Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.
@inproceedings{wang-etal-2018-ontology, title = "Ontology alignment in the biomedical domain using entity definitions and context", author = "Wang, Lucy Lu and Bhagavatula, Chandra and Neumann, Mark and Lo, Kyle and Wilhelm, Chris and Ammar, Waleed", editor = "Demner-Fushman, Dina and Cohen, Kevin Bretonnel and Ananiadou, Sophia and Tsujii, Junichi", booktitle = "Proceedings of the {B}io{NLP} 2018 workshop", month = jul, year = "2018", address = "Melbourne, Australia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W18-2306/", doi = "10.18653/v1/W18-2306", pages = "47--55", abstract = "Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system."}
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3"><mods ID="wang-etal-2018-ontology"> <titleInfo> <title>Ontology alignment in the biomedical domain using entity definitions and context</title> </titleInfo> <name type="personal"> <namePart type="given">Lucy</namePart> <namePart type="given">Lu</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chandra</namePart> <namePart type="family">Bhagavatula</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Neumann</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kyle</namePart> <namePart type="family">Lo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chris</namePart> <namePart type="family">Wilhelm</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Waleed</namePart> <namePart type="family">Ammar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018-07</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the BioNLP 2018 workshop</title> </titleInfo> <name type="personal"> <namePart type="given">Dina</namePart> <namePart type="family">Demner-Fushman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kevin</namePart> <namePart type="given">Bretonnel</namePart> <namePart type="family">Cohen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sophia</namePart> <namePart type="family">Ananiadou</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Junichi</namePart> <namePart type="family">Tsujii</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Melbourne, Australia</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.</abstract> <identifier type="citekey">wang-etal-2018-ontology</identifier> <identifier type="doi">10.18653/v1/W18-2306</identifier> <location> <url>https://aclanthology.org/W18-2306/</url> </location> <part> <date>2018-07</date> <extent unit="page"> <start>47</start> <end>55</end> </extent> </part></mods></modsCollection>
%0 Conference Proceedings%T Ontology alignment in the biomedical domain using entity definitions and context%A Wang, Lucy Lu%A Bhagavatula, Chandra%A Neumann, Mark%A Lo, Kyle%A Wilhelm, Chris%A Ammar, Waleed%Y Demner-Fushman, Dina%Y Cohen, Kevin Bretonnel%Y Ananiadou, Sophia%Y Tsujii, Junichi%S Proceedings of the BioNLP 2018 workshop%D 2018%8 July%I Association for Computational Linguistics%C Melbourne, Australia%F wang-etal-2018-ontology%X Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.%R 10.18653/v1/W18-2306%U https://aclanthology.org/W18-2306/%U https://doi.org/10.18653/v1/W18-2306%P 47-55