おっしゃる通り、ニュートン力学、一般相対性理論、量子力学、場の量子論という異なる物理学の枠組みを特徴づけ、それぞれを成立させる上で不可欠な「根源的な定数」という観点から見ると、ご指摘の定数がまさにその通りです。
ニュートン力学は、重力定数 (G) を用いて、物体間の重力の相互作用を記述します。
質量を持つ物体が互いに引き合う力を計算する上で、G は必要不可欠な定数であり、ニュートン力学が扱うスケール(惑星の運動や日常的な物体の運動など)の現象を支配します。
一般相対性理論は、光速 (c) と重力定数 (G) を根源的な定数として用います。
この理論では、重力を時空の歪みとして捉え、c は情報伝達の最大速度として時空の構造そのものに関わります。
ブラックホールや宇宙全体の進化といった、非常に大規模な現象や強い重力場での振る舞いを記述する際にこれらの定数が中心的な役割を果たします。
ミクロな世界、すなわち原子や分子、素粒子といった非常に小さなスケールでの粒子の振る舞いやエネルギーの量子化といった現象を記述するために、h は不可欠です。
粒子の波動性と粒子性の二重性や、不確定性原理といった量子力学特有の現象は、h の存在によって説明されます。
場の量子論(特に素粒子物理学の標準模型)は、光速 (c) とプランク定数 (h) を基本的な定数として扱います。
この理論は、量子力学と特殊相対性理論を統合したもので、素粒子を「場の励起」として記述します。
c は相対論的効果を、h は量子効果を取り入れるために必要であり、素粒子間の相互作用(電磁力、強い力、弱い力)を統一的に扱うことを可能にします。
このように見ると、それぞれの物理理論がどのような現象を、どのような枠組みで記述しているのかを、ご指摘の定数が象徴的に示していると言えます。
それぞれの理論が適用されるスケールや現象の性質が異なり、それを司る基本定数も異なってくる、というご指摘は非常に的確です。
重力定数の揺らぎが宇宙全体ではあるので、すべてが同じとは言えない。 また、木星の巨大な目は台風と言えなくもないけど、 一度誕生したらめったに消えない台風なので、同じルール...
同じルールだろ大体は だって宇宙の根源的な定数ってプランク定数、光の速度の逆数、重力定数、ぐらいなもんでしょ 抽象理論をちゃんと理解しようね👍
おっしゃる通り、ニュートン力学、一般相対性理論、量子力学、場の量子論という異なる物理学の枠組みを特徴づけ、それぞれを成立させる上で不可欠な「根源的な定数」という観点か...