Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.

License

NotificationsYou must be signed in to change notification settings

stdlib-js/stats-base-smeankbn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out onGitHub, and please considerfinancially supporting stdlib. We greatly appreciate your continued support!

smeankbn

NPM versionBuild StatusCoverage Status

Calculate thearithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.

Thearithmetic mean is defined as

$$\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

Installation

npm install @stdlib/stats-base-smeankbn

Alternatively,

  • To load the package in a website via ascript tag without installation and bundlers, use theES Module available on theesm branch (seeREADME).
  • If you are using Deno, visit thedeno branch (seeREADME for usage intructions).
  • For use in Observable, or in browser/node environments, use theUniversal Module Definition (UMD) build available on theumd branch (seeREADME).

Thebranches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

varsmeankbn=require('@stdlib/stats-base-smeankbn');

smeankbn( N, x, stride )

Computes thearithmetic mean of a single-precision floating-point strided arrayx using an improved Kahan–Babuška algorithm.

varFloat32Array=require('@stdlib/array-float32');varx=newFloat32Array([1.0,-2.0,2.0]);varN=x.length;varv=smeankbn(N,x,1);// returns ~0.3333

The function has the following parameters:

  • N: number of indexed elements.
  • x: inputFloat32Array.
  • stride: index increment forx.

TheN andstride parameters determine which elements inx are accessed at runtime. For example, to compute thearithmetic mean of every other element inx,

varFloat32Array=require('@stdlib/array-float32');varfloor=require('@stdlib/math-base-special-floor');varx=newFloat32Array([1.0,2.0,2.0,-7.0,-2.0,3.0,4.0,2.0]);varN=floor(x.length/2);varv=smeankbn(N,x,2);// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, usetyped array views.

varFloat32Array=require('@stdlib/array-float32');varfloor=require('@stdlib/math-base-special-floor');varx0=newFloat32Array([2.0,1.0,2.0,-2.0,-2.0,2.0,3.0,4.0]);varx1=newFloat32Array(x0.buffer,x0.BYTES_PER_ELEMENT*1);// start at 2nd elementvarN=floor(x0.length/2);varv=smeankbn(N,x1,2);// returns 1.25

smeankbn.ndarray( N, x, stride, offset )

Computes thearithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm and alternative indexing semantics.

varFloat32Array=require('@stdlib/array-float32');varx=newFloat32Array([1.0,-2.0,2.0]);varN=x.length;varv=smeankbn.ndarray(N,x,1,0);// returns ~0.33333

The function has the following additional parameters:

  • offset: starting index forx.

Whiletyped array views mandate a view offset based on the underlyingbuffer, theoffset parameter supports indexing semantics based on a starting index. For example, to calculate thearithmetic mean for every other value inx starting from the second value

varFloat32Array=require('@stdlib/array-float32');varfloor=require('@stdlib/math-base-special-floor');varx=newFloat32Array([2.0,1.0,2.0,-2.0,-2.0,2.0,3.0,4.0]);varN=floor(x.length/2);varv=smeankbn.ndarray(N,x,2,1);// returns 1.25

Notes

  • IfN <= 0, both functions returnNaN.

Examples

varrandu=require('@stdlib/random-base-randu');varround=require('@stdlib/math-base-special-round');varFloat32Array=require('@stdlib/array-float32');varsmeankbn=require('@stdlib/stats-base-smeankbn');varx;vari;x=newFloat32Array(10);for(i=0;i<x.length;i++){x[i]=round((randu()*100.0)-50.0);}console.log(x);varv=smeankbn(x.length,x,1);console.log(v);

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums."Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also


Notice

This package is part ofstdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to developstdlib, see the main projectrepository.

Community

Chat


License

SeeLICENSE.

Copyright

Copyright © 2016-2025. The StdlibAuthors.


[8]ページ先頭

©2009-2025 Movatter.jp