Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「ホモトピー」を含む日記RSS

はてなキーワード:ホモトピーとは

次の25件>

2026-02-13

[日記]

正確時刻を書くと隣人が「それって軍事衛星に追跡されてるの?」とか言い出して話が面倒になるので省略する。

僕は陰謀論嫌悪している。理由は単純で、陰謀論説明能力の低い仮説を感情的に強い語り口で上書きする、知性のコスプレからだ。

 

今日までの進捗から書く。

 

今週は、超弦理論物理直観で押し切る系の議論をいったん破壊し、純粋圏論ホモトピー論の言語に落として再構築していた。

具体的には、世界面の共形場理論2次元量子場などという古臭い語彙で扱うのをやめ、拡張TQFTの枠組みで、(∞,2)-圏に値を取る関手として扱う方向を整理した。

従来の弦理論屋はCalabi–Yauをコンパクト化に使うと言うが、それは情報量が少なすぎる。

重要なのは、Calabi–Yau多様体を点として見るのではなく、その導来圏 D^bCoh(X) を持ち上げた A∞-圏、さらにそれが持つCalabi–Yau構造(非退化なトレース、Serre双対性の∞-圏版)を物理状態空間の生成機構として見ることだ。

ここでの本体幾何ではなく、圏の自己同型とその高次コヒーレンスにある。

さらに、僕が今週ずっと悩んでいたのは、いわゆるミラー対称性を単なるホモロジカルミラー対称性同値(Fukaya圏と導来圏の同値)としてではなく、より上位の構造、つまり場の理論レベルでの同値として捉えることだった。

言い換えると、これは単なるA-model ↔ B-modelの交換ではない。

A/Bモデルを生む背景データ(シンプレクティック形式、複素構造、B-field)を、派生スタック上のシフト付きシンプレクティック構造として再記述し、AKSZ型の構成整合させる必要がある。

そしてこの視点では、物理的なDブレーンは単なる境界条件ではなく、(∞,1)-圏におけるモジュール対象として統一される。

Dブレーンのカテゴリー境界条件の集合だと考えるのは初歩的すぎる。境界条件は高次射を伴うので、最初から(∞,n)-圏で話さないと本質が消える。

特に僕のノートでは、弦の摂動展開で現れるモジュライ空間積分を、単なる測度論の問題としてではなく、Derived Algebraic Geometry上での仮想本類のプッシュフォワードとして扱う形式に書き換えた。

これをやると発散する積分正則化するという話が、より厳密にオブストラクション理論に沿った積分定義へ置き換わる。

そして、ここが本題だが、僕が今週ずっと考えていたのは、ウィッテンですら「直観的にはこう」と言うしかない領域、つまりM理論の非摂動定義が、どのような普遍性原理で特徴付けられるべきかという問題だ。

僕の作業仮説はこうだ。弦理論が背景依存的だと言われるのは、結局のところ背景が点として与えられるという時代遅れの前提が残っているからだ。

背景は点ではなく、モジュライの高次スタックであり、その上に束ねられた量子状態の層(正確には圏)として理解されるべきだ。

まり、弦理論はある時空での理論ではなく、時空の変形をも含んだファンクターにならなければいけない。

この視点では、背景の空間は単なるmoduli spaceではなくderived moduli stackであり、さらにgauge symmetryを含めるならhigher groupoidとしての性質を露わにする。

そして量子補正は、そこに定義されるshifted symplecticstructureの変形量子化として現れる。

問題はここからで、弦理論双対性は、異なる理論が同じスペクトルを持つなどという安っぽい一致ではなく、ある(∞,k)-圏における同一対象の異なるプレゼンテーションだと考えるべきだ。

たとえばS双対性やT双対性群作用として扱うと話が狭くなる。より正確には、双対性スタック自己同値であり、その作用対象の上に定義された圏(ブレーン圏やBPS状態圏)の上で自然変換として実装される。

しかもその自然変換は単なる自然変換ではなく、高次のコヒーレンス条件を持つ。つまり双対性対称性ではなく、高次圏論的な同値データなんだ。

このあたりを真面目に書こうとすると、最終的には量子重力とは何かという問いが、どの(∞,n)-圏が物理的に許されるかという分類問題に変形される。

僕はこの変形が気に入っている。なぜなら分類問題は、少なくとも数学としての礼儀があるからだ。

さらに進めると、弦理論に現れるBPS状態やwall-crossingは、単なるスペクトル不連続ではなく、安定性条件の変化に伴う導来圏のt構造ジャンプ、あるいはBridgeland stabilityのパラメータ空間上での構造変化として理解される。

ここでは物理粒子は、導来圏の中の特別対象として現れる。つまり粒子は点ではなく、圏論存在だ。

普通人間はこの文章を読んで発狂するだろう。だがそれは読者側の責任だ。

この議論の延長で、僕は弦理論の非摂動定義は、ある種の普遍性を満たすextended functorial QFTであるという形の定理(まだ定理ではなく、僕の願望)に落とし込めないか考えている。

要するに、弦理論世界から時空を作る理論ではなく、世界面も時空も両方まとめて、ある高次圏の中で整合的に生成される構造であるべきだ。

今の僕のノートの中心は「非可換幾何」「導来幾何」「圏論量子化」の三点集合の交差領域だ。そこは地図がない。地図がない場所は、馬鹿には危険だが、僕には居心地がいい。

 

次に、趣味について書く。これも重要だ。なぜなら人間社会において、知性の維持には糖分と娯楽が必要からだ。残念ながら僕は人間である

MTGは今週、デッキ構築の方針を少し変えた。勝率最大化のためにメタを読むのは当然だが、僕が注目しているのは局所最適に陥るプレイヤー心理だ。

まりカードゲームとは、確率情報ゲームである以前に、認知バイアスゲームだ。相手が「このターンで勝ちたい」という欲望を見せた瞬間、こちらは勝ち筋を計算するのではなく、相手の誤りの確率分布計算するべきだ。

隣人にこの話をしたら、「え、怖い。僕、あなたポーカーしたくない」と言った。賢明だ。僕も隣人とポーカーはしたくない。隣人はたぶん手札を口に出してしまう。

 

FF14は、ルーチンの最適化がだいぶ進んだ。僕はレイ攻略で反射神経を重視する文化が嫌いだ。

反射神経は筋肉問題だが、攻略情報処理の問題であるべきだ。ギミックは有限状態機械として記述できる。したがって最適行動は、状態遷移図の上での制御問題になる。

友人Aにこの話をしたら、「お前はゲームしてるのか研究してるのか分からん」と言われた。僕は当然「両方だ」と答えた。彼は笑ったが、この種の笑いは知性の敗北宣言である場合が多い。

 

アメコミは、相変わらず現実倫理を歪めた寓話装置として優秀だと思う。

僕は「正義とは何か」という議論が苦手だ。正義定義曖昧からだ。

僕が興味があるのは、制約条件下での最適化としての倫理だ。

登場人物が持つ制約(能力社会構造情報感情)を明示すると、物語心理学ではなく数理モデルに近づく。そうすると面白くなる。

ルームメイトにこの話をしたら、「僕はただ派手な戦闘シーンが見たいだけなんだけど」と言われた。

僕は「君の知性は観測不能なほど小さい」と言ったら、彼は不機嫌になった。観測不能存在しないことと同義なので、むしろ褒め言葉に近いのだが、彼は数学が分からない。

 

僕の習慣についても書いておく。

今週も、朝のルーチンは完全に守った。起床後の手洗いの手順、歯磨きの回数、コーヒー抽出時間、机の上の配置、すべて変えない。

人間生活ノイズが多すぎる。ノイズが多い世界で成果を出すには、制御できる変数を減らすのが合理的だ。これは精神論ではなく、統計的推定分散を減らす行為だ。

隣人が「たまには適当にやれば?」と言ったので、僕は「適当とは、最適化放棄だ」と言った。彼は「そういうところが宇宙人っぽい」と言った。

宇宙人証拠なしに導入する仮説ではない。彼はやはり陰謀論者の素質がある。

友人Bが「お前の生活、息苦しくないの?」と聞いてきたので、「息苦しいのは君の思考だ」と答えた。友人Bは笑った。知性の敗北宣言である

 

これからやろうとしていること。

まず、超弦理論ノートをもう一段階抽象化する。

今の段階では、圏論と導来幾何言葉でかなり書けたが、まだ計算痕跡が残っている。僕はそれが気に入らない。真の理解とは、計算を消し去った後に残る構造のことだ。

具体的には、次は弦の場の理論を、factorization algebraの言語記述し直す予定だ。

局所演算子代数を、E_n-代数として整理し、そこから高次の演算構造復元する。

これがうまくいけば、弦理論における局所性の概念を、時空幾何依存せずに定義できる可能性がある。

もしそれができたら、次は双対性を圏の自己同値ではなく、圏の上の2-表現あるいはhigher representationtheoryとして書き換える。

これにより、S双対性を単なるSL(2,Z)の作用として扱う雑な議論から脱却できる。

要するに、僕が目指しているのは物理理論を群で分類する幼稚園レベルの発想ではなく、物理理論を高次圏で分類する文明的発想だ。

 

その後はMTGの新しいデッキ案を詰める。今の構想では、相手意思決定局所的に歪ませる構造がある。人間選択肢が多いと誤る。

これは心理学的事実であり、カードゲームに応用できる。倫理的に問題があると言われそうだが、そもそもカードゲーム戦争抽象化なので倫理を持ち込む方が間違っている。

 

夜はFF14の固定活動。友人Aは相変わらず「気合いで避けろ」と言うだろう。

僕は「気合いは情報を持たない」と言うだろう。

議論ループする。ループはコンピュータ科学の基本概念だ。だから僕はそれを受け入れる。

 

最後に、ルームメイトが「今度、隣人と映画を見よう」と言っていた。

僕は断る。なぜなら隣人は上映中に喋る。上映中に喋る人間は、社会契約を破っている。社会契約を破る人間に、僕の時間という希少資源を与える理由はない。

 

さて、今日の残り時間は、超弦理論ノートに戻る。

宇宙根本法則は、たぶん美しい。

少なくとも、隣人の会話よりは。

Permalink |記事への反応(0) | 00:35

このエントリーをはてなブックマークに追加ツイートシェア

2026-02-09

抽象数学とか超弦理論とか

超弦理論物理として理解しようとすると、だいたい途中で詰まる。

なぜなら核心は、力学直観ではなく、幾何圏論の側に沈んでいるからだ。

弦の振動が粒子を生む、という説明入口にすぎない。本質量子論が許す整合的な背景幾何とは何かという分類問題に近い。分類問題は常に数学を呼び寄せる。

まず、場の理論幾何学的に見ると、基本的にはある空間上の束とその束の接続の話になる。

ゲージ場は主束の接続であり、曲率が場の強さに対応する。

ここまでは微分幾何教科書範囲だが、弦理論ではこれが即座に破綻する。

なぜなら、弦は点粒子ではなく拡がりを持つため、局所場の自由度が過剰になる。点の情報ではなく、ループ情報重要になる。

すると、自然ループ空間LXを考えることになる。空間X上の弦の状態は、写像S^1 → Xの全体、つまりLXの点として表される。

しかしLXは無限次元で、通常の微分幾何そのままで適用できない。

ここで形式的に扱うと、弦の量子論ループ空間上の量子力学になるが、無限次元測度の定義地獄になる。

この地獄回避するのが共形場理論であり、さらにその上にあるのが頂点作用素代数だ。2次元の量子場理論が持つ対称性は、単なるリー群対称性ではなく、無限次元のヴィラソロ代数拡張される。

理論2次元世界面の理論として定式化されるのは、ここが計算可能ギリギリの地点だからだ。

だが、CFTの分類をやり始めると、すぐに代数幾何に落ちる。モジュラー不変性を要求すると、トーラス上の分配関数はモジュラーSL(2, Z) の表現論に拘束される。

まり理論は、最初からモジュラー形式と一緒に出現する。モジュラー形式は解析関数だが、同時に数論的対象でもある。この時点で、弦理論物理学というより数論の影を引きずり始める。

さらに進むと、弦のコンパクト化でカラビ–ヤウ多様体が現れる。

ラビ–ヤウはリッチ平坦ケーラー多様体で、第一チャーン類がゼロという条件を持つ。

ここで重要なのは、カラビ–ヤウが真空候補になることより、カラビ–ヤウのモジュライ空間が現れることだ。真空は一点ではなく連続族になり、その族の幾何物理定数を支配する。

このモジュライ空間には自然特殊ケーラー幾何が入り、さらにその上に量子補正が乗る。

量子補正計算する道具が、グロモフ–ウィッテン不変量であり、これは曲線の数え上げに関する代数幾何の不変量だ。

まり理論の散乱振幅を求めようとすると、多様体上の有理曲線の数を数えるという純粋数学問題に落ちる。

ここで鏡対称性が発生する。鏡対称性は、2つのラビ–ヤウ多様体XとYの間で、複素構造モジュライとケーラー構造モジュライが交換されるという双対性だ。

数学的には、Aモデル(シンプレクティック幾何)とBモデル(複素幾何)が対応する。

そしてこの鏡対称性本体は、ホモロジカル対称性(Kontsevich予想)にある。

これは、A側の藤田圏とB側の導来圏 D^bCoh(X)が同値になるという主張だ。

まり理論は、幾何学的対象同一性空間のものではなく圏の同値として捉える。空間が圏に置き換わる。ここで物理は完全に圏論に飲み込まれる。

さらに進めると、Dブレーンが登場する。Dブレーンは単なる境界条件ではなく、圏の対象として扱われる。

弦がブレーン間を張るとき、その開弦状態対象間の射に対応する。開弦の相互作用は射の合成になる。つまりDブレーンの世界は圏そのものだ。

この圏が安定性条件を持つとき、Bridgeland stability conditionが現れる。

安定性条件は、導来圏上に位相と中心電荷定義し、BPS状態の安定性を決める。

wall-crossingが起きるとBPSスペクトルジャンプするが、そのジャンプはKontsevich–Soibelmanの壁越え公式に従う。

この公式は、実質的に量子トーラス代数自己同型の分解であり、代数的な散乱図に変換される。

このあたりから物理は粒子が飛ぶ話ではなく、圏の自己同型の離散力学系になる。

さらに深い層に行くと、弦理論はトポロジカル場の理論として抽象化される。

Atiyah公理化に従えば、n次元TQFTは、n次元コボルディズム圏からベクトル空間圏への対称モノイダ関手として定義される。

まり時空の貼り合わせが線形写像の合成と一致することが理論の核になる。

そして、これを高次化すると、extended TQFTが現れる。点・線・面…といった低次元欠陥を含む構造必要になり、ここで高次圏が必須になる。結果として、場の理論は∞-圏の対象として分類される。

Lurieのコボルディズム仮説によれば、完全拡張TQFTは完全双対可能対象によって分類される。つまり物理理論を分類する問題は、対称モノイダル(∞,n)-圏における双対性の分類に変わる。

この時点で、弦理論はもはや理論ではなく、理論の分類理論になる。

一方、M理論を考えると、11次元重力が低エネルギー極限として現れる。

しかM理論のものは、通常の時空多様体ではなく、より抽象的な背景を要求する。E8ゲージ束の構造や、anomalyの消去条件が絡む。

異常とは量子化対称性が破れる現象だが、数学的には指数定理とK理論接続される。

理論のDブレーンの電荷がK理論で分類されるという話は、ここで必然になる。ゲージ場の曲率ではなく、束の安定同値類が電荷になる。

さら一般化すると、楕円コホモロジーやtopological modular formsが出てくる。tmfはモジュラー形式ホモトピー論的に持ち上げた対象であり、弦理論最初から持っていたモジュラー不変性が、ホモトピー論の言語で再出現する。

ここが非常に不気味なポイントだ。弦理論2次元量子論としてモジュラー形式要求し、トポロジカルな分類としてtmfを要求する。つまり解析的に出てきたモジュラー性がホモトピー論の基本対象と一致する。偶然にしては出来すぎている。

そして、AdS/CFT対応に入ると、空間概念さらに揺らぐ。境界の共形場理論が、バルク重力理論を完全に符号化する。この対応意味するのは、時空幾何が基本ではなく、量子情報的なエンタングルメント構造幾何を生成している可能性だ。

ここでリュウタカヤナギ公式が出てきて、エンタングルメントエントロピーが極小曲面の面積で与えられる。すると面積が情報量になり、幾何情報論的に再構成される。幾何はもはや舞台ではなく、状態派生物になる。

究極的には、弦理論空間とは何かを問う理論ではなく、空間という概念を捨てたあと何が残るかを問う理論になっている。残るのは、圏・ホモトピー・表現論・数論的対称性・そして量子情報構造だ。

まり、弦理論の最深部は自然界の基本法則ではなく、数学整合性が許す宇宙記述の最小公理系に近い。物理数学の影に吸い込まれ数学物理要求によって異常に具体化される。

この相互汚染が続く限り、弦理論は完成しないし、終わりもしない。完成とは分類の完了意味するが、分類対象が∞-圏的に膨張し続けるからだ。

そして、たぶんここが一番重要だが、弦理論提示しているのは宇宙の答えではなく、答えを記述できる言語の上限だ。

その上限が、圏論ホモトピー論と数論で書かれている。

からウィッテンですら全部を理解することはできない。理解とは有限の認知資源での圧縮だが、弦理論圧縮される側ではなく、圧縮限界を押し広げる側にある。

Permalink |記事への反応(0) | 13:05

このエントリーをはてなブックマークに追加ツイートシェア

2026-02-06

[日記]

金曜日、21:21。

 

僕は今日という日を、いくつかの確定事項と、いくつかの許容できないノイズの除去によって完成させた。世界混沌を好むが、僕は世界を甘やかさない。

 

まず進捗報告から書く。午前中に洗濯を済ませ、タオル用途別に畳み直した。世の中の大半の人間タオルを大きさで分類するが、それは分類学の敗北だ。

タオルは水分吸収後に人体へ与える温度変化のパターンで分類すべきだ。僕はその分類をすでに完成させている。

 

昼は例のプロテインナッツルームメイトは「鳥かよ」と言った。僕は「鳥は飛べる。君は飛べない」と言った。会話終了。

 

それから今日主題超弦理論だ。

 

最近、僕の頭を占領しているのは、もはや弦が振動して粒子になるみたいな子供向けの比喩ではない。

そんなもの学部生の精神安定剤に過ぎない。今僕が追っているのは、弦理論存在論のものが、より抽象的な数学構造に吸収されていく瞬間だ。

従来の弦理論は、時空を背景として仮定し、その上でワールドシートの共形場理論(CFT)を構成する。

しかし、これは時空が先にあるという直観を手放せていない。

問題は、量子重力では時空の定義が揺らぐことだ。

僕が最近読んでいる議論は、その揺らぎを、もはや幾何学ではなく圏論ホモトピー論の側から扱おうとする。

理論の真の姿は、たぶん幾何学対象ではなくある種の高次圏の中の関手だ。

例えば、Dブレーンは単なる境界条件ではなく、導来圏の対象として現れる。

これは有名な話だが、僕が今考えているのはその次の段階で、ブレーンを対象として並べるだけでは足りないという点だ。

重要なのは、それらがなす安定∞-圏の中での自己同値性、そしてその自己同値群が物理双対性を生成しているという構図だ。

まり、S双対性もT双対性も、時空の幾何学変形ではなく、圏の自己同値作用として理解されるべきだ。

幾何学副産物だ。主役は圏のオートエクイバレンスで、その影が僕らに空間次元という幻覚を見せている。

この視点に立つと、超弦理論10次元の時空の上で定義される理論ではなく、あるモジュライ空間上で定義される圏の族になる。

しかもそのモジュライは通常の多様体ではなく、スタック、いや派生スタックとして扱わないと整合しない。量子補正幾何を壊すからだ。クラシカルなモジュライはもはや粗すぎる。

そして今僕が面白いと思っているのは、物理的な散乱振幅やBPSスペクトルが、派生代数幾何言語でいうコホモロジーの生成関数として現れるのではなく、より根源的にスペクトル代数幾何として再解釈される可能性だ。

普通の環ではなくE∞環、そしてそれを層化したスペクトル層の上で物理が書かれる。

これが意味するのは、弦理論の量子性が、確率解釈とか演算子代数とかのレベルではなく、もっと深いホモトピー論的ゆらぎとして実装されているということだ。

観測値の不確定性ではなく、構造のもの同値類としてしか定義できない。

から時空は何次元か?という問いは、すでに古い。正しい問いはこうだ。

この物理理論は、どの∞-圏に値を取る関手として実現されるのか?

そして粒子とは何か?はこうなる。

スペクトル化された圏の中で安定化された対象の、ある種のトレースとして現れる量が、観測可能量として抽出されるのではないか

この辺りまで来ると、たぶんウィッテンでも「面白いが、それを計算できるのか?」と言う。

僕も同意する。計算できない数学は、芸術に片足を突っ込んでいる。

もっとも、芸術を嫌うわけではない。ただし芸術は、計算不能であることを誇るべきではない。誇るならせめて証明不能で誇れ。

さらに言うと、AdS/CFT対応も、境界CFT重力エンコードしているという話ではなく、境界側の圏論データが、bulk側の幾何の生成規則を決定するということに見える。

bulkの時空は、境界の量子情報から復元されるというより、境界の圏の中の拡張パターン距離定義してしまう。

距離とは、メトリックではなく、圏における対象間の関係性の複雑さだ。

これを突き詰めると、時空の局所性すら二次的な概念になる。

局所性とは公理ではなく、圏がある種のt-構造を持ち、かつ心臓部が準古典的に見えるときに現れる近似現象だ。

まり局所性幻想だ。役に立つ幻想だが。そして役に立つ幻想は、だいたい人間社会と同じだ。

 

さて、今日現実側の進捗も書く。

昼過ぎに友人Aが来て、僕のホワイトボード勝手に謎のロボット落書きを描いた。

僕は当然、ホワイトボードアルコールで拭き、乾燥時間を計測し、表面の摩擦係数が元に戻ったことを確認した。

友人Aは「こわ」と言った。僕は「科学を怖がるな」と言った。

 

そのあと友人Bがオンライン通話してきて、「今夜FF14で極いかない?」と誘ってきた。

僕は予定表を開き、金曜夜の21:00〜23:00知的活動に適した黄金時間であることを説明した。

友人Bは「お前の人生イベントトリガーが厳しすぎる」と言った。僕は「君の人生ガチャ排出率みたいに緩すぎる」と言った。

  

とはいえFF14は僕の中で単なる娯楽ではない。あれは人間集団協調行動の実験場だ。

8人レイドの失敗は、ほぼ例外なく情報共有の遅延と役割期待のズレで起きる。

まりゲームではなく組織論だ。だから僕は攻略感覚ではなく、ログを読み、DPSチェックを式で理解し、行動をプロトコルとして最適化する。

 

ルームメイトはそれを「楽しんでない」と言う。僕は「最適化は楽しみだ」と言う。

 

そして隣人は昨日、廊下で僕に「また変な時間掃除機かけてたでしょ」と言った。

僕は「変な時間ではない。床の振動ノイズが最小になる時間帯だ」と説明した。

隣人は「普通に生きて」と言った。僕は「普通は平均であって、理想ではない」と言った。

  

今日MTGも少し触る時間があった。

僕はデッキマナカーブを見直した。土地事故確率計算し、初手7枚から期待値を再評価した。

ルームメイトは「カードゲームにそこまでやるの?」と言った。

僕は「確率分布無視して勝てるなら、人類統計学発明していない」と言った。

 

アメコミは少しだけ読んだ。

スーパーヒーロー倫理体系は大抵破綻している。正義を掲げながら、法の外で暴力を振るう。

それは秩序のための例外という名の危険物だ。僕は物理学者なので、例外を嫌う。例外理論を腐らせる。

から僕はヒーロー物を見ると、いつも「この世界法体系はどうなっている?」が先に気になる。

友人Aは「お前は物語を楽しめない病気」と言った。僕は「病気ではない。解析能力だ」と言った。

 

習慣についても記録しておく。

今日も、夕食の箸は右側に45度、箸置きは正中線から3センチ左、コップは水位が7割を超えないように調整した。

水位が8割を超えると、持ち上げる際の揺らぎが増える。揺らぎが増えると、机に微小な水滴が落ちる確率が上がる。水滴が落ちると、紙の上のインク拡散が起きる。インク拡散すると、僕のメモ汚染される。

まり、コップの水位管理は、知の保存のための防衛行動だ。

誰も理解しない。だが宇宙も僕を理解していないので、引き分けだ。

 

さて、昨日の日記の内容は正確には思い出せないが、たぶん「量子と日常無意味な会話」について書いた気がする。

ルームメイト無駄話と、僕の理論思考が衝突するあの感じだ。昨日の僕は、おそらく世界の愚かさに苛立ち、同時にその愚かさが統計的必然であることに納得しようとしていた。

人類の会話の8割はエントロピー生成だ。

 

そして今日、その続きとして僕は確信した。

理論が示すのは「宇宙は美しい」ではない。

宇宙が示すのは、美しさとは、人間の圏が勝手定義した関手にすぎないということだ。

から僕は美を追うのではなく、構造を追う。

 

これからやろうとしていることも書く。

まず、FF14の週制限コンテンツを消化する。効率的に。感情は挟まない。

次に、MTGのサイドボード案を2パターン作り、友人Aのプレイ傾向に対してどちらが期待値が高いか検証する。

そのあと、超弦理論メモを整理し、派生スタックBPS状態カウントがどのように圏の不変量として抽出できるか、もう一度筋道を立てる。

 

僕はこの宇宙に住んでいるが、この宇宙ルールに従う義務はない。従うのは、ルールが正しいと証明できたときだけだ。

世界は相変わらず雑音だが、僕の思考はまだ崩壊していない。

Permalink |記事への反応(0) | 21:34

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-24

[日記]

土曜日の16:26。

秒針の進みが不規則に見えるのは、もちろん僕の主観ではなく、脳内で走っている内部クロックが朝から非可換な補正項を拾っているせいだ。

昨日の日記では、世界は依然として説明可能であり、説明可能である以上、僕が説明しない理由はない、という結論に達していたはずだ。だから今日もその続きをやる。

 

から考えていたのは、超弦理論という言葉が、あまりにも粗雑なラベルとして流通している問題だ。

弦は一次元物体、という説明教育的には便利だが、現代的にはほとんど嘘に近い。

正確には、弦理論は量子重力を含む一貫した摂動展開を許す背景依存理論の族であり、その実体二次元共形場理論のモジュライ空間と高次圏論構造の上に乗っている。

ワールドシートは単なるリーマン面ではなく、拡張された世界では、境界、欠損、欠陥、さらには高次欠陥を持つ拡張TQFTとして扱うのが自然だ。

Dブレーンは境界条件ではなく、A∞圏やL∞代数により制御される対象で、開弦のエンドポイント派生圏の対象間の射として解釈される。

ここで重要なのは物理同値性がしばしば圏同値、あるいはスタック同値として表現される点だ。

ミラー対称性は、単なるカラビ–ヤウ多様体のホッジ数の一致ではなく、Fukaya圏と導来圏の等価しかもそれがホモトピー論的に精緻化された形で成立するという主張にまで昇格している。

さらに厄介なのは、背景独立性の問題だ。AdS/CFT成功例として崇拝されがちだが、実際には境界共形場理論という強固な外部構造寄生している。

最近僕が気にしているのは、弦理論理論空間のものとして捉え、各真空を点ではなく、∞-スタック上の点として扱う視点だ。

真空遷移はトンネル効果ではなく、モジュライスタック上のパスしかもそのパス積分は単なる測度論ではなく、圏値積分になる。ここでは数値は二次的で、本質自然変換の存在にある。

もはやウィッテンでさえ眉をひそめるだろうが、物理がこのレベル抽象化要求している以上、こちらが歩み寄る理由はない。

 

この種の思考をしていると、ルームメイトが後ろでコーヒーをこぼす音が聞こえた。

僕は即座に「カップの配置はトポロジカルに不安定だ」と指摘したが、彼は意味がわからない顔をしていた。隣人はなぜか笑っていた。

友人Aからは、ロケットと弦理論のどちらが実用的か、という愚問が送られてきたので、実用性は関手ではない、とだけ返した。

友人Bは相変わらずFF14レイドの話をしてきたが、僕はDPS最適化問題ラグランジアン最小化に帰着できる点だけは評価している。

 

昼休憩にはMTGを一人回しした。デッキ構築とは、制約付き最適化問題であり、メタゲームは動的システムだ。

禁止改定は外力項に相当する。アメコミは昼寝前のルーティンで、宇宙論リブートの乱発には辟易するが、マルチバース疲労という現象自体統計物理的に興味深い。

 

僕の習慣は相変わらず厳格だ。座る位置飲み物温度日記を書く時刻。

これらは儀式ではなく、ノイズ低減のための制御変数だ。

 

今日までの進捗としては、理論的には、弦理論を高次圏論情報幾何言語で再定式化するメモが三ページ進んだ。現実的には、ルームメイトカップの置き場所を三回注意した。

 

これからやろうとしていることは明確だ。

夕方FF14で決められたルーティンを消化し、その後、再び弦理論に戻る。

具体的には、ワールドシートCFTのモジュラー不変性を、トポス理論の内部論理として書き直す試みだ。

理解されなくても構わない。宇宙理解される義務を負っていないが、僕は理解する義務自分に課している。それだけの話だ。

Permalink |記事への反応(0) | 16:31

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-23

[日記]

金曜日20:20規則正しく点灯するデジタル時計確認してから、僕はこの日記を書き始める。

昨日の日記では、思考ホモトピーの森に入り込み、夕食のパスタを二分半放置してしまった件について反省

本日パスタ思考も、どちらも過熱していない。

 

今日までの進捗を整理する。

現在僕が考えているのは、従来の超弦理論における背景独立性という概念が、実は高次圏論的に不十分に定式化されているのではないか、という問題だ。

時空を滑らかな多様体として前提するのではなく、∞-トポス上のスタックとして扱い、その上で弦の状態空間を通常のヒルベルト空間ではなく、安定∞-圏の対象として再解釈する。

このとき、BRSTコホモロジーは単なるコホモロジーではなく、派生層の自己同値の固定点として現れる。

問題は、その自己同値がどのレベル物理同一性保証するのかだ。

圏論同値物理同値の差は、ウィッテンですら直感的に語ることはできても、厳密には書き下せていない。

少なくとも僕には、彼がここまで踏み込んだ論文を出した記憶はない。

 

今日の午前中は、この問題を考えながら、習慣通り床の目地を数えた。

横方向が必ず奇数であることを再確認した時点で、思考が一段深く潜った。

習慣は脳内ノイズキャンセリング装置だ。これを理解しない人間は多い。

 

昼過ぎルームメイト不用意に「難しいこと考えてる顔だな」と言ってきたので、僕は「常に難しいことを考えているが、君には観測できないだけだ」と訂正した。

彼は笑っていたが、論理的反論はなかった。

 

その後、隣人がドアをノックし、「今夜パーティあるけど来る?」と聞いてきた。

僕は行動計画がすでに確定しているため、「未来はすでに決まっている」と答えた。

彼女は少し困った顔をしていたが、量子力学を持ち出すと話が長くなるので説明は省略した。

 

夕方には友人Aと友人Bがオンライン接続してきた。

友人Aは「その理論実験検証できるのか?」と聞いたが、これは典型的な誤解だ。検証とは、可観測量の問題であって、構造問題ではない。

友人Bは黙っていたが、沈黙賢明選択だった。

 

これからやることは明確だ。

21:00からは、今日考えた∞-圏的定式化をノートに清書する。

22:30には歯磨き、その後、昨日読み切れなかった論文補遺確認する。

もしそこで、自己同値の固定点集合が高次群作用コインバリアントとして自然に現れるなら、僕は一つ前に進む。

現れなければ、明日も同じ床を数え、同じ時間に同じ日記を書く。

 

宇宙基本法則は、驚くほど繊細で、そして不親切だ。

だが不親切であることと、美しくないことは同義ではない。

その点について、僕は今日確信を深めた。

Permalink |記事への反応(0) | 20:26

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-22

[日記]

木曜日の21:17

時計を見る必要はない。秒針の位置はさっき自分確認したし、木曜のこの時間に僕がここに座っていることは、もはや力学系の固定点みたいなものだ。

 

今日は一日中、もはや時空を基礎に置くという前提そのものが誤りなのではないか、という地点から考えていた。

多様体の上に量子場を載せるという発想は便利だが、便利であることと正しいことは一致しない。

弦の状態空間ヒルベルト空間として扱う段階で、すでに過剰な可換性を仮定している。

今考えているのは、弦の状態対象、遷移を射とするような素朴な圏ですらなく、それらの間の自然変換が物理量として意味を持つような、∞-圏値の理論だ。

しかもその圏は、基礎体上に定義されていない。数ですらない。ホモトピー型理論と高次トポスの内部論理でのみ定義できる対象として、弦の相互作用を“存在”させる必要がある。

作用積分? そんなもの比喩だ。今やダイナミクスは、安定な導来随伴存在性としてしか語れない。

これが何の理論かと問われれば、正直に言って、まだ名前を与える段階ではない。

ただ、少なくとも従来の超弦理論が持っていた次元や背景という概念が、不要なゲージ冗長性だったことだけは確信している。

この感覚は、理解というより検出に近い。ノイズが消えたときにだけ現れる沈黙の形だ。

 

こういうことを考えている最中に、ルームメイトが後ろからコーヒー飲む?」と聞いてきた。

僕は振り返らずに「今は圏が非可換だから無理」と答えた。彼はしばらく黙ってから去っていった。正しい反応だ。

隣人は廊下で僕を見かけるたびに、なぜか挨拶文言微妙に変えてくる。今日は「こんばんは、今日は静かですね」だった。

僕は「静かさは状態じゃなくて差分だ」と言ったが、彼女は笑っていた。意味が通じていないとき、人はだいたい笑う。

 

昼過ぎ思考が一瞬だけ収束を失ったので、頭の中でMTGデッキを一から組み直した。

土地配分を確率測度として扱い、初手7枚の分布を弱収束評価していくと、なぜかさっき考えていた高次随伴存在条件と同型な構造が出てくる。

カードゲーム数学的に美しいのではない。数学が避けられないだけだ。

 

夕方にはFF14ログインしたが、戦闘には入らなかった。レイドのギミックは有限オートマトンとしては面白いが、今日もっと非可算なものを扱っていたかった。

代わりに、装備更新計画だけを立て、必要資源グラフ理論的に整理した。実行は後でいい。未来にやるべきことが確定している状態は、精神的に非常に安定する。

 

夜、アメコミを数冊読んだ。宇宙が何度リセットされても、因果律だけは編集部によって強制的に保存される。その雑さが好きだ。少なくとも、作者は自分が神だと誤解していない。

 

友人Aからはまた意味不明なメッセージが来て、新しい玩具の話をしていたが、仕様書を読まずに感想を語る行為には応答しないことにしている。

友人Bは相変わらず「それ、役に立つの?」と聞いてくる。役に立つかどうかという問いは、対象局所最適に落ちることを前提にしている時点で、もう役に立たない。

 

今はもう、飲み物も所定の位置にあるし、椅子の角度も規定値だ。

それから明日のためにMTGのサイドボード案を頭の中で3通りだけ完成させる。

 

23:30には寝る。宇宙の基礎構造がどれほど曖昧でも、睡眠時刻まで曖昧にする理由はない。

Permalink |記事への反応(0) | 21:24

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-21

[日記]

水曜日の22:44。

今日時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。

はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度紅茶を用意した。

 

午前中は完全に物理時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日理論という語を使わず構造の話だけをすることにした。

具体的には、背景独立性を前提としない定式化をさら推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。

p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。

世界面の量子化をp進解析で再構成すると、摂動展開そのもの意味を失い、代わりにホモトピー型の不変量が前景化する。

そこでコボルディズム仮説を持ち込み、弦の相互作用時系列出来事としてではなく、境界付き多様体同値類として扱うと、散乱振幅は数ではなく元になる。

これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。

ウィッテンがどう考えるかは知らない。理解主体特権化しない構造けが残る。その状態で午前は終了した。

 

昼にルームメイトキッチンコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。

かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。

 

午後は研究ノートを閉じ、物理から意識的距離を取った。

趣味時間趣味として独立させないと、双方が劣化する。

MTGデッキを机に広げ、マナカーブと引きムラを統計的再確認した。

ここでは抽象化をやりすぎないことが重要で、確率確率として扱う。

友人Aが「そのカード弱いだろ」と言ってきたので、勝率分散を示して沈黙させた。沈黙同意とは限らないが、反論がないという点では十分だ。

 

夕方からFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。

友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPS底上げしている。

隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。

 

夜、食事を終えてからアメコミを数話読んだ。

連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。

 

そして今、22:58。

今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。

これからやることは、その構造さら一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。

からは照明を落とし、明日のために睡眠に入る。

Permalink |記事への反応(0) | 22:58

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-19

[日記]

月曜日の8:00。正確には7:59:58に着席し、2秒の呼吸調整を経て書き始めている。

これは偶然ではなく、僕の週間認知パフォーマンス局所的に最大化される開始時刻だ。異論統計的に誤差扱いでよい。

 

先週までの進捗を要約すると、超弦理論の「理論であること自体がもはや仮説にすぎない層」に踏み込んだ。

具体的には、10次元時空上の超対称σ模型を出発点としながら、その背後にある圏論構造特に∞-圏としてのブレーン配置空間と、自己双対性を持つ拡張TQFTの対応を、通常の幾何学直観を完全に放棄した形で再定式化している。

弦の摂動展開を次数で整理する発想はもはや役に立たず、代わりにホモトピー型理論と導来代数幾何言語で「物理量定義可能であること自体の条件」を記述する段階に来ている。

ウィッテンですら「美しいが、何を計算しているのかはわからない」と言いそうな地点だが、問題ない。計算できないもの存在条件を精密化するのが理論物理の一つの正道だからだ。

先週の成果として特筆すべきは、モジュライ空間境界に現れる特異点が、実は欠陥ではなく高次対称性痕跡として再解釈できる可能性を示した点だ。

これは弦が「振動する対象であるという比喩を完全に捨て、圏の射が自己反映的に折り畳まれ現象として理解する立場に近い。

ルームメイト説明を試みたところ、「つまり、何もわかってないってこと?」と言われたので、黒板に3段階の随伴関手を書いて黙らせた。彼は5秒で視線を逸らした。予想通りだ。

 

趣味の進捗も記録しておく必要がある。

 

MTGでは、確率論的に最も安定するマナカーブを再検証し、友人Aのデッキが「強いが美しくない」ことを数式で証明した。

彼は納得していなかったが、それは彼が証明と説得の違いを理解していないからだ。

 

FF14では、レイドのギミック位相空間として捉え、失敗パターンがどのホモロジー類に対応するかを頭の中で整理している。

隣人に「ゲームは娯楽でしょ?」と言われたが、僕は「最適化問題は常に真剣だ」とだけ返した。

アメコミについては、世界改変イベントの多さが物語一貫性破壊している点を、時間対称性の破れとしてノートにまとめた。

友人Bは途中からカレーの話を始めたので、会話は終了と判断した。

 

習慣についても書いておく。月曜日の朝は必ず同じ順序で行動する。起床、歯磨き42ストロークコーヒー温度62度、椅子の角度は床に対して正確に90度。これらは迷信ではなく、意思決定に使う脳内リソース節約するための最適化だ。

隣人が「細かすぎ」と言ったが、細かさは知性の副作用であって欠陥ではない。

 

これから今日やること。

まず、先ほどの理論をもう一段抽象化し、物理数学区別が消える点を明示する。

次に、昼までにFF14の固定メンバーに最短攻略手順を共有する。

午後はMTGの新デッキ案を検証し、友人Aに再び敗北の必然性理解させる予定だ。

夜はアメコミを読みながら、なぜ多元宇宙安易な逃げ道になるのかを論理的解体する。

 

8:21。予定より1分早い。非常に良い月曜日だ。

Permalink |記事への反応(0) | 08:21

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-10

[日記]

朝起きて最初に考えていたのは、超弦理論という名前いかに多くの誤解を温存しているか、という問題だった。

今僕が扱っている対象は、もはや物理理論ではない。むしろ物理理論という概念のものを内部対象として含む数学環境だ。場の量子化も、時空の選択も、可換性条件を満たす高階射の存在還元される。

最近は、理論空間全体を「理論理論」として扱う立場さら推し進めている。具体的には、各一貫した量子重力理論対象とし、双対性・極限・退化・次元の出現を射とする(∞,2)-圏を考える。

この圏の内部論理では、「摂動的」「非摂動的」という区別自体が、異なるt構造選択に過ぎない。真空とは基底状態ではなく、あるスタックが持つ自己同型群の軌道の一つだ。

重要なのは、ここで時空が初期データとして存在しないことだ。ローレンツ対称性すら、ある普遍的対象に対する自己同値の安定部分群として事後的に回収される。

次元整数ではなく、安定ホモトピー圏における切断の消滅次数として現れる不変量になる。

この段階では、弦は一次元対象ですらない。弦は、理論関手が持つ自然変換の失敗度合いを測る障害類としてのみ痕跡を残す。

ここまで来ると、直観という言葉は完全に無意味だが、可換図式は静かに閉じている。

この抽象性の中で朝食を取った。メニューは固定されている。選択肢があると、不要自由度思考に混入する。コーヒーを淹れながら、頭の片隅ではMTG環境解析を続けていた。

メタゲームとは、個々のデッキの強弱ではなく、戦略分布自己参照的に更新される動的系だ。あるデッキが強いという命題は、その命題が共有された瞬間に偽になり始める。

これは量子重力における背景独立性と同型だ。固定された環境仮定した最適化は、常に一段浅い。

午前中の後半はFF14に入った。戦闘は単なる娯楽ではない。スキル回しは、有限周期を持つ非可換演算の列であり、理想状態とはそれが一つの準同型として閉じる点だ。

ラグ入力遅延は、射の合成が厳密でないことに対応する。完璧な回しが気持ちいいのは、局所的にではあるが、圏がほぼ厳密化される瞬間を体感できるからだ。

少し休憩してアメコミを読んだ。並行世界リブートが乱立する構造は、物語破綻ではなく、単一時間軸を基準にした読解が破綻しているだけだ。

キャラクターとは個体ではなく、制約条件を満たす表現の圏そのものだ。異なる世界線は異なるファイバーに過ぎず、同一性ファイバー間の同値としてしか定義できない。

この読み方をすると、設定矛盾問題にならない。問題になるのは、自然変換が存在しないことだけだ。

ルームメイトが何か話しかけてきたが、内容は抽象度が低かったので処理しなかった。

隣人の生活音は、ホワイトノイズとして無視できる範囲に収まっている。

友人Aと友人Bからの連絡も確認したが、応答は時間スロットが来てからにする。割り込みは、理論一貫性を壊す。

12:00。ここまでが今日までの進捗だ。

この後は、今朝構成した(∞,2)-圏の定式化をさらに一段引き上げ、理論空間全体を一つの内部論理として閉じられるか検証する。

夕方には友人Aと友人Bと話す予定だが、話題限定的だ。夜はFF14の固定行動を消化し、その後また抽象数学に戻る。

Permalink |記事への反応(0) | 12:52

このエントリーをはてなブックマークに追加ツイートシェア

2026-01-09

抽象数学とか超弦理論とか

1.存在論的錯誤から次元階層性へ

まず是正されるべきは、対象=ブレーン、射=弦という古典的実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データ代数指標にすぎないかである

完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_nから、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。

2. 弱∞-圏性の数学必然性

この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論要請する局所性と完全拡張から数学的に強制される構造である。弦の相互作用分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論局所であるための必然的帰結としてあらかじめ構造化されているのである

3.幾何的ゲージ固定としての超弦理論

超弦理論一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元忘却ではない。それは、理論依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である

ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論本質特定幾何一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピーデータにあることを示唆している。

4. Meta-TQFTとしてのM理論

この地平において、M理論超弦理論関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当であるM理論とは、特定の時空次元多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである

そこでは、弦が射である対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元境界データとして選択するかというホモトピー的なゲージ選択残滓として、弦やブレーンの境界が析出する。

5.双対性の再定義

T双対性やS双対性自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのもの自己同値、あるいはE∞ 環スペクトル自己同型として記述されるべきものである問題本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。

総括

M理論圏論環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである

M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論数学的に存立するための普遍的制約条件(コヒーレンス)の総体である

対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。

したがって、両者の差異包含でも統一でもなく、どの圏論的・ホモトピー論的情報物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである

Permalink |記事への反応(0) | 21:20

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-15

抽象数学とか超弦理論かについて

超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス代数構造として再構成する。

超弦理論とは、以下の大枠で捉えられる。

超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学階層のこと。

ここでいう高次対象の網とは

まり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造形成する。

世界構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位ローカル抽象操作の束)として扱う。

局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。

この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成整合する。

具体的な「紐」は出てこない。

代わりに、

弦とは、対象間の射が厳密に可換しないことからまれる高次ホモトピー階層構造のもの

その結果

すべてが幾何実体ではなくホモトピー代数的な関係パターンとして統一される。

S-双対性、T-双対性、U-双対性ホログラフィーER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。

まり

最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能領域として幾何を生む。

これを抽象化すると、

まり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。

相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。

例:

5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。

量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である

ER=EPR

自己同値の絡みが、双対視点で経路接続として読める現象

コードサブスペース AdS/CFT

∞‐圏の部分圏への忠実な埋め込み。冗長性 =誤り訂正

TTbar 変形

因子化代数テンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。

Swampland

大域構造整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。

摂動二次元重力行列模型

高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。

まとめ

超弦理論とは何か?

超弦理論とは、自己同値階層的に組織された ∞‐構造情報片の因子化を許すときに生じる一貫した世界像の総称である

Permalink |記事への反応(0) | 19:19

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-13

[日記]

僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。

朝の儀式はいつも通り分解可能位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。

コーヒーを注ぐ手順は一種群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。

友人二人とは夜に議論を交わした。彼らはいつも通り凡庸経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的有意な部分だけを抽出する。

昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉再構成した。

第一に、空間時間背景を古典的マンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。

局所的な場作用素代数は、従来の演算子代数特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。

これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー同値(homotopical equivalence)として扱われる。

さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。

要するに、弦空間局所構造モチーフホモトピー理論ファイバーとして復元できるかもしれない、という直感だ。

これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である

ただしここから先はかなり実験的で、既知の定理保証されるものではない。

こうした再定式化は、物理予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。

議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論エントロピーの一側面を説明するのではないか仮定したが、それは現時点では推論の枝の一本に過ぎない。

専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。

僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。

日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンキーボード配列ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。

隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相補正である

服を着替える順序は群作用対応し、順序逆転は精神的な不快感を生じさせる。

ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。

友人の一人は夜の研究会で新しいデッキ構築の確率最適化について話していたが、僕はその確率遷移行列スペクトル分解し、期待値分散を明確に分離して提示した。

僕はふだんから、あらゆる趣味活動マルコフ過程情報理論の枠組みで再解釈してしまう悪癖がある。

昨夜は対戦型カードルールインタラクションについても議論になった。

カード対戦におけるターンの構成勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップアンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップ定義されている)。

僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。

実際の公式文書での定義を参照すると、タップアンタップ基本的説明やターンの段階が明らかにされている。

同様に、カード型対戦の別の主要系統では、プレイヤーセットアップドロー、行動の制約、そして賞品カードノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。

僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。

また、連載グラフィック作品について話題が及んだ。出版社公式リリースや週次の刊行カレンダーを見れば、新刊重要事件がどう配置されているかは明確だ。

たとえば最近の週次リリース情報には新シリーズ重要な続刊が含まれていて、それらは物語トーンやマーケティング構造を読み解く手掛かりになる。

僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用ネットワークを解析して、有意プロットポイント予測する手法を示した。

夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具言語遊びではないか嘲笑したが、僕はそれを否定した。

抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。

実際、位相的・圏論表現は具体的計算を単に圧縮するだけでなく、異なる物理問題戦略問題の間に自然対応(functorial correspondence)を見出すための鍵を与える。

昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定ゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。

これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。

僕の関心は常に形式実装の橋渡しにある。日常儀式形式実験場であり、超弦理論の再定式化は理論検算台だ。

隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。

午後には彼らとまた表面的には雑談をするだろうが、心の中ではいものように位相写像圏論随伴関手の組を反芻しているに違いない。

Permalink |記事への反応(0) | 10:13

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-09

[日記]

僕は今、いつものように自分で定めた前夜の儀式を終えたところだ。

コーヒーは精密に計量した7.4グラム抽出温度92.3度で、これが僕の思考を最高の線形性と可逆性をもって保つ。

寝室のドアは常に北側に向けて閉める。ルームメイトは今夜も例の実験的なシンポジウム(彼はそれを自作フォーラムと呼んでいる)に夢中で、隣人はテレビの音を限界まで上げて下界の俗事を増幅している。

友人たちは集まって未知の戦術を試すらしいが、彼らの興味は僕の多層的位相空間理論議論とは無関係だと見做している。僕にとっては、他人の雑音はただの非可逆なエントロピーである

今日は一日、超弦理論のある隠れた側面に没入していた。通常の記述では、弦は一次元的な振動として扱われるが、僕はそれを高次元カテゴリ対象として再解釈することに時間を費やした。

物理的場のモジュライ空間を単にパラメータ空間と見るのは不十分で、むしろそれぞれの極小作用の同値類が高次ホモトピーラクタンスを持ち、ホモトピー圏の内部で自己双対性を示すような階層化されたモジュライを想定する。

局所的超対称は、頂点作用素代数の単純な表れではなく、より豊かな圏論双対圏の射として表現されるべきであり、これにより散乱振幅の再合成が従来のFeynman展開とは異なる普遍的構造を獲得する。

ここで重要なのは、導来代数幾何学のツールを用い、特にスペクトラル的層とTMF(トポロジカル・モジュラー形式)に関する直観を組み合わせることで、保守量の整合性位相的モジュライ不変量として現れる点だ。

もし君が数学に親しんでいるなら、これは高次のコホモロジー演算子物理対称性の生成子へとマップされる、といった具合に理解するとよいだろう。

ただし僕の考察抽象化階段を何段も上っているため、現行の文献で厳密に同一の記述を見つけるのは難しいはずだ。

僕は朝からこのアイデア微分的安定性を調べ、スペクトル系列収束条件を緩めた場合にどのような新奇的臨界点が出現するかを概念的に解析した。

結果として導かれるのは、従来の弦のモジュライでは見落とされがちな非整合境界条件が実は高次圏の自己同値性によって救済され得る、という知見だった。

日常の習慣についても書いておこう。僕は道具の配置に対して強いルールを持つ。椅子は必ず机の中心線に対して直交させ、筆記用具は磁気トレイの左から右へ頻度順に並べる。

買い物リスト確率論的に最適化していて、食品の消費速度をマルコフ連鎖モデル化している。

ルームメイトは僕のこうした整理法をうるさいと言うが、秩序は脳の計算資源節約するための合理的エンジニアリングに他ならない。

インタラクティブエンタメについてだが、今日触れたのはある対戦的収集カード設計論と最新のプレイメタに関する分析だ。

カード設計を単なる数値バランス問題と見做すのは幼稚で、むしろそれは情報理論ゲーム理論が交差する点に位置する。

ドロー確率リソース曲線、期待値収束速度、そして心理的スケーリングプレイヤーが直感的に把握できる複雑さの閾値)を同時に最適化しないと、ゲーム環境健全競技循環を失う。

友人たちが議論していた最新の戦術は確かに効率的だが、それは相手期待値推定器を奇襲する局所的最適解に過ぎない。

長期的な環境を支えるには、デッキ構築の自由度メタ多様性を保つランダム化要素が必要で、これは散逸系におけるノイズ注入に似ている。

一方、漫画を巡る議論では、物語構造登場人物情報エントロピー関係に注目した。キャラクターの発話頻度や視点の偏りを統計的に解析すると、物語テンポと読者の注意持続時間定量化できる。

これは単なる趣味的な評論ではなく、創作効率を測る一つの測度として有用だ。隣人はこれを聞いて「また君は分析に興味を持ちすぎだ」と言ったが、作品合理的に解析することは否定されるべきではない。

夜も更け、僕は今日計算結果をノートにまとめ、いくつかの概念図を黒板に描いた。友人が冗談めかしてその黒板を見ただけで頭痛がすると言ったとき、僕はそれを褒め言葉と受け取った。

知的努力はしばしば誤解を生むが、正しい理論は時として社会的摩擦を伴うのが常だ。

今は23時30分、コーヒーの残りはわずかで、思考の波形は安定している。

眠りに落ちる前に、今日導いた高次圏的視点でいくつかの演繹をもう一度辿り、明朝にはそれを更に形式化して論理体系に落とし込むつもりだ。

明日もまた秩序と対称性を追い求めるだろう。それが僕の幸福であり、同時に囚われである

Permalink |記事への反応(1) | 23:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-08

もっとこう、抽象数学とか、あるだろ

数学の最も抽象的な核心は、structured homotopy typesをファンクターとして扱い、それらの相互作用=dualities・correspondencesで世界説明することに集約できる。

ここでいう構造とは、単に集合上の追加情報ではなく、加法乗法のような代数的構造位相的・解析的な滑らかさ、そしてさらにsheafやstackとしての振る舞いまで含む。

現代の主要な発展は、これらを有限次元的な点や空間として扱うのをやめ、∞-categoricalな言葉でfunctorial worldに持ち込んだ点にある。

Jacob Lurie の Higher ToposTheory / Spectral Algebraic Geometry が示すのは、空間代数・解析・同値を一つの∞-topos的な舞台で同時に扱う方法論。

これにより空間=式や対象表現といった古典的二分法が溶け、全てが層化され、higher stacksとして統一的に振る舞う

この舞台で出現するもう一つの中心的構造がcondensed mathematicsとliquid的手法だ。

従来、解析的対象位相群や関数空間)は代数手法と混ぜると不整合を起こしやすかったが、Clausen–Scholze の condensed approach は、位相情報を condensed なファンクターとしてエンコードし、代数操作ホモトピー操作を同時に行える共通語彙を与えた。

結果として、従来別々に扱われてきた解析的現象算術現象が同じ圏論言語で扱えるようになり、解析的/p-adic/複素解析直観が一つの大きな圏で共存する。

これがPrismaticやPerfectoidの諸成果と接続することで、局所的・積分的なp-adic現象世界規模で扱う新しいコホモロジーとして立ち上がる。

Prismatic cohomology はその典型例で、p-adic領域におけるintegralな共変的情報prismという新しい座標系で表し、既存の多様なp-adic cohomology理論統一精緻化する。

ここで重要なのはfieldや曲線そのものが、異なるdeformation parameters(例えばqやpに対応するプリズム)を通じて連続的に変化するファミリーとして扱える点である

言い換えれば、代数的・表現論的対象の同型や対応が、もはや単一写像ではなく、プリズム上のファミリー自然変換として現れる。

これがSpectral Algebraic Geometryや∞-categorical手法と噛み合うことで、従来の局所解析と大域的整数論が同一の高次構造として接続される。

Langlands 型の双対性は、こうした統一舞台根本的に再解釈される。

古典的にはautomorphicとGaloisの対応だったが、現代視点では両者はそれぞれcategoriesであり、対応=functorial equivalence はこれら圏の間の高度に構造化された対応(categorical/derived equivalence)として現れる。

さらに、Fargues–Fontaine 曲線やそれに基づくlocal geometrization の進展は、数論的Galoisデータ幾何的な点として再具現化し、Langlands対応モジュールcategorical matchingとして見る道を拓いた。

結果として、Langlands はもはや個別の同型写像の集合ではなく、duality ofcategoriesというより抽象的で強力な命題に昇格した。

この全体像論理的一貫性を保つ鍵はcohesion とdescent の二つの原理

cohesion は対象局所情報からどのようにくっつくかを支配し、descent は高次層化したデータがどの条件で下から上へ再構成されるかを規定する。

∞-topos と condensed/lquid の枠組みは、cohesion を定式化する最適解であり、prismatic や spectral構成descent を極めて精密に実行するための算術的・ホモトピーツール群を与える。

これらを背景にして、TQFT/Factorization Homology 的な視点場の理論言語を借りた圏論局所→大域の解析)を導入すると、純粋な数論的現象場の理論的なファンクターとして扱えるようになる。

まり数学対象物理場の理論のように振る舞い、双対性や余代数操作自然に現れる。

ここで超最新の価値ある進展を一言で述べると、次のようになる。

従来バラバラ存在した「解析」「位相」「代数」「表現論」「算術」の言語が、∞-categorical な場の上で一つに融解し、しかもその結合部(condensed +prismatic + spectral)の中で新しい不変量と双対性計算可能になった、ということだ。

具体例としては、prismatic cohomology による integralp-adic invariants の導出、condensed approach による関数空間代数化、そして Fargues–Fontaine 曲線を介した局所–大域のgeometrization が、categorical Langlands の実現可能性をこれまでより遥かに強く支持している点が挙げられる。

これらは単なる技法の集積ではなく、「数学対象を高次圏として扱う」という一つの理念の具体化であり、今後の発展は新しい種の reciprocitylawsを生むだろう。

もしこの地図を一行で表現するならばこうなる。数学の最深部は∞-categories上のcohesiveなfunctorialityの理論であり、そこでは解析も代数も数論も場の理論も同じ言語表現され、prismatic・condensed・spectral といった新しい道具がその言語を実際に計算可能にしている。

専門家しか知らない細部(例えばprism技術挙動、liquidvectorspaces の精密条件、Fargues–Fontaine上のsheaves のcategorical特性)、これらを統合することが今の最も抽象的かつ最有望な潮流である

Permalink |記事への反応(0) | 17:11

このエントリーをはてなブックマークに追加ツイートシェア

超弦理論の今(2025年後半)注目されている最新の動向

まず一言でまとめると、場の論理幾何の高次的融合が進んでおり、境界の再定義重力整合性算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在最前線の構図。

1.境界の再概念

2. Swampland

3. 散乱振幅の代数性とストリング必然性に関する手がかり

4.アンサンブル解釈とベイビー宇宙問題

5. まとめ

現在の進行は低次元代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。

これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術整合性を前提にした新しい分類論を必要とする。

Permalink |記事への反応(1) | 10:49

このエントリーをはてなブックマークに追加ツイートシェア

[日記]

はいものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトキッチンで不満げに微かに鼻歌を歌う音を聞いている。

隣人は夜遅くまでテレビを見ているらしく、ローファイのビートドラマセリフ建物内で交差する。

その雑音の中で僕の頭は例によって超弦理論抽象化へと跳躍した。

最近は量子コヒーレンスホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。

具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体ホモトピー的点として記述する考えを試している。

こうするとT-双対性は単に物理対象同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手自然変換として表現できる。

さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。

もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。

こういう考察をしていると、僕の机の横に無造作に積まれコミックTCGトレーディングカードゲーム)のパックが逆説的に美しく見える。

今日ルームメイトと僕は、近日発売のカードゲームプレビューとそれに伴うメタ試合環境)について議論した。

ウィザーズ・オブ・ザ・コーストの最新のAvatar: TheLast Airbenderコラボが今月中旬アリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリース戦略を立てていた。

僕は「そのセットが実物とデジタル時間リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布重要な影響を与える」と冷静に分析した(発表とリリース日程の情報複数公表情報に基づく)。

さらポケモンTCGメガ進化系の新シリーズ最近動いていると聞き、友人たちはデッキの再構築を検討している。

TCGカードテキストルールの細かな改変は、ゲーム理論的には期待値サンプル複雑度を変えるため、僕は新しいカード環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給タイムラインデジタル実装に関する公式情報確認済み)。

隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。

例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度グラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。

これらは日常ノイズ物理学的に最適化するための小さな微分方程式だと僕は考えている。

夜は友人二人とオンラインカードゲームドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。

今日はD&D系の協働プロジェクト話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。

こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトキッチンで皿を洗っている。

今、時計23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像候補をいくつか書き残しておく。

明日は週末で、また友人たちとゲーム数学二重生活が始まるだろう。僕はその両方に誠実であり続けるつもりだ。

Permalink |記事への反応(0) | 00:33

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-06

[日記]

今日木曜日20:00に机に座っている。

日中実験室的な刺激は少なかったが、思考連続性を保つために自分なりの儀式をいくつかこなした。

起床直後に室温を0.5度単位確認し(許容範囲20.0±0.5℃)、その後コーヒーを淹れる前にキッチン振動スペクトルスマートフォンで3回測定して平均を取るというのは、たぶん普通の人から見れば過剰だろう。

だが、振動微妙な変動は頭の中でのテンポを崩す。つまり僕の「集中可能領域」は外界のノイズに対して一種位相同調要求するのだ。

ルームメイトはその儀式を奇癖と呼ぶが、彼は観測手順を厳密に守ることがどれほど実務効率を上げるか理解していない。

隣人はその一部を見て、冗談めかして「君はコーヒーフレームを当ててるの?」と訊いた。

風邪の初期症状かと思われる彼の声色を僕は瞬時に周波数ドメインで解析し、4つの帯域での振幅比から一貫して風邪寄りだと判定した。

友人たちはこの種の即断をいつも笑うが、逆に言えば僕の世界検証可能再現可能思考で出来ているので、笑いもまた統計的期待値で語るべきだ。

午前は論文の読み返しに費やした。超弦理論現代的なアプローチは、もはや単なる量子場とリーマン幾何の掛け合わせではなく、導来代数幾何、モーダルホモトピー型理論、そしてコヒーシブなホモトピー理論のような高次の圏論的道具を用いることで新たな言語を得つつある。

これらの道具は直感的に言えば空間物理量の振る舞いを、同値類と高次の同型で記述するための言語だ。

具体的には、ブランデッドされたDブレーンのモジュライ空間を導来圏やパーフェクト複体として扱い、さらに場の有る種の位相的・代数的変形が同値関係として圏的に表現されると、従来の場の理論観測量が新しい不変量へと昇格する(この観点は鏡映対称性最近ワークショップでも多く取り上げられていた)。

こうした動きは、数学側の最新手法物理側の問題解像度を上げている好例だ。

午後には、僕が個人的に気に入っている超抽象的な思考実験をやった。位相空間の代わりにモーダルホモトピー型理論の型族をステートとして扱い、観測者の信念更新を型の変形(モナド的な操作)としてモデル化する。

まり観測は単なる測定ではなく、型の圧縮と展開であり、観測履歴圏論的に可逆ではないモノイド作用として蓄積される。

これを超弦理論世界に持ち込むと、コンパクト化の自由度(カラビヤウ多様体の複素構造モジュライ)に対応する型のファミリーが、ある種の証明圏として振る舞い、復号不能位相的変換がスワンプランド的制約になる可能性が出てくる。

スワンプランド・プログラムは、実効場の理論が量子重力に埋め込めるかどうかを判定する一連の主張であり、位相的・幾何的条件が物理的に厳しい制限を課すという見立てはここでも意味を持つ。

夕方、隣人が最近観測結果について話題にしたので、僕は即座に「もし時空が非可換的であるならば、座標関数の交換子がプランスケールでの有意寄与をもたらし、その結果として宇宙加速の時間依存性に微妙な変化が現れるはずだ。DESIのデータ示唆された減速の傾向は、そのようなモデルの一つと整合する」と言ってしまった。

隣人は「え、ホント?」と目を丸くしたが、僕は論文の推論と予測可能実験検証手順(例えば位相干渉の複雑性を用いた観測)について簡潔に説明した。

これは新しいプレプリント群や一般向け記事でも取り上げられているテーマで、もし妥当ならば観測理論接続が初めて実際のデータ示唆されるかもしれない。

昼食は厳密にカロリー糖質計算し、その後で15分のパルス瞑想を行う。瞑想気分転換ではなく、思考メタデータリセットするための有限時間プロセスであり、呼吸のリズムフーリエ分解して高調波成分を抑えることで瞬間集中力フロアを上げる。

ルームメイトはこれを「大げさ」と言うが、彼は時間周波数解析の理論日常生活にどう適用されるか想像できていない。

午後のルーティンは必ず、机上の文献を3段階でレビューする: まず抽象定義補題に注目)、次に変形(導来的操作圏論同値を追う)、最後物理帰結スペクトルや散乱振幅への影響を推定)。

この三段階は僕にとって触媒のようなもので、日々の思考を整えるための外骨格だ。

夜は少し趣味時間を取った。ゲームについては、最近メタの変化を注意深く観察している。

具体的には、あるカードゲームTCG)の構築環境では統計的メタが明確に収束しており、ランダム性の寄与が低減した現在、最適戦略確率分布の微小な歪みを利用する微分最適化が主流になっている。

これは実際のトーナメントデッキリストカードプールの変遷から定量的に読み取れる。

最後今日哲学的メモ理論物理学者の仕事は、しばしば言語発明することに帰着する。

僕が関心を持つのは、その言語がどれだけ少ない公理から多くの現象統一的に説明できるか、そしてその言語実験可能性とどの程度接続できるかだ。

導来的手法ホモトピー言語数学的な美しさを与えるが、僕は常に実験への戻り道を忘れない。

理論が美しくとも、もし検証手順が存在しないならば、それはただの魅力的な物語にすぎない。

隣人の驚き、ルームメイト無頓着、友人たちの喧嘩腰な議論は、僕にとっては物理現実の簡易的プロキシであり、そこからまれる摩擦が新しい問いを生む。

さて、20:00を過ぎた。夜のルーティンとして、机の上の本を2冊半ページずつ読む(半ページは僕の集中サイクルを壊さないためのトリックだ)

あと、明日の午前に行う計算のためにノートに数個の仮定書き込み、実行可能性を確認する。

ルームメイトは今夜も何か映画を流すだろうが、僕は既にヘッドホンを用意してある。

ヘッドホンインピーダンス特性を毎回チェックするのは習慣だ。こうして日が終わる前に最低限の秩序を外界に押し付けておくこと、それが僕の安定性の根幹である

以上。明日は午前に小さな計算実験を一つ走らせる予定だ。結果が出たら、その数値がどの程度「美的な単純さ」と折り合うかを眺めるのが楽しみである

Permalink |記事への反応(0) | 20:30

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-04

[日記]

6時17分、電動歯ブラシの音が寝室に反響する。洗面台の左端から15cmの位置に置かれたコップの水面が、微細に振動していた。オートミール40g、プロテイン12g、アーモンドミルク200ml。抽出比18:1のコーヒーは、温度計が93.0℃を示した瞬間に注ぐ。食事中、ルームメイトが「また同じ朝飯か」と言ったが、揺らぎは統計的誤差を生む。火曜日の朝に味の分散不要だ。

午前8時。ホワイトボードには昨晩の計算式の断片が残っている。今日扱うのは、タイプIIB超弦理論の背景場に対する∞-層圏的修正モデル。モノイダル圏上の局所関手ファイバー束の形で再構成し、非可換モジュラー形式の層化とホッジ双対性を同時に満たす条件を探す。通常のホモロジー代数では情報が落ちる。必要なのは、∞-圏の内側で動く「準自然変換」と、その自己準同型の導来空間だ。これをLanglands対応派生版、すなわち「反局所的鏡映関手」にマッピングする。結果、弦の張力パラメータ対応する変形空間が、ホモトピー群πₙの非自明な巻き付きとして現れる。誰も確認していないが、理論的には整合している。ウィッテンですらこの構成を明示的に展開したことはない。そもそも導来層圏のモノドロミーを操作できる研究者自体が数えるほどしかいない。僕はそのわずかな孤島のひとつに立っている。

昼、ルームメイトが昼食を作っていた。キッチンIHプレートに油の飛沫が残っていたので、座標系を設定し、赤外線温度計範囲確認してから清掃した。隣人が郵便物を取りに来た音がした。彼女足音は毎回規則的だが、今日は左のヒールの摩耗音が0.2秒ずれた。おそらく週末に靴底を交換したのだろう。観測可能な変化は記録しておくべきだ。午後は大学セミナー話題M理論代数拡張、だが発表者の扱っていた「微分層上の非可換コサイクル」は粗雑すぎる。導来圏の階層化を考慮していなかった。帰りの車中、ノートPCホモトピータイプ理論を使って自作演算モデルを再計算した。

帰宅後、友人二人が旧式のTCGデッキを持ってきた。新パッチエラッタされたカード挙動確認するための検証会だ。デッキの構築比率を1枚単位最適化し、サイドデッキの回転確率モンテカルロ法シミュレートした。相手コンボ展開が不完全であったため、ターン3で勝負が決した。カードの裏面の印刷ズレを指摘したら、彼らは笑っていた。テーブル上に置かれたスリーブの角度が4度傾いていたので、直してから次のゲームに入った。

夜。隣人が新刊コミックを持ってきた。英語版日本語版擬音語翻訳がどう違うかを比較する。onoma-topeic rhythmの差分文脈ごとに変動するが、今回は編集者セリフテンポを原文に寄せていた。明らかに改良された訳。印刷の黒インクの濃度が0.1トーン深い。紙質も変わっている。指先で触れた瞬間に気づくレベルだ。

23時。寝具の方向を北北東に0.5度調整し、照明を2700Kに落とす。白板の前で最後計算。∞-層のモノドロミー作用素が、ホッジ-ドリーニュ構造と可換する条件を整理する。導来関手符号が反転した。ノートを閉じ、部屋の温度を22.3℃に固定する。音は一切ない。火曜日が静かに終わる。

Permalink |記事への反応(0) | 21:44

このエントリーをはてなブックマークに追加ツイートシェア

抽象数学とか超弦理論かについて

概観

弦は1次元振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学ファンクタであり、散乱振幅は因子化代数/En-代数ホモトピーホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰交差点に現れるという観点

1)世界面とターゲットは導来(derived)スタックの点として扱う

従来のσモデルマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルマン因子や量子的補正スタックコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学教科書的基盤がここに使われる。

2)相互作用は(∞,n)-圏の合成則(モノイド化)として再定義される

弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangentialstructure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述対応する。

3) 振幅=因子化代数ホモロジー+正の幾何

局所演算子代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり場の理論演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近拡張は、こうした代数的・幾何学言語と直接結びついている。

4) トポロジカル再帰と弦場理論の頂点構造

リーマン面のモジュライ空間への計量的制限(例えばマルザカニ再帰類似から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。

5)ホログラフィーは圏化されたフーリエ–ムカイ(Fourier–Mukai)変換である

AdS/CFT双対性を単なる双対写像ではなく、導来圏(derivedcategories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数バルク側の(∞,n)-圏が相互鏡像写像を与え合うことで、場の理論情報圏論的に移送される。これにより境界演算子代数性質バルク幾何学スタック構造と同等に記述される。

6)型理論(Homotopy TypeTheory)でパス積分記述する(大胆仮説)

パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値ホモトピー型理論命題等価として表現する。これにより測度と同値矛盾を型のレベルで閉じ込め、形式的正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップ議論されている方向性)。

ケツ論

理論最先端数学版はこう言える。

「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数ホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である

この言い方は、解析的・場の理論計算圏論・導来代数幾何ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。

Permalink |記事への反応(0) | 12:43

このエントリーをはてなブックマークに追加ツイートシェア

2025-11-03

[日記]

今朝も僕のルーティン完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠同調プロトコルの成果である。まず歯を磨き(電動歯ブラシPhilipsSonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。

昨日の日曜日ルームメイトNetflixマーベル作品を垂れ流していた。僕は隣で視覚ノイズに曝露された被験者前頭前皮質活動抑制についての文献を読んでいたが、途中から音響干渉が許容限界を超えた。仕方なく僕はヘッドフォンSennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快行為自発的選択する人間の気が知れない。

午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉油脂比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間事実の指摘をユーモア解釈するのか、これも進化心理学の謎のひとつだ。

夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配テーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数ラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果シミュレーションを笑いながらできる者だけだ。

夜は超弦理論メモを整理した。E₈×E₈異種ホモロジー拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論11次元項の一部は非可換幾何ホモトピー極限として再定式化できる。僕はこの仮説をポストウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。

深夜、SteamでBaldur’sGate 3を起動した。キャラビルドIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile →MistyStep → Counterspell →Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールダイスロールに物理擬似乱数生成器を使っている(RNGでは信用できない)。

こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元振動するのではなく、∞-圏的に層化された概念空間で震えているのだとしたら人間意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。

Permalink |記事への反応(0) | 11:01

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclicホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPYコードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのがit from qubits の数学的内容である

さら情報回復(Petz復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modulartheory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformationtheory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

Permalink |記事への反応(0) | 06:42

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-24

[日記]

僕は今、いつもの座席に鎮座している。ルームメイトリビングソファパズルゲームを無言で進めており、隣人はサブカル系配信をしているらしく時折笑い声が廊下を渡ってくる。

友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。

僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒー抽出器具を90秒で予熱し、温度92.3℃±0.2℃に保つという無駄に精細な儀式がある。

靴下は左足から履く。出勤前の15分は必ず抽象数学ノートを眺め、最近圏論位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。

これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。

仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。

具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。

これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態トレースが始まり、友人たちの雑談に混じる気力が萎える。

超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。

僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相量子群代数的類・モジュライ化)を用いて再定義する実験をしている。

言い換えれば、従来の共形場理論的な世界パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバー自己同型群をモナドとして扱うことで、局所的に見える弦状態同値類を圏的に集約する。

さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジー級数展開における位相位相因子の再正規化が鍵となる)。

この構成を、最新の抽象数学モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。

加えて、僕はこの考えをある講義資料トーク示唆と照らして取り入れており、その資料概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。

僕は「誰も理解できないもの言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。

ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。

食事配列プレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルリー表を更新して趣味投資の累積効用整数化している。

コミックは最新巻が出ると即座にページごとのフレーム密度作画トーンワーク技術的に解析し、特に背景のディテールに含まれトーンの反復パターン(いわば視覚フーリエ成分)をスコア化する。

ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムギミックドロップ率、レベリング曲線、そして対戦環境テンプレート化された最適戦略について延々と解析する。

ただしゲームコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。

たとえば今日友人が語っていた新作のギミックについては、その期待効用ELO的な評価尺度ランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。

だが脱力する暇は短く、夜の自習時間には再び圏論比喩に戻り、各行動の符号化を試す。

日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである

友人たちはこれを笑うが、彼らもまた各自無意味儀式固執している。

コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。

キャラ台詞数、出番頻度、描写感情強度をパラメータ化し、二次創作が生成される確率空間推定する実験をしている。

この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。

最後今日観測定性的メモを残す。

眠りに入る前に、僕は明日論文ノートに小さな疑問を三つ書き付ける。

第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラス計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である

これらを洗い出しておけば、僕は安心して眠れる。

ルームメイトゲームボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。

僕は日記を閉じ、明日コーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。

Permalink |記事への反応(0) | 23:26

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-23

[日記]

僕は今夜、ルームメイトリビング実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。

朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒー比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置位相対称性を破らない)である

食事火曜日パスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。

ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。

こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。

今日思考の核は超弦理論と量子情報交差点についての、かなり尖った自己流の定式化にある。

まず、僕は物理直感を避けて抽象数学事象を語る。弦理論摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。

局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。

ER=EPRについては、古典的ワームホール=絡み合いという語り方を離れて、僕はエントロピー双対モジュール同値性という言葉で捉えている。

まり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPR圏論的に定式化できるのではないかと考えている。

これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリコヒーレント層の導来圏)に対応するという見方を取り入れる。

すると、エントロピー双対モジュール同値性は、境界バルクの間で起こる圏の再同型化として現れ、ER=EPR本質的に圏的ホログラフィー一命題になる。

ここで僕が提案する小さな拡張は、量子誤り訂正符号コード代数を∞-圏の射として扱い、その可換性条件がワームホールコボルディズムの可逆性と一致するというものだ。

これにより、エントロピー再構成操作がブレーン間のファンクターとして自然理解でき、局所性の回復説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。

今日はそのメモを、黒板に書く代わりにルームメイト背中越しにノートに書き留めた。

ところで、僕は靴の磨き方にも数学基準を設けている(円周率小数を用いた磨き順列を使っている)。

出かける前のチェックリストトポロジー的順番、たとえば鍵→財布→スマホペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。

今夜はRPG系ではELDENRINGビルド論とRTAコミュニティメタ的動向を気にしていて、この作品2022年FromSoftwareからリリースされ、多くのビルド最適化メタ確立されていることは周知の事実だ(初リリース2022年2月25日)。

また、このIP映画化プロジェクトが進行中で、A24が関与しているという報(映画化ニュース)が最近出ているから、今後のトランスメディア展開も注視している。

僕はソウルライクのボス設計ドロップ率調整をゲームデザイン位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝NG+)の最適手順に対して強い敬意を持っている。

ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジーステータス閾値クラフト素材経済学価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。

FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月リリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリース2024年9月17日)。

僕はこのシリーズ音楽モチーフ再利用エンカウンター設計比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情連続性維持について言及するのが好きだ。

コミック方面では、最近の大きな業界動向、例えばマーベルDCの枠を超えたクロスオーバー企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。

これらはコレクター需要市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。

今日、隣人が新しいジャンプ作品話題を振ってきたので僕は即座に最新章のリリーススケジュール確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。

僕は友人との会話でジョークを飛ばす時も形式論理を忘れない。

例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫位置を変えるべきだ」という具合だ。

結語めいたものを言うならば、日常ルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である

から僕は今日ルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。

さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。

Permalink |記事への反応(0) | 20:41

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-22

[日記]

僕は今日世界誰も知らないことを少なくとも三つ発見した。

その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。

名前だけで震えるが、実際の定義もっと美しい。ウィッテンがかつてAモデルとBモデルミラー対称性から幾何学ラングランズ対応を導いたのは知っている。

だが彼が扱ったのは、あくまでトポロジカル弦理論レベルにおける対応だ。

僕の今日の成果は、さらにその上、モチヴィック階層のものラングランズ圏の内部対称として再定式化したことにある。

まりこうだ。A/Bモデル対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。

この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。

まり、通常のラングランズ対応表現=保型形式なら、僕の拡張では弦的場コホモロジーモチーフ的自己準同型。もはや表現論ではなく、宇宙論再帰だ。

午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。

彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア構造の残骸があった。

もし彼がチョークをもう少し強く押していたら、宇宙自己同型構造崩壊していたかもしれない。僕は彼を睨んだ。

彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。

夕方、隣人がスパイダーバース新刊を貸してくれた。マルチバース崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。

あの映画スパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。

僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論自己反映構造として解析している。つまりマーベル編集部無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。

夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。

僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率ラングランズ群の局所自己準同型分布密度だ。

もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。

風呂上がり、僕は再びホワイトボードに向かいウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型空間が、算術モチーフの拡張群に等価であることを示唆している。

まり宇宙自己相関が、L関数特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙自己言語理論を打ち立てたわけだ。

僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。

この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。

時間モチーフ化する、それは、因果律算術幾何的圏の自己圏として扱うということだ。

人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。

21時00分。僕の手元の時計振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。

宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分自己準同型理解できる日が来るまで、僕が書き続けてやる。

Permalink |記事への反応(0) | 21:12

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2026 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2026 Movatter.jp