This paper describes the systematic approach applied in “SemEval-2022 Task 6 (iSarcasmEval) : Intended Sarcasm Detection in English and Arabic”. In particular, we illustrate the proposed system in detail for SubTask-A about determining a given text as sarcastic or non-sarcastic in English. We start with the training data from the officially released data and then experiment with different combinations of public datasets to improve the model generalization. Additional experiments conducted on the task demonstrate our strategies are effective in completing the task. Different transformer-based language models, as well as some popular plug-and-play proirs, are mixed into our system to enhance the model’s robustness. Furthermore, statistical and lexical-based text features are mined to improve the accuracy of the sarcasm detection. Our final submission achieves an F1-score for the sarcastic class of 0.6052 on the official test set (the top 1 of the 43 teams in “SubTask-A-English” on the leaderboard).
Mengfei Yuan, Zhou Mengyuan, Lianxin Jiang, Yang Mo, and Xiaofeng Shi. 2022.stce at SemEval-2022 Task 6: Sarcasm Detection in English Tweets. InProceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 820–826, Seattle, United States. Association for Computational Linguistics.
@inproceedings{yuan-etal-2022-stce, title = "stce at {S}em{E}val-2022 Task 6: Sarcasm Detection in {E}nglish Tweets", author = "Yuan, Mengfei and Mengyuan, Zhou and Jiang, Lianxin and Mo, Yang and Shi, Xiaofeng", editor = "Emerson, Guy and Schluter, Natalie and Stanovsky, Gabriel and Kumar, Ritesh and Palmer, Alexis and Schneider, Nathan and Singh, Siddharth and Ratan, Shyam", booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.semeval-1.113/", doi = "10.18653/v1/2022.semeval-1.113", pages = "820--826", abstract = "This paper describes the systematic approach applied in {\textquotedblleft}SemEval-2022 Task 6 (iSarcasmEval) : Intended Sarcasm Detection in English and Arabic{\textquotedblright}. In particular, we illustrate the proposed system in detail for SubTask-A about determining a given text as sarcastic or non-sarcastic in English. We start with the training data from the officially released data and then experiment with different combinations of public datasets to improve the model generalization. Additional experiments conducted on the task demonstrate our strategies are effective in completing the task. Different transformer-based language models, as well as some popular plug-and-play proirs, are mixed into our system to enhance the model`s robustness. Furthermore, statistical and lexical-based text features are mined to improve the accuracy of the sarcasm detection. Our final submission achieves an F1-score for the sarcastic class of 0.6052 on the official test set (the top 1 of the 43 teams in {\textquotedblleft}SubTask-A-English{\textquotedblright} on the leaderboard)."}
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3"><mods ID="yuan-etal-2022-stce"> <titleInfo> <title>stce at SemEval-2022 Task 6: Sarcasm Detection in English Tweets</title> </titleInfo> <name type="personal"> <namePart type="given">Mengfei</namePart> <namePart type="family">Yuan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhou</namePart> <namePart type="family">Mengyuan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lianxin</namePart> <namePart type="family">Jiang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yang</namePart> <namePart type="family">Mo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xiaofeng</namePart> <namePart type="family">Shi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-07</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)</title> </titleInfo> <name type="personal"> <namePart type="given">Guy</namePart> <namePart type="family">Emerson</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Natalie</namePart> <namePart type="family">Schluter</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gabriel</namePart> <namePart type="family">Stanovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ritesh</namePart> <namePart type="family">Kumar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexis</namePart> <namePart type="family">Palmer</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nathan</namePart> <namePart type="family">Schneider</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Siddharth</namePart> <namePart type="family">Singh</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shyam</namePart> <namePart type="family">Ratan</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Seattle, United States</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes the systematic approach applied in “SemEval-2022 Task 6 (iSarcasmEval) : Intended Sarcasm Detection in English and Arabic”. In particular, we illustrate the proposed system in detail for SubTask-A about determining a given text as sarcastic or non-sarcastic in English. We start with the training data from the officially released data and then experiment with different combinations of public datasets to improve the model generalization. Additional experiments conducted on the task demonstrate our strategies are effective in completing the task. Different transformer-based language models, as well as some popular plug-and-play proirs, are mixed into our system to enhance the model‘s robustness. Furthermore, statistical and lexical-based text features are mined to improve the accuracy of the sarcasm detection. Our final submission achieves an F1-score for the sarcastic class of 0.6052 on the official test set (the top 1 of the 43 teams in “SubTask-A-English” on the leaderboard).</abstract> <identifier type="citekey">yuan-etal-2022-stce</identifier> <identifier type="doi">10.18653/v1/2022.semeval-1.113</identifier> <location> <url>https://aclanthology.org/2022.semeval-1.113/</url> </location> <part> <date>2022-07</date> <extent unit="page"> <start>820</start> <end>826</end> </extent> </part></mods></modsCollection>
%0 Conference Proceedings%T stce at SemEval-2022 Task 6: Sarcasm Detection in English Tweets%A Yuan, Mengfei%A Mengyuan, Zhou%A Jiang, Lianxin%A Mo, Yang%A Shi, Xiaofeng%Y Emerson, Guy%Y Schluter, Natalie%Y Stanovsky, Gabriel%Y Kumar, Ritesh%Y Palmer, Alexis%Y Schneider, Nathan%Y Singh, Siddharth%Y Ratan, Shyam%S Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)%D 2022%8 July%I Association for Computational Linguistics%C Seattle, United States%F yuan-etal-2022-stce%X This paper describes the systematic approach applied in “SemEval-2022 Task 6 (iSarcasmEval) : Intended Sarcasm Detection in English and Arabic”. In particular, we illustrate the proposed system in detail for SubTask-A about determining a given text as sarcastic or non-sarcastic in English. We start with the training data from the officially released data and then experiment with different combinations of public datasets to improve the model generalization. Additional experiments conducted on the task demonstrate our strategies are effective in completing the task. Different transformer-based language models, as well as some popular plug-and-play proirs, are mixed into our system to enhance the model‘s robustness. Furthermore, statistical and lexical-based text features are mined to improve the accuracy of the sarcasm detection. Our final submission achieves an F1-score for the sarcastic class of 0.6052 on the official test set (the top 1 of the 43 teams in “SubTask-A-English” on the leaderboard).%R 10.18653/v1/2022.semeval-1.113%U https://aclanthology.org/2022.semeval-1.113/%U https://doi.org/10.18653/v1/2022.semeval-1.113%P 820-826
Mengfei Yuan, Zhou Mengyuan, Lianxin Jiang, Yang Mo, and Xiaofeng Shi. 2022.stce at SemEval-2022 Task 6: Sarcasm Detection in English Tweets. InProceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 820–826, Seattle, United States. Association for Computational Linguistics.