Movatterモバイル変換


[0]ホーム

URL:


Google Git
Sign in
android /platform /bionic /refs/heads/main /. /libc /bionic /pthread_mutex.cpp
blob: c99717a3f75123551628f86ad74088d4a811e2ca [file] [log] [blame] [edit]
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include<pthread.h>
#include<errno.h>
#include<limits.h>
#include<stdatomic.h>
#include<stdlib.h>
#include<string.h>
#include<sys/cdefs.h>
#include<sys/mman.h>
#include<unistd.h>
#include"pthread_internal.h"
#include"private/bionic_constants.h"
#include"private/bionic_fortify.h"
#include"private/bionic_futex.h"
#include"private/bionic_systrace.h"
#include"private/bionic_time_conversions.h"
#include"private/bionic_tls.h"
/* a mutex attribute holds the following fields
*
* bits: name description
* 0-3 type type of mutex
* 4 shared process-shared flag
* 5 protocol whether it is a priority inherit mutex.
*/
#define MUTEXATTR_TYPE_MASK0x000f
#define MUTEXATTR_SHARED_MASK0x0010
#define MUTEXATTR_PROTOCOL_MASK0x0020
#define MUTEXATTR_PROTOCOL_SHIFT5
int pthread_mutexattr_init(pthread_mutexattr_t*attr)
{
*attr= PTHREAD_MUTEX_DEFAULT;
return0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t*attr)
{
*attr=-1;
return0;
}
int pthread_mutexattr_gettype(constpthread_mutexattr_t*attr,int*type_p)
{
int type=(*attr& MUTEXATTR_TYPE_MASK);
if(type< PTHREAD_MUTEX_NORMAL|| type> PTHREAD_MUTEX_ERRORCHECK){
return EINVAL;
}
*type_p= type;
return0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t*attr,int type)
{
if(type< PTHREAD_MUTEX_NORMAL|| type> PTHREAD_MUTEX_ERRORCHECK){
return EINVAL;
}
*attr=(*attr&~MUTEXATTR_TYPE_MASK)| type;
return0;
}
/* process-shared mutexes are not supported at the moment */
int pthread_mutexattr_setpshared(pthread_mutexattr_t*attr,int pshared)
{
switch(pshared){
case PTHREAD_PROCESS_PRIVATE:
*attr&=~MUTEXATTR_SHARED_MASK;
return0;
case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr|= MUTEXATTR_SHARED_MASK;
return0;
}
return EINVAL;
}
int pthread_mutexattr_getpshared(constpthread_mutexattr_t* attr,int* pshared){
*pshared=(*attr& MUTEXATTR_SHARED_MASK)? PTHREAD_PROCESS_SHARED: PTHREAD_PROCESS_PRIVATE;
return0;
}
int pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr,int protocol){
if(protocol!= PTHREAD_PRIO_NONE&& protocol!= PTHREAD_PRIO_INHERIT){
return EINVAL;
}
*attr=(*attr&~MUTEXATTR_PROTOCOL_MASK)|(protocol<< MUTEXATTR_PROTOCOL_SHIFT);
return0;
}
int pthread_mutexattr_getprotocol(constpthread_mutexattr_t* attr,int* protocol){
*protocol=(*attr& MUTEXATTR_PROTOCOL_MASK)>> MUTEXATTR_PROTOCOL_SHIFT;
return0;
}
// Priority Inheritance mutex implementation
structPIMutex{
// mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck), constant during lifetime
uint8_t type;
// process-shared flag, constant during lifetime
bool shared;
// <number of times a thread holding a recursive PI mutex> - 1
uint16_t counter;
// owner_tid is read/written by both userspace code and kernel code. It includes three fields:
// FUTEX_WAITERS, FUTEX_OWNER_DIED and FUTEX_TID_MASK.
atomic_int owner_tid;
};
staticinline __always_inlineintPIMutexTryLock(PIMutex& mutex){
pid_t tid= __get_thread()->tid;
// Handle common case first.
int old_owner=0;
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
&old_owner, tid,
memory_order_acquire,
memory_order_relaxed))){
return0;
}
if(tid==(old_owner& FUTEX_TID_MASK)){
// We already own this mutex.
if(mutex.type== PTHREAD_MUTEX_NORMAL){
return EBUSY;
}
if(mutex.type== PTHREAD_MUTEX_ERRORCHECK){
return EDEADLK;
}
if(mutex.counter==0xffff){
return EAGAIN;
}
mutex.counter++;
return0;
}
return EBUSY;
}
// Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
// ARM/ARM64, which increases at most 20 percent overhead. So make it noinline.
staticint __attribute__((noinline))PIMutexTimedLock(PIMutex& mutex,
bool use_realtime_clock,
const timespec* abs_timeout){
int ret=PIMutexTryLock(mutex);
if(__predict_true(ret==0)){
return0;
}
if(ret== EBUSY){
char trace_msg[64];
constpid_t owner= atomic_load_explicit(&mutex.owner_tid, memory_order_relaxed)
& FUTEX_TID_MASK;
snprintf(trace_msg,sizeof(trace_msg),
"Contending for pthread mutex owned by tid: %d", owner);
ScopedTrace trace(trace_msg);
ret=-__futex_pi_lock_ex(&mutex.owner_tid, mutex.shared, use_realtime_clock, abs_timeout);
}
return ret;
}
staticintPIMutexUnlock(PIMutex& mutex){
pid_t tid= __get_thread()->tid;
int old_owner= tid;
// Handle common case first.
if(__predict_true(mutex.type== PTHREAD_MUTEX_NORMAL)){
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
&old_owner,0,
memory_order_release,
memory_order_relaxed))){
return0;
}
}else{
old_owner= atomic_load_explicit(&mutex.owner_tid, memory_order_relaxed);
}
if(tid!=(old_owner& FUTEX_TID_MASK)){
// The mutex can only be unlocked by the thread who owns it.
return EPERM;
}
if(mutex.type== PTHREAD_MUTEX_RECURSIVE){
if(mutex.counter!=0u){
--mutex.counter;
return0;
}
}
if(old_owner== tid){
// No thread is waiting.
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
&old_owner,0,
memory_order_release,
memory_order_relaxed))){
return0;
}
}
return-__futex_pi_unlock(&mutex.owner_tid, mutex.shared);
}
staticintPIMutexDestroy(PIMutex& mutex){
// The mutex should be in unlocked state (owner_tid == 0) when destroyed.
// Store 0xffffffff to make the mutex unusable.
int old_owner=0;
if(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,&old_owner,0xffffffff,
memory_order_relaxed, memory_order_relaxed)){
return0;
}
return EBUSY;
}
#if !defined(__LP64__)
namespacePIMutexAllocator{
// pthread_mutex_t has only 4 bytes in 32-bit programs, which are not enough to hold PIMutex.
// So we use malloc to allocate PIMutexes and use 16-bit of pthread_mutex_t as indexes to find
// the allocated PIMutexes. This allows at most 65536 PI mutexes.
// When calling operations like pthread_mutex_lock/unlock, the 16-bit index is mapped to the
// corresponding PIMutex. To make the map operation fast, we use a lockless mapping method:
// Once a PIMutex is allocated, all the data used to map index to the PIMutex isn't changed until
// it is destroyed.
// Below are the data structures:
// // struct Node contains a PIMutex.
// typedef Node NodeArray[256];
// typedef NodeArray* NodeArrayP;
// NodeArrayP nodes[256];
//
// A 16-bit index is mapped to Node as below:
// (*nodes[index >> 8])[index & 0xff]
//
// Also use a free list to allow O(1) finding recycled PIMutexes.
unionNode{
PIMutex mutex;
int next_free_id;// If not -1, refer to the next node in the free PIMutex list.
};
typedefNodeNodeArray[256];
typedefNodeArray*NodeArrayP;
// lock_ protects below items.
staticLock lock;
staticNodeArrayP* nodes;
staticint next_to_alloc_id;
staticint first_free_id=-1;// If not -1, refer to the first node in the free PIMutex list.
staticinline __always_inlineNode&IdToNode(int id){
return(*nodes[id>>8])[id&0xff];
}
staticinline __always_inlinePIMutex&IdToPIMutex(int id){
returnIdToNode(id).mutex;
}
staticintAllocIdLocked(){
if(first_free_id!=-1){
int result= first_free_id;
first_free_id=IdToNode(result).next_free_id;
return result;
}
if(next_to_alloc_id>=0x10000){
return-1;
}
int array_pos= next_to_alloc_id>>8;
int node_pos= next_to_alloc_id&0xff;
if(node_pos==0){
if(array_pos==0){
nodes=static_cast<NodeArray**>(calloc(256,sizeof(NodeArray*)));
if(nodes==nullptr){
return-1;
}
}
nodes[array_pos]=static_cast<NodeArray*>(malloc(sizeof(NodeArray)));
if(nodes[array_pos]==nullptr){
return-1;
}
}
return next_to_alloc_id++;
}
// If succeed, return an id referring to a PIMutex, otherwise return -1.
// A valid id is in range [0, 0xffff].
staticintAllocId(){
lock.lock();
int result=AllocIdLocked();
lock.unlock();
if(result!=-1){
memset(&IdToPIMutex(result),0,sizeof(PIMutex));
}
return result;
}
staticvoidFreeId(int id){
lock.lock();
IdToNode(id).next_free_id= first_free_id;
first_free_id= id;
lock.unlock();
}
}// namespace PIMutexAllocator
#endif// !defined(__LP64__)
/* Convenience macro, creates a mask of 'bits' bits that starts from
* the 'shift'-th least significant bit in a 32-bit word.
*
* Examples: FIELD_MASK(0,4) -> 0xf
* FIELD_MASK(16,9) -> 0x1ff0000
*/
#define FIELD_MASK(shift,bits)(((1<<(bits))-1)<<(shift))
/* This one is used to create a bit pattern from a given field value */
#define FIELD_TO_BITS(val,shift,bits)(((val)&((1<<(bits))-1))<<(shift))
/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
#define FIELD_FROM_BITS(val,shift,bits)(((val)>>(shift))&((1<<(bits))-1))
/* Convenience macros.
*
* These are used to form or modify the bit pattern of a given mutex value
*/
/* Mutex state:
*
* 0 for unlocked
* 1 for locked, no waiters
* 2 for locked, maybe waiters
*/
#define MUTEX_STATE_SHIFT0
#define MUTEX_STATE_LEN2
#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_UNLOCKED0/* must be 0 to match PTHREAD_MUTEX_INITIALIZER */
#define MUTEX_STATE_LOCKED_UNCONTENDED1/* must be 1 due to atomic dec in unlock operation */
#define MUTEX_STATE_LOCKED_CONTENDED2/* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
// Return true iff the mutex is unlocked.
#define MUTEX_STATE_BITS_IS_UNLOCKED(v)(((v)& MUTEX_STATE_MASK)== MUTEX_STATE_BITS_UNLOCKED)
// Return true iff the mutex is locked with no waiters.
#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)(((v)& MUTEX_STATE_MASK)== MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
// return true iff the mutex is locked with maybe waiters.
#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)(((v)& MUTEX_STATE_MASK)== MUTEX_STATE_BITS_LOCKED_CONTENDED)
/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
#define MUTEX_STATE_BITS_FLIP_CONTENTION(v)((v)^(MUTEX_STATE_BITS_LOCKED_CONTENDED^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
/* Mutex counter:
*
* We need to check for overflow before incrementing, and we also need to
* detect when the counter is 0
*/
#define MUTEX_COUNTER_SHIFT2
#define MUTEX_COUNTER_LEN11
#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)(((v)& MUTEX_COUNTER_MASK)== MUTEX_COUNTER_MASK)
#define MUTEX_COUNTER_BITS_IS_ZERO(v)(((v)& MUTEX_COUNTER_MASK)==0)
/* Used to increment the counter directly after overflow has been checked */
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
/* Mutex shared bit flag
*
* This flag is set to indicate that the mutex is shared among processes.
* This changes the futex opcode we use for futex wait/wake operations
* (non-shared operations are much faster).
*/
#define MUTEX_SHARED_SHIFT13
#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
/* Mutex type:
* We support normal, recursive and errorcheck mutexes.
*/
#define MUTEX_TYPE_SHIFT14
#define MUTEX_TYPE_LEN2
#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL)
#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
// Use a special mutex type to mark priority inheritance mutexes.
#define PI_MUTEX_STATE MUTEX_TYPE_TO_BITS(3)
// For a PI mutex, it includes below fields:
// Atomic(uint16_t) state;
// PIMutex pi_mutex; // uint16_t pi_mutex_id in 32-bit programs
//
// state holds the following fields:
//
// bits: name description
// 15-14 type mutex type, should be 3
// 13-0 padding should be 0
//
// pi_mutex holds the state of a PI mutex.
// pi_mutex_id holds an integer to find the state of a PI mutex.
//
// For a Non-PI mutex, it includes below fields:
// Atomic(uint16_t) state;
// atomic_int owner_tid; // Atomic(uint16_t) in 32-bit programs
//
// state holds the following fields:
//
// bits: name description
// 15-14 type mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck)
// 13 shared process-shared flag
// 12-2 counter <number of times a thread holding a recursive Non-PI mutex> - 1
// 1-0 state lock state (0, 1 or 2)
//
// bits 15-13 are constant during the lifetime of the mutex.
//
// owner_tid is used only in recursive and errorcheck Non-PI mutexes to hold the mutex owner
// thread id.
//
// PI mutexes and Non-PI mutexes are distinguished by checking type field in state.
#if defined(__LP64__)
structpthread_mutex_internal_t{
_Atomic(uint16_t) state;
uint16_t __pad;
union{
atomic_int owner_tid;
PIMutex pi_mutex;
};
char __reserved[28];
PIMutex&ToPIMutex(){
return pi_mutex;
}
voidFreePIMutex(){
}
} __attribute__((aligned(4)));
#else
structpthread_mutex_internal_t{
_Atomic(uint16_t) state;
union{
_Atomic(uint16_t) owner_tid;
uint16_t pi_mutex_id;
};
PIMutex&ToPIMutex(){
returnPIMutexAllocator::IdToPIMutex(pi_mutex_id);
}
voidFreePIMutex(){
PIMutexAllocator::FreeId(pi_mutex_id);
}
} __attribute__((aligned(4)));
#endif
static_assert(sizeof(pthread_mutex_t)==sizeof(pthread_mutex_internal_t),
"pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
// For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment
// than 4-byte alignment.
static_assert(alignof(pthread_mutex_t)==4,
"pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t.");
staticinlinepthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface){
returnreinterpret_cast<pthread_mutex_internal_t*>(mutex_interface);
}
int pthread_mutex_init(pthread_mutex_t* mutex_interface,constpthread_mutexattr_t* attr){
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
memset(mutex,0,sizeof(pthread_mutex_internal_t));
if(__predict_true(attr==nullptr)){
atomic_store_explicit(&mutex->state, MUTEX_TYPE_BITS_NORMAL, memory_order_relaxed);
return0;
}
uint16_t state=0;
if((*attr& MUTEXATTR_SHARED_MASK)!=0){
state|= MUTEX_SHARED_MASK;
}
switch(*attr& MUTEXATTR_TYPE_MASK){
case PTHREAD_MUTEX_NORMAL:
state|= MUTEX_TYPE_BITS_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
state|= MUTEX_TYPE_BITS_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
state|= MUTEX_TYPE_BITS_ERRORCHECK;
break;
default:
return EINVAL;
}
if(((*attr& MUTEXATTR_PROTOCOL_MASK)>> MUTEXATTR_PROTOCOL_SHIFT)== PTHREAD_PRIO_INHERIT){
#if !defined(__LP64__)
if(state& MUTEX_SHARED_MASK){
return EINVAL;
}
int id=PIMutexAllocator::AllocId();
if(id==-1){
return ENOMEM;
}
mutex->pi_mutex_id= id;
#endif
atomic_store_explicit(&mutex->state, PI_MUTEX_STATE, memory_order_relaxed);
PIMutex& pi_mutex= mutex->ToPIMutex();
pi_mutex.type=*attr& MUTEXATTR_TYPE_MASK;
pi_mutex.shared=(*attr& MUTEXATTR_SHARED_MASK)!=0;
}else{
atomic_store_explicit(&mutex->state, state, memory_order_relaxed);
atomic_store_explicit(&mutex->owner_tid,0, memory_order_relaxed);
}
return0;
}
// namespace for Non-PI mutex routines.
namespaceNonPI{
staticinline __always_inlineintNormalMutexTryLock(pthread_mutex_internal_t* mutex,
uint16_t shared){
constuint16_t unlocked= shared| MUTEX_STATE_BITS_UNLOCKED;
constuint16_t locked_uncontended= shared| MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
uint16_t old_state= unlocked;
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state,&old_state,
locked_uncontended, memory_order_acquire, memory_order_relaxed))){
return0;
}
return EBUSY;
}
/*
* Lock a normal Non-PI mutex.
*
* As noted above, there are three states:
* 0 (unlocked, no contention)
* 1 (locked, no contention)
* 2 (locked, contention)
*
* Non-recursive mutexes don't use the thread-id or counter fields, and the
* "type" value is zero, so the only bits that will be set are the ones in
* the lock state field.
*/
staticinline __always_inlineintNormalMutexLock(pthread_mutex_internal_t* mutex,
uint16_t shared,
bool use_realtime_clock,
const timespec* abs_timeout_or_null){
if(__predict_true(NormalMutexTryLock(mutex, shared)==0)){
return0;
}
int result= check_timespec(abs_timeout_or_null,true);
if(result!=0){
return result;
}
ScopedTrace trace("Contending for pthread mutex");
constuint16_t unlocked= shared| MUTEX_STATE_BITS_UNLOCKED;
constuint16_t locked_contended= shared| MUTEX_STATE_BITS_LOCKED_CONTENDED;
// We want to go to sleep until the mutex is available, which requires
// promoting it to locked_contended. We need to swap in the new state
// and then wait until somebody wakes us up.
// An atomic_exchange is used to compete with other threads for the lock.
// If it returns unlocked, we have acquired the lock, otherwise another
// thread still holds the lock and we should wait again.
// If lock is acquired, an acquire fence is needed to make all memory accesses
// made by other threads visible to the current CPU.
while(atomic_exchange_explicit(&mutex->state, locked_contended,
memory_order_acquire)!= unlocked){
if(__futex_wait_ex(&mutex->state, shared, locked_contended, use_realtime_clock,
abs_timeout_or_null)==-ETIMEDOUT){
return ETIMEDOUT;
}
}
return0;
}
/*
* Release a normal Non-PI mutex. The caller is responsible for determining
* that we are in fact the owner of this lock.
*/
staticinline __always_inlinevoidNormalMutexUnlock(pthread_mutex_internal_t* mutex,
uint16_t shared){
constuint16_t unlocked= shared| MUTEX_STATE_BITS_UNLOCKED;
constuint16_t locked_contended= shared| MUTEX_STATE_BITS_LOCKED_CONTENDED;
// We use an atomic_exchange to release the lock. If locked_contended state
// is returned, some threads is waiting for the lock and we need to wake up
// one of them.
// A release fence is required to make previous stores visible to next
// lock owner threads.
if(atomic_exchange_explicit(&mutex->state, unlocked,
memory_order_release)== locked_contended){
// Wake up one waiting thread. We don't know which thread will be
// woken or when it'll start executing -- futexes make no guarantees
// here. There may not even be a thread waiting.
//
// The newly-woken thread will replace the unlocked state we just set above
// with locked_contended state, which means that when it eventually releases
// the mutex it will also call FUTEX_WAKE. This results in one extra wake
// call whenever a lock is contended, but let us avoid forgetting anyone
// without requiring us to track the number of sleepers.
//
// It's possible for another thread to sneak in and grab the lock between
// the exchange above and the wake call below. If the new thread is "slow"
// and holds the lock for a while, we'll wake up a sleeper, which will swap
// in locked_uncontended state and then go back to sleep since the lock is
// still held. If the new thread is "fast", running to completion before
// we call wake, the thread we eventually wake will find an unlocked mutex
// and will execute. Either way we have correct behavior and nobody is
// orphaned on the wait queue.
//
// The pthread_mutex_internal_t object may have been deallocated between the
// atomic exchange and the wake call. In that case, this wake call could
// target unmapped memory or memory used by an otherwise unrelated futex
// operation. Even if the kernel avoids spurious futex wakeups from its
// point of view, this wake call could trigger a spurious wakeup in any
// futex accessible from this process. References:
// - https://lkml.org/lkml/2014/11/27/472
// - http://austingroupbugs.net/view.php?id=811#c2267
__futex_wake_ex(&mutex->state, shared,1);
}
}
/* This common inlined function is used to increment the counter of a recursive Non-PI mutex.
*
* If the counter overflows, it will return EAGAIN.
* Otherwise, it atomically increments the counter and returns 0.
*
*/
staticinline __always_inlineintRecursiveIncrement(pthread_mutex_internal_t* mutex,
uint16_t old_state){
// Detect recursive lock overflow and return EAGAIN.
// This is safe because only the owner thread can modify the
// counter bits in the mutex value.
if(MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)){
return EAGAIN;
}
// Other threads are able to change the lower bits (e.g. promoting it to "contended"),
// but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
// The mutex is already locked by current thread, so we don't need an acquire fence.
atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
return0;
}
// Wait on a recursive or errorcheck Non-PI mutex.
staticinline __always_inlineintRecursiveOrErrorcheckMutexWait(pthread_mutex_internal_t* mutex,
uint16_t shared,
uint16_t old_state,
bool use_realtime_clock,
const timespec* abs_timeout){
// __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
// field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
// But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
// owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
#if defined(__LP64__)
return __futex_wait_ex(&mutex->state, shared, old_state, use_realtime_clock, abs_timeout);
#else
// This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
// And it is based on the assumption that Android is always in little-endian devices.
static_assert(offsetof(pthread_mutex_internal_t, state)==0,"");
static_assert(offsetof(pthread_mutex_internal_t, owner_tid)==2,"");
uint32_t owner_tid= atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
return __futex_wait_ex(&mutex->state, shared,(owner_tid<<16)| old_state,
use_realtime_clock, abs_timeout);
#endif
}
// Lock a Non-PI mutex.
staticintMutexLockWithTimeout(pthread_mutex_internal_t* mutex,bool use_realtime_clock,
const timespec* abs_timeout_or_null){
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype=(old_state& MUTEX_TYPE_MASK);
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
// Handle common case first.
if( __predict_true(mtype== MUTEX_TYPE_BITS_NORMAL)){
returnNormalMutexLock(mutex, shared, use_realtime_clock, abs_timeout_or_null);
}
// Do we already own this recursive or error-check mutex?
pid_t tid= __get_thread()->tid;
if(tid== atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)){
if(mtype== MUTEX_TYPE_BITS_ERRORCHECK){
return EDEADLK;
}
returnRecursiveIncrement(mutex, old_state);
}
constuint16_t unlocked= mtype| shared| MUTEX_STATE_BITS_UNLOCKED;
constuint16_t locked_uncontended= mtype| shared| MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
constuint16_t locked_contended= mtype| shared| MUTEX_STATE_BITS_LOCKED_CONTENDED;
// First, if the mutex is unlocked, try to quickly acquire it.
// In the optimistic case where this works, set the state to locked_uncontended.
if(old_state== unlocked){
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state,&old_state,
locked_uncontended, memory_order_acquire, memory_order_relaxed))){
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return0;
}
}
ScopedTrace trace("Contending for pthread mutex");
while(true){
if(old_state== unlocked){
// NOTE: We put the state to locked_contended since we _know_ there
// is contention when we are in this loop. This ensures all waiters
// will be unlocked.
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
if(__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
&old_state, locked_contended,
memory_order_acquire,
memory_order_relaxed))){
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return0;
}
continue;
}elseif(MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)){
// We should set it to locked_contended beforing going to sleep. This can make
// sure waiters will be woken up eventually.
int new_state= MUTEX_STATE_BITS_FLIP_CONTENTION(old_state);
if(__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state,
&old_state, new_state,
memory_order_relaxed,
memory_order_relaxed))){
continue;
}
old_state= new_state;
}
int result= check_timespec(abs_timeout_or_null,true);
if(result!=0){
return result;
}
// We are in locked_contended state, sleep until someone wakes us up.
if(RecursiveOrErrorcheckMutexWait(mutex, shared, old_state, use_realtime_clock,
abs_timeout_or_null)==-ETIMEDOUT){
return ETIMEDOUT;
}
old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
}
}
}// namespace NonPI
staticinline __always_inlineboolIsMutexDestroyed(uint16_t mutex_state){
return mutex_state==0xffff;
}
// Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
// ARM64. So make it noinline.
staticint __attribute__((noinline))HandleUsingDestroyedMutex(pthread_mutex_t* mutex,
constchar* function_name){
if(android_get_application_target_sdk_version()>=28){
__fortify_fatal("%s called on a destroyed mutex (%p)", function_name, mutex);
}
return EBUSY;
}
int pthread_mutex_lock(pthread_mutex_t* mutex_interface){
#if !defined(__LP64__)
// Some apps depend on being able to pass NULL as a mutex and get EINVAL
// back. Don't need to worry about it for LP64 since the ABI is brand new,
// but keep compatibility for LP32. http://b/19995172.
if(mutex_interface==nullptr){
return EINVAL;
}
#endif
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype=(old_state& MUTEX_TYPE_MASK);
// Avoid slowing down fast path of normal mutex lock operation.
if(__predict_true(mtype== MUTEX_TYPE_BITS_NORMAL)){
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
if(__predict_true(NonPI::NormalMutexTryLock(mutex, shared)==0)){
return0;
}
}
if(old_state== PI_MUTEX_STATE){
PIMutex& m= mutex->ToPIMutex();
// Handle common case first.
if(__predict_true(PIMutexTryLock(m)==0)){
return0;
}
returnPIMutexTimedLock(mutex->ToPIMutex(),false,nullptr);
}
if(__predict_false(IsMutexDestroyed(old_state))){
returnHandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
}
returnNonPI::MutexLockWithTimeout(mutex,false,nullptr);
}
int pthread_mutex_unlock(pthread_mutex_t* mutex_interface){
#if !defined(__LP64__)
// Some apps depend on being able to pass NULL as a mutex and get EINVAL
// back. Don't need to worry about it for LP64 since the ABI is brand new,
// but keep compatibility for LP32. http://b/19995172.
if(mutex_interface==nullptr){
return EINVAL;
}
#endif
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype=(old_state& MUTEX_TYPE_MASK);
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
// Handle common case first.
if(__predict_true(mtype== MUTEX_TYPE_BITS_NORMAL)){
NonPI::NormalMutexUnlock(mutex, shared);
return0;
}
if(old_state== PI_MUTEX_STATE){
returnPIMutexUnlock(mutex->ToPIMutex());
}
if(__predict_false(IsMutexDestroyed(old_state))){
returnHandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
}
// Do we already own this recursive or error-check mutex?
pid_t tid= __get_thread()->tid;
if( tid!= atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)){
return EPERM;
}
// If the counter is > 0, we can simply decrement it atomically.
// Since other threads can mutate the lower state bits (and only the
// lower state bits), use a compare_exchange loop to do it.
if(!MUTEX_COUNTER_BITS_IS_ZERO(old_state)){
// We still own the mutex, so a release fence is not needed.
atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
return0;
}
// The counter is 0, so we'are going to unlock the mutex by resetting its
// state to unlocked, we need to perform a atomic_exchange inorder to read
// the current state, which will be locked_contended if there may have waiters
// to awake.
// A release fence is required to make previous stores visible to next
// lock owner threads.
atomic_store_explicit(&mutex->owner_tid,0, memory_order_relaxed);
constuint16_t unlocked= mtype| shared| MUTEX_STATE_BITS_UNLOCKED;
old_state= atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
if(MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)){
__futex_wake_ex(&mutex->state, shared,1);
}
return0;
}
int pthread_mutex_trylock(pthread_mutex_t* mutex_interface){
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype=(old_state& MUTEX_TYPE_MASK);
// Handle common case first.
if(__predict_true(mtype== MUTEX_TYPE_BITS_NORMAL)){
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
returnNonPI::NormalMutexTryLock(mutex, shared);
}
if(old_state== PI_MUTEX_STATE){
returnPIMutexTryLock(mutex->ToPIMutex());
}
if(__predict_false(IsMutexDestroyed(old_state))){
returnHandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
}
// Do we already own this recursive or error-check mutex?
pid_t tid= __get_thread()->tid;
if(tid== atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)){
if(mtype== MUTEX_TYPE_BITS_ERRORCHECK){
return EBUSY;
}
returnNonPI::RecursiveIncrement(mutex, old_state);
}
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
constuint16_t unlocked= mtype| shared| MUTEX_STATE_BITS_UNLOCKED;
constuint16_t locked_uncontended= mtype| shared| MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
// Same as pthread_mutex_lock, except that we don't want to wait, and
// the only operation that can succeed is a single compare_exchange to acquire the
// lock if it is released / not owned by anyone. No need for a complex loop.
// If exchanged successfully, an acquire fence is required to make
// all memory accesses made by other threads visible to the current CPU.
old_state= unlocked;
if(__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state,&old_state,
locked_uncontended,
memory_order_acquire,
memory_order_relaxed))){
atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
return0;
}
return EBUSY;
}
#if !defined(__LP64__)
// This exists only for backward binary compatibility on 32 bit platforms.
// (This function never existed for LP64.)
extern"C"int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface,unsigned ms){
timespec ts;
timespec_from_ms(ts, ms);
timespec abs_timeout;
absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC);
int error=NonPI::MutexLockWithTimeout(__get_internal_mutex(mutex_interface),false,
&abs_timeout);
if(error== ETIMEDOUT){
error= EBUSY;
}
return error;
}
#endif
staticint __pthread_mutex_timedlock(pthread_mutex_t* mutex_interface,bool use_realtime_clock,
const timespec* abs_timeout,constchar* function){
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
uint16_t mtype=(old_state& MUTEX_TYPE_MASK);
// Handle common case first.
if(__predict_true(mtype== MUTEX_TYPE_BITS_NORMAL)){
uint16_t shared=(old_state& MUTEX_SHARED_MASK);
if(__predict_true(NonPI::NormalMutexTryLock(mutex, shared)==0)){
return0;
}
}
if(old_state== PI_MUTEX_STATE){
returnPIMutexTimedLock(mutex->ToPIMutex(), use_realtime_clock, abs_timeout);
}
if(__predict_false(IsMutexDestroyed(old_state))){
returnHandleUsingDestroyedMutex(mutex_interface, function);
}
returnNonPI::MutexLockWithTimeout(mutex, use_realtime_clock, abs_timeout);
}
int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface,conststruct timespec* abs_timeout){
return __pthread_mutex_timedlock(mutex_interface,true, abs_timeout, __FUNCTION__);
}
int pthread_mutex_timedlock_monotonic_np(pthread_mutex_t* mutex_interface,
conststruct timespec* abs_timeout){
return __pthread_mutex_timedlock(mutex_interface,false, abs_timeout, __FUNCTION__);
}
int pthread_mutex_clocklock(pthread_mutex_t* mutex_interface,clockid_t clock,
conststruct timespec* abs_timeout){
switch(clock){
case CLOCK_MONOTONIC:
return __pthread_mutex_timedlock(mutex_interface,false, abs_timeout, __FUNCTION__);
case CLOCK_REALTIME:
return __pthread_mutex_timedlock(mutex_interface,true, abs_timeout, __FUNCTION__);
default:{
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
if(IsMutexDestroyed(old_state)){
returnHandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
}
return EINVAL;
}
}
}
int pthread_mutex_destroy(pthread_mutex_t* mutex_interface){
pthread_mutex_internal_t* mutex= __get_internal_mutex(mutex_interface);
uint16_t old_state= atomic_load_explicit(&mutex->state, memory_order_relaxed);
if(__predict_false(IsMutexDestroyed(old_state))){
returnHandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
}
if(old_state== PI_MUTEX_STATE){
int result=PIMutexDestroy(mutex->ToPIMutex());
if(result==0){
mutex->FreePIMutex();
atomic_store(&mutex->state,0xffff);
}
return result;
}
// Store 0xffff to make the mutex unusable. Although POSIX standard says it is undefined
// behavior to destroy a locked mutex, we prefer not to change mutex->state in that situation.
if(MUTEX_STATE_BITS_IS_UNLOCKED(old_state)&&
atomic_compare_exchange_strong_explicit(&mutex->state,&old_state,0xffff,
memory_order_relaxed, memory_order_relaxed)){
return0;
}
return EBUSY;
}

[8]ページ先頭

©2009-2025 Movatter.jp