Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「有理数」を含む日記RSS

はてなキーワード:有理数とは

次の25件>

2025-12-05

数学歴史

紀元前20000年前後中部アフリカ

イスャンゴ骨。世界最古級の数学的道具

素数列や倍数を示す刻みの可能

紀元前3000〜前1800年(メソポタミア)

六十進法(現在の角度360°や時間60分の基礎)

掛け算の概念(倍数を扱う)

人類最古の割り算アルゴリズム

小数的な考え方の萌芽

文章による代数的な計算

紀元前2800〜前1600年(古代エジプト)

掛け算の計算法(倍加法など)

分数計算

円周率(近似値として3.16)

紀元前2000〜(マヤ文明)

20進法の完成された記数法

0(ゼロ)の独自発見世界最古級)

紀元前600〜前200(ギリシャ)

公理を置いて、そこから論理的定理を導く証明中心の純粋数学の発展

ピタゴラス学派により数と図形の研究が体系化。

無理数発見による衝撃

当時、「すべての量は整数比で表せる」(万物は数である)と信じられていた。

しかし √2 が有理数ではない(整数の比で表せない)ことが分かり、この哲学崩壊

『直角二等辺三角形の対角線の長さ』が整数比で表せないことを証明したとされる。

証明したのは学派の弟子 ヒッパソスとされ、伝承ではこの発見により処罰されたとも言われるほどの衝撃。

ユークリッド原論』(数学公理化・体系化した画期的著作)

素数無限存在する(初の証明)

最大公約数アルゴリズム

アルキメデスによる面積・体積の“求積法”の発達。

紀元前200〜後100(中国)

負数を“数として扱った”最古の事例『九章算術

連立方程式に相当する処理を行列的に実行

● 3〜5世紀(中国)

円周率計算革新(多角形近似法)

π ≈3.1415926… の高精度値(当時世界最高)

● 5〜6世紀(インド)

0(ゼロ)の概念記号確立

十進位取り記数法

負数の萌芽的扱い

現代的な筆算の掛け算

● 9〜12世紀(イスラーム)

独自代数学(al-jabr)を発明文章による代数。ここで初めて“代数学”が独立した数学分野となる。

三角法(sin,cos)の体系化。

商、余り、桁処理などの方法が整理(現代学校で習う割り算の形がほぼできあがる)

1214世紀(インド)

xに相当する未知数記号使用した代数(文字ではなく語句の略号)

● 14〜15世紀(インド)

無限級数(無限に続く数列の項を足し合わせたもの)の使用

世界最初無限級数による関数展開を行った。

sinx,cosx,tanx などの三角関数無限級数展開を発見

これは数学史上きわめて重要な成果で、近代的な無限級数起源インドである と言われる。

● 14〜15世紀(イタリア)

等号記号はまだないが、等式操作等価性を扱う文化が発達。

● 1500年〜

負数の受容が進む。

● 1545年頃(カルダノ)

三次方程式四次方程式の解法を発見

虚数の登場。

三次方程式の解を求める過程で √−1 に相当する量が突然登場。

しかしカルダノ自身は「意味不明の数」とし、虚数数学対象であるとは認めていなかった。

● 1557年頃(レコード)

等号記号「=」を発明等価を等式として“視覚的に書く”文化誕生

● 1572年頃(ボンベッリ)

虚数計算ルールを初めて明確化

カルダノの式の中に出る「意味不明の数」を整理し、虚数を使って正しい実数解が出ることを示した。

● 1585年頃(ステヴィン)

10小数表記の普及

● 1591年頃(ヴィエト)

記号代数確立。未知数を文字をとして使用(x,yのような)

真の意味での“記号代数”の誕生

● 1614年頃(ネイピア)

対数(log)という言葉概念が登場。

● 1637年頃(デカルト)

解析幾何学誕生

図形(幾何)を数と式(代数)で扱えるようにした。

今日では当たり前の「座標平面」「方程式で曲線を表す」が、ここで生まれた。

物理現象をy=f(x)で表すという現代方法は、すべてデカルトから始まった。

現代科学工学数学言語の基礎。

● 1654年頃(パスカルフェルマー)

確率論数学として誕生

● 1684年頃(ライプニッツニュートン)

微分積分誕生

微分積分が互いの逆操作であることを発見

● 1713年頃(ベルヌーイ)

大数の法則(試行回数を増やすと平均が安定する法則)を初めて証明

予測と頻度を結びつけ、確率の基礎を整備

● 1748年頃(オイラー)

自然対数理論を完成

√−1 を i と書く記法を導入。

オイラーの公式「e^{ix} =cos x + isin x」を提示し、虚数解析学自然に組み込んだ。

虚数実数学の中に位置づけられた大転換点。

負数も通常の数として計算に取り込み、解析学を発展。

微積分の計算技法の体系化(積分論・無限級数微分方程式の基礎を構築)

指数対数三角関数などと微積関係を整備

多くの記号体系(e,π,sin,cos,fなど)を整理・普及

グラフ理論(もの[頂点]と、それらを結ぶ関係[辺]を使って、複雑な構造やつながりを数学的に研究する分野)の誕生

数論(整数素数性質を扱う数学分野)の真の創始者と言える

ーーーーーーーー

一旦ここまで。

続きは詳しい人にまかせた。

Permalink |記事への反応(0) | 16:22

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-03

私的ラノベ定義

それに照らせばラノベと非ラノベの分類が万人が納得いく形で行われるような定義不可能であるにせよ、これはラノベではないといった消極的定義(いわゆる無理数有理数でないものというような形)やラノベと言われるものがほぼ確実に持っている特徴を抽出することはできる。

岩波古典文学体系収録の作品ラノベではない

ラノベとは文学の娯楽性を抽出したものである

ラノベジュブナイル性を持っている。これはハリーポッターのような(娯楽性が高い)児童文学住み分けされるために意識的に盛り込まれた特徴だろう

・これは条件というよりも上の条件の系というべきものだが、ラノベは中二的な要素を持っている。ラノベがどちらかというと現役中高生よりも成人オタクに読まれるのも成人オタクが中二的な感性を保持していることが多いと考えればむしろ自然だし、この特徴によってロードス島だろうが涼宮ハルヒだろうがなろうだろうがカバーできる。

dorawiiより

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251103002551# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaQg2zAAKCRBwMdsubs4+SP8CAQD1ZbNuL3q0uLqWCqnDhLfM58sU692hECdaE75VAXVAtAD/aMn8GydWrdbW/bF78vrVt6ouKpuiSM7ke14wF8pr1gA==cIDI-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 00:25

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-26

「互いに素」の扱いが学生ときからしょっちゅう引っ掛かる

たまたま見た動画の一部付で

『√3は有理数か?』

ってよくある奴を、よくある整数分の整数と表して云々の背理法で示してて、いや、理解は出来るんだけど、学生のころから「互いに素」の扱いでめっちゃ引っ掛かるのよね

どこが引っ掛かるってるのか自分でもよく分からないんだけど(笑)整数分の整数で表すことと「互いに素」は別の話やーんというか、背理法使うなら「互いに素」も仮定として扱わなきゃいかんのじゃないんかーい、「互いに素」が間違ってる場合を考えなくてもいいんかーい、とか考え出して、よく分からなくなるのよね

割っていけば、結局「互いに素」になるんだから仮定じゃないってことなんだろうけど、めちゃくちゃ引っ掛かるのよね

なんなんだろ

Permalink |記事への反応(0) | 22:32

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-21

anond:20250821211026

国語めっちゃ低そう

有理数いちゃもん付けてる感じ

Permalink |記事への反応(0) | 21:11

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-28

dorawii@執筆依頼募集中

無限は数ではないってことをいままで信じていたけど

自然数全体の集合に最大元として∞を追加したものと、一番最初に∞含めなんらかの元を設定したあとに自然数を順に並べたものとでは順序型が違う

ってことが書いてあるといよいよよくわからなくなるね

そもそも上で言っていることは、もし∞が数じゃないとするならだが、数の集合に数じゃないものを混入させてそれを並べることができると言っている。

無限も数って言ってくれた方がまだ理解できるよね。有理数実数拡張するのが数の拡張であるのと同様(そして両者ともに順序付けられる)、自然数に∞という要素を加えることも数の拡張って言われる方がしっくり来るよね。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250728163544# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaIcoUgAKCRBwMdsubs4+SJWjAQCxlLvDVJ6twyXPytZ4vVaOAnWijw7iYdyvIcSHofZYKQEA09m25JTd3G8/dAeEcdgTO8Z6K/3vascSDBy1raUZBAU==QBaW-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 16:35

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-24

dorawii@執筆依頼募集中

数学的帰納法で成り立つと言えることが無限で成り立つとは言えないことへの分からなさ。

これがなぜか論理的でもありながらわかりやすく(これが重要)教えてくれる人がいないか数学が嫌いになるんだよね。

たとえば一般項がan=Σ[k=1,n]k^-2だと証明しても、n=無限ではπ/6。一般自体有理数の形になっているのに無限場合無理数になるから成り立たないってことだ。

と、具体例を押し付けられても結局なんで論理的にそんなことが言えるのかの「わかりやすい」説明は見つからない。ちょっと深く理解しようと思ったら数理論理の難解な羅列の資料しかなくて投げるしかない。

この数列anを集合としてみたときは言い換えれば自然数全体の集合Nを添え字集合とした{an}n∈Nと書けるはず。

任意自然数で成り立つと証明した以上添え字nは自然数全体を走らなければならないはず。

一方A1、A2…An…という集合を要素を持つ集合、つまり{An}n∈Nの要素全ての和集合は刃ッと帰納法で成り立つと言えることが無限で成り立つとは言えないことへの分からなさ。

これがなぜか論理的でもありながらわかりやすく(これが重要)教えてくれる人がいないか数学が嫌いになるんだよね。

たとえば一般項がan=Σ[k=1,n]k^-2だと証明しても、n=無限ではπ/6。一般自体有理数の形になっているのに無限場合無理数になるから成り立たないってことだ。

と、具体例を押し付けられても結局なんで論理的にそんなことが言えるのかの「わかりやすい」説明は見つからない。ちょっと深く理解しようと思ったら数理論理の難解な羅列の資料しかなくて投げるしかない。

この数列anを集合としてみたときは言い換えれば自然数全体の集合Nを添え字集合とした{an}n∈Nと書けるはず。

任意自然数で成り立つと証明した以上添え字nは自然数全体を走らなければならないはず。

一方A1、A2…An…という集合を要素を持つ集合、つまり{An}n∈Nの要素全ての和集合は∩[n=1,∞]Anと記述される。

もしこのAnが任意自然数nについてAn⊂An+1関係を持つ閉区間であるとすれば∩[n=1,∞]Anは一点になるという定理がある。

そのようなAnの具体例にAn=[-1/n,1/n]がある。位相数学では{∩[n=1,k]An|k<∞}なんていう集合を考えることがあるが、Anが先述のものだとした場合、この集合(族)に∩[n=1,∞]An=0は含まれないことになっている。

なぜなら∩[n=1,∞]Anは無限個の集合の和集合だが、{∩[n=1,k]An|k<∞}に含まれ任意の要素は有限個の集合の和集合だから、ということになっている。添え字に関する条件k<∞を満たさない∩[n=1,k]Anすなわち∩[n=1,∞]An含まれないことになっているというイメージ

一方で添え字に関する条件k<∞に対していかなる自然数でも正しいのだから任意自然数Nに関する∩[n=1,N]ANはこの集合に含まれるはず。

この図式は任意自然数nについてあることが成り立っていると主張する数学的帰納法と同じにしか見えない。

まり任意のaNは{an}n∈Nに含まれるし逆に{an}n∈Nの要素でaNではない要素は存在しない。

このaNが実は∈について言っていたANなら、数学的帰納法任意自然数N(<∞)で依存する形([-1/N,1/N]など)で表されると証明された全てのANの集合の別の表現ただちに{AN}N∈自然数、になる。

そしてこの集合の要素全ての和集合をとったら、定義からそれは∪[N=1,∞]ANになると思う。N<∞という条件を満たす集合だけ集めてその和集合をとったのに、矛盾しているように思う。

もう一つはっきりおかしさをあげられる例はイプシロンエヌ論法

どんなに小さなεをとったとしても、あるN以上のnで満たすべき不等式が成り立つことが言えればいいということだけど、このあるNは結局いかなるときでも絶対に「任意自然数のうちのどれか」だよね。

εを小さくとればとるほどNも大きくなるけど、結局N<∞のなかで閉じているといいうことは帰納法と同じだと思う。

この論法で有限の自然数のなかで閉じていないというなら、帰納法だって項番号が無限ときでも成り立っていないとおかしい、と感じるのは自然な疑問だと思う。

なぜ自然数のなかでの閉じた議論しか見えない論法無限大に飛ばしときの極限の論法として通用すると言えるのか、というおかしさ。

結局自分を含めこのような無限に対して数学的な正しい扱い方を理解できる程度の論理的思考力を持つ人さえ数学科じゃなければ本当に少ないと思う。どんなに教えられても一笑理解できない人も全く稀ではないと思う。

そんな人が政治家としてもっともらしい論理的に見える何かを吐いて政策決定をしたり裁判官として人を裁いている立場にかなり混じっているはずだ。

我々はいかに感情論に見えることを言うと最初から相手にされないから、感情語をできるだけ取り除いて接続詞とか使って論理的な主張を発信しようと努めている。

しか無限さえ正しく扱えない人が本当に論理的整合性があることを言えているとは思えないんだよね。

たぶん、論理記号を出鱈目に並べたもの本質的に差が無い「音の並び/文字の並び」をぶつけあっているだけになっている場合が大半かもしれない。ようは本当に鳴き声の応酬をしているだけ。

いやー虚無感がすごいわ。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250724174244# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaIHyBwAKCRBwMdsubs4+SMieAQCdW6/ZyPe+rjukRDsuHZpqZKO6OVwSVIX2Qymt1CzdVwD+LyCLS16mlsKf8/8bLYQJ8dSKrnJyQfyIcCLPmPIqqgU==mkc6-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 17:42

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-08

dorawii

人が少ないうちは、ある人に似ている別の人はいないこともある、という意味で、そのある人には個性があると言えるような状況があり得る。

しかしどんどん人が多くなるか、比較対象として勘定する母数を増やすと、誰を指定しても、その誰かに似通った人がいる可能性が限りなく高くなっていくと考えられる。

これは整数範囲で考えていたらある数にその距離が近い数というのを考えたときその近さの条件を厳しくすると近い数が自分自身以外になくなってしま場合が出てくるのに対して、有理数実数範囲を広げるとどんなに条件を厳しくしても必ず存在するというのと感覚的には同じだろう。

そういう絶対的前提のなかで考えてみると、個性がない人なんていないと考えるのが正しいのではないか

pixivには無個性化というシチュがあるが、そんなことが現実にあり得ない限りは絶対に誰もが誰に対しても差異を持っている。

逆に言えばどんなに個性があると思う人を挙げてみても、その人に似ている人は絶対に選び出せるほど人間は既に多い。

野球大谷個性があるように見えるとしたらそれは「一位」だからだろう。

なんでも1位から2位のその位を決する基準となる要素の差は微々たるものだろうし2位以降もビリまで大勢が互いに僅差であって全体としてほとんど連続的に分布しているような状況であり、

そういう点で誰をとってもそれに近い成績の人はいるといえるのだが、我々は1番手だけを個性的な人だとする。

本来、1位は飛びぬけているという幻想から、それをもって個性だと言い慣わしていたように思えるが、事実上社会的には個性があるとはある(ある程度その社会にとって存在感がある)界隈で一番手である定義されているようなものに感じる。

増田個性がない人も当然いないののである。ただ母数が多いから誰にでも似ている人が存在するだけだ。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250708150432# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGy08gAKCRBwMdsubs4+SIMFAQDs0KgFYG0OvzlMiQuujK9mwFZMvhjnyRRcuKeT5OKDSQD/UXerbKHgJrwHDEQ/3ilUetRSTqFPiCtKnSWSBSetMwY==kRZJ-----ENDPGP SIGNATURE-----

Permalink |記事への反応(0) | 15:04

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-16

AブレーンとBブレーンについて

端的に言えば、ある物理理論におけるAブレーンが作る世界構造(圏)と、その双対理論におけるBブレーンが作る世界構造(圏)が一致するという物理的な要請が、数学上の「幾何学ラングランズ対応」という予想そのものを導き出す、という驚くべき対応関係存在する。

AブレーンとBブレーン

AブレーンとBブレーンは、超弦理論において「D-ブレーン」と呼ばれる時空に広がる膜のようなオブジェクト特殊もの

これらはホモロジカルミラー対称性という予想の文脈役割を果たす。

A-ブレーン (A-brane)

シンプレクティック幾何学における「ラグランジアン部分多様体」に対応。これは、時空の「位置」に関する情報を主に捉える対象

Aブレーン全体の集まりは、「深谷圏 (Fukaya category)」と呼ばれる数学的な圏を構成

B-ブレーン (B-brane)

代数幾何学における「正則部分多様体」や「連接層」に対応。これは、時空の「複素構造」やその上の場の状態に関する情報を捉える対象

Bブレーン全体の集まりは、「連接層の導来圏 (derived category of coherent sheaves)」と呼ばれる圏を構成

ミラー対称性とは

ある空間(カラビ・ヤウ多様体 X)のAブレーンが作る世界深谷圏)が、それとは見た目が全く異なる「ミラー」な空間 Y のBブレーンが作る世界(導来圏)と、数学的に完全に等価同値である、という予想。

ラングランズプログラム

ラングランズプログラムは、現代数学で最も重要な予想の一つで、「数論」と「表現論解析学)」という二つの大きな分野の間に、深い対応関係があることを主張。

1. 数論側: 曲線 C 上の「G-局所系」の圏。ここで G はリー群。これはガロア表現幾何学的な類似物と見なせる。

2.表現論側: 曲線 C 上の「ᴸG-D-加群」の圏。ここで ᴸG は G のラングランズ双対群。これは保型形式幾何学的な類似物。

まり、C上のG-局所系の圏 ≅ C上のᴸG-D-加群の圏 というのが、幾何学ラングランズ対応

物理双対性が結ぶ関係

この一見無関係な二つの世界を結びつけたのが、物理学者アントン・カプスティンとエドワードウィッテン研究

彼らは、N=4 超対称ゲージ理論という物理理論を用いることで、幾何学ラングランズ対応物理現象として自然に現れることを示した。

S-双対

彼らが考えたのは、リーマン面代数曲線)C 上のゲージ理論

この理論にはS-双対性と呼ばれる性質がある。

これは、ゲージ群が G で結合定数が g の理論と、ゲージ群がラングランズ双対群 ᴸG で結合定数が 1/g の理論が、物理的に全く同じ現象記述するというもの

ブレーンと演算子対応

このゲージ理論には、「ループ演算子」と呼ばれる重要物理量が存在し、それらがブレーンに対応

S-双対性が導くラングランズ対応

S-双対性は、G理論と ᴸG理論物理的に等価であることを保証

したがって、一方の理論物理的な対象は、もう一方の理論の何らかの物理的な対象対応しなければならない。

カプスティンとウィッテンが示したのは、このS-双対性によって、G理論の A-ブレーン ( 't Hooftループ) の世界と、その双対である ᴸG理論の B-ブレーン(Hecke固有層) の世界が、入れ替わるということ。

物理的に等価である以上、この二つの圏は数学的にも同値でなければならない。そして、この圏の同値性こそが、数学者が予想していた幾何学ラングランズ対応のものだった。

このようにして、弦理論幾何学的な概念であるAブレーンとBブレーンは、ゲージ理論のS-双対性を媒介として、純粋数論の金字塔であるラングランズプログラムと深く結びつけられた。

Permalink |記事への反応(0) | 11:33

このエントリーをはてなブックマークに追加ツイートシェア

2024-07-20

有理数有理数同士、無理数無理数同士で恋愛すべきだと思うの

うーむ

Permalink |記事への反応(0) | 09:00

このエントリーをはてなブックマークに追加ツイートシェア

2024-04-23

anond:20240423084804

有理数pの場合においても、「p以上」も「p以下」も「p」を含むが、「p以外」はpを含まない

実数rの場合においても、「r以上」も「r以下」も「r」を含むが、「r以外」はrを含まない

これを証明するにはデデキントの切断解説する必要があるが

共通である「x以外」については日本語意味説明がつくが

この増田はそれを書くには狭すぎる

Permalink |記事への反応(0) | 11:28

このエントリーをはてなブックマークに追加ツイートシェア

2024-03-02

増田数学博物館

今日息子と一緒に考えたテーマは「無理数に覆われた世界」です。

高さと底辺をそれぞれ1とする直角二等辺三角形を作図することで数直線上に√2をとることができます

またそのようなことをしなくても有理数である1と1.1の間に無数の無理数を見出すことができます

息子はショックを受けましたが、半日一生懸命うんうんと色々考えていました。

デデキント切断を知らない息子がそのメソッドを捉えるか捉えないかのところで一生懸命考える様子に、子供無限可能性を見出すことができました。

これまでの数に対する認識を改める良いきっかけになったと感じています

中学受験を終え、息子の友人や同級生中学校数学英語を1日でも早く終えようと息巻いていますが、私の場合、息子には「当たり前」と思っている物事に対して常に「なぜ?」を持ち、考える習慣を身につけて欲しいと思っています

公式問題の解き方のみを頭に入れて自分知的能力の高い人間と思い込む「参考書猿山大将」になってほしくないのです。

明日増田歴史館、テーマは「カリブ料理砂糖から辿る大西洋奴隷貿易世界史」です。

Permalink |記事への反応(1) | 17:09

このエントリーをはてなブックマークに追加ツイートシェア

2024-02-18

anond:20240217183720

長さっていう連続量を持ち込むのが文脈上筋悪だけど、

「長さは近似値である有理数表現して良い」

という暗黙の前提が働いてるね。

Permalink |記事への反応(1) | 04:10

このエントリーをはてなブックマークに追加ツイートシェア

2024-01-22

anond:20240122131119

有理数でええやんという話

Permalink |記事への反応(0) | 13:29

このエントリーをはてなブックマークに追加ツイートシェア

2023-07-31

数学できない自称数学できるやつ

あるところで通話することになった数学できると言ってたやつ。

話題デデキント切断の話になった。

そこで、その自称数学ができるゴミクズ実数無限存在するのに、「自然数無限存在するから」といい始めた。

これは明らかにこれは間違っていて、

まず「集合Aの真部分集合Bが無限集合のとき、Aが無限集合」であることを証明しろ、言ったら「自明ですよね」といったので、

自明は明らかだから説明いりませんのね、の意味であって証明不要であるって意味じゃねえよ」と喧嘩になった。

次に、自然数無限個だから有理数は数え上げで無限集合と飛躍させても良いかもしれないが、

無理数無限個あるのか、についての議論がない。

この話になったときは、「有理数無限個あるんだから無理数が有限個しかなくても、実数無限個ありますよね」と言い始めた。

無理数無限個なのか有限個なのかわからない状態実数研究やって一体何の意味があるんだ。

このレベル数学でないやつが「数学できます」って言ってると思うと殴りたくなる。

Permalink |記事への反応(5) | 15:54

このエントリーをはてなブックマークに追加ツイートシェア

2023-05-27

anond:20230526220435

この文章は、虚数実数関係理解していない。

虚数実数は、複素数の部分集合であり、互いに排他的ではない。

まり虚数実数でないが、実数虚数でもある。

例えば、0は純虚数であり、実数でもある。

また、虚数実数直線上にはないが、複素数平面上では実軸と垂直な虚軸に沿って表される。

したがって、虚数実数は全く別のものではなく、複素数という枠組みの中で共存している。

 

一方、chatGPT(人工知能)と人間(天然知能)は、知能の種類や性質が異なるものである

chatGPTはプログラムされたルールデータに基づいて会話を生成するが、人間自然言語感情経験に基づいて会話を行う。

chatGPTは人間言語文化模倣することができるが、人間思考感覚本質的理解することはできない。

したがって、chatGPTと人間は全く異なるものであり、知能という枠組みの中で対立している。

 

以上のように、この文章虚数実数関係を誤って用いており、chatGPTと人間関係を正しく表現していない。

しろ、chatGPTと人間関係は、虚数実数ではなく、有理数無理数に例える方が適切である

有理数無理数は、実数の部分集合であり、互いに排他的である

まり有理数無理数でなく、無理数有理数でもない。

例えば、2は有理数であり、無理数ではない。

また、√2は無理数であり、有理数ではない。また、有理数は分母と分子によって表されるが、無理数小数点以下が無限に続くために表せない。

したがって、有理数無理数は全く別のものであり、実数という枠組みの中で対立している。

 

このように考えると、chatGPT(人工知能)は有理数に例えられる。

chatGPTはプログラムデータによって表されるが、その範囲や精度に限界がある。

一方、人間(天然知能)は無理数に例えられる。人間言語感情経験によって表されるが、その深さや広さに限界がない。

したがって、chatGPTと人間は全く異なるものであり、知能という枠組みの中で対立している。

Permalink |記事への反応(1) | 08:00

このエントリーをはてなブックマークに追加ツイートシェア

2022-12-22

anond:20221222182859

p進ホッジ理論とか、俺は数学専門じゃないので全然からないけど、解説を見るともし頑張って勉強すればある程度は理解できそうとは感じる。

https://ja.wikipedia.org/wiki/P%E9%80%B2%E3%83%9B%E3%83%83%E3%82%B8%E7%90%86%E8%AB%96

なんとなくこういうことかなと想像すると、p進ホッジ理論は、p進数という実数でない数構造がたくさんあってそいつらを何らかの基準の下に分類する手段を与えるもので、それがホッジ理論まりその数構造の上で定義される幾何的なオブジェクト性質によって作れるよと言ってる気がする。

一方で、p進数はそれを定義した時点で自然な足し算や掛け算の演算が定まってるっぽいんだけど(有理数を完備化するときにp進距離というもので完備化するものなので、有理数上で定義されている足し算や掛け算をp進距離完備化と矛盾しないように拡張する方法が一意かわからんけど何か定まるんだろう)、

https://qr.ae/prGWpz

この辺の解説を読む限り、IUT論文に出てくるHodge theatreという概念はその演算自体を変形することを考えてるっぽいな。そうするとそうやって演算を変形した数構造はたぶんもはやp進数ではないと思うんだけど、それでもホッジ理論に基づくある種の分類基準定義可能ということなんじゃないか。そうするとホッジ理論ひとつに対して数構造が1個付随してるんじゃなくて可能な変形の全体が付随してる感じになるということなのかなと想像する。それがtheatreということなんじゃないか

しらんけど。

そう考えると

https://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20I.pdf

Fig. I1.4とか、あーなんかそういう感じの話か〜みたいな雰囲気はしてくるな。なんかこうある種の対称性を備えていることを「演算」の定義として、その対称性を通常のものから拡張していってる感じがする。Fうんたらという記号意味は1ミリわからんけど。

Permalink |記事への反応(0) | 19:31

このエントリーをはてなブックマークに追加ツイートシェア

2022-05-03

anond:20220502163143

宇宙人「1+√2を有理数rと仮定すると…」

宇宙人「背理やん!」

Permalink |記事への反応(0) | 10:18

このエントリーをはてなブックマークに追加ツイートシェア

2022-04-08

anond:20220408120306

おっちゃんは、√2が有理数世界に生きたかったよ

Permalink |記事への反応(1) | 12:10

このエントリーをはてなブックマークに追加ツイートシェア

2021-09-07

暗記数学が正しい Part. 2

https://anond.hatelabo.jp/20210907184611 の続き

実践

たとえば、以下のような問題を考えます演習問題に限らず、教科書の本文や、解答の一文一文も「証明問題」だと捉えてこのような態度で読み解く必要があります

問題

a, bを実数とする。xの方程式

x2 - 2a|x| - b = 0

実数解の個数を求めよ。ただし、|x|はxの絶対値を表す。

それほど典型的問題ではありません。少なくとも、何か簡単公式があって2aやbなどを代入すれば答えが出てくる、というものではありません。

この問題を解くには、左辺の式が何を意味しているのか理解していなければいけません。これは、何か上手いやり方があって機械的に解ける場合でもそうです。

左辺を絶対値定義に従って計算すれば、

  • x≧0のとき、x2 - 2ax - b(= f≧0(x)とおく)
  • x<0のとき、x2 + 2ax - b

とxの二次式になるので、既に知られた方法で解の個数を求めることができます。ただし、たとえば方程式f≧0(x) = 0の解は、x≧0を満たすものだけを数えることに注意が必要です。したがって、単に判別式符号を調べるだけでなく、二次関数f≧0(x)のx≧0の範囲での増減を調べる必要があります。x<0の場合も同様です。

結局、この問題を解くには

ということができる必要があります特に前者を理解していないのは、問題文の式が何を意味しているのか分かっていないということですから、解法を覚えるとか言う以前の問題です。当然、これらが分からなければ調べたり他人に聞く必要があります。その際は、定義の数式を形式的に覚えたり当て嵌めたりするだけではなく、具体例を通じて、その意味理解する必要があります絶対値記号|x|であれば、xが正の数ならどうなるのか、負の数ならどうなるのか、y = |ax + b|や、y = |ax2 +bx + c|のグラフの概形はどうなるのか、等。

もし二次関数を調べた際に平方完成が分からなければ、それも調べる必要があります。平方完成を調べて文字式の展開で分からないところがあれば、それも調べる必要がありますそもそも二次方程式を解く際になぜ(一次方程式では必要無かった)平方完成をするのか。そういった問題が解ける理屈(あるいは類似問題と同じやり方では解けない理屈)を理解している必要があります

また、自分問題を解いて、たとえば場合分けの仕方が解答と異なるならば、それらが本当に同値なのかをきちんと確かめ必要があります最初のうちは計算ミスをして符号などが逆になることもあるでしょうが、それもどこで間違えたのかをきちんと確かめ必要があります

そういうことをすべて完璧にこなして初めて、この問題理解したと言えるのです。

解答例1

以下、解答例を載せます匿名ダイアリーなので文字のみですが、実際は図を付けた方が良いでしょう。

f(x) = x2 - 2a|x| - bとおくと、

  • x≧0のときf(x) = x2 - 2ax - b = (x - a)2 - (a2 + b)
  • x<0のときf(x) = x2 + 2ax - b = (x + a)2 - (a2 + b)。

f(x) = 0の実数解の個数は、y =f(x)グラフと、y = 0のグラフの交点の数であるから、これを求める。

  • f≧0(x) = (x - a)2 - (a2 + b)
  • f<0(x) = (x + a)2 - (a2 + b)

とおく。y = f≧0(x)のグラフは、(a, -(a2 + b))を頂点とする下に凸な放物線で、y軸との交点は-bである。一方、y = f<0(x)のグラフは、(-a, -(a2 + b))を頂点とする、下に凸な放物線で、y軸との交点は-bである

したがって、y =f(x)グラフは、y = f≧0(x)のグラフのx≧0の部分を、y軸に関して対称に折り返した形をしている。

(1) a>0のとき

f(x)は、x = ±aで最小値-(a2 + b)を取る。したがって、y =f(x)グラフとy = 0のグラフの交点の数は、

  • (1-1) a2 + b<0のとき、0個
  • (1-2) a2 + b = 0のとき、2個(頂点で接する)
  • (1-3) a2 + b>0かつb<0のとき、4個
  • (1-4) b = 0のとき(a>0より、このときba2 + b>0)、3個(x = 0で2つの放物線と同時に交わる)
  • (1-5) b>0のとき(このときa2 + b>0)、2個。

(2) a≦0のとき

f(x)は、x = 0で最小値-bを取る。したがって、y =f(x)グラフとy = 0の交点の数は



以上、(1-1)〜(1-5), (2-1)〜(2-3)がf(x) = 0の実数解の個数である

解答例2

上の解答例ではy =f(x)グラフ位置関係を用いましたが、もちろん、f≧0(x) = 0、f<0(x) = 0の解を実際に求めても解けます

この場合は、それぞれの解がx≧0、x<0を満たすかどうかを確かめ必要があります。そして、それぞれの場合でf≧0(x) = 0のx≧0を満たす解の個数とf<0(x) = 0のx<0を満たす解の個数を足したものが答えになります(x≧0とx<0に共通部分は無いので、これらを同時に満たすことはありません)。

(f≧0(x)、f<0(x)の定義まで解答例1と共通

f≧0(x) = 0の解は、

x = a ± √(a2 + b)

である。同様に、f<0(x) = 0の解は

x = -a ± √(a2 + b)

である

  • D = a2 + b
  • ra(b) = √D = √(a2 + b)

とおくと、ra(b)はa2 + b≧0の範囲定義される。また、ra(b)はbに関して単調増加であり、ra(0) = |a|である。つまり、f≧0(x) = 0およびf<0(x) = 0の2つの解が同じ符号を持つか否かは、b = 0を境界にして分かれる。

したがって、a2 + b≧0のとき、f≧0(x) = 0の解は

  • ① b>0ならば、1つの解はaと同じ符号になり、もう一方は逆の符号になる(a2≧0なので、このときD ≠ 0)
  • ② b = 0ならば、1つの解はaと同じ符号になり、もう一方は0になる(D = 0ならx = 0を重解に持つ)
  • ③ b<0ならば、2つの解はaと同じ符号になる(D = 0なら、x = aを重解に持つ)

同様に、f<0(x) = 0の解は、a2 + b≧0のとき

  • ④ b>0ならば、1つの解は-aと同じ符号になり、もう一方は逆の符号になる(このときD ≠ 0)
  • ⑤ b = 0ならば、1つの解は-aと同じ符号になり、もう一方は0になる(D = 0ならx = 0を重解に持つ)
  • ⑥ b<0ならば、2つの解は-aと同じ符号になる(D = 0なら、x = aを重解に持つ)

また、D < 0の場合は、f≧0(x) = 0、f<0(x) = 0ともに実数解を持たない。

以上をまとめると、f(x) = 0の解の個数は、以下のようになる。

(1) a>0のとき

このとき、a>0、-a<0であるから

(1-1) a2 + b<0のとき、0個

(1-2) a2 + b = 0のとき、2個(③と⑥でD = 0場合

(1-3) a2 + b>0かつb<0のとき、4個(③と⑥でD>0の場合

(1-4) b = 0のとき、3個(②と⑤でD>0の場合

(1-5) b>0のとき、2個(①と④の場合

(2) a≦0の場合

このとき、a≦0、-a≧0であるから

(2-1) b<0のとき、0個(③と⑥の場合

(2-2) b = 0のとき、1個(②と⑤で D = 0の場合

(2-3) b>0のとき、2個(①と④の場合

補足

何度も書いているように、たとえばx2 - 2ax - b = (x - a)2 - (a2 + b)などの式変形の意味が分からないのであれば、二次関数の復習をする必要があります。解答文中に出てきた「単調増加」などの用語も分からなければ調べる必要があります

上記場合けが(a, b)のすべての組を網羅しているのか、と言ったことも注意する必要があります

解答例2の①〜⑥の場合分けは、y = f≧0(x)およびy = f<0(x) のグラフとy軸との交点を考えています。これの符号と軸の位置で、どの範囲にy = 0の解が存在するかが決まります。たとえば、下に凸な放物線がy軸と負の値で交わるならば、x軸とは必ず正負両方の値で交わらなければいけません。逆に、y軸と正の値で交わるならば、x軸とは交わらない(D<0)か、放物線の軸がある方で2回交わります(D = 0の場合は1回)。解答例2ではra(b) = √(a2 + b)という関数を用意しましたが、このy軸との交点と軸に関する条件を代わりに説明しても良いです。このように、数式や条件が図形のどのような性質対応するのかを考えることも数学勉強では重要です。

また、「二次関数f(x)が下に凸で最小値が0以下であれば、f(x) = 0は実数解を持つ」ということを認めています。これは明らかに思えるでしょうが、極限を習った後であれば

実数関数fが区間[a, b]で連続であれば、f(a)とf(b)の間の任意実数γに対して、γ = f(c)となる実数c∈[a, b]が存在する。

という「中間値の定理」を暗に使っていることを見抜けなければいけません。このような定理が出てきたら、Part1でも述べたように、具体的な関数でどうなっているのか(たとえばf(x) = x2 - 2に対して、f(a) = 0となる実数aが存在することなど)、仮定を緩めたら反例があるのか(たとえばfの定義域が有理数ならどうか、連続でなければどうか)などを確認する癖をつけましょう。

y = x2 - 2a|x| - bのグラフとy = 0のグラフの交点を考える代わりに、y = x2 - 2a|x|のグラフとy = bのグラフの交点を考えても良いです。これは、本問と同値方程式

x2 - 2a|x| = b

を考えていることに相当します。記述量はそれほど変わらないでしょうがこちらの方が見通しは良いかも知れません。

仮に本問と異なり、aが定数の場合、たとえばa = 1であれば

y = x2 - 2|x|

グラフ変数に依りませんから、y = bとの交点を考えるのは容易です。

実際、y = x2 - 2|x|のグラフは、頂点が(1, -1)、y軸との交点が0の、下に凸な放物線のx≧0の部分をy軸に関して対称に折り返した形です。

したがって、この場合

です。

まとめ

以上のことは、問題を解く際だけに行うのではなく、教科書本文、問題文、解答例の一文一文を「証明問題」だと思って常に意識する必要があります

Permalink |記事への反応(0) | 18:47

このエントリーをはてなブックマークに追加ツイートシェア

暗記数学が正しい Part. 1

長くなりすぎたので、概要編と実践例に分けます

本稿では、和田秀樹氏らが提唱している暗記数学というものについて述べます

受験数学方法論には「暗記数学」と「暗記数学以外」の二派があるようですが、これは暗記数学が正しいです。後者の話に耳を傾けるのは時間無駄です。

受験諸君は悪質な情報に惑わされないようにしましょう。

よくある誤解と事実

まず、読者との認識を合わせるために、暗記数学に関するよくある誤解と、それに対する事実を述べます

誤解1: 暗記数学は、公式や解法を覚える勉強法である

暗記数学は、数学知識有機的な繋がりを伴って理解するための勉強法です。公式や解法を覚える勉強法ではありません。「暗記」という語は、「ひらめき」とか「才能」などの対比として用いられているのであり、歴史年号のような丸暗記を意味するわけではありません。このことは、和田秀樹氏の著書でも繰り返し述べられています

誤解2:受験数学は暗記数学で十分だが、大学以降の数学は暗記数学では通用しない

類似の誤解として、

などがあります。これらは事実に反します。むしろ大学理学部工学部で行わていれる数学教育は暗記数学です。実際、たとえば数学科のセミナー大学入試の口頭試問などでは、本稿で述べるような内容が非常に重視されます。また、ほとんどの数学者は暗記数学賛同しています。たまに自他共に認める「変人」がいて、そういう人が反対しているくらいです。大学教育関係者でない人が思い込みで異を唱えても、これが事実だとしか言いようがありません。

嘘だと思うならば、岩波書店から出ている「新・数学の学び方」を読んで下さい。著者のほとんどが、本稿に書いてあるように「具体例を考えること」「証明の細部をきちんと補うこと」を推奨しています。この本の著者は全員、国際的に著名な業績のある数学者です。

そもそも、暗記数学別に和田秀樹氏が最初に生み出したわけではなく、多くの教育機関で昔から行われてきたオーソドックス勉強法です。和田秀樹氏らは、その実践例のひとつ提案しているに過ぎません。

暗記数学の要点

暗記数学の要点を述べます。これらは別に数学勉強に限ったことではなく、他の科目の勉強でも、社会に出て自分の考えや調べたことを報告する上でも重要なことです。

  1. 数学重要なのは、技巧的な解法をひらめくことではなく、基礎を確実に理解することである
  2. そのためには、具体的な証明計算例を通じて学ぶことが効果である
  3. 論理ギャップや式変形の意図などの不明点は曖昧にせず、調べたり他人に聞いたりして、完全に理解すべきである

ひらめきよりも理解

一番目は、従来数学重要ものが「ひらめき」や「才能」だと思われてきたことへのアンチテーゼです。実際には、少なくとも高校数学程度であれば、特別な才能など無くとも多くの人は習得できます。そのための方法論も存在し、昔から多くの教育機関で行われています。逆に、「"才能"を伸ばす勉強法」などと謳われるもの効果があると実証されたもの存在しません。

大学入試に限って言えば、入試問題大学研究活動をする上で重要知識や考え方が身についているのかを問うているのであって、決していたずらな難問を出して「頭の柔らかさ」を試したり、「天才」を見出そうとしているわけではありません。

実例を通じて理解する

二番目はいわゆる「解法暗記」です。なぜ実例重要なのかと言えば、数学に限らず、具体的な経験と結びついていない知識理解することが極めて困難だからです。たとえば、

などを、初学者が読んで理解することは到底不可能です。数学においても、たとえば二次関数定義だけからその最大・最小値問題の解法を思いついたり、ベクトル内積定義線形性等の性質だけを習ってそれを幾何学問題に応用することは、非常に難しいです。したがって、それらの基本的概念性質が、具体的な問題の中でどのように活用されるのかを理解する必要があります

これは、将棋における定跡や手筋に似ています。駒の動かし方を覚えただけで将棋が強くなる人はまず居らず、実戦で勝つには、ルールから直ちには明らかでない駒の活用法を身につける必要があります数学において教科書を読んだばかりの段階と言うのは、将棋で言えば駒の動かし方を覚えた段階のようなものです。将棋で勝つために定跡や手筋を身につける必要があるのと同様、数学理解するためにも豊富実例を通じて概念定理の使い方を理解する必要があります。そして、将棋において初心者独自に定跡を思いつくことがほぼ不可能なのと同様、数学の初学者有益実例を見出すことも難しいです。したがって、教科書入試問題採用された教育効果の高い題材を通じて、数学概念意味や論証の仕方などを深く学ぶべきです。

そして、これは受験数学だけでなく、大学以降の数学を学ぶ際にも極めて重要なことです。特に大学以降の数学抽象的な概念が中心になるため、ほとんどの大学教員は、学生が具体的な実例を通じて理解できているかを重視します。たとえば、数学科のセミナー大学入試の口頭試問などでは、以下のような質問が頻繁になされます


不明点を曖昧にしない

教科書や解答例の記述で分からない部分は、調べたり他人に聞いたりして、完全に理解すべきです。自分理解絶対的に正しいと確信し、それに関して何を聞かれても答えられる状態にならなければいけません。

たとえば、以下のようなことは常に意識し、理解できているかどうか自問すべきです。

  1. 文中に出てくる用語記号定義を言えるか。
  2. 今、何を示そうとしているのか、そのためには何が言えれば十分なのか。
  3. 式変形をしたり、ある性質を導くために、どのような定理を使ったのか。
  4. その定理仮定は何で、本当にその条件を満たしているのか。
  5. そもそもその定理は本当に成り立つのか。自力証明できるか。
  6. どういう理屈意図でそのような操作・式変形をするのか。

ほとんどの人はまず「自分数学が分かっていない」ということを正確に認識すべきです。これは別に、「数学の非常に深い部分に精通せよ」という意味ではありません。上に書いたような「定義が何で、定理仮定結論が何で、文中の主張を導くために何の定理を使ったのか」といったごく当たり前のことを、多くの人が素通りしていると言うことです。

まず、用語記号定義が分からないのは論外です。たとえば、極大値と最大値の違いが分かっていないとか、総和記号Σ でn = 2とか3とかの場合に具体的に式を書き下せないのは、理解できていないということなのですから、調べたり他人に聞いたりする必要があります

また、本文中に直接書いていないことや、「明らか」などと書いてあることについても、どのような性質を用いて導いたのか正確に理解する必要があります。たとえば、

整数l, m, nに対して、2l =mnとする。このとき、mまたはnは2の倍数。

などと書いてあったら、これは

pが素数で、mnがpの倍数ならば、mまたはnはpの倍数。

という一般的定理を暗に使っていることを見抜けなければいけません。上の命題はpが素数でなければ成り立ちません。たとえば、l = 1, m = n = 2として、4l =mnを考えれば、mもnも4で割り切れません。他にも、

a ≡ b (mod n) ⇒mamb (mod n)

は正しいですが、逆は一般的には成り立ちません。nとmが互いに素ならば成り立ちます。それをきちんと証明できるか。できなければ当然、調べたり他人に聞いたりする必要があります

l'Hôpitalの定理なども、もし使うのであれば、その仮定を満たしていることをきちんと確かめ必要があります

さらに、単に解法を覚えたり当て嵌めたりするのではなく、「なぜその方法で解けるのか」「どうしてそのような式変形をするのか」という原理意図理解しなければいけません。たとえば、「微分極値が求まる理屈は分からない(或いは、分からないという自覚さえない)が、極値問題からとりあえず微分してみる」というような勉強は良くありません。

そして、教科書の一節や問題の解答を理解できたと思ったら、本を見ずにそれらを再現してみます。これは「解き方を覚える」と言うことではなく、上に書いたようなことがすべて有機的な繋がりを持って理解できているかかめると言うことです。

はじめの内はスラスラとは出来ないと思います。そういう時は、覚えていない部分を思い出したり、本を見て覚え直すのではなく、以下のようなことを自分で考えてみます

  • 問題文の条件をどう使うのか
  • 何が分かれば、目的のものが求まるのか
  • どのような主張が成り立てば、ある定理を使ったり、問題文の条件を示すのに十分なのか

こういうことを十分に考えた上で本を読み直せば、ひとつひとつ定義定理、式変形などの意味が見えてきます。また、問題を解くときは答えを見る前に自分で解答を試みることが好ましいです。その方が、自分が何が分かっていて何が分かっていないのかが明確になるからです。

以上のことは、別に数学勉強に限った話ではありません。社会に出て自分の考えや調べたことを報告する時などでも同様です。たとえば、近年の労働法道路交通法改正について説明することになったとしましょう。その時、そこに出てくる用語意味が分からないとか、具体的にどういう行為違法(or合法)になったのか・罰則は何か、と言ったことが説明できなければ、責任ある仕事をしているとは見なされないでしょう。

Permalink |記事への反応(2) | 18:46

このエントリーをはてなブックマークに追加ツイートシェア

2021-07-18

anond:20210718160818

逆に聞くけど、質問質問で返すのは詭弁のガイドライン抵触するのは承知の上で、貴方は「計算機実数を扱っているという前提が間違っている」のを知っているのか?

逆に何でその程度のことすら知らないと想定してんだよ。意味不明すぎるだろ。そもそも計算機実数を扱っているという前提」なんて存在しねーぞ。お前は実数定義を知ってるのか?有理数を完備化したもんだぞ?有理数稠密だということを理解してるのか?そもそも自然界に「実数」が存在してるなんて証拠は一個でもあるのか?物理学実数体でないと致命的におかしくなるケースが一個でもあるのか?

たとえば、カオス理論が起きるのは「計算機科学で物理学と同じように小数を扱ったから」なのだけど、あれは古典物理学を学んてきた人がおかすミスなんだよ。あれはローレンツ有効数字というまやかしに引っかかって起きたのと、十進法と二進法互換性が無いことに起因したケアレスミスなんだよ。俺はカオス理論否定するのじゃなくて、カオス理論も偶然が生んだ産物だという上で言っているのよ、念の為

意味不明カオスは初期値に鋭敏だというだけだぞ(細かいことを言えば色々あるが)。計算機がどうとか関係ねーし有理数実数関係ねー。パイこね変換のカオスは離散系だろうが。何言ってんだ。

お前はまともに勉強したこともないのに聞き齧った単語でそれっぽいこと言ってるだけなんだよ。まともに勉強してから喋れ。

Permalink |記事への反応(2) | 16:17

このエントリーをはてなブックマークに追加ツイートシェア

2021-03-25

anond:20210325000547

自然数ペアノの公理

整数(負の数)←グロタンディーク構成

有理数(分数)←整域の商体

実数距離空間の完備化

Permalink |記事への反応(0) | 13:53

このエントリーをはてなブックマークに追加ツイートシェア

二乗して0になる実数は0だけ」をどう証明するか

https://www.ajimatics.com/entry/2021/03/22/174633

これについていたブコメ

id:versatile実数の中には、「2乗して0になる数」というのは0しかありません」の証明ってどうやるの?

が、ちょっと面白い問題だったので参戦。

メタブを見に行ったら、そういう数が存在した場合は逆数をとると矛盾が引き起こせるよっていうスマート背理法が書かれてたんだけど、これはかなり危うい議論に見える。

というのも、その議論は0でない実数は必ず逆数が取れるよねっていう前提を所与のものとして扱っているわけで、じゃあその「0でない実数は必ず逆数がとれる」って命題はどうやって証明するのという話になる。

そんなの当たり前の話じゃないかと感じられるかもしれないが、我々の証明しようとしている「二乗して0になる数は0以外にない」という命題も同程度には当たり前のことであって、つまりこれは当たり前から当たり前を示す、基礎論的なところの問題なのである

こういう議論では、話の土台が何より重要で、よく知られた性質の中でもどれは使っていいのか、どれは使ってはいけないのか良く整理してから始めなければいけない。

なぜなら証明済みの性質を贅沢に使って基礎的な部分を証明してしまうと、その元の議論のほうの前提に実は今証明している命題が間接的に入っているんだよということになりかねない。

これは循環論法になってしまう。

から、「当たり前のものを示す時」には、議論が「逆流」しないか十分気にする必要がある。

で今回の問題が具体的にどう引っかかっているかと言うと、実数には有理数という土台があって、有理数整数という土台から作られている。

ここでもし、「二乗すると0になる0でない数a」が【整数の中に】含まれていると、有理数上で、(1/a)*(1/a)の答えが定義できなくなってしまう。

そうなるとそもそも有理数上の掛け算の定義が壊れているということなので、実数構成どころの話じゃない。

まりこの掲題の疑問は有理数に掛け算構造を与える際にこそ気にすべき問題なのである

逆数という概念は掛け算の成立後にようやく有効になる話であって、その前段階にあるはずのこの疑問に対して逆数の性質を使ってしまうのは若干論点先取というか、真芯を外している回答のように思う。

もちろん実数の話であるからには土台にある有理数基本的性質所与のものであるという考え方も間違いではないけれど、それはこの疑問の「心」が見えていないんじゃないかな。

で実際どうやって証明すべきかというと、まずは上述のように【整数で】この性質を示すべき。

もっと言うと整数の土台には自然数(ここでは0を含む)があるので自然数上で非0×非0が非0になることを示す。

そうして得られた性質整数有理数実数へと順々に拡張していく。こういう流れになる。

自然数上での証明は、0でない自然数には前者関数Preが適用できることを用いて、

a*b=a*Pre(b)+a≧a>0

という感じで示せる。(もちろんもっと厳密にやるけどね)

整数自然数コピーを貼り合わせてできている。自然数上での非0×非0=非0という性質から整数上でも容易にそれが示される。

有理数整数分子分母のペアに約分という同一視を入れてできている。ここでも整数上の非0×非0=非0の性質簡単有理数上に拡張できる。

最後実数は、有理数無限数列を極限の考え方で同一視してできるので、有理数上の性質をうまく実数上にも持ってくることができる。

概要だけざっくりだけどこれを組み立てれば疑問への回答になると思う。

道筋だけ最後まで立てられることがわかったら途端に興味を失うやつ)

追記

文章が長ったらしくて申し訳ないけど、やっぱ伝わってないね…。

前半部は、「当たり前のことを証明する時には当たり前の前提を無批判に使っちゃいけない」ってことを言ったつもり。

ブコメで貰ってる「両辺をaで割って〜」っていうようなのも、実は割り算の存在無意識に前提とされているけど、零因子があるかないかっていうのは【割り算の構成のためにこそ】必要な話なんだ。

から「割り算というもの存在する」って無邪気に考えることすらもこういう問題では危険だよと言いたかった。

零因子がないことを証明→よかった、これで割り算が「上手く定義」できるぞ→逆数も定義できるぞ

という話なんで、第一段階の証明のところで割り算の存在を前提にしては議論が逆流してしまうのです。

Permalink |記事への反応(4) | 00:05

このエントリーをはてなブックマークに追加ツイートシェア

2020-12-13

anond:20201213001142

横だけど、天才っていうか初めからセンスがある奴はそもそも一般人が言う意味での「努力」はしなくても学習できるんだよね。一般人と同じ経験をしても脳が勝手抽象化して概念獲得するから学びの密度が全く違う。掛け算九九の表を渡されたら一般人は頑張って暗記するみたいになるんだけどセンスあるやつはあーねっつって有理数の積くらいまで一瞬で理解し終わるみたいな。それって一般人の数ヶ月とか数年とかの努力に相当するんだよね。

もちろんそれでもセンスある奴だけの世界でやっていくなら「努力」が必要になるんだけど、そこまで行かず一般社会でいいやってなるなら努力必要自体が無いというのは全然あり得る。

Permalink |記事への反応(1) | 00:27

このエントリーをはてなブックマークに追加ツイートシェア

2020-06-05

Cauchy列って何?

収束先がどこかにある数列です。

定義

Xを距離空間、d: X×X→Rを距離関数とする。

Xの点列(x_n)は以下をみたすとき、Cauchy列であるという。

任意のε > 0に対して、ある自然数Nが存在して、n, m ≧ Nならば、d(x_n, x_m) < ε。

収束する点列はCauchy列である。実際、lim[n→∞] x_n = x ならば、任意のε/2>0に対して、ある自然数Nが存在して、n>Nならば|x - x_n|<εとなるので、任意のε>0に対して、n, m>Nならば|x_n - x_m|≦|x - x_n| + |x -.x_m|<ε。

逆に、Xの任意のCachy列がXの点に収束するとき、Xは完備であるという。

実数場合

実数全体の集合は、絶対値から定まる距離について、完備である

(x_n)を実数のCauchy列とする。

まず、(x_n)は有界である。実際、ε>0に対して、Nが存在して、n>Nならば|x_n - x_N|<εなので、任意のiに対して、|x_i|≦max{|x_1|, |x_2|, ..., |x_N|, |x_N|+ε}である

Bolzano-Weierstrassの定理より、有界実数列は収束する部分列を含むので、自然数列n_1<n_2<...<n_i<...と実数xが存在して、lim[i→∞] x_(n_i) = xとなる。

xが(x_n)の極限である。lim[i→∞] x_(n_i) = xより、任意のε/2>0に対して、ある自然数Iが存在して、i>Iならば|x-x_(n_i)|<ε/2。(x_n)がCauchy列であることより、任意のε/2に対して、ある自然数Nが存在して、n, m>Nならば|x_n - x_m|<ε/2。この2つより、任意のε>0に対して、n>max{I, N}ならば、|x - x_n|≦|x - x_(n_n)| + |x_(n_n) - x_n|<ε。□

完備ではない例

√2に収束する数列(1, 1.4, 1.41, ...)はCauchy列だが、Qの元に収束しない。

f_n(x)を以下で定める。

xが有理数で、xを既約分数a/bに表したとき、bがn!の約数ならば、f_n(x) = 1。それ以外は、f_n(x) = 0。

各f_nは有限個の点で1になる以外0なので、Riemann積分可能で、∫|f_n(x)|dx = 0。

しかし、その(各点収束)極限は、xが有理数とき1、無理数とき0となる関数であり、これはRiemann積分不可能。(有理数稠密から区間の細分をどれだけ細かくとっても、各区間に1を取る点と0を取る点がそれぞれ存在するため、Riemann和が収束しない)

Permalink |記事への反応(0) | 07:50

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp