
はてなキーワード:本類とは
正確時刻を書くと隣人が「それって軍事衛星に追跡されてるの?」とか言い出して話が面倒になるので省略する。
僕は陰謀論を嫌悪している。理由は単純で、陰謀論は説明能力の低い仮説を感情的に強い語り口で上書きする、知性のコスプレだからだ。
今週は、超弦理論の物理の直観で押し切る系の議論をいったん破壊し、純粋に圏論とホモトピー論の言語に落として再構築していた。
具体的には、世界面の共形場理論を2次元量子場などという古臭い語彙で扱うのをやめ、拡張TQFTの枠組みで、(∞,2)-圏に値を取る関手として扱う方向を整理した。
従来の弦理論屋はCalabi–Yauをコンパクト化に使うと言うが、それは情報量が少なすぎる。
重要なのは、Calabi–Yau多様体を点として見るのではなく、その導来圏 D^bCoh(X) を持ち上げた A∞-圏、さらにそれが持つCalabi–Yau構造(非退化なトレース、Serre双対性の∞-圏版)を物理的状態空間の生成機構として見ることだ。
ここでの本体は幾何ではなく、圏の自己同型とその高次コヒーレンスにある。
さらに、僕が今週ずっと悩んでいたのは、いわゆるミラー対称性を単なるホモロジカルミラー対称性の同値(Fukaya圏と導来圏の同値)としてではなく、より上位の構造、つまり場の理論のレベルでの同値として捉えることだった。
言い換えると、これは単なるA-model ↔ B-modelの交換ではない。
A/Bモデルを生む背景データ(シンプレクティック形式、複素構造、B-field)を、派生スタック上のシフト付きシンプレクティック構造として再記述し、AKSZ型の構成と整合させる必要がある。
そしてこの視点では、物理的なDブレーンは単なる境界条件ではなく、(∞,1)-圏におけるモジュール対象として統一される。
Dブレーンのカテゴリーが境界条件の集合だと考えるのは初歩的すぎる。境界条件は高次射を伴うので、最初から(∞,n)-圏で話さないと本質が消える。
特に僕のノートでは、弦の摂動展開で現れるモジュライ空間の積分を、単なる測度論の問題としてではなく、Derived Algebraic Geometry上での仮想基本類のプッシュフォワードとして扱う形式に書き換えた。
これをやると発散する積分を正則化するという話が、より厳密にオブストラクション理論に沿った積分の定義へ置き換わる。
そして、ここが本題だが、僕が今週ずっと考えていたのは、ウィッテンですら「直観的にはこう」と言うしかない領域、つまりM理論の非摂動的定義が、どのような普遍性原理で特徴付けられるべきかという問題だ。
僕の作業仮説はこうだ。弦理論が背景依存的だと言われるのは、結局のところ背景が点として与えられるという時代遅れの前提が残っているからだ。
背景は点ではなく、モジュライの高次スタックであり、その上に束ねられた量子状態の層(正確には圏)として理解されるべきだ。
つまり、弦理論はある時空での理論ではなく、時空の変形をも含んだファンクターにならなければいけない。
この視点では、背景の空間は単なるmoduli spaceではなくderived moduli stackであり、さらにgauge symmetryを含めるならhigher groupoidとしての性質を露わにする。
そして量子補正は、そこに定義されるshifted symplecticstructureの変形量子化として現れる。
問題はここからで、弦理論の双対性は、異なる理論が同じスペクトルを持つなどという安っぽい一致ではなく、ある(∞,k)-圏における同一対象の異なるプレゼンテーションだと考えるべきだ。
たとえばS双対性やT双対性を群作用として扱うと話が狭くなる。より正確には、双対性はスタックの自己同値であり、その作用は対象の上に定義された圏(ブレーン圏やBPS状態圏)の上で自然変換として実装される。
しかもその自然変換は単なる自然変換ではなく、高次のコヒーレンス条件を持つ。つまり、双対性は対称性ではなく、高次圏論的な同値のデータなんだ。
このあたりを真面目に書こうとすると、最終的には量子重力とは何かという問いが、どの(∞,n)-圏が物理的に許されるかという分類問題に変形される。
僕はこの変形が気に入っている。なぜなら分類問題は、少なくとも数学としての礼儀があるからだ。
さらに進めると、弦理論に現れるBPS状態やwall-crossingは、単なるスペクトルの不連続ではなく、安定性条件の変化に伴う導来圏のt構造のジャンプ、あるいはBridgeland stabilityのパラメータ空間上での構造変化として理解される。
ここでは物理粒子は、導来圏の中の特別な対象として現れる。つまり粒子は点ではなく、圏論的存在だ。
普通の人間はこの文章を読んで発狂するだろう。だがそれは読者側の責任だ。
この議論の延長で、僕は弦理論の非摂動的定義は、ある種の普遍性を満たすextended functorial QFTであるという形の定理(まだ定理ではなく、僕の願望)に落とし込めないか考えている。
要するに、弦理論は世界面から時空を作る理論ではなく、世界面も時空も両方まとめて、ある高次圏の中で整合的に生成される構造であるべきだ。
今の僕のノートの中心は「非可換幾何」「導来幾何」「圏論的量子化」の三点集合の交差領域だ。そこは地図がない。地図がない場所は、馬鹿には危険だが、僕には居心地がいい。
次に、趣味について書く。これも重要だ。なぜなら人間社会において、知性の維持には糖分と娯楽が必要だからだ。残念ながら僕は人間である。
MTGは今週、デッキ構築の方針を少し変えた。勝率最大化のためにメタを読むのは当然だが、僕が注目しているのは局所最適に陥るプレイヤー心理だ。
つまりカードゲームとは、確率と情報のゲームである以前に、認知バイアスのゲームだ。相手が「このターンで勝ちたい」という欲望を見せた瞬間、こちらは勝ち筋を計算するのではなく、相手の誤りの確率分布を計算するべきだ。
隣人にこの話をしたら、「え、怖い。僕、あなたとポーカーしたくない」と言った。賢明だ。僕も隣人とポーカーはしたくない。隣人はたぶん手札を口に出してしまう。
FF14は、ルーチンの最適化がだいぶ進んだ。僕はレイド攻略で反射神経を重視する文化が嫌いだ。
反射神経は筋肉の問題だが、攻略は情報処理の問題であるべきだ。ギミックは有限状態機械として記述できる。したがって最適行動は、状態遷移図の上での制御問題になる。
友人Aにこの話をしたら、「お前はゲームしてるのか研究してるのか分からん」と言われた。僕は当然「両方だ」と答えた。彼は笑ったが、この種の笑いは知性の敗北宣言である場合が多い。
アメコミは、相変わらず現実の倫理を歪めた寓話装置として優秀だと思う。
僕は「正義とは何か」という議論が苦手だ。正義は定義が曖昧だからだ。
登場人物が持つ制約(能力、社会構造、情報、感情)を明示すると、物語は心理学ではなく数理モデルに近づく。そうすると面白くなる。
ルームメイトにこの話をしたら、「僕はただ派手な戦闘シーンが見たいだけなんだけど」と言われた。
僕は「君の知性は観測不能なほど小さい」と言ったら、彼は不機嫌になった。観測不能は存在しないことと同義なので、むしろ褒め言葉に近いのだが、彼は数学が分からない。
僕の習慣についても書いておく。
今週も、朝のルーチンは完全に守った。起床後の手洗いの手順、歯磨きの回数、コーヒーの抽出時間、机の上の配置、すべて変えない。
人間の生活はノイズが多すぎる。ノイズが多い世界で成果を出すには、制御できる変数を減らすのが合理的だ。これは精神論ではなく、統計的推定の分散を減らす行為だ。
隣人が「たまには適当にやれば?」と言ったので、僕は「適当とは、最適化の放棄だ」と言った。彼は「そういうところが宇宙人っぽい」と言った。
宇宙人は証拠なしに導入する仮説ではない。彼はやはり陰謀論者の素質がある。
友人Bが「お前の生活、息苦しくないの?」と聞いてきたので、「息苦しいのは君の思考だ」と答えた。友人Bは笑った。知性の敗北宣言である。
これからやろうとしていること。
今の段階では、圏論と導来幾何の言葉でかなり書けたが、まだ計算の痕跡が残っている。僕はそれが気に入らない。真の理解とは、計算を消し去った後に残る構造のことだ。
具体的には、次は弦の場の理論を、factorization algebraの言語で記述し直す予定だ。
局所演算子代数を、E_n-代数として整理し、そこから高次の演算構造を復元する。
これがうまくいけば、弦理論における局所性の概念を、時空幾何に依存せずに定義できる可能性がある。
もしそれができたら、次は双対性を圏の自己同値ではなく、圏の上の2-表現あるいはhigher representationtheoryとして書き換える。
これにより、S双対性を単なるSL(2,Z)の作用として扱う雑な議論から脱却できる。
要するに、僕が目指しているのは物理理論を群で分類する幼稚園レベルの発想ではなく、物理理論を高次圏で分類する文明的発想だ。
その後はMTGの新しいデッキ案を詰める。今の構想では、相手の意思決定を局所的に歪ませる構造がある。人間は選択肢が多いと誤る。
これは心理学的事実であり、カードゲームに応用できる。倫理的に問題があると言われそうだが、そもそもカードゲームは戦争の抽象化なので倫理を持ち込む方が間違っている。
夜はFF14の固定活動。友人Aは相変わらず「気合いで避けろ」と言うだろう。
議論はループする。ループはコンピュータ科学の基本概念だ。だから僕はそれを受け入れる。
最後に、ルームメイトが「今度、隣人と映画を見よう」と言っていた。
僕は断る。なぜなら隣人は上映中に喋る。上映中に喋る人間は、社会契約を破っている。社会契約を破る人間に、僕の時間という希少資源を与える理由はない。
少なくとも、隣人の会話よりは。
何の学科か分からないが、何かを調べる授業があり、何故かその調べ物をする場所がとんでもない傾斜の坂の上の山の中にある。
傾斜が凄まじく、自分は途中まで自転車に乗って登っていたのだが進む事すらできなくなり、あまりのことに笑いながら自転車を諦めて脇の空き地に横たえて置いて坂道に縋り付くように四つん這いになりながら道を登り始めた。路側帯の白線が何故か普通に帯のように紐のようになっていて握れるので、それに掴まりながら登山のようにアスファルトの道を登っていく。他にも同じ様に山の上に向かっている生徒があり、状況のとんでもなさに苦笑して笑い合いながら目的地に着いた。
山の中腹にある開けた空き地は周囲を木々に囲まれ短い下草が青々と茂っていて、そこに図工室にあるような作業台や角椅子が整然と並んでいる。細部をよく覚えていないが、本類、資料?文献?は卓上に置いてあったのかもしれない。本棚は無かった気がする。そこで多くの生徒、教師が角椅子に座り何かを調べたり読んだりしている。
男女の教員、1人はふくよかで豊かな癖毛をした落ち着いた服装の長髪の中年の女性、1人は顔色が極めて悪い、短髪で目をひん剥いたようなギョロ目をした和装の男性。で、何故か自分はその男性の向かい側で古書を見ていて、その古書は神社の御由緒のような、神社に伝わる書物の由来が記載された目録のようなものだった。読んでいるうちに、その神社の建立当初、帝から賜った宸翰が今に伝わっていると書かれており、へぇええ〜!!!と顔を上げると、夢なので唐突に、目の前の教職の男性の脇に60代くらいの落ち着きのある痩せた神主さんが居て、「持ってきましょうか」と言う。は???凄すぎる、見て良いのか、やべー!!と心中で慌てふためきながら大人しく待っているうちに、夢なので唐突に周囲に人は居なくなり、その作業机には自分と教職の白服の男性、少し向こうにふくよかな女性の教員だけが居て、何故か神主さんが神社に贈られた上等の和菓子をあけて自分と男性教職員に出してくれる。
そのひとつをようく覚えていて、それは艶々ぴかぴかとした光沢のある、一つ一つの粒がしっかりとしている黒豆のような茹で小豆?あんこ?に覆われたぼたもち/おはぎで、実際存在するのかと検索してみるとそのような物は見つけられなかったのだが、自分が見つけられなかっただけでどこかには存在するのかもしれない、それを美味しく食べた。あまりの旨さにまた感動して目を見開きながら顔を上げて目の前の男性教職員を見ると、わかるぞと言うように相手はうなずき、「本物は内側が7層になっているんですよ」と教えてくれて、こんな小さい和菓子の内側に何が7層も入っているのか気になって仕方がなかった。
夢なので唐突なのだが、我々の机の横手には、自分達が登ってきたはずのアスファルトの急斜面は無く、けばけばしくない、ぼろくもない、使い込まれた年代物の神楽殿があった。開け放たれたそこには、奥の方に木札のような、30センチ程の高さの有りそうな折紙に包まれた書状がいくつか重ねて立て掛けられていた。あまり恭しい扱いとは言えないように見えたが、粗雑に扱われているようでもなかった。そのうちのいくつかを今から読むのだろうか?神主さんが紙を開いて書面を出してくれたあたりで目が覚めた。
艶々の黒豆に覆われたあのぼたもち様のなにかが気になって仕方がないが、ぼたもちではなく生菓子かもしれない。
分厚い紙に包まれた書状を調べたら折紙文化、位の高い人々が用いた和紙についてなどのページに辿り着いた。