Controllable text generation (CTG) seeks to craft texts adhering to specific attributes, traditionally employing learning-based techniques such as training, fine-tuning, or prefix-tuning with attribute-specific datasets. These approaches, while effective, demand extensive computational and data resources. In contrast, some proposed learning-free alternatives circumvent learning but often yield inferior results, exemplifying the fundamental machine learning trade-off between computational expense and model efficacy. To overcome these limitations, we propose FreeCtrl, a learning-free approach that dynamically adjusts the weights of selected feedforward neural network (FFN) vectors to steer the outputs of large language models (LLMs). FreeCtrl hinges on the principle that the weights of different FFN vectors influence the likelihood of different tokens appearing in the output. By identifying and adaptively adjusting the weights of attribute-related FFN vectors, FreeCtrl can control the output likelihood of attribute keywords in the generated content. Extensive experiments on single- and multi-attribute control reveal that the learning-free FreeCtrl outperforms other learning-free and learning-based methods, successfully resolving the dilemma between learning costs and model performance.
@inproceedings{feng-etal-2024-freectrl, title = "{F}ree{C}trl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation", author = "Feng, Zijian and Zhou, Hanzhang and Mao, Kezhi and Zhu, Zixiao", editor = "Ku, Lun-Wei and Martins, Andre and Srikumar, Vivek", booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.acl-long.412/", doi = "10.18653/v1/2024.acl-long.412", pages = "7627--7640", abstract = "Controllable text generation (CTG) seeks to craft texts adhering to specific attributes, traditionally employing learning-based techniques such as training, fine-tuning, or prefix-tuning with attribute-specific datasets. These approaches, while effective, demand extensive computational and data resources. In contrast, some proposed learning-free alternatives circumvent learning but often yield inferior results, exemplifying the fundamental machine learning trade-off between computational expense and model efficacy. To overcome these limitations, we propose FreeCtrl, a learning-free approach that dynamically adjusts the weights of selected feedforward neural network (FFN) vectors to steer the outputs of large language models (LLMs). FreeCtrl hinges on the principle that the weights of different FFN vectors influence the likelihood of different tokens appearing in the output. By identifying and adaptively adjusting the weights of attribute-related FFN vectors, FreeCtrl can control the output likelihood of attribute keywords in the generated content. Extensive experiments on single- and multi-attribute control reveal that the learning-free FreeCtrl outperforms other learning-free and learning-based methods, successfully resolving the dilemma between learning costs and model performance."}
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3"><mods ID="feng-etal-2024-freectrl"> <titleInfo> <title>FreeCtrl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation</title> </titleInfo> <name type="personal"> <namePart type="given">Zijian</namePart> <namePart type="family">Feng</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hanzhang</namePart> <namePart type="family">Zhou</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kezhi</namePart> <namePart type="family">Mao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zixiao</namePart> <namePart type="family">Zhu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2024-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title> </titleInfo> <name type="personal"> <namePart type="given">Lun-Wei</namePart> <namePart type="family">Ku</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andre</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vivek</namePart> <namePart type="family">Srikumar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Bangkok, Thailand</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Controllable text generation (CTG) seeks to craft texts adhering to specific attributes, traditionally employing learning-based techniques such as training, fine-tuning, or prefix-tuning with attribute-specific datasets. These approaches, while effective, demand extensive computational and data resources. In contrast, some proposed learning-free alternatives circumvent learning but often yield inferior results, exemplifying the fundamental machine learning trade-off between computational expense and model efficacy. To overcome these limitations, we propose FreeCtrl, a learning-free approach that dynamically adjusts the weights of selected feedforward neural network (FFN) vectors to steer the outputs of large language models (LLMs). FreeCtrl hinges on the principle that the weights of different FFN vectors influence the likelihood of different tokens appearing in the output. By identifying and adaptively adjusting the weights of attribute-related FFN vectors, FreeCtrl can control the output likelihood of attribute keywords in the generated content. Extensive experiments on single- and multi-attribute control reveal that the learning-free FreeCtrl outperforms other learning-free and learning-based methods, successfully resolving the dilemma between learning costs and model performance.</abstract> <identifier type="citekey">feng-etal-2024-freectrl</identifier> <identifier type="doi">10.18653/v1/2024.acl-long.412</identifier> <location> <url>https://aclanthology.org/2024.acl-long.412/</url> </location> <part> <date>2024-08</date> <extent unit="page"> <start>7627</start> <end>7640</end> </extent> </part></mods></modsCollection>
%0 Conference Proceedings%T FreeCtrl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation%A Feng, Zijian%A Zhou, Hanzhang%A Mao, Kezhi%A Zhu, Zixiao%Y Ku, Lun-Wei%Y Martins, Andre%Y Srikumar, Vivek%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)%D 2024%8 August%I Association for Computational Linguistics%C Bangkok, Thailand%F feng-etal-2024-freectrl%X Controllable text generation (CTG) seeks to craft texts adhering to specific attributes, traditionally employing learning-based techniques such as training, fine-tuning, or prefix-tuning with attribute-specific datasets. These approaches, while effective, demand extensive computational and data resources. In contrast, some proposed learning-free alternatives circumvent learning but often yield inferior results, exemplifying the fundamental machine learning trade-off between computational expense and model efficacy. To overcome these limitations, we propose FreeCtrl, a learning-free approach that dynamically adjusts the weights of selected feedforward neural network (FFN) vectors to steer the outputs of large language models (LLMs). FreeCtrl hinges on the principle that the weights of different FFN vectors influence the likelihood of different tokens appearing in the output. By identifying and adaptively adjusting the weights of attribute-related FFN vectors, FreeCtrl can control the output likelihood of attribute keywords in the generated content. Extensive experiments on single- and multi-attribute control reveal that the learning-free FreeCtrl outperforms other learning-free and learning-based methods, successfully resolving the dilemma between learning costs and model performance.%R 10.18653/v1/2024.acl-long.412%U https://aclanthology.org/2024.acl-long.412/%U https://doi.org/10.18653/v1/2024.acl-long.412%P 7627-7640
[FreeCtrl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation](https://aclanthology.org/2024.acl-long.412/) (Feng et al., ACL 2024)