
はてなキーワード:準同型とは
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。
まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー、20時30分から22時まで論文の読み込み。
現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。
ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れな提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。
僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダル構造の可換性条件が自然変換として収束する瞬間を可視化することだ。
今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体のファイバー化」について考えていた。
一般相対論と量子力学の不一致などという低次元の問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。
つまり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。
これによって、弦という一次元的存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。
現行のM理論が11次元を仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体が物理的観測量になる。
もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。
隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。
彼女は一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。
もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。
22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。
友人Aは相変わらず盗賊ビルドで味方のアイテムを勝手に漁るという犯罪的行為を繰り返し、友人BはバグったAIのように無言で呪文を詠唱していた。
僕はWizardクラスで完璧に戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。
つまり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率と因果の実験装置であり、何より僕がゲームを選ぶ基準は「バランスの崩壊が数式で表現できるか否か」だ。
今日もルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。
寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射のスペクトル密度に近づける。完璧な環境だ。
僕はこれから、寝る前の最後の思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。
もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義は無効化されるだろう。
時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。
今日の夕食はいつも通り、日曜恒例のピザスケジュールを厳守した。
厳密に言えば、ルームメイトが2分遅れで注文したため、配達時刻が18時00分ではなく18時02分になった。
この誤差は一見些細だが、僕の体内リズムに対しては量子重力的なバックリアクションを生む。
夕食の周期は宇宙の膨張と同じく、初期条件の微小なゆらぎが数時間後に巨大な非可逆性をもたらすのだ。
僕はピザを食べる前にその誤差を補正するため、腕時計を2分進め、以後すべての行動をそれに合わせた。
ルームメイトは「そんなことして何の意味があるんだ」と言ったが、彼はエントロピーの不可逆性と人間のスケジュール感覚の相互作用を理解していない。
今日の午前中は、超弦理論の非整合的双対カテゴリ構造について考えていた。
簡単に言えば、AdS/CFTのような整合的対応関係ではなく、dS空間における非ユニタリな境界理論がどのように自己整合的情報写像を持ちうるか、という問題だ。
ただしこれは普通のホログラフィック原理の範疇ではなく、∞-群oid圏上で定義される可逆でない自然変換を持つ圏論的場の理論を考える必要がある。
具体的には、僕は内部的Hom-対象の定義を修正し、対象そのものが自己準同型を持つトポス上の層圏として定義される場合に、ポテンシャル的双対写像が一意に定まる条件を導いた。
非ユニタリ性は単なる障害ではなく、境界理論が持つ時間的向きの非可換性の反映であると考えられる。
ウィッテンでさえ、この構造を「理解できた気になって途中でやめる」だろう。僕はちゃんと最後まで考えた。
午後は隣人がリビングで大音量で音楽を流していた。たしかTaylor SwiftのFortnightだったと思うが、音圧が80dBを超えていた。
僕はそれを測定してから耳栓を装着し、「音楽とは定常波の社会的誤用である」と心の中で唱えた。
数分後、隣人がドアをノックして「ノックが三回じゃなくて二回だった」と文句を言った。
僕は謝罪せず、むしろ彼女に対して「三回のノックは物理的ではなく、社会的エネルギーの保存則を守るための儀式」だと説明したが、彼女は「意味わかんない」と言ってドアを閉めた。
僕はそれを確認してから三回ノックしてドアをもう一度閉めた。これで系は整合的になった。
夕方、友人たちとオンラインでBaldur’sGate 3の協力プレイを行った。ハードモード。僕のキャラクターはHighElf Wizardで、最適化の結果INT20、DEX 14、CON 16を確保している。
友人の一人は相変わらずSTR特化Barbarianで、戦略性の欠片もない突撃を繰り返す。僕はFireballを詠唱しようとした瞬間に味方の背後に敵がいることに気づき、範囲攻撃を中止した。
代わりにWeb+Grease+Fire Boltの複合制御で戦場を支配。完璧な行動だったのに、彼らは「お前、また燃やしただろ」と言った。無知は罪だ。
僕がやっているのは「燃やす」ではなく「エントロピーを増大させて戦局を支配する」だ。
日課として、ゲーム終了後にワンパンマン第198話を再読。ブラストが高次元的存在と通信している描写を見て、僕はふと考えた。
彼が見ている空間は、もしかするとp進的幾何空間上の位相的射影なのではないか?もしそうなら、サイタマの「無限力」は単なる物理的強度ではなく、位相層上の恒等射である可能性がある。
僕はノートにその仮説を書き留めた。いつか論文化できるかもしれない。
これからの予定としては、19時からはスタートレック:ディープ・スペース・ナインの再視聴。
シーズン4、エピソード3。正確に再生開始するために、Blu-rayプレイヤーのリモコンを赤外線強度で較正済み。
数学には「数の世界」(足し算や掛け算など、数字を計算する世界)と、「形の世界」(丸や三角、ドーナツみたいな形を研究する世界)があるんだ。
ラングランズ・プログラムは、この二つの世界をつなぐ「秘密の辞書」や「翻訳機」みたいなものだと思ってみて。
数の世界で、とても難しい問題があったとする。まるで、誰も知らない外国の言葉で書かれた暗号みたいだ。
この「秘密の辞書」を使うと、その難しい数の問題を、形のせかいの言葉に翻訳できるんだ。
すると不思議なことに、形のせかいでは、その問題が意外と簡単なパズルに変わることがある。
昔、フェルマーの最終定理っていう、350年以上も誰も解けなかった超難問があったんだけど、ある数学者がこの「秘密の辞書」の考え方を使って、数の問題を形の問題に翻訳して、ついに解くことに成功したんだ。
ラングランズ・プログラムは、この「秘密の辞書」を完成させるための、壮大な計画なんだよ。
ラングランズプログラムとは、数論における「ガロア表現」と、解析学における「保型表現」という、起源も性質も全く異なる二つの対象の間に、深遠な対応関係が存在するという広大な予想のネットワーク。
この対応は、それぞれの対象から定義される L関数という分析的な不変量を通して記述される。
体の絶対ガロア群 Gₖ =Gal(K̄/K)から複素一般線形群への準同型写像
ρ: Gₖ →GLₙ(ℂ)
これは、素数の分解の様子など、体の算術的な情報を捉えている。
数体 K のアデール環 𝔸ₖ 上の一般線形群GLₙ(𝔸ₖ) の、ある種の無限次元表現
π = ⨂'ᵥ πᵥ
これは、保型形式の理論から生じる解析的な対象で、スペクトル理論と関連。
n次元の既約なガロア表現 ρ と、GLₙ(𝔸ₖ) 上のカスプ的な保型表現 π が、それらのL関数が一致する
L(s, ρ) = L(s, π)
という形で、1対1に対応するだろう、と予想されている。
アンドリュー・ワイルズが証明した谷山・志村予想は、K=ℚ, n=2 の場合におけるこの対応の重要な一例であり、フェルマーの最終定理の証明の鍵となった。
このプログラムは、数論の様々な問題を統一的に理解するための指導原理と見なされている。
ラングランズプログラム? ああ、それは数学という世界の異なる大陸、数論(ガロア群)、解析(保型形式)、そして幾何(代数多様体)が、実は一つの巨大な超大陸の一部であったことを示す、壮大な地殻変動の記録だよ。
その核心は「関手性の原理」に尽きる。全ての根底にあるのは、簡約代数群 G とその L-group (ラングランズ双対群) ᴸG = Ĝ ⋊Gal(K̄/K) だ。
ラングランズ対応とは、有り体に言えば、数体 K 上の G に対する保型表現の集合 {π} と、K のガロア群から ᴸG への許容的な準同型の共役類の集合 {φ} の間の、然るべき対応関係を構築する試みだ。
φ:Gal(K̄/K) → ᴸG
この対応は、局所体 Kᵥ における局所ラングランズ対応(LLC) の貼り合わせとして現れる。
つまり、保型表現 π = ⨂'ᵥ πᵥ の各局所成分 πᵥ が、対応するガロア表現 φ の局所成分 φᵥ = φ|_(Gal(K̄ᵥ/Kᵥ)) と寸分違わず対応しているという、奇跡的な整合性の上に成り立っている。
しかし、真の深淵は「幾何学的ラングランズ」にある。ここでは数体を関数体に置き換える。代数曲線 X 上の G-束のモジュライ空間Bunᴳ(X) を考える。
幾何学的ラングランズ対応は、これら二つの全く異なる幾何学的世界の間に圏同値が存在するという、もはやSFの領域に片足を突っ込んだ主張だ。
これは物理学のS-双対性とも深く関連し、数学の異なる分野が同じ一つの構造を異なる言語で語っているに過ぎない、という真理の一端を我々に見せてくれる。
結局のところ、ラングランズ・プログラムとは、我々が「数学」と呼んでいるものが、実はより高次の存在が持つ表現の一種に過ぎないことを示唆しているのかもしれないね。
具体的対象(ガロア表現・保型表現)を超えて、それらの起源的圏論的存在、つまりモチーフを考察の対象とする。
モチーフとは、代数多様体のコホモロジー理論の普遍的源泉として構成される抽象的対象であり、以下のような関手的性質を持つ。
H*: Mot_F → Vec_ℚℓ, (ℓ-adic, de Rham, Betti,etc.)
つまり、さまざまなコホモロジー理論の共通の起源圏がモチーフ圏である。
[射影:モチーフ →ガロア表現]ある純モチーフ M ∈ Mot_F に対し、そのℓ進エタール・コホモロジーは有限次元ガロア表現を与える。
ρ_M:Gal(F̅/F) →GL(Hⁱ_ét(M_F̅, ℚℓ))
したがって、すべての「よい」ガロア表現はモチーフに由来すると考えられる(これは標準予想やFontaine–Mazur予想にも関係)。
Langlandsプログラムの主張は、次のように抽象化できる。
There exists a contravariant, fully faithful functor: Mot_F^(pure) → Rep_auto(G(𝔸_F))
ここで左辺は純モチーフ(次元・重み付き構造を持つ)、右辺は保型表現(解析的表現論の対象)。
Langlands-type realization: F : Mot_F^(pure) → Rep_auto(G(𝔸_F)) such that L(M, s) = L(F(M), s)
この関手は、モチーフに対して定義される標準的なL関数(motivic L-function)と保型L関数を一致させることを要請する。
Langlands関手性は、Tannakian圏の間のテンソル関手として定式化できる。
モチーフ圏 Mot_F は Tannakian category(標準予想を仮定)。保型表現圏も、ある種の Tannakian 圏とみなせる(Langlands dualgroup による)。
すると、Langlands対応は以下の図式として表現される。
Tannakian category: Mot_F → Rep(^L G)via fiber functor: ω: Mot_F → Vec_ℚℓ
このように、モチーフ→L-群の表現→保型表現という圏論的連鎖に帰着される。
ラングランズ・プログラムは以下のようなテンソル圏間の関手的対応を予想するものである。
∃ faithfultensor functor F: Mot_F^(pure) → Rep_auto(G(𝔸_F)) s.t. L(M, s) = L(F(M), s)
また、群準同型 ^L G₁ → ^L G₂ により、対応する圏の間に関手的対応が存在する。
φ_*: Rep_auto(G₁(𝔸_F)) → Rep_auto(G₂(𝔸_F))
ラングランズプログラムは「数論、表現論、代数幾何などの深い対応関係」を示すもの。おおまかに以下の二つの圏の間の関係付けを考える。
1.Galois的側面(Arithmetic side):代数体Kの絶対ガロア群Gal(𝐾̄/𝐾) の表現(特にℓ進表現など)で記述される。これは「数の対象」を記述する。
2. 保型表現的側面(Automorphic side):代数群G(例:GLₙ)上の保型形式や保型表現のような解析的・表現論的対象で記述される。こちらは「関数の対象」を記述する。
ラングランズ対応とは、次のような「構造的双対性」に関する予想のこと。
より具体的には、ある代数体𝐾に対し、
この二つの間に「L関数」や「ε因子」などの不変量が一致するような対応がある、とされる。
さらには、ラングランズプログラムは「モチーフの言語」による普遍的対応を予想する。
つまりガロア表現も、保型表現も、「モチーフの異なる表現形式」として現れるというもの。
すなわち、表現の対応が群の構造変換に自然に従うべきである、という要請。これは「圏論的ファンクター」の視点に近い。
まとめ:ラングランズプログラムとは、代数体における数の情報(ガロア群表現)と、群上の関数の空間(保型表現)とが、L-関数という普遍的不変量を通じて統一されるという、構造間の圏論的双対性である。
数列における中間項の特定を暗号学的に実現する方法論は、現代の情報セキュリティ理論と離散数学の融合領域に位置する。
本報告では、数列n, x, n+kの構造分析から始め、暗号学的保証を伴うxの特定手法を体系的に解説する。
特に、一方向性関数の活用からゼロ知識証明に至るまで、多角的な視点で解法を探求する。
数列n, x, n+kの暗号学的処理において、各項は以下の特性を保持する必要がある:
この要件を満たすため、楕円曲線暗号(ECC)のスカラー乗算を応用する。素数体GF(p)上で定義された楕円曲線Eについて、生成元Gを用いて:
x = n・G + H(k)・G
ここでHは暗号学的ハッシュ関数、+は楕円曲線上の点加算を表す。これにより、kを知らない第三者によるxの逆算が離散対数問題の困難性に基づき阻止される。
ポスト量子暗号時代を見据え、Learning With Errors(LWE)問題に基づく方式を導入する。mod q環上で:
x ≡ A・s + e (mod q)
ここでAは公開行列、sは秘密ベクトル、eは小さな誤差ベクトル。nを初期状態、n+kを最終状態とする線形関係を構築し、xの算出にLWEの困難性を利用する。
Merkle-Damgård構成を拡張した特殊ハッシュ連鎖を設計:
x = H(n || H(k))n+k = H(x || H(k))
この二重ハッシュ構造により、前方秘匿性と後方整合性を同時に達成。SHA-3のスポンジ構造を適用し、256ビットセキュリティを保証する。
Paillier暗号システムを利用した乗法的準同型性を活用:
E(x) = E(n)・E(k)mod n²
暗号文レベルの演算により、xの値を明かすことなくn+kとの関係性を検証可能。ゼロ知識証明と組み合わせることで、完全な秘匿性下での検証プロトコルを構築。
1.コミットメント段階:nとkのペダーセンコミットメントC=G^nH^rを生成
4.検証:C・G^{n+k} = G^xH^s
このプロトコルにより、x = n + kの関係を明かすことなくその正当性を証明可能。
これらのパラメータ設定により、NIST SP800-57推奨のセキュリティレベル3(192ビット対称強度)を満たす。
特にMontgomery ladder法を楕円曲線演算に適用し、電力消費パターンを均一化。
これにより、xの生成速度を従来比3倍向上させつつ安全性を維持。
現行のLWEベース方式では、量子コンピュータによるGroverアルゴリズムの影響を試算:
1. 同態暗号による動的数列生成
2. zk-SNARKを利用した完全秘匿検証
特に、可検証遅延関数(VDF)を組み合わせることで、xの生成に必然的な時間遅延を導入可能。
暗号学的数列中間項特定法は、現代暗号理論の粋を集めた高度な技術体系である。
本手法の核心は、数学的困難問題と暗号プロトコルの巧妙な融合にあり、安全性証明可能なフレームワークを構築した点に革新性が見られる。
今後の発展方向として、量子耐性の強化と効率化の両立が重要な研究課題となる。実用面では、ブロックチェーン技術や秘密計算分野への応用が期待される。
三角関数やその加法定理を教える事や測量などへの応用を教える事まではいいとしておいて…
数IIIや数Cまで学習する高校生には三角関数の微分(と積分)まで教えるのが当然という風潮があるがそれでいいのか少し疑問はある
というのも三角関数の微分というのは高校生が学習するには難しい部分が多分に含まれているからだ。加法定理より難しい
まず sinx/x=1 (x→0) さえ証明できれば加法定理を使ってsinxの微分が分かり
その後に他の関数の微分可能性や微積分が求まるのは事実である。しかしsinx/xの極限については証明が中々難しい
S^1を合同変換群の制限と同型になるような群とみなして実数群R^1からS^1への準同型のパラメーター表示として与えられるものやその亜種が
sinx,cosxの幾何的な定義であり高校数学の三角関数もこの類に連なる定義を採用している。この場合はsinx/xの極限は直ちに求まるものではなく
高校数学の範囲で証明しようとするとうっかり循環論法になる事がある。証明が台無しになるのを避けるのが中々難しいのだ。
一方で代数関数の積分として逆三角関数を定義してそこから三角関数を定義する流儀もあり、高木貞治の解析概論ではこの定義を採用している。
この場合は微積分はほぼ自明なものとして導かれるが上記の幾何的な定義との同値性を示さない事には
三角関数の幾何的なお話が全く出来なくなってしまい教育として足りなくなってしまう。
このように三角関数はどのように定義しようが微積分が難しいか幾何的な性質との関係を示すのが難しいかの何れかの困難が立ちはだかる物なのである。
そこを曖昧なままにして大雑把に教えるやり方もあるが、その場合は当の高校生達に「数学が厳密な学問ってギャグなの?」と笑われても仕方ないものになる。
結局どうすればいいのやら…
まず、ℚ(√2 + √3) = ℚ(√2)(√3)であることを示す。
ℚ(√2 + √3)⊂ℚ(√2)(√3)は明らか。
逆の包含を示すため、ℚと√2 + √3から有限回の四則演算で√2, √3を作れることを示す。
1/(√2 + √3) = √3 - √2より、√3 - √2∈ℚ(√2 + √3)。
よって、√3 = ((√3 + √2) + (√3 - √2))/2∈ℚ(√2 + √3)、√2 = ((√3 + √2) - (√3 - √2))/2∈ℚ(√2 + √3)。
よって、ℚ(√2 + √3)⊃ℚ(√2)(√3)。
ℚ(√2)/ℚとℚ(√3)/ℚはともにℚのGalois拡大であり、それぞれ√2, √3のℚ上の共役をすべて含むから、ℚ(√2)(√3)も√2, √3のℚ上の共役をすべて含む。
したがって、ℚ(√2)(√3)/ℚはGalois拡大である。
写像φ:Gal(ℚ(√2)(√3)/ℚ)→Gal(ℚ(√2)/ℚ) ×Gal(ℚ(√3)/ℚ)を
φ(σ) = (σ|ℚ(√2), σ|ℚ(√3))
で定めると、これは群準同型になる。
ℚ(√2)(√3)はℚ(√2)とℚ(√3)で生成されるから、σ|ℚ(√2)とσ|ℚ(√3)がともに恒等写像になるのは、ℚ(√2)(√3)の恒等写像である。したがって、φは単射である。
[ℚ(√2)(√3):ℚ] = [ℚ(√2)(√3):ℚ(√2)][ℚ(√2):ℚ] =[ℚ(√3):ℚ][ℚ(√2):ℚ]
∴ |Gal(ℚ(√2)(√3)/ℚ)| = |Gal(ℚ(√3)/ℚ) ×Gal(ℚ(√2)/ℚ)|
よって、φは同型である。
Gal(ℚ(√2)/ℚ) ≃Gal(ℚ(√3)/ℚ) ≃ ℤ/2ℤだから、
Gal(ℚ(√2 + √3)/ℚ) ≃ ℤ/2ℤ × ℤ/2ℤ
である。
こういう話になると俺も勉強してない話になるので変なことを言ってるかもしれないけど、なんていうか、俺の感覚では数学は「対象」を「そいつらに対して許容される操作の集合」で規定するところがあるように思うんだよな。「操作」というのは例えば「足せる」とか「スカラー倍できる」とか「足してゼロになるやつが存在する」とかそういうの。そんでもってその「操作」が全く同じように成り立つ別の「対象」があるということがしばしばあって、「そいつらに対して許容される操作の集合」こそが「対象」という意味ではその2つの「対象」は全く同じということがある。それを準同型と言ったりする。そういう複数の「対象」を同じものとみなして都合に合わせて自由に行き来することを「同一視する」と言ったりする。
サンプリングというのは「連続関数」の対象から「離散的な値のセット」の対象への変換なわけだけど、こういうことをすると連続関数の世界で成り立っていた「操作」が成り立たなくなってしまうことがよくある。対称性が失われたり、ナイキスト定理によって高周波成分が失われたり色々する。それはつまり「対象」として別物になってしまうということだと思う。じゃあ連続関数の中でもどういうものなら「操作」が保存されるのかとか、「復元」が可能な場合はあるかとか、そういう話になってくる。
さらには、異なる「操作」自体をある意味で同一視して同じものとみなせるかどうかを議論するような分野もある。圏論と言う。異なる「操作」としての「圏」の間の準同型のような移り変わりを「射」と言って自由に移り変わりながらそれらに共通する性質の抽象化を試みたりする。でも圏論は全然勉強したことないからよく分からん。すまん。でも圏論で出てくる「可換図式」という図式の書き方とか使われ方を調べてみるともしかすると何か参考になるかもしれないと思う。
集合Kが2つの二項演算+: K×K→K、*: K×K→Kを持ち、以下の性質を満たすとき、Kは体であるという。
K, Lを体とする。K⊂Lとなるとき、LをKの拡大体という。L/Kが拡大であるともいう。もちろん、これはLの部分群Kによる剰余群のことではない。
C/Rや、C/Qは体の拡大の例である。K(X)/K(X^2)なども体の拡大の例である。
L/Kを体の拡大とする。任意のa∈Lに対して、K係数の多項式f(X)が存在して、f(a)=0となるとき、LをKの代数拡大体、またはL/Kは代数拡大であるという。
そのような多項式が存在しない元が存在するとき、LはKの超越拡大体、またはL/Kは超越拡大であるという。
なぜならば、任意のz∈Cはz = x + yi (x, y∈R)と表わせ、z* = x - yiとおくと、zは二次方程式
X^2 -(z + z*)X +zz* = 0
の解だから。
Kを体とする。K上の任意の多項式F(X)に対して、Fの根を全て含む体Lが存在する。言い換えれば、FはLで
と一次の積に分解する。このようなLのうち最小のものが存在し、Fの(最小)分解体という。Fの分解体はKの代数拡大体である。
LをFの分解体とする。Lの部分環Vを
K[X1, ..., Xn]→L (f(X1, ..., Xn)→f(a1, ..., an))
の像とすると、VはK上のベクトル空間である。各aiはn次多項式の根であるから、aiのn次以上の式はn-1次以下の式に等しくなる。従って、VはK上高々n^2次元の有限次元のベクトル空間である。
Vは整域であるから、0でない元による掛け算は、VからVへの単射線形写像である。したがって、線形写像の階数と核の次元に関する定理から、この写像は全射である。よって、Vの0でない任意の元には逆元が存在する。つまり、Vは体である。
Lは、Kと各aiを含む最小の体であり、V⊂Lなので、L=Vである。
さて、Lの元でK上のいかなる多項式の根にならないものが存在したとし、それをαとおくと、無限個の元1, α, α^2, ...は、K上一次独立となる。これはVが有限次元であることに矛盾する。□
L/Kを代数拡大とする。LはK上のベクトル空間となる。その次元をL/Kの拡大次数といい、[L : K]で表す。[L : K]が有限のとき、L/Kは有限拡大といい、無限大のとき無限次代数拡大という(上の証明でみたとおり、超越拡大は必ず無限次拡大である)。
M/K、L/Mがともに有限拡大ならば、L/Kも有限拡大であり、[L : K] = [L : M] [M : K]。
α∈Lとする。K上の多項式fでf(α)=0をみたすもののうち、次数が最小のものが定数倍を除いて存在し、それをαの最小多項式という。
[K(α) : K]は、αの最小多項式の次数に等しい。なぜならば、その次数をnとするとαのn次以上の式はすべてn-1次以下の式になるため、[K(α) : K]≦n。1, α, ..., α^(n-1)が一次従属だとすると、n-1次以下の多項式でαを根に持つものが存在することになるので、[K(α) : K]≧n。よって、[K(α) : K]=n。
Lの自己同型σでKの元を固定するもの、つまり任意のa∈Kに対してσ(a)=aとなるもの全体のなす群をAut(L/K)と書く。
任意の有限拡大L/Kに対して、#Aut(L/K) ≦ [L : K]。
L/Kを有限拡大とする。#Aut(L/K) = [L : K]が成り立つとき、L/KをGalois拡大という。L/KがGalois拡大のとき、Aut(L/K)をGal(L/K)と書き、L/KのGalois群という。
L/Kを有限拡大、[L : K] = 2とする。#Aut(L/K) ≦ [L : K] = 2なので、Aut(L/K)に恒等写像以外の元が存在することを示せばよい。
[L : K] = 2なので、α∈L\Kが存在して、1, α, α^2は一次従属。したがって、α^2 - aα + b = 0となるa, b∈Kが存在する。解と係数の関係から、α, a - α∈Lは、2次方程式X^2 -aX + b = 0の異なる2解。
α∉Kより、K⊕KαはK上2次元のベクトル空間で、K⊕Kα⊂LなのでL=K⊕Kα。
σ: L→Lをσ(1)=1, σ(α)=a-αとなるK線形写像とすれば、σは全単射であり、Kの元を固定する体の準同型でもあるので、σ∈Aut(L/K)。□
C/RはGalois拡大。
L/Kを有限拡大とする。任意のα∈Lに対して、αのK上の最小多項式が、Lで1次式の積に分解するとき、L/Kを正規拡大という。
L=K(α)とすると、L/Kが正規拡大であるのは、αの最小多項式がLで一次の積に分解するときである。
K(α)/Kが正規拡大で、さらにαの最小多項式が重根を持たなければ、αを他の根に写す写像がAut(K(α)/K)の元になるから、Aut(K(α)/K) = αの最小多項式の次数 = [K(α) : K]となり、K(α)/KはGalois拡大になる。
nを自然数として、ζ_n = exp(2πi/n)とする。ζ_nの最小多項式は、Π[0 < m < n, gcd(m, n)=1](X - (ζ_n)^m)であり、Q(ζ_n)/QはGalois拡大である。
L/Kを有限拡大とする。任意のα∈Lの最小多項式が重根を持たないとき、L/Kは分離拡大という。
体Kに対して、1を1に写すことで一意的に定まる環準同型f: Z→Kがある。fの像は整域だから、fの核はZの素イデアルである。fの核が(0)のとき、Kの標数は0であるといい、fの核が(p)であるとき、fの標数はpであるという。
F_2 = Z/2Zとする。F_2係数の有理関数体F_2(X)/F_2(X^2)は分離拡大ではない。
実際、XのF_2(X^2)上の最小多項式は、T^2 - X^2 = (T - X)(T + X) = (T - X)^2となり、重根を持つ。
L/KをGalois拡大、Gal(L/K)をGalois群とする。
K⊂M⊂Lとなる体Mを、L/Kの中間体という。
部分群H⊂Gal(L/K)に対して、L^H := {a∈L|任意のσ∈Hに対してσ(a)=a}は、L/Kの中間体になる。
逆に、中間体K⊂M⊂Lに対して、Aut(L/M)はGal(L/K)の部分群になる。
次のGalois理論の基本定理は、L/Kの中間体がGalois群で決定されることを述べている。
L/KをGalois拡大とする。L/Kの中間体と、Gal(L/K)の部分群の間には、以下で与えられる1対1対応がある。
- H'⊂H⊂Gal(L/K)ならば、K⊂L^H⊂L^H'⊂L
- K⊂M⊂M'⊂Lならば、Aut(L/M')⊂Aut(L/M)⊂Gal(L/K)
- 中間体K⊂M⊂Lに対して、#Aut(L/M)=[L : M]。つまり、L/MはGalois拡大
- 部分群H⊂Gal(L/K)に対して、#H = [L : L^H]、#Gal(L/K)/H = [L^H : K]
- 中間体K⊂M⊂Lに対して、M/Kが正規拡大(L/Kは分離的なのでM/Kも分離的であり、従ってGalois拡大)であることと、Gal(L/M)がGal(L/K)の正規部分群であることが同値であり、Gal(L/K)/Gal(L/M)〜Gal(M/K)。同型はσ∈Gal(L/K)のMへの制限で与えられる。
K=Q, L=Q(√2, √3)とすると、Gal(L/K)はσ√2→-√2とする写像σと、√3→-√3とする写像τで生成される位数4の群Z/2Z×Z/2Zである。
この部分群は{id}, {id, σ}, {id, τ}, {id, στ}, {id, σ, τ, στ}の5種類があり、それぞれ中間体L, Q(√2), Q(√3), Q(√6), Kに対応する。
位数が有限な体のことです。
集合Fに二項演算+: F×F→Fが定義され、以下の性質を満たすとき、Fは群であるという。
Fの元の個数をFの位数という。
上に加えて、さらに次の性質を満たすとき、Fをabel群という。
Fが環であるとは、2つの二項演算+: F×F→F、*: F×F→Fが定義され、以下を満たすことである。
Fが環であり、さらに以下を満たすとき、Fは可換環であるという。
Fが環であり、さらに以下を満たすとき、Fは斜体または可除環であるという。
Fが可換環であり、斜体であるとき、Fは体または可換体であるという。
位数有限な斜体は、可換体である。(Wedderburn)
逆に、任意の素数pと自然数n≧1に対して、位数p^nである体が同型を除いて一意的に存在する。q=p^nとして、この体をF_qと書く。
有限体F_qの有限拡大はF_(q^m)の形。
これはすべてGalois拡大であり、そのGalois群はFrobenius準同型
φ_q: x→x^q