Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A PyTorch implementation of SRGAN based on CVPR 2017 paper "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

License

NotificationsYou must be signed in to change notification settings

leftthomas/SRGAN

Repository files navigation

A PyTorch implementation of SRGAN based on CVPR 2017 paperPhoto-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

Requirements

conda install pytorch torchvision -c pytorch
  • opencv
conda install opencv

Datasets

Train、Val Dataset

The train and val datasets are sampled fromVOC2012.Train dataset has 16700 images and Val dataset has 425 images.Download the datasets fromhere(access code:5tzp), and then extract it intodata directory.

Test Image Dataset

The test image dataset are sampled from|Set 5 |Bevilacqua et al. BMVC 2012|Set 14 |Zeyde et al. LNCS 2010|BSD 100 |Martin et al. ICCV 2001|Sun-Hays 80 |Sun and Hays ICCP 2012|Urban 100 |Huang et al. CVPR 2015.Download the image dataset fromhere(access code:xwhy), and then extract it intodata directory.

Test Video Dataset

The test video dataset are three trailers. Download the video dataset fromhere(access code:956d).

Usage

Train

python train.pyoptional arguments:--crop_size                   training images crop size [default value is 88]--upscale_factor              super resolution upscale factor [default value is 4](choices:[2, 4, 8])--num_epochs                  train epoch number [default value is 100]

The output val super resolution images are ontraining_results directory.

Test Benchmark Datasets

python test_benchmark.pyoptional arguments:--upscale_factor              super resolution upscale factor [default value is 4]--model_name                  generator model epoch name [default value is netG_epoch_4_100.pth]

The output super resolution images are onbenchmark_results directory.

Test Single Image

python test_image.pyoptional arguments:--upscale_factor              super resolution upscale factor [default value is 4]--test_mode                   using GPU or CPU [default value is 'GPU'](choices:['GPU', 'CPU'])--image_name                  test low resolution image name--model_name                  generator model epoch name [default value is netG_epoch_4_100.pth]

The output super resolution image are on the same directory.

Test Single Video

python test_video.pyoptional arguments:--upscale_factor              super resolution upscale factor [default value is 4]--video_name                  test low resolution video name--model_name                  generator model epoch name [default value is netG_epoch_4_100.pth]

The output super resolution video and compared video are on the same directory.

Benchmarks

Upscale Factor = 2

Epochs with batch size of 64 takes ~2 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.

Image Results

The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).

  • BSD100_070(PSNR:32.4517; SSIM:0.9191)

BSD100_070

  • Set14_005(PSNR:26.9171; SSIM:0.9119)

Set14_005

  • Set14_013(PSNR:30.8040; SSIM:0.9651)

Set14_013

  • Urban100_098(PSNR:24.3765; SSIM:0.7855)

Urban100_098

Video Results

The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).

Watch the video

Upscale Factor = 4

Epochs with batch size of 64 takes ~4 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.

Image Results

The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).

  • BSD100_035(PSNR:32.3980; SSIM:0.8512)

BSD100_035

  • Set14_011(PSNR:29.5944; SSIM:0.9044)

Set14_011

  • Set14_014(PSNR:25.1299; SSIM:0.7406)

Set14_014

  • Urban100_060(PSNR:20.7129; SSIM:0.5263)

Urban100_060

Video Results

The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).

Watch the video

Upscale Factor = 8

Epochs with batch size of 64 takes ~3 minute 30 seconds on a NVIDIA GTX 1080Ti GPU.

Image Results

The left is bicubic interpolation image, the middle is high resolution image, andthe right is super resolution image(output of the SRGAN).

  • SunHays80_027(PSNR:29.4941; SSIM:0.8082)

SunHays80_027

  • SunHays80_035(PSNR:32.1546; SSIM:0.8449)

SunHays80_035

  • SunHays80_043(PSNR:30.9716; SSIM:0.8789)

SunHays80_043

  • SunHays80_078(PSNR:31.9351; SSIM:0.8381)

SunHays80_078

Video Results

The left is bicubic interpolation video, the right is super resolution video(output of the SRGAN).

Watch the video

The complete test results could be downloaded fromhere(access code:nkh9).

About

A PyTorch implementation of SRGAN based on CVPR 2017 paper "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Topics

Resources

License

Stars

Watchers

Forks

Languages


[8]ページ先頭

©2009-2025 Movatter.jp