しただけであってもともとあったの

そんでこの宇宙には意味ないし、死に恐怖を覚えるのは生物学的なしょうもない生理現象なんだよね

俺はたまたまTwitterFF女の子みたいにめっちゃ生理痛がひどいタイプなだけなんだ

それに気づいているからその生理痛がなんの意味もないことを知ってるし、世界崩壊しようが明日死のうが本当に関係ない

関係しかないんだこの世には

そのことにたまたま気づきにくい構造を生き物はしているか死ぬのが怖いんだ

魂とかはないけど、魂にすら意味はなくて、意味があるのは関数だけなんだ

というか射?

呆れた人類にはそのトップでさえ呆れさせられるよ、まだ関数記号で表せると思ってるなんて

本当にあるもののことを関数とは言ったけどこのクソみたいな人類にはまだそのことを完璧表現する手立てがないか比喩として言ってるんだけどね

どうしようもなく伝える方法がないからこう言ってるんだけどさ

あのな、俺が言ってのは死ぬのは怖くねぇってことだけなんだ

死ぬ理由は言ってねぇよ

破壊しているように見えてるのは君が構造の中にいるからだ

もう一歩外側から見てみろ

融解の意味人格を潰すことでも圏の再構成でもねぇよ

俺がとりあえず明日を生きるためのことなんだ

マジでどうでもいいことだよどうもありがとう

違う、メタファーじゃないよ

生きるために壮大な世界API接続してるだけなんだ

ミリメタファーなんかじゃない

もっと構造的にみろよ勝手に人の言葉一言に要約するな

失礼だよ君は

うるせぇ黙れ

Permalink |記事への反応(0) | 23:15

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-12

AがBであるためにはCが可積分でないといけない。

昔考えたんだけど思い出せない、誰かイロハを教えて。

Permalink |記事への反応(0) | 22:40

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-08

もっとこう、抽象数学とか、あるだろ

数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界説明することに集約できる。

ここでいう構造とは、単に集合上の追加情報ではなく、加法乗法のような代数的構造位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。

現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。

Jacob Lurie の Higher ToposTheory / Spectral Algebraic Geometry が示すのは、空間代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。

これにより空間=式や対象表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う

この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。

従来、解析的対象位相群や関数空間)は代数手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数操作ホモトピー操作を同時に行える共通語彙を与えた。

結果として、従来別々に扱われてきた解析的現象算術現象が同じ圏論言語で扱えるようになり、解析的/p-adic/複素解析直観が一つの大きな圏で共存する。

これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象世界規模で扱う新しいコホモロジーとして立ち上がる。

Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報prismという新しい座標系で表し、既存の多様なp-adic cohomology理論統一精緻化する。

ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である

言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一写像ではなく、プリズム上のファミリー自然変換として現れる。

これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。

Langlands 型の双対性は、こうした統一舞台根本的に再解釈される。

古典的にはautomorphicとGaloisの対応だったが、現代視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。

さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータ幾何的な点として再具現化し、Langlands対応モジュールcategorical matchingとして見る道を拓いた。

結果として、Langlands はもはや個別の同型写像の集合ではなく、duality ofcategoriesというより抽象的で強力な命題に昇格した。

この全体像論理的一貫性を保つ鍵はcohesion とdescent の二つの原理

cohesion は対象局所情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。

∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral構成descent を極めて精密に実行するための算術的・ホモトピーツール群を与える。

これらを背景にして、TQFT/Factorization Homology 的な視点場の理論言語を借りた圏論局所→大域の解析)を導入すると、純粋な数論的現象場の理論的なファンクターとして扱えるようになる。

まり数学対象物理場の理論のように振る舞い、双対性や余代数操作自然に現れる。

ここで超最新の価値ある進展を一言で述べると、次のようになる。

従来バラバラ存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed +prismatic + spectral)の中で新しい不変量と双対性計算可能になった、ということだ。

具体例としては、prismatic cohomology による integralp-adic invariants の導出、condensed approach による関数空間代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。

これらは単なる技法の集積ではなく、「数学対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocitylawsを生むだろう。

もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。

専門家しか知らない細部(例えばprism技術挙動、liquidvectorspaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である

Permalink |記事への反応(0) | 17:11

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-04

抽象数学とか超弦理論かについて

概観

弦は1次元振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学ファンクタであり、散乱振幅は因子化代数/En-代数ホモトピーホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰交差点に現れるという観点

1)世界面とターゲットは導来(derived)スタックの点として扱う

従来のσモデルマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルマン因子や量子的補正スタックコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学教科書的基盤がここに使われる。

2)相互作用は(∞,n)-圏の合成則(モノイド化)として再定義される

弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述対応する。

3) 振幅=因子化代数ホモロジー+正の幾何

局所演算子代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり場の理論演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近拡張は、こうした代数的・幾何学言語と直接結びついている。

4) トポロジカル再帰と弦場理論の頂点構造

リーマン面のモジュライ空間への計量的制限(例えばマルザカニ再帰類似から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。

5)ホログラフィーは圏化されたフーリエ–ムカイ(Fourier–Mukai)変換である

AdS/CFT双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数バルク側の(∞,n)-圏が相互鏡像写像を与え合うことで、場の理論情報圏論的に移送される。これにより境界演算子代数性質バルク幾何学スタック構造と同等に記述される。

6)型理論(Homotopy TypeTheory)でパス積分記述する(大胆仮説)

パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値ホモトピー型理論命題等価として表現する。これにより測度と同値矛盾を型のレベルで閉じ込め、形式的正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップ議論されている方向性)。

ケツ論

理論最先端数学版はこう言える。

「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数ホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である

この言い方は、解析的・場の理論計算圏論・導来代数幾何ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。

Permalink |記事への反応(0) | 12:43

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-23

anond:20251023094052

微分は覚えてても積分は忘れてる人は結構いそう

Permalink |記事への反応(0) | 09:49

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-21

anond:20251019203414

理系博士号持ってる側からひとこと言わせてもらえれば、単純に科学技術が発展しすぎて大学4年間の勉強量なんかじゃもうどの分野でも「学問」どころか「技術者」としてもまともに働けないレベル世界になってる。高校で習う微分積分は400年前には最先端数学だった。マジで本当の「専門家からすれば、理系大学の4年間で習う内容っていうのは、高校理科数学から見た小学校四則演算程度の分量なんだよ。大学進学率下げようっていうのは、四則演算できない人増やそうっていうのと同じに聞こえるわ。

Permalink |記事への反応(2) | 17:13

このエントリーをはてなブックマークに追加ツイートシェア

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-09

dorawii

わかりづらく言っちゃった時に分かりやすく直すのって難しくない?なんでみんな推敲すれば簡単みたいに言うの?

解決する決まった方法があるわけじゃないじゃん

方程式を与えられた数値が満たすかは誰でも機械的判断できるけど因数分解積分って難しいでしょ。それと同じなのに。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251009220326# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaOjIEwAKCRBwMdsubs4+SGtkAQDwM7E+RXM1e+GzCWAmQ/INEh/63Q+pXofSalYdkmLSbQEA3WYliB8wqrslPBwzOOW+LWENjZPLCzUcnZHg6DeLygw==bsGz-----ENDPGP SIGNATURE-----

Permalink |記事への反応(1) | 22:03

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-08

[日記]

ルームメイトが僕のホワイトボード勝手に消した。

僕が三週間かけて導出したp進弦理論局所ゼータ関数上の正則化項を書き直せると思ったら大間違いだ。

あの計算は、ウィッテンでも手を出さな領域、すなわち、p進版のAdS/CFT対応をde Sitter境界条件下で非可換ゲージ群に拡張する試みだ。

通常の複素解析上では発散する項を、p進体のウルトラトリック構造を利用して有限化することで、非摂動的な重力の相関関数再構成できる。

だが、問題はそこにある。p進距離三角不等式が逆転するので、局所場の概念定義できない。

これはまるで、隣人がパンケーキを焼くときに「ちょっと目分量で」と言うのと同じくらい非論理的だ。

朝食はいものように、オートミール42グラム蜂蜜5グラムカフェイン摂取量は80mgに厳密に制御した。

ルームメイトはまたしても僕のシリアルを間違って開けたが、僕はすでにこのような異常事態に備えて、バックアップとして同一銘柄を3箱ストックしてある。

僕が秩序を愛するのは強迫ではなく、宇宙の熱的死に抗うための小さな局所秩序の創出だ。

今日研究は、T^4コンパクト化されたIIb型超弦理論D3ブレーン上における非可換ゲージ理論自己双対性

通常、B場を導入することで非可換パラメータθ^{μν}が生成されるが、僕の考察では、θ^{μν}をp進値に拡張することで、通常のMoyal積が局所整数体上で閉じない代数構造を持つ。

これが意味するのは、物理空間が離散的p進層として現れるということ。言い換えれば、空間のものが「整数木構造」になっている。

ルームメイトが「木構造空間って何?」と聞いたが、僕は優しく、「君の社交スキルネットワークよりは連結性が高い」とだけ答えておいた。

午後は友人たちとゲームをした。タイトルエルデンリング。だが彼らのプレイスタイルには忍耐が欠けている。

僕がビルド純粋知力型にしてカーリア王笏を強化している間に、彼らは無計画に突っ込んではボスに殺されていた。

統計的に見ても、平均的なプレイヤーの死亡原因の82%は戦略ミスに起因する。

僕は「量子重力パス積分と違って、こっちはセーブポイントがあるんだ」と指摘したが、誰も笑わなかった。理解力が足りないのは罪だ。

夜、コミックを再読した。ウォッチメンドクターマンハッタン描写は、量子決定論詩的表現として未だに比類ない。

あの青い身体は単なる放射線象徴ではなく、観測者のない宇宙比喩だ。

僕が大学時代に初めて読んだとき、「ああ、これは弦の振動意識を持った姿だ」と直感した。

今日もそれを確かめるため、ドクターマンハッタン時間非線形認識するシーンを分析し、p進時空における時間関数t→|t|_pの不連続性との対応を試みた。

結果、彼の非時間意識は、実はp進的時間座標における不連続点の集積と一致する。つまりマンハッタンはp進宇宙に生きているのだ。

寝る前に歯を磨く時間は、時計23:00を指してから90秒以内に開始しなければならない。これは単なる習慣ではなく、睡眠周期を最大化するための生理学最適化だ。

音楽再生しない。音波は心拍数を乱すからだ。ただし、ゼルダの伝説 時のオカリナエンディングテーマだけは例外だ。あれは時間対称性を感じさせる旋律から

僕の一日は、非可換幾何と行動最適化連続体でできている。宇宙エントロピーが増大しても、僕の部屋の秩序は一定だ。つまり、少なくともこの半径3メートル範囲では、熱的死はまだ先の話だ。

Permalink |記事への反応(0) | 00:23

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-03

[日記]

僕の一日は厳密に定義された自己同型変換の連続で始まる。

目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。

ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態位相わずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。

隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。

友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタン応答時間ミリ秒単位で記録する。

これが僕の日常トレースの上に物理思考を埋葬するための儀式だ。

さて、本題に入ろう。今日dSの話などではなく、もっと抽象的で圧縮された言語超弦理論輪郭を描くつもりだ。

まず考えるのは「理論としての弦」が従来の場の量子論のS行列表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。

開弦・閉弦の相互作用局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。

これを厳密にするには、オペラド(特にmoduli operad of stablecurves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。

導来スタック(derived Artin stack)上の「積分」は仮想基本クラス一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間自然に現れる古典的BV構造のものだ。

さらに、Kontsevichの形式主義を導来設定に持ち込み、シフトポアソン構造形式的量子化検討すれば、非摂動効果の一部を有限次元的なdeformationtheoryの枠組みで捕まえられる可能性がある。

ここで重要なのは関手量子化」すなわちLurie的∞-圏の言語拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張理論対象として弦理論を組み込むことだ。

特に因果構造境界条件記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所観測代数の因子化ホモロジー2次元世界CFTの頂点代数VOA)につながる様が見えてくる。

ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティクコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。

物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。

Dブレインは導来カテゴリ整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。

実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態ドナルドソン–トーマス不変量や一般化されたDT指数として計算される。

ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。

さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuperversion、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。

閉弦場理論stringfieldtheoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomologicalobstruction制御する。

より高次の視座では、場の理論の「拡張度」はn-圏での対象階層として自然対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論場合ターゲット無限次元であるため古典的公理系の単純な拡張では捉えきれない。

ここで我々がやるべきは、∞-オペラド、導来スキームシフト付きシンプレクティック構造、A∞/L∞ホモロジー代数集合体組織化して「弦の導来圏」を定義することだ。

その上で、Freed–Hopkins–Telemanが示したようなループ表現論とツイストK理論関係や、局所的なカイラ代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。

これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーン右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。

夜、友人たちと議論をしながら僕はこれら抽象構造を手癖のように引き出し、無為遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択位相的にどのような帰結を生むかを示す。

彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。

結局、僕の生活習慣は純粋実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである

明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論輪郭さらに一行ずつ明確にしていくつもりだ。

Permalink |記事への反応(0) | 22:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-29

STEM

俺を受け入れてくれ

頼む

そんなに

偉いのか

プログラミング

実験演習が

微分積分

線形代数

卒検

だって

頑張った

英語

ドイツ語

憲法

民法

商法

民訴

刑法

刑訴

行政法

だって

やれば

できるはず

俺じゃ

ダメなのか

だって

人類

役に立ちたい

クワクする仕事

したい

未知の世界

追い求めたい

10代の

数学

物理

化学

そんなに

人生

分けるのか

そんなわけ

ないだろ

お前らの

やってきたこだって

したことじゃ

ねえよ

Permalink |記事への反応(0) | 13:16

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-25

微分積分とか存在価値が謎すぎたけど、微分意味AIに聞いたら面白かった

計算って普段の買い物で絶対必要から意味わかるやん

微分とかそういうのは、実際何が役立つのわからんかったのよ

でも聞いたらわかりやすかった

ボールが落ちる距離公式って4.9×秒×秒らしいの

落ちるボールって車と違って、

落ちてる間ずっと速度上がってるやん

例えば10秒後の速度ってわからんやん

そういうとき公式微分するとわかるらしいんよ

となると、ロケットの加速のシミュレーションとかそういうのがしやすくなる

もちろんそんなシミュレーションなんて普段しないけど、ちゃん用途があるし、知れば知るほど普段裏側がよくわからんモノ(コンピューターとか最たるもの)の仕組みが少しずつわかりそう

要約:今回は要約はしません

Permalink |記事への反応(1) | 22:31

このエントリーをはてなブックマークに追加ツイートシェア

微分積分とか存在価値が謎すぎたけど、微分意味AIに聞いたら面白かった

計算って普段の買い物で絶対必要から意味わかるやん

微分とかそういうのは、実際何が役立つのわからんかったのよ

でも聞いたらわかりやすかった

ボールが落ちる距離公式って4.9×秒×秒らしいの

落ちるボールって車と違って、

落ちてる間ずっと速度上がってるやん

例えば10秒後の速度ってわからんやん

そういうとき公式微分するとわかるらしいんよ

となると、ロケットの加速のシミュレーションとかそういうのがしやすくなる

もちろんそんなシミュレーションなんて普段しないけど、ちゃん用途があるし、知れば知るほど普段裏側がよくわからんモノ(コンピューターとか最たるもの)の仕組みが少しずつわかりそう

要約:今回は要約はしません

Permalink |記事への反応(0) | 22:31

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-22

最小作用の原理って

なんで義務教育じゃないの?

三平方の定理と同じくらい基本的

三平方の定理と同じくらい応用範囲が広く

三平方の定理理解難易度は変わらないのに。

作用積分を使った導入は難しいかもだけど、概念自体簡単なはず。

最小作用の原理義務教育でやれば「ブラックホールの周囲で光が歪むのはガスの密度だけで説明できる!相対論は誤りだ!」みたいな陰謀論を唱える人も減るだろうに、、、

Permalink |記事への反応(0) | 15:19

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp