adapt.feature_based.TCA
- classadapt.feature_based.TCA(estimator=None,Xt=None,n_components=20,mu=0.1,kernel='rbf',copy=True,verbose=1,random_state=None,**params)[source]
TCA : Transfer Component Analysis
- Parameters
- estimatorsklearn estimator or tensorflow Model (default=None)
Estimator used to learn the task. If estimator is
None
, aLinearRegression
instance is used as estimator.- Xtnumpy array (default=None)
Target input data.
- n_componentsint or float (default=None)
Number of components to keep.
- mufloat (default=0.1)
Regularization parameter. The larger
mu
is, the less adaptation is performed.- copyboolean (default=True)
Whether to make a copy of
estimator
or not.- verboseint (default=1)
Verbosity level.
- random_stateint (default=None)
Seed of random generator.
- paramskey, value arguments
Arguments given at the different level of the adapt object.It can be, for instance, compile or fit parameters of theestimator or kernel parameters etc…Accepted parameters can be found by calling the method
_get_legal_params(params)
.
References
- 1
[1] S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang. “Domain Adaptation via Transfer Component Analysis”. In IEEE transactions on neural networks 2010
Examples
>>>fromsklearn.linear_modelimportRidgeClassifier>>>fromadapt.utilsimportmake_classification_da>>>fromadapt.feature_basedimportTCA>>>Xs,ys,Xt,yt=make_classification_da()>>>model=TCA(RidgeClassifier(),Xt=Xt,n_components=1,mu=0.1,...kernel="rbf",gamma=0.1,verbose=0,random_state=0)>>>model.fit(Xs,ys)>>>model.score(Xt,yt)0.93
- Attributes
- estimator_object
Estimator.
Methods
__init__
([estimator, Xt, n_components, mu, ...])fit
(X, y[, Xt, yt, domains])Fit Adapt Model.
fit_estimator
(X, y[, sample_weight, ...])Fit estimator on X, y.
fit_transform
(Xs, Xt, **kwargs)Fit embeddings.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X[, domain])Return estimator predictions after adaptation.
predict_estimator
(X, **predict_params)Return estimator predictions for X.
score
(X, y[, sample_weight, domain])Return the estimator score.
set_fit_request
(*[, domains])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_request
(*[, domain])Request metadata passed to the
predict
method.set_score_request
(*[, domain, sample_weight])Request metadata passed to the
score
method.set_transform_request
(*[, domain])Request metadata passed to the
transform
method.transform
(X[, domain])Return aligned features for X.
unsupervised_score
(Xs, Xt)Return unsupervised score.
- __init__(estimator=None,Xt=None,n_components=20,mu=0.1,kernel='rbf',copy=True,verbose=1,random_state=None,**params)[source]
- fit(X,y,Xt=None,yt=None,domains=None,**fit_params)[source]
Fit Adapt Model.
For feature-based models, the transformation of theinput features
Xs
andXt
is first fitted. In a secondstage, theestimator_
is fitted on the transformed features.For instance-based models, source importance weights arefirst learned based on
Xs,ys
andXt
. In a secondstage, theestimator_
is fitted onXs,ys
with the learnedimportance weights.- Parameters
- Xnumpy array
Source input data.
- ynumpy array
Source output data.
- Xtarray (default=None)
Target input data. If None, theXt argumentgiven ininit is used.
- ytarray (default=None)
Target input data. Only needed for supervisedand semi-supervised Adapt model.If None, theyt argument given ininit is used.
- domainsarray (default=None)
Vector giving the domain for each sourcedata. Can be used for multisource purpose.
- fit_paramskey, value arguments
Arguments given to the fit method ofthe estimator.
- Returns
- selfreturns an instance of self
- fit_estimator(X,y,sample_weight=None,random_state=None,warm_start=True,**fit_params)[source]
Fit estimator on X, y.
- Parameters
- Xarray
Input data.
- yarray
Output data.
- sample_weightarray
Importance weighting.
- random_stateint (default=None)
Seed of the random generator
- warm_startbool (default=True)
If True, continue to fit
estimator_
,else, a new estimator is fitted based ona copy ofestimator
. (Be sure to setcopy=True
to usewarm_start=False
)- fit_paramskey, value arguments
Arguments given to the fit method ofthe estimator and to the compile methodfor tensorflow estimator.
- Returns
- estimator_fitted estimator
- fit_transform(Xs,Xt,**kwargs)[source]
Fit embeddings.
- Parameters
- Xsarray
Input source data.
- Xtarray
Input target data.
- kwargskey, value argument
Not used, present here for adapt consistency.
- Returns
- Xs_embembedded source data
- get_metadata_routing()[source]
Get metadata routing of this object.
Please checkUser Guide on how the routingmechanism works.
- Returns
- routingMetadataRequest
A
MetadataRequest
encapsulatingrouting information.
- get_params(deep=True)[source]
Get parameters for this estimator.
- Parameters
- deepbool, default=True
Not used, here for scikit-learn compatibility.
- Returns
- paramsdict
Parameter names mapped to their values.
- predict(X,domain=None,**predict_params)[source]
Return estimator predictions afteradaptation.
For feature-based method (object which implementsa
transform
method), the input featureX
are first transformed. Then thepredict
methodof the fitted estimatorestimator_
is appliedon the transformedX
.- Parameters
- Xarray
input data
- domainstr (default=None)
For antisymetric feature-based method,different transformation of the input Xare applied for different domains. The domainshould then be specified between “src” and “tgt”.If
None
the default transformation is thetarget one.
- Returns
- y_predarray
prediction of the Adapt Model.
- predict_estimator(X,**predict_params)[source]
Return estimator predictions for X.
- Parameters
- Xarray
input data
- Returns
- y_predarray
prediction of estimator.
- score(X,y,sample_weight=None,domain=None)[source]
Return the estimator score.
If the object has a
transform
method, theestimator is applied on the transformedfeatures X. For antisymetric transformation,a parameter domain can be set to specifiedbetween source and target transformation.Callscore on sklearn estimator andevaluate on tensorflow Model.
- Parameters
- Xarray
input data
- yarray
output data
- sample_weightarray (default=None)
Sample weights
- domainstr (default=None)
This parameter specifies for antisymetricfeature-based method which transformationwill be applied between “source” and “target”.If
None
the transformation by default isthe target one.
- Returns
- scorefloat
estimator score.
- set_fit_request(*,domains:Union[bool,None,str]='$UNCHANGED$')→adapt.feature_based._tca.TCA[source]
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
).Please seeUser Guide on how the routingmechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains theexisting request. This allows you to change the request for someparameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as asub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domains
parameter infit
.
- Returns
- selfobject
The updated object.
- set_params(**params)[source]
Set the parameters of this estimator.
- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
- set_predict_request(*,domain:Union[bool,None,str]='$UNCHANGED$')→adapt.feature_based._tca.TCA[source]
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
).Please seeUser Guide on how the routingmechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains theexisting request. This allows you to change the request for someparameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as asub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter inpredict
.
- Returns
- selfobject
The updated object.
- set_score_request(*,domain:Union[bool,None,str]='$UNCHANGED$',sample_weight:Union[bool,None,str]='$UNCHANGED$')→adapt.feature_based._tca.TCA[source]
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
).Please seeUser Guide on how the routingmechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains theexisting request. This allows you to change the request for someparameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as asub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter inscore
.- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns
- selfobject
The updated object.
- set_transform_request(*,domain:Union[bool,None,str]='$UNCHANGED$')→adapt.feature_based._tca.TCA[source]
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
).Please seeUser Guide on how the routingmechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains theexisting request. This allows you to change the request for someparameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as asub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter intransform
.
- Returns
- selfobject
The updated object.