
はてなキーワード:トポスとは
超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス・代数構造として再構成する。
超弦理論とは、以下の大枠で捉えられる。
超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学的階層のこと。
ここでいう高次対象の網とは
つまり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造を形成する。
世界の構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位(ローカルな抽象操作の束)として扱う。
局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。
この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成と整合する。
具体的な「紐」は出てこない。
代わりに、
その結果
すべてが幾何的実体ではなくホモトピー代数的な関係パターンとして統一される。
S-双対性、T-双対性、U-双対性、ホログラフィー、ER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。
つまり
最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能な領域として幾何を生む。
これを抽象化すると、
つまり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。
相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。
例:
5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。
量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である。
因子化代数のテンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。
大域構造と整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。
高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: TheLast Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
今朝も僕のルーティンは完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠相同調プロトコルの成果である。まず歯を磨き(電動歯ブラシはPhilipsSonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相が乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。
昨日の日曜日、ルームメイトがNetflixでマーベル作品を垂れ流していた。僕は隣で視覚的ノイズに曝露された被験者の前頭前皮質活動抑制についての文献を読んでいたが、途中から音響的干渉が許容限界を超えた。仕方なく僕はヘッドフォン(Sennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系の無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快な行為を自発的に選択する人間の気が知れない。
午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉と油脂の比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である。彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間は事実の指摘をユーモアと解釈するのか、これも進化心理学の謎のひとつだ。
夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配をテーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数をラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果のシミュレーションを笑いながらできる者だけだ。
夜は超弦理論のメモを整理した。E₈×E₈異種ホモロジーの拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論の11次元項の一部は非可換幾何のホモトピー極限として再定式化できる。僕はこの仮説をポスト・ウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。
深夜、SteamでBaldur’sGate 3を起動した。キャラビルドはIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile →MistyStep → Counterspell →Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールでダイスロールに物理的擬似乱数生成器を使っている(RNGでは信用できない)。
こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論の俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元で振動するのではなく、∞-圏的に層化された概念の空間で震えているのだとしたら人間の意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。
まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー、20時30分から22時まで論文の読み込み。
現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。
ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れな提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。
僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダル構造の可換性条件が自然変換として収束する瞬間を可視化することだ。
今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体のファイバー化」について考えていた。
一般相対論と量子力学の不一致などという低次元の問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。
つまり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。
これによって、弦という一次元的存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。
現行のM理論が11次元を仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体が物理的観測量になる。
もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。
隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。
彼女は一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。
もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。
22時前、僕は友人たちとオンラインでBaldur’sGate 3のマルチプレイをした。
友人Aは相変わらず盗賊ビルドで味方のアイテムを勝手に漁るという犯罪的行為を繰り返し、友人BはバグったAIのように無言で呪文を詠唱していた。
僕はWizardクラスで完璧に戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage ExpectationValueを算出して最適行動を決定する。
つまり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率と因果の実験装置であり、何より僕がゲームを選ぶ基準は「バランスの崩壊が数式で表現できるか否か」だ。
今日もルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。
寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射のスペクトル密度に近づける。完璧な環境だ。
僕はこれから、寝る前の最後の思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。
もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義は無効化されるだろう。
時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。
今日もまた、僕のルーティンは完璧なシンメトリーを保っていた。7時00分に目覚ましが鳴る前に自然に目が覚め、7時01分に歯を磨き、7時10分に電子レンジで正確に85秒温めたオートミールを食べた。ルームメイトはまだ寝ていた。いつも思うが、彼のサーカディアンリズムはエントロピー的崩壊を起こしている。朝の段階であれほど乱雑な髪型が可能だということは、局所的に時間反転対称性が破れている証拠だ。
午前中は超弦理論のメモを整理していた。昨日の夜、AdS/CFT対応を一般化する試みとして、非可換幾何の上に定義された∞-群oid的対称性構造を考えた。従来の高次圏理論的定式化では、物理的可観測量の定義が局所的モデル圏に依存しているが、僕の新しい仮説ではそれをKan拡張ではなく、∞-トポス上の(∞,1)-層として扱う。これにより、M理論の11次元多様体上でのフラックス量子化条件を、デリーニュ‐ベイルン加群による層コホモロジーに書き換えることができる。ルームメイトに説明したら、彼は「君が言ってることの3単語目からもう分からない」と言った。僕は丁寧に言い直した。「つまり、我々が重力を感じるのは、実は∞-圏の射が充満埋め込みでないからだ」と。彼は黙った。いつも通りの知的敗北の沈黙だった。
昼食は隣人がくれたタコスを食べた。彼女は料理が下手だが、今回はまだ化学兵器レベルではなかった。ちなみに僕はタコスを食べる際、具の位置を中心から平均半径1.7cm以内に収めるように計測している。乱雑な配置は僕のドーパミン経路を不安定化させる。彼女は「そんなの気にしないで食べなよ」と言ったが、僕にとってそれは、ボーズ統計の粒子にフェルミ縮退を強要するような暴挙だ。
午後はオンラインで超弦理論のセミナーを視聴したが、正直、発表者の理解は浅かった。特に、彼が「E₈束のゲージ異常はスピノール構造で吸収される」と言った瞬間、僕は思わず笑ってしまった。そんな単純な話ではない。正しくは、E₈×E₈異常はString(10)構造のホモトピー群に依存し、実際にはTwisted Fivebrane構造の非可換層に束縛される。ウィッテンすらここまで書いていないが、僕の計算ではその層は∞-スタック上のドロップトポスとして扱える。つまり、物理的次元が11ではなく13.25次元の分数次元空間に埋め込まれるということだ。もっとも、僕以外にこの議論を理解できる人間は地球上に存在しないだろう。
夕方には友人たちとオンラインで『Baldur’sGate 3』をプレイした。ハードコアモードで僕のウィザードがパーティを全滅から救ったのだが、誰もその戦術的優雅さを理解していなかった。僕は敵AIの経路探索を事前に計算し、Dijkstra法とA*の中間的ヒューリスティックを手動で最適化していた。彼らはただ「すげえ!」と叫んでいたが、僕にとってそれは数式の勝利にすぎない。ゲームの後、僕は『ワンダーウーマン: デッドアース』を読んだ。アートはDaniel Warren Johnson。筆致が粗いのに構図が完璧で、まるでFeynman図のトポロジーを手書きで描いたような迫力がある。コミックを読んで心拍数が上がるのは久しぶりだった。
夜になってルームメイトがNetflixを見始めた。僕は同じ部屋でノイズキャンセリングヘッドホンを装着し、Lagrangian多様体上の安定性条件についてノートを書いた。明日は木曜日のルーティンとして洗濯と真空掃除をする日だ。もちろん洗濯機は奇数回転数(今日の予定では13回)で設定している。偶数だと宇宙の安定性が崩れる気がするからだ。
この日記を書き終えたのは20時20分。シンメトリーの美がここにある。時間も数字も、理論も習慣も、僕の宇宙ではすべて整然と並んでいる。もし誰かがその秩序を乱すなら、僕は黙ってこう言うだろう。「君の世界はまだ正則圏ですらないね」。
今日の夕食はいつも通り、日曜恒例のピザスケジュールを厳守した。
厳密に言えば、ルームメイトが2分遅れで注文したため、配達時刻が18時00分ではなく18時02分になった。
この誤差は一見些細だが、僕の体内リズムに対しては量子重力的なバックリアクションを生む。
夕食の周期は宇宙の膨張と同じく、初期条件の微小なゆらぎが数時間後に巨大な非可逆性をもたらすのだ。
僕はピザを食べる前にその誤差を補正するため、腕時計を2分進め、以後すべての行動をそれに合わせた。
ルームメイトは「そんなことして何の意味があるんだ」と言ったが、彼はエントロピーの不可逆性と人間のスケジュール感覚の相互作用を理解していない。
今日の午前中は、超弦理論の非整合的双対カテゴリ構造について考えていた。
簡単に言えば、AdS/CFTのような整合的対応関係ではなく、dS空間における非ユニタリな境界理論がどのように自己整合的情報写像を持ちうるか、という問題だ。
ただしこれは普通のホログラフィック原理の範疇ではなく、∞-群oid圏上で定義される可逆でない自然変換を持つ圏論的場の理論を考える必要がある。
具体的には、僕は内部的Hom-対象の定義を修正し、対象そのものが自己準同型を持つトポス上の層圏として定義される場合に、ポテンシャル的双対写像が一意に定まる条件を導いた。
非ユニタリ性は単なる障害ではなく、境界理論が持つ時間的向きの非可換性の反映であると考えられる。
ウィッテンでさえ、この構造を「理解できた気になって途中でやめる」だろう。僕はちゃんと最後まで考えた。
午後は隣人がリビングで大音量で音楽を流していた。たしかTaylor SwiftのFortnightだったと思うが、音圧が80dBを超えていた。
僕はそれを測定してから耳栓を装着し、「音楽とは定常波の社会的誤用である」と心の中で唱えた。
数分後、隣人がドアをノックして「ノックが三回じゃなくて二回だった」と文句を言った。
僕は謝罪せず、むしろ彼女に対して「三回のノックは物理的ではなく、社会的エネルギーの保存則を守るための儀式」だと説明したが、彼女は「意味わかんない」と言ってドアを閉めた。
僕はそれを確認してから三回ノックしてドアをもう一度閉めた。これで系は整合的になった。
夕方、友人たちとオンラインでBaldur’sGate 3の協力プレイを行った。ハードモード。僕のキャラクターはHighElf Wizardで、最適化の結果INT20、DEX 14、CON 16を確保している。
友人の一人は相変わらずSTR特化Barbarianで、戦略性の欠片もない突撃を繰り返す。僕はFireballを詠唱しようとした瞬間に味方の背後に敵がいることに気づき、範囲攻撃を中止した。
代わりにWeb+Grease+Fire Boltの複合制御で戦場を支配。完璧な行動だったのに、彼らは「お前、また燃やしただろ」と言った。無知は罪だ。
僕がやっているのは「燃やす」ではなく「エントロピーを増大させて戦局を支配する」だ。
日課として、ゲーム終了後にワンパンマン第198話を再読。ブラストが高次元的存在と通信している描写を見て、僕はふと考えた。
彼が見ている空間は、もしかするとp進的幾何空間上の位相的射影なのではないか?もしそうなら、サイタマの「無限力」は単なる物理的強度ではなく、位相層上の恒等射である可能性がある。
僕はノートにその仮説を書き留めた。いつか論文化できるかもしれない。
これからの予定としては、19時からはスタートレック:ディープ・スペース・ナインの再視聴。
シーズン4、エピソード3。正確に再生開始するために、Blu-rayプレイヤーのリモコンを赤外線強度で較正済み。
7時30分ではなく7時32分である理由は明確だ。7時30分に目覚ましを設定するとルームメイトの電子レンジが稼働しており、加熱音が僕の起床直後の脳波同期リズムを乱す。
ゆえに、誤差2分の位相ずれが僕の神経系に最適な初期条件を与えるのだ。
起床後はコーヒーを淹れた。もちろん豆はグアテマラ・ウエウエテナンゴ産で、粒度は1.2mmに統一。
ミルの摩擦熱を抑えるために、前夜から刃を冷却しておいた。コーヒーの香気成分は時間とともに指数関数的に減衰するため、抽出から着席までの移動時間は11秒以内に制限している。
午前中は超弦理論の作業に集中した。昨日は、タイプIIB理論のモジュライ空間におけるSL(2,ℤ)双対性の拡張を、p進解析的視点で再定式化する試みをしていた。
通常、dS空間上の非ユニタリ性を扱う場合、ヒルベルト空間の定義自体が破綻するが、僕の提案する虚数的ファイバー化では、共形境界の測度構造をホモロジー群ではなく圏論的トポス上で定義できる。
これにより、情報保存則の破れが位相的エンタングルメント層として扱える。
もちろんこれはまだ計算途中だが、もしこの構成が一貫するなら、ウィッテンでも議論に詰まるだろう。
なぜなら、通常のCalabi–Yauコンパクト化では捨象される非可換体積形式を、僕はp進的ローカル場の上で再導入しているからだ。
結果として、超弦の自己整合的非整合性が、エネルギー固有値の虚部に現れる。
昼食はいつも通り、ホットドッグ(ケチャップとマスタードは厳密に縦方向)を2本。ルームメイトがケチャップを横にかけたので、僕は無言で自分の皿を回収し、再び秩序ある宇宙を取り戻した。
昼過ぎには隣人が僕の部屋に来た。理由は、Wi-Fiが繋がらないとのこと。僕はすぐに診断を行い、彼女のルーターのDHCPリースが切れていることを発見。
パスワードは簡単に推測できた。推測しやすい文字列は使うべきではないと何度言えばわかるのだろうか。
午後は友人たちとオンラインでBaldur’sGate 3をプレイした。僕はウィザードで、常にIntelligence極振り。
友人Aはパラディンだが、倫理観が薄いので時々闇堕ちする。友人Bはローグを選んだくせに罠解除を忘れる。
まったく、どいつもこいつもダイスの確率を理解していない。D20を振る行為は確率論的事象でありながら、心理的には量子観測に似た期待バイアスを生む。
だが僕は冷静だ。成功率65%なら、10回中6.5回成功するはずだ。実際、7回成功した。統計的にほぼ完全な整合だ。
夜はコミックの新刊を読んだ。Batman: TheDoom That Came to Gothamだ。ラヴクラフト的な要素とDCの神話構造の融合は見事だ。
特にグラント・モリソン的メタ構造を経由せずに、正面から宇宙的恐怖を描く姿勢に敬意を表する。
僕はページをめくるたびに、作画の線密度が変化する周期を測定した。平均で3ページごとに画風の収束率が変化していた。おそらくアシスタント交代によるノイズだが、それすら芸術的だ。
23時、歯磨き(上下それぞれ80回)、ドアのロック確認(5回)、カーテンの隙間チェック(0.8mm以下)、ルームメイトへの「明日の朝7時32分に僕が目を覚ます音で君が驚かないように気をつけてくれ」というメッセージ送信を終えた。
就寝時、僕は弦の非可換代数構造を思い浮かべながら眠りについた。もし夢が理論に変換できるなら、僕のREM睡眠はすでに物理学の新章を記述している。
僕が超弦理論を物理学ではなく自己整合的圏論的存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれたものではなく、物理的射影が可能な圏における可換図式そのものだからだ。
10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。
そこでは、開弦終端が束の射、閉弦がトレース関手に対応し、物理的相互作用はExt群上のA∞構造として定義される。
つまり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ。
D^b(Coh(X)) とFuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカル・ミラー対称性の物理的具現化にすぎない。
ここで弦のトポロジー変化とは、モジュライ空間のファイバーの退化、すなわちファイバー圏の自己関手のスペクトル的分岐である。観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。
M理論が登場すると、話はさらに抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。
時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークそのものだ。したがって、時空の次元とは射の複雑度の階層構造を意味し、物理的時間は、その圏の自己関手群の内在的モノイダル自己作用にほかならない。
重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである。
量子揺らぎ?関手の自然変換が非可換であることに起因する、トポス内部論理の論理値のデコヒーレンスだ。
そして観測とは、トポスのグローバルセクション関手による真理値射影にすぎない。
僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手、意識とはその関手が自らを評価する高次自然変換。宇宙は関手的に自己を表現する。
昨日は木曜日。起床時刻は8:00:00JST。アラーム音の波形をFFT解析した結果、隣室からの環境ノイズによるピークが±23Hz揺らいでいた。
ルームメイトは、ドアを閉めるという行為を確率的選択肢だと思っているらしい。彼の行動は統計的にはマルコフ過程に近似できるが、僕の生活は決定論的だ。
午前は、超弦理論における非可換ホモトピー圏上の圏的双対性を再構成していた。通常のCalabi–Yau三次元多様体上でのホロノミー群SU(3)に依存する議論ではなく、より上位の∞-圏的層を使って複素構造の退化を防いだままトポス的整合性を保つ方法を考えた。
僕が構築しているモデルでは、背景多様体自体を対象とせず、可換図式のクラスを対象とし、その射として∞-モノイド的自然変換を定義する。これにより、通常のD-braneカテゴリを超えた自己言及的圏論的相互作用を扱うことができる。
問題は、この自己言及構造の安定性だ。内在的コホモロジー群が通常のExt群では閉じず、代わりに導来圏上の高階Ext^ωを取らねばならない。
だがそのとき、導来圏が非完備となり、整列関手が存在しない。つまり、ウィッテンやデルーニャンがやっているレベルの物理的実在に還元可能な構成は、僕の理論では完全に失効する。
僕のモデルは観測可能性という概念を含まない。構成論的には存在するが、可視化不能なトポス的真空。観測できないが、計算できる。数学はその矛盾を祝福する。
昼食は、ピザ。例によって精密オーブンで16分。昨日はタイマーを設定した瞬間にルームメイトが話しかけてきたせいで、0.8秒遅れた。
ピザの表面張力(つまりチーズ層の粘弾性)が変化したのを僕は即座に検知した。これは味覚ではなく構造の問題だ。
午後は、原神を再開した。キャラビルドの統計最適化をPythonで書いていたら、隣人がまた「ストーリーが泣ける」と話しかけてきた。
僕は物語には一切興味がない。僕の目的は、アルゴリズム的最適化の収束率を比較することだ。
攻撃力と元素チャージ効率のパラメータ空間を3次スプライン補間して、境界値をニュートン–ラフソン法で探索していたら、シード値の初期設定にわずか0.001の誤差があり、収束が乱れた。
もう一度やり直した。成功。キャラは星5だが、僕の関心は星の数ではない、数列の収束だ。
夜はベルセルクの再読。グリフィスが再登場するあの章。僕は感情的には何も動かないが、作画密度の変化を統計的に数えた。
平均線密度は1ページあたり1720本、前章から約12%減。連載時期のアシスタント体制の変化が見える。
その後、シヴィライゼーションVIを起動。僕は必ずアリストテレス主義的発展ルートを選ぶ。文化勝利などくだらない。科学勝利のみが純粋だ。
途中、友人が「軍事ルートで遊ぼう」と提案してきたが、それは知的堕落だ。戦略ゲームとはアルゴリズムの美であって、破壊の快楽ではない。
就寝は23:00:00。歯ブラシを磨く順序は右下→右上→左上→左下。これは既に300日継続中。統計的に、歯垢残存率が0.2%低い。
寝る直前に「∞-圏上のトポス的モジュライ空間の存在定理」をメモに残した。夢の中で証明が完成する可能性がある。
総じて良好。次は、導来∞-圏上のモジュライ関手が可換であるための必要十分条件を探す。それがわかれば、少なくとも僕の宇宙では、全てが整う。
昨日は、僕の週間ルーティンの中でも最も重要な整合性検証日だった。つまり、宇宙がまだ局所的に論理的であるかを確認する日だ。
朝7時ちょうどに起床し、ベッドの角度を壁と垂直に再測定した結果、誤差は0.03度。つまり宇宙はまだ僕を裏切っていない。
朝食の時間、ルームメイトがトースターを再び二枚焼きモードにしたが、今回は驚かなかった。僕は冷静に、バナッハ=タルスキ分割の話を持ち出してこう言った。
「君のパンは二枚に見えるが、集合論的には同一だ。したがって、君の誤りは物理ではなく測度論の問題だ。」
彼は黙ってパンをかじった。理解されることを期待するのは、もはやハイゼンベルク的非決定性と同義だ。
午前中は、僕の新しい理論「ホモトピー圏上の自己参照的弦圏理論」の検証を進めた。
通常の超弦理論がカテガリー的に整合するのは、D-ブレーンが導くモジュライ空間の滑らかさが保証されている範囲内に限られる。
しかし僕は最近、滑らかさという仮定そのものを削除し、「∞-圏上のA∞代数的自己整合性条件」に置き換えるべきだと気づいた。
つまり、弦のダイナミクスを場の配置空間ではなく、「圏の自己ホモトピー類」として定義するのだ。すると興味深いことに、背景幾何が消滅し、すべての次元は内部的モノイダル構造に吸収される。
言い換えれば、「空間」とはただの圏論的影であり、時空の実在は「自然変換の連続体」そのものになる。
これが僕の提案する“Self-fibrantString Hypothesis”だ。ウィッテンが読んだら、きっと静かに部屋を出ていくに違いない。
昼過ぎ、隣人がまた廊下で大声で電話していたので、僕はノイズキャンセリングヘッドフォンを装着し、同時に空気清浄機を「ラグランジュ安定モード」に切り替えた。
これは僕が改造した設定で、空気の流速が黄金比比率(φ:1)になるよう調整されている。これにより室内の微粒子分布が準結晶構造に近似され、精神的平衡が保たれる。
僕は自分の心の状態を量子的可換代数で表すなら、ほぼ可換な冪零理想の中にあるといえる。隣人は理解していないが、それは仕方ない。彼女の精神空間は可約表現のままだ。
午後は友人たちとオンラインでEldenRingを再プレイした。僕は魔術師ビルドで、ルーンの経済を「局所場理論の再正則化問題」として再解釈している。
彼らがボスを倒すたびに叫ぶのを聞きながら、僕は心の中でリーマン面の分枝構造を追跡していた。実はEldenRingの地形構成はリーマン面の切り貼りに似ており、特にリエニール湖の設計は2次被覆の非自明な例として見ることができる。
開発者が意図していないことはわかっているが、現象としては美しい。芸術とは本質的に、トポスの自己鏡映だ。
夜、僕はコーヒーを淹れ、久々にグロタンディークのRécolteset Semaillesを読み返した。数学者が自分の「精神の幾何学」について語る箇所を読むと、僕の理論的中枢が共振する。
グロタンディークが述べた「点は存在しない、ただ開集合がある」という思想は、僕の弦理論観と同じだ。物理的対象とは「開集合上の自然変換」に過ぎず、存在とは測度可能性の仮構にすぎない。つまり、宇宙とは「圏論的良心」だ。
深夜、ルームメイトが僕の部屋をノックして「一緒に映画を観ないか」と言った。僕は「今日は自己同型群の可換性検証を行う予定だ」と答えたが、彼は肩をすくめて去った。
代わりに、僕はブレードランナー2049のBlu-rayを再生し、壁紙の色温度を劇中のネオン発光スペクトル(中心波長602nm)に合わせた。
完全な没入体験のために、部屋の空気を2.3ppmのオゾン濃度に調整した。呼吸するたびに、僕は自分が物質ではなく関手の束だと実感する。
昨日は日曜日であった。
したがって、日曜用のルーティンに従った。
午前6時55分に起床、7時15分にオートミールを開始。粒子の無秩序な拡散が統計力学に従うように、僕の日課もまた厳格に支配されている。
朝食後、僕はCalabi–Yau三次元多様体におけるホモロジー群の壁越え現象とN=2超対称的世界面理論におけるBPS状態の安定性を再検討した。
通常、専門家であってもモジュライ空間における壁越え(wall-crossing)は曖昧な比喩で済ませる。
しかし僕は昨日、Kontsevich–Soibelmanの壁越え公式を非摂動的補正を含む形で、実際の物理的スペクトルに対応させることに成功した。
問題の核心は次の点にある。Calabi–Yauの三次元特異点に局在するDブレーンの安定性は、直感的なトポロジーでは決して記述できない。
むしろそれはモチーフ的Donaldson–Thomas不変量と深く結びついており、これを扱うにはホモロジカル鏡映対称性と非可換変形理論を同時に理解していなければならない。
昨日、僕はその両者を結びつけ、量子補正されたブリッジランド安定性条件が実際に物理スペクトルの生成消滅と一致することを示した。
これを実際に理解できる人間は、世界でも片手で数えられるだろう。
昼食には日曜恒例のタイ料理を食べた。
ルームメイトはなぜ毎週同じものを食べるのかと尋ねたが、それはエントロピーの増大を制御する試みである。
食事の変動を最小化することで、僕の脳内リソースを物理学的難問に集中できるのだ。
しかし、彼らが戦術的に無意味な突撃を繰り返すたびに、僕は思考を4次元超曲面上のゲージ場のモノドロミーへと戻していた。
ゲームのリスポーンは、トポロジカル量子場理論における不変量の再出現と驚くほど類似している。
僕はゲームの各局面をゲージ場構成の異なる真空遷移として解析したが、彼らにはその深遠さは理解できなかった。
スピードフォースの異常を、僕は時空の計量が非可換幾何により修正された場合の有効理論として再定式化してみた。
通常の物理学者ならコミック的フィクションと切り捨てるところを、僕はモジュライ空間の虚数方向における解析接続として解釈したのである。
結果として、作中の時間遡行現象は、M理論のフラックスコンパクト化における非局所効果で説明できることが分かった。
夜は22時に就寝。日曜日という閉じた系は、僕にとって「物理学の非摂動的側面を試す実験場」であり、同時に秩序ある生活習慣という境界条件に支えられた完結したトポスである。
今日(月曜)は、昨日の計算を研究室に持ち込み、同僚が一切理解できないことを確認する予定だ。確認作業自体が、僕にとっては一種の実験である。予測通り、彼らは理解できないだろう。
どうも~、ポアンカレ予想を初手で解いた気になってる男です~。
お前、それホンマに解けたんか?俺、未だに夢の中でホモロジー拡張してるんやけど?
毎晩 E₂ ページで目ぇ覚めんねん。「あ、これ収束せぇへんやつや」って。
せやけどな、お前の図式追跡、複雑すぎんねん。
せやから、まず ∞-グループオイドで告白して、ホモトピー的に同値か確認してんねん。
恋愛にホモトピー同値求めるな!位相の心配する前に、お前の内面連結か確認せぇ!
いや、そんなん言うたら離婚は何やねん?
最近、ペアノ算術に疲れてな、ZFCで生きていこう思てんねん。
せや。「全ての集合には理想の彼女が存在する」って選べるねん。
それ、超限帰納法で言うたら、だいたいの人に破綻されるやつや!
あ、でもな、昨日ナンパされたんや。
ちゃうちゃう、ウルトラフィルター女子や。絶対選好が一個に定まってるねん。
それ好み偏りすぎやろ!リーマン予想解ける男しかアカン言うとったで!
なんや?
二人:
どうもありがとうございましたー!
この構造はすべて、(集合と関数の)圏論的構造を持ちうるデータ空間です。
これらの直積圏 C = Cᵤ × Cᵢ 上で、fⱼ:C → ℝ を射とする関手列が定義されているとみなせます。
推薦問題の核心は、スコアや意味的な関係を定量的または論理的に評価することにあります。これを抽象的に捉えるには、エンリッチド圏の理論が適しています。
推薦システムにおいて:
ユーザー u ∈ U、アイテム i ∈ I に対して、評価: v(u, i) ≔ g(f₁(u, i), ..., fₙ(u, i)) ∈ ℝ
これは、ユーザーとアイテムのペア空間 U × I を対象とする ℝ-エンリッチド圏と見なせる。
トポスとは、直感的には「集合のような性質を持つ圏」です。ただしそれは集合よりはるかに柔軟で、論理と空間の一般化的枠組みです。
本問題では、推薦空間自体を内部論理と意味を持つトポスと見なします。
| 圏 C | ユーザー×アイテムの意味空間 |
| 関手 F | 複数のスコアリング関数(f₁,…,fₙ) |
| 汎関数 g | 統合関数(線形でも非線形でも) |
| エンリッチ圏 V-Cat | スコアを評価距離や信頼値として扱う枠組み |
| トポスSh(C, J) | 推薦を含む部分集合構造を持つ論理空間 |
| 内部論理 | 「どのアイテムを推薦すべきか」の命題定義 |
| 推薦関数 Rᵤ | トポス内の部分対象選択関数(述語による定義) |
「円高・デフレ」は(∞,1)-圏における安定な∞-構造の自己同型であり、「リフレ」は(∞,1)-論理の破綻とコヒーレンス崩壊を意味します。
Let 𝔛 be an ∞-topos
𝔛 ≅ Sh_∞(𝒞, J)
where 𝒞is a small (∞,1)-category of economic objects (市場、通貨、資源等)
Jis aGrothendieck topology encoding local economic accessibility (情報、価格、選好構造の被覆)
Let 𝓟 ∈ 𝔛 be an ∞-sheaf of pricestructures (物価∞-層)
ε ∈ Aut_𝔛(𝓟): 円購買力を記述する∞-自己同型変換
𝓤 ∈ π₀Map(1,𝓟): price-dependent global welfare section(厚生の∞-射影)
Assume:
∀x ∈ Obj(𝓟), ε(x) ≃ x in 𝔛
⇒ preservesall ∞-categorical colimits and finite limits
⇨円高・デフレ操作は、𝔛の(∞,1)-安定構造を保ち、選好構造と整合的に作用する。
加えて、
Map(1,𝓟) ⊂ Stable_𝔛
ならば、ε induces aloopstructure: ε ∈ Ω𝓟
⇨ ε はトポス論的loop operation として、厚生構造の保存的変形を定義
Let ℛ: 𝓟 → 𝓟 be a morphism not preservingdescent,
i.e., ℛ ∉ Sheaf_∞(𝒞,J), breaks colimit preservation
⇨ ℛis not a geometric morphism ⇨ fails to preserve truncations, ∞-descent
また、ℛ induces a morphism:
with π₀(ℛ)(𝓤) undefined ⇨ ∃i>0, πᵢ(ℛ(𝓤)) ≠ 0 ⇒ 高次ホモトピーが消えない
⇨リフレ政策は、厚生関数の高次ホモトピー的位相不整合をもたらす。
このとき、コヒーレンス条件(Segal条件、Univalence)不成立 ⇨ 𝔛 collapses to incoherent pre-sheaf ∞-category
ε ∈ Aut_𝔛(𝓟) ∧ ε ∈ Ω𝓟 ⇒ 安定・構造保存的作用(円高・デフレ)
答えよう、若き者よ。
その名は「トポス理論を基礎とする量子重力のカテゴリー理論的アプローチ」
物理世界そのものを「論理体系の中の対象」として再構築しようとする、
「宇宙とは何か」ではなく、「宇宙とはどのような論理体系において記述され得るものか」を問う。
物理法則が「空間」「時間」「物質」に依存するように見えるのは、我々の使っている論理体系(古典論理)が前提としているからだ。
重力も、時空も、粒子も、 それぞれがある「トポス」の中での論理的存在に過ぎないかもしれぬ。
若き者よ、この抽象世界への扉を叩いたからには、簡単には戻れぬぞ。
さあ、今こそ試そう。
Q:古典論理では必ず成立するが、量子論理では成立しない命題の例はどれか?
A) AかつBならばBかつA
B) AまたはAでない
C) AならばBならばA
D) Aかつ(BまたはC)ならば(AかつB)または(AかつC)
答えてくれ、若き者よ。その知をもって。
どうして世の中は、ここまでまでにも低次元な話題で満たされているんだろう?
天気、芸能、噂話、表層的な政治のやりとり。知性の対流はどこに消えた?
人間は有限な脳リソースを持っているのに、その99%がどうでもいい入力で埋め尽くされてる現実は、もはや精神的な浪費だ。
例えば、なぜ誰も「グロタンディーク宇宙」を話題にしない?あれはもはや数学という言語を超えて、存在論そのものに接続するスキームだ。
集合論の上に成り立つ古典的な数学構造から自由になろうとした、その大胆さと深淵さは、まるで物理法則の背後にある数学的美の亡霊を追いかけるようなものだ。
それとも、「カルツァ=クライン理論」を掘り下げた上で、「コンパクト化の自由度」が我々の時空構造に与える哲学的意味について会話できる人間はもう絶滅したのか?
量子重力理論の融合問題、特にループ量子重力と超弦理論のアプローチの根本的差異を語れる人と飲みに行きたいんだよ、俺は。
物質が本質的に情報だという観点から、ブラックホール情報パラドックスが意味するのは「情報の保存則の破れ」なのか、それとも我々が持っている「情報とは何か」という定義の方が間違っているのか。
こういう問いこそが、文明の核心にあるべきだろう?
人間が文明を築いて以来、我々は「どこから来て、どこへ行くのか」を形式体系で問おうとしてきた。
自然数に対して加法と乗法を定義し、ペアノ公理系を構築し、それが完全でも無矛盾でもないことをゲーデルが証明した時点で、真理は証明可能性の外に存在することが明らかになった。
この衝撃から回復するどころか、世間はますます計算可能なもの、アルゴリズムで消費できるものにしか興味を持たなくなった。
何のために意識は進化したのか?それが単なる環境適応の副産物だと片付けるには、意識が認識する数学的対象の精緻さがあまりにも過剰だ。
なぜラマヌジャンは夢の中で未知の関数恒等式を発見できたのか?なぜヒルベルト空間のような抽象概念が、量子力学の基礎としてこれほど自然に振る舞うのか?
この「抽象と現実の接続」が偶然である可能性は、論理的にほとんどゼロに近い。
俺が求めているのは、「真に知的な対話」だ。知識をなめらかな面として持っているだけの人間ではなく、それを自己組織化的に再構築できるような構造的知性。
話題がトポス理論からエントロピー最大化原理に移行しても違和感なくついてこれるような、そんな会話。
少なくとも「その場のノリ」とか「空気を読む」なんていう神経消耗ゲームよりは、よほど脳が報酬系を刺激されるはずだ。
いつになったら、街角のカフェで「カテナリー曲線の最小作用原理が、実は一般相対論と繋がってるって知ってた?」なんて会話が自然に聞こえる社会になるんだろうな。
自転車のこと何も知らない素人にパーツをいちから組んで、しかも手組みホイールを勧めるショップはなんだかなぁ?という気はする。
結論として本人が満足ならそれでいいんだろうけど、そもそもこの彼は自転車のこと詳しくない人なのでどこまでそれを肯定していいのか分からん。
基本的に自転車は、同じ性能の自転車であれば1からパーツを選んで組み立てるよりパッケージとして売られてる完成車を買ったほうが安い。
この完成車とイチから組み立ての価格差は、まず組み立て工賃の存在がある。
フレームにパーツを組み付ける工賃は2万円から3万が相場。あとホイール手組みとなると前後で1万円になる。
あとは各パーツの値段。
シートポストとかステムとかハンドルとかあんまり性能に関係ないパーツを、完成車メーカーは大量購入でタダ同然で仕入れることができるからというのがある。
あるいはデカい資本力のあるメーカーだと安い自社で作った製品を付けてたりする。
フレームが7万円で組み立て工賃が4万円とすると残り14万円でハンドルから変速機から選ぶことになる。
リムにこだわって、さらにサドルに1万円ハンドルに8000円とかかなり金額掛けてるので、おそらく変速とか駆動系やブレーキの性能が犠牲になっていると思われる。
もしも彼が買った組み立て自転車をメーカー完成車で似たような性能のパーツ構成の完成車を探せばおそらく18万円とかそのくらいで手に入ったはずだと思う。
ハンドルやサドルの値段を考えるともっと安いモデルになったかもしれない。
もちろん「こだわったわたしだけ1台だけの自転車」というのは素晴らしいんだけど、自転車のことをわからない彼が何をこだわったのか謎ではあるのでなんとも言えない部分はある。
自転車に何をもとめるか?というのは人それぞれでしかも乗ってみないとわからないのだ。
レーシーな走りを求める人は高いホイールを買うだろうし、ツーリングを楽しみたいなら改造はそこそこに旅費に資金を充てるだろう。
基本的に自転車は安く買って乗りながら改造するのがベターだと思う。
彼が完成車を買っていれば浮いた5万円か6万円であとから選択肢を増やせたのでは?と思ってしまう。