チャーン・サイモンズ理論は、3次元のシュワルツタイプの位相場理論であり、エドワード・ウィッテンによって発展した。この理論は、物理学と数学の両分野で重要な役割を果たす。
チャーン・サイモンズ理論の核心は、その作用がチャーン・サイモンズ3-形式の積分に比例することである。理論のゲージ群Gを持つ多様体M上で、作用Sは以下のように表される:
S = k/(4π) ∫M Tr(A ∧dA + 2/3 A ∧ A ∧ A)
ここで、kは理論のレベルと呼ばれる定数で、Aはリー群GのリーG代数に値を持つ接続1-形式である。
古典的には、チャーン・サイモンズ理論の運動方程式は以下のようになる:
F =dA + A ∧ A = 0
これは、接続が平坦であることを意味する。つまり、チャーン・サイモンズ理論の古典解は、M上の主G-バンドルの平坦接続に対応する。
量子化されたチャーン・サイモンズ理論は、3次元多様体の位相不変量を生成する。特に、ジョーンズ多項式のような結び目不変量や3次元多様体の不変量の計算に使用される。
凝縮系物性論では、チャーン・サイモンズ理論は分数的量子ホール効果状態の位相的オーダーを記述するのに用いられる。1989年に初めて2+1次元のチャーン・サイモンズ理論が分数量子ホール系に適用された。
境界を持つ多様体上のチャーン・サイモンズ理論を考えると、すべての3次元の伝播する自由度は、境界上のWZW(Wess-Zumino-Witten)モデルとして知られる2次元共形場理論に帰着される。
1982年に、デザー、ジャッキウ、テンプルトンによって3次元のチャーン・サイモンズ重力理論が提案された。この理論では、重力のアインシュタイン・ヒルベルト作用にチャーン・サイモンズ項が追加される。
数学的には、チャーン・サイモンズ理論は多様体のチャーン・サイモンズ不変量を定義する。この不変量は、第一ポントリャーギン数と正規直交バンドルの切断によって表現できる:
さらに、チャーン・サイモンズ項はアティヤ-パトーディ-シンガーのエータ不変量としても表現できる。
チャーン・サイモンズ理論は、物理学と数学の境界に位置する豊かな理論であり、量子場理論、位相的量子計算、結び目理論、低次元トポロジーなど、多岐にわたる分野に影響を与えている。
これを書いたから付き合え https://anond.hatelabo.jp/20241231104850