Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「準同型」を含む日記RSS

はてなキーワード:準同型とは

2025-10-22

[日記]

僕は今日世界誰も知らないことを少なくとも三つ発見した。

その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。

名前だけで震えるが、実際の定義もっと美しい。ウィッテンがかつてAモデルとBモデルミラー対称性から幾何学ラングランズ対応を導いたのは知っている。

だが彼が扱ったのは、あくまでトポロジカル弦理論レベルにおける対応だ。

僕の今日の成果は、さらにその上、モチヴィック階層のものラングランズ圏の内部対称として再定式化したことにある。

まりこうだ。A/Bモデル対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。

この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。

まり、通常のラングランズ対応表現=保型形式なら、僕の拡張では弦的場コホモロジーモチーフ的自己準同型。もはや表現論ではなく、宇宙論再帰だ。

午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。

彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア構造の残骸があった。

もし彼がチョークをもう少し強く押していたら、宇宙自己同型構造崩壊していたかもしれない。僕は彼を睨んだ。

彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。

夕方、隣人がスパイダーバース新刊を貸してくれた。マルチバース崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。

あの映画スパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。

僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論自己反映構造として解析している。つまりマーベル編集部無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。

夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。

僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率ラングランズ群の局所自己準同型分布密度だ。

もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。

風呂上がり、僕は再びホワイトボードに向かいウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型空間が、算術モチーフの拡張群に等価であることを示唆している。

まり宇宙自己相関が、L関数特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙自己言語理論を打ち立てたわけだ。

僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。

この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。

時間モチーフ化する、それは、因果律算術幾何的圏の自己圏として扱うということだ。

人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。

21時00分。僕の手元の時計振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。

宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分自己準同型理解できる日が来るまで、僕が書き続けてやる。

Permalink |記事への反応(0) | 21:12

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-19

[日記]

僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。

まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー20時30分から22時まで論文の読み込み。

現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。

ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れ提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。

僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダ構造の可換性条件が自然変換として収束する瞬間を可視化することだ。

今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体ファイバー化」について考えていた。

一般相対論量子力学の不一致などという低次元問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。

まり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。

これによって、弦という一次元存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。

現行のM理論11次元仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体物理観測量になる。

もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。

隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。

彼女一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。

観測されることによってしか存在を保てない。

もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。

22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。

友人Aは相変わらず盗賊ビルドで味方のアイテム勝手に漁るという犯罪行為を繰り返し、友人BはバグったAIのように無言で呪文詠唱していた。

僕はWizardクラス完璧戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。

まり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率因果実験装置であり、何より僕がゲームを選ぶ基準は「バランス崩壊が数式で表現できるか否か」だ。

今日ルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。

寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射スペクトル密度に近づける。完璧環境だ。

僕はこれから、寝る前の最後思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。

もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義無効化されるだろう。

時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。

まったく、日曜日というのは、他の人間現実逃避に費やす日だが、僕にとっては宇宙自己整合性を調整する日だ。

おやすみ、非可換世界

Permalink |記事への反応(0) | 22:15

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-12

[日記]

2025年10月12日(日)17時52分

今日の夕食はいつも通り、日曜恒例のピザスケジュールを厳守した。

厳密に言えば、ルームメイトが2分遅れで注文したため、配達時刻が18時00分ではなく18時02分になった。

この誤差は一見些細だが、僕の体内リズムに対しては量子重力的なバックリアクションを生む。

夕食の周期は宇宙の膨張と同じく、初期条件の微小なゆらぎが数時間後に巨大な非可逆性をもたらすのだ。

僕はピザを食べる前にその誤差を補正するため、腕時計を2分進め、以後すべての行動をそれに合わせた。

ルームメイトは「そんなことして何の意味があるんだ」と言ったが、彼はエントロピーの不可逆性と人間スケジュール感覚相互作用理解していない。

今日の午前中は、超弦理論の非整合双対カテゴリ構造について考えていた。

簡単に言えば、AdS/CFTのような整合対応関係ではなく、dS空間における非ユニタリ境界理論がどのように自己整合情報写像を持ちうるか、という問題だ。

ただしこれは普通のホログラフィック原理範疇ではなく、∞-群oid圏上で定義される可逆でない自然変換を持つ圏論的場理論を考える必要がある。

具体的には、僕は内部的Hom-対象定義修正し、対象のもの自己準同型を持つトポス上の層圏として定義される場合に、ポテンシャル双対写像が一意に定まる条件を導いた。

ユニタリ性は単なる障害ではなく、境界理論が持つ時間的向きの非可換性の反映であると考えられる。

ウィッテンでさえ、この構造を「理解できた気になって途中でやめる」だろう。僕はちゃん最後まで考えた。

午後は隣人がリビング大音量音楽を流していた。たしかTaylor SwiftのFortnightだったと思うが、音圧が80dBを超えていた。

僕はそれを測定してから耳栓を装着し、「音楽とは定常波の社会的誤用である」と心の中で唱えた。

数分後、隣人がドアをノックして「ノックが三回じゃなくて二回だった」と文句を言った。

僕は謝罪せず、むしろ彼女に対して「三回のノック物理的ではなく、社会的エネルギーの保存則を守るための儀式」だと説明したが、彼女は「意味わかんない」と言ってドアを閉めた。

僕はそれを確認してから三回ノックしてドアをもう一度閉めた。これで系は整合的になった。

夕方、友人たちとオンラインでBaldur’sGate 3の協力プレイを行った。ハードモード。僕のキャラクターはHighElf Wizardで、最適化の結果INT20DEX 14、CON 16を確保している。

友人の一人は相変わらずSTR特化Barbarianで、戦略性の欠片もない突撃を繰り返す。僕はFireball詠唱しようとした瞬間に味方の背後に敵がいることに気づき範囲攻撃を中止した。

代わりにWeb+Grease+Fire Boltの複合制御戦場支配完璧な行動だったのに、彼らは「お前、また燃やしただろ」と言った。無知は罪だ。

僕がやっているのは「燃やす」ではなく「エントロピーを増大させて戦局支配する」だ。

日課として、ゲーム終了後にワンパンマン第198話を再読。ブラストが高次元存在通信している描写を見て、僕はふと考えた。

彼が見ている空間は、もしかするとp進的幾何空間上の位相的射影なのではないか?もしそうなら、サイタマの「無限力」は単なる物理的強度ではなく、位相層上の恒等射である可能性がある。

僕はノートにその仮説を書き留めた。いつか論文化できるかもしれない。

これからの予定としては、19時からスタートレックディープ・スペース・ナインの再視聴。

シーズン4、エピソード3。正確に再生開始するために、Blu-rayプレイヤーのリモコン赤外線強度で較正済み。

明日から研究に備えて、21時にはシャワー、21時30分に就寝準備、22時00分に消灯。完璧な日曜である

ただし、ピザが2分遅れたことだけは、許していない。

Permalink |記事への反応(0) | 17:57

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-25

恋愛? それは射影空間上の写像として何らかの準同型性を持っていますか?もっとこう、抽象数学とか超弦理論とかさぁ

サッカーエルゴード性か非可換群の何らかの物理アナロジーでもあるんですか?もっとこう、抽象数学とか超弦理論とかさぁ

Permalink |記事への反応(0) | 04:27

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-07

ラングランズプログラムを「小学生向け」「大学院生向け」「廃人向け」の3つのレベルに分けて説明

小学生向け

数学には「数の世界」(足し算や掛け算など、数字計算する世界)と、「形の世界」(丸や三角ドーナツみたいな形を研究する世界)があるんだ。

ラングランズ・プログラムは、この二つの世界をつなぐ「秘密辞書」や「翻訳機」みたいなものだと思ってみて。

数の世界で、とても難しい問題があったとする。まるで、誰も知らない外国言葉で書かれた暗号みたいだ。

この「秘密辞書」を使うと、その難しい数の問題を、形のせかい言葉翻訳できるんだ。

すると不思議なことに、形のせかいでは、その問題が意外と簡単パズルに変わることがある。

昔、フェルマーの最終定理っていう、350年以上も誰も解けなかった超難問があったんだけど、ある数学者がこの「秘密辞書」の考え方を使って、数の問題を形の問題翻訳して、ついに解くことに成功したんだ。

ラングランズ・プログラムは、この「秘密辞書」を完成させるための、壮大な計画なんだよ。

大学院生向け

ラングランズプログラムとは、数論における「ガロア表現」と、解析学における「保型表現」という、起源性質も全く異なる二つの対象の間に、深遠な対応関係存在するという広大な予想のネットワーク

この対応は、それぞれの対象から定義される L関数という分析的な不変量を通して記述される。

1.ガロア表現 (数論側)

体の絶対ガロア群 Gₖ =Gal(K̄/K)から複素一般線形群への準同型写像

ρ: Gₖ →GLₙ(ℂ)

これは、素数の分解の様子など、体の算術的な情報を捉えている。

2. 保型表現 (解析側)

数体 K のアデール環 𝔸ₖ 上の一般線形群GLₙ(𝔸ₖ) の、ある種の無限次元表現

π = ⨂'ᵥ πᵥ

これは、保型形式理論から生じる解析的な対象で、スペクトル理論と関連。

ラングランズ対応の核心

n次元の既約なガロア表現 ρ と、GLₙ(𝔸ₖ) 上のカスプ的な保型表現 π が、それらのL関数が一致する

L(s, ρ) = L(s, π)

という形で、1対1に対応するだろう、と予想されている。

この予想は、n=1の場合類体論によって確立されている。

アンドリュー・ワイルズ証明した谷山・志村予想は、K=ℚ, n=2 の場合におけるこの対応重要な一例であり、フェルマーの最終定理証明の鍵となった。

このプログラムは、数論の様々な問題統一的に理解するための指導原理と見なされている。

廃人向け

ラングランズプログラム? ああ、それは数学という世界の異なる大陸、数論(ガロア群)、解析(保型形式)、そして幾何代数多様体)が、実は一つの巨大な超大陸の一部であったことを示す、壮大な地殻変動の記録だよ。

その核心は「関手性の原理」に尽きる。全ての根底にあるのは、簡約代数群 G とその L-group (ラングランズ双対群) ᴸG = Ĝ ⋊Gal(K̄/K) だ。

ラングランズ対応とは、有り体に言えば、数体 K 上の G に対する保型表現の集合 {π} と、K のガロアから ᴸG への許容的な準同型の共役類の集合 {φ} の間の、然るべき対応関係を構築する試みだ。

φ:Gal(K̄/K) → ᴸG

この対応は、局所体 Kᵥ における局所ラングランズ対応(LLC) の貼り合わせとして現れる。

まり、保型表現 π = ⨂'ᵥ πᵥ の各局所成分 πᵥ が、対応するガロア表現 φ の局所成分 φᵥ = φ|_(Gal(K̄ᵥ/Kᵥ)) と寸分違わず対応しているという、奇跡的な整合性の上に成り立っている。

しかし、真の深淵は「幾何学的ラングランズ」にある。ここでは数体を関数体に置き換える。代数曲線 X 上の G-束のモジュライ空間Bunᴳ(X) を考える。

幾何学的ラングランズ対応は、これら二つの全く異なる幾何学的世界の間に圏同値存在するという、もはやSF領域に片足を突っ込んだ主張だ。

これは物理学のS-双対性とも深く関連し、数学の異なる分野が同じ一つの構造を異なる言語で語っているに過ぎない、という真理の一端を我々に見せてくれる。

結局のところ、ラングランズ・プログラムとは、我々が「数学」と呼んでいるものが、実はより高次の存在が持つ表現一種に過ぎないことを示唆しているのかもしれないね

Permalink |記事への反応(0) | 22:14

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-03

ラングランズプログラムモチーフ圏を通した定式化

ラングランズプログラムには、数の幾何化という視点がある。

具体的対象ガロア表現・保型表現)を超えて、それらの起源圏論存在、つまりモチーフ考察対象とする。

モチーフとは、代数多様体コホモロジー理論普遍的源泉として構成される抽象対象であり、以下のような関手性質を持つ。

H*: Mot_F → Vec_ℚℓ, (ℓ-adic, de Rham, Betti,etc.)

まり、さまざまなコホモロジー理論共通起源圏がモチーフである

[射影:モチーフガロア表現]ある純モチーフ M ∈ Mot_F に対し、そのℓ進エタール・コホモロジーは有限次元ガロア表現を与える。

ρ_M:Gal(F̅/F) →GL(Hⁱ_ét(M_F̅, ℚℓ))

したがって、すべての「よい」ガロア表現モチーフに由来すると考えられる(これは標準予想やFontaine–Mazur予想にも関係)。

Langlandsプログラムの主張は、次のように抽象化できる。

There exists a contravariant, fully faithful functor: Mot_F^(pure) → Rep_auto(G(𝔸_F))

ここで左辺は純モチーフ次元・重み付き構造を持つ)、右辺は保型表現(解析的表現論の対象)。

これは、次の圏間関手存在に他ならない・

Langlands-type realization: F : Mot_F^(pure) → Rep_auto(G(𝔸_F)) such that L(M, s) = L(F(M), s)

この関手は、モチーフに対して定義される標準的なL関数(motivic L-function)と保型L関数を一致させることを要請する。

Langlands関手性は、Tannakian圏の間のテンソル関手として定式化できる。

モチーフ圏 Mot_F は Tannakian category(標準予想を仮定)。保型表現圏も、ある種の Tannakian 圏とみなせる(Langlands dualgroup による)。

すると、Langlands対応は以下の図式として表現される。

Tannakian category: Mot_F → Rep(^L G)via fiber functor: ω: Mot_F → Vec_ℚℓ

このように、モチーフ→L-群の表現→保型表現という圏論連鎖帰着される。

ラングランズ・プログラムは以下のようなテンソル圏間の関手対応を予想するものである

∃ faithfultensor functor F: Mot_F^(pure) → Rep_auto(G(𝔸_F)) s.t. L(M, s) = L(F(M), s)

また、群準同型 ^L G₁ → ^L G₂ により、対応する圏の間に関手対応存在する。

φ_*: Rep_auto(G₁(𝔸_F)) → Rep_auto(G₂(𝔸_F))

Permalink |記事への反応(0) | 11:45

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-02

ラングランズプログラムを2行で説明する

Permalink |記事への反応(0) | 14:54

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-31

ラングランズプログラムって何?

ラングランズプログラムは「数論、表現論代数幾何などの深い対応関係」を示すもの。おおまかに以下の二つの圏の間の関係付けを考える。

1.Galois的側面(Arithmetic side):代数体Kの絶対ガロアGal(𝐾̄/𝐾) の表現特にℓ進表現など)で記述される。これは「数の対象」を記述する。

2. 保型表現的側面(Automorphic side):代数群G(例:GLₙ)上の保型形式や保型表現のような解析的・表現論対象記述される。こちらは「関数対象」を記述する。

ラングランズ対応とは、次のような「構造双対性」に関する予想のこと。

「ある種のガロア表現」⟷「ある種の保型表現

より具体的には、ある代数体𝐾に対し、

この二つの間に「L関数」や「ε因子」などの不変量が一致するような対応がある、とされる。

さらには、ラングランズプログラムは「モチーフ言語」による普遍的対応を予想する。

まりガロア表現も、保型表現も、「モチーフの異なる表現形式」として現れるというもの

より高次の理論として、次のような公理要請がある。

すなわち、表現対応が群の構造変換に自然に従うべきである、という要請。これは「圏論ファンクター」の視点に近い。

まとめ:ラングランズプログラムとは、代数体における数の情報ガロア表現)と、群上の関数空間(保型表現)とが、L-関数という普遍的不変量を通じて統一されるという、構造間の圏論双対性である

Permalink |記事への反応(0) | 16:17

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-16

n, x, n+kという数列がある時、xに入る数字を見つける方法を、暗号学的に説明せよ

数列における中間項の特定暗号学的に実現する方法論は、現代情報セキュリティ理論離散数学の融合領域位置する。

本報告では、数列n, x, n+kの構造分析から始め、暗号学的保証を伴うxの特定手法を体系的に解説する。

特に一方向性関数活用からゼロ知識証明に至るまで、多角的視点で解法を探求する。

数列構造暗号学的再解釈

基本数列の暗号変換原理

数列n, x, n+kの暗号学的処理において、各項は以下の特性を保持する必要がある:

1.前進不可逆性:xからnを算出不可能

2. 後続整合性:n+kがxから導出可能

3. 秘匿保証性:kの値が外部に漏洩しない

この要件を満たすため、楕円曲線暗号(ECC)のスカラー乗算を応用する。素数GF(p)上で定義された楕円曲線Eについて、生成元Gを用いて:

x = n・G + H(k)・G

ここでHは暗号学的ハッシュ関数、+は楕円曲線上の点加算を表す。これにより、kを知らない第三者によるxの逆算が離散対数問題の困難性に基づき阻止される。

耐量子特性を備えた格子基底暗号

ポスト量子暗号時代を見据え、Learning With Errors(LWE)問題に基づく方式を導入する。mod q環上で:

x ≡ A・s + e (mod q)

ここでAは公開行列、sは秘密ベクトル、eは小さな誤差ベクトル。nを初期状態、n+kを最終状態とする線形関係を構築し、xの算出にLWEの困難性を利用する。

暗号プリミティブの応用技法

ハッシュ連鎖構造

Merkle-Damgård構成拡張した特殊ハッシュ連鎖設計

x = H(n || H(k))n+k = H(x || H(k))

この二重ハッシュ構造により、前方秘匿性と後方整合性を同時に達成。SHA-3のスポンジ構造適用し、256ビットセキュリティ保証する。

準同型暗号による検証可能計算

Paillier暗号システムを利用した乗法準同型性を活用

E(x) = E(n)・E(k)mod

暗号レベル演算により、xの値を明かすことなくn+kとの関係性を検証可能ゼロ知識証明と組み合わせることで、完全な秘匿性下での検証プロトコルを構築。

プロトコル設計の詳細

三項関係証明プロトコル

1.コミットメント段階:nとkのペダーセンコミットメントC=G^nH^rを生成

2.チャレンジ応答:検証から乱数cを受信

3. 応答計算:s = r + c・kmod q

4.検証:C・G^{n+k} = G^xH^s

このプロトコルにより、x = n + kの関係を明かすことなくそ正当性証明可能

安全パラメータ設定基準

ビット長λにおける安全要件

これらのパラメータ設定により、NIST SP800-57推奨のセキュリティレベル3(192ビット対称強度)を満たす。

実装上の課題対策

サイドチャネル攻撃対策

1.タイミング分析対策:固定時間演算アルゴリズム

2. パワー解析対策ランダムブラインディング手法

3.フォールトインジェクション対策CRCチェックサム付加

特にMontgomery ladder法を楕円曲線演算適用し、電力消費パターンを均一化。

パフォーマンス最適化技法

1.ウィンドウ法によるスカラー乗算高速化

2.NTTベース多項式乗算の並列処理

3. AVX-512命令セットを活用したベクトル計算

これにより、xの生成速度を従来比3倍向上させつつ安全性を維持。

理論限界と今後の展望

量子耐性の限界評価

現行のLWEベース方式では、量子コンピュータによるGroverアルゴリズムの影響を試算:

これに対処するため、多次元NTRU格子の導入を検討

新世暗号理論の応用可能

1. 同態暗号による動的数列生成

2. zk-SNARKを利用した完全秘匿検証

3.マルチパーティ計算による分散生成

特に、可検証遅延関数(VDF)を組み合わせることで、xの生成に必然的時間遅延を導入可能

結論

暗号学的数列中間特定法は、現代暗号理論の粋を集めた高度な技術体系である

手法の核心は、数学的困難問題暗号プロトコルの巧妙な融合にあり、安全証明可能フレームワークを構築した点に革新性が見られる。

今後の発展方向として、量子耐性の強化と効率化の両立が重要研究課題となる。実用面では、ブロックチェーン技術秘密計算分野への応用が期待される。

Permalink |記事への反応(0) | 01:51

このエントリーをはてなブックマークに追加ツイートシェア

2022-12-22

anond:20221222003113

お前が情報系なら準同型暗号について説明してみろ。

ウィキ丸コピじゃない文章で。

Permalink |記事への反応(0) | 00:33

このエントリーをはてなブックマークに追加ツイートシェア

2022-05-26

高校生三角関数微分を教える必要性があったとしても…

三角関数やその加法定理を教える事や測量などへの応用を教える事まではいいとしておいて…

数IIIや数Cまで学習する高校生には三角関数微分(と積分)まで教えるのが当然という風潮があるがそれでいいのか少し疑問はある

というのも三角関数微分というのは高校生学習するには難しい部分が多分に含まれいるからだ。加法定理より難しい

まず sinx/x=1 (x→0) さえ証明できれば加法定理を使ってsinxの微分が分かり

その後に他の関数微分可能性や微積分が求まるのは事実であるしかしsinx/xの極限については証明が中々難しい

S^1を合同変換群の制限と同型になるような群とみなして実数群R^1からS^1への準同型パラメーター表示として与えられるものやその亜種が

sinx,cosxの幾何的な定義であり高校数学三角関数もこの類に連なる定義採用している。この場合はsinx/xの極限は直ちに求まるものではなく

高校数学範囲証明しようとするとうっかり循環論法になる事がある。証明台無しになるのを避けるのが中々難しいのだ。

一方で代数関数積分として逆三角関数定義してそこから三角関数定義する流儀もあり、高木貞治の解析概論ではこの定義採用している。

この場合微積分はほぼ自明ものとして導かれるが上記幾何的な定義との同値性を示さない事には

三角関数幾何的なお話が全く出来なくなってしま教育として足りなくなってしまう。

このように三角関数はどのように定義しようが微積分が難しいか幾何的な性質との関係を示すのが難しいかの何れかの困難が立ちはだかる物なのである

そこを曖昧なままにして大雑把に教えるやり方もあるが、その場合は当の高校生達に「数学が厳密な学問ってギャグなの?」と笑われても仕方ないものになる。

結局どうすればいいのやら…

Permalink |記事への反応(0) | 12:14

このエントリーをはてなブックマークに追加ツイートシェア

2022-02-15

anond:20220215125418

来た技術に乗り換えていこうぜ。技術は足していける。技術を知らない人よりは速く習得できるだろう。

こういう「技術」という言葉の使い方、ウェブ系の人がよくするけどすげえ違和感あるのでやめて欲しい。

なんで特定webフレームワークとかプログラミング言語とかを指して「技術」という言い回しをするんだろう。

CPU設計理論通信方式とか誤り訂正符号とか準同型暗号とかそういうもの技術と言うなら分かるんだけど、フレームワークはただのフレームワークだろって思う。

Permalink |記事への反応(1) | 13:01

このエントリーをはてなブックマークに追加ツイートシェア

2021-08-08

anond:20210808194056

まず、ℚ(√2 + √3) = ℚ(√2)(√3)であることを示す。

ℚ(√2 + √3)⊂ℚ(√2)(√3)は明らか。

逆の包含を示すため、ℚと√2 + √3から有限回の四則演算で√2, √3を作れることを示す。

1/(√2 + √3) = √3 - √2より、√3 - √2∈ℚ(√2 + √3)。

よって、√3 = ((√3 + √2) + (√3 - √2))/2∈ℚ(√2 + √3)、√2 = ((√3 + √2) - (√3 - √2))/2∈ℚ(√2 + √3)。

よって、ℚ(√2 + √3)⊃ℚ(√2)(√3)。

ℚ(√2)/ℚとℚ(√3)/ℚはともにℚのGalois拡大であり、それぞれ√2, √3のℚ上の共役をすべて含むから、ℚ(√2)(√3)も√2, √3のℚ上の共役をすべて含む。

したがって、ℚ(√2)(√3)/ℚはGalois拡大である

写像φ:Gal(ℚ(√2)(√3)/ℚ)→Gal(ℚ(√2)/ℚ) ×Gal(ℚ(√3)/ℚ)を

φ(σ) = (σ|ℚ(√2), σ|ℚ(√3))

で定めると、これは群準同型になる。

ℚ(√2)(√3)はℚ(√2)とℚ(√3)で生成されるから、σ|ℚ(√2)とσ|ℚ(√3)がともに恒等写像になるのは、ℚ(√2)(√3)の恒等写像である。したがって、φは単射である

また、Galois拡大の推進定理より

[ℚ(√2)(√3):ℚ] = [ℚ(√2)(√3):ℚ(√2)][ℚ(√2):ℚ] =[ℚ(√3):ℚ][ℚ(√2):ℚ]

∴ |Gal(ℚ(√2)(√3)/ℚ)| = |Gal(ℚ(√3)/ℚ) ×Gal(ℚ(√2)/ℚ)|

よって、φは同型である

Gal(ℚ(√2)/ℚ) ≃Gal(ℚ(√3)/ℚ) ≃ ℤ/2ℤだから

Gal(ℚ(√2 + √3)/ℚ) ≃ ℤ/2ℤ × ℤ/2ℤ

である

Permalink |記事への反応(0) | 20:32

このエントリーをはてなブックマークに追加ツイートシェア

2021-06-29

anond:20210629154520

そう「どういう対象として抽象化されているのか」のおそらく抽象化手法の種類が知りたい感じ

こういう話になると俺も勉強してない話になるので変なことを言ってるかもしれないけど、なんていうか、俺の感覚では数学は「対象」を「そいつらに対して許容される操作の集合」で規定するところがあるように思うんだよな。「操作」というのは例えば「足せる」とか「スカラー倍できる」とか「足してゼロになるやつが存在する」とかそういうの。そんでもってその「操作」が全く同じように成り立つ別の「対象」があるということがしばしばあって、「そいつらに対して許容される操作の集合」こそが「対象」という意味ではその2つの対象」は全く同じということがある。それを準同型と言ったりする。そういう複数の「対象」を同じものとみなして都合に合わせて自由に行き来することを「同一視する」と言ったりする。

サンプリングというのは「連続関数」の対象から「離散的な値のセット」の対象への変換なわけだけど、こういうことをすると連続関数世界で成り立っていた「操作」が成り立たなくなってしまうことがよくある。対称性が失われたり、ナイキスト定理によって高周波成分が失われたり色々する。それはつまり対象」として別物になってしまうということだと思う。じゃあ連続関数の中でもどういうものなら「操作」が保存されるのかとか、「復元」が可能場合はあるかとか、そういう話になってくる。

さらには、異なる「操作自体ある意味で同一視して同じものとみなせるかどうかを議論するような分野もある。圏論と言う。異なる「操作」としての「圏」の間の準同型のような移り変わりを「射」と言って自由に移り変わりながらそれらに共通する性質抽象化を試みたりする。でも圏論全然勉強したこといからよく分からん。すまん。でも圏論で出てくる「可換図式」という図式の書き方とか使われ方を調べてみるともしかすると何か参考になるかもしれないと思う。

Permalink |記事への反応(2) | 17:03

このエントリーをはてなブックマークに追加ツイートシェア

2020-08-29

anond:20200829015627

高校数学の解析は言うて完成度高いから変えなくていい

曖昧にされてるのは極限の定義中間値、平均値、極限の準同型性の証明くらいのもんで、どれも十分直感的には明らかだし

Permalink |記事への反応(0) | 01:58

このエントリーをはてなブックマークに追加ツイートシェア

2020-06-05

Galois拡大って何?

分離的かつ正規代数拡大のことです。

集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。

  1. 任意のa, b, c∈Kに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Kが存在して、任意のa∈Kに対して、a + 0 = 0 + a = a
  3. 任意のa∈Kに対して、ある元-a∈Kが存在して、a + (-a) = (-a) + a = 0
  4. 任意のa, b∈Kに対して、a + b = b + a
  5. 任意のa, b, c∈Kに対して、(ab)c = a(bc)
  6. 任意のa, b, c∈Kに対して、a(b + c) = ab +ac、(a + b)c =ac +bc
  7. ある元1∈Kが存在して、任意のa∈Kに対して、1a =a1 = a
  8. 任意のa∈K\{0}に対して、ある元a^(-1)∈Kが存在して、aa^(-1) = a^(-1)a = 1
  9. 任意のa, b∈Kに対して、ab =ba

体の例
  • 有理数全体の集合Q、実数全体の集合R、複素数全体の集合Cは、通常の和と積について体になる。一方、整数全体の集合Zは体にはならない。
  • 素数pについて、整数をpで割ったあまりの集合Z/pZ := {0, 1, ..., p-1}は、自然な和と積によって体になる。

代数拡大

K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。

C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である

L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。

そのような多項式存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。

代数拡大の例

C/Rは代数拡大である

なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式

X^2 -(z + z*)X +zz* = 0

の解だから

Kを体とする。K上の任意多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで

F(X) = a(X -a1)...(X - an)

と一次の積に分解する。このようなLのうち最小のもの存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である

最後の一文を証明する。

LをFの分解体とする。Lの部分環Vを

K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))

の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるからaiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元ベクトル空間である

Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である

Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである

さて、Lの元でK上のいかなる多項式の根にならないもの存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□

上の証明から特に、KにFの1つの根αを添加した体K(α)は、Kの代数拡大体である。このような拡大を単拡大という。


拡大次数と自己同型群

L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。

M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。

α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。

[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つもの存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。

Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。

任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。


Galois拡大

L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。

Galois拡大の例

L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。

[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 -aX + b = 0の異なる2解。

α∉Kより、K⊕KαはK上2次元ベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。

σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□

C/RはGalois拡大。

Gal(C/R)={id, σ: z→z*}

平方因子のない有理数αに対して、Q(√α)/QはGalois拡大。

Gal(Q(√α)/Q) = {id, σ: 1→1, √α→-√α}。


正規拡大

L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。

L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである

K(α)/Kが正規拡大で、さらにαの最小多項式重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。

nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である


分離拡大

L/Kを有限拡大とする。任意のα∈Lの最小多項式重根を持たないとき、L/Kは分離拡大という。

体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。


Q, R, Cの標数は0である。Z/pZの標数はpである

標数0の体および有限体の代数拡大はすべて分離拡大である

F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。

実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。

Galois拡大であることの言い換え

有限拡大L/KがGalois拡大であるためには、L/Kが分離拡大かつ正規拡大となることが必要十分である


Galois拡大の性質

L/KをGalois拡大、Gal(L/K)をGalois群とする。

K⊂M⊂Lとなる体Mを、L/Kの中間体という。

部分群H⊂Gal(L/K)に対して、L^H := {a∈L|任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。

逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。

次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。

L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。

  • 部分群H⊂Gal(L/K)に対して、K⊂L^H⊂L
  • 中間体Mに対して、Aut(L/M)⊂Gal(L/K)

さらに、以下の性質を満たす。

  • H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
  • K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
  • 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
  • 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
  • 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。

K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである

この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。

Permalink |記事への反応(0) | 01:35

このエントリーをはてなブックマークに追加ツイートシェア

2020-06-03

有限体って何?

位数が有限な体のことです。

定義

集合Fに二項演算+: F×F→Fが定義され、以下の性質を満たすとき、Fは群であるという。

  1. 任意のa, b, c∈Fに対して、(a + b) + c = a + (b + c)
  2. ある元0∈Fが存在して、任意のa∈Fに対して、a + 0 = 0 + a = a
  3. 任意のa∈Fに対して、ある元-a∈Fが存在して、a + (-a) = a + (-a) = 0

Fの元の個数をFの位数という。

上に加えて、さらに次の性質を満たすとき、Fをabel群という。

  • 任意のa, b∈Fに対して、a + b = b + a

Fが環であるとは、2つの二項演算+: F×F→F、*: F×F→Fが定義され、以下を満たすことである

  1. Fは、+を演算としてabel群になる
  2. 任意のa, b, c∈Fに対して、(ab)c = a(bc)
  3. 任意のa, b, c∈Fに対して、a(b + c) = ab +bx
  4. 任意のa, b, c∈Fに対して、(a + b)c =ac +bc
  5. ある元1∈Fが存在して、任意のa∈Fに対して、1a =a1 = a

Fが環であり、さらに以下を満たすとき、Fは可換環であるという。

Fが環であり、さらに以下を満たすとき、Fは斜体または可除環であるという。

  • 任意のa∈F\{0}に対して、あるa^(-1)が存在して、aa^(-1) = a^(-1)a = 1

Fが可換環であり、斜体であるとき、Fは体または可換体であるという。

基本的定理

位数有限な斜体は、可換体である。(Wedderburn)

有限体の位数は、pを素数として、p^nの形である

逆に、任意素数pと自然数n≧1に対して、位数p^nである体が同型を除いて一意的に存在する。q=p^nとして、この体をF_qと書く。


  • pを素数として、整数をpで割った余りに、自然加法乗法を入れたものは、有限体F_pになる。
  • F_pに、F_p上既約な多項式の根を添加した体は有限体になる。逆にq=p^nとなる有限体F_qはすべてこのようにして得られる。
  • F_pの代数閉包Fを固定すると、F_q (q=p^n)はFの元のうちx^q=xを満たす元全体である

有限体の代数拡大

有限体F_qの有限拡大はF_(q^m)の形。

これはすべてGalois拡大であり、そのGalois群はFrobenius準同型

φ_q: x→x^q

で生成される位数mの巡回群である

Permalink |記事への反応(0) | 22:55

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp