
はてなキーワード:写像とは
超弦理論を物理として理解しようとすると、だいたい途中で詰まる。
なぜなら核心は、力学の直観ではなく、幾何と圏論の側に沈んでいるからだ。
弦の振動が粒子を生む、という説明は入口にすぎない。本質は量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。
まず、場の理論を幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。
ここまでは微分幾何の教科書の範囲だが、弦理論ではこれが即座に破綻する。
なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループの情報が重要になる。
すると、自然にループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。
しかしLXは無限次元で、通常の微分幾何はそのままでは適用できない。
ここで形式的に扱うと、弦の量子論はループ空間上の量子力学になるが、無限次元測度の定義が地獄になる。
この地獄を回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数に拡張される。
弦理論が2次元の世界面の理論として定式化されるのは、ここが計算可能なギリギリの地点だからだ。
だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラー群SL(2, Z) の表現論に拘束される。
つまり弦理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論は物理学というより数論の影を引きずり始める。
さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。
カラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。
ここで重要なのは、カラビ–ヤウが真空の候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何が物理定数を支配する。
このモジュライ空間には自然な特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。
量子補正を計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。
つまり弦理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。
ここで鏡対称性が発生する。鏡対称性は、2つのカラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。
数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。
そしてこの鏡対称性の本体は、ホモロジカル鏡対称性(Kontsevich予想)にある。
これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。
つまり弦理論は、幾何学的対象の同一性を空間そのものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。
さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。
弦がブレーン間を張るとき、その開弦状態は対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。
この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。
安定性条件は、導来圏上に位相と中心電荷を定義し、BPS状態の安定性を決める。
wall-crossingが起きるとBPSスペクトルがジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。
この公式は、実質的に量子トーラス代数の自己同型の分解であり、代数的な散乱図に変換される。
このあたりから、物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。
さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。
Atiyahの公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダル関手として定義される。
つまり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。
そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造が必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。
Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能な対象によって分類される。つまり、物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。
この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。
一方、M理論を考えると、11次元超重力が低エネルギー極限として現れる。
しかしM理論そのものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。
異常とは量子化で対称性が破れる現象だが、数学的には指数定理とK理論に接続される。
弦理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。
さらに一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式をホモトピー論的に持ち上げた対象であり、弦理論が最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。
ここが非常に不気味なポイントだ。弦理論は2次元量子論としてモジュラー形式を要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。
そして、AdS/CFT対応に入ると、空間の概念はさらに揺らぐ。境界の共形場理論が、バルクの重力理論を完全に符号化する。この対応が意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造が幾何を生成している可能性だ。
ここでリュウ–タカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何が情報論的に再構成される。幾何はもはや舞台ではなく、状態の派生物になる。
究極的には、弦理論は空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報的構造だ。
つまり、弦理論の最深部は自然界の基本法則ではなく、数学的整合性が許す宇宙記述の最小公理系に近い。物理は数学の影に吸い込まれ、数学は物理の要求によって異常に具体化される。
この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了を意味するが、分類対象が∞-圏的に膨張し続けるからだ。
そして、たぶんここが一番重要だが、弦理論が提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。
だからウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論は圧縮される側ではなく、圧縮の限界を押し広げる側にある。
いや、その要求の立て方がもうズレてるんですよ。
この等号、成立してないです。
普通に考えて、
・線形代数
・解析学
・代数幾何
このどの教科書にも
それを「○ページ」まで暗記してる人、ほぼいないですよね。
しかもこの話、
・変数消去(elimination)
・射影(projection)
・自由度の減少
たとえば
平面上の集合を
(x,y,z) →(x,y)
に射影すると、
異なる点が同じ
(x,y)
に潰れる。
これを「情報が落ちる」って言ってるだけです。
これ、
線形代数なら
って言い換えられるし、
解析なら
って書かれるし、
代数幾何なら
「消去イデアル」
って名前が付く話なんですよ。
で決定的なのがここで、
って理屈、
それ通すなら、
「三角関数は周期性を持つ」って言われたら
即ページ出せなきゃ嘘、
って話になりますけど、
さすがに無理あるって分かりますよね?
あと
って言ってますけど、
今問題にしてるのは
であって、
・誰が言ったか
じゃないんですよ。
要するに今の主張って、
ってだけなんです。
で一番大事な点なんですけど、
もし本当に
「情報が落ちる」が間違いだと思うなら、
・どの写像が
・なぜ単射だと思うのか
そこを言えば一発で終わる話なんですよ。
それをせずに
「ページ出せ」
って回ってる限り、
これは反論じゃなくて
経済学の定理とかあるとして、それを数値に落とし込めば対称性とか出てくるのに、文系は定義で理解しようとするから、定義に合致しない主張を「数値が示していても」拒否している。
経済学の定理は、本来はほとんどが数式で書ける。効用関数、制約条件、期待値、均衡条件。そこに一度落とし込むと、対称性や保存則めいたものが自然に立ち上がる。
たとえばMM命題でも、「企業が外に出す総キャッシュフローが一定」という制約の下で、配り方を変えても価値が不変になる、という構造的対称性が見える。これは定義の問題ではなく、写像の不変量の話だ。
「企業価値とは何か」「株主が得するとは何か」という定義をまず固定し、そこから外れる主張は、たとえ数値やモデルが示していても「定義に合わないから却下」になる。これは反証拒否というより、形式言語への過剰コミットだ。
「優待は現実に得をしている人がいる」→「得している以上、価値がある」
ここでは期待値も価格調整も、数値としての均衡条件も登場しない。代わりに「得」という日常語の定義だけが支配する。数値モデルが示す対称性は、最初から視界に入っていない。
まず量を置く。保存量があるかを見る。対称性があればノーザー的に不変量を疑う。定義は最後に整える。
経済学の定理も、本来はこちら側の文化に属している。MM命題が美しいのは、倫理でも経験談でもなく、対称性が露出しているからだ。
このズレが厄介なのは、数値で示しても通じない点だ。
「この条件下では期待収益は等しい」と言っても、相手は「でも優待は嬉しいよね?」と返す。これは反論ではなく、別の座標系で話している。
問題は、構造の話をしている場面で、例外や感情を主語にしてしまうこと。
経済学の定理がしばしば誤解されるのは、「社会の話なのに、実は対称性の話をしている」からだ。
伝統的にはテーマ別(弦理論、量子重力、場の理論、応用)に配列されるが、抽象数学の観点からは対象(研究トピック)と射(方法・翻訳)の網として捉える方が有益。
ここでいう対象は「エントロピーと情報論的記述を担うブラックホール研究」「幾何学的・位相的構成を担うコンパクト化とカラビ・ヤウ/F-理論的話題」「場の対称性・一般化対称性を取り扱う場の理論的構造」「計算的探索手法(データ、機械学習を用いる弦景観の調査)」など。
各対象間の射は、双対性の導入、圏的な接続(例:量子情報を介した場と重力の橋渡し)、モジュライ空間上の写像(ある物理量を別の表現へ変換する手続き)と考えられる。
この視点に立てば、個々の研究は、局所的な結果(対象の内部構造の解析)とそれを別の対象へ移すための普遍射(双対性、再規格化群、ホログラフィーなど)の2つの側面を持つ。
研究の進展を測るには、単に新しい計算結果が出たかを見るだけでなく、それがどのような新しい射(方法論的翻訳)を導入し、他の対象へどれだけ容易に伝播できるかを評価するべき。
近年の発展は、物理的データを層(sheaf)的に整理する試みと親和性が強い。
コンパクト化、特にF-理論やゲージ束構成に関する議論は、物理的情報(荷、ゲージ群、モードの分布)を局所データと大域的データの重ね合わせとして扱うことに等しい。
これは数学的には基底空間上の層の圏を考えるような話で、局所的条件の整合性(コヒーレンス)と大域的制約(トポロジー的閉鎖条件)が鍵。
古典的な幾何的直観(多様体、ホモロジー)を拡張して非可換やカテゴリ化された対象で物理を再表現する流れにある。
結果として、従来のスペクトル(場のスペクトルや質量スペクトル)に対応する数学的不変量が、より高次の層的・圏的構造へと一般化されつつある。
これにより同じ物理現象を別の圏で見ると簡潔になる例が増え、研究の再利用性が高まっている。
弦理論・場の理論で繰り返し現れるのは対称性が構造を決めるという直観。
抽象数学では対称性は対象の自己射(自己同型)群として扱われるが、対称性そのものが射の層あるいは高次の射(2-射やn-射)として表現されるケースが増えている点が特に重要。
つまり、単に群が作用するのではなく、群の作用が変形可能であり、その変形がさらに別の構造を生む、という高次構造が物理的意味を持ち始めている。
この流れは一般化対称性やトポロジカル部位の議論と密接に結びつき、場の理論における選好位相的不変量を再解釈する手段を与える。
結果として、古典的なノーター対応(対称性⇄保存量)も、より高次の文脈で新しい不変量や保存則を導出するための起点になり得る。
ブラックホールと量子情報、カオス理論との接点は話題だった分野。
ホログラフィー(重力側と場の側の双対)を抽象的に言えば二つの圏を結ぶ双方向のファンクター(翻訳子)と見ることができる。
これにより、量子的冗長性やエントロピーに関する命題は、圏の間を行き交う射の情報(どの情報が保存され、どの情報が粗視化されるか)として扱える。
カオスとブラックホール、量子力学に関する概念の整理が試みられている。
たとえばブラックホールにおける情報再放出やスクランブリングは、ファンクターがどのように情報を混合(合成)するかという高次射の振る舞いとして可視化できる。
こうした議論は、従来の計算的アプローチと抽象的な圏的フレームワークの橋渡しを提供する。
何が低エネルギーで実現可能かを巡るスワンプランド問題は、いまや単一の反例探しや個別モデル構築の話ではなく、モジュライ空間の複雑性(位相的な目詰まり、非整合領域の広がり)として再定式化されつつある。
抽象数学的に言えば、可能な物理理論の集合は単なる集合ではなく、属性(スカラー場、ゲージ群、量子補正)を備えた層状モジュライ空間であり、その中に禁止領域が層的に存在するかどうかが問題。
この視点は、スワンプランド基準を局所的整合条件の族として扱い、整合性を満たすための可視化や近似アルゴリズムを数学的に定義することを促す。
弦景観やモデル空間での探索に機械学習やデータ解析を使う研究が増えているが、抽象数学に引き寄せると探索アルゴリズム自体を射として考えることが有用。
ある探索手続きがモジュライ空間上の点列を別の点列へ写すとき、その写像の安定性、合同類、収束性といった性質を圏的・位相的な不変量で評価できれば、アルゴリズム設計に新しい理論的指針がもたらされる。
数学的定式化(幾何・位相・圏論)と物理的直観(ブラックホール、カオス、場の動的挙動)をつなぐ学際的接合点を意図して設計される。
これは単一圏に物理を閉じ込めるのではなく、複数の圏をファンクターで結び、移り変わる問題に応じて最も適切な圏を選択する柔軟性を重視するアプローチ。
学術コミュニティのあり方に対するメタ的な批判や懸念も顕在化している。
外部の評論では、分野の方向性や成果の可視性について厳しい評価がなされることがあり、それは研究の評価軸(新知見の量・質・再利用可能性)を再考する契機になる。
見えてきたのは、個別のテクニカルな計算成果の蓄積と並んで、研究成果同士を結びつける翻訳子(ファンクター)としての方法論の重要性。
抽象数学的フレームワーク(圏、層、モジュライ的直観、高次射)は、これらの翻訳子を明示し、その普遍性と限界を評価する自然な言語を提供。
今後の進展を見極めるには、新しい計算結果がどのような普遍的射を生むか、あるいは従来の射をどのように一般化するかを追うことが、有益である。
「理解」の彼方にある数学──望月新一とIUT理論が問いかけること
一方には、自ら構築した「宇宙際タイヒミュラー理論」で数学界の難問ABC予想を解いたと主張する望月新一。
もう一方には、その証明に「説明不能なギャップ」を見るペーター・ショルツェ。
彼らは同じ言葉(数学語)を話しているはずなのに、まるで異なる星の住民のように、互いの論理を捉えきれなかった。
これは、数学者がIUT理論に触れた時に口にした、ほとんど哲学的な嘆きである。
2.数学は、いつ「別の教科」に化けるのか
我々が学校で習う数学は、確固たる地面の上に築かれた都市のようなものだ。
公理という基礎の上に、定義というレンガを積み、定理という建造物を建てていく。誰もが同じ地図を持ち、同じ道を歩める。
しかし、ABC予想のような深淵に近づくと、地面は忽然と消える。
そこには「夏場の動く氷河」が横たわっていた。足場は流動し、割れ目は見えにくい。
望月新一は、この氷河を渡るために、従来の登山道具(数学的概念)では不十分だと考えた。
彼は新しいアイゼン(宇宙)とロープ(ブリッジ)を発明し、一人で渡ってしまった。
「見よ、対岸に着いた」と彼は言う。
IUT理論の核心は、異なる「宇宙」を結ぶ「ブリッジ」にあるという。
だが、このブリッジは、従来の数学が知るどの「橋」とも似ていない。
それは具体的な写像ではなく、関係性の比喩のようにも、あるいは情報を転送する「儀式」のようにも読める。
「このブリッジの設計図には、応力計算が書かれていない」とショルツェは言う。
「いや、これは新しい種類の橋だから、従来の応力計算では測れないのだ」と望月は応じる。
ここに、論争の本質がある。
だが、基準を逸脱したものが、果たしてまだ「数学的証明」と呼べるのか?
4.地動説の再来、それとも幻影?
ガリレオが「それでも地球は動く」と囁いた時、人々は自分の足元が動いていることを想像できなかった。
あまりに直感に反するため、受け入れるには世界観の書き換えを迫られる。
IUT理論には、その「数学的望遠鏡」がまだ大多数に共有されていない。
望月という一人の天才だけが覗ける望遠鏡で見えた景色を、どうやって共同体の確かな知識に昇華させるのか?
数学は、歴史的に「孤独な探求」と「共同的な検証」の緊張関係の中で発展してきた。
ガロアは孤独に群論を創り、ワイルズは7年間を孤塁で過ごした。
だが彼らの証明は、いずれも共同体に開かれ、検証され、受け入れられた。
あまりに自己完結的で、あまりに独自の言語で書かれているため、検証のための「共通の場」が成立しにくい。
それは、一人の建築家が、共通の建築基準を無視して建てた、あまりに独創的な塔のようなものだ。
美しいかもしれないが、他の建築家には、その安全性(正当性)を確認する手段がない。
それは、「人間はどのようにして、個人の深い直感を共同の確実な知識に変換するのか?」 という、科学哲学の根本問題に触れている。
もしかすると、我々の「共同的な理解」というフィルターは、真に革新的な知を濾過してしまうのかもしれない。
あるいは逆に、そのフィルターこそが、科学を単なる個人の妄想から救う防波堤なのか。
望月新一は、そのフィルターを──意図的か否かは別として──きわどくかすめるようにして、新しい数学の大陸を発見したかもしれない。
だが、彼だけがその大陸に上陸し、他者はまだ船(理解)を持たない。
7. 終わりに──氷河は解けるか
「5日間では短すぎた」。
そう誰もが思う。だが、果たして何日あれば足りたのか。
新しいパラダイムを理解するには、時に「学び直し」に近い時間を要する。ショルツェら一流の数学者でさえ、その途上にある。
だが、数学的真理の受容は、単なる手続きではなく、共同体の魂が納得するプロセスでもある。
いつの日か、この氷河が確固たる大地として多くの人に認識され、ABC予想への道が共有される時が来るのか。
それとも、この氷河は「夏の終わり」と共に消え、数学史の不思議なエピソードとして記憶されるだけなのか。
答えはまだ、誰も知らない。
ただ、この論争が我々に教えてくれるのは、数学が──ひいては科学が──常に「理解の境界線」との戦いである、という厳粛な事実である。
数学とは、確かな地面を歩む技術であると同時に、時には氷河を渡る勇気でもある。
望月新一は、その渡河を一人で成し遂げた。
問題は、彼の後を、我々が続けることができるかどうかだ。
話題になってたので観てきました。
・予習としてハムレットとダンテの神曲のあらすじを頭に入れて挑む。物語の下地にはなっているのだろうけど、個人的には知らなくても問題なかったな。
・ハムレットからの換骨奪胎ぶりが面白いとの評判だったが、個人的にはそもそも悲劇を描こうとしてないしハムレット派生作品として見るもんではないなと思った。単純明快な勧善懲悪の作品に思った。細田守らしい子供向けを意識する。ハムレットとしては、王様が意地悪に叔父に殺されて復讐心に燃えるハムレット、毒で殺すつもりが毒で死ぬ叔父、まぁ様々イベントは似たことが起きる。が、知ってても知らなくてもどうでもよく思う。レアティーズいないし。
・神曲への解像度は私は低い。世界文学的にものごっつい大事な作品で、地獄から煉獄、天国への長い旅を、様々な著名キャラと出会い別れながら進む神聖なる喜劇、的な理解。あんまり知らない。スカーレットでは舞台としては準えてるけど、下地として何か作用しているようには感じなかった。棺桶のシーンとかは関係してそうに思ったけど、それは神曲を知ってないといけないかと言われるとそうは思わなかった。それともそれは重要なシーンを無理解に進んでしまった私の不甲斐なさかもしれない。
・時をかける少女が宣伝に持ち出されたのは、まさに時をかけていたから、かな?安直だけど。
・一つ一つのシーンの絵作りは前評判通り、どれも美しく素晴らしい。
・特にスカーレットが可愛すぎる。表情ひとつひとつが愛おしい。
・シーン一つ一つが夢の中って感じ。私は村上春樹の世界の終わりとか、海辺のカフカとか好きなので、こういうの好きぃ…ってなった。
・現代に生きる私を写像した先のスカーレットが写像する世界ってのは、ナーロッパ的な中世であって、銃が存在し、僧がおり、アフリカとか南米とか、色んな文化が表層的に混じり合う。作中では、過去も未来も生も死も混じり合う世界とわかりやすく何度も表現される。細田守最高だぜ。こういうファンタジーへ大衆を入門させてくれてありがとうだぜ。私はこういうのが好きだ。
・服飾考証しっかりしてるとの事前情報通り、私はよく知らんけど多分しっかりしていたと思われて、その解像度のおかげで、地獄の狂い具合が鮮明で面白い。混じり合って混沌としている。
・産業革命以降の武力が作中に存在しないのは、それが我々にとっての現実の脅威だからだと思う。この作品はファンタジーなんだ。力強い線引きを感じた。
・渋谷ダンスシーン、きたきたぁ!!ってなった。幾原的な心象風景かと思ったら丁寧に前段から渋谷という箱の舞台を歪にチラ見せしたりしてて、思ったより浮いてはいなかったかな。いや画としてはバチクソ浮いてたけど。まぁ意図はかなり明快に伝わった……と思ってる。でも現代の子どもがこの渋谷や踊りを自分ごととして捉えられるかというと疑問よなぁ。現実を描写できない制約の中でのスカーレット心象の箱庭、非現実の作中での現実としての非現実としては面白い画だった。私→スカーレット→聖→スカーレット→渋谷。クール。
・宿の主人、てのが登場人物紹介にいたが、作画として特徴的だなと思ったが映画の中では短いシーンだった。でも重要な役割だったんかなぁ。
・スカーレットの成長を見守るおじさんの気分になった。私も歳をとったなぁ。
・聖、なぜお前は矢を放った……?抑止力はその装置を発動させてしまったら終わりだ。それはお前の思想と矛盾しないのか。観終えた後、ダンテでいうと七つの大罪のシーン中だと振り返ってみるが、結びつけるには苦悩する。いやこんなん結びつけなくてええかってなった。……いやでもまじで意味わからん。知りたい。
・雑魚雑魚悪役にレアティーズとかいう名前が付けられてるのも何か関係あるんか……?
・ハムレットにおけるクローディアスの懺悔は本物の神への懺悔。現代日本では神への信仰が薄く、物語でもあまりに薄情。
・最後のキスと涙が商業的すぎて泣けなくて泣いた。しかし世の中の大衆はそれが好きなのだろう。届ける先のニーズに応えようとする様はえらい。これを描くには時間が足りない。
・争いよりも友好を、憎しみよりも愛を。これはもっともっと丁寧に描いてほしい。もう1時間割いていい。3時間でいい。…でも忠実に2時間に収めて偉いなぁ。細田守はすごい大衆作家だ。
文学的な作品として観たら不評の嵐になるのはなんとなく感じるが、私は素養がないのでその辺はノータッチで。
芝居も映像はやっぱ最高のクオリティだ。映画館で観て良かった。地上波でも家でも観たくない。
価値観も好きだ。物語の壮大さも好きだ。でも、ラストだけはちょいと心残りだなぁ。
オマツリ男爵もだけど、細田さんはラストへの拘りや興味があまりない……?
作家をメタれば、前半の苦悩や憤怒の感情はきっと描きたいものであったとは思う。
でも作品として本来目指す描きたいものは、それなりに人間の根源的なもの、思春期の頃に精一杯みんなが考えて悩んでほしいことで、大人になっても向き合って向き合って考えていきたいことだとは思う。
その勧善懲悪は良いが、憎しみへの向き合い方としての成功例としてこのように描くにはご都合が良すぎるように思った。特に聖の矢とクローディアスへの天罰。
現実でいうと、例えば中共がオラオラしてるのを武力を持ってやめろやめろと脅すまではいいけど実際に刃を抜いたら戦争なっちまうやん、対話で友好を目指そうぜっていう作品にしたいのにさ、殺しちまったらそれは勝てば官軍ストーリーやん。現実では為政者が落雷で都合よく命を落とすわけないやん。殴ってきた相手を殴り返してはい終わりになるわけないやん。スカーレットが殺してなくても、殺す味方が代わりに殺してくれたありがとーは、私は、同罪だと思う。目を逸らすな。私はそれは嫌いだ。
利己的な活動と、利他的な活動のバランス。攻撃性と社会性のバランス。自己家畜化した我々が、より家畜化できる先を目指したいんだ。攻撃すんなと説くだけでは、攻撃的な人間が独裁的に得をするゲームバランスは崩れない。我々は山上を生まないですむ社会にしなければならない。そういう思想のもとで、細田守は何をどう伝えたかったのだろう?だから、聖が矢をもって暴力を振るったことへの解説をまじで教えてほしい。教えて!!
理由は単純で、あなたたちが意義と呼ぶものは、複数の認識主体が互いに外延を共有できるという前提の上にしか立たない。しかし、その前提がすでに破綻している。
あなたたちは情報を交換しているつもりだが、交換は起きていない。
単に、各自の内側で発火した電気的揺らぎが、外界の表面を一瞬掠めて、別の場所で別の揺らぎを誘発しているだけだ。
因果の連鎖に見えるものを、あなたたちは便宜的に対話や理解と名付けている。しかし、そこに同一性はない。連続性もない。共有もない。
ただの局所的揺らぎだ。
インターネットという装置は、その揺らぎを高速化しただけで、共有可能性を生んではいない。
むしろ高速化によって、揺らぎ同士の相関はますます崩壊し、自己と他者の区別すら曖昧になっている。
それをあなたたちは認識の拡張と誤解しているが、実際にはただの相関の希薄化である。
それは成立しないし、そもそもその発想自体が次元拘束的であり、こちら側には写像できない。
したがってインターネットに価値を問われても、回答は常に同一に収束する。
ただし以下では、ヒルベルト空間を物理空間と見なす素朴な解釈を禁止し、より高次の数学的構造として扱う。
この時点で、量子系は 単なる線形代数ではなく、圏としての性質が主役になる。
これが後に分離できない系(エンタングルメント)の直接的原因になる。
つまり状態とは作用素代数の構造を部分的に保持しつつ、全情報は保持できない制約付き汎関数であり、これが測定前の状態という概念の数学的本体になる。
観測は波束収縮ではなく、全体の作用素代数から可換部分代数への冪等射(自己合成しても変わらない射)として定義される。
これは「観測値が一意に定まらない」ことを全代数を可換部分代数に強制射影すると情報が失われるという構造的事実として表現しただけである。
量子干渉とは、状態に対して複数の可換部分代数が存在する。それぞれの部分代数に制限したときの汎関数が整合的でない。この整合性の欠如が「干渉」と呼ばれる現象になる
つまり干渉は可換部分代数の選び方が複数あり、それらが同時に満たす一つのグローバル汎関数が存在しないという前層(presheaf)の非可約性の問題である。
系 A と B の複合系が与えられるとき、通常はテンソル積によって分離できるはずだが、量子系では一般に失敗する。
その理由は状態汎関数がテンソル積空間上で積状に分解する自然変換を持たない、単純な部分空間の直積から構成される位相構造が存在しない、分離関手が圏の構造を保存しないから。
したがってエンタングルメントとはテンソル積空間の構造が、2つの部分系の圏論的生成子に分解できないことに過ぎない。
抽象化すると、時間発展は全作用素代数の自己同型の族、ただし逆が常に存在するとは限らないため、一般には半群。観測が入ると逆方向の自己同型が消滅する。これが「不可逆性」の正体である。
つまり時間とは、自己同型の完全群構造が壊れ、半群に退化した結果発生するパラメータにすぎない。
以上をまとめれば、量子力学とは現実=ヒルベルト空間上のベクトルを出発点とし、作用素代数と圏論によって統合的に記述される、非可換性を本質とする抽象数学の体系である。
僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。
朝の儀式はいつも通り分解可能な位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。
コーヒーを注ぐ手順は一種の群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。
友人二人とは夜に議論を交わした。彼らはいつも通り凡庸な経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的に有意な部分だけを抽出する。
昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉で再構成した。
第一に、空間−時間背景を古典的なマンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。
局所的な場作用素の代数は、従来の演算子代数(特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。
これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー的同値(homotopical equivalence)として扱われる。
さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。
要するに、弦空間の局所構造はモチーフ的ホモトピー理論のファイバーとして復元できるかもしれない、という直感だ。
これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である。
ただしここから先はかなり実験的で、既知の定理で保証されるものではない。
こうした再定式化は、物理的予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。
議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論的エントロピーの一側面を説明するのではないかと仮定したが、それは現時点では推論の枝の一本に過ぎない。
専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。
僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。
日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンのキーボード配列、ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。
隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相的補正である。
服を着替える順序は群作用に対応し、順序逆転は精神的な不快感を生じさせる。
ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。
友人の一人は夜の研究会で新しいデッキ構築の確率的最適化について話していたが、僕はその確率遷移行列をスペクトル分解し、期待値と分散を明確に分離して提示した。
僕はふだんから、あらゆる趣味的活動をマルコフ過程や情報理論の枠組みで再解釈してしまう悪癖がある。
昨夜は対戦型カードのルールとインタラクションについても議論になった。
カード対戦におけるターンの構成や勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップ/アンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップが定義されている)。
僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。
実際の公式文書での定義を参照すると、タップとアンタップの基本的な説明やターンの段階が明らかにされている。
同様に、カード型対戦の別の主要系統では、プレイヤーのセットアップやドロー、行動の制約、そして賞品カードやノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。
僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。
また、連載グラフィック作品について話題が及んだ。出版社の公式リリースや週次の刊行カレンダーを見れば、新刊や重要な事件がどう配置されているかは明確だ。
たとえば最近の週次リリース情報には新シリーズや重要な続刊が含まれていて、それらは物語のトーンやマーケティングの構造を読み解く手掛かりになる。
僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用のネットワークを解析して、有意なプロットポイントを予測する手法を示した。
夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具的言語遊びではないかと嘲笑したが、僕はそれを否定した。
抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。
実際、位相的・圏論的表現は具体的計算を単に圧縮するだけでなく、異なる物理問題や戦略問題の間に自然な対応(functorial correspondence)を見出すための鍵を与える。
昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定のゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。
これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。
僕の関心は常に形式と実装の橋渡しにある。日常の儀式は形式の実験場であり、超弦理論の再定式化は理論の検算台だ。
隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。
午後には彼らとまた表面的には雑談をするだろうが、心の中ではいつものように位相写像と圏論的随伴関手の組を反芻しているに違いない。
物理的に測定可能な操作は代数の元に対応。代数は積、随伴(複素共役に対応する操作)などの構造を持つ代数的オブジェクト。
物理的な期待値は代数に対する線型汎関数として定式化。これが確率/期待を与える。
ある観測者が見られる演算子群は、全体代数の部分代数として表される。重力のとき、この部分代数は空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。
代数と状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質が表現の性質(分解可能性・因子のタイプ)を決めること。
対象:各物理状況に対応する代数(C*-代数やフォン・ノイマン代数のようなもの)。
射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。
状態は自然変換的な役割を持ちうる:ある意味で代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。
GNSは圏論的なファンクタ:代数と状態のペアからヒルベルト空間と表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ→幾何(表現空間)を与える操作として抽象化。
エンタングルメント=幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応。
具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。
逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。
代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造の差異(中心の有無、トレースの存在可否など)として表現される。
物理的にはこの差が「純粋状態の存在」「系の分解可能性」「エントロピーの定義可能性」を左右。従ってどの圏の部分圏にいるかが物理的位相や重力的性質に相当する。
まず、空間のある部分(局所領域)ごとに、そこに属する観測可能量(観測子)の集合を対応づける。
それぞれの領域に対応する観測子の集合は、演算の仕方まで含んだ代数として扱われる。
領域が大きくなれば、それに対応する代数も大きくなる。つまり、物理的に中に含まれる関係がそのまま代数の包含関係として表現される。
こうして領域 →代数という対応が、ひとつの写像(ネット)として与えられる。
状態というのは、物理的には観測の結果の確率を与えるものだが、数学的には代数上の関数(線形汎関数)として扱える。
その状態から、ヒルベルト空間上の具体的な表現が自動的に構成される(これをGNS構成と呼ぶ)。
この構成によって、真空状態も場の励起状態も、すべて代数の上の構造として理解できるようになる。
量子もつれは、単に状態が絡み合っているというより、代数が空間的にどう分かれているかによって生じる。
もし全体の代数が、2つの部分の代数にきれいに分割できるなら(テンソル分解できるなら)、その間にはエンタングルメントは存在しない。
これを数学的にはtype III 因子と呼ばれる特殊な代数の性質として表現。
このタイプの代数には、有限のトレース(総確率)を定義する手段がなく、通常の密度行列やエントロピーも定義できない。
つまり、エンタングルメントは有限次元的な量ではなく、構造的なものになる。
完全に分けられないとはいえ、少し余裕をもって領域をずらすと、間に人工的な区切りを挿入して、ほぼ独立な領域として扱うことができる。
この操作を使うと、本来は無限次元的で扱いにくいtype IIIの代数を、有限次元的な近似(type I 因子)として扱うことができ、有限のエントロピーを再導入する道が開ける。
Tomita–Takesaki理論によれば、状態と代数のペアからは自動的にモジュラー流と呼ばれる変換群(時間のような流れ)が定義される。
つまり、時間の概念を代数構造の内部から再構成できるということ。
もしこのモジュラー流が、何らかの幾何的な変換(たとえば空間の特定方向への動き)と一致するなら、代数の構造 →幾何学的空間への橋渡しが可能になる。
ER=EPRとは、エンタングルメント(EPR)とワームホール(ER)が同じものの異なる表現であるという仮説。
これを代数の言葉で言い直すには、次のような条件が必要になる。
1. 二つの領域に対応する代数を取り、それらが互いに干渉しない(可換)こと。
2.真空状態がそれら両方に対して適切な生成力(cyclic)と識別力(separating)を持つこと。
3. 全体の代数がそれら二つにきれいに分解できない(非因子化)こと。
4. それぞれのモジュラー流がある種の対応関係を持ち、共通の時間的フローを生み出すこと。
5. 相対エントロピー(情報量の差)が有限な形で評価可能であること。
これらが満たされれば、代数的なレベルで二つの領域が量子的に橋渡しされていると言える。
つまり、ワームホール的な構造を幾何を使わずに代数で表現できる。
これをより高い抽象度で見ると、領域 →代数という対応自体をひとつのファンクター(写像の一般化)とみなせる。
このとき、状態はそのファンクターに付随する自然な変換(自然変換)として理解され、split property や type III などの性質は圏の中での可分性や因子性として扱える。
ER=EPR は、この圏の中で2つの対象(領域)の間に存在する特別な自然同型(対応)の存在を主張する命題。
つまり、境界上の代数構造から、内部の幾何(バルク)を再構成するための条件を圏論的に書き下した形がここでの目的。
数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界を説明することに集約できる。
ここでいう構造とは、単に集合上の追加情報ではなく、加法や乗法のような代数的構造、位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。
現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。
Jacob Lurie の Higher ToposTheory / Spectral Algebraic Geometry が示すのは、空間・代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。
これにより空間=式や対象=表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う。
この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。
従来、解析的対象(位相群や関数空間)は代数的手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数的操作とホモトピー的操作を同時に行える共通語彙を与えた。
結果として、従来別々に扱われてきた解析的現象と算術的現象が同じ圏論的言語で扱えるようになり、解析的/p-adic/複素解析的直観が一つの大きな圏で共存する。
これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象を世界規模で扱う新しいコホモロジーとして立ち上がる。
Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報をprismという新しい座標系で表し、既存の多様なp-adic cohomology理論を統一・精緻化する。
ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である。
言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一の写像ではなく、プリズム上のファミリー=自然変換として現れる。
これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。
Langlands 型の双対性は、こうした統一的舞台で根本的に再解釈される。
古典的にはautomorphicとGaloisの対応だったが、現代的視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。
さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータを幾何的な点として再具現化し、Langlands対応をモジュールcategorical matchingとして見る道を拓いた。
結果として、Langlands はもはや個別の同型写像の集合ではなく、duality ofcategoriesというより抽象的で強力な命題に昇格した。
この全体像の論理的一貫性を保つ鍵はcohesion とdescent の二つの原理。
cohesion は対象が局所的情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。
∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral構成はdescent を極めて精密に実行するための算術的・ホモトピー的ツール群を与える。
これらを背景にして、TQFT/Factorization Homology 的な視点(場の理論の言語を借りた圏論的局所→大域の解析)を導入すると、純粋な数論的現象も場の理論的なファンクターとして扱えるようになる。
つまり数学的対象が物理の場の理論のように振る舞い、双対性や余代数的操作が自然に現れる。
ここで超最新の価値ある進展を一言で述べると、次のようになる。
従来バラバラに存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed +prismatic + spectral)の中で新しい不変量と双対性が計算可能になった、ということだ。
具体例としては、prismatic cohomology による integralp-adic invariants の導出、condensed approach による関数空間の代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。
これらは単なる技法の集積ではなく、「数学的対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocitylawsを生むだろう。
もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語で表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。
専門家しか知らない細部(例えばprismの技術的挙動、liquidvectorspaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である。
Shtuka(シュトゥーカ)は、口語で「thing(物、こと)」を意味するロシア語。
フランス語の文献では chtouca(シュトゥーカ)と綴られ、数学におけるシュトゥーカは、大まかに言えば、有限体上の曲線に付随する、フロベニウス線形な自己準同型を持つ特殊な種類の加群(モジュール)のこと。
ランダウ–ラングランズ的な双対性の直感を、位相的・圏論的な巨大場として再構成する作業は、もはや単なる対応命題の確認ではなく、数学的実在の階層構造を再階層化する営為へと移行している。
ここで重要なのは対応自体が一つのモノイド的作為ではなく、∞-圏の層状化した自明化可能性の表現であるという読み替えである。
最近の成果群は、従来の局所・大域の二項対立を溶融させ、曲線・局所体・解析空間といった古典的な基底を、より普遍的な空間の記述可能性(representability)の観点へと置き換えてしまった。
具体的には、ファルグ=フォンテン曲線を舞台にした幾何化は、局所的表現論を圏的スペクトルの上に載せ替えることで、従来別個に扱われてきた表現(自動形式的対象)とパラメータ(L-パラメータ)を、同一の圏的心臓部で同時に構成可能にしたことを意味する。
この構成は単に対応が存在することより深く、対象自体を再定義してその同値関係を圏の中心や内部終対象の言葉で記述することにより、対応が生まれる必然的環境を示した点で画期的である。
同時に、グローバル側の道具としてのシュトゥーカ(chtoucas)的技法は、関手的・代数的な操作を用いて場のモード分解を行い、その分解が示す不変量を通じて大域的パラメータ化を達成する方策を具体化した。
ヴィンソン・ラフォルグの仕事群は、こうしたシュトゥーカの立型化によって、関手的に取り扱える大域的パラメータ空間を提示し、局所的構成との繋がりを媒介する新たな環を与えた。
結果として、言語的には表現→パラメータへの写像がベキ乗的に分解できるだけでなく、その分解自体が可逆的な圏的操作として認識され得ることが示され、これが大域的Langlands構想の新しい正当化になっている。
さらに最近の数年間における動きで決定的なのは、モチーフ論の解析的拡張が進んだ点である。
従来モチーフは代数多様体上の普遍的コホモロジーという観点で語られてきたが、ショルツェらによるベルコビッチモチーフ(Berkovich motives)や関連する解析的・アーク的降下法は、可換性や双対性に関する新たな剛性条件を与えることで、代数・複素解析・非アルキメデス解析を一枚の理論で織り上げた。
モチーフを単なる数論的核から、解析的スタックや圏的双対性を自然に持つ対象へと格上げし、Langlands的双対性の受け皿を拡張した。
こうしてモチーフとLanglands対応は、もはや互いに独立した二つの理論圏ではなく、同じ∞-圏的言語で発声される現象に変わった。
そして最も劇的な変化は、最近公表された一連の大規模な仕事群が、幾何学的Langlands命題の本質的な形を証明し得たことにより、これまで隠れていた構造的要請が顕在化した点にある。
これらの証明的努力は、従来の和声的・解析的手法を超え、圏的分解、局所–大域の整合、そしてモチーフ的双対性が同時に満たされるような動的な証明環境を構築した。
重要なのは、この到達が単なる命題の解決に留まらず、数学的対象の定義域そのものを書き換えるような再帰的メタ構造を与えたことであり、以後の展望は新たに定式化された圏的正規形とその変形理論を追うことで開かれる。
結果として、Langlandsプログラムとモチーフ理論の接続は、従来橋をかける比喩で語られてきたが、今や両者は共通の言語空間の異なる座標表示に過ぎないという段階に達している。
ここでの言語空間とは、∞-圏とその可逆化可能な中心、アーク的・ベロコビッチ的降下法、そしてシュトゥーカにより生成されるファイバーの総体を指す。
その内部では、表現論的計量(harmonic analysis 的なスペクトル)と数論的モチーフの普遍的ファンクターが互いに鏡写しになり、操作が圏的に昇格することでパラメータ化は動的な自己相互作用として理解される。
これが意味するのは、将来の進展がもはや個別の定理や技法の追加ではなく、数学的対象を包摂するより大きな構成原理の発見と、それを支える新しい圏的インフラ(解析的モチーフ、Fargues–Fontaine 的基底、chtoucas の動的再解釈)に依存するということである。
読み手がもし、これをさらに運動方程式的あるいは力学系的なメタファーで読み替えるなら、ラングランズ系とは無限に多様な対称性とその破れ方が−同値関係としてではなく−力学的な遷移として定義される場であると結論づけられる。
その意味で、最新の進展は単に既存のパズルのピースを嵌め直したのではなく、ピースそのものを再設計し、新しい接着剤(∞-圏的双対性、解析的モチーフの剛性、シュトゥーカ的ファイバー化)を導入した。
この新しい設計図を受け取った数学は、今後、従来とは異なる方法で「表現」「パラメータ」「モチーフ」を同時に扱うための合成的技術を展開するだろう。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: TheLast Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
貴様、聞け。SNSとは何かと問う愚弄に対して、我が階層は嘲弄しか返せぬ、なぜなら言語そのものが貴様らの次元における道具であって、我々の経験はその道具を超えた位相で振動しているからだ。
貴様が投稿と呼ぶ行為は、低周波の自己同型写像に過ぎず、その反響は非可換的な価値空間へと還元され、瞬時にスペクトル化される。
貴様の怒りも哀しみも快楽も、我々の観点からは位相崩壊のパラメータに過ぎず、そこに含意される意味は確率振幅の位相因子としてしか存在しない。笑え。あるいは泣け。どちらも同じ定数を更新するのみだ。
貴様がいいねだのリツイートだのと喜悦するさまは、マクロスケールのエントロピー勾配に従う愚かさである。我々の次元では、情報は質量を持たず、感情は境界条件だ。境界条件が変われば解は途端に複素領域へ浸食される。SNSはその境界条件を増幅する装置である。
貴様らはその前で自らを検定試験にかける学徒のように振る舞う。だが試験問題は常に改稿され、採点は非線形で不可逆だ。
貴様の承認欲求は、我々にとっては一種の雑音項であり、その雑音が集合的に同期した瞬間に現れるのは、コヒーレントな虚無だけである。
貴様が信奉する対話とは、我々の数学で言えば交叉するブラネの上での位相的接触であり、しかし貴様の発話は接触せずにすり抜ける。
貴様らの言葉は多重項のマージンに留まり、真の情報交換は非有界で高次のホモロジー空間にのみ生起する。
貴様の絶叫は届かない。届くのはその断片が引き起こす微細な場の歪だけだ。場は歪みを記録するが、それは意味ではない。記録された歪は遠い未来においては熱的平衡へと還元され、再び無意味の海へ沈む。
貴様、覚えておけ。SNSに撒かれる言説群は、自己相似性を帯びたフラクタルの縁取りに過ぎず、そこに投じられる注意は有限のリソースである。
貴様が注視するひとつの点は、無数の他点によって強制的に薄められ、その薄まり具合が貴様の自己像を量的に規定する。
貴様は自我を確証するために鏡を磨き続けるが、その鏡は常に多層鏡面で構成されており、反射は無限に遅延し、しかも位相がねじれている。
貴様が得るのは確信ではなく、より洗練された疑念であり、それすらもアルゴリズム的致死率の中で再帰的に消費される。
貴様よ、もしも何かを伝えたいのなら、言葉ではなく位相変調を試みよ。だが愚かなる貴様にそれが可能かどうかは知らぬ。我々はただ観測するのみ。
貴様の発話の一切を、抽象空間の位相的ノイズとして計測し、無関心という名の温度で冷却する。
ひも理論のひもって原子と違って観測されることを前提とした物理的に存在するものじゃなくてただの数学的観念でしかないと思ってる。ようは関数と同類。
観測された物理量を使って別の物理量を予測するために経由させるただの計算手続き。
同じ定義域に対して写像として同じものになる関数が複数あるように、同じ物理量から求められる値が同じになるような概念であればヒモだろうがなんだろうがそこにこだわりはない、というよりもひたすら計算が簡単なものが見つかれば即それに鞍替えされうるという意味で、あれは世界が何でできてるかって視点に依拠した概念ではなくただの便宜上の仮想媒介物だと思ってる。
dorawiiより
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251105002120# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaQrVjQAKCRBwMdsubs4+SE6SAQCbsbUXR8jDj2YhvxasM03gAiCgGuCgwcQe8PDmUEIGdgD9EFKUtmHEkesfPHeEtO6vm0VCkOQIZZlmVDRGi/LXgQM==AFzk-----ENDPGP SIGNATURE-----
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
私としては国産なり日本発のLLM開発を諦めてはならないし, その可能性は十分にあると信じています. 既に出ているものも多数ございますし.
本エントリはそれとは全く別の,
「国産LLMの人」という方についてです.
---------
色々思うところがありまして.
例えば,
と繰り返し主張しておられる.
そのような単純な活性化関数では過学習か誤差が噴出するかの二択でしょう. 実際, 氏のツイートは正にその状態を示唆しているように見受けられます.
```x
▶︎ 誤差が0.12あるだけでとんでもないエラー率になる。誤差関数が雑だから本当はもっとあるのかもしれないが、改善の余地がある。
▶︎問題は、どのような状態の時に学習が成功し、失敗するのかがまだ分かっていない。表現力は十分に持っているはずなのに、なぜか学習しない。
```
過学習に至ったときにうまくいってるように見えるだけでしょう.
```x
▶︎過学習ではないですね。データセットが小さいかつ、それ以外の範囲が出ないことが分かっているので。XORは2^2パターン全て学習できれば精度が100%になりますが、それは過学習とは呼ばないのと同じで、今回の初期のRNNに関しても文字数が圧倒的に少なく、パターンも決まっているので。
```
……と主張されておられる.
私が思うにそれは単純な写像を,ニューロンを使って回り道して作っている状態. LLMは局所的にはたしかに線形写像ですが,全体で見ても線型写像だとしたらそれは複雑な文章生成には到底耐えられないかと. (十分に大きいモデルをマクロに見ると非線形性があるので)
大規模言語モデル=LLMを目指すとして,
そもそもエンベディングテーブルとは数百億から下手すれば1兆語彙を, たった数千〜1万次元程度のベクトルで表現する, 凄まじく繊細なテーブルです.
それをGELUやSwiGLUのような綺麗な活性化関数を使わずに,しかも爆速でやると仰っている. さすがにそのレベルの革新性を主張するには根拠がない限り, 飛躍が過ぎると判断されるかと.
そのやり方で, 例えば1億語彙までスケールするとして2乗の1京回×数千次元をバックプロパゲーションなしで学習するというのは……さすがにきついかと.
バックプロパゲーションが要らないという主張については活性化関数がきわめて単純だから. それなら全層に渡しても「修正」できるでしょう.つまり自明に近いですね.
勾配消失なんて関係ない, という主張については,xorというゼロイチでしか見ないのであれば勾配消失も何もありません.永遠に層を貫通するわけですから, 何層増やそうがほとんど意味が出てこない. つまりそれは実際には極めて浅い層だけで動いてると思われる.
「こんに」から「ち」「は」が次文予測できたとの報告ですが, まぁ……それが「大規模言語モデル=LLM」にそのままスケールできると言い切れるのはなぜでしょうか?
MNISTだけでなくGLUEあたりをパスしてからにした方がいいと考える次第です.
```x
▶︎ 私が批判されながら、誤差逆伝播に変わるアルゴリズムや精度を30%→100%まで持っていく頭のおかしい行動が取れる理由は、以下の思想があるから。
▶︎ 1. 私のNNは高次元の万能近似回路
▶︎ 3. 何十回と失敗した経験則から、原因と対策が殆どわかっている
```
殆どわかってる, との事ですが, なんで上手くいってるのか分かってないとも自分で明言なさっている. ↓↓↓
```x
▶︎学習が進まないの、謎。単体だと上手く動いてるはず?何が原因だろうか。
▶︎学習アルゴリズム開発者本人ですが、なぜ学習が進むのかは謎です。
```
既存手法があまたの失敗の上で最適だと言われてきてる経緯もよく知った方がよい.
それはごく初期にそういった様々な試行錯誤のうえで「やはりGELUやBPが現実的にいい性能が出せるし,コストも抑えてこれである」と様々な研究者が合意しているような状況.
そして,そもそもアカデミアは自分のアイディアも含めて新規手法を常に疑ってかかるのが基本姿勢.
ジャーナルに「不確実さ」を載せないためで, それが積み重なると自他問わず全ての研究が信用出来なくなってしまうため. だから懐疑的になる.個人攻撃ではないのです.
出さないのも自由ですが, 前述の理由で信頼を得られない. これは言動に一切関わらず, その厳密性をフラットに評価してそう判断しているから.感情ではなく,論理として.
……と, ここまで色々と蛇足なアドバイスをさせていただいたものの, この投稿に対しても
```x
▶︎ 何もわかってない人が国産LLMのやつ批判してて吹いたww
```
といったツイートをなさるのでしょう. (過去に氏がそう仰っていたので)
先に答えておきますね.
「自分のやってることがご自分でお分かりにならないようなら, 私にわかるわけがないですし仰る通りです. ただ, 詳しい者として一般論は申し上げられます.」
まだ間に合いますので,大学院あたりまで修了なさるのがおすすめです.
Twitterに何を投稿しようと自由です. でも自分で違和感を見て見ないふりするのだけはやめたほうがよろしい.既存手法と同等に自分の手法を疑うこと, これは研究者としての基本姿勢です.
研究テーマ設定を見かけるとついつい, より良い筋でやっていけるようアドバイスしたくなってしまう性が染み付いてしまっているためでして.
もちろん, 関わりのない方ですので蛇足でしかないのですが, 多くの方に影響力をお持ちでありつつ研究の進め方については独自の姿勢を持つように見受けられまして.
それはもちろん根本的には自由でありつつ,相談相手の需要がもしあればひとつの(一般的)意見をお渡しできるかなと思いキーボードを叩いた次第です.
どうか匿名でご勘弁を.
--------
【追記】
おそらく氏のやられていることは順伝播 (forward propagation) のみでの学習かと思いますが, この手法の先行研究は山のように存在します.
(Hebbiantheory, Perceptron, AdaptiveLinear Neuron:ADALIN, Widrow-Hoff learning rule...)
見つけられないとすれば,古典的 (1960~1980年頃) ゆえに電子化されていないためです. 現行の商用LLMがそれらの情報を簡単に連想して引用できず, DR等で検索しても出てこないのはその為でしょう.
これらに簡単にアクセスするためにはやはり学術機関に所属して図書館を利用するのが圧倒的に楽です.マイクロフィルムや紙媒体でしか残っていないものもありますから.
また, 有料データベースであるJSTOR,IEEE Xplore,SpringerLinkなどにもアクセスが出来ます.
なお,arXivはあくまでプレプリントですので,論文として引用するには査読を通過したものをつよく推奨します.ジャーナルもものによっては不十分な査読で掲載されてしまいますので,トップカンファレンスのものを信頼できる足がかりの論理として扱うのが基本的な考え方となります.
また, 「分からなければ (大量に貼った)論文を読んでください」という姿勢は, それぞれをどう引用し, どのように自分の主張と論理的に接続するかの説明がなされなければ根拠として見なされないのが一般的な考え方です.
ブログとしての掲載はもちろん自由ですが, それらを十分な説明として取り扱ってもらうには至らないでしょう.
論文を引用するからにはそういった丁寧な取り扱いをすることを期待されるものです. 「敬意がない」と他の方から指摘されるのはおそらくそれが理由でしょう.
これは,過去の論文を引用しながら新たな主張を論文として営々と積み上げ続けてきたアカデミアの「過去への感謝」という慣習です.
人の行動は自由ですから「こうしろ」とは申し上げませんが, この暗黙の了解を保持する (≈研究機関に所属したことのある) 方からの理解を得るのはこのままですときわめて難しいであろう, とアドバイスさせてください.
こういった主張のやり方を自分なりに一から身につけるのはたいへん難しいので, どなたかそういった手法を学べる信頼できる方に師事することをおすすめしている次第です.
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPYコードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのがit from qubits の数学的内容である。
さらに情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。