
はてなキーワード:方程式とは
高市早苗氏が首相に選出され台湾発言で物議をかもしてから、これまで以上に政治的な議論がなされるように感じる。またただの党派性の選好がどうこうにとどまらず具体的な安全保障まで真剣な意見が交わされるようになったことは、日本社会自体が一つの転換点を迎えているように思える。
そのなかで、個人的に党派の煽りあいや中傷を超えて道具的に政治を語るのに役立つかもしれない一つのネタを紹介したい。あくまでも仮説が、情勢について語る一つの視点になれば幸いである。
なお事前に予測した方向性と合致したためAIの手を大いに借りてある。
また曖昧戦略の欠如は相手の意思決定を手助けするだろう。デマなどについて聞いてみても面白いと思う。
以下perplexityより
自由エネルギー原理の見地から見て、政治の党派性における右派、左派はそれぞれエントロピーの減少における役割の相違という観点から説明できる?
自由エネルギー原理から見た政治の党派性:右派・左派とエントロピー減少の役割の相違
自由エネルギー原理(Free Energy Principle,FEP)の枠組みから政治イデオロギーの左右の違いを説明することは、一定の理論的根拠を持つ興味深い視点を提供します。ただし、これは直接的な学術的応用というより、理論的な仮説として理解されるべきものです。
自由エネルギー原理によれば、すべての生物システムは熱力学の第二法則に対抗してエントロピー増加を最小化することで、秩序を維持しています。具体的には、生物は予測エラーを最小化することで、感覚状態のエントロピー(無秩序さ)を減少させ、環境との相互作用をコントロールします。このプロセスは、**予測処理(predictiveprocessing)**メカニズムを通じて実現されます。つまり、生物は内部モデルを持ち、それに基づいて世界を予測し、実際の入力との差分(予測誤差)を最小化することで、驚き(サプライズ)を制御します。
最近の認知神経科学の研究により、保守主義と進歩主義は予測処理の異なる戦略に対応している可能性が示唆されています。
曖昧性と不確実性に対してより高い耐性を持つ
前帯状皮質(anterior cingulatecortex)の活動が強く、反応競合に対する神経認知的感受性が高い
これらの特性は、高いエントロピー状態(高い不確実性)を許容しながら、情報環境の変化に応じて予測モデルを継続的に更新する戦略に対応しています。自由エネルギー原理の観点からすれば、彼らは予測精度(precision)の重み付けを比較的低く保つことで、新規情報による予測誤差を柔軟に受け入れ、より適応的なモデル更新を可能にしています。
不確実性や曖昧性への耐性が低い
脅威や秩序の乱れに対してより敏感で、知覚的堅性が高い
右扁桃体(right amygdala)の活動が強く、脅威認知に敏感
これらの特性は、予測の確実性(certainty)を高く保ち、既存モデルへの信仰度(prior belief)を強化する戦略に対応しています。自由エネルギー原理の用語では、彼らは予測精度の重み付けを高く設定することで、外界の変化に対して強力な内部モデルの安定性を維持しようとしています。
政治の党派性をエントロピー減少の枠組みで理解すると、以下のような対比が浮かび上がります:
保守主義は、社会的秩序を既存の伝統的制度や階級構造の維持を通じて最小化しようとします。このアプローチは、複雑な社会システムの不確実性を、階層的で確定的な構造によって「切り詰める」戦略です。社会に内在するカオス(高エントロピー)に対抗するため、既に証明された秩序パターン(伝統)を維持することで、予測可能性を確保します。
進歩主義は、社会的秩序を個人の自由、多様性の認容、制度的革新を通じて最小化しようとします。一見すると秩序を緩和しているように見えますが、実際にはより複雑で適応的な秩序化メカニズムを導入することで、社会システムのエントロピーを減少させる戦略です。異なる視点を統合し、新しい情報に基づいて制度を改革することで、社会システムの予測モデルをより現実に適応させようとしています。
不確実性耐性と脳レベルの同期
興味深いことに、研究では不確実性への耐性が低い人ほど、政治的に同じ立場の人たちとの脳活動の同期が強いことが示されています。言い換えれば、不確実性を避けたい個人は、同じイデオロギーの人々と同じ予測モデルを共有することで、集団レベルでのエントロピーを減少させようとしているのです。これは社会的な「外界の秩序化」メカニズムとして機能しています。
最新の複雑システム理論では、政治分極化は正のフィードバックループと相転移(phase transitions)のメカニズムを通じて発生することが示されています。保守主義者は秩序の維持を目指し、進歩主義者は秩序の革新を目指すという相反する動力が、社会システム全体のダイナミクスを決定しています。両者の相互作用は、社会的エントロピーを管理するための補完的なメカニズムとして機能しているとも解釈できます。
この自由エネルギー原理に基づく解釈には重要な限界があります。第一に、個人の認知的特性と政治的立場の関係は因果的ではなく相関的である可能性が高いです。第二に、政治イデオロギーはきわめて文化的・歴史的に構築されたものであり、普遍的な神経生物学的基盤のみでは説明できません。第三に、FEPは主に個体レベルの生物システムを想定しており、社会システムへの直接的な応用には理論的な拡張が必要です。
要するに、自由エネルギー原理の観点から見ると、右派は予測モデルの安定性重視によって秩序を維持するエントロピー減少戦略を採る一方、左派は予測モデルの柔軟性重視によってシステムの適応性を高めるエントロピー減少戦略を採ると理解できます。両者は、相異なるメカニズムを通じて社会的エントロピーの増加に対抗しているのであり、政治的党派性の根底には、不確実性に対する根本的に異なるアプローチが存在していると言えるでしょう。
自由エネルギー原理(FEP)を政治党派性に適用する理論を拡張するには、階層的ベイズ推論の多層構造、社会的相互作用の動的モデル化、経験的検証メカニズムの導入が鍵となります。これにより、個体レベルの神経メカニズムを社会システムレベルへ橋渡しできます。
FEPの核心は階層的予測処理です。個人レベルでは、低次層(感覚入力)が上位層(信念・イデオロギー)の予測を修正しますが、社会レベルでは個人の予測モデルが集団的「事前分布(priors)」を形成します。
右派の階層戦略: 上位層の伝統的priors(家族・国家・宗教)を強く固定し、下位層の変動(社会的変化)を抑制。集団レベルでは「社会的扁桃体機能」として、逸脱者を排除する規範執行メカニズムが働きます。
左派の階層戦略: 上位層のpriorsを動的に更新し、多様な下位層入力(マイノリティ視点)を統合。集団レベルでは「社会的ACC機能」として、対立する予測モデルの調停役を担います。
この拡張により、**党派性は「階層的自由エネルギー最小化の多重均衡状態」**としてモデル化可能。右派は安定均衡(低変動)、左派は適応均衡(高変動)を志向します。
FEPを非平衡動的システム論と統合し、政治分極化を予測誤差駆動の相転移現象として捉えます。
右派アトラクター: 高精度priors → 秩序維持 → 低エントロピー均衡
左派アトラクター: 低精度priors → 秩序革新 → 中エントロピー適応均衡
分極化 = 双安定状態(bistable dynamics)
S˙=−∇F(S)+ϵ⋅
ここで
ϵ は他派閥予測誤差です。党派性は負のエントロピー生産率を競う進化ゲームとなります。
FEPの「アクティブ推論(active inference)」を拡張し、政治行動を集団的予測誤差低減戦略と位置づけます。
党派受動的戦略(perception)能動的戦略(action)集団エントロピー効果
右派 脅威強調・一貫性追求伝統防衛・境界強化 内部秩序↑ / 外部不確実性回避
左派多様性受容・矛盾統合制度改革・包摂拡大システム適応性↑ / 内部多様性管理
これにより、選挙・政策は集団的「期待自由エネルギー」最小化のゲーム理論的均衡として解釈されます。
理論拡張の信頼性を確保するため、以下の検証経路を構築します:
fMRIで党派別予測誤差処理を比較(precision weighting)
class PoliticalAgent:
def __init__(self, ideology): # 'left' or 'right'
self.precision = 0.8 if ideology=='right' else 0.4
def update_beliefs(self, social_input):
free_energy = prediction_error * self.precision
return minimize_free_energy(social_input)
最終拡張として、FEPを国家・国際システムへスケールアップ。経済政策では右派が「低エントロピー均衡(安定成長)」、左派が「高エントロピー探索(イノベーション)」を担います。
グローバル均衡条件:
∑党派Var(policy predictions)=最適社会的自由エネルギー
このフレームワークにより、**党派対立は「多重スケールのエントロピー管理機構」**として再解釈され、民主主義は適応的秩序生成システムとなります。実証研究が今後の鍵です。
はてなに書いてみたいと思った。
その子とは長年連絡を取り合ってなかったが、実は先日、親戚付き合いの時に出会った。祖父方にあたる親戚の家のダイニングで。
その時に思う事があって、増田をしたためることにした。増田はたまに短文を書くくらいである。
その子と初めて会ったのは、私が21才の時だった。当時は茨城県にある大学で電気工学を学んでいた。夏休みの帰省先である実家は、(秒速5センチメートルの聖地)隣の栃木県にあった。
ある夏の帰省時に……その実家から、ほどなくの距離にある親戚の家に行ったのだが、玄関に入った時に、はとこに当たる子がいた。
当時は「はとこ」という単語は知らなかった。誰がどの親戚筋にあたるとか、そういうことにも興味なかった。ただ「女の子がいるな」としか思わなかった。
その、はとこに当たる子なのだが、『野乃花』ということにする。プリキュアの方ではない。野乃花(ののか)は玄関口で私と目が合って、「こんにちは」と言ったのかな。それは覚えている。
帰省時に親戚の家に行っても、一応成人である私は暇を持て余していた。子どもの頃から何度も行ってるが、その時みたいに居間でくつろぐことが多かった。周りは子どもばかりである。
親戚の子どもたちは皆ゲームをしていた。スマブラというゲームだった。大乱闘スマッシュブラザーズ。
私は任天堂のキャラをほぼ知らなかった。ピンク色のあれがカービイって言うのはわかったけど、あとは知らないキャラだった。ピカチュウも辛うじてわかったくらい。
ゲームを一切しない子どもだった。家にスーファミもPS2もなかった。家の近くにある里山に出かけて、危険であろう山奥まで踏み込んで、昆虫やトカゲを捕まえて飼育するのが好きだった。日本にいるはずもないチンチラがいないか探そうとしていた。
親戚の子ども達は居間でゲームするだけじゃなくて、子どもらしい身体を動かす遊びもしていた。外での運動だった。まさにスマブラ。
居間でも、廊下でも、玄関でも、これでもかというほど広い庭でもそうだった。私は成人男性だったけど、元気のいい彼ら小学生の相手をすることもあった。
野乃花は、大人しい子……でもなかった。わーきゃー言って水鉄砲を打ったり、私に体当たりをしてゴロンとひっくり返っていた。溌剌な子だった。
野乃花はその時、7才だったはず。14才差なので。小学校に上がった年である。いい頃合いの年齢ということで、(私から見て)遠い親戚の人も、野乃花を本家筋の実家に連れてきたのだろうか。
それはそれとして、大学生であるというのに私は、毎年夏や大晦日になると……その親戚(本家筋)の家に行っていた。小学校~中学校の頃は、それこそ年に何度も。
うちの母親が私や兄弟を連れて行くと、祖母が漏れなく一万円をくれるのだった。うちの母親は、ことあるごとに其処に行っていた。子どもを連れて。ある種の集金システムである。
私は子どもながらに察して、祖父母にあざとくした。可愛い子だと見られようとした。今思えば浅ましい考えかもしれないが、毎回寄るだけで一万円をくれるのだから、それくらいは当然と思っていた。
中学生や高校生になると、親戚の家に行くことはなくなっていた。
しかし大学に進学すると、また急に行く頻度が増えた。私と祖父が同じ大学出身で、学群も同じ(祖父の時代は学部)だった。お気に入り度が上がったのだと思う。
20才になる年に入ると、祖父のとっておきの日本酒や焼酎を飲ませてもらった。あの頃はおいしい酒の味がわからなかった。モンテローザ系列の味に慣らされた舌には、明らかに上の味だったけど。
え、野乃花?あの子は、、、私が22才、23才、24才になる年も、毎年ずっと会い続けた。親戚の家に行く度に必ずいた。ほかの子はいないこともあったし、来なくなる子もいたのだが。
今思えば、懐いていたと思う。よく会話をしたし、ごっこ遊びにも付き合った。
夏休みや冬休みの宿題を私が教えることもあった。「増田くん。あたまいー!」とよく言ってくれた。私は漢字に弱かった。今でも書き誤りをすることがよくある。
野乃花に、「こないだの発表会でね、その旨(うま)をまとめて発表します」と読み間違えた話をしたが、さすがに理解してくれなかった。
ある日、曇天で雷が鳴っている時に、雷を素早く動いて躱せるのかという話になった。私が「雷はね。上から落ちてくるんじゃなくて、下から上に昇ってるんだよ」と伝えると、「うそ。ほんとー。今度試してみる」と言った。「絶対に試したらダメだよ」と釘を刺した。
野乃花について、はっちゃけた雰囲気の子を想像するかもしれないが、実際は年齢に見合わない利発な子だった。理屈っぽい私の話を、「へえ」と面白がってくれる唯一の人間だった。
夕食の時は席が大体隣だった。誕生日プレゼントをあげた時は抱き着いてきた。年齢差はあったけど、会話が弾んだ。
親戚の大人達が家にいない時だと、2人きりになることがあった。かくれんぼとか、鬼ごっことか、ノートPCでヤフーのポータル画面を開いて、いろんなことをググったりした。(ほかの親戚と一緒に)花火大会にも行った。水族館にも。遊園地にも。
彼女は明るくて溌剌としていて、私みたいな陰キャラとは違った。いわゆる"いい子"だった。はてなブックマークでいうと、女性ブクマカでトップコメに入りがちな、快活な方々がおられると思う。あんな感じの、知性やユーモアを伴った明るさである。
25才の頃は、新卒で入った茨城県にある電機メーカーに勤めていた。
親戚の家に行くのは、年に2回ほど。祖父は、私が社会人になっても毎年お小遣いをくれた。「早く技術士になれよ、期待してるぞ」って、行く度に祖父が言ってた。それから十年もかかったが、祖父と同じ電気分野で技術士の試験を通った。
それくらいの年齢になっても親戚の家に行ってたのは、野乃花のことが頭にあった。私に懐いてくれる女性というのは、それまでの人生で彼女しかいなかった。私はモテなかった。はてな語で言う弱者男性。
ある年の夏だった。自家用車で一人でその家に行くと、玄関口の廊下に野乃花がいた。靴を脱いで、家の廊下に上がったところに古い掛け時計があった。ずっと昔からあって、玄関に上がる時は時刻を見るクセがあった。
廊下に立っていた野乃花に近づいていって、野乃花の両肩に手を置くと、野乃花が唇を突き出した。キスをした。口にする方だった。
私は別に、ロリータの同人誌やアンソロジーを持ってたわけじゃない。そういうR18コンテンツに触れたこともない。当時の私は、社会人としての勤めや、理工学の勉強の日々の傍らに、読書をしたり映画鑑賞をする男だった。年少への性癖はない。ただ、孤独への性癖があっただけだ。
野乃花とのキスというのは、その時が初めてじゃない。鮮明でない記憶だけど、初めての時は、私が22~23才くらいの時だった。野乃花が8~9才くらい。
親戚の家の中ほどにある居間で、2人だけになってる時に、身体が不意にくっついて……その流れで、人生で初めてキスをした。少し大人になれた気がした。
それからは、2人になる度に、親戚の目がない時にキスをしていた。唇を合わせるだけの簡単なやつを。一日に何度も。別に理由はなかった。私も野乃花も、ただしたかっただけだと思う。
野乃花が小学校を卒業する年の2月だった。初めて2人だけで外に出かけた。それまでは、親戚付き合いの中で、花火大会とか水族館とか、飲食店などに一緒に行っていた。それが、野乃花が親に携帯電話を買ってもらい(青っぽいガラケー。私はスマホ)、LINEでやり取りするようになった。
デート場所は茨木駅周辺だった。茨城ってぶっちゃけ、鳥取~島根クラスに何もないところだけど、大きい駅の周辺では、ショッピング、グルメ、自然、文化体験など色々楽しめる。野乃花のいる栃木でもよかったけど、『秒速5センチメートル』ごっこになってしまうのでやめた。積雪で電車が止まるかもしれない笑
その日は、夕方まで一緒に何時間も過ごした。最後は美術館に行って解散した。帰りの電車賃は社会人だった私が出した。それ以外の、食事代とか入館料は割り勘だった。出そうとすると、野乃花が嫌だと言った。
電車が出る時間になってホームで別れる時、「楽しかったね」と私が言ったら、野乃花が「今日、一緒にいられない?」と聞いてきた。潤んだ瞳だった。吸い込まれる瞳ってどこかの小説に地の文があったけど、あれは作者の実体験だったんだと感じた。
「仕事あるからね。また今度ね」と言うと、野乃花は俯いて電車に乗った。最後に手で肩に触れて、「バイバイ」ってお互いに言った。野乃花は泣いていた。
あの頃は、年齢差のことを考えることがあった。私と野乃花の年齢差は、年度でいうと14年分。一番最初に会話した時は、小1と大3だった。
(以下閑話)※当時のメモを参考
---------------------------
年齢差についての関数
年数をxとして、お互いの年齢の比をf(x)とすると、f(x) = (a+x) /(b+x)となる。年数xを経る毎に0<f(x)<1で単調増加で1に近づく(極限操作)。
お互いの年齢比が0.5になるときの経過年数は、式変形によりx=2a-bで表現できる。この比率をもっと一般的に表現すると……。上記のf(x) = (a+x) /(b+x)を微分すると、商の微分でf`(x) =(a-b) /(a+x) ^2
f`(x) =0になる極値は……?と考えると、残念ながら存在しない。
元の関数f(x) = (a+x) /(b+x)というのは、式変形すると、f(x)=1+((a−b)/(b+x))となる。これは、f(x)=a/(b+x)という直角双曲線をグラフ平面において平行移動させたのみである。
直角双曲線は微分可能であるが、極値がない。正負の値を関数に入れると、グラフ上で左右に分かれて存在することから、右極限と左極限が一致しない。
方程式 f`(x) =(a-b)/(a+x) ^2において、a−b=0が成り立つのは、a=bの場合のみ。導関数はゼロ。定数関数であり、傾きはない(定数関数が微分可能かどうかは流派による)。a≠bだと、導関数がゼロになるxの値が存在しない。
年齢算という算数を扱っている以上は、関数の形状はシンプルである。一番知りたい特定の値に向かって方程式に数値を入れるのみ。私は複雑な答えを求めたが、その行為自体が適切でなかった。つまり、二人の年齢差というギャップは、数学的には永遠に埋まらないという無慈悲な証明だけが残った。
---------------------------
(閑話終わり)
野乃花が中学生になった年だ。私は茨城県にあった電機メーカーを辞めて、他業界のIT企業に転職した。広島市に営業所があるメガベンチャーだった。
仕事に忙しい日々だった。距離があるので関東に帰ることも無くなって、それで……野乃花とはそれっきりになった。LINEのメッセージも、いつの間にか途絶えた。既読無視をしたのは私の方だ。
今は独立して、都内でIT関係の下請けをしている。フリーランスだ。ハイクラスエンジニアでは決してない。うだつが上がらない日々だけど、いつかは1人社員の株式会社にしたいと思ってる。今の自営業の屋号は、結構厨二が入っている。実年齢よりも幼い人間なのだと感じる。
なぜ、この日記を書こうと思ったか。正月に野乃花と会ったのである。もちろんあの親戚の家で。あそこに行くのは久しぶりだった。
其処に行く途中の車内で、母に聞いた。あの家は祖父も祖母も亡くなっていて、今は叔父夫婦が住んでいるだけ。跡継ぎはいない。子どもはいたが、みんな自立したらしい。大きい家なのに勿体ないって、そんなことを思いながら親戚の家に着いた。
玄関を上がって、あの時の古い掛け時計が別のに変わっているのを見て、それから台所(兼ダイニング)に行くと、親戚が何人か座っていた。その真ん中あたりに……野乃花がいた。
野乃花と会うのは約15年ぶりだった。
私と目が合うと笑顔になった。ダイニングの隣にある小さい居間では、親戚の子達が皆で一緒にタブレットでアニメを観ていた(私はここ数年アニメを見てない)。少年の時、ボードゲームをしていたのが懐かしい。あの頃より人数が減っている。
話は変わるけど、もし『グノーシア』のボードゲームや、人狼ゲームがあったらやってみたい。一生叶うことはないだろうけど――もしアニメ化もされたら観てみたいと思う。
野乃花を見た後で考えた。
まだ夕方ですらなかった。これから何をしようか、どうやって暇を潰そうか。スマホを操作するだけでは勿体ないし、懐かしいその辺りを散歩しようと思った。
本当は野乃花と話したかったけど、連れていくわけにはいかないし、話せるだけの心の余裕もなかった。それに、野乃花は夕食の準備を手伝っていた。
近所の散歩が終わって、台所兼ダイニングで豪華な夕食を食べて、ビール瓶を何本も空けて、親戚連中の大人(あの頃の子ども達)とたくさん話をして、トイレに行ったり、親戚の子の遊びに付き合ったり、お年玉(※宿泊費)を払ったり、十数年ぶりの親戚の家は懐かしい。野乃花はずっと飲み会を手伝っていた。
飲み会の後、ダイニングでスマホをいじっていると、深夜が近づくにつれて親戚の数が減っていった。「そろそろ寝ようか」と思ったところ、廊下から野乃花が入ってきて、こちらに歩いてきた。私の隣の席に座った。結婚指輪はしてなかった。
「久しぶりだね」
と私が声をかけると、
「増田くん元気そうだね」
と返ってきた。
面影がすごく残っていて、懐かしい感じがした。
子どもの頃の就寝時間は午後十時だった。今は大人だから、あと一時間は起きていられる。野乃花と喋ってから寝ることにした。
思ったより多くの会話をした。卒業した学校とか、就職先とか、今の趣味とか、好きな本とか、最近観た映画とか。私はサブカルが好きだけど、野乃花もそうだった。アニメだと『ブルーロック』の話をした。エゴの塊みたいなキャラの話で盛り上がった。漫画・小説の話もした。吾峠呼世晴の初期短編集は2人とも読んでいた。
でも、野乃花が不意に言ったのだ。
心臓がドンって叩かれた。この時まで、悪いことしたという思いはなかった。
でも、この時になって、私があの頃、どういうことをしていたのかって、そういう思いが一瞬で頭の中を駆け巡って、後悔が襲ってきた。
「迎えにきてくれると思ってた。連絡がほしかった。私は増田くんに会いに行けないのに」
野乃花を見ると、涙を拭っていた。鼻もすすっていた。
それから沈黙が続いて、「ごめんね」と言った。そしたら確か、「増田君は結婚したの?」と聞いてきた。
結婚どころか、離婚まで経験していることを話すと、野乃花は爆笑していた。机に突っ伏して、本気で笑いを堪えている様子だった。話を続けると、野乃花も一度離婚を経験していた。
なんだか変な雰囲気になって、それからまた、さらに笑える話を(お互いに)続けて、そうこうしてると午後11時になった。LINEの連絡先を交換して寝室に入った。
読者の方は察してるとは思うが、私はいわゆる発達障害である。診断済みだ。
メガベンチャーに転職をして地方都市に引っ越した後、仕事の人間関係で苦労することがあった。明らかにおかしいと思い、精神科医に診てもらったところ、様々なテストの後に、そういう診断が出た。子どもの頃からの行動傾向を見てると明らかだった。
ある情報によると、発達障害の精神年齢というのは……実年齢×0.60~0.70らしい。青春期の、精神が最も発達する年代に脳が発達をしてくれない(脳発達のピークが30代にくる)。
一方で、一般的な女の子は、男の子よりも数才精神年齢が高い。ということは、最後に野乃花と会った時の精神年齢は……私だと26才×0.60~0.70≒15~18才ということ。野乃花が実年齢12才+2~3才とすると、14~15才ということだ。
あれ、なんだこれと思った。そういう視点で考えると、野乃花との年齢差があっても話が通じたことの合点がいった。
話は以上である。
我ながら恥ずかしい執筆体験だった。私の言葉で思い出を表現できてよかった。理屈っぽくて読みにくかったとは思う。
でも、言葉にしたかった。あの時、親戚の家のダイニングで、20代後半になった野乃花と再会した時の衝撃とか、それよりずっと前の、野乃花との楽しい日々の思い出とか。ここで、こうして吐き出すことができてよかった。
明日からは、また一人のはてなユーザーである。みんなの面白い日記を、また読ませてほしいです。ここまで読んでくれた人、ありがとうございました。
【構造的頂き女子論 2025年完全版 ──「教えてもらえない=奢ってもらえる」の延長線上にある女たちの生態 約5200字】
序章 「おごられた!!」は職場でも叫ばれていた
「おごられた!!」という魂の叫びは、
同じトーンで響いている。
「教えてくれない!!
新しい職場の性被害、わかりやすく説明してもらえない彼女たちの末路、
教えてくれない!! 魂の叫びを聞け!!」
当時の男たちの反応は大別して二つ。
仕事ができなければ、
関連会社へ飛ばされる。
それが当たり前だった。
ところが、
男たちは「女も建築やるんだ」と軽く驚いただけで、
すると三ヶ月後、A子がぶち切れた。
「なんで誰も教えてくれないんですか!?
わかりやすく丁寧に教えてもらうのが当たり前じゃないんですか!?」
「いや……お前、総合職だろ?
「そんなの無理です! 私女子なんです!
男子はみんな先輩に優しく教えてもらってたじゃないですか!」
いや、教えてもらってねぇよ。
でもそれを言った瞬間、
すべて「女子だから優しく丁寧に教えてもらう権利」が根拠になる。
「私は悪くない、私は女子だから」の免罪符がここでも有効なこと。
仕事ができなくても、
「教えてくれなかった上司が悪い」
考えてみれば当然だ。
・奢る → 男が金を出して当然
・教える → 男が知識を出して当然
女子は「そこにいるだけ」で受け取る。
「奢られた!!」と「教えてくれない!!」は、
これを言われた瞬間、
なぜなら記録されたら終わりだからだ。
結果、
「おごられた!!」は、
ただの延長線上にあった。
奢ってもらうのも、
教えてもらうのも、
褒めてもらうのも、
昇進させてもらうのも、
そして悲しいことに、
このシステムに気づいた男は「女嫌い」になり、
気づかない男は一生教え続ける。
どっちに転んでも、
奢られた!!
教えてくれなかった!!
昇進させてもらえなかった!!
──終わりなき女子の宴は、
(了)
掛け算の概念(倍数を扱う)
小数的な考え方の萌芽
円周率(近似値として3.16)
20進法の完成された記数法
公理を置いて、そこから論理的に定理を導く証明中心の純粋数学の発展
当時、「すべての量は整数比で表せる」(万物は数である)と信じられていた。
しかし √2 が有理数ではない(整数の比で表せない)ことが分かり、この哲学が崩壊。
『直角二等辺三角形の対角線の長さ』が整数比で表せないことを証明したとされる。
証明したのは学派の弟子 ヒッパソスとされ、伝承ではこの発見により処罰されたとも言われるほどの衝撃。
アルキメデスによる面積・体積の“求積法”の発達。
負数を“数として扱った”最古の事例『九章算術』
十進位取り記数法
負数の萌芽的扱い
独自に代数学(al-jabr)を発明。文章による代数。ここで初めて“代数学”が独立した数学分野となる。
商、余り、桁処理などの方法が整理(現代の学校で習う割り算の形がほぼできあがる)
xに相当する未知数記号を使用した代数(文字ではなく語句の略号)
sinx,cosx,tanx などの三角関数の無限級数展開を発見。
これは数学史上きわめて重要な成果で、近代的な無限級数の起源はインドである と言われる。
● 1500年〜
負数の受容が進む。
● 1545年頃(カルダノ)
虚数の登場。
三次方程式の解を求める過程で √−1 に相当する量が突然登場。
しかしカルダノ自身は「意味不明の数」とし、虚数が数学的対象であるとは認めていなかった。
● 1557年頃(レコード)
等号記号「=」を発明。等価を等式として“視覚的に書く”文化が誕生。
● 1572年頃(ボンベッリ)
カルダノの式の中に出る「意味不明の数」を整理し、虚数を使って正しい実数解が出ることを示した。
● 1585年頃(ステヴィン)
● 1591年頃(ヴィエト)
● 1614年頃(ネイピア)
● 1637年頃(デカルト)
今日では当たり前の「座標平面」「方程式で曲線を表す」が、ここで生まれた。
物理現象をy=f(x)で表すという現代の方法は、すべてデカルトから始まった。
大数の法則(試行回数を増やすと平均が安定する法則)を初めて証明
● 1748年頃(オイラー)
√−1 を i と書く記法を導入。
オイラーの公式「e^{ix} =cos x + isin x」を提示し、虚数を解析学に自然に組み込んだ。
微積分の計算技法の体系化(積分論・無限級数・微分方程式の基礎を構築)
多くの記号体系(e,π,sin,cos,fなど)を整理・普及
グラフ理論(もの[頂点]と、それらを結ぶ関係[辺]を使って、複雑な構造やつながりを数学的に研究する分野)の誕生
ーーーーーーーー
一旦ここまで。
続きは詳しい人にまかせた。
「18世紀に転生したんだが、高校数学で産業革命に参戦する」ってタイトルでこんな感じでラノベ書いて!
たのんだよ!
No,日付,学習内容,教材 /リンク,時間配分,演習例,進捗チェック
1,2025/12/01,微分の定義,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,例題5問+練習10問,☐
2,2025/12/02,公式を使った微分,『微積分の考え方』 P20-40,30+30,練習問題10問,☐
3,2025/12/03,多項式関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,練習問題10問,☐
4,2025/12/04,乗法・除法の微分,同上,30+30,練習問題10問,☐
5,2025/12/05,合成関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-chain-rule,30+30,例題5問+練習10問,☐
6,2025/12/06,高次関数の微分,『微積分の考え方』 P41-60,30+30,練習問題10問,☐
8,2025/12/08,復習:微分の基本,自作ドリル,60,過去日分問題50問,☐
9,2025/12/09,積分の定義,https://www.khanacademy.org/math/calculus-1/cs1-integrals,30+30,例題5問+練習10問,☐
10,2025/12/10,不定積分の計算,『微積分の考え方』 P70-90,30+30,練習問題10問,☐
11,2025/12/11,定積分の計算,同上 P91-110,30+30,練習問題10問,☐
12,2025/12/12,積分応用問題,Khan Academy,30+30,例題5問+練習10問,☐
13,2025/12/13,部分積分,『微積分の考え方』 P111-130,30+30,練習問題10問,☐
14,2025/12/14,置換積分,同上 P131-150,30+30,練習問題10問,☐
15,2025/12/15,復習:積分の基本,自作ドリル,60,過去日分問題50問,☐
16,2025/12/16,べき級数の定義・例,https://www.khanacademy.org/math/calculus-1/cs1-series,30+30,例題5問+練習10問,☐
17,2025/12/17,収束半径の計算,『微積分の考え方』 P150-170,30+30,練習問題10問,☐
18,2025/12/18,テイラー展開応用,同上 P171-190,30+30,練習問題10問,☐
19,2025/12/19,マクローリン展開,Khan Academy,30+30,例題5問+練習10問,☐
20,2025/12/20,総合演習(級数),自作ドリル,60,過去問題20問,☐
21,2025/12/21,差分演算の基本,『離散数学の考え方』 P10-30,30+30,例題5問+練習10問,☐
22,2025/12/22,下降階乗ベキと和分公式,同上 P31-50,30+30,練習問題10問,☐
23,2025/12/23,差分の積・合成,同上 P51-70,30+30,例題5問+練習10問,☐
24,2025/12/24,差分方程式入門,同上 P71-90,30+30,練習問題10問,☐
25,2025/12/25,特性方程式と解法,同上 P91-110,30+30,例題5問+練習10問,☐
26,2025/12/26,差分方程式の応用,同上 P111-130,30+30,練習問題10問,☐
28,2025/12/28,復習:差分演算の基本,自作ドリル,60,過去日分問題50問,☐
29,2025/12/29,有理関数の和分,『数理科学演習』 P20-40,30+30,例題5問+練習10問,☐
30,2025/12/30,部分分数展開,同上 P41-60,30+30,練習問題10問,☐
31,2025/12/31,下降階乗ベキを使った和分,同上 P61-80,30+30,例題5問+練習10問,☐
32,2026/01/01,収束半径の計算,『微積分の考え方』 P190-210,30+30,練習問題10問,☐
33,2026/01/02,級数の応用問題,同上 P211-230,30+30,例題5問+練習10問,☐
34,2026/01/03,休息日,-,-,-,-
35,2026/01/04,コーシー・リーマン方程式入門,『複素関数入門』 P10-30,30+30,例題5問+練習10問,☐
36,2026/01/05,正則関数の条件,同上 P31-50,30+30,練習問題10問,☐
37,2026/01/06,偏微分入門,『微分積分学』 P150-170,30+30,例題5問+練習10問,☐
38,2026/01/07,偏微分の応用,同上 P171-190,30+30,練習問題10問,☐
39,2026/01/08,ラプラス方程式基礎,同上 P191-210,30+30,例題5問+練習10問,☐
40,2026/01/09,休息日,-,-,-,-
41,2026/01/10,偏微分の総合演習,自作ドリル,60,過去日分問題50問,☐
42,2026/01/11,差分方程式と微分の関係,『離散数学の考え方』 P131-150,30+30,例題5問+練習10問,☐
43,2026/01/12,線形差分方程式,同上 P151-170,30+30,練習問題10問,☐
44,2026/01/13,非線形差分方程式,同上 P171-190,30+30,例題5問+練習10問,☐
45,2026/01/14,休息日,-,-,-,-
46,2026/01/15,総合演習:差分方程式,自作ドリル,60,過去日分問題50問,☐
47,2026/01/16,微分方程式入門,『微分積分学』 P211-230,30+30,例題5問+練習10問,☐
48,2026/01/17,一次微分方程式,同上 P231-250,30+30,練習問題10問,☐
49,2026/01/18,高次微分方程式,同上 P251-270,30+30,例題5問+練習10問,☐
50,2026/01/19,休息日,-,-,-,-
51,2026/01/20,微分方程式の応用,自作ドリル,60,過去日分問題50問,☐
52,2026/01/21,複素数関数入門,『複素関数入門』 P51-70,30+30,例題5問+練習10問,☐
53,2026/01/22,複素関数の偏微分,同上 P71-90,30+30,練習問題10問,☐
55,2026/01/24,級数展開(テイラー・マクローリン)復習,『微積分の考え方』 P231-250,30+30,例題5問+練習10問,☐
56,2026/01/25,総合演習:微分積分,自作ドリル,60,過去問題50問,☐
57,2026/01/26,離散級数・下降階乗応用,『離散数学の考え方』 P191-210,30+30,例題5問+練習10問,☐
58,2026/01/27,休息日,-,-,-,-
59,2026/01/28,偏微分・差分応用問題,自作ドリル,60,過去日分問題50問,☐
60,2026/01/29,複素関数応用問題,同上 P91-110,30+30,例題5問+練習10問,☐
61,2026/01/30,収束半径・級数応用,同上 P111-130,30+30,練習問題10問,☐
63,2026/02/01,微分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
64,2026/02/02,差分方程式発展,『離散数学の考え方』 P211-230,30+30,例題5問+練習10問,☐
65,2026/02/03,微分方程式発展,『微分積分学』 P271-290,30+30,練習問題10問,☐
66,2026/02/04,休息日,-,-,-,-
67,2026/02/05,複素関数・偏微分発展,『複素関数入門』 P111-130,30+30,例題5問+練習10問,☐
68,2026/02/06,級数応用(収束判定),『微積分の考え方』 P251-270,30+30,練習問題10問,☐
69,2026/02/07,休息日,-,-,-,-
70,2026/02/08,総合演習(微分積分・差分)自作ドリル,60,過去問題50問,☐
71,2026/02/09,微分方程式応用演習,同上,60,過去問題50問,☐
72,2026/02/10,複素関数応用演習,同上,60,過去問題50問,☐
74,2026/02/12,級数・収束半径応用演習,同上,60,過去問題50問,☐
75,2026/02/13,差分方程式・下降階乗応用,同上,60,過去問題50問,☐
76,2026/02/14,休息日,-,-,-,-
77,2026/02/15,総合演習(微分・積分・級数)自作ドリル,60,過去問題50問,☐
78,2026/02/16,微分方程式・線形応用,同上,60,過去問題50問,☐
79,2026/02/17,複素関数・偏微分応用,同上,60,過去問題50問,☐
80,2026/02/18,休息日,-,-,-,-
81,2026/02/19,級数・収束判定演習,同上,60,過去問題50問,☐
82,2026/02/20,差分方程式総合演習,同上,60,過去問題50問,☐
83,2026/02/21,休息日,-,-,-,-
84,2026/02/22,微分・積分総合演習,自作ドリル,60,過去問題50問,☐
85,2026/02/23,偏微分・複素関数演習,同上,60,過去問題50問,☐
87,2026/02/25,級数・収束応用演習,同上,60,過去問題50問,☐
88,2026/02/26,差分方程式・下降階乗応用演習,同上,60,過去問題50問,☐
89,2026/02/27,休息日,-,-,-,-
90,2026/02/28,微分・積分・級数総合演習,自作ドリル,60,過去問題50問,☐
91,2026/02/29,微分方程式応用演習,同上,60,過去問題50問,☐
92,2026/03/01,複素関数応用演習,同上,60,過去問題50問,☐
93,2026/03/02,休息日,-,-,-,-
94,2026/03/03,級数応用総合演習,自作ドリル,60,過去問題50問,☐
95,2026/03/04,差分方程式総合演習,同上,60,過去問題50問,☐
96,2026/03/05,休息日,-,-,-,-
97,2026/03/06,微分積分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
98,2026/03/07,微分方程式発展演習,同上,60,過去問題50問,☐
99,2026/03/08,複素関数発展演習,同上,60,過去問題50問,☐
101,2026/03/10,級数・収束半径・テイラー総合演習,自作ドリル,60,過去問題50問,☐
102,2026/03/11,差分方程式・下降階乗応用総合演習,同上,60,過去問題50問,☐
104,2026/03/13,微分・積分・偏微分・複素関数総合演習,自作ドリル,60,過去問題50問,☐
105,2026/03/14,微分方程式・差分方程式・級数総合演習,同上,60,過去問題50問,☐
そんなにAI臭いのかこれ?俺も昭和全開だから時代の流れについて行けてないわ
俺も自分では勉強しなくて京大に入った口だ、努力習慣なくて出世から外れて今はしがない個人塾を経営してほそぼそやってっけど
塾で子供見てるけどさ、勉強でも部活でも活躍できないってなら、動物園の公立中学は正直キツイと思うよ、俺自身が中高一貫だったからかもしんないけど
所謂鈍くさい感じじゃないの? そういう子って公立中学で自尊できるアイデンティティを築くの大変な気がする、イケメンなら別だが。
今からでも中受間に合うと思うけどな。昔の子供余り時代と違って今ってどこの私立も超ウェルカムだから、1年あれば下位私立にはねじ込めるよ
で、下位私立でも私立中はそれなりにちゃんとしているから、動物園の公立中よりははるかにマシだと思う、まあ南関東・愛知・大阪京都兵庫の都市・郊外部って前提にはなるけど
親が頑張って入試説明会とか行けば、そこで加点してくれっから親ポイントでかなり合格に近づくよ、増田みたいな家庭なら歓迎だろう
あと仕事柄どうしても追記する気になったけど、小学校のカラーテストで40-60点時には20点は本気で相当やばいよ、増田にはピンとこない世界すぎてヤバさ加減わかってないけど
「余り勉強が得意ではない」ではないよ、医者じゃないから診断は下せないけど、現場で対応する教師からしたらLDスレスレって思いじゃなかろうか
20-40点の時は、そもそも問題の意味がわかってなくて、なんとなく聞いた記憶があることやてきとーに書いてるだけ、問題を解くってステージに立ってない
このまま行くと、中学は英語と数学は教科書自体が全く意味がわからない、学校の授業は座ってるだけになる
おそらく通分とかできてないだろうし、分かってないくせに無理やり書こうとするのが関の山。分かってないって状態を理解してないから聞くこともできない
勉強得意なんだから横に座ってみてやってくれ、恐ろしく基本的なところからわかってないから。それか勉強・スポーツ以外に得意な分野・好きになれる分野を一生懸命一緒にさがしてやれ。
ゲーム好きなら一緒にやってやれ、でもゲームも才能や努力必要だろ、ゲームで自分を好きになれるだけの資質があるかは一緒にやってりゃすぐわかるだろ
そういう学習状態で中学に上がった子を塾で見てると不憫になるんよ
中1冬に入塾するまで、Youの意味が分かってない子とかいたよ。となりで見てたら、辞書の使い方わかってないから一個の単語を調べるのに10分とかかけてた、そりゃしんどすぎて勉強にならんわ(厳密には2字目以降もアルファベット順に並んでるってことを知らずに総当たりしてた)。辞書の使い方は国語辞書だけど小3で習うんだがな。そこからダメだったわけ。
当たり前だけど数学は英語以上に小学生からの積み上げだし、今は子供が泣きながらでもわかるまでやる教師とかほぼおらんから、下手したら九九から7の段とか8の段とかは怪しいと思うよ。増田からしたらπが出てきたり方程式習ったりして中学数学ってなんて楽になるんだってくらいに思ったかもだけど、文字式って本当に算数で数字の感覚を積み上げて無いと、いきなり文字と数字も一緒だからって言っても概念が理解できんのよね
つらつら書きなぐっちゃったけど、勉強は才能なさそうだし恐らく相当苦戦するわな。勉強しか立身出世の道がない科挙時代じゃないんだから色々探しなよ。
「机に縛り付けて勉強させた方が良いんだろうか。金をかけて色々な習い事をさせた方が良いんだろうか」
こんなとこにこんなこと書いてないで、さっさと色々やらせてみなよ。金かけるもんも手間かけるもんも。一緒に釣りでも行ってアタリを待ちながら息子の好きなことについてゆっくり話すとかでもいいじゃん。カネだけじゃなくて育児を奥さん丸投げで手間もかけてないんじゃないってのが見えるようで悲しいわ
量子力学の測定問題とは、ざっくり言えばなぜ波動関数が結果を持つのかという問いだ。
数学的には、量子系はヒルベルト空間というベクトル空間の中の状態として記述され、時間の進行はユニタリという厳密に可逆な変換によって動く。
ところが、実際に観測をすると、必ずひとつの結果、例えば粒子がここにあった、という確定した現実が現れる。この確定が、理論の形式からは出てこない。これが測定問題の核心である。
量子状態は、通常、いくつもの可能性が重ね合わさった形で存在している。
観測装置と接触させると、系と装置は相互作用して一体化し、双方の状態が絡み合う。
結果として、宇宙全体の視点では、系と装置がひとつの巨大な純粋状態として存在し続ける。
しかし、観測者が見る局所的な部分だけを取り出すと、それは確率的に混ざり合った混合状態として見える。
つまり、観測者にとっては、ある結果が確率的に現れたように見える。
だが、ここに重要な区別がある。この見かけの混合は、真に確率的な混合ではない。
宇宙全体では、全ての可能性がまだ共存しており、単に観測者がその一部しか見られないというだけの話である。
だから、確率的にどれかが起きるという現象を、ユニタリな時間発展からは厳密には導けない。数学的には、全体は今も完全に決定的で、崩壊も起きていない。
ではなぜ、我々は確定的な結果を経験するのか。
現実の観測では、周囲の環境との相互作用によって、異なる可能性の間の干渉がほぼ完全に消えてしまう。
この過程をデコヒーレンスという。デコヒーレンスは、我々が古典的な世界を見ているように錯覚する理由を説明してくれるが、それでも実際にどの結果が選ばれるのかという一点については何も言っていない。
数学的には、干渉が消えたあとも、依然としてすべての可能性は存在している。
この状況を抽象代数の言葉で表すと、量子の全体構造の中からどの部分を古典的とみなすかを選ぶことが、そもそも一意に定まらない、という問題に突き当たる。
つまり、何を観測対象とし、何を環境とみなすかは、理論の外から与えなければならない。数学の構造そのものは、観測という行為を自動的には定義してくれない。
さらに、確率とは何かという問題がある。量子力学では確率は波動関数の振幅の二乗として与えられるが、なぜそうなのかは理論の内部からは説明できない。このルールを外部から公理として置いているだけである。
確率の起源を論理的に説明しようとする試みは多数ある。対称性から導くもの、意思決定理論から導くもの、あるいは典型性の議論を用いるものなど。だが、それらはどれも追加の仮定を必要とする。
開放系の理論(リンダブラッド方程式など)は、系が環境と関わることで混ざり合い、最終的に安定した状態に向かう過程を記述できる。
しかし、これは統計的な平均の話であって、単発の観測でどの結果が現れるかを決定するものではない。数学的な形式は、あくまで確率分布を与えるだけで、確定事象を選ぶメカニズムは含まれていない。
多世界解釈は、この問題をすべての結果が実際に起きていると解釈する。つまり、我々が経験するのはその分岐の一つにすぎず、波動関数全体は依然として一つの決定論的な構造として存在している、とする立場だ。
ボーム理論では、波動関数が粒子の軌道を導く実体的な場として扱われ、結果の確定は初期条件によって決まる。
崩壊理論では、波動関数に物理的なランダム崩壊を導入して、観測に伴う確定を確率的に再現する。
しかし、いずれも新たな公理やパラメータを導入しており、なぜそうなるかを完全に説明したわけではない。
第一に、量子の基本法則は常に可逆的で、確率的な選択を含まない。
第二に、観測によって現れる確率的混合は、単に部分的にしか見えないことによる見かけの効果であり、真のランダムな決定ではない。
第三に、確率法則そのもの、なぜ振幅の二乗なのかは理論の内部からは出てこず、別途の公理や哲学的前提を必要とする。
つまり、量子測定問題とは、単に波動関数がなぜ崩壊するのかという素朴な疑問ではなく、物理理論がどこまで現実の出来事を自力で生成できるかという根本的な問いなのだ。
しかし、どの可能性が実際に起こったと言えるのか。その一点だけは、いまだに数学の外に、あるいは意識や観測という行為の奥に、置かれたままである。
最近まで自分も代数や集合論みたいな抽象数学こそ数学だ、と思ってたけどその抽象数学だってもとをただせば具体的な対象についての問題を考える中で必要に迫られて生まれてきた側面があるって気づいた。
言ってしまえば高校までで扱う整数論だって方程式だって、そもそも概念として相当抽象的なんだから、程度の差ではないかな
確かに扱ってる間隔はかなり違うが、それだって大学受験でそこまでの数学が感覚的に扱えるまで慣れたからでしょう。
まあ「ZFCから考えてないと数学じゃない」って自分の中で決めてしまえばそれまでだけどさ。
結局やってること同じなんじゃないのって。
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
私は、昔から宇宙の真理とかに中二病的に憧れるタイプのオタクだった。当然、物理学の究極の理論である「超弦理論」に手を出したわけだ。
しかし、すぐに気づいた。これは物理学のフリをした、超絶ハードコアな数学だということに。
超弦理論が語る世界は10次元とか11次元とか言われる。我々が知る3次元空間(+時間)以外に、極小に丸まった余剰次元が存在するらしい。この「余剰次元の形」が、この世界の物理法則(電子の質量とか、力の種類とか)を決めている、と。
「その丸まった形って、一体どんな形なんだ?」
この素朴な疑問に答えるために、私は抽象数学の沼に両足から突っ込むことになった。
この余剰次元の候補の一つに、有名な「カラビ・ヤウ多様体」がある。 こんな、SF映画に出てきそうな、美しくて複雑怪奇な図形が、実は電子の動きを決めているというのだ。
この「形」を数学的に扱うには、通常の微積分なんて全然役に立たない。必要になるのは、
トポロジーは、空間を伸び縮みさせても変わらない性質(穴の数とか)で分類する。「コーヒーカップとドーナツは同じ形!」という、あの有名な学問だ。
超弦理論では、この余剰次元の「穴の数」や「ねじれ具合」といったトポロジー的な性質が、物理学の重要な定数に対応することがわかっている。
純粋な「形」が、現実世界の「法則」を決めている。これ以上の恐怖と感動があるだろうか。
私が最も戦慄したのは、このトポロジーで使われる概念の一つ、「ホモロジー群 (HomologyGroup)」だ。
これは簡単に言えば、空間の「n次元の穴」を数えるための、めちゃくちゃ抽象的な代数的な道具だ。
例えば、ドーナツには「ぐるっと一周する穴」が一つある。ホモロジー群は、この穴を代数的に(群という構造を使って)記述してしまう。
この概念は、元々、誰がどう考えても「何の役にも立たない」純粋な遊びとして生まれた。ひたすら抽象的で、自己目的的な美しさしか持っていなかった。
「このホモロジー群こそが、余剰次元の空間に存在する『ひも』の巻き付き方を完全に記述している…!」
純粋な数学的創作物が、数十年後、この宇宙の最も深い設計図のキーコードとして機能している。
これを目の当たりにしたとき、背筋が凍ったね。
抽象数学は、人間が世界を記述するために作り出した「道具」ではない。
そうではなく、抽象数学こそが、この世界が構築される「ルールブック」であり「設計図」だったのではないか?
そして、我々人類は、その設計図を、何の目的もない純粋な思考実験(数学)を通して、たまたま発見してしまっただけなのではないか?
超弦理論の沼にハマって得たのは、物理的な知見ではない。「この世界は、あまりにも美しく、冷徹な数学的必然性によって成り立っている」という、人生観を揺るがす確信だった。
最後に一つ。
「ホモロジー」、ちょっとググってみてくれ。理解できなくて全然いい。その概念が持つ、純粋で絶対的な美しさに、少しでも触れてみよう。そうすれば、世界が少しだけ違って見えるはずだ。
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
わかりづらく言っちゃった時に分かりやすく直すのって難しくない?なんでみんな推敲すれば簡単みたいに言うの?
方程式を与えられた数値が満たすかは誰でも機械的に判断できるけど因数分解や積分って難しいでしょ。それと同じなのに。
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251009220326# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaOjIEwAKCRBwMdsubs4+SGtkAQDwM7E+RXM1e+GzCWAmQ/INEh/63Q+pXofSalYdkmLSbQEA3WYliB8wqrslPBwzOOW+LWENjZPLCzUcnZHg6DeLygw==bsGz-----ENDPGP SIGNATURE-----
しかも、ピケティ本人もそこを完全には扱いきれていません。あなたの指摘が、まさに彼の理論の「弱点コア」です。
では、少し冷徹に整理してみましょう。
ピケティの「r > g」命題は、資本全体の平均収益率を一括で扱っている。しかし実際には、資産クラスごとにインフレ耐性がまるで違う。
| 資産クラス | インフレ時の挙動 | 備考 |
| 現金・預金 | 実質価値が目減り | インフレ最大の犠牲者 |
| 国債・社債 | 名目固定なら損 | 金利上昇で価格下落 |
| 株式 | 名目売上・利益上昇で中立〜プラス | ただしバリュエーション調整あり |
| 不動産 | 建設コスト連動でインフレヘッジ | 都市地価はむしろ上がる |
| コモディティ(金など) | 名目的に上昇 | 供給制約次第 |
| 事業投資 | コスト上昇と販売価格上昇のバランス次第 | 経営能力で分散 |
つまり、同じ「資本」でもインフレ感応度が全然違う。それなのにピケティは「資本」を一塊として扱うため、現実の再分配構造を平均化して潰してしまっている。
ピケティの主張は「労働 vs資本」の格差に焦点を当てたが、インフレ局面ではむしろ格差の主軸が「資本の質」に移る。
つまり
ここで重要なのは、富裕層は既に耐性資産を多く保有しているということ。だから高インフレでも、「資産構成を最適化している層」はむしろ勝ち続ける。
この現実を取り込むには、単一のrではなく資産別r_iを導入すべき。
r_{eff} = ∑_i w_i (r_i - Π_i)
格差が拡大する条件
r_{eff, upper} > g > r_{eff, lower}
つまり、上位層と下位層の資産ミックスの違いが格差維持メカニズムそのものになる。
インフレが起きても、上位層はREIT・実物資産・株式を持っていて、実質リターンが守られる。
中間層・労働者層は現金・定期預金・保険中心。実質資産が目減りする。
結果、名目インフレでも実質格差は拡大する。つまり、インフレはr > gの一時的な緩衝にはなっても、資産構成差が固定化されている限り、格差縮小にはならない。
| 観点 | 概要 |
| ピケティ原理 | r > g →格差拡大 |
| インフレ導入 | 一般に r_real = r - π → 緩和要因 |
| 資産構成導入 | 階層別に r_real が異なる →格差再発火 |
| 結論 | インフレ単体では格差は縮まらない。資産構造の分散を伴って初めて是正される。 |
目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。
ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態の位相をわずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。
隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。
友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタンの応答時間をミリ秒単位で記録する。
これが僕の日常のトレースの上に物理的思考を埋葬するための儀式だ。
さて、本題に入ろう。今日はdSの話などではなく、もっと抽象的で圧縮された言語で超弦理論の輪郭を描くつもりだ。
まず考えるのは「理論としての弦」が従来の場の量子論のS行列的表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。
開弦・閉弦の相互作用は局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。
これを厳密にするには、オペラド(特にmoduli operad of stablecurves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。
導来スタック(derived Artin stack)上の「積分」は仮想基本クラスの一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間に自然に現れる古典的BV構造そのものだ。
さらに、Kontsevichの形式主義を導来設定に持ち込み、シフト付ポアソン構造の形式的量子化を検討すれば、非摂動的効果の一部を有限次元的なdeformationtheoryの枠組みで捕まえられる可能性がある。
ここで重要なのは「関手的量子化」すなわちLurie的∞-圏の言語で拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張場理論の対象として弦理論を組み込むことだ。
特に、因果的構造や境界条件を記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所的観測子代数の因子化ホモロジーが2次元世界面CFTの頂点代数(VOA)につながる様が見えてくる。
ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティックコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。
物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。
Dブレインは導来カテゴリ(整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。
実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態はドナルドソン–トーマス不変量や一般化されたDT指数として計算される。
ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ的量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。
さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuperversion、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。
閉弦場理論のstringfieldtheoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomologicalobstructionを制御する。
より高次の視座では、場の理論の「拡張度」はn-圏での対象の階層として自然に対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論の場合はターゲットが無限次元であるため古典的公理系の単純な拡張では捉えきれない。
ここで我々がやるべきは、∞-オペラド、導来スキーム、シフト付きシンプレクティック構造、A∞/L∞ホモロジー代数の集合体を組織化して「弦の導来圏」を定義することだ。
その上で、Freed–Hopkins–Telemanが示したようなループ群表現論とツイストK理論の関係や、局所的なカイラル代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。
これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実の専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーンを右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。
夜、友人たちと議論をしながら僕はこれら抽象的構造を手癖のように引き出し、無為に遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択が位相的にどのような帰結を生むかを示す。
彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。
結局、僕の生活習慣は純粋に実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである。
明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論の輪郭をさらに一行ずつ明確にしていくつもりだ。
一般人のよくある言い回しとして「大学の数学科でやっているのは数学ではなく哲学だ」というものがあります。これは実態を誤解したものと考えます。数学と哲学の論理構造や依拠する原理の違いに着目し、どのように誤解であると言えるかを解説してください。
---
多くの人が「大学の数学科は“哲学的なこと”をしている」と感じるのは、次のような体験的印象に基づいています。
**抽象度の高さ**
学校数学は数値計算や図形、方程式など具体的な操作が多いですが、大学では集合・位相・群・環などの抽象概念が中心になります。実体がない記号を扱うため、「思弁的で現実離れしている」という印象を受けやすい。
**証明の重視**
高校までの数学では、公式や定理を使って問題を解くことが主でした。大学数学では定理を“証明する”こと自体が中心になります。演繹的に進むため、哲学の論証と混同されやすい。
**直感に反する結果**
カントール集合やゲーデルの不完全性定理など、常識を裏切る結論に出会うと「これはもはや哲学では?」と感じがちです。
---
数学ではまず**公理系**(集合論・論理体系など)を定め、そこから**形式的に定義と定理を導く**ことが中心です。
証明は論理的整合性のもとに、有限の推論ステップで厳密に完結します。
「真偽」は定められた公理系の内部で決まる(たとえば ZFC の下での定理かどうか)。
哲学では「公理」や「定義」の選び方自体が主要な思考対象です。
例:真理とは何か、存在とは何か、数学の基盤は何に依拠するか。
推論自体は論理を用いますが、**議論の目的は推論よりも前提や概念の意味を吟味すること**にあります。
証明可能性よりも「概念的・認識論的な一貫性」を探ります。
### 要するに:
数学は**選んだ前提の内部で閉じた演繹体系**。
哲学は**前提や体系そのものを開かれた問いとして扱う**。
---
数学 哲学 ----- ---------------- ---------------- 基盤 公理・定義・形式論理 推論+概念分析・経験・メタ理論 真理の基準 公理系内の定理性 妥当性・合理性・批判的検討 方法 定義→補題→定理→系の形式的構築 問題設定→概念批判→異論との対話 ゴール 内部一貫性と定理の発見 前提の吟味と概念の明確化 ---
数学の抽象化は「より多くの具体例を統一的に扱う」ための道具です。たとえば群論は「対称性」という実際的な現象を一般化しています。現実逃避ではなく応用力の拡張です。
哲学的議論は自然言語の意味に依存しますが、数学の証明は形式言語に還元可能なレベルまで精密化されます。
哲学は「数学の基礎は何か」「無限とは何か」を問うかもしれませんが、数学科の学生が行うのは、すでに受け入れた公理体系の中で定理を立てる作業です。
---
## 5. まとめ
抽象度の高さや証明重視の新鮮さを「哲学的」と感じているに過ぎない
実際には**数学は厳密な公理体系の中での定理の探求**であり、前提の批判や概念の意味そのものを問う哲学とは方法も目標も異なる
幽霊船の金塊20兆円に始まり、海底への距離感についても大陸棚が深度200メートルまで続いているとか、400メートル超えると真っ暗とか、マリアナ海溝の深さの計算とか、キャンプの場所が深度2000メートルとか、かなり細かく考えられている。
キャンプが2泊3日という点も繰り返し出てくるし、幽霊船が沈んだのが450年前とか、航海日誌にも1534年3月に出港してユカタンをはなれて2日後に大嵐に遭った、などかなり具体的だ。
これらは、中盤の山場であるジャイアンとスネ夫の遭難や、終盤の海底火山噴火までにバミューダのどこにあるか解らない鬼岩城を探し出さなければならない難題といった、SF的な仕掛けで緊張感を高める役割を果たしており、
その点で海底鬼岩城はSFマンガ家である藤子F先生の本領が色濃く出ている作品と言える。(後期の大長編がイマイチなのが多いのは、SF成分が鳴りを潜め、ドタバタになっているためだ)
それだけに、ジャイアンとスネ夫の遭難での冷たい方程式がガバガバなのが惜しまれる。
ドラえもんがどこでもドアを取り寄せる方法を思い付かなかったのは仕方ないが、ジャイアンとスネ夫は危険を知った時に、引き返す時間がなかったとしても海面に浮上すればすぐには死なないから十分に救出を待てたし、浮上する事を思い付かなかったとしても停車しさえすれば取り寄せバッグで救出できるはずだった。(バギーが停車していないとドラえもんが判断した理由も謎だが)
この辺、冷たい方程式を盛り上げるには『良く考えても助かる方法がない』という点がガバいと緊張感がなくなるので、ジャイスネ側もドラのびしず側も頭悪かったのが残念要素である。