- Notifications
You must be signed in to change notification settings - Fork358
A PyTorch implementation of SRGAN based on CVPR 2017 paper "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
License
leftthomas/SRGAN
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
A PyTorch implementation of SRGAN based on CVPR 2017 paperPhoto-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
- Anaconda
- PyTorch
conda install pytorch torchvision -c pytorch
- opencv
conda install opencv
The train and val datasets are sampled fromVOC2012.Train dataset has 16700 images and Val dataset has 425 images.Download the datasets fromhere(access code:5tzp), and then extract it intodata
directory.
The test image dataset are sampled from|Set 5 |Bevilacqua et al. BMVC 2012|Set 14 |Zeyde et al. LNCS 2010|BSD 100 |Martin et al. ICCV 2001|Sun-Hays 80 |Sun and Hays ICCP 2012|Urban 100 |Huang et al. CVPR 2015.Download the image dataset fromhere(access code:xwhy), and then extract it intodata
directory.
The test video dataset are three trailers. Download the video dataset fromhere(access code:956d).
python train.pyoptional arguments:--crop_size training images crop size [default value is 88]--upscale_factor super resolution upscale factor [default value is 4](choices:[2, 4, 8])--num_epochs train epoch number [default value is 100]
The output val super resolution images are ontraining_results
directory.
python test_benchmark.pyoptional arguments:--upscale_factor super resolution upscale factor [default value is 4]--model_name generator model epoch name [default value is netG_epoch_4_100.pth]
The output super resolution images are onbenchmark_results
directory.
python test_image.pyoptional arguments:--upscale_factor super resolution upscale factor [default value is 4]--test_mode using GPU or CPU [default value is 'GPU'](choices:['GPU', 'CPU'])--image_name test low resolution image name--model_name generator model epoch name [default value is netG_epoch_4_100.pth]
The output super resolution image are on the same directory.
python test_video.pyoptional arguments:--upscale_factor super resolution upscale factor [default value is 4]--video_name test low resolution video name--model_name generator model epoch name [default value is netG_epoch_4_100.pth]
The output super resolution video and compared video are on the same directory.
Upscale Factor = 2
Epochs with batch size of 64 takes ~2 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.
Image Results
The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).
- BSD100_070(PSNR:32.4517; SSIM:0.9191)
- Set14_005(PSNR:26.9171; SSIM:0.9119)
- Set14_013(PSNR:30.8040; SSIM:0.9651)
- Urban100_098(PSNR:24.3765; SSIM:0.7855)
Video Results
The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).
Upscale Factor = 4
Epochs with batch size of 64 takes ~4 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.
Image Results
The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).
- BSD100_035(PSNR:32.3980; SSIM:0.8512)
- Set14_011(PSNR:29.5944; SSIM:0.9044)
- Set14_014(PSNR:25.1299; SSIM:0.7406)
- Urban100_060(PSNR:20.7129; SSIM:0.5263)
Video Results
The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).
Upscale Factor = 8
Epochs with batch size of 64 takes ~3 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.
Image Results
The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).
- SunHays80_027(PSNR:29.4941; SSIM:0.8082)
- SunHays80_035(PSNR:32.1546; SSIM:0.8449)
- SunHays80_043(PSNR:30.9716; SSIM:0.8789)
- SunHays80_078(PSNR:31.9351; SSIM:0.8381)
Video Results
The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).
The complete test results could be downloaded fromhere(access code:nkh9).
About
A PyTorch implementation of SRGAN based on CVPR 2017 paper "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Uh oh!
There was an error while loading.Please reload this page.
Contributors7
Uh oh!
There was an error while loading.Please reload this page.