
はてなキーワード:代数多様体とは
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
ランダウ–ラングランズ的な双対性の直感を、位相的・圏論的な巨大場として再構成する作業は、もはや単なる対応命題の確認ではなく、数学的実在の階層構造を再階層化する営為へと移行している。
ここで重要なのは対応自体が一つのモノイド的作為ではなく、∞-圏の層状化した自明化可能性の表現であるという読み替えである。
最近の成果群は、従来の局所・大域の二項対立を溶融させ、曲線・局所体・解析空間といった古典的な基底を、より普遍的な空間の記述可能性(representability)の観点へと置き換えてしまった。
具体的には、ファルグ=フォンテン曲線を舞台にした幾何化は、局所的表現論を圏的スペクトルの上に載せ替えることで、従来別個に扱われてきた表現(自動形式的対象)とパラメータ(L-パラメータ)を、同一の圏的心臓部で同時に構成可能にしたことを意味する。
この構成は単に対応が存在することより深く、対象自体を再定義してその同値関係を圏の中心や内部終対象の言葉で記述することにより、対応が生まれる必然的環境を示した点で画期的である。
同時に、グローバル側の道具としてのシュトゥーカ(chtoucas)的技法は、関手的・代数的な操作を用いて場のモード分解を行い、その分解が示す不変量を通じて大域的パラメータ化を達成する方策を具体化した。
ヴィンソン・ラフォルグの仕事群は、こうしたシュトゥーカの立型化によって、関手的に取り扱える大域的パラメータ空間を提示し、局所的構成との繋がりを媒介する新たな環を与えた。
結果として、言語的には表現→パラメータへの写像がベキ乗的に分解できるだけでなく、その分解自体が可逆的な圏的操作として認識され得ることが示され、これが大域的Langlands構想の新しい正当化になっている。
さらに最近の数年間における動きで決定的なのは、モチーフ論の解析的拡張が進んだ点である。
従来モチーフは代数多様体上の普遍的コホモロジーという観点で語られてきたが、ショルツェらによるベルコビッチモチーフ(Berkovich motives)や関連する解析的・アーク的降下法は、可換性や双対性に関する新たな剛性条件を与えることで、代数・複素解析・非アルキメデス解析を一枚の理論で織り上げた。
モチーフを単なる数論的核から、解析的スタックや圏的双対性を自然に持つ対象へと格上げし、Langlands的双対性の受け皿を拡張した。
こうしてモチーフとLanglands対応は、もはや互いに独立した二つの理論圏ではなく、同じ∞-圏的言語で発声される現象に変わった。
そして最も劇的な変化は、最近公表された一連の大規模な仕事群が、幾何学的Langlands命題の本質的な形を証明し得たことにより、これまで隠れていた構造的要請が顕在化した点にある。
これらの証明的努力は、従来の和声的・解析的手法を超え、圏的分解、局所–大域の整合、そしてモチーフ的双対性が同時に満たされるような動的な証明環境を構築した。
重要なのは、この到達が単なる命題の解決に留まらず、数学的対象の定義域そのものを書き換えるような再帰的メタ構造を与えたことであり、以後の展望は新たに定式化された圏的正規形とその変形理論を追うことで開かれる。
結果として、Langlandsプログラムとモチーフ理論の接続は、従来橋をかける比喩で語られてきたが、今や両者は共通の言語空間の異なる座標表示に過ぎないという段階に達している。
ここでの言語空間とは、∞-圏とその可逆化可能な中心、アーク的・ベロコビッチ的降下法、そしてシュトゥーカにより生成されるファイバーの総体を指す。
その内部では、表現論的計量(harmonic analysis 的なスペクトル)と数論的モチーフの普遍的ファンクターが互いに鏡写しになり、操作が圏的に昇格することでパラメータ化は動的な自己相互作用として理解される。
これが意味するのは、将来の進展がもはや個別の定理や技法の追加ではなく、数学的対象を包摂するより大きな構成原理の発見と、それを支える新しい圏的インフラ(解析的モチーフ、Fargues–Fontaine 的基底、chtoucas の動的再解釈)に依存するということである。
読み手がもし、これをさらに運動方程式的あるいは力学系的なメタファーで読み替えるなら、ラングランズ系とは無限に多様な対称性とその破れ方が−同値関係としてではなく−力学的な遷移として定義される場であると結論づけられる。
その意味で、最新の進展は単に既存のパズルのピースを嵌め直したのではなく、ピースそのものを再設計し、新しい接着剤(∞-圏的双対性、解析的モチーフの剛性、シュトゥーカ的ファイバー化)を導入した。
この新しい設計図を受け取った数学は、今後、従来とは異なる方法で「表現」「パラメータ」「モチーフ」を同時に扱うための合成的技術を展開するだろう。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
コホモリン: (ホモジーの肩を叩く)ホモジーさん、もう朝ですよ。あんた、また徹夜で単体ホモロジーのチェーン複体 Cₙ(X) を眺めとったんですか? なんでそんなに、境界作用素 ∂ₙ が気ぃなるんです? ∂² = 0 はもう、摂理みたいなもんやないですか。
ホモジー: (ゆっくりと顔を上げる)摂理…? コホモリン…お前はわかってない…。この境界作用素 ∂ₙ: Cₙ(X) → Cₙ₋₁(X) が、ただの摂理で終わると思とるんか? これはな、鎖複体のコホモロジー Hⁿ(X) とホモロジーHₙ(X) を繋ぐ、導来関手の源泉なんや…。Ext関手とかTor関手が、この単純な関係から生まれるって、鳥肌もんなんやで…!
コホモリン: (額に手を当てる)いや、そこまでいくと、もう代数やないですか。あんた、完全にホモロジー代数の世界に意識飛んでますやん。位相空間の形の話はどこ行ったんですか。
ホモジー: 形…? 形とはなんぞや、コホモリン…。ホモトピー同値な空間は、ホモロジー群が同型やろ? けどな、エキゾチック球面 S⁷ は、普通の S⁷ とは微分同相じゃないのに、ホモロジーは同型なんやで…? あれって、結局、微分構造が持つ情報って、ホモロジーだけじゃ捉えきられへんってことやろ? 俺はもう、その不確定性原理に囚われとんねん!
コホモリン: (震え声で)不確定性原理…もう、あんた、物理学まで手ぇ出しとるんか。エキゾチック球面は、ミルナーの偉業ですよ。あれは、多様体の圏と位相空間の圏の間の、深い亀裂を示しとるわけや。あんた、もうそっちの闇に堕ちて行ってるんちゃいますのん?
ホモジー: 闇…そうや、闇や…。特異点解消の理論とか、フルーリーのインデックス定理とか、闇深すぎやろ…。特に、交叉ホモロジー! あれは、特異点を持つ空間のホモロジーを定義するときに使うねんけど、あの構成可能層の概念が、俺の脳みそを層化して、導来圏の中で消滅コホモロジーとして彷徨わせとんねん…!
コホモリン: (絶句)き、交叉ホモロジー?!あんた、そこまで行ったらもう、完全に偏執狂ですよ!ド・ラームコホモロジー Hᵈᴿⁿ(M) が特異コホモロジー Hⁿ(M; ℝ) と同型になるド・ラームの定理でさえ、あんたの目には生ぬるいんか!?
ホモジー: 生ぬるい…生ぬるすぎる…。p-進ホモロジーとかエタールコホモロジーの存在を知ってしまったら、もう普通のホモロジーには戻られへんねん…。特にエタールコホモロジーは、代数多様体の上で定義されるやろ?ヴェイユ予想の解決にも貢献したって聞いて、もう夜も眠れへんねん。ガロアコホモロジーとの関連とか、考えたら意識が飛ぶわ…!
コホモリン: (顔面蒼白)エ、エタールコホモロジー…!? それ、数論幾何の最先端やないですか! もう、あんたは位相幾何学の領域を完全に飛び出して、数学のあらゆる深淵を覗き込んどる…!ホモジーさん、お願いやから、もうやめてください…! 俺のホモトピー群 πₙ(X) が、完全に自明群になってしまいそうですわ…!
ホモジー: (恍惚とした表情で、宇宙の果てを見つめるように)フフフ…コホモリン…俺のボーゲン–シュミット予想がな、今、頭の中で圏論的極限を迎えようとしとるんや…。宇宙全体のホモロジー群 が、俺には見えるんや…!
コホモリン: (膝から崩れ落ち、全身が震える)うわあああああああ!ホモジーさん、あんたはもう、人間やない!数学の抽象的対象そのものや! 俺はもう無理や…あんたの隣におったら、俺の有理ホモトピー型が壊れてまう…!
数学には「数の世界」(足し算や掛け算など、数字を計算する世界)と、「形の世界」(丸や三角、ドーナツみたいな形を研究する世界)があるんだ。
ラングランズ・プログラムは、この二つの世界をつなぐ「秘密の辞書」や「翻訳機」みたいなものだと思ってみて。
数の世界で、とても難しい問題があったとする。まるで、誰も知らない外国の言葉で書かれた暗号みたいだ。
この「秘密の辞書」を使うと、その難しい数の問題を、形のせかいの言葉に翻訳できるんだ。
すると不思議なことに、形のせかいでは、その問題が意外と簡単なパズルに変わることがある。
昔、フェルマーの最終定理っていう、350年以上も誰も解けなかった超難問があったんだけど、ある数学者がこの「秘密の辞書」の考え方を使って、数の問題を形の問題に翻訳して、ついに解くことに成功したんだ。
ラングランズ・プログラムは、この「秘密の辞書」を完成させるための、壮大な計画なんだよ。
ラングランズプログラムとは、数論における「ガロア表現」と、解析学における「保型表現」という、起源も性質も全く異なる二つの対象の間に、深遠な対応関係が存在するという広大な予想のネットワーク。
この対応は、それぞれの対象から定義される L関数という分析的な不変量を通して記述される。
体の絶対ガロア群 Gₖ =Gal(K̄/K)から複素一般線形群への準同型写像
ρ: Gₖ →GLₙ(ℂ)
これは、素数の分解の様子など、体の算術的な情報を捉えている。
数体 K のアデール環 𝔸ₖ 上の一般線形群GLₙ(𝔸ₖ) の、ある種の無限次元表現
π = ⨂'ᵥ πᵥ
これは、保型形式の理論から生じる解析的な対象で、スペクトル理論と関連。
n次元の既約なガロア表現 ρ と、GLₙ(𝔸ₖ) 上のカスプ的な保型表現 π が、それらのL関数が一致する
L(s, ρ) = L(s, π)
という形で、1対1に対応するだろう、と予想されている。
アンドリュー・ワイルズが証明した谷山・志村予想は、K=ℚ, n=2 の場合におけるこの対応の重要な一例であり、フェルマーの最終定理の証明の鍵となった。
このプログラムは、数論の様々な問題を統一的に理解するための指導原理と見なされている。
ラングランズプログラム? ああ、それは数学という世界の異なる大陸、数論(ガロア群)、解析(保型形式)、そして幾何(代数多様体)が、実は一つの巨大な超大陸の一部であったことを示す、壮大な地殻変動の記録だよ。
その核心は「関手性の原理」に尽きる。全ての根底にあるのは、簡約代数群 G とその L-group (ラングランズ双対群) ᴸG = Ĝ ⋊Gal(K̄/K) だ。
ラングランズ対応とは、有り体に言えば、数体 K 上の G に対する保型表現の集合 {π} と、K のガロア群から ᴸG への許容的な準同型の共役類の集合 {φ} の間の、然るべき対応関係を構築する試みだ。
φ:Gal(K̄/K) → ᴸG
この対応は、局所体 Kᵥ における局所ラングランズ対応(LLC) の貼り合わせとして現れる。
つまり、保型表現 π = ⨂'ᵥ πᵥ の各局所成分 πᵥ が、対応するガロア表現 φ の局所成分 φᵥ = φ|_(Gal(K̄ᵥ/Kᵥ)) と寸分違わず対応しているという、奇跡的な整合性の上に成り立っている。
しかし、真の深淵は「幾何学的ラングランズ」にある。ここでは数体を関数体に置き換える。代数曲線 X 上の G-束のモジュライ空間Bunᴳ(X) を考える。
幾何学的ラングランズ対応は、これら二つの全く異なる幾何学的世界の間に圏同値が存在するという、もはやSFの領域に片足を突っ込んだ主張だ。
これは物理学のS-双対性とも深く関連し、数学の異なる分野が同じ一つの構造を異なる言語で語っているに過ぎない、という真理の一端を我々に見せてくれる。
結局のところ、ラングランズ・プログラムとは、我々が「数学」と呼んでいるものが、実はより高次の存在が持つ表現の一種に過ぎないことを示唆しているのかもしれないね。
具体的対象(ガロア表現・保型表現)を超えて、それらの起源的圏論的存在、つまりモチーフを考察の対象とする。
モチーフとは、代数多様体のコホモロジー理論の普遍的源泉として構成される抽象的対象であり、以下のような関手的性質を持つ。
H*: Mot_F → Vec_ℚℓ, (ℓ-adic, de Rham, Betti,etc.)
つまり、さまざまなコホモロジー理論の共通の起源圏がモチーフ圏である。
[射影:モチーフ →ガロア表現]ある純モチーフ M ∈ Mot_F に対し、そのℓ進エタール・コホモロジーは有限次元ガロア表現を与える。
ρ_M:Gal(F̅/F) →GL(Hⁱ_ét(M_F̅, ℚℓ))
したがって、すべての「よい」ガロア表現はモチーフに由来すると考えられる(これは標準予想やFontaine–Mazur予想にも関係)。
Langlandsプログラムの主張は、次のように抽象化できる。
There exists a contravariant, fully faithful functor: Mot_F^(pure) → Rep_auto(G(𝔸_F))
ここで左辺は純モチーフ(次元・重み付き構造を持つ)、右辺は保型表現(解析的表現論の対象)。
Langlands-type realization: F : Mot_F^(pure) → Rep_auto(G(𝔸_F)) such that L(M, s) = L(F(M), s)
この関手は、モチーフに対して定義される標準的なL関数(motivic L-function)と保型L関数を一致させることを要請する。
Langlands関手性は、Tannakian圏の間のテンソル関手として定式化できる。
モチーフ圏 Mot_F は Tannakian category(標準予想を仮定)。保型表現圏も、ある種の Tannakian 圏とみなせる(Langlands dualgroup による)。
すると、Langlands対応は以下の図式として表現される。
Tannakian category: Mot_F → Rep(^L G)via fiber functor: ω: Mot_F → Vec_ℚℓ
このように、モチーフ→L-群の表現→保型表現という圏論的連鎖に帰着される。
ラングランズ・プログラムは以下のようなテンソル圏間の関手的対応を予想するものである。
∃ faithfultensor functor F: Mot_F^(pure) → Rep_auto(G(𝔸_F)) s.t. L(M, s) = L(F(M), s)
また、群準同型 ^L G₁ → ^L G₂ により、対応する圏の間に関手的対応が存在する。
φ_*: Rep_auto(G₁(𝔸_F)) → Rep_auto(G₂(𝔸_F))
おれ、chatGPT使えるようになって真っ先に望月新一のABC予想についての海外数学コミュニティでの受け止めについて聞いてみたんだけど、その時はまあまあちゃんとした内容(通り一遍ではあるが)が返ってきた。いま望月新一について尋ねてみたらこんなのが戻ってきた。
望月新一(もちづきしんいち)は、日本の漫画家であり、推理小説家でもあります。彼は、特に『名探偵コナン』の作者として知られています。
望月新一は、1965年6月4日に青森県青森市で生まれました。彼は若い頃から漫画や小説を書くことに情熱を持っており、高校生の頃から漫画家としてのキャリアをスタートさせました。
1994年に、望月新一は『名探偵コナン』を連載し始めました。この漫画は、高校生探偵の江戸川コナンが、毒を飲まされて小さくなってしまった身体を利用して、事件を解決するストーリーです。この作品は、世界中で大きな成功を収め、アニメ化や映画化など、さまざまなメディアで展開されました。
望月新一は、漫画だけでなく、小説でも才能を発揮しています。『名探偵コナン』の小説版をはじめ、数多くの推理小説を執筆しています。
また、望月新一は、漫画や小説以外にも、音楽にも興味を持っており、自ら作曲した楽曲を使用したアニメーション作品もあります。
いや数学者だろ、とツッコミを入れたら以下。もっともらしいがデタラメ多い、というか、望月拓郎とごた混ぜになっている。
望月新一(あきら・もちづき)は、日本の数学者であり、代数幾何学を専門としています。主に、モチヅキ理論やモチヅキ加群、モチヅキ因子などの研究で知られています。
代数幾何学は、代数学と幾何学の融合であり、代数方程式の幾何学的な対象である代数多様体を研究する数学の分野です。望月新一は、代数多様体の幾何学的性質を研究する際に、代数的手法を用いて新しい理論を発展させました。
具体的には、望月新一は、代数多様体上の「D加群」と呼ばれる特殊な加群を研究し、それを用いて、代数多様体の幾何学的性質を解明しました。また、望月新一は、代数多様体上の「モチヅキ因子」と呼ばれるものを定義し、これを用いて、代数多様体の双有理幾何学に関する新しい理論を構築しました。
どうせほとんどの読者は高校数学さえ理解していないのだから、何を解説したって数学の本質的な理解は無理なのかもしれない
彼らには、以下はどれも同じに見えている
虚二次体の有限次Abel拡大は、1のべき根と、楕円モジュラー函数の特殊値と、虚数乗法を持つ楕円曲線の等分点の座標で生成される。
Xを位数q=p^mの有限体F_q上のn次元非特異射影代数多様体、Y=X×_{F_q}(F_qの代数閉包)とすると、
#X(F_q) = ∑[i=0, 2n](-1)^i Tr(F_q, H^i(Y, Q_l))。
Cをダークマターの作用を持つN次元クリスタル、Xをそのアトラクターとすると、XからCへの次元変換Fは、固有なファクター方程式
F = F_1 ⊕ ... ⊕ F_N
を満たす。
一方は正しい数学の文章である。もしかしたら間違っているかも知れないが、少なくとも数学的に正しいか間違っているかが判定できる。
もう一方は完全に出鱈目な文章である。数学的に何の意味もない支離滅裂なものである。
本稿を通して、kは代数閉体とする。
i: [x: y] → [x^2: xy: y^2]
を考える。iの像は、ℙ^2の閉部分スキーム
Proj(k[X, Y, Z]/(Y^2 - XZ))
と同型であり、iはℙ^1のℙ^2への埋め込みになっている。ℙ^2の可逆層O_{ℙ^2}(1)のiによる引き戻しi^*(O_{ℙ^2}(1))は、ℙ^1の可逆層O_{ℙ^1}(2)である。つまり、O_{ℙ^1}(2)はℙ^1のℙ^2への埋め込みを定める。
与えられたスキームが射影空間に埋め込めるかどうかは、代数幾何学において重要な問題である。以下、可逆層と射影空間への射の関係について述べる。
定義:
Xをスキームとし、FをO_X加群の層とする。Fが大域切断で生成されるとは、{s_i∈H^0(X, F)}_{i∈I}が存在して、任意の点x∈Xに対して、ストークF_xがO_{X,x}加群としてs_{i,x}で生成されることである。
Xをk上のスキーム、LをX上の可逆層で大域切断で生成されるものとする。d + 1 = dim(H^0(X, L))とし、s_0, ..., s_dをH^0(X, L)の生成元とする。このとき、Xからk上の射影空間ℙ^dへの射fが
f: x → [s_0(x): ...: s_d(x)]
により定まり、ℙ^dの可逆層O_{ℙ^d}(1)のfによる引き戻しf^*(O_{ℙ^d}(1))はLになっている。この射が埋め込みになるとき、Lをベリーアンプルという。生成元の取り方に寄らない定義を述べると、以下のようになる。
定義:
Xをk上のスキーム、LをX上の可逆層とする。Lがベリーアンプルであるとは、k上の射影空間ℙ^dと埋め込みi: X → ℙ^dが存在して、L~i^*(O_{ℙ^d}(1))となることである。
例として、ℂ上の楕円曲線(種数1の非特異射影曲線)Eを考える。閉点p∈Eと自然数n≧1に対して、因子pに付随する可逆層O_{E}(np)={f∈K(E)|np + (f)≧0}を考える。Riemann-Rochの定理より、
dim(O_{E}(np)) - dim(O_{E}(K -np)) = deg(np) + 1 - g = n
∴ dim(O_{E}(np)) = n + dim(O_{E}(K -np))
であり、楕円曲線上の正則微分形式は零点も極も持たないから、すべてのnに対してdeg(K -np)<0であり、よってdim(O_{E}(K -np))=0。
∴ dim(O_{E}(np)) = n
n = 1の場合、O_{E}(p)はベリーアンプルではない。n = 2の場合も、よく知られたように楕円曲線は射影直線には埋め込めないから、O_{E}(2p)もベリーアンプルではない。n≧3のとき、実はO_{E}(np)はベリーアンプルになる。
この例のように、Lはベリーアンプルではないが、自身との積を取って大域切断を増やしてやるとベリーアンプルになることがある。その場合、次元の高い射影空間に埋め込める。
定義:
Xをk上のスキーム、LをX上の可逆層とする。十分大きなnに対して、L^⊗nがベリーアンプルとなるとき、Lをアンプルであるという。
与えられた可逆層がアンプルであるか判定するのは、一般的に難しい問題である。アンプルかどうかの判定法としては、Cartan-Serre-Grothendieckによるコホモロジーを用いるものと、Nakai-Moishezonによる交点数を用いるものが有名である。
定理(Cartan-Serre-Grothendieck):
XをNoether環上固有なスキーム、LをX上の可逆層とする。Lがアンプルであるためには、X上の任意の連接層Fに対して、自然数n(F)が存在して、
i≧1、n≧n(F)ならば、H^i(X, F⊗L^⊗n) = 0
定理(Nakai-Moishezon):
Xをk上固有なスキーム、DをX上のCartier因子とする。可逆層O_{X}(D)がアンプルであるためには、Xの任意の1次元以上の既約部分多様体Yに対して、
D^dim(Y).Y>0
kを体とし、Xをk上の代数多様体とする。Xに対して、環E(X)が以下のように定まる。E(X)は
E(X) = E_0⊕E_1⊕E_2⊕...
と分解し、各E_dはXのd次元部分多様体のホモトピー同値類からなるk上のベクトル空間であり、d次元部分多様体Yとe次元部分多様体Zに対して、[Y]∈E_d, [Z]∈E_eの積は、代数多様体の積の同値類[Y×Z]∈E_{d+e}である。この積は代表元Y, Zの取り方によらず定まる。各E_dの元のことを、d次元のサイクルと呼ぶ。
このE(X)をXのEuclid環という。Euclid環の名称は、Euclidによる最大公約数を求めるアルゴリズムに由来する。すなわち、任意のサイクル[Y], [Z]∈E(X) ([Z]≠0)に対して、あるサイクル[Q], [R]∈E(X)が一意的に存在して、
・[Y] = [Q×Z] + [R]
・dim(R)<dim(Z)
が成り立つためである。ここで、[R] = 0となるとき、[Z]は[Y]の因子であるという。
dim(X) = nとする。d≧n+1を含むE_dを上述の積の定義により定める。すなわち、任意のサイクルz∈E_dは、Xのd次元部分多様体Zが存在してz = [Z]となっているか、d = e + fをみたすe, fと、[E]∈E_e、[F]∈E_fが存在して、z = [E×F]となっている。後者のように低次元のサイクルの積として得られないサイクルを、単純サイクルまたは新サイクルという。
このとき、k上の代数多様体X_∞で、任意の[Z]∈E(X)に対して、[X_∞×Z] = [X_∞]、[X_∞∩Z] = [Z]∈E(X)となるものが存在する。このX_∞をXの普遍代数多様体と呼び、E~(X) = E((X))⊕k[X_∞]をE(X)の完備化または完備Euclid環という(ただし、E((X)) = {Σ[d=0,∞]z_d| z_d∈E_d})。完備Euclid環の著しい性質は、Fourier級数展開ができることである。
定理:
各dに対して、単純サイクルからなる基底{b_{d, 1}, ..., b_{d, n(d)}}⊂E_dが存在して、任意のf∈E~(X)は
f = Σ[d=0,∞]Σ[k=1,n(d)]a_{d, k}b_{d, k}
と表される。ただし、a_{d, k}はHilbert-Poincaré内積(f = [Z], b_{d, k})=∫_{b}ω^d_{X_∞}∧[Z]で与えられるkの元である。
Xとしてk上の代数群、つまり代数多様体であり群でもあるものを考える。このとき、Xの群法則はX×XからXへの有理写像になるから、完備Euclid環上の線形作用素を誘導する。この作用素に関しては、次の定理が重要である。
定理(Hilbert):
Xがコンパクトな代数群であれば、完備Euclid環に誘導された線形作用素は有界作用素である。
以下の定理は、スペクトル分解により単純サイクルによる基底が得られることを主要している。
定理(Hilbert):