Argumentation is ubiquitous in natural language communication, from politics and media to everyday work and private life. Many arguments derive their persuasive power from human values, such as self-directed thought or tolerance, albeit often implicitly. These values are key to understanding the semantics of arguments, as they are generally accepted as justifications for why a particular option is ethically desirable. Can automated systems uncover the values on which an argument draws? To answer this question, 39 teams submitted runs to ValueEval’23. Using a multi-sourced dataset of over 9K arguments, the systems achieved F1-scores up to 0.87 (nature) and over 0.70 for three more of 20 universal value categories. However, many challenges remain, as evidenced by the low peak F1-score of 0.39 for stimulation, hedonism, face, and humility.
Johannes Kiesel, Milad Alshomary, Nailia Mirzakhmedova, Maximilian Heinrich, Nicolas Handke, Henning Wachsmuth, and Benno Stein. 2023.SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. InProceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 2287–2303, Toronto, Canada. Association for Computational Linguistics.
@inproceedings{kiesel-etal-2023-semeval, title = "{S}em{E}val-2023 Task 4: {V}alue{E}val: Identification of Human Values Behind Arguments", author = "Kiesel, Johannes and Alshomary, Milad and Mirzakhmedova, Nailia and Heinrich, Maximilian and Handke, Nicolas and Wachsmuth, Henning and Stein, Benno", editor = {Ojha, Atul Kr. and Do{\u{g}}ru{\"o}z, A. Seza and Da San Martino, Giovanni and Tayyar Madabushi, Harish and Kumar, Ritesh and Sartori, Elisa}, booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.semeval-1.313/", doi = "10.18653/v1/2023.semeval-1.313", pages = "2287--2303", abstract = "Argumentation is ubiquitous in natural language communication, from politics and media to everyday work and private life. Many arguments derive their persuasive power from human values, such as self-directed thought or tolerance, albeit often implicitly. These values are key to understanding the semantics of arguments, as they are generally accepted as justifications for why a particular option is ethically desirable. Can automated systems uncover the values on which an argument draws? To answer this question, 39 teams submitted runs to ValueEval`23. Using a multi-sourced dataset of over 9K arguments, the systems achieved F1-scores up to 0.87 (nature) and over 0.70 for three more of 20 universal value categories. However, many challenges remain, as evidenced by the low peak F1-score of 0.39 for stimulation, hedonism, face, and humility."}
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3"><mods ID="kiesel-etal-2023-semeval"> <titleInfo> <title>SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments</title> </titleInfo> <name type="personal"> <namePart type="given">Johannes</namePart> <namePart type="family">Kiesel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Milad</namePart> <namePart type="family">Alshomary</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nailia</namePart> <namePart type="family">Mirzakhmedova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Maximilian</namePart> <namePart type="family">Heinrich</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nicolas</namePart> <namePart type="family">Handke</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Henning</namePart> <namePart type="family">Wachsmuth</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Benno</namePart> <namePart type="family">Stein</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2023-07</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title> </titleInfo> <name type="personal"> <namePart type="given">Atul</namePart> <namePart type="given">Kr.</namePart> <namePart type="family">Ojha</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">A</namePart> <namePart type="given">Seza</namePart> <namePart type="family">Doğruöz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Giovanni</namePart> <namePart type="family">Da San Martino</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Harish</namePart> <namePart type="family">Tayyar Madabushi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ritesh</namePart> <namePart type="family">Kumar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elisa</namePart> <namePart type="family">Sartori</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Toronto, Canada</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Argumentation is ubiquitous in natural language communication, from politics and media to everyday work and private life. Many arguments derive their persuasive power from human values, such as self-directed thought or tolerance, albeit often implicitly. These values are key to understanding the semantics of arguments, as they are generally accepted as justifications for why a particular option is ethically desirable. Can automated systems uncover the values on which an argument draws? To answer this question, 39 teams submitted runs to ValueEval‘23. Using a multi-sourced dataset of over 9K arguments, the systems achieved F1-scores up to 0.87 (nature) and over 0.70 for three more of 20 universal value categories. However, many challenges remain, as evidenced by the low peak F1-score of 0.39 for stimulation, hedonism, face, and humility.</abstract> <identifier type="citekey">kiesel-etal-2023-semeval</identifier> <identifier type="doi">10.18653/v1/2023.semeval-1.313</identifier> <location> <url>https://aclanthology.org/2023.semeval-1.313/</url> </location> <part> <date>2023-07</date> <extent unit="page"> <start>2287</start> <end>2303</end> </extent> </part></mods></modsCollection>
%0 Conference Proceedings%T SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments%A Kiesel, Johannes%A Alshomary, Milad%A Mirzakhmedova, Nailia%A Heinrich, Maximilian%A Handke, Nicolas%A Wachsmuth, Henning%A Stein, Benno%Y Ojha, Atul Kr.%Y Doğruöz, A. Seza%Y Da San Martino, Giovanni%Y Tayyar Madabushi, Harish%Y Kumar, Ritesh%Y Sartori, Elisa%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)%D 2023%8 July%I Association for Computational Linguistics%C Toronto, Canada%F kiesel-etal-2023-semeval%X Argumentation is ubiquitous in natural language communication, from politics and media to everyday work and private life. Many arguments derive their persuasive power from human values, such as self-directed thought or tolerance, albeit often implicitly. These values are key to understanding the semantics of arguments, as they are generally accepted as justifications for why a particular option is ethically desirable. Can automated systems uncover the values on which an argument draws? To answer this question, 39 teams submitted runs to ValueEval‘23. Using a multi-sourced dataset of over 9K arguments, the systems achieved F1-scores up to 0.87 (nature) and over 0.70 for three more of 20 universal value categories. However, many challenges remain, as evidenced by the low peak F1-score of 0.39 for stimulation, hedonism, face, and humility.%R 10.18653/v1/2023.semeval-1.313%U https://aclanthology.org/2023.semeval-1.313/%U https://doi.org/10.18653/v1/2023.semeval-1.313%P 2287-2303
[SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments](https://aclanthology.org/2023.semeval-1.313/) (Kiesel et al., SemEval 2023)
Johannes Kiesel, Milad Alshomary, Nailia Mirzakhmedova, Maximilian Heinrich, Nicolas Handke, Henning Wachsmuth, and Benno Stein. 2023.SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. InProceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 2287–2303, Toronto, Canada. Association for Computational Linguistics.