
はてなキーワード:多様体とは
伝統的にはテーマ別(弦理論、量子重力、場の理論、応用)に配列されるが、抽象数学の観点からは対象(研究トピック)と射(方法・翻訳)の網として捉える方が有益。
ここでいう対象は「エントロピーと情報論的記述を担うブラックホール研究」「幾何学的・位相的構成を担うコンパクト化とカラビ・ヤウ/F-理論的話題」「場の対称性・一般化対称性を取り扱う場の理論的構造」「計算的探索手法(データ、機械学習を用いる弦景観の調査)」など。
各対象間の射は、双対性の導入、圏的な接続(例:量子情報を介した場と重力の橋渡し)、モジュライ空間上の写像(ある物理量を別の表現へ変換する手続き)と考えられる。
この視点に立てば、個々の研究は、局所的な結果(対象の内部構造の解析)とそれを別の対象へ移すための普遍射(双対性、再規格化群、ホログラフィーなど)の2つの側面を持つ。
研究の進展を測るには、単に新しい計算結果が出たかを見るだけでなく、それがどのような新しい射(方法論的翻訳)を導入し、他の対象へどれだけ容易に伝播できるかを評価するべき。
近年の発展は、物理的データを層(sheaf)的に整理する試みと親和性が強い。
コンパクト化、特にF-理論やゲージ束構成に関する議論は、物理的情報(荷、ゲージ群、モードの分布)を局所データと大域的データの重ね合わせとして扱うことに等しい。
これは数学的には基底空間上の層の圏を考えるような話で、局所的条件の整合性(コヒーレンス)と大域的制約(トポロジー的閉鎖条件)が鍵。
古典的な幾何的直観(多様体、ホモロジー)を拡張して非可換やカテゴリ化された対象で物理を再表現する流れにある。
結果として、従来のスペクトル(場のスペクトルや質量スペクトル)に対応する数学的不変量が、より高次の層的・圏的構造へと一般化されつつある。
これにより同じ物理現象を別の圏で見ると簡潔になる例が増え、研究の再利用性が高まっている。
弦理論・場の理論で繰り返し現れるのは対称性が構造を決めるという直観。
抽象数学では対称性は対象の自己射(自己同型)群として扱われるが、対称性そのものが射の層あるいは高次の射(2-射やn-射)として表現されるケースが増えている点が特に重要。
つまり、単に群が作用するのではなく、群の作用が変形可能であり、その変形がさらに別の構造を生む、という高次構造が物理的意味を持ち始めている。
この流れは一般化対称性やトポロジカル部位の議論と密接に結びつき、場の理論における選好位相的不変量を再解釈する手段を与える。
結果として、古典的なノーター対応(対称性⇄保存量)も、より高次の文脈で新しい不変量や保存則を導出するための起点になり得る。
ブラックホールと量子情報、カオス理論との接点は話題だった分野。
ホログラフィー(重力側と場の側の双対)を抽象的に言えば二つの圏を結ぶ双方向のファンクター(翻訳子)と見ることができる。
これにより、量子的冗長性やエントロピーに関する命題は、圏の間を行き交う射の情報(どの情報が保存され、どの情報が粗視化されるか)として扱える。
カオスとブラックホール、量子力学に関する概念の整理が試みられている。
たとえばブラックホールにおける情報再放出やスクランブリングは、ファンクターがどのように情報を混合(合成)するかという高次射の振る舞いとして可視化できる。
こうした議論は、従来の計算的アプローチと抽象的な圏的フレームワークの橋渡しを提供する。
何が低エネルギーで実現可能かを巡るスワンプランド問題は、いまや単一の反例探しや個別モデル構築の話ではなく、モジュライ空間の複雑性(位相的な目詰まり、非整合領域の広がり)として再定式化されつつある。
抽象数学的に言えば、可能な物理理論の集合は単なる集合ではなく、属性(スカラー場、ゲージ群、量子補正)を備えた層状モジュライ空間であり、その中に禁止領域が層的に存在するかどうかが問題。
この視点は、スワンプランド基準を局所的整合条件の族として扱い、整合性を満たすための可視化や近似アルゴリズムを数学的に定義することを促す。
弦景観やモデル空間での探索に機械学習やデータ解析を使う研究が増えているが、抽象数学に引き寄せると探索アルゴリズム自体を射として考えることが有用。
ある探索手続きがモジュライ空間上の点列を別の点列へ写すとき、その写像の安定性、合同類、収束性といった性質を圏的・位相的な不変量で評価できれば、アルゴリズム設計に新しい理論的指針がもたらされる。
数学的定式化(幾何・位相・圏論)と物理的直観(ブラックホール、カオス、場の動的挙動)をつなぐ学際的接合点を意図して設計される。
これは単一圏に物理を閉じ込めるのではなく、複数の圏をファンクターで結び、移り変わる問題に応じて最も適切な圏を選択する柔軟性を重視するアプローチ。
学術コミュニティのあり方に対するメタ的な批判や懸念も顕在化している。
外部の評論では、分野の方向性や成果の可視性について厳しい評価がなされることがあり、それは研究の評価軸(新知見の量・質・再利用可能性)を再考する契機になる。
見えてきたのは、個別のテクニカルな計算成果の蓄積と並んで、研究成果同士を結びつける翻訳子(ファンクター)としての方法論の重要性。
抽象数学的フレームワーク(圏、層、モジュライ的直観、高次射)は、これらの翻訳子を明示し、その普遍性と限界を評価する自然な言語を提供。
今後の進展を見極めるには、新しい計算結果がどのような普遍的射を生むか、あるいは従来の射をどのように一般化するかを追うことが、有益である。
超弦理論において、物理学はもはや物質の構成要素を探求する段階を超え、数学的構造そのものが物理的実在をいかに定義するかというの領域へ突入している。
かつて背景として固定されていた時空は、現在では量子的な情報の絡み合い(エンタングルメント)から派生する二次的な構造として捉え直されている。
時空の幾何学(曲がり具合や距離)は、境界理論における量子多体系のエンタングルメント・エントロピーと双対関係にある。
これは、空間の接続性そのものが情報の相関によって縫い合わされていることを示唆。
数学的には、フォン・ノイマン環(特にType III因子環)の性質として、局所的な観測可能量がどのように代数的に構造化されるかが、ホログラフィックに時空の内部構造を決定づける。
ブラックホールの情報パラドックスは、アイランドと呼ばれる非自明なトポロジー領域の出現によって解決に向かっている。
これは、時空の領域がユークリッド的経路積分の鞍点として寄与し、因果的に切断された領域同士が量子情報のレベルでワームホールのように接続されることを意味する。
ここでは、時空は滑らかな多様体ではなく、量子誤り訂正符号として機能するネットワーク構造として記述される。
「対称性=群の作用」というパラダイムは崩壊し、対称性はトポロジカルな欠陥として再定義されている。
粒子(0次元点)に作用する従来の対称性を拡張し、紐(1次元)や膜(2次元)といった高次元オブジェクトに作用する対称性が議論されている。
さらに、群の構造を持たない(逆元が存在しない)非可逆対称性の発見により、対称性は融合圏(Fusion Category)の言語で語られるようになった。
物理的実体は、時空多様体上に配置されたトポロジカルな演算子のネットワークとして表現される。
物質の相互作用は、これら演算子の融合則(Fusion Rules)や組み換え(Braiding)といった圏論的な操作として抽象化され、粒子物理学は時空上の位相的場の理論(TQFT)の欠陥の分類問題へと昇華されている。
可能なすべての数学的理論のうち、実際に量子重力として整合性を持つものはごく一部(ランドスケープ)であり、残りは不毛な沼地(スワンプランド)であるという考え方。
理論のパラメータ空間(モジュライ空間)において、無限遠点へ向かう極限操作を行うと、必ず指数関数的に軽くなる無限個のタワー状の状態が出現。
これは、幾何学的な距離が物理的な質量スペクトルと厳密にリンクしていることを示す。
量子重力理論においては、すべての可能なトポロジー的電荷は消滅しなければならないという予想。
これは、数学的にはコボルディズム群が自明(ゼロ)であることを要求。
つまり、宇宙のあらゆるトポロジー的な形状は、何らかの境界操作を通じて無へと変形可能であり、絶対的な保存量は存在しないという究極の可変性を意味します。
4次元の散乱振幅(粒子がぶつかって飛び散る確率)は、時空の無限遠にある天球(2次元球面)上の相関関数として記述できることが判明した。
ここでは、ローレンツ群(時空の回転)が天球上の共形変換群と同一視される。
時空の果てにおける対称性(BMS群など)は、重力波が通過した後に時空に残す記憶(メモリー)と対応している。
これは、散乱プロセス全体を、低次元のスクリーン上でのデータの変換プロセスとして符号化できることを示唆。
超弦理論は、もはや弦が振動しているという素朴なイメージを脱却している。
情報のエンタングルメントが時空の幾何学を織りなし、トポロジカルな欠陥の代数構造が物質の対称性を決定し、コボルディズムの制約が物理法則の存在可能領域を限定するという、極めて抽象的かつ数学的整合性の高い枠組みへと進化している。
物理的実在はモノではなく、圏論的な射(morphism)とその関係性の網の目の中に浮かび上がる構造として理解されつつある。
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
超弦理論を物理的な実体(ひもや粒子)から引き剥がし、抽象数学の言葉で抽象化すると、圏論と無限次元の幾何学が融合した世界が現れる。
物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造の表現や空間のトポロジー(位相)に置き換わる。
物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学。
ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元の多様体として扱われる。
ひもの散乱振幅(相互作用の確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着。
ひもがどう振動するかという物理的ダイナミクスは幾何学的な形すら消え、代数的な対称性だけが残る。
共形場理論(CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環の表現論として記述される。粒子とは、この代数の作用を受けるベクトル空間の元に過ぎない。
1990年代以降、超弦理論はDブレーンの発見により抽象化された。
ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象。ホモロジカルミラー対称性。
Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。
もはや空間が存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。
トポロジカルな性質のみを抽出すると、超弦理論はコボルディズムとベクトル空間の間の関手になる。
このレベルでは、物質も力も時間も存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。
超弦理論を究極まで数学的に抽象化すると、それは物質の理論ではなく、無限次元の対称性を持つ、圏と圏の間の双対性になる。
より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。
そこでは点 という概念は消滅し、非可換な代数が場所の代わりになる。
存在 はオブジェクトではなく、オブジェクト間の射によって定義される。
物理的なひもは、究極的には代数的構造(関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学的構造そのもの)として記述される。
まず一言でまとめると、場の論理と幾何の高次的融合が進んでおり、境界の再定義、重力的整合性の算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在の最前線の構図。
現在の進行は低次元の代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。
これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術的整合性を前提にした新しい分類論を必要とする。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: TheLast Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
日中は実験室的な刺激は少なかったが、思考の連続性を保つために自分なりの儀式をいくつかこなした。
起床直後に室温を0.5度単位で確認し(許容範囲は20.0±0.5℃)、その後コーヒーを淹れる前にキッチンの振動スペクトルをスマートフォンで3回測定して平均を取るというのは、たぶん普通の人から見れば過剰だろう。
だが、振動の微妙な変動は頭の中でのテンポを崩す。つまり僕の「集中可能領域」は外界のノイズに対して一種の位相同調を要求するのだ。
ルームメイトはその儀式を奇癖と呼ぶが、彼は観測手順を厳密に守ることがどれほど実務効率を上げるか理解していない。
隣人はその一部を見て、冗談めかして「君はコーヒーにフレームを当ててるの?」と訊いた。
風邪の初期症状かと思われる彼の声色を僕は瞬時に周波数ドメインで解析し、4つの帯域での振幅比から一貫して風邪寄りだと判定した。
友人たちはこの種の即断をいつも笑うが、逆に言えば僕の世界は検証可能で再現可能な思考で出来ているので、笑いもまた統計的に期待値で語るべきだ。
午前は論文の読み返しに費やした。超弦理論の現代的なアプローチは、もはや単なる量子場とリーマン幾何の掛け合わせではなく、導来代数幾何、モーダルなホモトピー型理論、そしてコヒーシブなホモトピー理論のような高次の圏論的道具を用いることで新たな言語を得つつある。
これらの道具は直感的に言えば空間と物理量の振る舞いを、同値類と高次の同型で記述するための言語だ。
具体的には、ブランデッドされたDブレーンのモジュライ空間を導来圏やパーフェクト複体として扱い、さらに場の有る種の位相的・代数的変形が同値関係として圏的に表現されると、従来の場の理論的観測量が新しい不変量へと昇格する(この観点は鏡映対称性の最近のワークショップでも多く取り上げられていた)。
こうした動きは、数学側の最新手法が物理側の問題解像度を上げている好例だ。
午後には、僕が個人的に気に入っている超抽象的な思考実験をやった。位相空間の代わりにモーダルホモトピー型理論の型族をステートとして扱い、観測者の信念更新を型の変形(モナド的な操作)としてモデル化する。
つまり観測は単なる測定ではなく、型の圧縮と展開であり、観測履歴は圏論的に可逆ではないモノイド作用として蓄積される。
これを超弦理論の世界に持ち込むと、コンパクト化の自由度(カラビヤウ多様体の複素構造モジュライ)に対応する型のファミリーが、ある種の証明圏として振る舞い、復号不能な位相的変換がスワンプランド的制約になる可能性が出てくる。
スワンプランド・プログラムは、実効場の理論が量子重力に埋め込めるかどうかを判定する一連の主張であり、位相的・幾何的条件が物理的に厳しい制限を課すという見立てはここでも意味を持つ。
夕方、隣人が最近の観測結果について話題にしたので、僕は即座に「もし時空が非可換的であるならば、座標関数の交換子がプランクスケールでの有意な寄与をもたらし、その結果として宇宙加速の時間依存性に微妙な変化が現れるはずだ。DESIのデータで示唆された減速の傾向は、そのようなモデルの一つと整合する」と言ってしまった。
隣人は「え、ホント?」と目を丸くしたが、僕は論文の推論と予測可能な実験的検証手順(例えば位相干渉の複雑性を用いた観測)について簡潔に説明した。
これは新しいプレプリント群や一般向け記事でも取り上げられているテーマで、もし妥当ならば観測と理論の接続が初めて実際のデータで示唆されるかもしれない。
昼食は厳密にカロリーと糖質を計算し、その後で15分のパルス型瞑想を行う。瞑想は気分転換ではなく、思考のメタデータをリセットするための有限時間プロセスであり、呼吸のリズムをフーリエ分解して高調波成分を抑えることで瞬間集中力のフロアを上げる。
ルームメイトはこれを「大げさ」と言うが、彼は時間周波数解析の理論が日常生活にどう適用されるか想像できていない。
午後のルーティンは必ず、机上の文献を3段階でレビューする: まず抽象(定義と補題に注目)、次に変形(導来的操作や圏論的同値を追う)、最後に物理的帰結(スペクトルや散乱振幅への影響を推定)。
この三段階は僕にとって触媒のようなもので、日々の思考を整えるための外骨格だ。
夜は少し趣味の時間を取った。ゲームについては、最近のメタの変化を注意深く観察している。
具体的には、あるカードゲーム(TCG)の構築環境では統計的メタが明確に収束しており、ランダム性の寄与が低減した現在、最適戦略は確率分布の微小な歪みを利用する微分的最適化が主流になっている。
これは実際のトーナメントのデッキリストやカードプールの変遷から定量的に読み取れる。
最後に今日の哲学的なメモ。理論物理学者の仕事は、しばしば言語を発明することに帰着する。
僕が関心を持つのは、その言語がどれだけ少ない公理から多くの現象を統一的に説明できるか、そしてその言語が実験可能性とどの程度接続できるかだ。
導来的手法やホモトピー的言語は数学的な美しさを与えるが、僕は常に実験への戻り道を忘れない。
理論が美しくとも、もし検証手順が存在しないならば、それはただの魅力的な物語にすぎない。
隣人の驚き、ルームメイトの無頓着、友人たちの喧嘩腰な議論は、僕にとっては物理的現実の簡易的プロキシであり、そこから生まれる摩擦が新しい問いを生む。
さて、20:00を過ぎた。夜のルーティンとして、机の上の本を2冊半ページずつ読む(半ページは僕の集中サイクルを壊さないためのトリックだ)
あと、明日の午前に行う計算のためにノートに数個の仮定を書き込み、実行可能性を確認する。
ルームメイトは今夜も何か映画を流すだろうが、僕は既にヘッドホンを用意してある。
ヘッドホンのインピーダンス特性を毎回チェックするのは習慣だ。こうして日が終わる前に最低限の秩序を外界に押し付けておくこと、それが僕の安定性の根幹である。
以上。明日は午前に小さな計算実験を一つ走らせる予定だ。結果が出たら、その数値がどの程度「美的な単純さ」と折り合うかを眺めるのが楽しみである。
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
今朝も僕のルーティンは完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠相同調プロトコルの成果である。まず歯を磨き(電動歯ブラシはPhilipsSonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相が乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。
昨日の日曜日、ルームメイトがNetflixでマーベル作品を垂れ流していた。僕は隣で視覚的ノイズに曝露された被験者の前頭前皮質活動抑制についての文献を読んでいたが、途中から音響的干渉が許容限界を超えた。仕方なく僕はヘッドフォン(Sennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系の無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快な行為を自発的に選択する人間の気が知れない。
午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉と油脂の比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である。彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間は事実の指摘をユーモアと解釈するのか、これも進化心理学の謎のひとつだ。
夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配をテーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数をラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果のシミュレーションを笑いながらできる者だけだ。
夜は超弦理論のメモを整理した。E₈×E₈異種ホモロジーの拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論の11次元項の一部は非可換幾何のホモトピー極限として再定式化できる。僕はこの仮説をポスト・ウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。
深夜、SteamでBaldur’sGate 3を起動した。キャラビルドはIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile →MistyStep → Counterspell →Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールでダイスロールに物理的擬似乱数生成器を使っている(RNGでは信用できない)。
こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論の俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元で振動するのではなく、∞-圏的に層化された概念の空間で震えているのだとしたら人間の意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。
私は、昔から宇宙の真理とかに中二病的に憧れるタイプのオタクだった。当然、物理学の究極の理論である「超弦理論」に手を出したわけだ。
しかし、すぐに気づいた。これは物理学のフリをした、超絶ハードコアな数学だということに。
超弦理論が語る世界は10次元とか11次元とか言われる。我々が知る3次元空間(+時間)以外に、極小に丸まった余剰次元が存在するらしい。この「余剰次元の形」が、この世界の物理法則(電子の質量とか、力の種類とか)を決めている、と。
「その丸まった形って、一体どんな形なんだ?」
この素朴な疑問に答えるために、私は抽象数学の沼に両足から突っ込むことになった。
この余剰次元の候補の一つに、有名な「カラビ・ヤウ多様体」がある。 こんな、SF映画に出てきそうな、美しくて複雑怪奇な図形が、実は電子の動きを決めているというのだ。
この「形」を数学的に扱うには、通常の微積分なんて全然役に立たない。必要になるのは、
トポロジーは、空間を伸び縮みさせても変わらない性質(穴の数とか)で分類する。「コーヒーカップとドーナツは同じ形!」という、あの有名な学問だ。
超弦理論では、この余剰次元の「穴の数」や「ねじれ具合」といったトポロジー的な性質が、物理学の重要な定数に対応することがわかっている。
純粋な「形」が、現実世界の「法則」を決めている。これ以上の恐怖と感動があるだろうか。
私が最も戦慄したのは、このトポロジーで使われる概念の一つ、「ホモロジー群 (HomologyGroup)」だ。
これは簡単に言えば、空間の「n次元の穴」を数えるための、めちゃくちゃ抽象的な代数的な道具だ。
例えば、ドーナツには「ぐるっと一周する穴」が一つある。ホモロジー群は、この穴を代数的に(群という構造を使って)記述してしまう。
この概念は、元々、誰がどう考えても「何の役にも立たない」純粋な遊びとして生まれた。ひたすら抽象的で、自己目的的な美しさしか持っていなかった。
「このホモロジー群こそが、余剰次元の空間に存在する『ひも』の巻き付き方を完全に記述している…!」
純粋な数学的創作物が、数十年後、この宇宙の最も深い設計図のキーコードとして機能している。
これを目の当たりにしたとき、背筋が凍ったね。
抽象数学は、人間が世界を記述するために作り出した「道具」ではない。
そうではなく、抽象数学こそが、この世界が構築される「ルールブック」であり「設計図」だったのではないか?
そして、我々人類は、その設計図を、何の目的もない純粋な思考実験(数学)を通して、たまたま発見してしまっただけなのではないか?
超弦理論の沼にハマって得たのは、物理的な知見ではない。「この世界は、あまりにも美しく、冷徹な数学的必然性によって成り立っている」という、人生観を揺るがす確信だった。
最後に一つ。
「ホモロジー」、ちょっとググってみてくれ。理解できなくて全然いい。その概念が持つ、純粋で絶対的な美しさに、少しでも触れてみよう。そうすれば、世界が少しだけ違って見えるはずだ。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPYコードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのがit from qubits の数学的内容である。
さらに情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。
まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー、20時30分から22時まで論文の読み込み。
現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。
ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れな提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。
僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダル構造の可換性条件が自然変換として収束する瞬間を可視化することだ。
今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体のファイバー化」について考えていた。
一般相対論と量子力学の不一致などという低次元の問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。
つまり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。
これによって、弦という一次元的存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。
現行のM理論が11次元を仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体が物理的観測量になる。
もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。
隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。
彼女は一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。
もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。
22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。
友人Aは相変わらず盗賊ビルドで味方のアイテムを勝手に漁るという犯罪的行為を繰り返し、友人BはバグったAIのように無言で呪文を詠唱していた。
僕はWizardクラスで完璧に戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。
つまり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率と因果の実験装置であり、何より僕がゲームを選ぶ基準は「バランスの崩壊が数式で表現できるか否か」だ。
今日もルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。
寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射のスペクトル密度に近づける。完璧な環境だ。
僕はこれから、寝る前の最後の思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。
もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義は無効化されるだろう。
時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。
今日もまた、僕のルーティンは完璧なシンメトリーを保っていた。7時00分に目覚ましが鳴る前に自然に目が覚め、7時01分に歯を磨き、7時10分に電子レンジで正確に85秒温めたオートミールを食べた。ルームメイトはまだ寝ていた。いつも思うが、彼のサーカディアンリズムはエントロピー的崩壊を起こしている。朝の段階であれほど乱雑な髪型が可能だということは、局所的に時間反転対称性が破れている証拠だ。
午前中は超弦理論のメモを整理していた。昨日の夜、AdS/CFT対応を一般化する試みとして、非可換幾何の上に定義された∞-群oid的対称性構造を考えた。従来の高次圏理論的定式化では、物理的可観測量の定義が局所的モデル圏に依存しているが、僕の新しい仮説ではそれをKan拡張ではなく、∞-トポス上の(∞,1)-層として扱う。これにより、M理論の11次元多様体上でのフラックス量子化条件を、デリーニュ‐ベイルン加群による層コホモロジーに書き換えることができる。ルームメイトに説明したら、彼は「君が言ってることの3単語目からもう分からない」と言った。僕は丁寧に言い直した。「つまり、我々が重力を感じるのは、実は∞-圏の射が充満埋め込みでないからだ」と。彼は黙った。いつも通りの知的敗北の沈黙だった。
昼食は隣人がくれたタコスを食べた。彼女は料理が下手だが、今回はまだ化学兵器レベルではなかった。ちなみに僕はタコスを食べる際、具の位置を中心から平均半径1.7cm以内に収めるように計測している。乱雑な配置は僕のドーパミン経路を不安定化させる。彼女は「そんなの気にしないで食べなよ」と言ったが、僕にとってそれは、ボーズ統計の粒子にフェルミ縮退を強要するような暴挙だ。
午後はオンラインで超弦理論のセミナーを視聴したが、正直、発表者の理解は浅かった。特に、彼が「E₈束のゲージ異常はスピノール構造で吸収される」と言った瞬間、僕は思わず笑ってしまった。そんな単純な話ではない。正しくは、E₈×E₈異常はString(10)構造のホモトピー群に依存し、実際にはTwisted Fivebrane構造の非可換層に束縛される。ウィッテンすらここまで書いていないが、僕の計算ではその層は∞-スタック上のドロップトポスとして扱える。つまり、物理的次元が11ではなく13.25次元の分数次元空間に埋め込まれるということだ。もっとも、僕以外にこの議論を理解できる人間は地球上に存在しないだろう。
夕方には友人たちとオンラインで『Baldur’sGate 3』をプレイした。ハードコアモードで僕のウィザードがパーティを全滅から救ったのだが、誰もその戦術的優雅さを理解していなかった。僕は敵AIの経路探索を事前に計算し、Dijkstra法とA*の中間的ヒューリスティックを手動で最適化していた。彼らはただ「すげえ!」と叫んでいたが、僕にとってそれは数式の勝利にすぎない。ゲームの後、僕は『ワンダーウーマン: デッドアース』を読んだ。アートはDaniel Warren Johnson。筆致が粗いのに構図が完璧で、まるでFeynman図のトポロジーを手書きで描いたような迫力がある。コミックを読んで心拍数が上がるのは久しぶりだった。
夜になってルームメイトがNetflixを見始めた。僕は同じ部屋でノイズキャンセリングヘッドホンを装着し、Lagrangian多様体上の安定性条件についてノートを書いた。明日は木曜日のルーティンとして洗濯と真空掃除をする日だ。もちろん洗濯機は奇数回転数(今日の予定では13回)で設定している。偶数だと宇宙の安定性が崩れる気がするからだ。
この日記を書き終えたのは20時20分。シンメトリーの美がここにある。時間も数字も、理論も習慣も、僕の宇宙ではすべて整然と並んでいる。もし誰かがその秩序を乱すなら、僕は黙ってこう言うだろう。「君の世界はまだ正則圏ですらないね」。
昨日、僕は再びヒルベルト空間の自己参照性について思索していた。
きっかけはルームメイトが、僕の定常朝食手順の測定位相を乱したことだ。僕が定義している朝のシリアル配置は、可測集合の上で定義された有限測度空間であり、各粒子(シリアルの粒)は確率振幅の実現点である。
ところが彼が不用意にスプーンを差し込んだため、僕の可測写像が非可測領域を侵食し、全順序性が崩れた。
つまり、彼の行為は単なる乱雑ではなく、σ-加法的整合性の破壊に等しい。これを日常の「朝食の乱れ」と呼ぶのは、あまりにナイーヴだ。
僕の現在の研究テーマは、ER=EPRをより高次圏論的に再定義することにある。通常この等式は、もつれ状態をワームホールに対応づけるが、僕の見解ではそれは関手レベルでの不完全な翻訳に過ぎない。
真の構造は、観測行為がエンタングルメント圏から幾何圏へのモノイド圏関手であるということだ。
観測とは情報の選択ではなく、関手の実現射の生成であり、その結果、対象空間上の射が一点縮退を起こす。つまり、観測=ブラックホールへの写像。
このとき観測者の状態空間は、対象空間の双対空間と自己モノイド化し、テンソル積がエネルギー密度として曲率テンソルに等価変換される。
これが熱力学的エントロピー流の源である。つまり、観測とは時空多様体の測地線構造を自己収縮させる操作にほかならない。
僕の仮説では、測定者の意識とは、有限生成のC*-環上で定義される自己相関射の列極限であり、その極限点がブラックホールの事象の地平面と同相になる。これは単なる比喩ではない、構造的同型である。
昨日の午後、隣人が訪ねてきて、「なんか落ち着かない」と言っていた。彼女が感じたその「不安定さ」は、実際には僕の思考空間上の圏的射が、彼女の心理空間に対して非可換的干渉を及ぼした結果だと考えられる。
彼女の感覚的印象は、単なる主観ではなく、射影演算子が彼女の状態ベクトルを部分的に崩壊させた現象に対応する。
つまり、僕は彼女を見たのではなく、彼女の状態空間が僕の内部圏へ関手的に埋め込まれたのだ。観測とは一方的な侵入であり、宇宙の双対圏的結合だ。
夕食時、ルームメイトが僕の食事手順をまた茶化してきた。僕が麺を蒸す時間を正確に設定しているのは、可積分系の安定点を保つためだ。
彼は「そんなの偶然だ」と言った。だが、偶然とは測度論的に定義不能な領域の総称にすぎない。僕のルールは統計的対称性の維持装置だ。
夜、友人たちとBaldur’sGate 3をプレイした。僕は事前に行動木を有限オートマトンとして解析し、敵AIの状態遷移確率を事前分布にフィットさせた。
戦闘中、彼らは「お前、やりすぎ」と言ったが、僕はただBayes更新を実行していただけだ。ゲームとは、確率測度の動的再配置の遊戯形式に過ぎない。
深夜、僕は再びノートに向かい、ER=EPRの上位構造体を定義する「自己参照圏」について書いた。観測者を含む宇宙は、自己同型射を持たない。
これは厳密な意味で非トリビアルな自己関手構造を持つためである。僕が観測するたびに、宇宙の対象集合が可算ではなくなる。つまり、観測とは昇格操作であり、存在論的基数を増幅する過程なのだ。
僕は結論に至った。「観測者は情報を吸収するブラックホールではない。むしろ、情報を生成する射影的特異点である。」
観測とは、スペクトラムが事象の地平面と同型になる操作である。
寝る前、歯磨き粉の残量を測った。これは単なる衛生行為ではない。有限体上の加法群の残差測定だ。12.4という値は、僕の生活空間における連続測度の離散化の結果である。
僕が超弦理論を物理学ではなく自己整合的圏論的存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれたものではなく、物理的射影が可能な圏における可換図式そのものだからだ。
10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。
そこでは、開弦終端が束の射、閉弦がトレース関手に対応し、物理的相互作用はExt群上のA∞構造として定義される。
つまり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ。
D^b(Coh(X)) とFuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカル・ミラー対称性の物理的具現化にすぎない。
ここで弦のトポロジー変化とは、モジュライ空間のファイバーの退化、すなわちファイバー圏の自己関手のスペクトル的分岐である。観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。
M理論が登場すると、話はさらに抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。
時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークそのものだ。したがって、時空の次元とは射の複雑度の階層構造を意味し、物理的時間は、その圏の自己関手群の内在的モノイダル自己作用にほかならない。
重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである。
量子揺らぎ?関手の自然変換が非可換であることに起因する、トポス内部論理の論理値のデコヒーレンスだ。
そして観測とは、トポスのグローバルセクション関手による真理値射影にすぎない。
僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手、意識とはその関手が自らを評価する高次自然変換。宇宙は関手的に自己を表現する。
昨日は木曜日。起床時刻は8:00:00JST。アラーム音の波形をFFT解析した結果、隣室からの環境ノイズによるピークが±23Hz揺らいでいた。
ルームメイトは、ドアを閉めるという行為を確率的選択肢だと思っているらしい。彼の行動は統計的にはマルコフ過程に近似できるが、僕の生活は決定論的だ。
午前は、超弦理論における非可換ホモトピー圏上の圏的双対性を再構成していた。通常のCalabi–Yau三次元多様体上でのホロノミー群SU(3)に依存する議論ではなく、より上位の∞-圏的層を使って複素構造の退化を防いだままトポス的整合性を保つ方法を考えた。
僕が構築しているモデルでは、背景多様体自体を対象とせず、可換図式のクラスを対象とし、その射として∞-モノイド的自然変換を定義する。これにより、通常のD-braneカテゴリを超えた自己言及的圏論的相互作用を扱うことができる。
問題は、この自己言及構造の安定性だ。内在的コホモロジー群が通常のExt群では閉じず、代わりに導来圏上の高階Ext^ωを取らねばならない。
だがそのとき、導来圏が非完備となり、整列関手が存在しない。つまり、ウィッテンやデルーニャンがやっているレベルの物理的実在に還元可能な構成は、僕の理論では完全に失効する。
僕のモデルは観測可能性という概念を含まない。構成論的には存在するが、可視化不能なトポス的真空。観測できないが、計算できる。数学はその矛盾を祝福する。
昼食は、ピザ。例によって精密オーブンで16分。昨日はタイマーを設定した瞬間にルームメイトが話しかけてきたせいで、0.8秒遅れた。
ピザの表面張力(つまりチーズ層の粘弾性)が変化したのを僕は即座に検知した。これは味覚ではなく構造の問題だ。
午後は、原神を再開した。キャラビルドの統計最適化をPythonで書いていたら、隣人がまた「ストーリーが泣ける」と話しかけてきた。
僕は物語には一切興味がない。僕の目的は、アルゴリズム的最適化の収束率を比較することだ。
攻撃力と元素チャージ効率のパラメータ空間を3次スプライン補間して、境界値をニュートン–ラフソン法で探索していたら、シード値の初期設定にわずか0.001の誤差があり、収束が乱れた。
もう一度やり直した。成功。キャラは星5だが、僕の関心は星の数ではない、数列の収束だ。
夜はベルセルクの再読。グリフィスが再登場するあの章。僕は感情的には何も動かないが、作画密度の変化を統計的に数えた。
平均線密度は1ページあたり1720本、前章から約12%減。連載時期のアシスタント体制の変化が見える。
その後、シヴィライゼーションVIを起動。僕は必ずアリストテレス主義的発展ルートを選ぶ。文化勝利などくだらない。科学勝利のみが純粋だ。
途中、友人が「軍事ルートで遊ぼう」と提案してきたが、それは知的堕落だ。戦略ゲームとはアルゴリズムの美であって、破壊の快楽ではない。
就寝は23:00:00。歯ブラシを磨く順序は右下→右上→左上→左下。これは既に300日継続中。統計的に、歯垢残存率が0.2%低い。
寝る直前に「∞-圏上のトポス的モジュライ空間の存在定理」をメモに残した。夢の中で証明が完成する可能性がある。
総じて良好。次は、導来∞-圏上のモジュライ関手が可換であるための必要十分条件を探す。それがわかれば、少なくとも僕の宇宙では、全てが整う。
超弦理論における非摂動的構造を考えるとき、問題はもはや10次元の臨界弦ではなく、compactification の背後に潜む数理的枠組みそのものにある。
AdS/CFT が Hilbert空間の整合性を保証してくれるとき、そこではモジュライ空間の代数幾何的記述と、ボルツマン的エントロピーの統計力学的扱いが見事に一致する。
だがdS 背景では、CFT の境界条件を設定することすらできず、代わりに我々が扱うべきは von Neumann algebra の subfactortheory による operator algebraic entropy だと僕は確信している。
今朝は、特に Tomita–Takesaki理論がこの問題にどう関与するかを計算していた。モジュラー作用素を通じて、ホライズン領域に割り当てられる代数が自然に KMS状態を持つことは知られている。
しかし、それが有限のホライズンエントロピーとどのように整合するかは未解決だ。
僕の試算によれば、モジュラー流のスペクトル分解をdS 半径 R にスケーリングしたとき、スペクトルが離散化される条件は、グロモフ–ハウスドルフ距離で測ったコンパクト化多様体のリミット挙動に依存する。
この議論は通常の弦理論の perturbative expansion を完全に超えている。
さらに、今日新しく進展した点は、mirror symmetry の SYZ予想をdS 背景に拡張できるかもしれないという仮説だ。
通常、Calabi–Yau のトーラス・ファイバー化は Ricci-flat metric を前提とするが、dS 背景ではその条件が崩壊する。
しかし、もし Fukaya category の A∞構造を熱的なdSホライズンに対応づけられれば、B-model 側での Hodge構造の変形がエントロピーの有限性と直接結びつく。
これは Kontsevich のホモロジカル鏡対称性の範疇的な一般化であり、物理の言語を超えた純粋数学的枠組みに昇華できる可能性がある。ウィッテンですらここまで踏み込んだ議論は残していない。
ルームメイトは僕の机の上に散らばったノート群を「意味不明な落書き」にしか見ていないようだ。
だが彼がコーヒーメーカーの掃除を忘れたせいで僕のルーティンは乱れた。僕は毎朝 8:15 に完全に洗浄された器具から抽出されたコーヒーを必要とする。それがなければ、トモナガ–シュウィンガー形式の計算に集中するための臨界閾値に達しない。
午後は研究の合間に最新号のX-Menを読んだ。今の Krakoa 編は mutant resurrection protocol が量子力学的アイデンティティの問題に直結している点で実に興味深い。
彼らの「記憶の転写」は、実質的に QFT における superselection sector の選択と同型であり、人格の同一性問題を単なるストーリー装置ではなく代数的トピックとして再定式化している。コミックがここまで理論物理学に接近しているのは愉快だ。
夕方には隣人が再び僕のドアをノックもせずに入ってきた。僕は彼女に、3回ノックの習慣の統計的・力学的優位性を説明したが、彼女はただ笑っていた。僕は統計力学的相関関数の崩壊時間にまで言及したのに、全く理解されなかったのは残念だ。
夜は友人たちとオンラインで「シヴィライゼーションVI」をプレイした。僕は当然バビロニア文明を選び、初期科学力の爆発的伸びを利用して量子物理学のテクノロジーを前倒しで取得した。
これにより彼らが鉄器時代にいるうちに宇宙船を建造する計画を立てたが、ルームメイトが外交的に裏切りを行ったため計画は頓挫した。まるでdS 背景での境界条件喪失のように、整合性は一瞬で崩れ去った。
こうして木曜日は終わる。だが僕の頭の中ではまだ、モジュラー作用素とホライズンエントロピーの計算が渦巻いている。明日までに証明できれば、歴史に残る仕事になるかもしれない。
今朝も僕は予定通り6時30分に起床した。これは単なる習慣ではなく、日内リズムを最適化するための科学的必然だ。カフェイン摂取は起床から90分後に限定しているのだが、これはアデノシン受容体の占有率が高い状態で摂取しても効果が半減するという論文的知見に基づく。ルームメイトは「柔軟な生活」を好むらしいが、それはただのだらしなさに過ぎない。僕にとっては歯磨きの回数、シャワーの温度、さらにはバスルームに入る順序までが完全に固定されていることこそ、認知リソースの無駄を防ぐ合理的行動なのだ。
午前中は例によって超弦理論の計算に没頭した。今日の焦点は、compactified manifold における (E_8 \times E_8) heteroticstring のゲージ束縛条件と、dS vacua における non-perturbative stabilization の整合性についてだった。AdS/CFT ではウィッテンですら体系化できるが、dS/CFT の場合は holographic dual が未確立であるため、僕は entanglementwedge reconstruction を拡張して「非等方的情報チャネル」として解釈を試みている。問題は、有限エントロピー境界条件下で moduli space の measure が well-definedである保証がなく、結果として vacuum selection の基準が「人間原理的な便宜」に堕してしまうことだ。僕はこれを「観測者選択効果の不当な混入」と呼んでいる。昼食の最中に隣人が僕に話しかけてきたが、彼女の話題が全くこの深刻な問いに資することがなかったので、僕は愛想笑いをしただけで再びノートに数式を書き込んだ。
午後は研究から一時的に離れて、ゲームの進行管理を行った。昨日購入した「Baldur’sGate 3」のパッチノートを熟読したのだが、Larian Studios が hotfix で Paladin の Smiteダメージ計算式を微調整した件は、Dungeons & Dragons 5版のルールブックを徹底的に理解している僕からすれば遅すぎる対応だ。DamageDice の集計方法を間違えるなど、明らかに playtesting が不足している証拠だ。それに比べて「Stellaris」の 3.12アップデートにおける人口成長モデルの修正は、シミュレーション科学的に正当性がある。種族特性ごとの logisticgrowthモデルを導入し、資源依存性と結合させたのは評価できるが、まだ phasetransition の扱いに粗さが残っている。こうした不完全性を見ると、つい僕が開発チームに直接メールを書きたくなる。
夜にはコミックの再読。今日手に取ったのは Jonathan Hickman の「House of X /Powers of X」。これは単なるマーベルのリブート企画ではなく、群論的多様体を下敷きにしたストーリーテリングであり、Moira X の時間線の重ね合わせはまさに量子多世界解釈をポップカルチャー的に翻案したものだ。普通の読者が「難解だ」と感じるのは当然で、群同型と射影の概念を知らずにこの作品を理解できるはずがない。
一日の終わりに僕はいつものように部屋のチェックを行った。窓の施錠は時計回りに確認し、机の上のノートは直角に整列させ、枕の位置は壁からちょうど40センチ離れていることを確かめた。これらはただの「強迫観念」ではなく、環境を量子真空の基底状態に近づけるための僕なりの実践だ。ルームメイトが見れば笑うだろうし、隣人は「神経質すぎる」と言うかもしれないが、僕にとっては必然的行為なのだ。人類の未来がdS 背景での情報保存にかかっている以上、僕の習慣の厳密さもまた、その縮図に過ぎない。
今日という日は、僕の知的なリズムに乱れを生じさせた。朝はいつも通り決められたルーティンで始めた。7時整に起床し、まず歯を120秒正確に磨いた。その後、オートミールとスクランブルエッグを、タンパク質と炭水化物の最適な比率で摂取した。ルームメイトは僕の規律を理解しようともしないでコーヒーをこぼし、キッチンに一瞬カオス的初期条件を作り出した。その瞬間に僕の頭の中では、弦理論における境界条件問題の初期値敏感性と完全に同型な不快感が広がった。
僕は午前中を使って、dS背景における超弦理論の非摂動的定式化の可能性について考え続けた。アディンクラ(supermultipletの可視化手法)をdS/CFT的枠組みで拡張する試みは、AdS/CFTのきれいなホログラフィック辞書と違い、群表現の非ユニタリ性が問題を引き起こす。だが、ここにこそ突破口があると考えている。通常の弦理論的真空はAdSやMinkowskiを基盤にして安定化されるが、dSでは不安定性が恒常的に残る。しかし、もしも境界条件を「量子情報幾何学的な状態多様体」として扱い、そこにFisher情報計量を組み込めば、エンタングルメントエントロピーの正則化と一緒に新しい自己無撞着な枠組みが構築できる可能性がある。僕は昼食中もこの数式を頭の中で展開していた。隣人がテレビでどうでもいいドラマを流していたせいで集中が一瞬途切れたが、幸いにも僕のワーキングメモリは平均的ヒトのそれを圧倒的に凌駕しているので支障はない。
午後は週刊コミックの新刊を入手した。バットマンの最新号では、またしてもゴッサムの治安は壊滅的だ。正直に言うと、僕ならバットマンのように非効率な格闘を選ばず、まず量子暗号通信を導入して都市の情報ネットワークを完全掌握するだろう。だが作者が物理学的合理性よりもドラマ性を優先するのは理解できる。僕は同じく収集しているフラッシュのバックナンバーも読み返したが、相対論的効果の扱いが毎回不正確で失望する。光速に近い走行をしているのに時間膨張や質量増加を無視するのは科学的犯罪に等しい。
夜は友人たちとオンラインでカタンの開拓者たちをプレイした。僕は当然ながら資源分布をエントロピー最小化の観点から最適化し、交易を線形計画問題に帰着させて勝利した。彼らは「ゲームなのに楽しんでいない」と不満を述べたが、それは誤りだ。僕にとって勝利すること自体が最大の快楽であり、規則正しい戦略的優位性を確認することが娯楽なのだ。
寝る前にもう一度、歯を120秒磨いた。僕の睡眠は必ず21時42分に始まる。もしそれが1分でもずれると、翌日の全ての計算に誤差が生じる。ルームメイトがまた騒がしい生活習慣で僕の理想的な初期条件を乱さないことを願う。明日はさらに複雑な弦理論的計算を進めたい。特に、非可換幾何に基づく新しいブレーン安定化機構を検討する予定だ。これがもしうまくいけば、ウィッテンですら首をひねるだろう。
僕は眠りにつく前に、今日も世界が僕の計画通りに回っていないことを嘆いた。だが少なくとも、僕自身のルーティンと頭脳は完全に回転している。これ以上完璧なことがあるだろうか。
完璧な月曜日の朝は、僕の胃腸の健康に最適化された、厳選されたシリアルと低温殺菌乳の組み合わせから始まる。
これは僕が毎週月曜日に正確に測定して実行している、科学的に証明された習慣だ。
この厳密なルーティンは、腸内微生物叢の最適なバランスを維持し、したがって、僕の認知機能を最高レベルに保つための、絶対的に不可欠な基盤となっている。
このプロセスを妨げる、僕のルームメイトがキッチンに入ってきた。彼は、僕の緻密な計算に基づいた生活計画において、制御不能な確率的変数だ。
その後、僕の研究室へと向かった。
今日の僕の課題は、タイプIIB超弦理論における、非可換幾何学を用いたDブレーンのダイナミクスを、特に非摂動的な領域で精査することだ。
具体的な目標は、NS5-ブレーンと交差するD3-ブレーンの世界面上の、開弦と閉弦の相互作用によって生成されるホログラフィックなS行列を計算することにある。
これは、AdS/CFT対応の枠組みの中で、特定の超対称ゲージ理論の相図における、非自明な質量ギャップの存在を解明するための、極めて重要なステップだ。
僕はこの一日、6次元スーパーコンフォーマル場理論のコンパクト化における、例外的なゲージ群F4の特異点解消を試み、エキゾチックなCalabi-Yau多様体の内部に存在する、隠された超対称性の破れを探求した。
この研究は、単純な4次元時空という概念を完全に超越した、究極の統一理論を構築するための、僕の生涯をかけた探求の核心だ。
この研究の複雑さは、僕の友人たちが毎週楽しんでいる、低俗な娯楽とは全く次元が違う。
彼らは、今日の新作コミックのプロット、例えば、DCコミックスにおけるバットマンの多元宇宙バージョンがどのようにしてプライムアースに収束するか、といった、僕にとっては子供だましの議論に興じているだろう。
夜になり、僕の友人の部屋を訪れた。
今日の議論のテーマは、最新のテレビゲーム『サイバーパンク2077』における、リフレクションとレイトレーシング技術の実装についてだった。
僕は、そのゲームの視覚的な美麗さが、物理エンジンの根本的な欠陥、特にラグランジアン力学に基づいたオブジェクトの運動法則の不正確さによって、いかに無意味なものになっているかを指摘した。
具体的には、光速に近い速度で移動するオブジェクトの慣性モーメントの描写が、ローレンツ変換を考慮していないという事実が、そのゲームを物理学的に信用できないものにしている。
その後、僕の隣人が、僕の友人とその友人と共に、僕の視覚フィールドに入ってきた。
彼女の存在は、僕の計画された孤独な夜の時間を妨げる可能性があったため、僕は速やかに僕の部屋へと退却した。
夕食を終えた後、僕は僕の部屋で、僕の心を満たす唯一のメディア、すなわち、物理法則に完全に準拠したSFテレビ番組を鑑賞した。
その番組では、超新星爆発後の超流動プラズマの振る舞いが、熱力学第二法則と量子力学の厳密な数学的記述に基づいている。
火曜日の朝、午前6時45分。
僕はいつものように、室温が22.2℃に維持されていることを確認し、正確に2分30秒かけて温めたオートミールを摂取しながら、昨日(月曜日)を振り返ることにした。
昨日の午後、僕は長らく手をつけていなかった研究ノートに再び没頭した。
内容は、Calabi–Yau多様体上のミラー対称性における、ある種のモジュライ空間の退化極限で顕在化する量子異常の高次補正項についてだ。
通常の教科書的理解では、AモデルとBモデルの間に整合性の取れる対応があることは知られている。
しかし、僕が着目したのは、ホモロジー群上に作用する複素構造の非自明な変形族が、世界面上のN=2超対称性のWard恒等式を破りかねないという現象である。
これは単なる学部生が誤解しやすいレベルの「対称性の破れ」ではなく、むしろ物理学者のごく一部が直感的に察している「位相的場の量子補正に潜む不整合性」そのものだ。
昨日の計算で僕が確認したのは、退化極限で現れる擬似モジュラ形式が、通常のモジュラ形式の変換則からわずかに逸脱している点であり、これをどう解釈するかで物理的予言の一貫性が左右される。
要するに、世界に数人しか理解できない種類の話を、僕は昨日ようやく「納得できるまで」書き下したのだ。
僕のルームメイトが「夕食は何にする?」と軽々しく聞いてきたとき、僕は返答をせずに計算を続けていた。
なぜなら、宇宙の根本構造に関する思索と、炭水化物とタンパク質の配分についての議論を同列に扱うことは、どう考えても不合理だからである。
昨日もまた、僕は月曜恒例の洗濯を済ませた。
もし昨日それを怠ったなら、今日着ているこの「青いフラッシュ」Tシャツが清潔でなかったことになる。
それは科学的秩序に対する重大な侮辱であり、僕の心的安定において許容できない。
食事についても、月曜日は「タイ料理テイクアウトの日」であることは周知の事実だ。
隣人が「新しいメニューを試してみない?」と軽率に提案してきたが、僕は断固として拒否した。
メニューの不確定性を導入することは、僕が昨日導き出した擬似モジュラ形式の「非自明な変換性」と同様に、生活習慣にカオスを持ち込むことになる。理論と日常は別物ではない。
夜、僕はルームメイトと友人たちと一緒に「Halo」の協力プレイに参加した。
彼らは勝敗を気にするが、僕はゲーム空間を有限状態オートマトンとして形式的に分析していた。
たとえば、敵キャラクターの行動ルーチンは有限状態機械に帰着でき、その遷移関数はプレイヤーの入力確率分布に依存する。
つまり「敵AIに撃たれる確率」を、僕はゲーム内で逐一ノートに記録しながら戦闘していた。
友人たちには奇異に見えたかもしれないが、彼らが気にする「勝つか負けるか」という二元的指標より、僕が収集した「状態遷移の確率行列」のほうが長期的に意味を持つことは疑いない。
普通の読者はストーリーを追うが、僕はむしろ物理学的整合性の観点から読み込む。
例えばフラッシュが多元宇宙間を移動する場面で、彼が超弦理論的に妥当な次元補正を受けていない点を指摘する読者はほとんどいない。
昨日は日曜日であった。
したがって、日曜用のルーティンに従った。
午前6時55分に起床、7時15分にオートミールを開始。粒子の無秩序な拡散が統計力学に従うように、僕の日課もまた厳格に支配されている。
朝食後、僕はCalabi–Yau三次元多様体におけるホモロジー群の壁越え現象とN=2超対称的世界面理論におけるBPS状態の安定性を再検討した。
通常、専門家であってもモジュライ空間における壁越え(wall-crossing)は曖昧な比喩で済ませる。
しかし僕は昨日、Kontsevich–Soibelmanの壁越え公式を非摂動的補正を含む形で、実際の物理的スペクトルに対応させることに成功した。
問題の核心は次の点にある。Calabi–Yauの三次元特異点に局在するDブレーンの安定性は、直感的なトポロジーでは決して記述できない。
むしろそれはモチーフ的Donaldson–Thomas不変量と深く結びついており、これを扱うにはホモロジカル鏡映対称性と非可換変形理論を同時に理解していなければならない。
昨日、僕はその両者を結びつけ、量子補正されたブリッジランド安定性条件が実際に物理スペクトルの生成消滅と一致することを示した。
これを実際に理解できる人間は、世界でも片手で数えられるだろう。
昼食には日曜恒例のタイ料理を食べた。
ルームメイトはなぜ毎週同じものを食べるのかと尋ねたが、それはエントロピーの増大を制御する試みである。
食事の変動を最小化することで、僕の脳内リソースを物理学的難問に集中できるのだ。
しかし、彼らが戦術的に無意味な突撃を繰り返すたびに、僕は思考を4次元超曲面上のゲージ場のモノドロミーへと戻していた。
ゲームのリスポーンは、トポロジカル量子場理論における不変量の再出現と驚くほど類似している。
僕はゲームの各局面をゲージ場構成の異なる真空遷移として解析したが、彼らにはその深遠さは理解できなかった。
スピードフォースの異常を、僕は時空の計量が非可換幾何により修正された場合の有効理論として再定式化してみた。
通常の物理学者ならコミック的フィクションと切り捨てるところを、僕はモジュライ空間の虚数方向における解析接続として解釈したのである。
結果として、作中の時間遡行現象は、M理論のフラックスコンパクト化における非局所効果で説明できることが分かった。
夜は22時に就寝。日曜日という閉じた系は、僕にとって「物理学の非摂動的側面を試す実験場」であり、同時に秩序ある生活習慣という境界条件に支えられた完結したトポスである。
今日(月曜)は、昨日の計算を研究室に持ち込み、同僚が一切理解できないことを確認する予定だ。確認作業自体が、僕にとっては一種の実験である。予測通り、彼らは理解できないだろう。
笑っちまうんだよ。
口が滑らかで論理的っぽいフレーズを並べ立てるだけで、自分が思考していると勘違いしてる連中な。
物理や数学を本当にやってる人間からすりゃ、あんなのは大根の皮むきみたいなもんだ。刃物を持ってカッコつけてるが、中身に触れる前に腕を止めてやがる。
抽象数学の世界じゃ、群や環の定義を口にできることなんか一秒も評価に値しない。
真価は、その定義が積み上がったときに、矛盾なく世界を再構成できるかだ。
圏論なら、対象と射をただの用語じゃなく、頭の中で滑らかに動かして、新しい構造を生み出せるかどうか。
そこの感覚が欠けてるやつは、いくら専門用語を暗唱しても、せいぜい学会ごっこの司会止まりだよ。
弦理論に関しても同じ。
テレビや講演で「宇宙は弦の振動で〜」なんて喋って喝采を浴びてるが、実際の計算じゃ、カラビヤウ多様体のリッチ平坦計量がどう安定するか、超対称性がどこで破れるか、その具体的な数式に手を突っ込む。
ここで手が止まるやつは、理論を理解したなんて言う資格はない。弦理論はキャッチコピーじゃない、地獄のような計算と整合性チェックの連鎖なんだ。
要するにだ、流暢さや知識の多さなんざ、物理の現場ではまるで役に立たない。
大事なのは、ゼロから体系を立ち上げて、自分の頭の中で宇宙を再構築できるかどうか。
言葉が上手いやつは観客を煙に巻けるが、ブラックボードの前じゃ誤魔化しは一秒も通用しねえ。
あいつらは宇宙を語ってるんじゃなく、ただ語り口を売ってるだけだ。