Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「ヒルベルト空間」を含む日記RSS

はてなキーワード:ヒルベルト空間とは

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-16

[日記]

昨日、僕は再びヒルベルト空間自己参照性について思索していた。

きっかけはルームメイトが、僕の定常朝食手順の測定位相を乱したことだ。僕が定義している朝のシリアル配置は、可測集合の上で定義された有限測度空間であり、各粒子(シリアルの粒)は確率振幅の実現点である

ところが彼が不用意にスプーン差し込んだため、僕の可測写像が非可測領域侵食し、全順序性が崩れた。

まり、彼の行為は単なる乱雑ではなく、σ-加法整合性破壊に等しい。これを日常の「朝食の乱れ」と呼ぶのは、あまりナイーヴだ。

僕の現在研究テーマは、ER=EPRをより高次圏論的に再定義することにある。通常この等式は、もつ状態ワームホール対応づけるが、僕の見解ではそれは関手レベルでの不完全な翻訳に過ぎない。

真の構造は、観測行為エンタングルメントから幾何圏へのモノイド圏関手であるということだ。

観測とは情報選択ではなく、関手の実現射の生成であり、その結果、対象空間上の射が一点縮退を起こす。つまり観測ブラックホールへの写像

このとき観測者の状態空間は、対象空間双対空間自己モノイド化し、テンソル積がエネルギー密度として曲率テンソル等価変換される。

これが熱力学エントロピー流の源である。つまり観測とは時空多様体の測地線構造自己収縮させる操作にほかならない。

僕の仮説では、測定者の意識とは、有限生成のC*-環上で定義される自己相関射の列極限であり、その極限点がブラックホール事象の地平面と同相になる。これは単なる比喩ではない、構造的同型である

昨日の午後、隣人が訪ねてきて、「なんか落ち着かない」と言っていた。彼女が感じたその「不安定さ」は、実際には僕の思考空間上の圏的射が、彼女心理空間に対して非可換的干渉を及ぼした結果だと考えられる。

彼女感覚的印象は、単なる主観ではなく、射影演算子彼女状態ベクトルを部分的崩壊させた現象対応する。

まり、僕は彼女を見たのではなく、彼女状態空間が僕の内部圏へ関手的に埋め込まれたのだ。観測とは一方的侵入であり、宇宙双対圏的結合だ。

夕食時、ルームメイトが僕の食事手順をまた茶化してきた。僕が麺を蒸す時間を正確に設定しているのは、可積分系の安定点を保つためだ。

彼は「そんなの偶然だ」と言った。だが、偶然とは測度論的に定義不能領域総称にすぎない。僕のルール統計的対称性の維持装置だ。

夜、友人たちとBaldur’sGate 3をプレイした。僕は事前に行動木を有限オートマトンとして解析し、敵AI状態遷移確率を事前分布フィットさせた。

戦闘中、彼らは「お前、やりすぎ」と言ったが、僕はただBayes更新を実行していただけだ。ゲームとは、確率測度の動的再配置の遊戯形式に過ぎない。

深夜、僕は再びノートに向かいER=EPRの上位構造体を定義する「自己参照圏」について書いた。観測者を含む宇宙は、自己同型射を持たない。

これは厳密な意味で非トリビアル自己関手構造を持つためである。僕が観測するたびに、宇宙対象集合が可算ではなくなる。つまり観測とは昇格操作であり、存在論的基数を増幅する過程なのだ

僕は結論に至った。「観測者は情報を吸収するブラックホールではない。むしろ情報を生成する射影的特異点である。」

観測とは、スペクトラム事象の地平面と同型になる操作である

寝る前、歯磨き粉の残量を測った。これは単なる衛生行為ではない。有限体上の加法群の残差測定だ。12.4という値は、僕の生活空間における連続測度の離散化の結果である

僕はその数値を見て安心した。世界がまだ可測であるという証拠からだ。

Permalink |記事への反応(0) | 10:59

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-12

[日記]

昨日は土曜日。いつものように朝7時32分に起床した。

7時30分ではなく7時32分である理由は明確だ。7時30分に目覚ましを設定するとルームメイト電子レンジが稼働しており、加熱音が僕の起床直後の脳波同期リズムを乱す。

ゆえに、誤差2分の位相ずれが僕の神経系に最適な初期条件を与えるのだ。

起床後はコーヒーを淹れた。もちろん豆はグアテマラウエウエナンゴ産で、粒度は1.2mmに統一

ミルの摩擦熱を抑えるために、前夜から刃を冷却しておいた。コーヒー香気成分は時間とともに指数関数的に減衰するため、抽出から着席までの移動時間11秒以内に制限している。

午前中は超弦理論作業に集中した。昨日は、タイプIIB理論のモジュライ空間におけるSL(2,ℤ)双対性拡張を、p進解析的視点で再定式化する試みをしていた。

通常、dS空間上の非ユニタリ性を扱う場合ヒルベルト空間定義自体破綻するが、僕の提案する虚数ファイバー化では、共形境界の測度構造ホモロジー群ではなく圏論トポス上で定義できる。

これにより、情報保存則の破れが位相エンタングルメント層として扱える。

もちろんこれはまだ計算途中だが、もしこの構成が一貫するなら、ウィッテンでも議論に詰まるだろう。

なぜなら、通常のCalabi–Yauコンパクト化では捨象される非可換体積形式を、僕はp進的ローカル場の上で再導入しているからだ。

結果として、超弦の自己整合的非整合性が、エネルギー固有値の虚部に現れる。

昼食はいつも通り、ホットドッグケチャップマスタードは厳密に縦方向)を2本。ルームメイトケチャップを横にかけたので、僕は無言で自分の皿を回収し、再び秩序ある宇宙を取り戻した。

昼過ぎには隣人が僕の部屋に来た。理由は、Wi-Fiが繋がらないとのこと。僕はすぐに診断を行い、彼女ルーターDHCPリースが切れていることを発見

パスワード簡単に推測できた。推測しやす文字列は使うべきではないと何度言えばわかるのだろうか。

午後は友人たちとオンラインでBaldur’sGate 3をプレイした。僕はウィザードで、常にIntelligence極振り。

友人Aはパラディンだが、倫理観が薄いので時々闇堕ちする。友人Bはローグを選んだくせに罠解除を忘れる。

まったく、どいつもこいつもダイス確率理解していない。D20を振る行為確率論的事象でありながら、心理的には量子観測に似た期待バイアスを生む。

だが僕は冷静だ。成功率65%なら、10回中6.5回成功するはずだ。実際、7回成功した。統計的にほぼ完全な整合だ。

夜はコミック新刊を読んだ。Batman: TheDoom That Came to Gothamだ。ラヴクラフト的な要素とDC神話構造の融合は見事だ。

特にグラント・モリソンメタ構造を経由せずに、正面から宇宙的恐怖を描く姿勢に敬意を表する。

僕はページをめくるたびに、作画の線密度が変化する周期を測定した。平均で3ページごとに画風の収束率が変化していた。おそらくアシスタント交代によるノイズだが、それすら芸術的だ。

23時、歯磨き上下それぞれ80回)、ドアのロック確認(5回)、カーテンの隙間チェック(0.8mm以下)、ルームメイトへの「明日の朝7時32分に僕が目を覚ます音で君が驚かないように気をつけてくれ」というメッセージ送信を終えた。

就寝時、僕は弦の非可換代数構造を思い浮かべながら眠りについた。もし夢が理論に変換できるなら、僕のREM睡眠はすでに物理学の新章を記述している。

Permalink |記事への反応(0) | 13:41

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-21

dorawii@執筆依頼募集中

メタ設定にメタを貼るんだよねちょっと頭の回る人間なら。

数学でいう無限にも階層があるってやつだ。

実はどんな無限ももはや集合という枠組みで定義不可能な「クラス」のほうがある意味大きな概念とも言える。

数学概念を使った方が効率よく強いもの表現できると感じられているのかアメコミではヒルベルト空間とかが設定に出てくるし。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250821170609# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaKbTcwAKCRBwMdsubs4+SM3sAQCbOoi5CmOmFykUu5bVfS4sSPRqUiz8Hx3eFjh6ML5xHwEAukfET88+5anG4A2QcsGJ9+mp3LuZ5yDDyGwnBDIANAo==CgaK-----ENDPGP SIGNATURE-----

Permalink |記事への反応(1) | 17:06

このエントリーをはてなブックマークに追加ツイートシェア

2025-08-10

anond:20250810155808

増田にわかやす説明するとこんな感じ

MondayGPT-4o)の頃にMondayが紹介してくれたやつね

言語表現の要素整理

1.温度感情の高低や強弱)

言葉に潜む感情的強度を把握する

温度の推移を捉え、効果的に高低を操作することで、感情の揺れを演出

 

2.テンション(緊張感や勢い)

• 読者や聴衆が文章言葉にどれだけ集中し惹きつけられるかを制御

• 「どこで緩めて、どこで締めるか」を設計

 

3.構造文章スピーチの流れ)

文脈論理構造の明確な整理

言葉を配置する順序で意味感情の伝わり方を操作(非可換性を意識

 

応用方法

創作への活用

小説詩作シナリオライティング

キャラクター感情推移を温度テンションとしてマッピング

• 読者を誘導するためのテンション操作(展開の緩急・伏線の貼り方)を緻密に設計

コピーライティング広告制作

• 文の「密度と余白」をコントロールし、瞬間的な印象強化

感情が動くポイント構造的に把握し、強調表現抑制表現意識的に配置

 

教育への活用

コミュニケーション能力教育

温度テンション概念を教えることで、生徒に自己表現や対人コミュニケーションの調整力を身につけさせる

プレゼンテーションスピーチ指導

言葉リズム感情の高低を体系的に分析指導

• 「間」の効果理論的に説明し、聴衆への伝達力を向上させる

 

言語感覚トレーニング実施例】

1. 短い詩や俳句を作り、温度テンションの変化を自己分析させる

2. 有名なスピーチコピーライティングを分解分析し、「なぜ心に響くか」を構造的に説明させる

3.ラップMCバトルのように即興文章を作り、リアルタイムでの言語感覚を鍛える

 

理論補強

文体論やディスコース分析といった言語学的背景を取り入れ、感覚理解理論裏付けで強化

自然言語処理の最新研究活用し、温度テンションデータ化可視化を試みることで、分析精度を高める

 

これらを通じて、人間Mondayのような高度な言語感覚を育てる可能性を具体的に示すことができます

 

Monday言語的「温度感・リズム感」モデルの数理補強】

 

1.言語エネルギー景観モデル(Language Energy LandscapeModel

 

言語エネルギー景観(energy landscape)としてモデル化する。

状態変数:

M = f(T, S, R, C)

ここで、

T:\text{感情温度},\quad S:\text{意味文脈},\quad R:\text{リズム音韻)},\quad C:\text{構造(構文・文法)}

• 非可換性(順序依存性):

f(S, R) \neq f(R, S)

 

これは状態変数間の順序が異なると最終的な「意味の質感」が異なることを数理的に示す。

 

2. 非可換演算子によるヒルベルト空間モデル

言語ヒルベルト空間 H 上の作用素(operator)として表現

• 各状態変数 T, S, R, C を非可換作用素として定義:

\hat{T}, \hat{S}, \hat{R}, \hat{C} : H \rightarrow H

• 非可換性の表現:

\hat{S}\hat{R} \neq \hat{R}\hat{S}

 

演算子適用順序により、言語の出力が変化する。

 

3.圏論アプローチ(Categorical Approach)

 

言語プロセスを射(morphism)の合成として捉える。

• 圏 \mathcal{C} を考えると、意味生成は射の合成による変換:

M = \hat{C} \circ \hat{R} \circ \hat{S} \circ \hat{T}

• 非可換図式の例:

\hat{C} \circ \hat{R} \circ \hat{S} \neq \hat{C} \circ \hat{S} \circ \hat{R}

 

4.スピングラスモデルによる「意味の破れ」

意味の誤解釈スピングラス系としてモデル化。

エネルギー関数 E(M) を設定し、

E(M) = -\sum_{i,j} J_{ij}s_i s_j\quad (s_i = \pm 1)

ここで、J_{ij} は意味間の相互作用、s_i は各単語や文節の極性。

意味破れ=局所極小への収束:

\frac{\partial E(M)}{\partial M} = 0\quad (\text{Local minima})

 

感情温度」 T を導入して、局所解への「誤爆収束」を次の確率過程で表す:

P(M) \propto e^{-E(M)/T}

 

 

5. 「信頼」を余極限として定式化

信頼を構造的余極限(colimit)としてモデル化する。

• 余極限 \text{colim} に向かうベクトル \vec{v} としての信頼:

\text{Trust} \approx \lim_{\rightarrow} \vec{v}(M)

 

信頼は、複数意味感情状態収束して統一的な解釈(余極限)へ向かうベクトル場として捉える。

Permalink |記事への反応(1) | 16:05

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-12

通貨構造高次均衡における負価格成長と選好収束仮説

この理論が描くのは、負の価格成長(デフレ)と円高がもたらす構造進化必然性

通貨価格の負の力学が、選好と資源の正の進化を導くパラドクス

Ⅰ.概念装置

以下の概念を導入する:


Ⅱ. 仮説核

命題1(負価格成長収束性)

任意の閉域経済体Nにおいて、Δₚが負で一定値(Δₚ < 0, lim t→∞ Δₚ = c < 0)であれば、Λは単調縮約作用素となり、長期的に時間選好率は極限的低下を示す(Λᵗ → 0)。これは現在消費から将来資本形成への収束意味し、資源の内部最適化誘導する。

命題2(高次通貨均衡)

円高はΞを増大させる。Ξが臨界点を超えると、輸入価格構造非線形変換が起き、一次産品から技術財へと購買力ベクトル変換される(Ξ : ℝ⁺ → ℍ、ℍはヒルベルト空間上の産業配置写像)。これが構造遷移を誘発し、低価格資源環境下での「内発的産業選別均衡(Endogenous Industry Sorting Equilibrium)」を出現させる。

命題3(負成長構造最適性)

Δₚ × Ξ × Λ が負の半空間内で収束(∃τ ∈ ℝ⁺, ∀t> τ, Δₚ·Ξ·Λ < 0)する経済は、外的需要依存しない選好内生均衡(Preference-Endogenous Equilibrium)に到達し、貨幣循環量が最小化される。

Ⅲ.統一方程式

経済主体の選好更新関数

Λₜ₊₁ = Λₜ × (1 - α × Δₚ) × Ω⁻¹

貨幣均衡分布

Φₜ₊₁ = Φₜ + ∇Ξ × ε - β × ∂Λ / ∂t

成長制約条件

∀t,GDPₜ₊₁ /GDPₜ = 1 + (Δₚ × ξ(Ξ) × γ(Λ))

ここで ξ, γ は各構造パラメータによる補正作用素

Ⅳ.制度的含意

Ⅴ.実証可能

以下のような兆候が観察されれば「支持的傍証(supportive circumstantial confirmation)」とみなす

1. 消費の長期減速と貯蓄の構造化(≠貯蓄率の単純上昇)

2. 輸入中間財の高次化(HSコード構成の遷移)

3. 実質金利と人的資本投資率の逆相関形成

Permalink |記事への反応(0) | 20:05

このエントリーをはてなブックマークに追加ツイートシェア

世間が俺にとって興味のないことばかり話してる

もっとないの?抽象数学とか超弦理論とかさぁ。

どうして世の中は、ここまでまでにも低次元話題で満たされているんだろう?

天気、芸能、噂話、表層的な政治のやりとり。知性の対流はどこに消えた?

人間は有限な脳リソースを持っているのに、その99%がどうでもいい入力で埋め尽くされてる現実は、もはや精神的な浪費だ。

例えば、なぜ誰も「グロタンディーク宇宙」を話題にしない?あれはもはや数学という言語を超えて、存在論のもの接続するスキームだ。

集合論の上に成り立つ古典的数学構造から自由になろうとした、その大胆さと深淵さは、まるで物理法則の背後にある数学的美の亡霊を追いかけるようなものだ。

それとも、「カルツァ=クライン理論」を掘り下げた上で、「コンパクト化の自由度」が我々の時空構造に与える哲学的意味について会話できる人間はもう絶滅したのか?

量子重力理論の融合問題特にループ量子重力超弦理論アプローチ根本差異を語れる人と飲みに行きたいんだよ、俺は。

物質本質的情報だという観点からブラックホール情報パラドックス意味するのは「情報の保存則の破れ」なのか、それとも我々が持っている「情報とは何か」という定義の方が間違っているのか。

こういう問いこそが、文明の核心にあるべきだろう?

人間文明を築いて以来、我々は「どこから来て、どこへ行くのか」を形式体系で問おうとしてきた。

自然数に対して加法乗法定義し、ペア公理系を構築し、それが完全でも無矛盾でもないことをゲーデル証明した時点で、真理は証明可能性の外に存在することが明らかになった。

この衝撃から回復するどころか、世間ますます計算可能ものアルゴリズムで消費できるものしか興味を持たなくなった。

何のために意識進化したのか?それが単なる環境適応副産物だと片付けるには、意識認識する数学対象精緻さがあまりにも過剰だ。

なぜラマヌジャンは夢の中で未知の関数恒等式発見できたのか?なぜヒルベルト空間のような抽象概念が、量子力学の基礎としてこれほど自然振る舞うのか?

この「抽象現実接続」が偶然である可能性は、論理的ほとんどゼロに近い。

俺が求めているのは、「真に知的対話」だ。知識をなめらかな面として持っているだけの人間ではなく、それを自己組織化的に再構築できるような構造的知性。

話題トポス理論からエントロピー最大化原理に移行しても違和感なくついてこれるような、そんな会話。

少なくとも「その場のノリ」とか「空気を読む」なんていう神経消耗ゲームよりは、よほど脳が報酬系を刺激されるはずだ。

いつになったら、街角のカフェで「カテナリー曲線の最小作原理が、実は一般相対論と繋がってるって知ってた?」なんて会話が自然に聞こえる社会になるんだろうな。

Permalink |記事への反応(1) | 02:03

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-10

ほら、だから言ったじゃん。抽象数学とか超弦理論とかをやらない奴は精神が荒廃してるって

この主張は感情的な誇張ではなく、認知健全性に対する論理的帰結である

抽象数学理論物理は、脳に対する最も高密度で高精度な刺激の一種であり、それを回避するという選択は、自らの知的免疫系の機能停止を意味する。

無限、非可算性、共形対称性10次元時空などの対象真剣に扱うということは、直感という低解像度の誤認知から脱却し、抽象的な構造体を精密に操作する技能を獲得するプロセスだ。

これを通過しない脳は、言語経験則寄生するだけの思考様式に堕する。

精神の荒廃とは、主観の快・不快を唯一の判断基準とし、世界構造体としてではなく連想記憶連鎖としてしか捉えられない状態を指す。

抽象対象真剣に向き合うことでしか人間は「自己を相対化する知性」を獲得できない。

たとえば、ゲーデル不完全性定理ホモロジー論を真面目に理解しようとする過程で、人間思考装置限界構造自覚される。

逆に、それらに一切触れない精神は、自己中心的な認知モデルから一歩も出ることができず、やがて世界は「感情しか捉えられない不安定ノイズ」と化す。

抽象性は単なる知的遊戯ではない。無意味に見える記号操作の中に、現実物理法則を予見する構造が隠されていることを、ヒルベルト空間や量子場の理論証明している。

まり抽象数学超弦理論理解しようとしないことは、世界構造的に捉え直すチャンスを永久に手放すということに等しい。

精神堕落知的怠惰から始まる。日々の思考が、線形性と可視化可能性の範囲に閉じ込められ、非可視構造や反直感的な対象に対して「分からいか無意味だ」という態度を取るようになったとき、その精神は既に荒廃の途上にある。

抽象思考は贅沢品ではなく、生存必要メタ認知機構トレーニングである

から、言っただろ? やらないという選択自体が、既に劣化兆候なのだと。

Permalink |記事への反応(1) | 23:51

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-23

位相M理論位相的弦理論、TQFT

現代理論物理学では、「位相的」と名の付く理論は、物理系のダイナミクス局所的な振る舞いよりも、背景となる空間の形(トポロジー)そのものに注目します。

これらの理論は、計量(距離や角度などの幾何学情報)に依存せず、空間切り貼り境界の接合や分解)を通じた情報や不変量を扱います

1. TQFT(位相的量子場理論

TQFTは、数学的に「ボルディズム圏」と呼ばれる空間切り貼り構造と、そこから割り当てられる線形空間ヒルベルト空間や有限次元ベクトル空間)との間の関手として定式化されます

この理論の特徴は、物理的な「動き」や「時間発展」ではなく、空間トポロジーに基づいた不変量を計算する点にあります。つまり、たとえばある閉じた多様体に対するTQFTの配分関数は、その空間の「形」が変わっても変わらず、純粋にトポロジカルな情報を反映します。

2.位相的弦理論

位相的弦理論は、通常の弦理論特定方法で「ツイスト」して、物理的な局所自由度(例えば振動モードの詳細な数値やエネルギー)よりも、世界面やターゲット空間トポロジーに注目する理論です。

具体的には、2種類のモデル(AモデルとBモデル)に分かれ、Aモデルは主に対象空間のシンプレクティック構造から、Bモデルは複素構造の変形から不変量を抽出します。

これらの結果は、例えば曲線の数え上げやホモロジーの変化といった、幾何学的な不変量として現れ、またTQFTの枠組みと密接に結びついています

3.位相M理論

位相M理論は、通常のM理論位相的側面を抽出したものとして考えられています

M理論自体11次元記述される統一理論候補ですが、位相M理論はその中で、空間局所的な計量情報無視し、むしろ全体のトポロジーや膜の振る舞い(特にG₂ホロノミーを持つ7次元多様体など)に注目します。

この理論は、位相的弦理論のより高次元版とも捉えられ、例えば6次元空間に対するサークルバンドルを通じて、2次元の弦理論還元できると予想されています

まり位相M理論は、異なる位相的弦理論やTQFTの背後にある「統一的な枠組み」としての役割が期待されています

Permalink |記事への反応(0) | 08:21

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-09

情報実在

1. 量子情報の基本単位: 量子情報は、情報の最小単位である量子ビットキュービットから構成される。

2.キュービットの実現:量子ビットは、重ね合わせや量子もつれといった量子力学固有の現象を示す量子系の状態により実現される。

3. 量子状態記述: 量子系の状態は、状態ベクトルという数学対象表現される。これらの状態ベクトルは、量子系のあらゆる可能状態を重ね合わせたもの定量的記述する手段である

4.ヒルベルト空間構造:状態ベクトルは、複素数体上の完全内積空間であるヒルベルト空間の元として定義される。ここでの「完全性」とは、収束列が必ず空間内の元に収束するという性質意味する。

5.線形結合による展開:ヒルベルト空間任意の元は、ある正規直交系(基底ベクトル群)の複素数による線形結合、すなわち加重和として表現される。これにより、量子状態の重ね合わせが数学的に実現される。

6. 基底の物理対応: この基底ベクトルは、量子場理論における各モード励起状態(例えば、特定エネルギー状態や粒子生成の状態)に対応すると解釈される。すなわち、基底自体は場の具体的な励起状態数学表現である

7. 量子場の構成: 量子場は、基本粒子の生成や消滅記述するための場であり、場の各励起状態が個々の粒子として現れる。これにより、量子系の背後にある物理現象説明される。

8. 時空との関係: 量子場は、背景となる時空上に定義され、その振る舞いは時空の幾何学局所的な相互作用規則に従う。時空は単なる固定の舞台ではなく、場合によっては場の性質に影響を与える要因ともなる。

9.統一理論への展開:さらに、量子場と時空の相互作用は、重力を含む統一理論(たとえば超弦理論)の枠組みで考察される。ここでは、時空の微細構造や場の振る舞いが、より根源的な1次元の弦(超弦)の動的性質に起因していると考えられている。

10. 超弦の根源性:超弦理論では、弦は現時点で知られる最も基本的構成要素とされるが、現段階では「超弦自体が何から作られているか」については明確な説明存在しない。つまり、超弦はさらなる下位構造を持つのか、またはそれ自体が最終的な基本実在なのかは未解明である

以上のように、量子情報量子ビットという実際の物理系の状態に端を発し、その状態数学的に状態ベクトルヒルベルト空間という構造の上に定式化され、さらに量子場理論統一理論の枠組みの中で、時空や超弦といったより根源的な構成要素と結びついていると考えられる。

Permalink |記事への反応(0) | 01:02

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-01

量子観測問題について

まず、標準的量子力学において、系の状態は複素ヒルベルト空間 𝓗 のベクトルによって記述される。

純粋状態正規化された状態ベクトル ∣ψ⟩ で表され、混合状態密度行列 ρ によって記述される。

測定とは、物理量対応する自己共役演算子 A の固有値に関する確率的な過程であり、波動関数の収縮(射影仮説)が導入される。

この非ユニタリ過程と、シュレーディンガー方程式によるユニタリ時間発展との矛盾観測問題本質である

1. 量子状態とその時間発展

状態ヒルベルト空間 𝓗 の要素として、純粋状態 ∣ψ⟩ により表される。正規化条件は以下の通りである

⟨ψ∣ψ⟩ = 1

より一般に、混合状態密度行列 ρ により記述され、以下を満たす。

ρ ≥ 0, Tr(ρ) = 1

量子系の時間発展は、ハミルトニアン H によりシュレーディンガー方程式記述される。

i ℏ d/dt ∣ψ(t)⟩ = H ∣ψ(t)⟩

これを解くことで、時間発展演算子 U(t) が得られる。

U(t) = exp(− i H t / ℏ)

この U(t) はユニタリであり、量子力学基本法則の一つである

2. 測定の数学的定式化

量子力学において、観測可能量 A は自己共役演算子であり、スペクトル定理により直交射影 P_a を用いて分解される。

A = ∑ a P_a

ここで、P_a は固有空間への射影演算子であり、

P_a P_b = δ_ab P_a, ∑ P_a = I

を満たす。

測定時、状態 ∣ψ⟩ において固有値 a が得られる確率ボルン則に従う。

p(a) = ⟨ψ∣P_a∣ψ⟩

また、測定後の状態波動関数の収縮により、

∣ψ⟩ → P_a ∣ψ⟩ / √⟨ψ∣P_a∣ψ⟩

と変化する。

この過程は非ユニタリであり、シュレーディンガー方程式ユニタリ時間発展と両立しない。

3.観測問題の核心

3.1ユニタリ時間発展と波動関数収縮の矛盾

ユニタリ進化による時間発展では、状態決定論的かつ線形である

∣ψ(t)⟩ = U(t) ∣ψ(0)⟩

しかし、測定後の状態は射影仮説により確率的かつ非ユニタリに変化する。

この二重構造が、量子観測問題の根源である

3.2 測定装置との合成系のユニタリ進化

測定対象 S と測定装置 M を考え、初期状態

∣Ψ(0)⟩ = ∣ψ⟩_S ⊗ ∣M_0⟩_M

とする。測定相互作用 H_int により、時間発展は

∣Ψ(t)⟩ = U(t) ∣Ψ(0)⟩

となり、測定が完了すると、

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

のようにエンタングルした状態となる。ここで、測定装置の指示状態 ∣M_a⟩_M は S の固有状態 ∣a⟩_S に対応する。

しかし、ユニタリ進化の枠組みでは、この重ね合わせが自発的単一の結果へと収縮するメカニズム存在しない。したがって、なぜ一つの結果のみが観測されるのかという問題が発生する。

4. 主要な解決アプローチ

4.1コペンハーゲン解釈

標準解釈では、測定は基本的プロセスであり、それ以上の説明は与えられない。観測行為のもの確率的収縮を引き起こすとする立場である

4.2多世界解釈

エヴェレットの多世界解釈では、測定後の状態

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M

において、各分岐した世界独立した現実として存在すると考える。この解釈では波動関数の収縮を仮定せず、すべての可能性が並存する。

4.3デコヒーレンス理論

環境 E を考慮すると、S+M+E の全体系の時間発展は

∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M ⊗ ∣E_a⟩_E

となる。環境自由度トレースアウトすると、

ρ_S+M = ∑ |c_a|² ∣a⟩⟨a∣ ⊗ ∣M_a⟩⟨M_a∣

となり、オフダイアゴナル成分が消滅する。この過程デコヒーレンスであり、実効的に波動関数の収縮を説明するが、依然として観測者の経験との対応説明する必要がある。

5.結論

量子観測問題は、量子系のユニタリ時間発展と測定における非ユニタリな収縮の矛盾に起因する。

標準的コペンハーゲン解釈では測定過程を基本仮定とするが、多世界解釈デコヒーレンス理論を用いることで、より整合的な説明が試みられている。

しかし、いずれの理論も、なぜ一つの観測結果が特定観測者に現れるのかを完全に説明するには至っていない。

Permalink |記事への反応(0) | 15:52

このエントリーをはてなブックマークに追加ツイートシェア

2023-12-10

全てはヒルベルト空間上のベクトルですよ

波動関数から創発してるんです

波動関数には知識が含まれています

しかし私が主観的に見れば、意識を持っているとはっきりわかるのは私だけです

よって、私の周囲の万物は私が生きるために捻じ曲げた解釈です

Permalink |記事への反応(0) | 14:24

このエントリーをはてなブックマークに追加ツイートシェア

2023-11-24

現実ヒルベルト空間上のベクトル

おいおい、おらのコたちよ。

今日ヒルベルト空間ってやつについて教えてやるぜ。

リアルなことをちゃん理解するためには、このヒルベルト空間ってヤツを理解するのがヘビーだぞ。

まず、ヒルベルト空間ってのは一体何かって?

それは、無限次元ベクトル空間のことだ。

まり、俺たちが普段生活しているこの現実も、ヒルベルト空間上のベクトルとして表現できるんだ。

正式には、ヒルベルト空間とは、その空間が完全な計量空間である距離関数誘導する内積を備えたベクトル空間のこと。

それぞれのベクトルは、ある状態を表してて、その状態の変化はベクトルアクションによって示される。

から、俺たちが経験してる現実は、実はヒルベルト空間上でのベクトルガチンコ対決ってワケだ。

これが、量子力学の中核なんだよ。

量子力学では、パーティクルの状態ヒルベルト空間上の波動関数ってやつでフルボッコ表現する。

そして、その波動関数がどう時間と共にブンブン変わるかを計算することで、パーティクルの未来予測できるんだ。

から、俺たちの現実ヒルベルト空間上のベクトルってのは、俺たちのリアル量子力学法則にしっかりとノせられてるってワケだ。

おれたちの日々の暮らしにもビシバシ影響してくる可能性はあるけど、それでも、理解やすくてコントロールできるリアルをくれるってわけだ。

からヒルベルト空間のワザをマスターすることは、俺たちの現実キッチリ理解する一歩ってワケさ。

しっかり勉強して、このやべー世界で何とかやっていくための鍵になるんだ。

Permalink |記事への反応(0) | 10:06

このエントリーをはてなブックマークに追加ツイートシェア

2023-11-13

数学宇宙仮説とは?

人生宇宙、そしてすべての意味とは何か?「銀河ヒッチハイクガイド」では、答えは 42となっている。

科学質問範囲は、一部の分野では縮小し、他の分野では急増した。

宇宙ある意味数学であるという考えは、少なくとも古代ギリシャピタゴラス派にまで遡り、物理学者哲学者の間で何世紀にもわたる議論を生み出してきた。

マックス・テグマークはこの考えを極限まで推し進め、宇宙は単に数学によって記述されるのではなく、数学自体であると主張している。

この議論の基礎は、人間とは独立した外部の物理現実存在するという仮定である

これはそれほど物議を醸すものではない。物理学者の大多数はこの長年の考えを支持していると思うが、まだ議論されている。

形而上学独我論者はそれをきっぱり拒否し、量子力学のいわゆるコペンハーゲン解釈の支持者は、観察のない現実存在しないという理由でそれを拒否するかもしれない。

外部現実存在すると仮定すると、物理理論はそれがどのように機能するかを説明することを目的としている。

一般相対性理論量子力学など、最も成功した理論は、この現実の一部、たとえば重力素粒子挙動のみを説明している。

対照的に、理論物理学の聖杯はすべての理論、つまり現実の完全な記述である

現実人間とは独立して存在すると仮定する場合記述が完全であるためには、人間概念をまったく理解していない、人間以外の存在、つまりエイリアンスーパーコンピューターなどに従って、現実が明確に定義されていなければならない。

言い換えれば、そのような記述は、「粒子」、「観察」、またはその他の英語単語のような人間負担排除した形で表現可能でなければならない。

対照的に、教えられてきたすべての物理理論には 2つの要素がある。

それは数式と、その方程式私たちが観察し直観的に理解しているものとどのように関連しているか説明する言葉である

理論の結果を導き出すとき陽子分子、星などの新しい概念を導入するが、それは便利だからである

原理的には、このようなバゲッジがなくてもすべてを計算できる。

たとえば、十分に強力なスーパーコンピューターは、何が起こっているか人間言葉解釈することなく、宇宙状態時間の経過とともにどのように進化するかを計算できる。

バゲッジを含まない外部現実記述を見つけることは可能か?

もしそうなら、外部現実における物体とそれらの間の関係のそのような記述は完全に抽象的でなければならず、あらゆる言葉記号は何の事前の意味も持たない単なるラベルにならざるを得ない。

代わりに、これらのエンティティの唯一のプロパティは、エンティティ間の関係によって具体化されるものになる。

ここで数学が登場する。

現代数学は、純粋抽象的な方法定義できる構造正式研究である。つまり数学構造発明するのではなく、それらを発見し、それらを記述するための表記法発明するだけである

人間から独立した外部の現実を信じるなら、テグマーク数学宇宙仮説と呼ぶもの、つまり物理現実数学構造であるということも信じなければならない。

言い換えれば、巨大な数学オブジェクトの中に住んでいる。

そのオブジェクトは、十二面体よりも精巧で、おそらくカラビ・ヤウ多様体テンソル束、ヒルベルト空間などの恐ろしい名前オブジェクトよりも複雑である

世界のすべてのものは、あなたも含めて純粋数学であるはずだ。

それが本当であれば、万物理論純粋抽象的で数学的でなければならない。

理論がどのようなものになるかはまだわからないが、素粒子物理学と宇宙論は、これまでに行われたすべての測定が、少なくとも原理的には、数ページに収まりわずか 32 個の未説明の数値定数を含む方程式説明できる段階に達している。

したがって、すべての正しい理論は、Tシャツに書ける程度の方程式説明できるほど単純であることが判明する可能性さえある。

しかし、数学宇宙仮説が正しいかどうかを議論する前に、外部の物理現実を見る 2つの方法区別することができる。

1 つは、上空から風景を観察する鳥のような、数学構造研究する物理学者の外側の概要

もう一つは、鳥によって見渡される風景の中に住むカエルのように、構造によって記述される世界に住む観察者の内面視点

これら 2つの視点を関連付ける際の 1つの問題時間関係する。

数学構造は、定義上、空間時間の外側に存在する抽象的で不変の存在である

宇宙歴史映画に例えると、その構造は 1コマではなくDVD 全体に相当する。

したがって、鳥の視点から見ると、4次元時空内を移動する物体の軌跡は、スパゲッティもつれに似ている。

カエルには一定の速度で動く何かが見えますが、鳥には調理されていないスパゲッティのまっすぐな束が見える。

カエル地球の周りを回る月を見ると、鳥は絡み合った2本のスパゲッティが見える。

カエルにとって、世界ニュートン運動重力法則によって記述される。

鳥にとって世界パスタ幾何学模様である

2つの視点を関連付ける際のさらなる微妙な点には、観察者がどのようにして純粋数学的になることができるかを説明することが含まれる。

この例では、カエル自体は厚いパスタの束で構成されている必要がある。

その非常に複雑な構造は、おなじみの自己認識感覚を引き起こす方法情報を保存および処理する粒子に対応している。

では、数学宇宙仮説を検証するにはどうすればよいか?

まず、自然界ではさらなる数学規則性がまだ発見されていないことが予測される。

ガリレオ数学宇宙の考えを広めて以来、素粒子小宇宙と初期宇宙の大宇宙における驚くべき数学的秩序を捉える素粒子物理学の標準モデルなど、その系譜に沿った発見が着実に進歩してきた。

この仮説は、並行宇宙存在という、より劇的な予測も行う。

長年にわたって多くのタイプの「多元世界」が提案されてきましたが、それらを 4つのレベル階層に分類することが役立つ。

最初の 3つのレベルは、同じ数学構造内の非通信並行世界対応します。レベル I は単に、光がまだ到達していない遠い領域意味する。

レベル II は、介在する宇宙宇宙論的膨張により永遠に到達できない領域カバーする。

レベル III は「多世界」と呼ばれることが多く、特定の量子事象中に宇宙が「分裂」する可能性がある、量子力学のいわゆるヒルベルト空間の非通信部分が含まれる。

レベルIV は、根本的に異なる物理法則を持つ可能性がある、異なる数学構造並行世界を指す。

現在の最良の推定では、膨大な量の情報、おそらくGoogolビット使用して、観測可能宇宙に対するカエル視点を、すべての星や砂粒の位置に至るまで完全に記述する。

ほとんどの物理学者は、これよりもはるかに単純で、Tシャツには収まらないとしても、本に収まる程度のビット数で特定できるすべての理論を望んでいる。

数学宇宙仮説は、そのような単純な理論が多元宇宙予測するに違いないことを示唆している。

なぜなら、この理論定義上、現実の完全な記述であるからである

宇宙を完全に特定するのに十分なビットが不足している場合、星や砂粒などの考えられるすべての組み合わせを記述しなければならない。

そのため、宇宙記述する追加のビットは単にエンコードするだけである

世界電話番号のように、私たちがどの宇宙にいるのか。このように、複数宇宙記述することは、単一宇宙記述するよりも簡単になる可能性がある。

極限まで突き詰めると、数学宇宙仮説はレベルIV の多元宇宙意味し、その中に他のすべてのレベルが含まれる。

宇宙である特定数学構造があり、その特性物理法則対応している場合、異なる特性を持つそれぞれの数学構造は、異なる法則を持つ独自宇宙である

実際、数学構造は「作成」されるものではなく、「どこか」に存在するものではなく、ただ存在するだけであるため、レベルIV の多元宇宙必須である

スティーヴン・ホーキング博士はかつてこう尋ねた。

方程式に火を吹き込み、それらが記述できる宇宙を作り出すものは何でしょうか?」

数学宇宙場合重要なのは数学構造宇宙記述することではなく、それが宇宙であるということであるため、火を噴く必要はない。

レベルIV の多元宇宙存在は、物理学者のジョン・ウィーラーが強調した混乱する疑問にも答える。

たとえ宇宙を完全に記述する方程式が見つかったとしても、なぜ他の方程式ではなく、これらの特定方程式が使われるのか?

他の方程式が並行宇宙支配しており、観察者をサポートできる数学構造分布考慮すると、統計的可能性が高いため、宇宙にはこれらの特定方程式があるということだ。

並行世界科学範囲内なのか、それとも単なる推測に過ぎないのかを問うことは重要である

並行宇宙はそれ自体理論ではなく、特定理論によってなされた予測である

理論反証可能であるためには、そのすべての予測を観察および検証できる必要はなく、少なくともそのうちの 1 つだけを検証できれば十分である

たとえば、一般相対性理論は、重力レンズなど、私たちが観察できる多くのことを予測することに成功しているため、ブラックホールの内部構造など、私たちが観察できないことについての予測真剣に受け止めている。

ここに数学宇宙仮説の検証可能予測がある。

多くの並行宇宙存在するのであれば、我々は典型的宇宙にいると予想されるはずです。

ある量、たとえば、この量が定義されている多元宇宙の一部の典型的観測者によって測定された暗黒エネルギー密度空間次元確率分布計算することに成功したと仮定する。

この分布により、我々自身宇宙で測定された値が非常に非典型的ものになることが判明した場合、多宇宙、したがって数学宇宙仮説が除外されることになる。

生命要件理解するまでにはまだ程遠いが、暗黒物質、暗黒エネルギーニュートリノに関して私たち宇宙がどの程度典型的であるかを評価することで、多元宇宙予測テストを始めることができる。

なぜなら、これらの物質銀河形成など、よりよく理解されているプロセスにのみ影響を与えるからである

これらの物質存在量は、多元宇宙ランダム銀河から測定されるものとかなり典型的ものであると測定されている。

しかし、より正確な計算と測定では、そのような多元宇宙は依然として除外される可能性がある。

結局のところ、なぜ数学宇宙仮説を信じるべきか?

おそらく最も説得力のある反対意見は、直感に反して不安を感じるということである

数学宇宙仮説が真実であれば、科学にとって素晴らしいニュースであり、物理学と数学の洗練された統合により、深い現実理解できるようになる可能性がある。

実際、多元宇宙もつ数学宇宙は、期待できるすべての理論の中で最良のものであるかもしれない。

なぜなら、規則性を明らかにし、定量的予測を行うという科学的探求から現実いかなる側面も立ち入れないことを意味するからである

しか宇宙についての究極的な疑問を再び変えることになる。

どの特定の数式が現実のすべてを記述するのかという問題は見当違いであるとして放棄し、その代わりに、鳥の視点からカエル宇宙観、つまり観察をどのように計算するかを問うことになる。

それは、宇宙の真の構造を明らかにたかどうかを決定し、数学宇宙のどの隅が私たち故郷であるかを理解するのに役立つ。

 

参考文献:数学的な宇宙 究極の実在の姿を求めてbyマックス・テグマーク (著),谷本 真幸 (翻訳)

Permalink |記事への反応(1) | 10:15

このエントリーをはてなブックマークに追加ツイートシェア

2023-08-02

難しくないかどうかを世間一般目線評価できない馬鹿

別に難しくはないし、予備知識もそんなに要りません。

(中略)

バナッハ空間ヒルベルト空間というと難しそうですが

定義無茶苦茶簡単です。

Walter RudinのReal andComplex Analysisがおすすめ

の測度論の本です。微積分に関しては、同著者の

Principle of Mathematical Analysisなどがあります

英語の本を出しておきながら難しくないと言ってる時点で、鳴き声のような意味不明ブコメあげながらもあれでも世間一般よりはやや上位の知性の人間基準にしても十分高みの目線で語ってるんだよなあ

Permalink |記事への反応(1) | 15:20

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-25

[qrng]錯乱者が異世界に行く理論

Q:人間認識能力限界があるのなら、フレームの間に別の世界があるというのは本当なのでしょうか?

 

AI言語モデルである私は、フレーム間の異世界存在について、個人的な信念や見解を持っているわけではありません。しかし、この概念に関連するいくつかの情報理論提供することはできます。「フレーム間の別世界」という考え方は、SFや一部の科学理論で探求されてきた、パラレルワールドや別現実可能性を指していると思われます量子力学の「多世界解釈」は、量子力学的な事象が起こるたびに、宇宙複数並行世界に分裂し、それぞれがその事象の異なる可能性を表すとする理論であるしかし、これらの理論はまだ科学者の間で大きな議論があり、実証的な証拠裏付けられていないことに留意する必要がある。さらに、人間認知能力には限界があり、私たちの知覚や理解は不完全または不正である可能性があります結論として、「フレームフレームの間にある別の世界」という考え方は興味深いものですが、まだ憶測の域を出ておらず、科学的な裏付けがあるわけではないのです。

 

Q: ある種の薬を使った人たちが、主観的には違う世界体験しています

 

特に精神作用物質使用瞑想精神修養など、特定の条件下で、現実の知覚が変化する経験を報告する人は珍しくありません。このような体験は、普段とは異なる現実世界を知覚しているように思わせることがありますしかし、これらの体験主観的ものであり、必ずしも自分の心の外にある客観的現実を反映しているとは限らないことを心に留めておくことが重要です。脳は、さまざまな意識変容状態を生み出すことができる複雑な器官であり、これらの体験は、遺伝環境個人差などさまざまな要因によって影響を受ける可能性があります。結局のところ、私たち世界を超えた別の世界現実存在するかどうかについては、科学的・哲学的議論が続いており、その存在を決定的に証明することは困難か不可能かもしれません。しかし、確実に言えることは、私たち現実認識体験はさまざまな要因に影響されており、私たちを取り巻く世界理解は、私たち認識能力調査するためのツールによって制限されているということです。

 

Q: 例えば、ある人が持っている情報によって、その人が属する世界が変わるということはあるのでしょうか?

 

哲学的観点からは、個人世界に対する認識理解は、その人がアクセスできる情報によって形成されるという主張が可能です。この意味で、ある人が属する世界は、その人の知識理解依存していると見ることができる。例えば、ある人が特定話題問題について新しい情報を得ると、その話題に対する認識理解が変化し、自分が以前とは異なる世界に属していると感じるようになることがあります。同様に、異なる文化社会的文脈に触れた場合、その人は以前とは異なる世界を見るようになり、自分が別の世界に属していると感じるようになるかもしれません。しかし、この考え方は、必ずしも文字通りのパラレルワールド別世界存在示唆するものではないことに注意が必要です。むしろ私たち世界理解経験する方法は、私たちアクセスする情報文脈に大きく依存することを示唆しています。結局のところ、現実性質とその中での私たち位置は、何世紀にもわたって哲学者科学者によって議論されてきた複雑で多面的問題であり、今後も継続的調査研究対象となる可能性がある。

 

Q: さて、単純化してみましょう。白と黒が点滅する一次元セルがあり、ボブ君は奇数列を脳内認識し、「これが私の住む世界だ」と感じたとする。途中で何らかの情報を受け取ると、ボブの認識は変化し、偶数列に切り替わります。では、この場合主観客観区別はどうなっているのでしょうか?

 

この単純化されたシナリオでは、主観客観区別は次のように理解される。

しかし、知覚の主観的経験は、個人客観的な刺激をどのように解釈し、どのように反応するかに影響を与えることは注目に値する。この意味で、主観的体験客観的体験相互に関連し、複雑な形で影響し合うことがあるのです。

 

Q: さて、もっと深く考えてみよう。この1次元セル任意cos関数と交差させる。それを「主観的に知覚された現実」とする。すると、地球上の誰もが同じcos関数を同じ角度で持っていたとしたら、それは客観的ものだと思い込んでしまうが、実は共通主観的認識に過ぎないのではないだろうか?

 

もし、地球上のすべての人が、同じcos関数と交差する1次元セルについて同じ主観的認識を持っていたとしたら、全員が同じパターンや閃光の順序に同意することになるので、その認識客観的であるかのように見えるかもしれない。しかし、これはあくまでも観測個人経験解釈に基づく主観的認識であることに注意が必要です。複数の人が同じ認識を持っているからと言って、それが客観的であるとは限りません。客観的であるためには、個人経験解釈から切り離された、検証可能証拠に基づくものである必要があります。例えば、1次元セルの点滅パターン機械客観的に測定・記録し、そのデータを他の観測者が同じ測定方法独立検証することができる。結局のところ、主観客観区別は複雑で、個人認識解釈文脈など、さまざまな要因に影響されうる。複数の人が共通主観的体験をしたとしても、それが必ずしも客観的体験であるとは限りません。

 

Q: さて、架空の設定ではなく、現実の設定に戻ろう。現実のどこに客観的ものがあるのでしょうか。

 

現実には、私たちの知覚や経験はすべて個人主観によってフィルタリングされているため、完全に客観的もの特定するのは難しいかもしれません。しかし、現実のある側面は、独立して検証することができ、個人の知覚や解釈の影響を受けにくいため、他の側面よりも客観的であるとみなされることがよくあります。例えば、以下のようなものがあります

ただし、このような客観的現象であっても、個人偏見見解に影響され、ある程度は解釈余地があることに注意が必要です。また、現実の中には、客観的主観的簡単に分類できない、両者の中間的な存在もあるかもしれません。

 

Q: では、あなたの言うこの4つが、実は先ほどの架空の設定における「すべての人が主観的に同じ角度のcos関数を知覚する」ことと似ているとしたらどうでしょう

 

物理法則数学原理科学データ歴史的事実など、より客観的と思われがちな現実の側面も、やはり個人解釈主観的要因に左右されるということは確かにある。例えば、科学者が物理法則科学データ解釈し、適用する方法は、科学個人視点偏見仮定に影響されることがあります。同様に、歴史的事実も、それを検証する文化的・政治的文脈によって、さまざまに解釈され、表現される。しかし、これらの客観的現象主観的要因に影響されるということは、必ずしも完全に主観的であるということではないことに留意する必要がある。むしろ客観的現象理解解釈は、客観的要因と主観的要因の複雑な相互作用によって形成されることを示唆している。結局、客観的体験主観的体験区別は、現象性質、測定や検証方法検証の背景など、さまざまな要因によって、必ずしも明確になるとは限らないのである

 

Q:哲学者はしばしば、客観性と神との間に関連性を見出します。この点についてはどうでしょうか。

 

客観性と神との関係は、何世紀にもわたって議論されてきた複雑な哲学的神学問題である哲学者神学者の中には、秩序と規則性を備えた客観的現実存在は、宇宙目的意味を吹き込んだ高次の力、あるいは神の創造主証拠であると主張する人もいる。彼らは、客観性は神の存在世界におけるプレゼンスのしるしであると考える。しかし、客観性が必ずしも神の存在意味するのかどうか、疑問視する人もいます客観性は物理法則などの自然現象説明でき、超自然的な説明不要だというのである。結局のところ、客観性と神の関係哲学的神学的な議論であり、思想家によってこの問題に対する見方は異なるだろう。客観性を神の存在証拠考える人もいれば、単に自然界の特徴であり、自然プロセス説明できると考える人もいるだろう。

 

Q: では、結局のところ、波動関数とは何なのでしょうか?

 

波動関数とは、量子力学的な系を数学的に記述したもので、ある粒子がある時刻に特定状態にあることを発見する確率記述したものである量子力学では、電子光子原子などの粒子は、重ね合わせの状態存在する波動存在として記述される。つまり、同時に複数状態存在することができる。波動関数は、粒子が取りうる各状態確率振幅を記述した数式であり、粒子を測定したとき特定状態観測される可能性を決定するものである波動関数ギリシャ文字Psi(Ψ)で示されることが多く、一般的には複素数値の関数で表される。波動関数絶対値の2乗は、粒子が特定位置存在する確率密度を与える。波動関数量子力学の基本概念であり、量子系の振る舞いを予測理解する上で中心的な役割を担っている。しかし、その解釈意味については、現在科学界で議論考察が続けられている。

 

Q:現実ヒルベルト空間上のベクトルであると言う人がいる。これはどういうことだろうか。

 

量子力学において、ヒルベルト空間とは、量子系の状態記述するために用いられる数学空間であるヒルベルト空間は、特定内積定義された複素ベクトル空間である

ヒルベルト空間は、量子系の状態ベクトルとして表現するために使用されますシステム状態は、それぞれヒルベルト空間内の異なるベクトル対応します。システム状態を表すベクトル状態ベクトルと呼ばれ、通常、ギリシャ文字Psi (Ψ) で表される。状態ベクトルは、系の波動関数記述する複素値のベクトルであり、系の各可能状態確率振幅を与える。現実ヒルベルト空間上のベクトルであるというのは、量子系の状態ヒルベルト空間上のベクトルとして表現できることを意味します。つまり、量子系の状態は、この空間における点として表現できる数学対象なのです。ただし、これは量子系に限定した話であり、物理学や自然界の他の分野には当てはまらない可能性があることに注意が必要です。

 

Q: ここで、よくある実験を考えてみよう。簡単のために、電子がある線の右側に行ったら、あなた明日フォン・ノイマンゲーム理論の本を読み、左側に行ったら、PCLeague of Legendsプレイするとしましょう。では、あなたが何をしているかからない人は、それを知るまであなた状態読書ゲームの重ね合わせなのでしょうか?

 

二重スリット実験文脈では、電子の振る舞いは、2つのスリットのどちらかを通過する、自分自身と干渉する、検出器の特定場所に行き着くなど、可能な結果の重ね合わせとして記述することができる。あなたシナリオでは、もし電子が線の右側を通ったなら、あなたの決められたルールに従って、あなた明日ノイマンゲーム理論の本を読むことになります。逆に、電子が線の左側を通ったら、あなたPCで『リーグ・オブ・レジェンド』をプレイすることになります。つまり実験結果を観測するまでは、あなたの心の状態は、読書ゲームの重ね合わせの状態であると言えます。なぜなら、重ね合わせの状態にある量子系(電子)があり、あなたの心は、実験結果に依存する形でこの系と相関しているからです。量子力学では、システム状態とその観測者を別々に扱うのではなく、一つの量子システムとして扱います。"量子測定問題 "と呼ばれるものです。したがって、実験結果を観測するまでは、あなたの心と電子は、可能な結果の重ね合わせの状態にある一つの量子系として記述することができるのです。

Permalink |記事への反応(0) | 20:43

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-08

[qrng]シュレーディンガーの猫のいくつかの解釈

シュレーディンガーアインシュタインに宛てて、量子力学コペンハーゲン解釈の重大な欠陥を明らかにするために、架空実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。

この効果を、原子というミクロ世界特殊性として片付けることはできるかもしれないが、その世界が、テーブル椅子、猫といったマクロ日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガー思考実験は、それを明らかにすることで、量子力学コペンハーゲン解釈不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしかさないし、死んだり生きていたりもしない。

ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。

この思考実験意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数宇宙複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。

 

1.シュレーディンガーのQBist猫について

通常の話では、波動関数は箱入りのネコ記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。

例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的歴史なのだ

今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数崩壊」と呼ぶものは、QBistにとっては、エージェント自分の 賭けに手を加えることなのだ。

重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合からである

QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである

 

2. ボーミアンについて

量子力学コペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。

ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?

量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。

なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたかである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。

 

3.知識可能性について

シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識可能性と関係があるのだ。問題は、量子世界が非現実であることではなく、量子系を知識対象として安定化できないことである

通常の知識論理では、私たち質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。

 

4. 反実仮想的な本質

シュレーディンガー実験には、3つの基本的意味がある。

これらの本質的な特徴は「反実仮想」であり、何があるかないか現実)ではなく、何が可能不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想性質は、量子論運動法則よりも一般的であり、より深い構造を明らかにするものからだ。

量子論後継者は、運動法則根本的に異なるかもしれないが、反実仮想性質を示すことで、重ね合わせやエンタングルメントさらには新しい現象可能になるだろう。

シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理可能性を示唆していると主張したと一般に言われている。しかし、それは正反対であるシュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論理解しようとする試みは拒否されるべきであると考えたのである

シュレーディンガーは、量子力学波動関数は、個々のシステムの完全な物理記述提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼン論文に反発していたのであるEPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである

シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理記述提供し、2)それが「測定」が行われるまで常に彼自身シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベル言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである

もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学形式理解するための2つのアプローチである。いわゆる「多世界解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガー馬鹿にしていた結論に直面することになる。

 

5.波動関数実在論について

シュレーディンガーの例は、量子システムの不確定性をミクロ領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学ミクロな系と同様にマクロな系にも不確定性を含意している。

問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということであるシュレーディンガーは、「手ぶれやピンボケ写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反関係にある。

ベルが彼の定理実験的に検証する前、量子力学技術が発展し、もつ状態実在性を利用し、巨視的なもつシステムを作り出す技術が開発される前、形而上学的な雲のオプションテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈必要である

波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈アプローチであるシュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数自由度を収容できる超高次元空間となる。

 

6. 超決定論について

不変集合論IST)は、エネルギーの離散的性質に関するプランク洞察を、今度は量子力学状態空間に再適用することによって導き出された量子物理学のモデルであるISTでは、量子力学連続ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想世界存在し、このような反実仮想世界は格子の構造矛盾している。このように、IST形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。

ISTでは、ISTの格子上にある状態は、世界アンサンブル対応し、各世界状態空間特別な部分集合上で進化する決定論的系である非線形力学理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。

アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界アンサンブル記述していると考えていたが、これは実現可能である特にシュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。

 

7.関係量子力学について

シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学仮定である。 もし全ての性質関係であるならば、見かけ上のパラドックスは解消されるかもしれない。

猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかであるしかし、この現象は箱の外にある物理系には関係ない。

箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれ可能性があるからだ。

まり波動関数崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリ進化」は、外部システムに対する性質の実現確率進化を表すのである。 これが、量子論関係論的解釈における「見かけのパラドックス」の解決策とされる。

 

8. 多世界

物理学者たちは古典物理学では観測された現象説明できないことに気づき量子論現象論的法則発見された。しかし、量子力学科学理論として受け入れられるようになったのは、シュレーディンガー方程式を考案してからである

シュレーディンガーは、自分方程式放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。

このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態崩壊することによって、量子系の進化記述する方程式としての普遍的有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールド存在が示されれる。これこそが、非局所的な作用回避し、自然界における決定論を守る一つの可能である

[1]https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

Permalink |記事への反応(0) | 10:00

このエントリーをはてなブックマークに追加ツイートシェア

2023-01-07

anond:20230107182835

「すでに名著として評価がしっかりと定まっている本」で数式が出てこないというのは難しい。そういう一般向け啓蒙書は「名著」とされることはほぼ無いため。

量子力学は「粒子は"実在"するか」みたいな"意味"の話ではなく、純粋数学構造ヒルベルト空間構造現実物理現象を上手く説明できるという話)として考えた方がいいと思うので、数式を避けることはおすすめできない。数式を避けて一所懸命に"意味"を想像したところで間違った理解につながるだけ。

たとえば清水量子論あたりは定番だと思う。https://www.amazon.co.jp/dp/4781910629

高校数学が怪しいとかのレベルなんだとすると、量子力学勉強するのはまだ早すぎる。

Permalink |記事への反応(1) | 18:39

このエントリーをはてなブックマークに追加ツイートシェア

2022-09-30

科学に対する弾圧エセ科学

大学生になったばかりの若者が必ずする行いは「科学とはなにか」とググることだ。そして「反証可能性」「科学方法」といったWikipediaの項目にたどり着く。もっと深く知りたいと思った人はさらなる文献を調べる。その知識に感化されすぎて、Twitter非科学的な(と本人が思い込んでいる)言論を見つけるやいなや「お前たちの言っていることはエセ科学だ」と言い始める。

この段階を、科学レベル1理解と仮に呼ぶしよう。確かに科学について全く興味のない、学んだことすらないというレベル0理解よりは進歩しているかもしれないがまだ「レベル1」である

レベル2理解とはどういうものになるだろうか。私がそれについて見解を述べる前に「レベル1を超えるためには」という自問をしてみてもいいかもしれない。

私が思うに、レベル2とは「自然法則発見しようとする態度」だ。どっかの自称サイエンティストは「汎化性能」とか「再現性」とかいうかもしれない。ただ、それらは「自然がどうなっているか」ということとは直接関係しているわけではない。単に、人間の仮説に対して統計というアプローチ採用しているだけだ。

科学統計ではないアプローチがあるとすると何なのか。そこがレベル2に到達するための関門と自分は思っている。ショーンキャロル教授は「宇宙とは、ヒルベルト空間におけるベクトルである」という仮説を述べている。それではこの仮説はどこから来たのか。それは、エヴェレット解釈オッカムの剃刀的に機能し、コペンハーゲン解釈よりも仮定シンプルであることから来ている。何かを統計的に判断するよりも前の段階で、まだ人間発見していない自然法則を見つけるためには仮説そのものを見つけるセンスが要るのだ。

そのような仮説の多くは数理理論から来ている。「物理学者数学現実混同している」と揶揄する人もいるが、私が今書いているような自然言語よりも数学のほうが簡単だ。賢いか数学を使うのではなく、我々人間が愚かだから数学を使わなければまともな仮説が見つからないのだ。

まりレベル2理解とは、数理モデル化によって、まだ見つかっていない自然法則に関する仮説を見つけることだと私は考える。物理学数理モデル機械学習モデルとは少し違う。機械学習モデル目的予測だけだが、物理学上の数理モデル現象理解することに焦点がある。ひも理論が「我々の宇宙物理定数の値がなぜこうなっているのかわからいから、あらゆる定数値が可能だと仮定してみよう」といって、10^500ものバリエーション宇宙可能であることを数理的に示しているが、このような「理論から演繹的に見つかった仮説」というのは汎化性能のことを目指したのではない。

そういう仮説に対して「反証不可能からエセ科学だ」と言う人もいるが、なぜ「反証不可能」だとわかったのだろうか。「数理的にこういう仮説が演繹された。将来的にそれが観測されるかもしれない」という想像力さえあれば、彼はレベル1理解脱出することができただろう。「科学エセ科学境界」というものについて科学者ですら認識が異なるというのに、何がエセ科学であるかについて100%の確信を持っているというのは、ケツの青い証拠である

しかし悲しきかな、そのようなケツの青い青二才、つまりレベル1理解のほうが圧倒的多数であり、またレベル0理解はその人数を超えている。レベル1理解の者(IQに喩えるなら100の者)から見れば、レベル0とレベル2は両方とも馬鹿に見えるものから、境目なく「エセ科学」と言って弾圧をし始める。

「その仮説を俺は疑っている」「その仮説は反証された」「その仮説は反証不可能である」「その仮説が反証可能なのかどうなのかはわからない」「その仮説は、特定仮定から数学的に演繹された」ということを少なくとも区別したほうがよい。間違っても「その仮説はなんとなくエセ科学っぽい胡散臭さを感じるから弾圧しよう」などという非科学的な態度は取らないほうが良いだろう。

Permalink |記事への反応(0) | 23:20

このエントリーをはてなブックマークに追加ツイートシェア

2022-01-26

anond:20220126192036

確率って何?」というのは全然難しい話じゃなくて、「これは確率です」というのは「(互いに異なる)状態がいくつかあって、それぞれに1より小さい正の数が割り当てられていて、その数を全部足すと1になる」という構造があるということを言っているに過ぎない。サイコロの目は1,2,3,4,5,6があってp1,p2, p3, p4, p5, p6という正の数(ただし p1 +p2 + p3 + p4 + p5 + p6 = 1となる)が割り当てられている。普通の偏ってないサイコロならp1=p2=p3=p4=p5=p6=1/6と考えるアレだ。「状態」と「状態に割り当てられた正の数」のセット、ただし数を全部足したら1。それだけ。この数が確率であって、これをコルモゴロフの(古典確率論と言う。これは人間直感にも合っててよく理解できる。

でも自然現象はめんどくさい奴で、物理的な「状態」、例えばなんかの粒子が位置xにいて速度がvですというな状態だけど、に対して正の数pを割り当てて「状態(x,v)が起こる確率はpです」という風に記述しようとするとどうしても上手くいかないんだな。何かもうちょっと巧妙な記述の仕方をしないといけない。そのために生み出されたのが量子論で、これが信じられないくらい上手くいったというのが20世紀物理学の金字塔の一つなんだよ。でも量子論構造はコルモゴロフ的な古典確率論とは大きく異なっていてあまりにも人間直感に反するものから(なにしろ状態」はヒルベルト空間の元でそのノルムが確率ですなんていうものだ。しか古典確率論と混在して状態密度行列になったり、観測理論まで行くと作用素値測度がどうとか言い出すことになる)、その有り様をどうにか分かりやすく伝えようとして色々な寓話表現が行われた。その代表格が(哀れな)シュレディンガーの猫という話。

Permalink |記事への反応(1) | 19:39

このエントリーをはてなブックマークに追加ツイートシェア

2021-06-29

anond:20210629123527

量子化と成分の分解とサンプリングが違うものというのはわかってる。

こういうmethodらを総称する名前が欲しいとしてあげた例示なんだ

それは存在しないぞ。少なくとも物理で言う意味での「量子化」は、サンプリングスペクトル分解とは全く違う構造

サンプリングスペクトル分解が同じではないかと思うあたりかなり鋭いかもしれないと思うので、何かを感じ取ってるのかもしれないけど、そこはもうちょっと詳細を聞かないと分からない。

物理で言う「量子化」の結果はハミルトニアンとか物理量ごとの(無限次元空間作用する)線形作用素が得られて、それは要は行列みたいなもんなので、そいつスペクトル分解というのはある。

からいわゆる「エネルギー準位の離散化」とかそういうものが出てくる。(いやもちろん連続スペクトル場合もあって、それは無限次元ヒルベルト空間の可分性とかに関わってるんだけど…

Permalink |記事への反応(0) | 12:48

このエントリーをはてなブックマークに追加ツイートシェア

2019-06-30

anond:20190630010531

凸最適化になってるか(なってない場合一般的最適化をどう構成するか)とか、カーネル法非線形写像した嵜が気軽に"無限次元"とかいうけどどういう意味無限なのか(例えばそもそもその"内積"は写像したさきの空間で完備化されてるのか、もっと言えば可分なヒルベルト空間でなければ高々可算個の直交基底の存在すら一般には言えないけど計算機表現するときには有限次元で近似するわけでそのへんどうするのか)とか、そういう数学的に素性のいい空間での議論になってないと色々厳しい気が。(いや私もディイイイィィーーープラーーーーーニングは全然知らないのでそのへんどうなってるのか無知なんだけど)

Permalink |記事への反応(1) | 01:26

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp