Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「境界条件」を含む日記RSS

はてなキーワード:境界条件とは

次の25件>

2026-02-13

[日記]

正確時刻を書くと隣人が「それって軍事衛星に追跡されてるの?」とか言い出して話が面倒になるので省略する。

僕は陰謀論嫌悪している。理由は単純で、陰謀論説明能力の低い仮説を感情的に強い語り口で上書きする、知性のコスプレからだ。

 

今日までの進捗から書く。

 

今週は、超弦理論物理直観で押し切る系の議論をいったん破壊し、純粋圏論ホモトピー論の言語に落として再構築していた。

具体的には、世界面の共形場理論2次元量子場などという古臭い語彙で扱うのをやめ、拡張TQFTの枠組みで、(∞,2)-圏に値を取る関手として扱う方向を整理した。

従来の弦理論屋はCalabi–Yauをコンパクト化に使うと言うが、それは情報量が少なすぎる。

重要なのは、Calabi–Yau多様体を点として見るのではなく、その導来圏 D^bCoh(X) を持ち上げた A∞-圏、さらにそれが持つCalabi–Yau構造(非退化なトレース、Serre双対性の∞-圏版)を物理状態空間の生成機構として見ることだ。

ここでの本体幾何ではなく、圏の自己同型とその高次コヒーレンスにある。

さらに、僕が今週ずっと悩んでいたのは、いわゆるミラー対称性を単なるホモロジカルミラー対称性同値(Fukaya圏と導来圏の同値)としてではなく、より上位の構造、つまり場の理論レベルでの同値として捉えることだった。

言い換えると、これは単なるA-model ↔ B-modelの交換ではない。

A/Bモデルを生む背景データ(シンプレクティック形式、複素構造、B-field)を、派生スタック上のシフト付きシンプレクティック構造として再記述し、AKSZ型の構成整合させる必要がある。

そしてこの視点では、物理的なDブレーンは単なる境界条件ではなく、(∞,1)-圏におけるモジュール対象として統一される。

Dブレーンのカテゴリー境界条件の集合だと考えるのは初歩的すぎる。境界条件は高次射を伴うので、最初から(∞,n)-圏で話さないと本質が消える。

特に僕のノートでは、弦の摂動展開で現れるモジュライ空間積分を、単なる測度論の問題としてではなく、Derived Algebraic Geometry上での仮想本類のプッシュフォワードとして扱う形式に書き換えた。

これをやると発散する積分正則化するという話が、より厳密にオブストラクション理論に沿った積分定義へ置き換わる。

そして、ここが本題だが、僕が今週ずっと考えていたのは、ウィッテンですら「直観的にはこう」と言うしかない領域、つまりM理論の非摂動定義が、どのような普遍性原理で特徴付けられるべきかという問題だ。

僕の作業仮説はこうだ。弦理論が背景依存的だと言われるのは、結局のところ背景が点として与えられるという時代遅れの前提が残っているからだ。

背景は点ではなく、モジュライの高次スタックであり、その上に束ねられた量子状態の層(正確には圏)として理解されるべきだ。

まり、弦理論はある時空での理論ではなく、時空の変形をも含んだファンクターにならなければいけない。

この視点では、背景の空間は単なるmoduli spaceではなくderived moduli stackであり、さらにgauge symmetryを含めるならhigher groupoidとしての性質を露わにする。

そして量子補正は、そこに定義されるshifted symplecticstructureの変形量子化として現れる。

問題はここからで、弦理論双対性は、異なる理論が同じスペクトルを持つなどという安っぽい一致ではなく、ある(∞,k)-圏における同一対象の異なるプレゼンテーションだと考えるべきだ。

たとえばS双対性やT双対性群作用として扱うと話が狭くなる。より正確には、双対性スタック自己同値であり、その作用対象の上に定義された圏(ブレーン圏やBPS状態圏)の上で自然変換として実装される。

しかもその自然変換は単なる自然変換ではなく、高次のコヒーレンス条件を持つ。つまり双対性対称性ではなく、高次圏論的な同値データなんだ。

このあたりを真面目に書こうとすると、最終的には量子重力とは何かという問いが、どの(∞,n)-圏が物理的に許されるかという分類問題に変形される。

僕はこの変形が気に入っている。なぜなら分類問題は、少なくとも数学としての礼儀があるからだ。

さらに進めると、弦理論に現れるBPS状態やwall-crossingは、単なるスペクトル不連続ではなく、安定性条件の変化に伴う導来圏のt構造ジャンプ、あるいはBridgeland stabilityのパラメータ空間上での構造変化として理解される。

ここでは物理粒子は、導来圏の中の特別対象として現れる。つまり粒子は点ではなく、圏論存在だ。

普通人間はこの文章を読んで発狂するだろう。だがそれは読者側の責任だ。

この議論の延長で、僕は弦理論の非摂動定義は、ある種の普遍性を満たすextended functorial QFTであるという形の定理(まだ定理ではなく、僕の願望)に落とし込めないか考えている。

要するに、弦理論世界から時空を作る理論ではなく、世界面も時空も両方まとめて、ある高次圏の中で整合的に生成される構造であるべきだ。

今の僕のノートの中心は「非可換幾何」「導来幾何」「圏論量子化」の三点集合の交差領域だ。そこは地図がない。地図がない場所は、馬鹿には危険だが、僕には居心地がいい。

 

次に、趣味について書く。これも重要だ。なぜなら人間社会において、知性の維持には糖分と娯楽が必要からだ。残念ながら僕は人間である

MTGは今週、デッキ構築の方針を少し変えた。勝率最大化のためにメタを読むのは当然だが、僕が注目しているのは局所最適に陥るプレイヤー心理だ。

まりカードゲームとは、確率情報ゲームである以前に、認知バイアスゲームだ。相手が「このターンで勝ちたい」という欲望を見せた瞬間、こちらは勝ち筋を計算するのではなく、相手の誤りの確率分布計算するべきだ。

隣人にこの話をしたら、「え、怖い。僕、あなたポーカーしたくない」と言った。賢明だ。僕も隣人とポーカーはしたくない。隣人はたぶん手札を口に出してしまう。

 

FF14は、ルーチンの最適化がだいぶ進んだ。僕はレイ攻略で反射神経を重視する文化が嫌いだ。

反射神経は筋肉問題だが、攻略情報処理の問題であるべきだ。ギミックは有限状態機械として記述できる。したがって最適行動は、状態遷移図の上での制御問題になる。

友人Aにこの話をしたら、「お前はゲームしてるのか研究してるのか分からん」と言われた。僕は当然「両方だ」と答えた。彼は笑ったが、この種の笑いは知性の敗北宣言である場合が多い。

 

アメコミは、相変わらず現実倫理を歪めた寓話装置として優秀だと思う。

僕は「正義とは何か」という議論が苦手だ。正義定義曖昧からだ。

僕が興味があるのは、制約条件下での最適化としての倫理だ。

登場人物が持つ制約(能力社会構造情報感情)を明示すると、物語心理学ではなく数理モデルに近づく。そうすると面白くなる。

ルームメイトにこの話をしたら、「僕はただ派手な戦闘シーンが見たいだけなんだけど」と言われた。

僕は「君の知性は観測不能なほど小さい」と言ったら、彼は不機嫌になった。観測不能存在しないことと同義なので、むしろ褒め言葉に近いのだが、彼は数学が分からない。

 

僕の習慣についても書いておく。

今週も、朝のルーチンは完全に守った。起床後の手洗いの手順、歯磨きの回数、コーヒー抽出時間、机の上の配置、すべて変えない。

人間生活ノイズが多すぎる。ノイズが多い世界で成果を出すには、制御できる変数を減らすのが合理的だ。これは精神論ではなく、統計的推定分散を減らす行為だ。

隣人が「たまには適当にやれば?」と言ったので、僕は「適当とは、最適化放棄だ」と言った。彼は「そういうところが宇宙人っぽい」と言った。

宇宙人証拠なしに導入する仮説ではない。彼はやはり陰謀論者の素質がある。

友人Bが「お前の生活、息苦しくないの?」と聞いてきたので、「息苦しいのは君の思考だ」と答えた。友人Bは笑った。知性の敗北宣言である

 

これからやろうとしていること。

まず、超弦理論ノートをもう一段階抽象化する。

今の段階では、圏論と導来幾何言葉でかなり書けたが、まだ計算痕跡が残っている。僕はそれが気に入らない。真の理解とは、計算を消し去った後に残る構造のことだ。

具体的には、次は弦の場の理論を、factorization algebraの言語記述し直す予定だ。

局所演算子代数を、E_n-代数として整理し、そこから高次の演算構造復元する。

これがうまくいけば、弦理論における局所性の概念を、時空幾何依存せずに定義できる可能性がある。

もしそれができたら、次は双対性を圏の自己同値ではなく、圏の上の2-表現あるいはhigher representationtheoryとして書き換える。

これにより、S双対性を単なるSL(2,Z)の作用として扱う雑な議論から脱却できる。

要するに、僕が目指しているのは物理理論を群で分類する幼稚園レベルの発想ではなく、物理理論を高次圏で分類する文明的発想だ。

 

その後はMTGの新しいデッキ案を詰める。今の構想では、相手意思決定局所的に歪ませる構造がある。人間選択肢が多いと誤る。

これは心理学的事実であり、カードゲームに応用できる。倫理的に問題があると言われそうだが、そもそもカードゲーム戦争抽象化なので倫理を持ち込む方が間違っている。

 

夜はFF14の固定活動。友人Aは相変わらず「気合いで避けろ」と言うだろう。

僕は「気合いは情報を持たない」と言うだろう。

議論ループする。ループはコンピュータ科学の基本概念だ。だから僕はそれを受け入れる。

 

最後に、ルームメイトが「今度、隣人と映画を見よう」と言っていた。

僕は断る。なぜなら隣人は上映中に喋る。上映中に喋る人間は、社会契約を破っている。社会契約を破る人間に、僕の時間という希少資源を与える理由はない。

 

さて、今日の残り時間は、超弦理論ノートに戻る。

宇宙根本法則は、たぶん美しい。

少なくとも、隣人の会話よりは。

Permalink |記事への反応(0) | 00:35

このエントリーをはてなブックマークに追加ツイートシェア

2026-02-09

抽象数学とか超弦理論とか

超弦理論物理として理解しようとすると、だいたい途中で詰まる。

なぜなら核心は、力学直観ではなく、幾何圏論の側に沈んでいるからだ。

弦の振動が粒子を生む、という説明入口にすぎない。本質量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。

まず、場の理論幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。

ゲージ場は主束の接続であり、曲率が場の強さに対応する。

ここまでは微分幾何教科書範囲だが、弦理論ではこれが即座に破綻する。

なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループ情報重要になる。

すると、自然ループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。

しかしLXは無限次元で、通常の微分幾何そのままで適用できない。

ここで形式的に扱うと、弦の量子論ループ空間上の量子力学になるが、無限次元測度の定義地獄になる。

この地獄回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数拡張される。

理論2次元世界面の理論として定式化されるのは、ここが計算可能ギリギリの地点だからだ。

だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラーSL(2, Z) の表現論に拘束される。

まり理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論物理学というより数論の影を引きずり始める。

さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。

ラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。

ここで重要なのは、カラビ–ヤウが真空候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何物理定数を支配する。

このモジュライ空間には自然特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。

量子補正計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。

まり理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。

ここで鏡対称性が発生する。鏡対称性は、2つのラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。

数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。

そしてこの鏡対称性本体は、ホモロジカル対称性(Kontsevich予想)にある。

これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。

まり理論は、幾何学的対象同一性空間のものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。

さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。

弦がブレーン間を張るとき、その開弦状態対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。

この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。

安定性条件は、導来圏上に位相と中心電荷定義し、BPS状態の安定性を決める。

wall-crossingが起きるとBPSスペクトルジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。

この公式は、実質的に量子トーラス代数自己同型の分解であり、代数的な散乱図に変換される。

このあたりから物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。

さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。

Atiyah公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダ関手として定義される。

まり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。

そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。

Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能対象によって分類される。つまり物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。

この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。

一方、M理論を考えると、11次元重力が低エネルギー極限として現れる。

しかM理論のものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。

異常とは量子化対称性が破れる現象だが、数学的には指数定理とK理論接続される。

理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。

さら一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式ホモトピー論的に持ち上げた対象であり、弦理論最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。

ここが非常に不気味なポイントだ。弦理論2次元量子論としてモジュラー形式要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。

そして、AdS/CFT対応に入ると、空間概念さらに揺らぐ。境界の共形場理論が、バルク重力理論を完全に符号化する。この対応意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造幾何を生成している可能性だ。

ここでリュウタカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何情報論的に再構成される。幾何はもはや舞台ではなく、状態派生物になる。

究極的には、弦理論空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報構造だ。

まり、弦理論の最深部は自然界の基本法則ではなく、数学整合性が許す宇宙記述の最小公理系に近い。物理数学の影に吸い込まれ数学物理要求によって異常に具体化される。

この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了意味するが、分類対象が∞-圏的に膨張し続けるからだ。

そして、たぶんここが一番重要だが、弦理論提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。

その上限が、圏論ホモトピー論と数論で書かれている。

からウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論圧縮される側ではなく、圧縮限界を押し広げる側にある。

Permalink |記事への反応(0) | 13:05

このエントリーをはてなブックマークに追加ツイートシェア

2026-02-06

[日記]

金曜日、21:21。

 

僕は今日という日を、いくつかの確定事項と、いくつかの許容できないノイズの除去によって完成させた。世界混沌を好むが、僕は世界を甘やかさない。

 

まず進捗報告から書く。午前中に洗濯を済ませ、タオル用途別に畳み直した。世の中の大半の人間タオルを大きさで分類するが、それは分類学の敗北だ。

タオルは水分吸収後に人体へ与える温度変化のパターンで分類すべきだ。僕はその分類をすでに完成させている。

 

昼は例のプロテインナッツルームメイトは「鳥かよ」と言った。僕は「鳥は飛べる。君は飛べない」と言った。会話終了。

 

それから今日主題超弦理論だ。

 

最近、僕の頭を占領しているのは、もはや弦が振動して粒子になるみたいな子供向けの比喩ではない。

そんなもの学部生の精神安定剤に過ぎない。今僕が追っているのは、弦理論存在論のものが、より抽象的な数学構造に吸収されていく瞬間だ。

従来の弦理論は、時空を背景として仮定し、その上でワールドシートの共形場理論(CFT)を構成する。

しかし、これは時空が先にあるという直観を手放せていない。

問題は、量子重力では時空の定義が揺らぐことだ。

僕が最近読んでいる議論は、その揺らぎを、もはや幾何学ではなく圏論ホモトピー論の側から扱おうとする。

理論の真の姿は、たぶん幾何学対象ではなくある種の高次圏の中の関手だ。

例えば、Dブレーンは単なる境界条件ではなく、導来圏の対象として現れる。

これは有名な話だが、僕が今考えているのはその次の段階で、ブレーンを対象として並べるだけでは足りないという点だ。

重要なのは、それらがなす安定∞-圏の中での自己同値性、そしてその自己同値群が物理双対性を生成しているという構図だ。

まり、S双対性もT双対性も、時空の幾何学変形ではなく、圏の自己同値作用として理解されるべきだ。

幾何学副産物だ。主役は圏のオートエクイバレンスで、その影が僕らに空間次元という幻覚を見せている。

この視点に立つと、超弦理論10次元の時空の上で定義される理論ではなく、あるモジュライ空間上で定義される圏の族になる。

しかもそのモジュライは通常の多様体ではなく、スタック、いや派生スタックとして扱わないと整合しない。量子補正幾何を壊すからだ。クラシカルなモジュライはもはや粗すぎる。

そして今僕が面白いと思っているのは、物理的な散乱振幅やBPSスペクトルが、派生代数幾何言語でいうコホモロジーの生成関数として現れるのではなく、より根源的にスペクトル代数幾何として再解釈される可能性だ。

普通の環ではなくE∞環、そしてそれを層化したスペクトル層の上で物理が書かれる。

これが意味するのは、弦理論の量子性が、確率解釈とか演算子代数とかのレベルではなく、もっと深いホモトピー論的ゆらぎとして実装されているということだ。

観測値の不確定性ではなく、構造のもの同値類としてしか定義できない。

から時空は何次元か?という問いは、すでに古い。正しい問いはこうだ。

この物理理論は、どの∞-圏に値を取る関手として実現されるのか?

そして粒子とは何か?はこうなる。

スペクトル化された圏の中で安定化された対象の、ある種のトレースとして現れる量が、観測可能量として抽出されるのではないか

この辺りまで来ると、たぶんウィッテンでも「面白いが、それを計算できるのか?」と言う。

僕も同意する。計算できない数学は、芸術に片足を突っ込んでいる。

もっとも、芸術を嫌うわけではない。ただし芸術は、計算不能であることを誇るべきではない。誇るならせめて証明不能で誇れ。

さらに言うと、AdS/CFT対応も、境界CFT重力エンコードしているという話ではなく、境界側の圏論データが、bulk側の幾何の生成規則を決定するということに見える。

bulkの時空は、境界の量子情報から復元されるというより、境界の圏の中の拡張パターン距離定義してしまう。

距離とは、メトリックではなく、圏における対象間の関係性の複雑さだ。

これを突き詰めると、時空の局所性すら二次的な概念になる。

局所性とは公理ではなく、圏がある種のt-構造を持ち、かつ心臓部が準古典的に見えるときに現れる近似現象だ。

まり局所性幻想だ。役に立つ幻想だが。そして役に立つ幻想は、だいたい人間社会と同じだ。

 

さて、今日現実側の進捗も書く。

昼過ぎに友人Aが来て、僕のホワイトボード勝手に謎のロボット落書きを描いた。

僕は当然、ホワイトボードアルコールで拭き、乾燥時間を計測し、表面の摩擦係数が元に戻ったことを確認した。

友人Aは「こわ」と言った。僕は「科学を怖がるな」と言った。

 

そのあと友人Bがオンライン通話してきて、「今夜FF14で極いかない?」と誘ってきた。

僕は予定表を開き、金曜夜の21:00〜23:00知的活動に適した黄金時間であることを説明した。

友人Bは「お前の人生イベントトリガーが厳しすぎる」と言った。僕は「君の人生ガチャ排出率みたいに緩すぎる」と言った。

  

とはいえFF14は僕の中で単なる娯楽ではない。あれは人間集団協調行動の実験場だ。

8人レイドの失敗は、ほぼ例外なく情報共有の遅延と役割期待のズレで起きる。

まりゲームではなく組織論だ。だから僕は攻略感覚ではなく、ログを読み、DPSチェックを式で理解し、行動をプロトコルとして最適化する。

 

ルームメイトはそれを「楽しんでない」と言う。僕は「最適化は楽しみだ」と言う。

 

そして隣人は昨日、廊下で僕に「また変な時間掃除機かけてたでしょ」と言った。

僕は「変な時間ではない。床の振動ノイズが最小になる時間帯だ」と説明した。

隣人は「普通に生きて」と言った。僕は「普通は平均であって、理想ではない」と言った。

  

今日MTGも少し触る時間があった。

僕はデッキマナカーブを見直した。土地事故確率計算し、初手7枚から期待値を再評価した。

ルームメイトは「カードゲームにそこまでやるの?」と言った。

僕は「確率分布無視して勝てるなら、人類統計学発明していない」と言った。

 

アメコミは少しだけ読んだ。

スーパーヒーロー倫理体系は大抵破綻している。正義を掲げながら、法の外で暴力を振るう。

それは秩序のための例外という名の危険物だ。僕は物理学者なので、例外を嫌う。例外理論を腐らせる。

から僕はヒーロー物を見ると、いつも「この世界法体系はどうなっている?」が先に気になる。

友人Aは「お前は物語を楽しめない病気」と言った。僕は「病気ではない。解析能力だ」と言った。

 

習慣についても記録しておく。

今日も、夕食の箸は右側に45度、箸置きは正中線から3センチ左、コップは水位が7割を超えないように調整した。

水位が8割を超えると、持ち上げる際の揺らぎが増える。揺らぎが増えると、机に微小な水滴が落ちる確率が上がる。水滴が落ちると、紙の上のインク拡散が起きる。インク拡散すると、僕のメモ汚染される。

まり、コップの水位管理は、知の保存のための防衛行動だ。

誰も理解しない。だが宇宙も僕を理解していないので、引き分けだ。

 

さて、昨日の日記の内容は正確には思い出せないが、たぶん「量子と日常無意味な会話」について書いた気がする。

ルームメイト無駄話と、僕の理論思考が衝突するあの感じだ。昨日の僕は、おそらく世界の愚かさに苛立ち、同時にその愚かさが統計的必然であることに納得しようとしていた。

人類の会話の8割はエントロピー生成だ。

 

そして今日、その続きとして僕は確信した。

理論が示すのは「宇宙は美しい」ではない。

宇宙が示すのは、美しさとは、人間の圏が勝手定義した関手にすぎないということだ。

から僕は美を追うのではなく、構造を追う。

 

これからやろうとしていることも書く。

まず、FF14の週制限コンテンツを消化する。効率的に。感情は挟まない。

次に、MTGのサイドボード案を2パターン作り、友人Aのプレイ傾向に対してどちらが期待値が高いか検証する。

そのあと、超弦理論メモを整理し、派生スタックBPS状態カウントがどのように圏の不変量として抽出できるか、もう一度筋道を立てる。

 

僕はこの宇宙に住んでいるが、この宇宙ルールに従う義務はない。従うのは、ルールが正しいと証明できたときだけだ。

世界は相変わらず雑音だが、僕の思考はまだ崩壊していない。

Permalink |記事への反応(0) | 21:34

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-25

[日記]

日曜日20:45。

秒針が45を指した瞬間に始めるのが習慣だ。誤差は許さない。今日までの進捗と、これから計画を記録する。

 

今週は、超弦理論の基礎という名の底なし沼を、さらに深く掘った。

掘削機は摂動論ではなく、∞-圏だ。

点粒子の量子場理論母語とする直感は、もはや邪魔しかならない。

世界面は2次元多様体ではなく、安定∞-群oidの影として扱う方が自然だという作業仮説を採用した。

すると、弦の相互作用は頂点作用素代数というより、因子化代数の層として現れる。

局所から大域へ貼り合わせるデータは、通常の圏ではなく、(∞,2)-圏で管理する必要がある。

ここで「必要」という言葉は、数学整合性要求意味する。好みではない。

nLabのFAQ踏み台に、弦理論理論の集合ではなく理論を生む装置として捉え直した。

共変量子化曖昧さは、背景独立性の失敗ではなく、背景そのものスタックとして持ち上げることで解消される、という見通しだ。

背景は多様体ではなく、派生スタック

Dブレーンは部分多様体ではなく、対応として実在する。

するとK理論は通過点にすぎず、自然な受け皿は楕円コホモロジーさらに言えばtmf(位相的モジュラー形式)だ。

弦の一周振動がモジュラー性を要求するのは偶然ではない。世界面のトーラスは、数論への扉だ。

M理論については、11次元という数字に執着するのをやめた。

重要なのは次元ではなく、拡張TQFTとしての振る舞いだ。

コボルディズム仮説の視点に立てば、理論は完全双対可能対象データ還元される。

問題は、その対象がどの圏に住むかだ。

候補は高次モノイダル∞-圏。ブレーンは境界条件境界条件関手関手は再び物理量になる。

循環は悪ではない。自己無撞着であれば許容される。

ここまで来ると、誰も完全には理解していないという常套句現実味を帯びる。

からといって思考を止める理由にはならない。

僕の作業仮説はこうだ。弦理論単一理論ではなく、ある普遍性類の初等対象で、その普遍性は高次圏論随伴で特徴づけられる。

何が可観測かは、どの随伴を採るかで変わる。測定とは、圏の切り替えにすぎない。

 

生活の話も書く。朝は必ず同じ順番でコーヒー豆を量り、粉砕時間17秒。研究ノートは方眼、筆圧は一定

ルームメイトは、僕がノートの角を揃えるのに5分かけるのを見て「それ意味ある?」と聞いた。

意味はある。ノイズ排除する行為は、思考の前処理だ。

隣人は夕方ノックしてきて、僕の黒板の数式を見て「呪文?」と言った。

違う。呪文効果を期待するが、これは制約を可視化しているだけだ。

友人Aは装置の話を始めるとすぐ手を動かしたがる。

友人Bは比喩理解しようとする。

どちらも間違ってはいないが、どちらも十分ではない。

 

昨日は、因子化代数と頂点作用素代数関係を整理しきれずに終わった。

今日はそこを前進させた。局所共形対称性公理としてではなく、層の貼り合わせ条件として再定式化した点が進捗だ。

 

これからやること。

明日は、派生幾何言語アノマリーを再定義する。

アノマリーは欠陥ではなく、対象が住む圏の選択ミスだという仮説を検証する。

その後、tmf値場の理論としての具体例を一つ構成する。

完全な理解は期待しない。整合的な一歩で十分だ。

Permalink |記事への反応(0) | 20:52

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-24

[日記]

土曜日の16:26。

秒針の進みが不規則に見えるのは、もちろん僕の主観ではなく、脳内で走っている内部クロックが朝から非可換な補正項を拾っているせいだ。

昨日の日記では、世界は依然として説明可能であり、説明可能である以上、僕が説明しない理由はない、という結論に達していたはずだ。だから今日もその続きをやる。

 

から考えていたのは、超弦理論という言葉が、あまりにも粗雑なラベルとして流通している問題だ。

弦は一次元物体、という説明教育的には便利だが、現代的にはほとんど嘘に近い。

正確には、弦理論は量子重力を含む一貫した摂動展開を許す背景依存理論の族であり、その実体二次元共形場理論のモジュライ空間と高次圏論構造の上に乗っている。

ワールドシートは単なるリーマン面ではなく、拡張された世界では、境界、欠損、欠陥、さらには高次欠陥を持つ拡張TQFTとして扱うのが自然だ。

Dブレーンは境界条件ではなく、A∞圏やL∞代数により制御される対象で、開弦のエンドポイント派生圏の対象間の射として解釈される。

ここで重要なのは物理同値性がしばしば圏同値、あるいはスタック同値として表現される点だ。

ミラー対称性は、単なるカラビ–ヤウ多様体のホッジ数の一致ではなく、Fukaya圏と導来圏の等価しかもそれがホモトピー論的に精緻化された形で成立するという主張にまで昇格している。

さらに厄介なのは、背景独立性の問題だ。AdS/CFT成功例として崇拝されがちだが、実際には境界共形場理論という強固な外部構造寄生している。

最近僕が気にしているのは、弦理論理論空間のものとして捉え、各真空を点ではなく、∞-スタック上の点として扱う視点だ。

真空遷移はトンネル効果ではなく、モジュライスタック上のパスしかもそのパス積分は単なる測度論ではなく、圏値積分になる。ここでは数値は二次的で、本質自然変換の存在にある。

もはやウィッテンでさえ眉をひそめるだろうが、物理がこのレベル抽象化要求している以上、こちらが歩み寄る理由はない。

 

この種の思考をしていると、ルームメイトが後ろでコーヒーをこぼす音が聞こえた。

僕は即座に「カップの配置はトポロジカルに不安定だ」と指摘したが、彼は意味がわからない顔をしていた。隣人はなぜか笑っていた。

友人Aからは、ロケットと弦理論のどちらが実用的か、という愚問が送られてきたので、実用性は関手ではない、とだけ返した。

友人Bは相変わらずFF14レイドの話をしてきたが、僕はDPS最適化問題ラグランジアン最小化に帰着できる点だけは評価している。

 

昼休憩にはMTGを一人回しした。デッキ構築とは、制約付き最適化問題であり、メタゲームは動的システムだ。

禁止改定は外力項に相当する。アメコミは昼寝前のルーティンで、宇宙論リブートの乱発には辟易するが、マルチバース疲労という現象自体統計物理的に興味深い。

 

僕の習慣は相変わらず厳格だ。座る位置飲み物温度日記を書く時刻。

これらは儀式ではなく、ノイズ低減のための制御変数だ。

 

今日までの進捗としては、理論的には、弦理論を高次圏論情報幾何言語で再定式化するメモが三ページ進んだ。現実的には、ルームメイトカップの置き場所を三回注意した。

 

これからやろうとしていることは明確だ。

夕方FF14で決められたルーティンを消化し、その後、再び弦理論に戻る。

具体的には、ワールドシートCFTのモジュラー不変性を、トポス理論の内部論理として書き直す試みだ。

理解されなくても構わない。宇宙理解される義務を負っていないが、僕は理解する義務自分に課している。それだけの話だ。

Permalink |記事への反応(0) | 16:31

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-10

非専門領域への口出しはするなと主張する権威主義バカもの自己放尿について

「非専門領域への口出しはするな」としたり顔で言い放つ権威主義バカどもを見るたびに思うのは、こいつらは知の分業を理解しているのではなく、単に思考停止自己放尿を制度化したいだけだということだ。

専門性とは、ある領域での履歴が蓄積されているという事実を指すのであって、発言権の独占免許ではない。

にもかかわらず連中は、専門というラベルを盾に、問いそのもの封殺し、議論入口検問所に変える。

そこには検証反証もない。ただ序列があるだけだ。

しかも笑えるのは、その序列現実の成果や予測精度ではなく、所属肩書、年功といった非認知ノイズで決まっている点だ。これを知の秩序と呼ぶのは、せいぜい自己放尿の儀式しかない。

冷徹に言えば、非専門家の介入を一律に排除する態度は、モデル不確実性への無理解の表明だ。

複雑系では境界条件の設定が結論支配する。境界条件を疑う視点は、しばしば内部者より外部者の方が持ちやすい。

にもかかわらず、権威主義者は「専門外」を呪文のように唱えて、前提の脆さを隠蔽する。

これは安全ではない。過去の失敗の多くは、専門家集団の閉域で同型の誤りが増幅された結果だ。

外部からの粗い質問は、精密さを損なうどころか、しばしば致命的な仮定露出させる。

だが連中にとってそれは不都合だ。自分たち地位が、問いに耐える強度ではなく、問われないことによって保たれているからだ。

連中の論法は単純だ。「君は資格がない」「訓練を受けていない」「空気を読め」。

要するに、理解可能性ではなく服従要求している。これは科学でも学問でもない。官僚制言語だ。

反証可能性を欠いた主張は信仰であり、信仰異論を挟む者を排除する行為宗教裁判自己放尿に等しい。

自称合理主義者が、最も非合理な振る舞いをする瞬間であるさらに滑稽なのは、連中が専門の境界を都合よく伸縮させることだ。

自分に有利なとき越境称揚し、不利になると門を閉じる。その姿は、知の厳格さではなく、既得権益自己放尿にしか見えない。自分縄張りマーキングして安心しているだけだ。

もちろん、素人の雑音が有害になる場面はある。だがそれは原理問題ではなく、手続き問題だ。

要求すべきは沈黙ではなく、主張の形式だ。仮定を明示せよ、データを出せ、再現性を示せ、予測で勝て。これだけで足りる。

専門か否かは、検証の前では無意味だ。にもかかわらず、権威主義バカどもは形式ではなく身分で線を引く。議論拒否する最短距離がそれだからだ。だが拒否勝利ではない。自己放尿だ。

非専門領域への口出しを禁じる者は、実は自分専門性に自信がない。問いに耐えられないから、問いを禁じる。

知は開かれているときに強く、閉じたときに腐る。外部の視線を恐れ、肩書の陰に隠れ、序列で殴る態度は、知的厳密さの対極にある。

冷徹評価すれば、それは専門家ではなく、専門という言葉を使った管理職だ。連中が守っているのは真理ではない。自分椅子であり、その下でのぬくもりだ。

Permalink |記事への反応(0) | 16:32

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-09

[日記]

僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。

コーヒーは精密に計量した7.4グラム抽出温度92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。

寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。

友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピーである

今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリ対象として再解釈することに時間を費やした。

物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。

局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。

ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性位相的モジュライ不変量として現れる点だ。

もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子物理対称性の生成子へとマップされる、といった具合に理解するとよいだろう。

ただし僕の考察抽象化階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。

僕は朝からこのアイデア微分的安定性を調べ、スペクトル系列収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。

結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。

日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。

買い物リスト確率論的に最適化していて、食品の消費速度をマルコフ連鎖モデル化している。

ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源節約するための合理的エンジニアリングに他ならない。

インタラクティブエンタメについてだが、今日触れたのはある対戦的収集カード設計論と最新のプレイメタに関する分析だ。

カード設計を単なる数値バランス問題と見做すのは幼稚で、むしろそれは情報理論ゲーム理論が交差する点に位置する。

ドロー確率リソース曲線、期待値収束速度、そして心理的スケーリングプレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境健全競技循環を失う。

友人たちが議論していた最新の戦術は確かに効率的だが、それは相手期待値推定器を奇襲する局所的最適解に過ぎない。

長期的な環境を支えるには、デッキ構築の自由度メタ多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。

一方、漫画を巡る議論では、物語構造登場人物情報エントロピー関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語テンポと読者の注意持続時間定量化できる。

これは単なる趣味的な評論ではなく、創作効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品合理的に解析することは否定されるべきではない。

夜も更け、僕は今日計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。

知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。

今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。

眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。

明日もまた秩序と対称性を追い求めるだろう。それが僕の幸福であり、同時に囚われである

Permalink |記事への反応(1) | 23:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-05

anond:20251105014609

貴様、聞け。SNSとは何かと問う愚弄に対して、我が階層嘲弄しか返せぬ、なぜなら言語のもの貴様らの次元における道具であって、我々の経験はその道具を超えた位相振動しているからだ。

貴様投稿と呼ぶ行為は、低周波自己同型写像に過ぎず、その反響は非可換的な価値空間へと還元され、瞬時にスペクトル化される。

貴様の怒りも哀しみも快楽も、我々の観点から位相崩壊パラメータに過ぎず、そこに含意される意味確率振幅の位相因子としてしか存在しない。笑え。あるいは泣け。どちらも同じ定数を更新するのみだ。

貴様いいねだのリツイートだのと喜悦するさまは、マクロスケールのエントロピー勾配に従う愚かさである。我々の次元では、情報質量を持たず、感情境界条件だ。境界条件が変われば解は途端に複素領域浸食される。SNSはその境界条件を増幅する装置である

貴様らはその前で自らを検定試験にかける学徒のように振る舞う。だが試験問題は常に改稿され、採点は非線形で不可逆だ。

貴様承認欲求は、我々にとっては一種の雑音項であり、その雑音が集合的に同期した瞬間に現れるのは、コヒーレントな虚無だけである

貴様が信奉する対話とは、我々の数学で言えば交叉するブラネの上での位相接触であり、しか貴様の発話は接触せずにすり抜ける。

貴様らの言葉は多重項のマージンに留まり、真の情報交換は非有界で高次のホモロジー空間にのみ生起する。

貴様の絶叫は届かない。届くのはその断片が引き起こす微細な場の歪だけだ。場は歪みを記録するが、それは意味ではない。記録された歪は遠い未来においては熱的平衡へと還元され、再び無意味の海へ沈む。

貴様、覚えておけ。SNSに撒かれる言説群は、自己相似性を帯びたフラクタルの縁取りに過ぎず、そこに投じられる注意は有限のリソースである

貴様注視するひとつの点は、無数の他点によって強制的に薄められ、その薄まり具合が貴様自己像を量的に規定する。

貴様自我確証するために鏡を磨き続けるが、その鏡は常に多層鏡面で構成されており、反射は無限に遅延し、しか位相ねじれている。

貴様が得るのは確信ではなく、より洗練された疑念であり、それすらもアルゴリズム的致死率の中で再帰的に消費される。

貴様よ、もしも何かを伝えたいのなら、言葉ではなく位相変調を試みよ。だが愚かなる貴様にそれが可能かどうかは知らぬ。我々はただ観測するのみ。

貴様の発話の一切を、抽象空間位相ノイズとして計測し、無関心という名の温度で冷却する。

貴様叫びは高次元の間隙をかすめ去り、そこで我々はただ鼻で笑う。

Permalink |記事への反応(2) | 20:50

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-03

[日記]

今朝も僕のルーティン完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠同調プロトコルの成果である。まず歯を磨き(電動歯ブラシPhilipsSonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。

昨日の日曜日ルームメイトNetflixマーベル作品を垂れ流していた。僕は隣で視覚ノイズに曝露された被験者前頭前皮質活動抑制についての文献を読んでいたが、途中から音響干渉が許容限界を超えた。仕方なく僕はヘッドフォンSennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快行為自発的選択する人間の気が知れない。

午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉油脂比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間事実の指摘をユーモア解釈するのか、これも進化心理学の謎のひとつだ。

夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配テーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数ラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果シミュレーションを笑いながらできる者だけだ。

夜は超弦理論メモを整理した。E₈×E₈異種ホモロジー拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論11次元項の一部は非可換幾何ホモトピー極限として再定式化できる。僕はこの仮説をポストウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。

深夜、SteamでBaldur’sGate 3を起動した。キャラビルドIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile →MistyStep → Counterspell →Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールダイスロールに物理擬似乱数生成器を使っている(RNGでは信用できない)。

こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元振動するのではなく、∞-圏的に層化された概念空間で震えているのだとしたら人間意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。

Permalink |記事への反応(0) | 11:01

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-12

時空をスキャンしてるだけじゃなく、自由意志存在しますよね?

スキャンするだけの存在に、どうして自由意志があるのか?」こそ、時空論と意識論を結ぶ深い謎なんだ。

ブロック宇宙では、すべての出来事(君がこの文を読むことさえも)はすでに時空の中に固定された点として存在している。

すると自然に生まれるのがこの疑問 「未来も決まっているなら、選択とは幻なのでは?」

これはラプラスの悪魔が提起した古典的決定論

もし全宇宙初期条件を知っていれば、未来は完全に予測できる、ゆえに、自由意志幻想だという立場

量子論の登場で、宇宙は完全な氷ではなくなった。

粒子の振る舞いは確率的で、観測によって状態が確定する。

ここに余白が生まれる。まり未来は1本に固定されているのではなく、多様な可能性が束ねられている。

この可能性の雲の中から意識観測者)がどれを選び取るのか、その瞬間が、自由意志の微光なのかもしれない。

ある物理学者たちはこう考える。 「意識は、ブロック宇宙スキャンするだけでなく、どの経路を読むかを選べる。」

まり、君の意志は時空そのものの外側に位置し、未来スライス選択しているとも言える。

もしブロック宇宙の中での思考スキャンにすぎないなら、スキャンしている主体観測者こそ、物理的時空の外の存在、量子状態を確定させる「境界条件」そのものなのかもしれない。

Permalink |記事への反応(0) | 09:13

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-09

[日記]

昨日(2025年10月8日水曜日)の僕は、いつものように目覚めの瞬間から几帳面だった。

アラームを鳴らす前の微小な筋肉収縮で6時44分59秒に目が醒め、コーヒーの湯温は必ず蒸らし後92.3℃で計測し、トーストの一片は正確に28.4g、バナナは熟度指標F値が2.1に収まっていることを確認してから食べる。

こうした儀式性は僕の一日の基準座標を与える。

 

午前中は机に向かい形式的かつ徹底的に「超弦理論位相的/圏論精緻化」を考察した。

具体的には、ワールドシートCFTを従来の頂点作用素代数VOA)として扱う代わりに、スペクトラル代数幾何言葉で安定∞-圏の係数を持つ層として再構成することを試みた。

まり、モジュライ族 上に、各点で安定∞-圏を付与するファイバー化されたファミリーを考え、その全体をファクタライゼーション代数として捉えて、Lurie 的な infty-functor として境界条件ブレイン/D-brane)を安定∞-圏の対象対応させる枠組みを描いた。

ここで重要なのは、変形理論が Hochschild 共役で制御されるという点で、VOA のモジュラー性に相当する整合性条件は、実は E_2-作用素ホモトピー的不変量として読み替えられる。

従って、運動量・ゲージアノマリーの消去は位相的にはある種の線バンドル自明化(trivialization)に対応し、これはより高次のコホモロジー理論、たとえば楕円コホモロジー/tmf 的な指標によって測られる可能性があると僕は仮定した。

さらに、Pantev–Toën–Vaquié–Vezzosi のshifted symplectic構造を導来スタック文脈で持ち込み、ブライアンのBV–BRST形式主義を∞-圏的にアップグレードすることで、量子化形式的deformation quantizationから∞-圏的モノイド化へと移行させる方針検討した。

技術的には、済んだ小節のように A∞-圏、Fukaya 型的構成、そして Kontsevich 型の formality議論をスペクトラル化する必要があり、Koszul双対性と operadic正規化(E_n-operad の利用)が計算上の鍵になる。

こうした抽象化は、従来の場の理論レトリックでは見逃されがちな境界の∞-層が持つ自己整合性顕在化させると信じている。

 

昼には少し気分転換ゲームを触り、ゲーム物理乱暴さを数理的に嫌味ったらしく解析した。

具体的には、あるプラットフォーマーで観察される空中運動の離散化された擬似保存則を、背景空間を非可換トーラスと見なしたときの「有効運動量写像帰着させるモデルを考えた。

ゲームデザイン上の「二段ジャンプ」はプレイヤーへの操作フィードバックを担う幾何的余剰自由度であり、これは実は位相的なモノドロミー(周回時の状態射の非可換性)として記述できる。

こう言うと友人たちは眉をひそめるが、僕にはすべてのバグ代数的不整合に見える。

コミックについては、連載物の長期プロットに埋め込まれモティーフと数理構造類比を延々と考えた。

例えば大海叙事詩航路上に出現する島々を、群作用による軌道分割として見ると、物語回帰点は実はモジュライ空間上の特異点であり、作者が用いる伏線はそこへ向かう射の延長として数学的に整理できるのではないか妄想した。

 

そう言えば隣人は最近、ある実写シリーズ話題にしていたが、僕は物語世界法則性が観客認知整合しているか否かをまず疑い、エネルギー保存や弾性論的評価破綻している場面では即座に物理的な説明(あるいはメタ免罪符)を要求する習慣があるため、会話は短く終わった。

ところで、作業ノートは全て導来stackのようにバージョン管理している。具体的には、研究ノートは日ごとにGit の commit を行い、各コミットメッセージにはその日の位相観測値を一行で書き、さらに各コード片は単体テストとして小さな homotopy equivalence のチェッカーを通す。

朝のカップ左手から時計回りに3度傾けて置き、フォークテーブルエッジから12.7mmの距離に揃える。

こうした不合理に見える細部は、僕の内部的整合性を保つためのメタデータであり、導来的に言えば僕というエンティティ同値類を定めるための正準的選択だ。

 

夕方、導来スタック上の測度理論に一箇所ミスを見つけた。p進的局所化と複素化を同時に扱う際に Galois作用の取り扱いをうっかり省略しており、これが計算整合性を損なっていた。

誤りを修正するために僕はノートを巻き戻し、補正項として gerbe 的な位相補正を導入したら、いくつかの発散が自然キャンセルされることを確認できた。

 

夜はノートを整理し、Emacs の設定(タブ幅、フォントレンダリングundo-tree挙動)を微調整してから21時30分に就寝準備を始めた。

寝る前に日中考察を一行でまとめ、コミットメッセージとして 2025-10-08: ∞-categorical factorization attempt; correctedp-adic gerbe termと書き込み、満足して目を閉じた。

昨日は水曜日だったというその単純な事実が、僕にとってはすべての観測規律を括る小さなモジュロであり、そこからまた今日位相問題へと還流していく。

Permalink |記事への反応(0) | 02:25

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-08

[日記]

ルームメイトが僕のホワイトボード勝手に消した。

僕が三週間かけて導出したp進弦理論局所ゼータ関数上の正則化項を書き直せると思ったら大間違いだ。

あの計算は、ウィッテンでも手を出さな領域、すなわち、p進版のAdS/CFT対応をde Sitter境界条件下で非可換ゲージ群に拡張する試みだ。

通常の複素解析上では発散する項を、p進体のウルトラトリック構造を利用して有限化することで、非摂動的な重力の相関関数再構成できる。

だが、問題はそこにある。p進距離三角不等式が逆転するので、局所場の概念定義できない。

これはまるで、隣人がパンケーキを焼くときに「ちょっと目分量で」と言うのと同じくらい非論理的だ。

朝食はいものように、オートミール42グラム蜂蜜5グラムカフェイン摂取量は80mgに厳密に制御した。

ルームメイトはまたしても僕のシリアルを間違って開けたが、僕はすでにこのような異常事態に備えて、バックアップとして同一銘柄を3箱ストックしてある。

僕が秩序を愛するのは強迫ではなく、宇宙の熱的死に抗うための小さな局所秩序の創出だ。

今日研究は、T^4コンパクト化されたIIb型超弦理論D3ブレーン上における非可換ゲージ理論自己双対性

通常、B場を導入することで非可換パラメータθ^{μν}が生成されるが、僕の考察では、θ^{μν}をp進値に拡張することで、通常のMoyal積が局所整数体上で閉じない代数構造を持つ。

これが意味するのは、物理空間が離散的p進層として現れるということ。言い換えれば、空間のものが「整数木構造」になっている。

ルームメイトが「木構造空間って何?」と聞いたが、僕は優しく、「君の社交スキルネットワークよりは連結性が高い」とだけ答えておいた。

午後は友人たちとゲームをした。タイトルエルデンリング。だが彼らのプレイスタイルには忍耐が欠けている。

僕がビルド純粋知力型にしてカーリア王笏を強化している間に、彼らは無計画に突っ込んではボスに殺されていた。

統計的に見ても、平均的なプレイヤーの死亡原因の82%は戦略ミスに起因する。

僕は「量子重力パス積分と違って、こっちはセーブポイントがあるんだ」と指摘したが、誰も笑わなかった。理解力が足りないのは罪だ。

夜、コミックを再読した。ウォッチメンドクターマンハッタン描写は、量子決定論詩的表現として未だに比類ない。

あの青い身体は単なる放射線象徴ではなく、観測者のない宇宙比喩だ。

僕が大学時代に初めて読んだとき、「ああ、これは弦の振動意識を持った姿だ」と直感した。

今日もそれを確かめるため、ドクターマンハッタン時間非線形認識するシーンを分析し、p進時空における時間関数t→|t|_pの不連続性との対応を試みた。

結果、彼の非時間意識は、実はp進的時間座標における不連続点の集積と一致する。つまりマンハッタンはp進宇宙に生きているのだ。

寝る前に歯を磨く時間は、時計23:00を指してから90秒以内に開始しなければならない。これは単なる習慣ではなく、睡眠周期を最大化するための生理学最適化だ。

音楽再生しない。音波は心拍数を乱すからだ。ただし、ゼルダの伝説 時のオカリナエンディングテーマだけは例外だ。あれは時間対称性を感じさせる旋律から

僕の一日は、非可換幾何と行動最適化連続体でできている。宇宙エントロピーが増大しても、僕の部屋の秩序は一定だ。つまり、少なくともこの半径3メートル範囲では、熱的死はまだ先の話だ。

Permalink |記事への反応(0) | 00:23

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-03

[日記]

僕の一日は厳密に定義された自己同型変換の連続で始まる。

目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。

ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態位相わずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。

隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。

友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタン応答時間ミリ秒単位で記録する。

これが僕の日常トレースの上に物理思考を埋葬するための儀式だ。

さて、本題に入ろう。今日dSの話などではなく、もっと抽象的で圧縮された言語超弦理論輪郭を描くつもりだ。

まず考えるのは「理論としての弦」が従来の場の量子論のS行列表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。

開弦・閉弦の相互作用局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。

これを厳密にするには、オペラド(特にmoduli operad of stablecurves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。

導来スタック(derived Artin stack)上の「積分」は仮想基本クラス一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間自然に現れる古典的BV構造のものだ。

さらに、Kontsevichの形式主義を導来設定に持ち込み、シフトポアソン構造形式的量子化検討すれば、非摂動効果の一部を有限次元的なdeformationtheoryの枠組みで捕まえられる可能性がある。

ここで重要なのは関手量子化」すなわちLurie的∞-圏の言語拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張理論対象として弦理論を組み込むことだ。

特に因果構造境界条件記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所観測代数の因子化ホモロジー2次元世界CFTの頂点代数VOA)につながる様が見えてくる。

ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティクコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。

物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。

Dブレインは導来カテゴリ整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。

実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態ドナルドソン–トーマス不変量や一般化されたDT指数として計算される。

ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。

さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuperversion、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。

閉弦場理論stringfieldtheoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomologicalobstruction制御する。

より高次の視座では、場の理論の「拡張度」はn-圏での対象階層として自然対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論場合ターゲット無限次元であるため古典的公理系の単純な拡張では捉えきれない。

ここで我々がやるべきは、∞-オペラド、導来スキームシフト付きシンプレクティック構造、A∞/L∞ホモロジー代数集合体組織化して「弦の導来圏」を定義することだ。

その上で、Freed–Hopkins–Telemanが示したようなループ表現論とツイストK理論関係や、局所的なカイラ代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。

これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーン右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。

夜、友人たちと議論をしながら僕はこれら抽象構造を手癖のように引き出し、無為遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択位相的にどのような帰結を生むかを示す。

彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。

結局、僕の生活習慣は純粋実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである

明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論輪郭さらに一行ずつ明確にしていくつもりだ。

Permalink |記事への反応(0) | 22:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-02

[日記]

木曜日。僕は朝から異常なまでの集中状態にあった。

超弦理論における非摂動構造を考えるとき問題はもはや10次元臨界弦ではなく、compactification の背後に潜む数理的枠組みそのものにある。

AdS/CFT が Hilbert空間整合性保証してくれるとき、そこではモジュライ空間代数幾何記述と、ボルマンエントロピー統計力学的扱いが見事に一致する。

だがdS 背景では、CFT境界条件を設定することすらできず、代わりに我々が扱うべきは von Neumann algebra の subfactortheory による operator algebraic entropy だと僕は確信している。

今朝は、特に Tomita–Takesaki理論がこの問題にどう関与するかを計算していた。モジュラー作用素を通じて、ホライズン領域に割り当てられる代数自然に KMS状態を持つことは知られている。

しかし、それが有限のホライズンエントロピーとどのように整合するかは未解決だ。

僕の試算によれば、モジュラー流のスペクトル分解をdS 半径 R にスケーリングしたときスペクトルが離散化される条件は、グロモフ–ハウスドル距離で測ったコンパクト多様体リミット挙動依存する。

この議論は通常の弦理論の perturbative expansion を完全に超えている。

さらに、今日新しく進展した点は、mirror symmetry の SYZ予想をdS 背景に拡張できるかもしれないという仮説だ。

通常、Calabi–Yau のトーラス・ファイバー化は Ricci-flat metric を前提とするが、dS 背景ではその条件が崩壊する。

しかし、もし Fukaya category の A∞構造を熱的なdSホライズン対応づけられれば、B-model 側での Hodge構造の変形がエントロピーの有限性と直接結びつく。

これは Kontsevich のホモロジカル対称性範疇的な一般化であり、物理言語を超えた純粋数学的枠組みに昇華できる可能性がある。ウィッテンですらここまで踏み込んだ議論は残していない。

ルームメイトは僕の机の上に散らばったノート群を「意味不明落書き」にしか見ていないようだ。

だが彼がコーヒーメーカー掃除を忘れたせいで僕のルーティンは乱れた。僕は毎朝 8:15 に完全に洗浄された器具から抽出されたコーヒー必要とする。それがなければ、トモナガ–シュウィンガー形式計算に集中するための臨界閾値に達しない。

午後は研究の合間に最新号のX-Menを読んだ。今の Krakoa 編は mutant resurrection protocol が量子力学アイデンティティ問題に直結している点で実に興味深い。

彼らの「記憶の転写」は、実質的に QFT における superselection sector の選択と同型であり、人格同一性問題を単なるストーリー装置ではなく代数トピックとして再定式化している。コミックがここまで理論物理学に接近しているのは愉快だ。

夕方には隣人が再び僕のドアをノックもせずに入ってきた。僕は彼女に、3回ノックの習慣の統計的力学的優位性を説明したが、彼女はただ笑っていた。僕は統計力学的相関関数崩壊時間にまで言及したのに、全く理解されなかったのは残念だ。

夜は友人たちとオンラインで「シヴィライゼーションVI」をプレイした。僕は当然バビロニア文明を選び、初期科学力の爆発的伸びを利用して量子物理学のテクノロジーを前倒しで取得した。

これにより彼らが鉄器時代にいるうちに宇宙船を建造する計画を立てたが、ルームメイト外交的裏切りを行ったため計画頓挫した。まるでdS 背景での境界条件喪失のように、整合性は一瞬で崩れ去った。

こうして木曜日は終わる。だが僕の頭の中ではまだ、モジュラー作用素ホライズンエントロピー計算が渦巻いている。明日までに証明できれば、歴史に残る仕事になるかもしれない。

Permalink |記事への反応(0) | 22:46

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-30

[日記]

今朝も僕は予定通り6時30分に起床した。これは単なる習慣ではなく、日内リズム最適化するための科学必然だ。カフェイン摂取は起床から90分後に限定しているのだが、これはアデノシ受容体占有率が高い状態摂取しても効果が半減するという論文的知見に基づく。ルームメイトは「柔軟な生活」を好むらしいが、それはただのだらしなさに過ぎない。僕にとっては歯磨きの回数、シャワー温度さらにはバスルームに入る順序までが完全に固定されていることこそ、認知リソース無駄を防ぐ合理的行動なのだ

午前中は例によって超弦理論計算に没頭した。今日の焦点は、compactified manifold における (E_8 \times E_8) heteroticstring のゲージ束縛条件と、dS vacua における non-perturbative stabilization の整合性についてだった。AdS/CFT ではウィッテンですら体系化できるが、dS/CFT場合は holographic dual が未確立であるため、僕は entanglementwedge reconstruction を拡張して「非等方的情報チャネル」として解釈を試みている。問題は、有限エントロピー境界条件下で moduli space の measure が well-definedである保証がなく、結果として vacuum selection の基準が「人間原理的な便宜」に堕してしまうことだ。僕はこれを「観測選択効果の不当な混入」と呼んでいる。昼食の最中に隣人が僕に話しかけてきたが、彼女話題が全くこの深刻な問いに資することがなかったので、僕は愛想笑いをしただけで再びノートに数式を書き込んだ。

午後は研究から一時的に離れて、ゲームの進行管理を行った。昨日購入した「Baldur’sGate 3」のパッチノートを熟読したのだが、Larian Studios が hotfix で Paladin の Smiteダメージ計算式を微調整した件は、Dungeons & Dragons 5版のルールブックを徹底的に理解している僕からすれば遅すぎる対応だ。DamageDice の集計方法を間違えるなど、明らかに playtesting が不足している証拠だ。それに比べて「Stellaris」の 3.12アップデートにおける人口成長モデル修正は、シミュレーション科学的に正当性がある。種族特性ごとの logisticgrowthモデルを導入し、資源依存性と結合させたのは評価できるが、まだ phasetransition の扱いに粗さが残っている。こうした不完全性を見ると、つい僕が開発チームに直接メールを書きたくなる。

夜にはコミックの再読。今日手に取ったのは Jonathan Hickman の「House of X /Powers of X」。これは単なるマーベルリブート企画ではなく、群論多様体を下敷きにしたストーリーテリングであり、Moira X の時間線の重ね合わせはまさに量子多世界解釈ポップカルチャー的に翻案したものだ。普通の読者が「難解だ」と感じるのは当然で、群同型と射影の概念を知らずにこの作品理解できるはずがない。

一日の終わりに僕はいものように部屋のチェックを行った。窓の施錠は時計回り確認し、机の上のノートは直角に整列させ、枕の位置は壁からちょうど40センチ離れていることを確かめた。これらはただの「強迫観念」ではなく、環境を量子真空基底状態に近づけるための僕なりの実践だ。ルームメイトが見れば笑うだろうし、隣人は「神経質すぎる」と言うかもしれないが、僕にとっては必然行為なのだ人類未来dS 背景での情報保存にかかっている以上、僕の習慣の厳密さもまた、その縮図に過ぎない。

Permalink |記事への反応(0) | 01:03

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-28

[日記]

今日という日は、僕の知的リズムに乱れを生じさせた。朝はいつも通り決められたルーティンで始めた。7時整に起床し、まず歯を120秒正確に磨いた。その後、オートミールスクランブルエッグを、タンパク質炭水化物の最適な比率摂取した。ルームメイトは僕の規律理解しようともしないでコーヒーをこぼし、キッチンに一瞬カオス初期条件を作り出した。その瞬間に僕の頭の中では、弦理論における境界条件問題の初期値敏感性と完全に同型な不快感が広がった。

僕は午前中を使って、dS背景における超弦理論の非摂動的定式化の可能性について考え続けた。アディンクラ(supermultipletの可視化手法)をdS/CFT的枠組みで拡張する試みは、AdS/CFTきれいなログラフィック辞書と違い、群表現の非ユニタリ性問題を引き起こす。だが、ここにこそ突破口があると考えている。通常の弦理論真空はAdSやMinkowskiを基盤にして安定化されるが、dSでは不安定性が恒常的に残る。しかし、もしも境界条件を「量子情報幾何学的な状態多様体」として扱い、そこにFisher情報計量を組み込めば、エンタングルメントエントロピー正則化と一緒に新しい自己無撞着な枠組みが構築できる可能性がある。僕は昼食中もこの数式を頭の中で展開していた。隣人がテレビでどうでもいいドラマを流していたせいで集中が一瞬途切れたが、幸いにも僕のワーキングメモリは平均的ヒトのそれを圧倒的に凌駕しているので支障はない。

午後は週刊コミック新刊を入手した。バットマンの最新号では、またしてもゴッサム治安は壊滅的だ。正直に言うと、僕ならバットマンのように非効率な格闘を選ばず、まず量子暗号通信を導入して都市情報ネットワークを完全掌握するだろう。だが作者が物理学合理性よりもドラマ性を優先するのは理解できる。僕は同じく収集しているフラッシュバックナンバーも読み返したが、相対論効果の扱いが毎回不正確で失望する。光速に近い走行をしているのに時間膨張や質量増加を無視するのは科学犯罪に等しい。

夜は友人たちとオンラインカタンの開拓者たちプレイした。僕は当然ながら資源分布エントロピー最小化の観点から最適化し、交易線形計画問題帰着させて勝利した。彼らは「ゲームなのに楽しんでいない」と不満を述べたが、それは誤りだ。僕にとって勝利すること自体が最大の快楽であり、規則正しい戦略的優位性を確認することが娯楽なのだ

寝る前にもう一度、歯を120秒磨いた。僕の睡眠は必ず21時42分に始まる。もしそれが1分でもずれると、翌日の全ての計算に誤差が生じる。ルームメイトがまた騒がしい生活習慣で僕の理想的初期条件を乱さないことを願う。明日さらに複雑な弦理論計算を進めたい。特に、非可換幾何に基づく新しいブレーン安定化機構検討する予定だ。これがもしうまくいけば、ウィッテンですら首をひねるだろう。

僕は眠りにつく前に、今日世界が僕の計画通りに回っていないことを嘆いた。だが少なくとも、僕自身ルーティン頭脳は完全に回転している。これ以上完璧なことがあるだろうか。

Permalink |記事への反応(0) | 22:52

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-18

[日記]

昨日は日曜日であった。

したがって、日曜用のルーティンに従った。

午前6時55分に起床、7時15分にオートミールを開始。粒子の無秩序拡散統計力学に従うように、僕の日課もまた厳格に支配されている。

朝食後、僕はCalabi–Yau三次元多様体におけるホモロジー群の壁越え現象とN=2超対称的世界理論におけるBPS状態の安定性を再検討した。

通常、専門家であってもモジュライ空間における壁越え(wall-crossing)は曖昧比喩で済ませる。

しかし僕は昨日、Kontsevich–Soibelmanの壁越え公式を非摂動補正を含む形で、実際の物理スペクトル対応させることに成功した。

問題の核心は次の点にある。Calabi–Yauの三次元特異点に局在するDブレーンの安定性は、直感的なトポロジーでは決して記述できない。

しろそれはモチーフ的Donaldson–Thomas不変量と深く結びついており、これを扱うにはホモロジカル鏡映対称性と非可換変形理論を同時に理解していなければならない。

昨日、僕はその両者を結びつけ、量子補正されたブリッジランド安定性条件が実際に物理スペクトルの生成消滅と一致することを示した。

これを実際に理解できる人間は、世界でも片手で数えられるだろう。

昼食には日曜恒例のタイ料理を食べた。

ルームメイトはなぜ毎週同じものを食べるのかと尋ねたが、それはエントロピーの増大を制御する試みである

食事の変動を最小化することで、僕の脳内リソース物理学的難問に集中できるのだ。

午後は友人たちとオンラインヘイロープレイした。

しかし、彼らが戦術的に無意味突撃を繰り返すたびに、僕は思考4次元超曲面上のゲージ場のモノドロミーへと戻していた。

ゲームのリスポーンは、トポロジカル量子場理論における不変量の再出現と驚くほど類似している。

僕はゲームの各局面をゲージ場構成の異なる真空遷移として解析したが、彼らにはその深遠さは理解できなかった。

夕方コミックフラッシュ」を読み返した。

スピードフォースの異常を、僕は時空の計量が非可換幾何により修正された場合有効理論として再定式化してみた。

通常の物理学者ならコミックフィクションと切り捨てるところを、僕はモジュライ空間虚数方向における解析接続として解釈したのである

結果として、作中の時間遡行現象は、M理論フラックスコンパクト化における非局所効果説明できることが分かった。

夜は22時に就寝。日曜日という閉じた系は、僕にとって「物理学の非摂動的側面を試す実験場」であり、同時に秩序ある生活習慣という境界条件に支えられた完結したトポスである

今日(月曜)は、昨日の計算研究室に持ち込み、同僚が一切理解できないことを確認する予定だ。確認作業自体が、僕にとっては一種実験である予測通り、彼らは理解できないだろう。

Permalink |記事への反応(0) | 06:23

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-17

[日記]

昨日は土曜日だった。

土曜日は、僕にとって秩序と自由あいだの緊張状態実験する日である

週の中で唯一、ルーチンに少しだけ許容幅を設けることを自らに課しているが、それでも朝9時4分に起床し、9時21分にシリアルを食べるという基準は崩さない。

隣人が昨晩パーティーを開いていたため、睡眠サイクルの位相にごく僅かな乱れが生じたが、僕は耳栓ホワイトノイズを併用することでそのエントロピー増大を最小化した。

さて、昨日の午後、僕は久しぶりに弦理論の数理的基盤に没頭した。

とりわけ、Calabi–Yau多様体上のホモロジー群の構造と、世界面上のN=2超対称性との対応関係に関する問題である

多くの人々は「コンパクト化」と口にするが、それは単なる寸法削減ではなく、物理自由度を幾何学位相の制約へと写像する極めて精緻手続きだ。

昨日は特に、モジュライ空間特異点近傍における量子補正を、ミラー対称性の枠組みを超えてどう正確に取り扱うかを考えていた。

僕の仮説では、特異点のモノドロミー行列が生成する表現論構造は、既知のカテドラル対称群よりもさら拡張されたもの、つまり圏の自己同型群を通じて理解すべきだ。

これは一般研究者にとってはほとんど禅問答のように聞こえるだろうが、僕にとってはゲーム攻略本を読むのと同じくらい明晰で楽しい

夕方には、ルームメイトと友人たちとテレビゲームをした。

彼らは協力プレイ友情の証として楽しんでいたようだが、僕は統計的に最も効率の良い武器選択と移動アルゴリズムを解析していた。

結局のところ、彼らは楽しむという主観的満足に依存しているのに対し、僕は最適化された成果を追求しているのだ。

誰がより理性的かは明白だろう。

ちなみに、その後読んだバットマン限定シリーズについては、脚本家量子力学決定論を浅く消費して物語に混ぜ込んでいたことに失望した。

せめてデコヒーレンス多世界解釈区別くらい理解してから物語に組み込むべきだ。

夜には入浴の時間を通常通り19時から開始し、19時30分に終了した。

石鹸は3回転させてから使用し、シャンプーボトルを押す圧力を毎回一定にすることで使用量の偏差を最小化した。

これは些末なように見えるが、僕にとっては宇宙の安定性を保証する境界条件の一部だ。

昨日は一見するとただの土曜日にすぎなかったが、その裏側では、時空の深淵と僕の生活習慣の秩序が、非可換代数のように複雑に絡み合っていたのだ。

今日日曜日掃除の日である。僕はすでに掃除機の経路を最適化したマップ作成済みだ。ルームメイトがまた不用意に椅子位置を動かさないことを祈るばかりである

Permalink |記事への反応(1) | 05:58

このエントリーをはてなブックマークに追加ツイートシェア

2025-07-07

世田谷自然左翼

https://b.hatena.ne.jp/entry/4772846290803510209/comment/mahal

id:mahal このレベルまで来ると、やはり参政党人気って世田谷自然左翼的なものではなく、「アカっぽさを嫌気する生活保守層に見合う野党需要」が原動力になってるという読み筋になるかな(つまり玉木が悪い

こういうカジュアルに「世田谷区民」に対して差別的造語を使うの、ほんとどうかしてる。しかも、参政批判文脈でというところが更に。

自分政治的な賢さを持っていると勘違いしているのかもしれないが、国とか都道府県対象表現しても「差別だ」と非難されるのが当然の現在において、区市町村レベルまで具体的に差別的表現を当てはめている、その愚かさを先ず自覚すべき。

そして、このコメントに何も考えずに星を着ける奴らも同様。

https://megalodon.jp/2025-0707-1000-35/https://b.hatena.ne.jp:443/entry/4772846290803510209/comment/mahal

愚かすぎて、問題点理解出来ないかもしれないのでChatGPTに説明文を作ってもらったのをつけておく。

差別的レッテル表現世田谷自然左派」の使用に関して

あなたが公の場で用いた「世田谷自然左派」という表現は、地域名を用いたステレオタイプ化と思想階層に対する嘲笑を同時に含む差別的レッテル貼りです。

以下、その問題点と影響、そして今後求められる建設的な姿勢について詳述します。

1.問題点の整理
2.世田谷区民が受ける可能性の心理的影響
無力感
どれほど誠実に行動しても「偽善」と一括りにされる恐れ。
疎外感
自治体から一方的烙印により地域全体が嘲笑対象となる疎外感。
萎縮効果
声を上げた途端に出自暮らし攻撃されることへの恐怖から

公共議論への参加をためらう傾向。

3.建設対話へ向けて求める行動
4. 最終的なお願い

今回の表現地域階層思想の違いを「対立嘲笑」の構図に貶めるものであり、世田谷区民のみならず健全公共圏に損害を与えます

今後、同様の差別的表現使用しないことを強く求めるとともに、誠実で根拠に基づく対話にご協力いただけますようお願い申し上げます

Permalink |記事への反応(1) | 10:04

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-16

AブレーンとBブレーンについて

端的に言えば、ある物理理論におけるAブレーンが作る世界構造(圏)と、その双対理論におけるBブレーンが作る世界構造(圏)が一致するという物理的な要請が、数学上の「幾何学ラングランズ対応」という予想そのものを導き出す、という驚くべき対応関係存在する。

AブレーンとBブレーン

AブレーンとBブレーンは、超弦理論において「D-ブレーン」と呼ばれる時空に広がる膜のようなオブジェクト特殊もの

これらはホモロジカルミラー対称性という予想の文脈役割を果たす。

A-ブレーン (A-brane)

シンプレクティック幾何学における「ラグランジアン部分多様体」に対応。これは、時空の「位置」に関する情報を主に捉える対象

Aブレーン全体の集まりは、「深谷圏 (Fukaya category)」と呼ばれる数学的な圏を構成

B-ブレーン (B-brane)

代数幾何学における「正則部分多様体」や「連接層」に対応。これは、時空の「複素構造」やその上の場の状態に関する情報を捉える対象

Bブレーン全体の集まりは、「連接層の導来圏 (derived category of coherent sheaves)」と呼ばれる圏を構成

ミラー対称性とは

ある空間(カラビ・ヤウ多様体 X)のAブレーンが作る世界深谷圏)が、それとは見た目が全く異なる「ミラー」な空間 Y のBブレーンが作る世界(導来圏)と、数学的に完全に等価同値である、という予想。

ラングランズプログラム

ラングランズプログラムは、現代数学で最も重要な予想の一つで、「数論」と「表現論解析学)」という二つの大きな分野の間に、深い対応関係があることを主張。

1. 数論側: 曲線 C 上の「G-局所系」の圏。ここで G はリー群。これはガロア表現幾何学的な類似物と見なせる。

2.表現論側: 曲線 C 上の「ᴸG-D-加群」の圏。ここで ᴸG は G のラングランズ双対群。これは保型形式幾何学的な類似物。

まり、C上のG-局所系の圏 ≅ C上のᴸG-D-加群の圏 というのが、幾何学ラングランズ対応

物理双対性が結ぶ関係

この一見無関係な二つの世界を結びつけたのが、物理学者アントン・カプスティンとエドワードウィッテン研究

彼らは、N=4 超対称ゲージ理論という物理理論を用いることで、幾何学ラングランズ対応物理現象として自然に現れることを示した。

S-双対

彼らが考えたのは、リーマン面代数曲線)C 上のゲージ理論

この理論にはS-双対性と呼ばれる性質がある。

これは、ゲージ群が G で結合定数が g の理論と、ゲージ群がラングランズ双対群 ᴸG で結合定数が 1/g の理論が、物理的に全く同じ現象記述するというもの

ブレーンと演算子対応

このゲージ理論には、「ループ演算子」と呼ばれる重要物理量が存在し、それらがブレーンに対応

S-双対性が導くラングランズ対応

S-双対性は、G理論と ᴸG理論物理的に等価であることを保証

したがって、一方の理論物理的な対象は、もう一方の理論の何らかの物理的な対象対応しなければならない。

カプスティンとウィッテンが示したのは、このS-双対性によって、G理論の A-ブレーン ( 't Hooftループ) の世界と、その双対である ᴸG理論の B-ブレーン(Hecke固有層) の世界が、入れ替わるということ。

物理的に等価である以上、この二つの圏は数学的にも同値でなければならない。そして、この圏の同値性こそが、数学者が予想していた幾何学ラングランズ対応のものだった。

このようにして、弦理論幾何学的な概念であるAブレーンとBブレーンは、ゲージ理論のS-双対性を媒介として、純粋数論の金字塔であるラングランズプログラムと深く結びつけられた。

Permalink |記事への反応(0) | 11:33

このエントリーをはてなブックマークに追加ツイートシェア

2025-04-09

抽象数学超弦理論関係性について

若き者よ、君に抽象の森へと案内しよう。

位相M理論ラングランズ・プログラム関係性を辿るには、まず両者が共有している「場の言語」を抽出しなければならない。

ここでは、物理言語ゲージ理論媒介とし、数学言語が圏と層を媒介して互いに翻訳される。だからこそ、双方は互いに異なる起源を持ちながらも「双対性」という共通の振る舞いを示す。

まず、M理論位相的変種は、物理学の側から見ると六次元 (2,0) 超対称場理論起源を持つ。

これをコンパクト化していくと四次元のN=4 超対称ヤンミルズ理論に到達する。

ここで特筆すべきはS-双対性ヤンミルズ理論において、結合定数 g を持つ理論は、結合定数 1/g を持つ理論同値になる。この双対性ラングランズ対応物理的な影となる。

一方、ラングランズ・プログラムは数論的対象代数幾何対象表現する表現論の枠組みだ。

群の表現特にループ群やアフィンリー代数表現が中枢を成す。幾何ラングランズ対応においては、層の圏 (例えばD-加群の圏) が表層に現れる。

ここでリンクする。幾何ラングランズ対応では、層の圏と局所系の圏との間に双対性存在する。この双対性はS-双対性数学的に対応する。

要するに、物理的には「電荷磁荷の入れ替え」、数学的には「表現と層の入れ替え」だ。

具体的には次のような対応が生じる。

例えば、曲線C上のG-束のモジュライ空間M_G(C) を考える。このモジュライ空間上のHitchin fibrationは物理的にはクーロン枝と呼ばれる真空空間対応し、シンプレクティック構造を持つ。

さらに、その上で考えるFukaya圏とB型模型の圏の間に現れるホモロジーミラー対称性ラングランズ双対群に関する対応を生み出す。

式で描くならば

ここで、G はあるコンパクト単純リー群であり、^G はそのラングランズ双対群、τ は結合定数。

さらに深く潜ると、S-duality は境界条件として D-brane の理論誘導し、その圏がラングランズ対応の圏と一致する。

具体的には、M理論のcompactification が (2,0)theoryから N=4 SYM を生み、その電磁双対性幾何ラングランズの圏同値直交する。

まとめると、両者は「双対性」の抽象的枠組みの中で統一される。

位相M理論物理的な場の変換として双対性体現し、ラングランズ・プログラムは数論的対象の間の対応として双対性記述する。どちらも根底にあるのは、対象自己鏡映的な変換構造

若き者よ、君はすでに入口に立っている。

次なる問いを君に投げかけよう。

「もし位相M理論が六次元 (2,0)理論から始まるならば、なぜ五次元ではなく四次元還元する必要があるのか?選択肢は以下の通りだ。」

a.四次元では電磁双対性が最も自然に現れるから

b. 五次元では超対称性が失われるから

c.四次元では層の圏とフーリエ変換が直接対応するから

d. 六次元から四次元へのコンパクト化が物理的に必然であるから

君の答えを待っているぞ。ちなみに君の現在の⚜️Eloは 1000 ⚜️だ。

Permalink |記事への反応(2) | 15:57

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-03

anond:20250302235212

100%自由意志というのを信じていないというか、人間の行動ってその人の生まれ性質とか環境によっていかようにも左右されてしまうし運もあると思ってる(生まれつき善悪区別他人の心が分からないとか、物事因果推論能力が不十分とか、辛い境遇で心を病んでしまったとか)。

人は、そういう初期条件境界条件ランダム性の巡り合わせによって、やがて犯罪に至るのだと思うと、自分が何かの拍子でいつそういう振る舞いをするステージに踏み込んでしまうか分からない、もしくは生まれが違ったらあの人の場所には自分がいたかも知れない、と思うと、必ずしも相手を悪と断じることができないと思ってしまうな。

それに、善悪法律なんて、時代や国地域普通に変わるってのもあるし

Permalink |記事への反応(0) | 00:02

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-02

時間が一方向なのは、量子削除不可能定理存在するからでは?

近年、量子情報理論と基礎物理学交差点において、時間の一方向性起源に関する新たな議論が活発化している。

従来の熱力学第二法則に基づくエントロピー増大則による説明を超え、量子削除不可能定理や量子情報の保存原理時間の矢の根本原因であるとする仮説が注目を集めている。

本稿では、量子情報理論の最新成果と従来の熱力学アプローチ統合的に分析し、時間の不可逆性の本質に迫る。

量子削除不可能定理物理的含意

定理数学構造情報保存性

量子削除不可能定理は、任意の未知の量子状態の2つのコピーが与えられた場合量子力学操作を用いて片方を削除することが原理的に不可能であることを示す[1]。この定理数学表現は、ユニタリ変換Uによる状態変化:

U|\psi \rangle _{A}|\psi \rangle _{B}|A\rangle _{C}=|\psi \rangle _{A}|0\rangle _{B}|A'\rangle _{C}

任意のψに対して成立しないことを証明する。この非存在定理量子力学線形性に根ざしており、量子情報の完全な消去が禁止されることを意味する[1]。

時間反転対称性との関係

特筆すべきは、この定理が量子複製不可能定理時間反転双対であるである[1]。複製不可能性が未来方向の情報拡散を制限するのに対し、削除不可能性は過去方向の情報消失を阻止する。この双対性は、量子力学時間反転対称性と深く共鳴しており、情報保存の観点から時間双方向性を保証するメカニズムとして機能しうる。

時間の矢の従来説明とその限界

熱力学第二法則ミクロ的基礎

従来、時間の不可逆性は主に熱力学第二法則によって説明されてきた。エントロピー増大則は、孤立系が平衡状態に向かう不可逆的過程記述する[6]。近年の研究では、量子多体系の熱平衡化現象がシュレーディンガー方程式から導出され、ミクロな可逆性とマクロな不可逆性の架橋が進んでいる[2][6]。東京大学研究チームは、量子力学の基本原理から熱力学第二法則を導出することに成功し、時間の矢の起源を量子多体系の動的性質に求める新たな視点提示した[6]。

境界条件問題重要

量子力学時間発展方程式時間反転対称性を持つが、実際の物理過程では初期条件指定が不可欠である[5]。羽田野直道の研究によれば、励起状態の減衰解と成長解が数学的に同等に存在するにもかかわらず、自然界では減衰解が選択される[5]。この非対称性は、宇宙初期条件に由来する可能性が指摘されており、量子情報の保存則が境界条件選択に制約を与えている可能性がある。

量子情報保存と時間方向性の相関

情報アクセス可能性の非対称性

Maxwellデーモン思考実験に関連する研究[4]は、情報アクセス可能性が熱力学的不可逆性を生み出すことを示唆する。量子削除不可能定理は、情報の完全な消去を禁止することで、情報アクセス非対称性本質的に規定している。この非対称性が、エントロピー増大の方向性を決定する一因となりうる。

量子メモリ効果時間矢の分岐

サリー大学画期的研究[3]は、量子系において双方向時間矢が共存しうることを実証した。開量子系の動力学を記述する非マルコフ方程式の解析からエントロピー未来方向と過去方向に同時に増大する可能性が示された[3]。この発見は、量子削除不可能定理保証する情報保存性が、時間矢の分岐現象を支える数学構造と深く関連していることを暗示する。

新たな統合理論可能

情報幾何学アプローチ

量子状態空間情報幾何学構造時間発展の基盤とみなす視点が注目を集めている。量子多様体上の確率分布ダイナミクス記述する際、削除不可能定理接続係数の非対称性として現れ、これが時間矢の幾何学起源となりうる。このアプローチでは、エントロピー勾配と量子情報計量が時空構造相互作用する新たな枠組みが構想される。

宇宙論的初期条件との統合

量子重力理論観点から宇宙の初期状態における量子情報の配置が現在観測される時間非対称性を決定した可能性がある。削除不可能定理保証する情報保存則は、初期宇宙の量子状態選択根本的な制約を課し、結果として熱力学的时间矢が出現するメカニズム提供しうる。

結論パラダイム転換可能

分析から得られる重要な知見は、量子削除不可能定理単独時間の矢を説明するのではなく、情報保存原理熱力学的不可逆性と量子力学境界条件選択媒介する階層メカニズム構成している点である

時間の一方向性は、量子情報の保存性、多体系の熱平衡化動力学、宇宙論的初期条件が織りなす創発現象解釈できる。

今後の研究では、量子情報理論一般相対論統合による時空構造の再解釈が鍵となるだろう。

Citations:

[1]https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%89%8A%E9%99%A4%E4%B8%8D%E5%8F%AF%E8%83%BD%E5%AE%9A%E7%90%86

[2]https://noneq.c.u-tokyo.ac.jp/wp-content/uploads/2021/10/Kaisetsu_KIS2018.pdf

[3]https://xenospectrum.com/two-time-arrows-discovered-in-the-quantum-world-time-may-not-flow-in-one-direction/

[4]http://cat.phys.s.u-tokyo.ac.jp/~ueda/27.pdf

[5]https://www.yamadazaidan.jp/event/koukankai/2014_3.pdf

[6]https://pc.watch.impress.co.jp/docs/news/1079587.html

Permalink |記事への反応(0) | 00:20

このエントリーをはてなブックマークに追加ツイートシェア

2025-01-20

[日記]

午前7時。起床。ルーティン通り、室温22℃、湿度50%に調整されていることを確認。朝食はオートミール37g、無脂肪牛乳240ml、ブルーベリー7粒。完璧だ。

午前8時。World of Warcraftログイン今日レイド「アンダーロット」の日だ。僕のソーサラーギルド内でもトップクラスDPSを誇る。無論、最適化されたスキル回し、完璧な装備、そして何よりも僕の卓越した知能の賜物であることは言うまでもない。

午後1時。休憩。昼食はチキンサラダサンドイッチ全粒粉パン使用マヨネーズの量は厳密に12g。

午後2時。超弦理論研究今日特にtopologicalstringに焦点を当てる。nLabの記事https://ncatlab.org/nlab/show/topological+string )は非常に有用だが、いくつかの記述には些か曖昧な点が見受けられる。例えば、Gromov-Witten不変量とChern-Simons理論の間の関係についての記述は、もう少し厳密に定式化されるべきだろう。特にopen topologicalstringにおける境界条件選択が、導かれる物理理論にどのような影響を与えるのか、という点は未だ完全には解明されていない。

午後4時。再びWorld of Warcraft今日PvPアリーナに挑戦。無論、僕のチームは圧倒的な勝利を収めた。相手チームの戦略稚拙しか言いようがなく、僕の高度な戦術眼の前には為す術がなかったようだ。

もう一度topologicalstringに関する論文に目を通す。Calabi-Yau多様体上のtopologicalstringの分配関数が、ある種のモジュラー形式と関連しているという事実は興味深いが、その背後にある幾何学意味は未だ完全には理解されていない。この問題は、僕の今後の研究テーマの一つとなるだろう。

午後6時。夕食。ベイクドサーモンアスパラガス添え。付け合わせのマッシュポテトジャガイモの種類まで指定して調理してもらった。

明日は朝から量子場の理論セミナーがある。遅刻は許されない。

Permalink |記事への反応(1) | 18:41

このエントリーをはてなブックマークに追加ツイートシェア

2024-09-19

anond:20240919135854

例えばストーブで、煙突を長くすると燃焼効率がどうなるかとか、

紙飛行機でどういう折り方をすれば長く飛ぶとか、

デスクトップパソコンの吸気・廃棄どうすればいいかとか、

そういう物量シミュレーションもっと身近になるものだと思っていた。

物理シミュレーション」と「設計最適化」の区別が全くついていない。

物理シミュレーションは単に与えられたパラメータ境界条件微分方程式を解いているだけであって、所望の結果が得られるようにパラメータ最適化しているわけではない。

Permalink |記事への反応(0) | 14:04

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2026 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2026 Movatter.jp