- Notifications
You must be signed in to change notification settings - Fork5
Penalized least squares estimation using the Orthogonalizing EM (OEM) algorithm
jaredhuling/oem
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
The oem package provides estimation for various penalized linear modelsusing theOrthogonalizing EMalgorithm. Documentationfor the package can be found here:oemsite.
Install using thedevtools package (RcppEigen must be installedfirst as well):
devtools::install_github("jaredhuling/oem")
or by cloning and building usingR CMD INSTALL
To cite oem please use:
Xiong, S., Dai, B., Huling, J., Qian, P. Z. G. (2016) OrthogonalizingEM: A design-based least squares algorithm, Technometrics, Volume 58,Pages 285-293,
http://dx.doi.org/10.1080/00401706.2015.1054436.
Huling, J.D. and Chien, P. (2018), Fast Penalized Regression and CrossValidation for Tall Data with the OEM Package, Journal of StatisticalSoftware, to appear, URL:https://arxiv.org/abs/1801.09661.
library(microbenchmark)library(glmnet)library(oem)# compute the full solution path, n > pset.seed(123)n<-1000000p<-100m<-25b<-matrix(c(runif(m), rep(0,p-m)))x<-matrix(rnorm(n*p,sd=3),n,p)y<- drop(x%*%b)+ rnorm(n)lambdas= oem(x,y,intercept=TRUE,standardize=FALSE,penalty="elastic.net")$lambda[[1]]microbenchmark("glmnet[lasso]"= {res1<- glmnet(x,y,thresh=1e-10,standardize=FALSE,intercept=TRUE,lambda=lambdas)},"oem[lasso]"= {res2<- oem(x,y,penalty="elastic.net",intercept=TRUE,standardize=FALSE,lambda=lambdas,tol=1e-10)},times=5)
## Unit: seconds## expr min lq mean median uq max neval cld## glmnet[lasso] 5.325385 5.374823 5.859432 6.000302 6.292411 6.304239 5 a ## oem[lasso] 1.539320 1.573569 1.600241 1.617136 1.631450 1.639730 5 b
# difference of resultsmax(abs(coef(res1)-res2$beta[[1]]))
## [1] 1.048243e-07
res1<- glmnet(x,y,thresh=1e-12,standardize=FALSE,intercept=TRUE,lambda=lambdas)# answers are now more close once we require more precise glmnet solutionsmax(abs(coef(res1)-res2$beta[[1]]))
## [1] 3.763507e-09
library(sparsenet)library(ncvreg)# compute the full solution path, n > pset.seed(123)n<-5000p<-200m<-25b<-matrix(c(runif(m,-0.5,0.5), rep(0,p-m)))x<-matrix(rnorm(n*p,sd=3),n,p)y<- drop(x%*%b)+ rnorm(n)mcp.lam<- oem(x,y,penalty="mcp",gamma=2,intercept=TRUE,standardize=TRUE,nlambda=200,tol=1e-10)$lambda[[1]]scad.lam<- oem(x,y,penalty="scad",gamma=4,intercept=TRUE,standardize=TRUE,nlambda=200,tol=1e-10)$lambda[[1]]microbenchmark("sparsenet[mcp]"= {res1<- sparsenet(x,y,thresh=1e-10,gamma= c(2,3),#sparsenet throws an error#if you only fit 1 value of gammanlambda=200)},"oem[mcp]"= {res2<- oem(x,y,penalty="mcp",gamma=2,intercept=TRUE,standardize=TRUE,nlambda=200,tol=1e-10)},"ncvreg[mcp]"= {res3<- ncvreg(x,y,penalty="MCP",gamma=2,lambda=mcp.lam,eps=1e-7)},"oem[scad]"= {res4<- oem(x,y,penalty="scad",gamma=4,intercept=TRUE,standardize=TRUE,nlambda=200,tol=1e-10)},"ncvreg[scad]"= {res5<- ncvreg(x,y,penalty="SCAD",gamma=4,lambda=scad.lam,eps=1e-7)},times=5)
## Unit: milliseconds## expr min lq mean median uq## sparsenet[mcp] 1466.54465 1492.72548 1527.32113 1517.19926 1579.70827## oem[mcp] 95.71381 98.09740 105.90083 105.76415 110.31668## ncvreg[mcp] 5196.48035 5541.69429 5669.10010 5611.31491 5865.06723## oem[scad] 70.74110 71.46554 80.21926 78.76494 84.25458## ncvreg[scad] 5289.59790 5810.69254 5801.60997 5950.84377 5964.01276## max neval cld## 1580.42800 5 a ## 119.61209 5 b ## 6130.94372 5 c## 95.87013 5 b ## 5992.90288 5 c
diffs<-array(NA,dim= c(2,1))colnames(diffs)<-"abs diff"rownames(diffs)<- c("MCP: oem and ncvreg","SCAD: oem and ncvreg")diffs[,1]<- c(max(abs(res2$beta[[1]]-res3$beta)), max(abs(res4$beta[[1]]-res5$beta)))diffs
## abs diff## MCP: oem and ncvreg 1.725859e-07## SCAD: oem and ncvreg 5.094648e-08
In addition to the group lasso, the oem package offers computation forthe group MCP, group SCAD, and group sparse lasso penalties. Allaforementioned penalties can also be augmented with a ridge penalty.
library(gglasso)library(grpreg)library(grplasso)# compute the full solution path, n > pset.seed(123)n<-10000p<-200m<-25b<-matrix(c(runif(m,-0.5,0.5), rep(0,p-m)))x<-matrix(rnorm(n*p,sd=3),n,p)y<- drop(x%*%b)+ rnorm(n)groups<- rep(1:floor(p/10),each=10)grp.lam<- oem(x,y,penalty="grp.lasso",groups=groups,nlambda=100,tol=1e-10)$lambda[[1]]microbenchmark("gglasso[grp.lasso]"= {res1<- gglasso(x,y,group=groups,lambda=grp.lam,intercept=FALSE,eps=1e-8)},"oem[grp.lasso]"= {res2<- oem(x,y,groups=groups,intercept=FALSE,standardize=FALSE,penalty="grp.lasso",lambda=grp.lam,tol=1e-10)},"grplasso[grp.lasso]"= {res3<- grplasso(x=x,y=y,index=groups,standardize=FALSE,center=FALSE,model= LinReg(),lambda=grp.lam*n*2,control= grpl.control(trace=0,tol=1e-10))},"grpreg[grp.lasso]"= {res4<- grpreg(x,y,group=groups,eps=1e-10,lambda=grp.lam)},times=5)
## Unit: milliseconds## expr min lq mean median uq## gglasso[grp.lasso] 679.59049 724.16350 858.99280 801.79179 865.83580## oem[grp.lasso] 59.84769 62.23879 64.11779 63.36026 64.30146## grplasso[grp.lasso] 3714.92601 3753.18663 4322.32431 4537.50185 4786.80867## grpreg[grp.lasso] 1216.21794 1248.84647 1270.46132 1269.71047 1287.75969## max neval cld## 1223.58241 5 a ## 70.84075 5 b ## 4819.19839 5 c## 1329.77201 5 a
diffs<-array(NA,dim= c(2,1))colnames(diffs)<-"abs diff"rownames(diffs)<- c("oem and gglasso","oem and grplasso")diffs[,1]<- c( max(abs(res2$beta[[1]][-1,]-res1$beta)), max(abs(res2$beta[[1]][-1,]-res3$coefficients)) )diffs
## abs diff## oem and gglasso 1.303906e-06## oem and grplasso 1.645871e-08
set.seed(123)n<-500000p<-200m<-25b<-matrix(c(runif(m,-0.5,0.5), rep(0,p-m)))x<-matrix(rnorm(n*p,sd=3),n,p)y<- drop(x%*%b)+ rnorm(n)groups<- rep(1:floor(p/10),each=10)# fit all group penalties at oncegrp.penalties<- c("grp.lasso","grp.mcp","grp.scad","grp.mcp.net","grp.scad.net","sparse.group.lasso")system.time(res<- oem(x,y,penalty=grp.penalties,groups=groups,alpha=0.25,# mixing param for l2 penaltiestau=0.5))# mixing param for sparse grp lasso
## user system elapsed ## 2.043 0.222 2.267
The oem algorithm is quite efficient at fitting multiple penaltiessimultaneously when p is not too big.
set.seed(123)n<-100000p<-100m<-15b<-matrix(c(runif(m,-0.25,0.25), rep(0,p-m)))x<-matrix(rnorm(n*p,sd=3),n,p)y<- drop(x%*%b)+ rnorm(n)microbenchmark("oem[lasso]"= {res1<- oem(x,y,penalty="elastic.net",intercept=TRUE,standardize=TRUE,tol=1e-10)},"oem[lasso/mcp/scad/ols]"= {res2<- oem(x,y,penalty= c("elastic.net","mcp","scad","grp.lasso","grp.mcp","sparse.grp.lasso","grp.mcp.net","mcp.net"),gamma=4,tau=0.5,alpha=0.25,groups= rep(1:10,each=10),intercept=TRUE,standardize=TRUE,tol=1e-10)},times=5)
## Unit: milliseconds## expr min lq mean median uq max## oem[lasso] 125.6408 126.7870 130.3534 127.3374 133.4962 138.5055## oem[lasso/mcp/scad/ols] 148.3162 152.1743 153.0176 152.4529 154.4300 157.7144## neval cld## 5 a ## 5 b
#png("../mcp_path.png", width = 3000, height = 3000, res = 400);par(mar=c(5.1,5.1,4.1,2.1));plot(res2, which.model = 2, main = "mcp",lwd = 3,cex.axis=2.0, cex.lab=2.0, cex.main=2.0, cex.sub=2.0);dev.off()#layout(matrix(1:4,ncol=2,byrow=TRUE))plot(res2,which.model=1,lwd=2,xvar="lambda")plot(res2,which.model=2,lwd=2,xvar="lambda")plot(res2,which.model=4,lwd=2,xvar="lambda")plot(res2,which.model=7,lwd=2,xvar="lambda")
About
Penalized least squares estimation using the Orthogonalizing EM (OEM) algorithm
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.