
はてなキーワード:準結晶とは
昨日は、僕の週間ルーティンの中でも最も重要な整合性検証日だった。つまり、宇宙がまだ局所的に論理的であるかを確認する日だ。
朝7時ちょうどに起床し、ベッドの角度を壁と垂直に再測定した結果、誤差は0.03度。つまり宇宙はまだ僕を裏切っていない。
朝食の時間、ルームメイトがトースターを再び二枚焼きモードにしたが、今回は驚かなかった。僕は冷静に、バナッハ=タルスキ分割の話を持ち出してこう言った。
「君のパンは二枚に見えるが、集合論的には同一だ。したがって、君の誤りは物理ではなく測度論の問題だ。」
彼は黙ってパンをかじった。理解されることを期待するのは、もはやハイゼンベルク的非決定性と同義だ。
午前中は、僕の新しい理論「ホモトピー圏上の自己参照的弦圏理論」の検証を進めた。
通常の超弦理論がカテガリー的に整合するのは、D-ブレーンが導くモジュライ空間の滑らかさが保証されている範囲内に限られる。
しかし僕は最近、滑らかさという仮定そのものを削除し、「∞-圏上のA∞代数的自己整合性条件」に置き換えるべきだと気づいた。
つまり、弦のダイナミクスを場の配置空間ではなく、「圏の自己ホモトピー類」として定義するのだ。すると興味深いことに、背景幾何が消滅し、すべての次元は内部的モノイダル構造に吸収される。
言い換えれば、「空間」とはただの圏論的影であり、時空の実在は「自然変換の連続体」そのものになる。
これが僕の提案する“Self-fibrantString Hypothesis”だ。ウィッテンが読んだら、きっと静かに部屋を出ていくに違いない。
昼過ぎ、隣人がまた廊下で大声で電話していたので、僕はノイズキャンセリングヘッドフォンを装着し、同時に空気清浄機を「ラグランジュ安定モード」に切り替えた。
これは僕が改造した設定で、空気の流速が黄金比比率(φ:1)になるよう調整されている。これにより室内の微粒子分布が準結晶構造に近似され、精神的平衡が保たれる。
僕は自分の心の状態を量子的可換代数で表すなら、ほぼ可換な冪零理想の中にあるといえる。隣人は理解していないが、それは仕方ない。彼女の精神空間は可約表現のままだ。
午後は友人たちとオンラインでEldenRingを再プレイした。僕は魔術師ビルドで、ルーンの経済を「局所場理論の再正則化問題」として再解釈している。
彼らがボスを倒すたびに叫ぶのを聞きながら、僕は心の中でリーマン面の分枝構造を追跡していた。実はEldenRingの地形構成はリーマン面の切り貼りに似ており、特にリエニール湖の設計は2次被覆の非自明な例として見ることができる。
開発者が意図していないことはわかっているが、現象としては美しい。芸術とは本質的に、トポスの自己鏡映だ。
夜、僕はコーヒーを淹れ、久々にグロタンディークのRécolteset Semaillesを読み返した。数学者が自分の「精神の幾何学」について語る箇所を読むと、僕の理論的中枢が共振する。
グロタンディークが述べた「点は存在しない、ただ開集合がある」という思想は、僕の弦理論観と同じだ。物理的対象とは「開集合上の自然変換」に過ぎず、存在とは測度可能性の仮構にすぎない。つまり、宇宙とは「圏論的良心」だ。
深夜、ルームメイトが僕の部屋をノックして「一緒に映画を観ないか」と言った。僕は「今日は自己同型群の可換性検証を行う予定だ」と答えたが、彼は肩をすくめて去った。
代わりに、僕はブレードランナー2049のBlu-rayを再生し、壁紙の色温度を劇中のネオン発光スペクトル(中心波長602nm)に合わせた。
完全な没入体験のために、部屋の空気を2.3ppmのオゾン濃度に調整した。呼吸するたびに、僕は自分が物質ではなく関手の束だと実感する。
多くの数学者は最も美しい証明を見つけることに意欲を持っており、数学を芸術の一形態と呼ぶことがよくある。
「なんて美しい定理だろう」「なんてエレガントな証明だろう」と言う。
完璧な部屋の形状は、ルネッサンスの建築家によって、壁が一定の比率を持つ長方形の部屋であると定義され、それを「黄金分割」と呼んだ。
建築家は今日でも、最も調和のとれた部屋には黄金分割比があると信じている。
この数値は、多くの数学的現象や構造に現れる (例:フィボナッチ数列の極限)。
レオナルド・ダ・ヴィンチは、均整のとれた人体と顔の黄金分割を観察した。
西洋文化やその他の文明では、均整のとれた人体の黄金分割比は、上部 (へその上) と下部の間(へその下)にある。
モザイクは、固体部分(木、石、ガラスなど)を重なりや隙間なく平らな面に組み立てる芸術形式である。
その洗練された形式では、モザイクには認識可能なパターンがあり、それが 2つの異なる方向に繰り返され、中心も境界も優先方向も焦点も特定されない。
19 世紀には、数学的な観点から、タイリングには17 個の対称性しか存在しないことが証明された。
アルハンブラ宮殿のモザイクは、考えられる17 の対称性をすべて表していることが発見された。
タイリングを形成するとは、2次元平面を幾何学的形状 (多角形または曲線で囲まれた形状) で重なりなく完全に覆うことを意味する。
タイリング画像を変更せずに仮想的に回転または反射できる場合、タイリングは対称と呼ばれる。
歴史上最も印象的なモザイクは、中世のイスラム世界で活躍した芸術家、特にスペインのアルハンブラ宮殿の美しく洗練されたモザイクを作成した芸術家によって制作された。
アルハンブラ宮殿は、グラナダの旧市街を見下ろす赤土の丘に、13 世紀初頭にムーア人によって建てられた。
ここは、膨大な量の模様、装飾品、書道、石の彫刻など、イスラム教の建築とデザインを展示するものである。
オランダ人芸術家MCエッシャーはアルハンブラ宮殿を 2 度訪れ、宮殿と周囲の中庭のタイルに見られる華やかな模様をスケッチし、カタログ化した。
これは、タイルが一定の間隔で表示または発生することを意味する。
何百年にもわたる熟練した建築、タイル張り、 (調和する力としての)対称性への深い敬意、(宗教と商業のための)幾何学の研究と知識により、17 の考えられる対称性グループすべてがアルハンブラ宮殿の壁に表現される。
自然界の結晶(雪の結晶、鉱物、宝石など) は、秩序と対称性規則に従って原子的に構築される。
非周期的タイリング、つまり周期性のないタイリングは 1960年代に数学的に可能であることが証明されたが、当時は秩序はあっても周期性を持たない固体構造は自然界には存在しないと考えられていた。
1982 年、イスラエルのテクニオン大学のダン シェクトマン教授は、後に準結晶として知られる自然が作る非周期結晶の存在を予測した。
このような自然で作られた石は、ロシアの山岳地帯で最初に発見された。
2009年、この発見はプリンストン大学の教授であるポール・スタインハートによって科学的に発表された。
2011 年、シェクトマンはその予測によりノーベル化学賞を受賞した。
そうでないなら、美しさは見る人の目にあるか?