Movatterモバイル変換


[0]ホーム

URL:


Pins
Table of Contents
  1. Introduction
  2. 1 Scope
  3. 2 Conformance
    1. 2.1 Example Clause Heading
  4. 3 Normative References
  5. 4 Overview
    1. 4.1 Web Scripting
    2. 4.2 Hosts and Implementations
    3. 4.3 ECMAScript Overview
      1. 4.3.1 Objects
      2. 4.3.2 The Strict Variant of ECMAScript
    4. 4.4 Terms and Definitions
      1. 4.4.1 implementation-approximated
      2. 4.4.2 implementation-defined
      3. 4.4.3 host-defined
      4. 4.4.4 type
      5. 4.4.5 primitive value
      6. 4.4.6 object
      7. 4.4.7 constructor
      8. 4.4.8 prototype
      9. 4.4.9 ordinary object
      10. 4.4.10 exotic object
      11. 4.4.11 standard object
      12. 4.4.12 built-in object
      13. 4.4.13 undefined value
      14. 4.4.14 Undefined type
      15. 4.4.15 null value
      16. 4.4.16 Null type
      17. 4.4.17 Boolean value
      18. 4.4.18 Boolean type
      19. 4.4.19 Boolean object
      20. 4.4.20 String value
      21. 4.4.21 String type
      22. 4.4.22 String object
      23. 4.4.23 Number value
      24. 4.4.24 Number type
      25. 4.4.25 Number object
      26. 4.4.26 Infinity
      27. 4.4.27 NaN
      28. 4.4.28 BigInt value
      29. 4.4.29 BigInt type
      30. 4.4.30 BigInt object
      31. 4.4.31 Symbol value
      32. 4.4.32 Symbol type
      33. 4.4.33 Symbol object
      34. 4.4.34 function
      35. 4.4.35 built-in function
      36. 4.4.36 property
      37. 4.4.37 method
      38. 4.4.38 built-in method
      39. 4.4.39 attribute
      40. 4.4.40 own property
      41. 4.4.41 inherited property
    5. 4.5 Organization of This Specification
  6. 5 Notational Conventions
    1. 5.1 Syntactic and Lexical Grammars
      1. 5.1.1 Context-Free Grammars
      2. 5.1.2 The Lexical and RegExp Grammars
      3. 5.1.3 The Numeric String Grammar
      4. 5.1.4 The Syntactic Grammar
      5. 5.1.5 Grammar Notation
    2. 5.2 Algorithm Conventions
      1. 5.2.1 Abstract Operations
      2. 5.2.2 Syntax-Directed Operations
      3. 5.2.3 Runtime Semantics
        1. 5.2.3.1 Implicit Completion Values
        2. 5.2.3.2 Throw an Exception
        3. 5.2.3.3 ReturnIfAbrupt
        4. 5.2.3.4 ReturnIfAbrupt Shorthands
      4. 5.2.4 Static Semantics
      5. 5.2.5 Mathematical Operations
      6. 5.2.6 Value Notation
  7. 6 ECMAScript Data Types and Values
    1. 6.1 ECMAScript Language Types
      1. 6.1.1 The Undefined Type
      2. 6.1.2 The Null Type
      3. 6.1.3 The Boolean Type
      4. 6.1.4 The String Type
        1. 6.1.4.1 StringIndexOf (string,searchValue,fromIndex )
      5. 6.1.5 The Symbol Type
        1. 6.1.5.1 Well-Known Symbols
      6. 6.1.6 Numeric Types
        1. 6.1.6.1 The Number Type
          1. 6.1.6.1.1 Number::unaryMinus (x )
          2. 6.1.6.1.2 Number::bitwiseNOT (x )
          3. 6.1.6.1.3 Number::exponentiate (base,exponent )
          4. 6.1.6.1.4 Number::multiply (x,y )
          5. 6.1.6.1.5 Number::divide (x,y )
          6. 6.1.6.1.6 Number::remainder (n,d )
          7. 6.1.6.1.7 Number::add (x,y )
          8. 6.1.6.1.8 Number::subtract (x,y )
          9. 6.1.6.1.9 Number::leftShift (x,y )
          10. 6.1.6.1.10 Number::signedRightShift (x,y )
          11. 6.1.6.1.11 Number::unsignedRightShift (x,y )
          12. 6.1.6.1.12 Number::lessThan (x,y )
          13. 6.1.6.1.13 Number::equal (x,y )
          14. 6.1.6.1.14 Number::sameValue (x,y )
          15. 6.1.6.1.15 Number::sameValueZero (x,y )
          16. 6.1.6.1.16 NumberBitwiseOp (op,x,y )
          17. 6.1.6.1.17 Number::bitwiseAND (x,y )
          18. 6.1.6.1.18 Number::bitwiseXOR (x,y )
          19. 6.1.6.1.19 Number::bitwiseOR (x,y )
          20. 6.1.6.1.20 Number::toString (x )
        2. 6.1.6.2 The BigInt Type
          1. 6.1.6.2.1 BigInt::unaryMinus (x )
          2. 6.1.6.2.2 BigInt::bitwiseNOT (x )
          3. 6.1.6.2.3 BigInt::exponentiate (base,exponent )
          4. 6.1.6.2.4 BigInt::multiply (x,y )
          5. 6.1.6.2.5 BigInt::divide (x,y )
          6. 6.1.6.2.6 BigInt::remainder (n,d )
          7. 6.1.6.2.7 BigInt::add (x,y )
          8. 6.1.6.2.8 BigInt::subtract (x,y )
          9. 6.1.6.2.9 BigInt::leftShift (x,y )
          10. 6.1.6.2.10 BigInt::signedRightShift (x,y )
          11. 6.1.6.2.11 BigInt::unsignedRightShift (x,y )
          12. 6.1.6.2.12 BigInt::lessThan (x,y )
          13. 6.1.6.2.13 BigInt::equal (x,y )
          14. 6.1.6.2.14 BigInt::sameValue (x,y )
          15. 6.1.6.2.15 BigInt::sameValueZero (x,y )
          16. 6.1.6.2.16 BinaryAnd (x,y )
          17. 6.1.6.2.17 BinaryOr (x,y )
          18. 6.1.6.2.18 BinaryXor (x,y )
          19. 6.1.6.2.19 BigIntBitwiseOp (op,x,y )
          20. 6.1.6.2.20 BigInt::bitwiseAND (x,y )
          21. 6.1.6.2.21 BigInt::bitwiseXOR (x,y )
          22. 6.1.6.2.22 BigInt::bitwiseOR (x,y )
          23. 6.1.6.2.23 BigInt::toString (x )
      7. 6.1.7 The Object Type
        1. 6.1.7.1 Property Attributes
        2. 6.1.7.2 Object Internal Methods and Internal Slots
        3. 6.1.7.3 Invariants of the Essential Internal Methods
        4. 6.1.7.4 Well-Known Intrinsic Objects
    2. 6.2 ECMAScript Specification Types
      1. 6.2.1 The List and Record Specification Types
      2. 6.2.2 The Set and Relation Specification Types
      3. 6.2.3 The Completion Record Specification Type
        1. 6.2.3.1 Await
          1. 6.2.3.1.1 Await Fulfilled Functions
          2. 6.2.3.1.2 Await Rejected Functions
        2. 6.2.3.2 NormalCompletion
        3. 6.2.3.3 ThrowCompletion
        4. 6.2.3.4 UpdateEmpty (completionRecord,value )
      4. 6.2.4 The Reference Record Specification Type
        1. 6.2.4.1 IsPropertyReference (V )
        2. 6.2.4.2 IsUnresolvableReference (V )
        3. 6.2.4.3 IsSuperReference (V )
        4. 6.2.4.4 GetValue (V )
        5. 6.2.4.5 PutValue (V,W )
        6. 6.2.4.6 GetThisValue (V )
        7. 6.2.4.7 InitializeReferencedBinding (V,W )
      5. 6.2.5 The Property Descriptor Specification Type
        1. 6.2.5.1 IsAccessorDescriptor (Desc )
        2. 6.2.5.2 IsDataDescriptor (Desc )
        3. 6.2.5.3 IsGenericDescriptor (Desc )
        4. 6.2.5.4 FromPropertyDescriptor (Desc )
        5. 6.2.5.5 ToPropertyDescriptor (Obj )
        6. 6.2.5.6 CompletePropertyDescriptor (Desc )
      6. 6.2.6 The Environment Record Specification Type
      7. 6.2.7 The Abstract Closure Specification Type
      8. 6.2.8 Data Blocks
        1. 6.2.8.1 CreateByteDataBlock (size )
        2. 6.2.8.2 CreateSharedByteDataBlock (size )
        3. 6.2.8.3 CopyDataBlockBytes (toBlock,toIndex,fromBlock,fromIndex,count )
  8. 7 Abstract Operations
    1. 7.1 Type Conversion
      1. 7.1.1 ToPrimitive (input [ ,preferredType ] )
        1. 7.1.1.1 OrdinaryToPrimitive (O,hint )
      2. 7.1.2 ToBoolean (argument )
      3. 7.1.3 ToNumeric (value )
      4. 7.1.4 ToNumber (argument )
        1. 7.1.4.1 ToNumber Applied to the String Type
          1. 7.1.4.1.1 RS: MV
      5. 7.1.5 ToIntegerOrInfinity (argument )
      6. 7.1.6 ToInt32 (argument )
      7. 7.1.7 ToUint32 (argument )
      8. 7.1.8 ToInt16 (argument )
      9. 7.1.9 ToUint16 (argument )
      10. 7.1.10 ToInt8 (argument )
      11. 7.1.11 ToUint8 (argument )
      12. 7.1.12 ToUint8Clamp (argument )
      13. 7.1.13 ToBigInt (argument )
      14. 7.1.14 StringToBigInt (argument )
      15. 7.1.15 ToBigInt64 (argument )
      16. 7.1.16 ToBigUint64 (argument )
      17. 7.1.17 ToString (argument )
      18. 7.1.18 ToObject (argument )
      19. 7.1.19 ToPropertyKey (argument )
      20. 7.1.20 ToLength (argument )
      21. 7.1.21 CanonicalNumericIndexString (argument )
      22. 7.1.22 ToIndex (value )
    2. 7.2 Testing and Comparison Operations
      1. 7.2.1 RequireObjectCoercible (argument )
      2. 7.2.2 IsArray (argument )
      3. 7.2.3 IsCallable (argument )
      4. 7.2.4 IsConstructor (argument )
      5. 7.2.5 IsExtensible (O )
      6. 7.2.6 IsIntegralNumber (argument )
      7. 7.2.7 IsPropertyKey (argument )
      8. 7.2.8 IsRegExp (argument )
      9. 7.2.9 IsStringPrefix (p,q )
      10. 7.2.10 SameValue (x,y )
      11. 7.2.11 SameValueZero (x,y )
      12. 7.2.12 SameValueNonNumeric (x,y )
      13. 7.2.13 Abstract Relational Comparison
      14. 7.2.14 Abstract Equality Comparison
      15. 7.2.15 Strict Equality Comparison
    3. 7.3 Operations on Objects
      1. 7.3.1 MakeBasicObject (internalSlotsList )
      2. 7.3.2 Get (O,P )
      3. 7.3.3 GetV (V,P )
      4. 7.3.4 Set (O,P,V,Throw )
      5. 7.3.5 CreateDataProperty (O,P,V )
      6. 7.3.6 CreateMethodProperty (O,P,V )
      7. 7.3.7 CreateDataPropertyOrThrow (O,P,V )
      8. 7.3.8 DefinePropertyOrThrow (O,P,desc )
      9. 7.3.9 DeletePropertyOrThrow (O,P )
      10. 7.3.10 GetMethod (V,P )
      11. 7.3.11 HasProperty (O,P )
      12. 7.3.12 HasOwnProperty (O,P )
      13. 7.3.13 Call (F,V [ ,argumentsList ] )
      14. 7.3.14 Construct (F [ ,argumentsList [ ,newTarget ] ] )
      15. 7.3.15 SetIntegrityLevel (O,level )
      16. 7.3.16 TestIntegrityLevel (O,level )
      17. 7.3.17 CreateArrayFromList (elements )
      18. 7.3.18 LengthOfArrayLike (obj )
      19. 7.3.19 CreateListFromArrayLike (obj [ ,elementTypes ] )
      20. 7.3.20 Invoke (V,P [ ,argumentsList ] )
      21. 7.3.21 OrdinaryHasInstance (C,O )
      22. 7.3.22 SpeciesConstructor (O,defaultConstructor )
      23. 7.3.23 EnumerableOwnPropertyNames (O,kind )
      24. 7.3.24 GetFunctionRealm (obj )
      25. 7.3.25 CopyDataProperties (target,source,excludedItems )
    4. 7.4 Operations on Iterator Objects
      1. 7.4.1 GetIterator (obj [ ,hint [ ,method ] ] )
      2. 7.4.2 IteratorNext (iteratorRecord [ ,value ] )
      3. 7.4.3 IteratorComplete (iterResult )
      4. 7.4.4 IteratorValue (iterResult )
      5. 7.4.5 IteratorStep (iteratorRecord )
      6. 7.4.6 IteratorClose (iteratorRecord,completion )
      7. 7.4.7 AsyncIteratorClose (iteratorRecord,completion )
      8. 7.4.8 CreateIterResultObject (value,done )
      9. 7.4.9 CreateListIteratorRecord (list )
      10. 7.4.10 IterableToList (items [ ,method ] )
  9. 8 Syntax-Directed Operations
    1. 8.1 Scope Analysis
      1. 8.1.1 SS: BoundNames
      2. 8.1.2 SS: DeclarationPart
      3. 8.1.3 SS: IsConstantDeclaration
      4. 8.1.4 SS: LexicallyDeclaredNames
      5. 8.1.5 SS: LexicallyScopedDeclarations
      6. 8.1.6 SS: VarDeclaredNames
      7. 8.1.7 SS: VarScopedDeclarations
      8. 8.1.8 SS: TopLevelLexicallyDeclaredNames
      9. 8.1.9 SS: TopLevelLexicallyScopedDeclarations
      10. 8.1.10 SS: TopLevelVarDeclaredNames
      11. 8.1.11 SS: TopLevelVarScopedDeclarations
    2. 8.2 Labels
      1. 8.2.1 SS: ContainsDuplicateLabels
      2. 8.2.2 SS: ContainsUndefinedBreakTarget
      3. 8.2.3 SS: ContainsUndefinedContinueTarget
    3. 8.3 Function Name Inference
      1. 8.3.1 SS: HasName
      2. 8.3.2 SS: IsFunctionDefinition
      3. 8.3.3 SS: IsAnonymousFunctionDefinition (expr )
      4. 8.3.4 SS: IsIdentifierRef
      5. 8.3.5 RS: NamedEvaluation
    4. 8.4 Contains
      1. 8.4.1 SS: Contains
      2. 8.4.2 SS: ComputedPropertyContains
    5. 8.5 Miscellaneous
      1. 8.5.1 RS: InstantiateFunctionObject
      2. 8.5.2 RS: BindingInitialization
        1. 8.5.2.1 InitializeBoundName (name,value,environment )
      3. 8.5.3 RS: IteratorBindingInitialization
      4. 8.5.4 SS: AssignmentTargetType
      5. 8.5.5 SS: PropName
  10. 9 Executable Code and Execution Contexts
    1. 9.1 Environment Records
      1. 9.1.1 The Environment Record Type Hierarchy
        1. 9.1.1.1 Declarative Environment Records
          1. 9.1.1.1.1 HasBinding (N )
          2. 9.1.1.1.2 CreateMutableBinding (N,D )
          3. 9.1.1.1.3 CreateImmutableBinding (N,S )
          4. 9.1.1.1.4 InitializeBinding (N,V )
          5. 9.1.1.1.5 SetMutableBinding (N,V,S )
          6. 9.1.1.1.6 GetBindingValue (N,S )
          7. 9.1.1.1.7 DeleteBinding (N )
          8. 9.1.1.1.8 HasThisBinding ( )
          9. 9.1.1.1.9 HasSuperBinding ( )
          10. 9.1.1.1.10 WithBaseObject ( )
        2. 9.1.1.2 Object Environment Records
          1. 9.1.1.2.1 HasBinding (N )
          2. 9.1.1.2.2 CreateMutableBinding (N,D )
          3. 9.1.1.2.3 CreateImmutableBinding (N,S )
          4. 9.1.1.2.4 InitializeBinding (N,V )
          5. 9.1.1.2.5 SetMutableBinding (N,V,S )
          6. 9.1.1.2.6 GetBindingValue (N,S )
          7. 9.1.1.2.7 DeleteBinding (N )
          8. 9.1.1.2.8 HasThisBinding ( )
          9. 9.1.1.2.9 HasSuperBinding ( )
          10. 9.1.1.2.10 WithBaseObject ( )
        3. 9.1.1.3 Function Environment Records
          1. 9.1.1.3.1 BindThisValue (V )
          2. 9.1.1.3.2 HasThisBinding ( )
          3. 9.1.1.3.3 HasSuperBinding ( )
          4. 9.1.1.3.4 GetThisBinding ( )
          5. 9.1.1.3.5 GetSuperBase ( )
        4. 9.1.1.4 Global Environment Records
          1. 9.1.1.4.1 HasBinding (N )
          2. 9.1.1.4.2 CreateMutableBinding (N,D )
          3. 9.1.1.4.3 CreateImmutableBinding (N,S )
          4. 9.1.1.4.4 InitializeBinding (N,V )
          5. 9.1.1.4.5 SetMutableBinding (N,V,S )
          6. 9.1.1.4.6 GetBindingValue (N,S )
          7. 9.1.1.4.7 DeleteBinding (N )
          8. 9.1.1.4.8 HasThisBinding ( )
          9. 9.1.1.4.9 HasSuperBinding ( )
          10. 9.1.1.4.10 WithBaseObject ( )
          11. 9.1.1.4.11 GetThisBinding ( )
          12. 9.1.1.4.12 HasVarDeclaration (N )
          13. 9.1.1.4.13 HasLexicalDeclaration (N )
          14. 9.1.1.4.14 HasRestrictedGlobalProperty (N )
          15. 9.1.1.4.15 CanDeclareGlobalVar (N )
          16. 9.1.1.4.16 CanDeclareGlobalFunction (N )
          17. 9.1.1.4.17 CreateGlobalVarBinding (N,D )
          18. 9.1.1.4.18 CreateGlobalFunctionBinding (N,V,D )
        5. 9.1.1.5 Module Environment Records
          1. 9.1.1.5.1 GetBindingValue (N,S )
          2. 9.1.1.5.2 DeleteBinding (N )
          3. 9.1.1.5.3 HasThisBinding ( )
          4. 9.1.1.5.4 GetThisBinding ( )
          5. 9.1.1.5.5 CreateImportBinding (N,M,N2 )
      2. 9.1.2 Environment Record Operations
        1. 9.1.2.1 GetIdentifierReference (env,name,strict )
        2. 9.1.2.2 NewDeclarativeEnvironment (E )
        3. 9.1.2.3 NewObjectEnvironment (O,E )
        4. 9.1.2.4 NewFunctionEnvironment (F,newTarget )
        5. 9.1.2.5 NewGlobalEnvironment (G,thisValue )
        6. 9.1.2.6 NewModuleEnvironment (E )
    2. 9.2 Realms
      1. 9.2.1 CreateRealm ( )
      2. 9.2.2 CreateIntrinsics (realmRec )
      3. 9.2.3 SetRealmGlobalObject (realmRec,globalObj,thisValue )
      4. 9.2.4 SetDefaultGlobalBindings (realmRec )
    3. 9.3 Execution Contexts
      1. 9.3.1 GetActiveScriptOrModule ( )
      2. 9.3.2 ResolveBinding (name [ ,env ] )
      3. 9.3.3 GetThisEnvironment ( )
      4. 9.3.4 ResolveThisBinding ( )
      5. 9.3.5 GetNewTarget ( )
      6. 9.3.6 GetGlobalObject ( )
    4. 9.4 Jobs and Host Operations to Enqueue Jobs
      1. 9.4.1 JobCallback Records
      2. 9.4.2 HostMakeJobCallback (callback )
      3. 9.4.3 HostCallJobCallback (jobCallback,V,argumentsList )
      4. 9.4.4 HostEnqueuePromiseJob (job,realm )
    5. 9.5 InitializeHostDefinedRealm ( )
    6. 9.6 Agents
      1. 9.6.1 AgentSignifier ( )
      2. 9.6.2 AgentCanSuspend ( )
    7. 9.7 Agent Clusters
    8. 9.8 Forward Progress
    9. 9.9 Processing Model of WeakRef and FinalizationRegistry Objects
      1. 9.9.1 Objectives
      2. 9.9.2 Liveness
      3. 9.9.3 Execution
      4. 9.9.4 Host Hooks
        1. 9.9.4.1 HostEnqueueFinalizationRegistryCleanupJob (finalizationRegistry )
    10. 9.10 ClearKeptObjects ( )
    11. 9.11 AddToKeptObjects (object )
    12. 9.12 CleanupFinalizationRegistry (finalizationRegistry )
  11. 10 Ordinary and Exotic Objects Behaviours
    1. 10.1 Ordinary Object Internal Methods and Internal Slots
      1. 10.1.1 [[GetPrototypeOf]] ( )
        1. 10.1.1.1 OrdinaryGetPrototypeOf (O )
      2. 10.1.2 [[SetPrototypeOf]] (V )
        1. 10.1.2.1 OrdinarySetPrototypeOf (O,V )
      3. 10.1.3 [[IsExtensible]] ( )
        1. 10.1.3.1 OrdinaryIsExtensible (O )
      4. 10.1.4 [[PreventExtensions]] ( )
        1. 10.1.4.1 OrdinaryPreventExtensions (O )
      5. 10.1.5 [[GetOwnProperty]] (P )
        1. 10.1.5.1 OrdinaryGetOwnProperty (O,P )
      6. 10.1.6 [[DefineOwnProperty]] (P,Desc )
        1. 10.1.6.1 OrdinaryDefineOwnProperty (O,P,Desc )
        2. 10.1.6.2 IsCompatiblePropertyDescriptor (Extensible,Desc,Current )
        3. 10.1.6.3 ValidateAndApplyPropertyDescriptor (O,P,extensible,Desc,current )
      7. 10.1.7 [[HasProperty]] (P )
        1. 10.1.7.1 OrdinaryHasProperty (O,P )
      8. 10.1.8 [[Get]] (P,Receiver )
        1. 10.1.8.1 OrdinaryGet (O,P,Receiver )
      9. 10.1.9 [[Set]] (P,V,Receiver )
        1. 10.1.9.1 OrdinarySet (O,P,V,Receiver )
        2. 10.1.9.2 OrdinarySetWithOwnDescriptor (O,P,V,Receiver,ownDesc )
      10. 10.1.10 [[Delete]] (P )
        1. 10.1.10.1 OrdinaryDelete (O,P )
      11. 10.1.11 [[OwnPropertyKeys]] ( )
        1. 10.1.11.1 OrdinaryOwnPropertyKeys (O )
      12. 10.1.12 OrdinaryObjectCreate (proto [ ,additionalInternalSlotsList ] )
      13. 10.1.13 OrdinaryCreateFromConstructor (constructor,intrinsicDefaultProto [ ,internalSlotsList ] )
      14. 10.1.14 GetPrototypeFromConstructor (constructor,intrinsicDefaultProto )
      15. 10.1.15 RequireInternalSlot (O,internalSlot )
    2. 10.2 ECMAScript Function Objects
      1. 10.2.1 [[Call]] (thisArgument,argumentsList )
        1. 10.2.1.1 PrepareForOrdinaryCall (F,newTarget )
        2. 10.2.1.2 OrdinaryCallBindThis (F,calleeContext,thisArgument )
        3. 10.2.1.3 RS: EvaluateBody
        4. 10.2.1.4 OrdinaryCallEvaluateBody (F,argumentsList )
      2. 10.2.2 [[Construct]] (argumentsList,newTarget )
      3. 10.2.3 OrdinaryFunctionCreate (functionPrototype,sourceText,ParameterList,Body,thisMode,Scope )
      4. 10.2.4 AddRestrictedFunctionProperties (F,realm )
        1. 10.2.4.1 %ThrowTypeError% ( )
      5. 10.2.5 MakeConstructor (F [ ,writablePrototype [ ,prototype ] ] )
      6. 10.2.6 MakeClassConstructor (F )
      7. 10.2.7 MakeMethod (F,homeObject )
      8. 10.2.8 SetFunctionName (F,name [ ,prefix ] )
      9. 10.2.9 SetFunctionLength (F,length )
      10. 10.2.10 FunctionDeclarationInstantiation (func,argumentsList )
    3. 10.3 Built-in Function Objects
      1. 10.3.1 [[Call]] (thisArgument,argumentsList )
      2. 10.3.2 [[Construct]] (argumentsList,newTarget )
      3. 10.3.3 CreateBuiltinFunction (steps,length,name,internalSlotsList [ ,realm [ ,prototype [ ,prefix ] ] ] )
    4. 10.4 Built-in Exotic Object Internal Methods and Slots
      1. 10.4.1 Bound Function Exotic Objects
        1. 10.4.1.1 [[Call]] (thisArgument,argumentsList )
        2. 10.4.1.2 [[Construct]] (argumentsList,newTarget )
        3. 10.4.1.3 BoundFunctionCreate (targetFunction,boundThis,boundArgs )
      2. 10.4.2 Array Exotic Objects
        1. 10.4.2.1 [[DefineOwnProperty]] (P,Desc )
        2. 10.4.2.2 ArrayCreate (length [ ,proto ] )
        3. 10.4.2.3 ArraySpeciesCreate (originalArray,length )
        4. 10.4.2.4 ArraySetLength (A,Desc )
      3. 10.4.3 String Exotic Objects
        1. 10.4.3.1 [[GetOwnProperty]] (P )
        2. 10.4.3.2 [[DefineOwnProperty]] (P,Desc )
        3. 10.4.3.3 [[OwnPropertyKeys]] ( )
        4. 10.4.3.4 StringCreate (value,prototype )
        5. 10.4.3.5 StringGetOwnProperty (S,P )
      4. 10.4.4 Arguments Exotic Objects
        1. 10.4.4.1 [[GetOwnProperty]] (P )
        2. 10.4.4.2 [[DefineOwnProperty]] (P,Desc )
        3. 10.4.4.3 [[Get]] (P,Receiver )
        4. 10.4.4.4 [[Set]] (P,V,Receiver )
        5. 10.4.4.5 [[Delete]] (P )
        6. 10.4.4.6 CreateUnmappedArgumentsObject (argumentsList )
        7. 10.4.4.7 CreateMappedArgumentsObject (func,formals,argumentsList,env )
          1. 10.4.4.7.1 MakeArgGetter (name,env )
          2. 10.4.4.7.2 MakeArgSetter (name,env )
      5. 10.4.5 Integer-Indexed Exotic Objects
        1. 10.4.5.1 [[GetOwnProperty]] (P )
        2. 10.4.5.2 [[HasProperty]] (P )
        3. 10.4.5.3 [[DefineOwnProperty]] (P,Desc )
        4. 10.4.5.4 [[Get]] (P,Receiver )
        5. 10.4.5.5 [[Set]] (P,V,Receiver )
        6. 10.4.5.6 [[Delete]] (P )
        7. 10.4.5.7 [[OwnPropertyKeys]] ( )
        8. 10.4.5.8 IntegerIndexedObjectCreate (prototype )
        9. 10.4.5.9 IsValidIntegerIndex (O,index )
        10. 10.4.5.10 IntegerIndexedElementGet (O,index )
        11. 10.4.5.11 IntegerIndexedElementSet (O,index,value )
      6. 10.4.6 Module Namespace Exotic Objects
        1. 10.4.6.1 [[SetPrototypeOf]] (V )
        2. 10.4.6.2 [[IsExtensible]] ( )
        3. 10.4.6.3 [[PreventExtensions]] ( )
        4. 10.4.6.4 [[GetOwnProperty]] (P )
        5. 10.4.6.5 [[DefineOwnProperty]] (P,Desc )
        6. 10.4.6.6 [[HasProperty]] (P )
        7. 10.4.6.7 [[Get]] (P,Receiver )
        8. 10.4.6.8 [[Set]] (P,V,Receiver )
        9. 10.4.6.9 [[Delete]] (P )
        10. 10.4.6.10 [[OwnPropertyKeys]] ( )
        11. 10.4.6.11 ModuleNamespaceCreate (module,exports )
      7. 10.4.7 Immutable Prototype Exotic Objects
        1. 10.4.7.1 [[SetPrototypeOf]] (V )
        2. 10.4.7.2 SetImmutablePrototype (O,V )
    5. 10.5 Proxy Object Internal Methods and Internal Slots
      1. 10.5.1 [[GetPrototypeOf]] ( )
      2. 10.5.2 [[SetPrototypeOf]] (V )
      3. 10.5.3 [[IsExtensible]] ( )
      4. 10.5.4 [[PreventExtensions]] ( )
      5. 10.5.5 [[GetOwnProperty]] (P )
      6. 10.5.6 [[DefineOwnProperty]] (P,Desc )
      7. 10.5.7 [[HasProperty]] (P )
      8. 10.5.8 [[Get]] (P,Receiver )
      9. 10.5.9 [[Set]] (P,V,Receiver )
      10. 10.5.10 [[Delete]] (P )
      11. 10.5.11 [[OwnPropertyKeys]] ( )
      12. 10.5.12 [[Call]] (thisArgument,argumentsList )
      13. 10.5.13 [[Construct]] (argumentsList,newTarget )
      14. 10.5.14 ProxyCreate (target,handler )
  12. 11 ECMAScript Language: Source Code
    1. 11.1 Source Text
      1. 11.1.1 SS: UTF16EncodeCodePoint (cp )
      2. 11.1.2 SS: CodePointsToString (text )
      3. 11.1.3 SS: UTF16SurrogatePairToCodePoint (lead,trail )
      4. 11.1.4 SS: CodePointAt (string,position )
      5. 11.1.5 SS: StringToCodePoints (string )
      6. 11.1.6 SS: ParseText (sourceText,goalSymbol )
    2. 11.2 Types of Source Code
      1. 11.2.1 Directive Prologues and the Use Strict Directive
      2. 11.2.2 Strict Mode Code
      3. 11.2.3 Non-ECMAScript Functions
  13. 12 ECMAScript Language: Lexical Grammar
    1. 12.1 Unicode Format-Control Characters
    2. 12.2 White Space
    3. 12.3 Line Terminators
    4. 12.4 Comments
    5. 12.5 Tokens
    6. 12.6 Names and Keywords
      1. 12.6.1 Identifier Names
        1. 12.6.1.1 SS: Early Errors
      2. 12.6.2 Keywords and Reserved Words
    7. 12.7 Punctuators
    8. 12.8 Literals
      1. 12.8.1 Null Literals
      2. 12.8.2 Boolean Literals
      3. 12.8.3 Numeric Literals
        1. 12.8.3.1 SS: MV
        2. 12.8.3.2 SS: NumericValue
      4. 12.8.4 String Literals
        1. 12.8.4.1 SS: SV
        2. 12.8.4.2 SS: MV
      5. 12.8.5 Regular Expression Literals
        1. 12.8.5.1 SS: Early Errors
        2. 12.8.5.2 SS: BodyText
        3. 12.8.5.3 SS: FlagText
      6. 12.8.6 Template Literal Lexical Components
        1. 12.8.6.1 SS: TV and TRV
    9. 12.9 Automatic Semicolon Insertion
      1. 12.9.1 Rules of Automatic Semicolon Insertion
      2. 12.9.2 Examples of Automatic Semicolon Insertion
      3. 12.9.3 Interesting Cases of Automatic Semicolon Insertion
        1. 12.9.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists
        2. 12.9.3.2 Cases of Automatic Semicolon Insertion and “[noLineTerminator here]”
          1. 12.9.3.2.1 List of Grammar Productions with Optional Operands and “[noLineTerminator here]”
  14. 13 ECMAScript Language: Expressions
    1. 13.1 Identifiers
      1. 13.1.1 SS: Early Errors
      2. 13.1.2 SS: StringValue
      3. 13.1.3 RS: Evaluation
    2. 13.2 Primary Expression
      1. 13.2.1 Semantics
        1. 13.2.1.1 SS: CoveredParenthesizedExpression
      2. 13.2.2 Thethis Keyword
        1. 13.2.2.1 RS: Evaluation
      3. 13.2.3 Identifier Reference
      4. 13.2.4 Literals
        1. 13.2.4.1 RS: Evaluation
      5. 13.2.5 Array Initializer
        1. 13.2.5.1 RS: ArrayAccumulation
        2. 13.2.5.2 RS: Evaluation
      6. 13.2.6 Object Initializer
        1. 13.2.6.1 SS: Early Errors
        2. 13.2.6.2 SS: IsComputedPropertyKey
        3. 13.2.6.3 SS: PropertyNameList
        4. 13.2.6.4 RS: Evaluation
        5. 13.2.6.5 RS: PropertyDefinitionEvaluation
      7. 13.2.7 Function Defining Expressions
      8. 13.2.8 Regular Expression Literals
        1. 13.2.8.1 SS: Early Errors
        2. 13.2.8.2 SS: IsValidRegularExpressionLiteral (literal )
        3. 13.2.8.3 RS: Evaluation
      9. 13.2.9 Template Literals
        1. 13.2.9.1 SS: Early Errors
        2. 13.2.9.2 SS: TemplateStrings
        3. 13.2.9.3 GetTemplateObject (templateLiteral )
        4. 13.2.9.4 RS: SubstitutionEvaluation
        5. 13.2.9.5 RS: Evaluation
      10. 13.2.10 The Grouping Operator
        1. 13.2.10.1 SS: Early Errors
        2. 13.2.10.2 RS: Evaluation
    3. 13.3 Left-Hand-Side Expressions
      1. 13.3.1 Static Semantics
        1. 13.3.1.1 SS: Early Errors
        2. 13.3.1.2 SS: CoveredCallExpression
      2. 13.3.2 Property Accessors
        1. 13.3.2.1 RS: Evaluation
      3. 13.3.3 EvaluatePropertyAccessWithExpressionKey (baseValue,expression,strict )
      4. 13.3.4 EvaluatePropertyAccessWithIdentifierKey (baseValue,identifierName,strict )
      5. 13.3.5 Thenew Operator
        1. 13.3.5.1 RS: Evaluation
          1. 13.3.5.1.1 EvaluateNew (constructExpr,arguments )
      6. 13.3.6 Function Calls
        1. 13.3.6.1 RS: Evaluation
        2. 13.3.6.2 EvaluateCall (func,ref,arguments,tailPosition )
      7. 13.3.7 Thesuper Keyword
        1. 13.3.7.1 RS: Evaluation
        2. 13.3.7.2 GetSuperConstructor ( )
        3. 13.3.7.3 MakeSuperPropertyReference (actualThis,propertyKey,strict )
      8. 13.3.8 Argument Lists
        1. 13.3.8.1 RS: ArgumentListEvaluation
      9. 13.3.9 Optional Chains
        1. 13.3.9.1 RS: Evaluation
        2. 13.3.9.2 RS: ChainEvaluation
      10. 13.3.10 Import Calls
        1. 13.3.10.1 RS: Evaluation
      11. 13.3.11 Tagged Templates
        1. 13.3.11.1 RS: Evaluation
      12. 13.3.12 Meta Properties
        1. 13.3.12.1 RS: Evaluation
          1. 13.3.12.1.1 HostGetImportMetaProperties (moduleRecord )
          2. 13.3.12.1.2 HostFinalizeImportMeta (importMeta,moduleRecord )
    4. 13.4 Update Expressions
      1. 13.4.1 SS: Early Errors
      2. 13.4.2 Postfix Increment Operator
        1. 13.4.2.1 RS: Evaluation
      3. 13.4.3 Postfix Decrement Operator
        1. 13.4.3.1 RS: Evaluation
      4. 13.4.4 Prefix Increment Operator
        1. 13.4.4.1 RS: Evaluation
      5. 13.4.5 Prefix Decrement Operator
        1. 13.4.5.1 RS: Evaluation
    5. 13.5 Unary Operators
      1. 13.5.1 Thedelete Operator
        1. 13.5.1.1 SS: Early Errors
        2. 13.5.1.2 RS: Evaluation
      2. 13.5.2 Thevoid Operator
        1. 13.5.2.1 RS: Evaluation
      3. 13.5.3 Thetypeof Operator
        1. 13.5.3.1 RS: Evaluation
      4. 13.5.4 Unary+ Operator
        1. 13.5.4.1 RS: Evaluation
      5. 13.5.5 Unary- Operator
        1. 13.5.5.1 RS: Evaluation
      6. 13.5.6 Bitwise NOT Operator (~ )
        1. 13.5.6.1 RS: Evaluation
      7. 13.5.7 Logical NOT Operator (! )
        1. 13.5.7.1 RS: Evaluation
    6. 13.6 Exponentiation Operator
      1. 13.6.1 RS: Evaluation
    7. 13.7 Multiplicative Operators
      1. 13.7.1 RS: Evaluation
    8. 13.8 Additive Operators
      1. 13.8.1 The Addition Operator (+ )
        1. 13.8.1.1 RS: Evaluation
      2. 13.8.2 The Subtraction Operator (- )
        1. 13.8.2.1 RS: Evaluation
    9. 13.9 Bitwise Shift Operators
      1. 13.9.1 The Left Shift Operator (<< )
        1. 13.9.1.1 RS: Evaluation
      2. 13.9.2 The Signed Right Shift Operator (>> )
        1. 13.9.2.1 RS: Evaluation
      3. 13.9.3 The Unsigned Right Shift Operator (>>> )
        1. 13.9.3.1 RS: Evaluation
    10. 13.10 Relational Operators
      1. 13.10.1 RS: Evaluation
      2. 13.10.2 InstanceofOperator (V,target )
    11. 13.11 Equality Operators
      1. 13.11.1 RS: Evaluation
    12. 13.12 Binary Bitwise Operators
      1. 13.12.1 RS: Evaluation
    13. 13.13 Binary Logical Operators
      1. 13.13.1 RS: Evaluation
    14. 13.14 Conditional Operator (? : )
      1. 13.14.1 RS: Evaluation
    15. 13.15 Assignment Operators
      1. 13.15.1 SS: Early Errors
      2. 13.15.2 RS: Evaluation
      3. 13.15.3 ApplyStringOrNumericBinaryOperator (lval,opText,rval )
      4. 13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand,opText,rightOperand )
      5. 13.15.5 Destructuring Assignment
        1. 13.15.5.1 SS: Early Errors
        2. 13.15.5.2 RS: DestructuringAssignmentEvaluation
        3. 13.15.5.3 RS: PropertyDestructuringAssignmentEvaluation
        4. 13.15.5.4 RS: RestDestructuringAssignmentEvaluation
        5. 13.15.5.5 RS: IteratorDestructuringAssignmentEvaluation
        6. 13.15.5.6 RS: KeyedDestructuringAssignmentEvaluation
    16. 13.16 Comma Operator (, )
      1. 13.16.1 RS: Evaluation
  15. 14 ECMAScript Language: Statements and Declarations
    1. 14.1 Statement Semantics
      1. 14.1.1 RS: Evaluation
    2. 14.2 Block
      1. 14.2.1 SS: Early Errors
      2. 14.2.2 RS: Evaluation
      3. 14.2.3 BlockDeclarationInstantiation (code,env )
    3. 14.3 Declarations and the Variable Statement
      1. 14.3.1 Let and Const Declarations
        1. 14.3.1.1 SS: Early Errors
        2. 14.3.1.2 RS: Evaluation
      2. 14.3.2 Variable Statement
        1. 14.3.2.1 RS: Evaluation
      3. 14.3.3 Destructuring Binding Patterns
        1. 14.3.3.1 RS: PropertyBindingInitialization
        2. 14.3.3.2 RS: RestBindingInitialization
        3. 14.3.3.3 RS: KeyedBindingInitialization
    4. 14.4 Empty Statement
      1. 14.4.1 RS: Evaluation
    5. 14.5 Expression Statement
      1. 14.5.1 RS: Evaluation
    6. 14.6 Theif Statement
      1. 14.6.1 SS: Early Errors
      2. 14.6.2 RS: Evaluation
    7. 14.7 Iteration Statements
      1. 14.7.1 Semantics
        1. 14.7.1.1 LoopContinues (completion,labelSet )
        2. 14.7.1.2 RS: LoopEvaluation
      2. 14.7.2 Thedo-while Statement
        1. 14.7.2.1 SS: Early Errors
        2. 14.7.2.2 RS: DoWhileLoopEvaluation
      3. 14.7.3 Thewhile Statement
        1. 14.7.3.1 SS: Early Errors
        2. 14.7.3.2 RS: WhileLoopEvaluation
      4. 14.7.4 Thefor Statement
        1. 14.7.4.1 SS: Early Errors
        2. 14.7.4.2 RS: ForLoopEvaluation
        3. 14.7.4.3 ForBodyEvaluation (test,increment,stmt,perIterationBindings,labelSet )
        4. 14.7.4.4 CreatePerIterationEnvironment (perIterationBindings )
      5. 14.7.5 Thefor-in,for-of, andfor-await-of Statements
        1. 14.7.5.1 SS: Early Errors
        2. 14.7.5.2 SS: IsDestructuring
        3. 14.7.5.3 RS: ForDeclarationBindingInitialization
        4. 14.7.5.4 RS: ForDeclarationBindingInstantiation
        5. 14.7.5.5 RS: ForInOfLoopEvaluation
        6. 14.7.5.6 ForIn/OfHeadEvaluation (uninitializedBoundNames,expr,iterationKind )
        7. 14.7.5.7 ForIn/OfBodyEvaluation (lhs,stmt,iteratorRecord,iterationKind,lhsKind,labelSet [ ,iteratorKind ] )
        8. 14.7.5.8 RS: Evaluation
        9. 14.7.5.9 EnumerateObjectProperties (O )
        10. 14.7.5.10 For-In Iterator Objects
          1. 14.7.5.10.1 CreateForInIterator (object )
          2. 14.7.5.10.2 The %ForInIteratorPrototype% Object
            1. 14.7.5.10.2.1 %ForInIteratorPrototype%.next ( )
          3. 14.7.5.10.3 Properties of For-In Iterator Instances
    8. 14.8 Thecontinue Statement
      1. 14.8.1 SS: Early Errors
      2. 14.8.2 RS: Evaluation
    9. 14.9 Thebreak Statement
      1. 14.9.1 SS: Early Errors
      2. 14.9.2 RS: Evaluation
    10. 14.10 Thereturn Statement
      1. 14.10.1 RS: Evaluation
    11. 14.11 Thewith Statement
      1. 14.11.1 SS: Early Errors
      2. 14.11.2 RS: Evaluation
    12. 14.12 Theswitch Statement
      1. 14.12.1 SS: Early Errors
      2. 14.12.2 RS: CaseBlockEvaluation
      3. 14.12.3 CaseClauseIsSelected (C,input )
      4. 14.12.4 RS: Evaluation
    13. 14.13 Labelled Statements
      1. 14.13.1 SS: Early Errors
      2. 14.13.2 SS: IsLabelledFunction (stmt )
      3. 14.13.3 RS: Evaluation
      4. 14.13.4 RS: LabelledEvaluation
    14. 14.14 Thethrow Statement
      1. 14.14.1 RS: Evaluation
    15. 14.15 Thetry Statement
      1. 14.15.1 SS: Early Errors
      2. 14.15.2 RS: CatchClauseEvaluation
      3. 14.15.3 RS: Evaluation
    16. 14.16 Thedebugger Statement
      1. 14.16.1 RS: Evaluation
  16. 15 ECMAScript Language: Functions and Classes
    1. 15.1 Parameter Lists
      1. 15.1.1 SS: Early Errors
      2. 15.1.2 SS: ContainsExpression
      3. 15.1.3 SS: IsSimpleParameterList
      4. 15.1.4 SS: HasInitializer
      5. 15.1.5 SS: ExpectedArgumentCount
    2. 15.2 Function Definitions
      1. 15.2.1 SS: Early Errors
      2. 15.2.2 SS: FunctionBodyContainsUseStrict
      3. 15.2.3 RS: EvaluateFunctionBody
      4. 15.2.4 RS: InstantiateOrdinaryFunctionObject
      5. 15.2.5 RS: InstantiateOrdinaryFunctionExpression
      6. 15.2.6 RS: Evaluation
    3. 15.3 Arrow Function Definitions
      1. 15.3.1 SS: Early Errors
      2. 15.3.2 SS: ConciseBodyContainsUseStrict
      3. 15.3.3 SS: CoveredFormalsList
      4. 15.3.4 RS: EvaluateConciseBody
      5. 15.3.5 RS: InstantiateArrowFunctionExpression
      6. 15.3.6 RS: Evaluation
    4. 15.4 Method Definitions
      1. 15.4.1 SS: Early Errors
      2. 15.4.2 SS: HasDirectSuper
      3. 15.4.3 SS: SpecialMethod
      4. 15.4.4 RS: DefineMethod
      5. 15.4.5 RS: MethodDefinitionEvaluation
    5. 15.5 Generator Function Definitions
      1. 15.5.1 SS: Early Errors
      2. 15.5.2 RS: EvaluateGeneratorBody
      3. 15.5.3 RS: InstantiateGeneratorFunctionObject
      4. 15.5.4 RS: InstantiateGeneratorFunctionExpression
      5. 15.5.5 RS: Evaluation
    6. 15.6 Async Generator Function Definitions
      1. 15.6.1 SS: Early Errors
      2. 15.6.2 RS: EvaluateAsyncGeneratorBody
      3. 15.6.3 RS: InstantiateAsyncGeneratorFunctionObject
      4. 15.6.4 RS: InstantiateAsyncGeneratorFunctionExpression
      5. 15.6.5 RS: Evaluation
    7. 15.7 Class Definitions
      1. 15.7.1 SS: Early Errors
      2. 15.7.2 SS: ClassElementKind
      3. 15.7.3 SS: ConstructorMethod
      4. 15.7.4 SS: IsStatic
      5. 15.7.5 SS: NonConstructorMethodDefinitions
      6. 15.7.6 SS: PrototypePropertyNameList
      7. 15.7.7 RS: ClassDefinitionEvaluation
        1. 15.7.7.1 Default Constructor Functions
      8. 15.7.8 RS: BindingClassDeclarationEvaluation
      9. 15.7.9 RS: Evaluation
    8. 15.8 Async Function Definitions
      1. 15.8.1 SS: Early Errors
      2. 15.8.2 RS: InstantiateAsyncFunctionObject
      3. 15.8.3 RS: InstantiateAsyncFunctionExpression
      4. 15.8.4 RS: EvaluateAsyncFunctionBody
      5. 15.8.5 RS: Evaluation
    9. 15.9 Async Arrow Function Definitions
      1. 15.9.1 SS: Early Errors
      2. 15.9.2 SS: CoveredAsyncArrowHead
      3. 15.9.3 SS: AsyncConciseBodyContainsUseStrict
      4. 15.9.4 RS: EvaluateAsyncConciseBody
      5. 15.9.5 RS: InstantiateAsyncArrowFunctionExpression
      6. 15.9.6 RS: Evaluation
    10. 15.10 Tail Position Calls
      1. 15.10.1 SS: IsInTailPosition (call )
      2. 15.10.2 SS: HasCallInTailPosition
        1. 15.10.2.1 Statement Rules
        2. 15.10.2.2 Expression Rules
      3. 15.10.3 PrepareForTailCall ( )
  17. 16 ECMAScript Language: Scripts and Modules
    1. 16.1 Scripts
      1. 16.1.1 SS: Early Errors
      2. 16.1.2 SS: IsStrict
      3. 16.1.3 RS: Evaluation
      4. 16.1.4 Script Records
      5. 16.1.5 ParseScript (sourceText,realm,hostDefined )
      6. 16.1.6 ScriptEvaluation (scriptRecord )
      7. 16.1.7 GlobalDeclarationInstantiation (script,env )
    2. 16.2 Modules
      1. 16.2.1 Module Semantics
        1. 16.2.1.1 SS: Early Errors
        2. 16.2.1.2 SS: ImportedLocalNames (importEntries )
        3. 16.2.1.3 SS: ModuleRequests
        4. 16.2.1.4 Abstract Module Records
        5. 16.2.1.5 Cyclic Module Records
          1. 16.2.1.5.1 Link ( ) Concrete Method
            1. 16.2.1.5.1.1 InnerModuleLinking (module,stack,index )
          2. 16.2.1.5.2 Evaluate ( ) Concrete Method
            1. 16.2.1.5.2.1 InnerModuleEvaluation (module,stack,index )
          3. 16.2.1.5.3 Example Cyclic Module Record Graphs
        6. 16.2.1.6 Source Text Module Records
          1. 16.2.1.6.1 ParseModule (sourceText,realm,hostDefined )
          2. 16.2.1.6.2 GetExportedNames ( [exportStarSet ] ) Concrete Method
          3. 16.2.1.6.3 ResolveExport (exportName [ ,resolveSet ] ) Concrete Method
          4. 16.2.1.6.4 InitializeEnvironment ( ) Concrete Method
          5. 16.2.1.6.5 ExecuteModule ( ) Concrete Method
        7. 16.2.1.7 HostResolveImportedModule (referencingScriptOrModule,specifier )
        8. 16.2.1.8 HostImportModuleDynamically (referencingScriptOrModule,specifier,promiseCapability )
        9. 16.2.1.9 FinishDynamicImport (referencingScriptOrModule,specifier,promiseCapability,completion )
        10. 16.2.1.10 GetModuleNamespace (module )
        11. 16.2.1.11 RS: Evaluation
      2. 16.2.2 Imports
        1. 16.2.2.1 SS: Early Errors
        2. 16.2.2.2 SS: ImportEntries
        3. 16.2.2.3 SS: ImportEntriesForModule
      3. 16.2.3 Exports
        1. 16.2.3.1 SS: Early Errors
        2. 16.2.3.2 SS: ExportedBindings
        3. 16.2.3.3 SS: ExportedNames
        4. 16.2.3.4 SS: ExportEntries
        5. 16.2.3.5 SS: ExportEntriesForModule
        6. 16.2.3.6 SS: ReferencedBindings
        7. 16.2.3.7 RS: Evaluation
  18. 17 Error Handling and Language Extensions
    1. 17.1 Forbidden Extensions
  19. 18 ECMAScript Standard Built-in Objects
  20. 19 The Global Object
    1. 19.1 Value Properties of the Global Object
      1. 19.1.1 globalThis
      2. 19.1.2 Infinity
      3. 19.1.3 NaN
      4. 19.1.4 undefined
    2. 19.2 Function Properties of the Global Object
      1. 19.2.1 eval (x )
        1. 19.2.1.1 PerformEval (x,callerRealm,strictCaller,direct )
        2. 19.2.1.2 HostEnsureCanCompileStrings (callerRealm,calleeRealm )
        3. 19.2.1.3 EvalDeclarationInstantiation (body,varEnv,lexEnv,strict )
      2. 19.2.2 isFinite (number )
      3. 19.2.3 isNaN (number )
      4. 19.2.4 parseFloat (string )
      5. 19.2.5 parseInt (string,radix )
      6. 19.2.6 URI Handling Functions
        1. 19.2.6.1 URI Syntax and Semantics
          1. 19.2.6.1.1 Encode (string,unescapedSet )
          2. 19.2.6.1.2 Decode (string,reservedSet )
        2. 19.2.6.2 decodeURI (encodedURI )
        3. 19.2.6.3 decodeURIComponent (encodedURIComponent )
        4. 19.2.6.4 encodeURI (uri )
        5. 19.2.6.5 encodeURIComponent (uriComponent )
    3. 19.3 Constructor Properties of the Global Object
      1. 19.3.1 Array ( . . . )
      2. 19.3.2 ArrayBuffer ( . . . )
      3. 19.3.3 BigInt ( . . . )
      4. 19.3.4 BigInt64Array ( . . . )
      5. 19.3.5 BigUint64Array ( . . . )
      6. 19.3.6 Boolean ( . . . )
      7. 19.3.7 DataView ( . . . )
      8. 19.3.8 Date ( . . . )
      9. 19.3.9 Error ( . . . )
      10. 19.3.10 EvalError ( . . . )
      11. 19.3.11 FinalizationRegistry ( . . . )
      12. 19.3.12 Float32Array ( . . . )
      13. 19.3.13 Float64Array ( . . . )
      14. 19.3.14 Function ( . . . )
      15. 19.3.15 Int8Array ( . . . )
      16. 19.3.16 Int16Array ( . . . )
      17. 19.3.17 Int32Array ( . . . )
      18. 19.3.18 Map ( . . . )
      19. 19.3.19 Number ( . . . )
      20. 19.3.20 Object ( . . . )
      21. 19.3.21 Promise ( . . . )
      22. 19.3.22 Proxy ( . . . )
      23. 19.3.23 RangeError ( . . . )
      24. 19.3.24 ReferenceError ( . . . )
      25. 19.3.25 RegExp ( . . . )
      26. 19.3.26 Set ( . . . )
      27. 19.3.27 SharedArrayBuffer ( . . . )
      28. 19.3.28 String ( . . . )
      29. 19.3.29 Symbol ( . . . )
      30. 19.3.30 SyntaxError ( . . . )
      31. 19.3.31 TypeError ( . . . )
      32. 19.3.32 Uint8Array ( . . . )
      33. 19.3.33 Uint8ClampedArray ( . . . )
      34. 19.3.34 Uint16Array ( . . . )
      35. 19.3.35 Uint32Array ( . . . )
      36. 19.3.36 URIError ( . . . )
      37. 19.3.37 WeakMap ( . . . )
      38. 19.3.38 WeakRef ( . . . )
      39. 19.3.39 WeakSet ( . . . )
    4. 19.4 Other Properties of the Global Object
      1. 19.4.1 Atomics
      2. 19.4.2 JSON
      3. 19.4.3 Math
      4. 19.4.4 Reflect
  21. 20 Fundamental Objects
    1. 20.1 Object Objects
      1. 20.1.1 The Object Constructor
        1. 20.1.1.1 Object ( [value ] )
      2. 20.1.2 Properties of the Object Constructor
        1. 20.1.2.1 Object.assign (target, ...sources )
        2. 20.1.2.2 Object.create (O,Properties )
        3. 20.1.2.3 Object.defineProperties (O,Properties )
          1. 20.1.2.3.1 ObjectDefineProperties (O,Properties )
        4. 20.1.2.4 Object.defineProperty (O,P,Attributes )
        5. 20.1.2.5 Object.entries (O )
        6. 20.1.2.6 Object.freeze (O )
        7. 20.1.2.7 Object.fromEntries (iterable )
          1. 20.1.2.7.1 CreateDataPropertyOnObject Functions
        8. 20.1.2.8 Object.getOwnPropertyDescriptor (O,P )
        9. 20.1.2.9 Object.getOwnPropertyDescriptors (O )
        10. 20.1.2.10 Object.getOwnPropertyNames (O )
        11. 20.1.2.11 Object.getOwnPropertySymbols (O )
          1. 20.1.2.11.1 GetOwnPropertyKeys (O,type )
        12. 20.1.2.12 Object.getPrototypeOf (O )
        13. 20.1.2.13 Object.is (value1,value2 )
        14. 20.1.2.14 Object.isExtensible (O )
        15. 20.1.2.15 Object.isFrozen (O )
        16. 20.1.2.16 Object.isSealed (O )
        17. 20.1.2.17 Object.keys (O )
        18. 20.1.2.18 Object.preventExtensions (O )
        19. 20.1.2.19 Object.prototype
        20. 20.1.2.20 Object.seal (O )
        21. 20.1.2.21 Object.setPrototypeOf (O,proto )
        22. 20.1.2.22 Object.values (O )
      3. 20.1.3 Properties of the Object Prototype Object
        1. 20.1.3.1 Object.prototype.constructor
        2. 20.1.3.2 Object.prototype.hasOwnProperty (V )
        3. 20.1.3.3 Object.prototype.isPrototypeOf (V )
        4. 20.1.3.4 Object.prototype.propertyIsEnumerable (V )
        5. 20.1.3.5 Object.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        6. 20.1.3.6 Object.prototype.toString ( )
        7. 20.1.3.7 Object.prototype.valueOf ( )
      4. 20.1.4 Properties of Object Instances
    2. 20.2 Function Objects
      1. 20.2.1 The Function Constructor
        1. 20.2.1.1 Function (p1,p2, … ,pn,body )
          1. 20.2.1.1.1 CreateDynamicFunction (constructor,newTarget,kind,args )
      2. 20.2.2 Properties of the Function Constructor
        1. 20.2.2.1 Function.length
        2. 20.2.2.2 Function.prototype
      3. 20.2.3 Properties of the Function Prototype Object
        1. 20.2.3.1 Function.prototype.apply (thisArg,argArray )
        2. 20.2.3.2 Function.prototype.bind (thisArg, ...args )
        3. 20.2.3.3 Function.prototype.call (thisArg, ...args )
        4. 20.2.3.4 Function.prototype.constructor
        5. 20.2.3.5 Function.prototype.toString ( )
        6. 20.2.3.6 Function.prototype [ @@hasInstance ] (V )
      4. 20.2.4 Function Instances
        1. 20.2.4.1 length
        2. 20.2.4.2 name
        3. 20.2.4.3 prototype
      5. 20.2.5 HostHasSourceTextAvailable (func )
    3. 20.3 Boolean Objects
      1. 20.3.1 The Boolean Constructor
        1. 20.3.1.1 Boolean (value )
      2. 20.3.2 Properties of the Boolean Constructor
        1. 20.3.2.1 Boolean.prototype
      3. 20.3.3 Properties of the Boolean Prototype Object
        1. 20.3.3.1 Boolean.prototype.constructor
        2. 20.3.3.2 Boolean.prototype.toString ( )
        3. 20.3.3.3 Boolean.prototype.valueOf ( )
      4. 20.3.4 Properties of Boolean Instances
    4. 20.4 Symbol Objects
      1. 20.4.1 The Symbol Constructor
        1. 20.4.1.1 Symbol ( [description ] )
      2. 20.4.2 Properties of the Symbol Constructor
        1. 20.4.2.1 Symbol.asyncIterator
        2. 20.4.2.2 Symbol.for (key )
        3. 20.4.2.3 Symbol.hasInstance
        4. 20.4.2.4 Symbol.isConcatSpreadable
        5. 20.4.2.5 Symbol.iterator
        6. 20.4.2.6 Symbol.keyFor (sym )
        7. 20.4.2.7 Symbol.match
        8. 20.4.2.8 Symbol.matchAll
        9. 20.4.2.9 Symbol.prototype
        10. 20.4.2.10 Symbol.replace
        11. 20.4.2.11 Symbol.search
        12. 20.4.2.12 Symbol.species
        13. 20.4.2.13 Symbol.split
        14. 20.4.2.14 Symbol.toPrimitive
        15. 20.4.2.15 Symbol.toStringTag
        16. 20.4.2.16 Symbol.unscopables
      3. 20.4.3 Properties of the Symbol Prototype Object
        1. 20.4.3.1 Symbol.prototype.constructor
        2. 20.4.3.2 get Symbol.prototype.description
        3. 20.4.3.3 Symbol.prototype.toString ( )
          1. 20.4.3.3.1 SymbolDescriptiveString (sym )
        4. 20.4.3.4 Symbol.prototype.valueOf ( )
        5. 20.4.3.5 Symbol.prototype [ @@toPrimitive ] (hint )
        6. 20.4.3.6 Symbol.prototype [ @@toStringTag ]
      4. 20.4.4 Properties of Symbol Instances
    5. 20.5 Error Objects
      1. 20.5.1 The Error Constructor
        1. 20.5.1.1 Error (message )
      2. 20.5.2 Properties of the Error Constructor
        1. 20.5.2.1 Error.prototype
      3. 20.5.3 Properties of the Error Prototype Object
        1. 20.5.3.1 Error.prototype.constructor
        2. 20.5.3.2 Error.prototype.message
        3. 20.5.3.3 Error.prototype.name
        4. 20.5.3.4 Error.prototype.toString ( )
      4. 20.5.4 Properties of Error Instances
      5. 20.5.5 Native Error Types Used in This Standard
        1. 20.5.5.1 EvalError
        2. 20.5.5.2 RangeError
        3. 20.5.5.3 ReferenceError
        4. 20.5.5.4 SyntaxError
        5. 20.5.5.5 TypeError
        6. 20.5.5.6 URIError
      6. 20.5.6NativeError Object Structure
        1. 20.5.6.1 TheNativeError Constructors
          1. 20.5.6.1.1NativeError (message )
        2. 20.5.6.2 Properties of theNativeError Constructors
          1. 20.5.6.2.1NativeError.prototype
        3. 20.5.6.3 Properties of theNativeError Prototype Objects
          1. 20.5.6.3.1NativeError.prototype.constructor
          2. 20.5.6.3.2NativeError.prototype.message
          3. 20.5.6.3.3NativeError.prototype.name
        4. 20.5.6.4 Properties ofNativeError Instances
      7. 20.5.7 AggregateError Objects
        1. 20.5.7.1 The AggregateError Constructor
          1. 20.5.7.1.1 AggregateError (errors,message )
        2. 20.5.7.2 Properties of the AggregateError Constructor
          1. 20.5.7.2.1 AggregateError.prototype
        3. 20.5.7.3 Properties of the AggregateError Prototype Object
          1. 20.5.7.3.1 AggregateError.prototype.constructor
          2. 20.5.7.3.2 AggregateError.prototype.message
          3. 20.5.7.3.3 AggregateError.prototype.name
        4. 20.5.7.4 Properties of AggregateError Instances
  22. 21 Numbers and Dates
    1. 21.1 Number Objects
      1. 21.1.1 The Number Constructor
        1. 21.1.1.1 Number (value )
      2. 21.1.2 Properties of the Number Constructor
        1. 21.1.2.1 Number.EPSILON
        2. 21.1.2.2 Number.isFinite (number )
        3. 21.1.2.3 Number.isInteger (number )
        4. 21.1.2.4 Number.isNaN (number )
        5. 21.1.2.5 Number.isSafeInteger (number )
        6. 21.1.2.6 Number.MAX_SAFE_INTEGER
        7. 21.1.2.7 Number.MAX_VALUE
        8. 21.1.2.8 Number.MIN_SAFE_INTEGER
        9. 21.1.2.9 Number.MIN_VALUE
        10. 21.1.2.10 Number.NaN
        11. 21.1.2.11 Number.NEGATIVE_INFINITY
        12. 21.1.2.12 Number.parseFloat (string )
        13. 21.1.2.13 Number.parseInt (string,radix )
        14. 21.1.2.14 Number.POSITIVE_INFINITY
        15. 21.1.2.15 Number.prototype
      3. 21.1.3 Properties of the Number Prototype Object
        1. 21.1.3.1 Number.prototype.constructor
        2. 21.1.3.2 Number.prototype.toExponential (fractionDigits )
        3. 21.1.3.3 Number.prototype.toFixed (fractionDigits )
        4. 21.1.3.4 Number.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        5. 21.1.3.5 Number.prototype.toPrecision (precision )
        6. 21.1.3.6 Number.prototype.toString ( [radix ] )
        7. 21.1.3.7 Number.prototype.valueOf ( )
      4. 21.1.4 Properties of Number Instances
    2. 21.2 BigInt Objects
      1. 21.2.1 The BigInt Constructor
        1. 21.2.1.1 BigInt (value )
          1. 21.2.1.1.1 NumberToBigInt (number )
      2. 21.2.2 Properties of the BigInt Constructor
        1. 21.2.2.1 BigInt.asIntN (bits,bigint )
        2. 21.2.2.2 BigInt.asUintN (bits,bigint )
        3. 21.2.2.3 BigInt.prototype
      3. 21.2.3 Properties of the BigInt Prototype Object
        1. 21.2.3.1 BigInt.prototype.constructor
        2. 21.2.3.2 BigInt.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        3. 21.2.3.3 BigInt.prototype.toString ( [radix ] )
        4. 21.2.3.4 BigInt.prototype.valueOf ( )
        5. 21.2.3.5 BigInt.prototype [ @@toStringTag ]
    3. 21.3 The Math Object
      1. 21.3.1 Value Properties of the Math Object
        1. 21.3.1.1 Math.E
        2. 21.3.1.2 Math.LN10
        3. 21.3.1.3 Math.LN2
        4. 21.3.1.4 Math.LOG10E
        5. 21.3.1.5 Math.LOG2E
        6. 21.3.1.6 Math.PI
        7. 21.3.1.7 Math.SQRT1_2
        8. 21.3.1.8 Math.SQRT2
        9. 21.3.1.9 Math [ @@toStringTag ]
      2. 21.3.2 Function Properties of the Math Object
        1. 21.3.2.1 Math.abs (x )
        2. 21.3.2.2 Math.acos (x )
        3. 21.3.2.3 Math.acosh (x )
        4. 21.3.2.4 Math.asin (x )
        5. 21.3.2.5 Math.asinh (x )
        6. 21.3.2.6 Math.atan (x )
        7. 21.3.2.7 Math.atanh (x )
        8. 21.3.2.8 Math.atan2 (y,x )
        9. 21.3.2.9 Math.cbrt (x )
        10. 21.3.2.10 Math.ceil (x )
        11. 21.3.2.11 Math.clz32 (x )
        12. 21.3.2.12 Math.cos (x )
        13. 21.3.2.13 Math.cosh (x )
        14. 21.3.2.14 Math.exp (x )
        15. 21.3.2.15 Math.expm1 (x )
        16. 21.3.2.16 Math.floor (x )
        17. 21.3.2.17 Math.fround (x )
        18. 21.3.2.18 Math.hypot ( ...args )
        19. 21.3.2.19 Math.imul (x,y )
        20. 21.3.2.20 Math.log (x )
        21. 21.3.2.21 Math.log1p (x )
        22. 21.3.2.22 Math.log10 (x )
        23. 21.3.2.23 Math.log2 (x )
        24. 21.3.2.24 Math.max ( ...args )
        25. 21.3.2.25 Math.min ( ...args )
        26. 21.3.2.26 Math.pow (base,exponent )
        27. 21.3.2.27 Math.random ( )
        28. 21.3.2.28 Math.round (x )
        29. 21.3.2.29 Math.sign (x )
        30. 21.3.2.30 Math.sin (x )
        31. 21.3.2.31 Math.sinh (x )
        32. 21.3.2.32 Math.sqrt (x )
        33. 21.3.2.33 Math.tan (x )
        34. 21.3.2.34 Math.tanh (x )
        35. 21.3.2.35 Math.trunc (x )
    4. 21.4 Date Objects
      1. 21.4.1 Overview of Date Objects and Definitions of Abstract Operations
        1. 21.4.1.1 Time Values and Time Range
        2. 21.4.1.2 Day Number and Time within Day
        3. 21.4.1.3 Year Number
        4. 21.4.1.4 Month Number
        5. 21.4.1.5 Date Number
        6. 21.4.1.6 Week Day
        7. 21.4.1.7 LocalTZA (t,isUTC )
        8. 21.4.1.8 LocalTime (t )
        9. 21.4.1.9 UTC (t )
        10. 21.4.1.10 Hours, Minutes, Second, and Milliseconds
        11. 21.4.1.11 MakeTime (hour,min,sec,ms )
        12. 21.4.1.12 MakeDay (year,month,date )
        13. 21.4.1.13 MakeDate (day,time )
        14. 21.4.1.14 TimeClip (time )
        15. 21.4.1.15 Date Time String Format
          1. 21.4.1.15.1 Expanded Years
      2. 21.4.2 The Date Constructor
        1. 21.4.2.1 Date ( ...values )
      3. 21.4.3 Properties of the Date Constructor
        1. 21.4.3.1 Date.now ( )
        2. 21.4.3.2 Date.parse (string )
        3. 21.4.3.3 Date.prototype
        4. 21.4.3.4 Date.UTC (year [ ,month [ ,date [ ,hours [ ,minutes [ ,seconds [ ,ms ] ] ] ] ] ] )
      4. 21.4.4 Properties of the Date Prototype Object
        1. 21.4.4.1 Date.prototype.constructor
        2. 21.4.4.2 Date.prototype.getDate ( )
        3. 21.4.4.3 Date.prototype.getDay ( )
        4. 21.4.4.4 Date.prototype.getFullYear ( )
        5. 21.4.4.5 Date.prototype.getHours ( )
        6. 21.4.4.6 Date.prototype.getMilliseconds ( )
        7. 21.4.4.7 Date.prototype.getMinutes ( )
        8. 21.4.4.8 Date.prototype.getMonth ( )
        9. 21.4.4.9 Date.prototype.getSeconds ( )
        10. 21.4.4.10 Date.prototype.getTime ( )
        11. 21.4.4.11 Date.prototype.getTimezoneOffset ( )
        12. 21.4.4.12 Date.prototype.getUTCDate ( )
        13. 21.4.4.13 Date.prototype.getUTCDay ( )
        14. 21.4.4.14 Date.prototype.getUTCFullYear ( )
        15. 21.4.4.15 Date.prototype.getUTCHours ( )
        16. 21.4.4.16 Date.prototype.getUTCMilliseconds ( )
        17. 21.4.4.17 Date.prototype.getUTCMinutes ( )
        18. 21.4.4.18 Date.prototype.getUTCMonth ( )
        19. 21.4.4.19 Date.prototype.getUTCSeconds ( )
        20. 21.4.4.20 Date.prototype.setDate (date )
        21. 21.4.4.21 Date.prototype.setFullYear (year [ ,month [ ,date ] ] )
        22. 21.4.4.22 Date.prototype.setHours (hour [ ,min [ ,sec [ ,ms ] ] ] )
        23. 21.4.4.23 Date.prototype.setMilliseconds (ms )
        24. 21.4.4.24 Date.prototype.setMinutes (min [ ,sec [ ,ms ] ] )
        25. 21.4.4.25 Date.prototype.setMonth (month [ ,date ] )
        26. 21.4.4.26 Date.prototype.setSeconds (sec [ ,ms ] )
        27. 21.4.4.27 Date.prototype.setTime (time )
        28. 21.4.4.28 Date.prototype.setUTCDate (date )
        29. 21.4.4.29 Date.prototype.setUTCFullYear (year [ ,month [ ,date ] ] )
        30. 21.4.4.30 Date.prototype.setUTCHours (hour [ ,min [ ,sec [ ,ms ] ] ] )
        31. 21.4.4.31 Date.prototype.setUTCMilliseconds (ms )
        32. 21.4.4.32 Date.prototype.setUTCMinutes (min [ ,sec [ ,ms ] ] )
        33. 21.4.4.33 Date.prototype.setUTCMonth (month [ ,date ] )
        34. 21.4.4.34 Date.prototype.setUTCSeconds (sec [ ,ms ] )
        35. 21.4.4.35 Date.prototype.toDateString ( )
        36. 21.4.4.36 Date.prototype.toISOString ( )
        37. 21.4.4.37 Date.prototype.toJSON (key )
        38. 21.4.4.38 Date.prototype.toLocaleDateString ( [reserved1 [ ,reserved2 ] ] )
        39. 21.4.4.39 Date.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        40. 21.4.4.40 Date.prototype.toLocaleTimeString ( [reserved1 [ ,reserved2 ] ] )
        41. 21.4.4.41 Date.prototype.toString ( )
          1. 21.4.4.41.1 TimeString (tv )
          2. 21.4.4.41.2 DateString (tv )
          3. 21.4.4.41.3 TimeZoneString (tv )
          4. 21.4.4.41.4 ToDateString (tv )
        42. 21.4.4.42 Date.prototype.toTimeString ( )
        43. 21.4.4.43 Date.prototype.toUTCString ( )
        44. 21.4.4.44 Date.prototype.valueOf ( )
        45. 21.4.4.45 Date.prototype [ @@toPrimitive ] (hint )
      5. 21.4.5 Properties of Date Instances
  23. 22 Text Processing
    1. 22.1 String Objects
      1. 22.1.1 The String Constructor
        1. 22.1.1.1 String (value )
      2. 22.1.2 Properties of the String Constructor
        1. 22.1.2.1 String.fromCharCode ( ...codeUnits )
        2. 22.1.2.2 String.fromCodePoint ( ...codePoints )
        3. 22.1.2.3 String.prototype
        4. 22.1.2.4 String.raw (template, ...substitutions )
      3. 22.1.3 Properties of the String Prototype Object
        1. 22.1.3.1 String.prototype.charAt (pos )
        2. 22.1.3.2 String.prototype.charCodeAt (pos )
        3. 22.1.3.3 String.prototype.codePointAt (pos )
        4. 22.1.3.4 String.prototype.concat ( ...args )
        5. 22.1.3.5 String.prototype.constructor
        6. 22.1.3.6 String.prototype.endsWith (searchString [ ,endPosition ] )
        7. 22.1.3.7 String.prototype.includes (searchString [ ,position ] )
        8. 22.1.3.8 String.prototype.indexOf (searchString [ ,position ] )
        9. 22.1.3.9 String.prototype.lastIndexOf (searchString [ ,position ] )
        10. 22.1.3.10 String.prototype.localeCompare (that [ ,reserved1 [ ,reserved2 ] ] )
        11. 22.1.3.11 String.prototype.match (regexp )
        12. 22.1.3.12 String.prototype.matchAll (regexp )
        13. 22.1.3.13 String.prototype.normalize ( [form ] )
        14. 22.1.3.14 String.prototype.padEnd (maxLength [ ,fillString ] )
        15. 22.1.3.15 String.prototype.padStart (maxLength [ ,fillString ] )
          1. 22.1.3.15.1 StringPad (O,maxLength,fillString,placement )
        16. 22.1.3.16 String.prototype.repeat (count )
        17. 22.1.3.17 String.prototype.replace (searchValue,replaceValue )
          1. 22.1.3.17.1 GetSubstitution (matched,str,position,captures,namedCaptures,replacement )
        18. 22.1.3.18 String.prototype.replaceAll (searchValue,replaceValue )
        19. 22.1.3.19 String.prototype.search (regexp )
        20. 22.1.3.20 String.prototype.slice (start,end )
        21. 22.1.3.21 String.prototype.split (separator,limit )
          1. 22.1.3.21.1 SplitMatch (S,q,R )
        22. 22.1.3.22 String.prototype.startsWith (searchString [ ,position ] )
        23. 22.1.3.23 String.prototype.substring (start,end )
        24. 22.1.3.24 String.prototype.toLocaleLowerCase ( [reserved1 [ ,reserved2 ] ] )
        25. 22.1.3.25 String.prototype.toLocaleUpperCase ( [reserved1 [ ,reserved2 ] ] )
        26. 22.1.3.26 String.prototype.toLowerCase ( )
        27. 22.1.3.27 String.prototype.toString ( )
        28. 22.1.3.28 String.prototype.toUpperCase ( )
        29. 22.1.3.29 String.prototype.trim ( )
          1. 22.1.3.29.1 TrimString (string,where )
        30. 22.1.3.30 String.prototype.trimEnd ( )
        31. 22.1.3.31 String.prototype.trimStart ( )
        32. 22.1.3.32 String.prototype.valueOf ( )
        33. 22.1.3.33 String.prototype [ @@iterator ] ( )
      4. 22.1.4 Properties of String Instances
        1. 22.1.4.1 length
      5. 22.1.5 String Iterator Objects
        1. 22.1.5.1 The %StringIteratorPrototype% Object
          1. 22.1.5.1.1 %StringIteratorPrototype%.next ( )
          2. 22.1.5.1.2 %StringIteratorPrototype% [ @@toStringTag ]
    2. 22.2 RegExp (Regular Expression) Objects
      1. 22.2.1 Patterns
        1. 22.2.1.1 SS: Early Errors
        2. 22.2.1.2 SS: CapturingGroupNumber
        3. 22.2.1.3 SS: IsCharacterClass
        4. 22.2.1.4 SS: CharacterValue
        5. 22.2.1.5 SS: SourceText
        6. 22.2.1.6 SS: CapturingGroupName
      2. 22.2.2 Pattern Semantics
        1. 22.2.2.1 Notation
        2. 22.2.2.2 Pattern
        3. 22.2.2.3 Disjunction
        4. 22.2.2.4 Alternative
        5. 22.2.2.5 Term
          1. 22.2.2.5.1 RepeatMatcher (m,min,max,greedy,x,c,parenIndex,parenCount )
        6. 22.2.2.6 Assertion
          1. 22.2.2.6.1 IsWordChar (e )
        7. 22.2.2.7 Quantifier
        8. 22.2.2.8 Atom
          1. 22.2.2.8.1 CharacterSetMatcher (A,invert,direction )
          2. 22.2.2.8.2 Canonicalize (ch )
          3. 22.2.2.8.3 UnicodeMatchProperty (p )
          4. 22.2.2.8.4 UnicodeMatchPropertyValue (p,v )
        9. 22.2.2.9 AtomEscape
          1. 22.2.2.9.1 BackreferenceMatcher (n,direction )
        10. 22.2.2.10 CharacterEscape
        11. 22.2.2.11 DecimalEscape
        12. 22.2.2.12 CharacterClassEscape
        13. 22.2.2.13 CharacterClass
        14. 22.2.2.14 ClassRanges
        15. 22.2.2.15 NonemptyClassRanges
          1. 22.2.2.15.1 CharacterRange (A,B )
        16. 22.2.2.16 NonemptyClassRangesNoDash
        17. 22.2.2.17 ClassAtom
        18. 22.2.2.18 ClassAtomNoDash
        19. 22.2.2.19 ClassEscape
      3. 22.2.3 The RegExp Constructor
        1. 22.2.3.1 RegExp (pattern,flags )
        2. 22.2.3.2 Abstract Operations for the RegExp Constructor
          1. 22.2.3.2.1 RegExpAlloc (newTarget )
          2. 22.2.3.2.2 RegExpInitialize (obj,pattern,flags )
          3. 22.2.3.2.3 SS: ParsePattern (patternText,u )
          4. 22.2.3.2.4 RegExpCreate (P,F )
          5. 22.2.3.2.5 EscapeRegExpPattern (P,F )
      4. 22.2.4 Properties of the RegExp Constructor
        1. 22.2.4.1 RegExp.prototype
        2. 22.2.4.2 get RegExp [ @@species ]
      5. 22.2.5 Properties of the RegExp Prototype Object
        1. 22.2.5.1 RegExp.prototype.constructor
        2. 22.2.5.2 RegExp.prototype.exec (string )
          1. 22.2.5.2.1 RegExpExec (R,S )
          2. 22.2.5.2.2 RegExpBuiltinExec (R,S )
          3. 22.2.5.2.3 AdvanceStringIndex (S,index,unicode )
        3. 22.2.5.3 get RegExp.prototype.dotAll
        4. 22.2.5.4 get RegExp.prototype.flags
        5. 22.2.5.5 get RegExp.prototype.global
        6. 22.2.5.6 get RegExp.prototype.ignoreCase
        7. 22.2.5.7 RegExp.prototype [ @@match ] (string )
        8. 22.2.5.8 RegExp.prototype [ @@matchAll ] (string )
        9. 22.2.5.9 get RegExp.prototype.multiline
        10. 22.2.5.10 RegExp.prototype [ @@replace ] (string,replaceValue )
        11. 22.2.5.11 RegExp.prototype [ @@search ] (string )
        12. 22.2.5.12 get RegExp.prototype.source
        13. 22.2.5.13 RegExp.prototype [ @@split ] (string,limit )
        14. 22.2.5.14 get RegExp.prototype.sticky
        15. 22.2.5.15 RegExp.prototype.test (S )
        16. 22.2.5.16 RegExp.prototype.toString ( )
        17. 22.2.5.17 get RegExp.prototype.unicode
      6. 22.2.6 Properties of RegExp Instances
        1. 22.2.6.1 lastIndex
      7. 22.2.7 RegExp String Iterator Objects
        1. 22.2.7.1 CreateRegExpStringIterator (R,S,global,fullUnicode )
        2. 22.2.7.2 The %RegExpStringIteratorPrototype% Object
          1. 22.2.7.2.1 %RegExpStringIteratorPrototype%.next ( )
          2. 22.2.7.2.2 %RegExpStringIteratorPrototype% [ @@toStringTag ]
  24. 23 Indexed Collections
    1. 23.1 Array Objects
      1. 23.1.1 The Array Constructor
        1. 23.1.1.1 Array ( ...values )
      2. 23.1.2 Properties of the Array Constructor
        1. 23.1.2.1 Array.from (items [ ,mapfn [ ,thisArg ] ] )
        2. 23.1.2.2 Array.isArray (arg )
        3. 23.1.2.3 Array.of ( ...items )
        4. 23.1.2.4 Array.prototype
        5. 23.1.2.5 get Array [ @@species ]
      3. 23.1.3 Properties of the Array Prototype Object
        1. 23.1.3.1 Array.prototype.concat ( ...items )
          1. 23.1.3.1.1 IsConcatSpreadable (O )
        2. 23.1.3.2 Array.prototype.constructor
        3. 23.1.3.3 Array.prototype.copyWithin (target,start [ ,end ] )
        4. 23.1.3.4 Array.prototype.entries ( )
        5. 23.1.3.5 Array.prototype.every (callbackfn [ ,thisArg ] )
        6. 23.1.3.6 Array.prototype.fill (value [ ,start [ ,end ] ] )
        7. 23.1.3.7 Array.prototype.filter (callbackfn [ ,thisArg ] )
        8. 23.1.3.8 Array.prototype.find (predicate [ ,thisArg ] )
        9. 23.1.3.9 Array.prototype.findIndex (predicate [ ,thisArg ] )
        10. 23.1.3.10 Array.prototype.flat ( [depth ] )
          1. 23.1.3.10.1 FlattenIntoArray (target,source,sourceLen,start,depth [ ,mapperFunction,thisArg ] )
        11. 23.1.3.11 Array.prototype.flatMap (mapperFunction [ ,thisArg ] )
        12. 23.1.3.12 Array.prototype.forEach (callbackfn [ ,thisArg ] )
        13. 23.1.3.13 Array.prototype.includes (searchElement [ ,fromIndex ] )
        14. 23.1.3.14 Array.prototype.indexOf (searchElement [ ,fromIndex ] )
        15. 23.1.3.15 Array.prototype.join (separator )
        16. 23.1.3.16 Array.prototype.keys ( )
        17. 23.1.3.17 Array.prototype.lastIndexOf (searchElement [ ,fromIndex ] )
        18. 23.1.3.18 Array.prototype.map (callbackfn [ ,thisArg ] )
        19. 23.1.3.19 Array.prototype.pop ( )
        20. 23.1.3.20 Array.prototype.push ( ...items )
        21. 23.1.3.21 Array.prototype.reduce (callbackfn [ ,initialValue ] )
        22. 23.1.3.22 Array.prototype.reduceRight (callbackfn [ ,initialValue ] )
        23. 23.1.3.23 Array.prototype.reverse ( )
        24. 23.1.3.24 Array.prototype.shift ( )
        25. 23.1.3.25 Array.prototype.slice (start,end )
        26. 23.1.3.26 Array.prototype.some (callbackfn [ ,thisArg ] )
        27. 23.1.3.27 Array.prototype.sort (comparefn )
          1. 23.1.3.27.1 SortCompare (x,y )
        28. 23.1.3.28 Array.prototype.splice (start,deleteCount, ...items )
        29. 23.1.3.29 Array.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        30. 23.1.3.30 Array.prototype.toString ( )
        31. 23.1.3.31 Array.prototype.unshift ( ...items )
        32. 23.1.3.32 Array.prototype.values ( )
        33. 23.1.3.33 Array.prototype [ @@iterator ] ( )
        34. 23.1.3.34 Array.prototype [ @@unscopables ]
      4. 23.1.4 Properties of Array Instances
        1. 23.1.4.1 length
      5. 23.1.5 Array Iterator Objects
        1. 23.1.5.1 CreateArrayIterator (array,kind )
        2. 23.1.5.2 The %ArrayIteratorPrototype% Object
          1. 23.1.5.2.1 %ArrayIteratorPrototype%.next ( )
          2. 23.1.5.2.2 %ArrayIteratorPrototype% [ @@toStringTag ]
    2. 23.2 TypedArray Objects
      1. 23.2.1 The %TypedArray% Intrinsic Object
        1. 23.2.1.1 %TypedArray% ( )
      2. 23.2.2 Properties of the %TypedArray% Intrinsic Object
        1. 23.2.2.1 %TypedArray%.from (source [ ,mapfn [ ,thisArg ] ] )
        2. 23.2.2.2 %TypedArray%.of ( ...items )
        3. 23.2.2.3 %TypedArray%.prototype
        4. 23.2.2.4 get %TypedArray% [ @@species ]
      3. 23.2.3 Properties of the %TypedArray% Prototype Object
        1. 23.2.3.1 get %TypedArray%.prototype.buffer
        2. 23.2.3.2 get %TypedArray%.prototype.byteLength
        3. 23.2.3.3 get %TypedArray%.prototype.byteOffset
        4. 23.2.3.4 %TypedArray%.prototype.constructor
        5. 23.2.3.5 %TypedArray%.prototype.copyWithin (target,start [ ,end ] )
        6. 23.2.3.6 %TypedArray%.prototype.entries ( )
        7. 23.2.3.7 %TypedArray%.prototype.every (callbackfn [ ,thisArg ] )
        8. 23.2.3.8 %TypedArray%.prototype.fill (value [ ,start [ ,end ] ] )
        9. 23.2.3.9 %TypedArray%.prototype.filter (callbackfn [ ,thisArg ] )
        10. 23.2.3.10 %TypedArray%.prototype.find (predicate [ ,thisArg ] )
        11. 23.2.3.11 %TypedArray%.prototype.findIndex (predicate [ ,thisArg ] )
        12. 23.2.3.12 %TypedArray%.prototype.forEach (callbackfn [ ,thisArg ] )
        13. 23.2.3.13 %TypedArray%.prototype.includes (searchElement [ ,fromIndex ] )
        14. 23.2.3.14 %TypedArray%.prototype.indexOf (searchElement [ ,fromIndex ] )
        15. 23.2.3.15 %TypedArray%.prototype.join (separator )
        16. 23.2.3.16 %TypedArray%.prototype.keys ( )
        17. 23.2.3.17 %TypedArray%.prototype.lastIndexOf (searchElement [ ,fromIndex ] )
        18. 23.2.3.18 get %TypedArray%.prototype.length
        19. 23.2.3.19 %TypedArray%.prototype.map (callbackfn [ ,thisArg ] )
        20. 23.2.3.20 %TypedArray%.prototype.reduce (callbackfn [ ,initialValue ] )
        21. 23.2.3.21 %TypedArray%.prototype.reduceRight (callbackfn [ ,initialValue ] )
        22. 23.2.3.22 %TypedArray%.prototype.reverse ( )
        23. 23.2.3.23 %TypedArray%.prototype.set (source [ ,offset ] )
          1. 23.2.3.23.1 SetTypedArrayFromTypedArray (target,targetOffset,source )
          2. 23.2.3.23.2 SetTypedArrayFromArrayLike (target,targetOffset,source )
        24. 23.2.3.24 %TypedArray%.prototype.slice (start,end )
        25. 23.2.3.25 %TypedArray%.prototype.some (callbackfn [ ,thisArg ] )
        26. 23.2.3.26 %TypedArray%.prototype.sort (comparefn )
        27. 23.2.3.27 %TypedArray%.prototype.subarray (begin,end )
        28. 23.2.3.28 %TypedArray%.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        29. 23.2.3.29 %TypedArray%.prototype.toString ( )
        30. 23.2.3.30 %TypedArray%.prototype.values ( )
        31. 23.2.3.31 %TypedArray%.prototype [ @@iterator ] ( )
        32. 23.2.3.32 get %TypedArray%.prototype [ @@toStringTag ]
      4. 23.2.4 Abstract Operations for TypedArray Objects
        1. 23.2.4.1 TypedArraySpeciesCreate (exemplar,argumentList )
        2. 23.2.4.2 TypedArrayCreate (constructor,argumentList )
        3. 23.2.4.3 ValidateTypedArray (O )
      5. 23.2.5 TheTypedArray Constructors
        1. 23.2.5.1TypedArray ( ...args )
          1. 23.2.5.1.1 AllocateTypedArray (constructorName,newTarget,defaultProto [ ,length ] )
          2. 23.2.5.1.2 InitializeTypedArrayFromTypedArray (O,srcArray )
          3. 23.2.5.1.3 InitializeTypedArrayFromArrayBuffer (O,buffer,byteOffset,length )
          4. 23.2.5.1.4 InitializeTypedArrayFromList (O,values )
          5. 23.2.5.1.5 InitializeTypedArrayFromArrayLike (O,arrayLike )
          6. 23.2.5.1.6 AllocateTypedArrayBuffer (O,length )
      6. 23.2.6 Properties of theTypedArray Constructors
        1. 23.2.6.1TypedArray.BYTES_PER_ELEMENT
        2. 23.2.6.2TypedArray.prototype
      7. 23.2.7 Properties of theTypedArray Prototype Objects
        1. 23.2.7.1TypedArray.prototype.BYTES_PER_ELEMENT
        2. 23.2.7.2TypedArray.prototype.constructor
      8. 23.2.8 Properties ofTypedArray Instances
  25. 24 Keyed Collections
    1. 24.1 Map Objects
      1. 24.1.1 The Map Constructor
        1. 24.1.1.1 Map ( [iterable ] )
        2. 24.1.1.2 AddEntriesFromIterable (target,iterable,adder )
      2. 24.1.2 Properties of the Map Constructor
        1. 24.1.2.1 Map.prototype
        2. 24.1.2.2 get Map [ @@species ]
      3. 24.1.3 Properties of the Map Prototype Object
        1. 24.1.3.1 Map.prototype.clear ( )
        2. 24.1.3.2 Map.prototype.constructor
        3. 24.1.3.3 Map.prototype.delete (key )
        4. 24.1.3.4 Map.prototype.entries ( )
        5. 24.1.3.5 Map.prototype.forEach (callbackfn [ ,thisArg ] )
        6. 24.1.3.6 Map.prototype.get (key )
        7. 24.1.3.7 Map.prototype.has (key )
        8. 24.1.3.8 Map.prototype.keys ( )
        9. 24.1.3.9 Map.prototype.set (key,value )
        10. 24.1.3.10 get Map.prototype.size
        11. 24.1.3.11 Map.prototype.values ( )
        12. 24.1.3.12 Map.prototype [ @@iterator ] ( )
        13. 24.1.3.13 Map.prototype [ @@toStringTag ]
      4. 24.1.4 Properties of Map Instances
      5. 24.1.5 Map Iterator Objects
        1. 24.1.5.1 CreateMapIterator (map,kind )
        2. 24.1.5.2 The %MapIteratorPrototype% Object
          1. 24.1.5.2.1 %MapIteratorPrototype%.next ( )
          2. 24.1.5.2.2 %MapIteratorPrototype% [ @@toStringTag ]
    2. 24.2 Set Objects
      1. 24.2.1 The Set Constructor
        1. 24.2.1.1 Set ( [iterable ] )
      2. 24.2.2 Properties of the Set Constructor
        1. 24.2.2.1 Set.prototype
        2. 24.2.2.2 get Set [ @@species ]
      3. 24.2.3 Properties of the Set Prototype Object
        1. 24.2.3.1 Set.prototype.add (value )
        2. 24.2.3.2 Set.prototype.clear ( )
        3. 24.2.3.3 Set.prototype.constructor
        4. 24.2.3.4 Set.prototype.delete (value )
        5. 24.2.3.5 Set.prototype.entries ( )
        6. 24.2.3.6 Set.prototype.forEach (callbackfn [ ,thisArg ] )
        7. 24.2.3.7 Set.prototype.has (value )
        8. 24.2.3.8 Set.prototype.keys ( )
        9. 24.2.3.9 get Set.prototype.size
        10. 24.2.3.10 Set.prototype.values ( )
        11. 24.2.3.11 Set.prototype [ @@iterator ] ( )
        12. 24.2.3.12 Set.prototype [ @@toStringTag ]
      4. 24.2.4 Properties of Set Instances
      5. 24.2.5 Set Iterator Objects
        1. 24.2.5.1 CreateSetIterator (set,kind )
        2. 24.2.5.2 The %SetIteratorPrototype% Object
          1. 24.2.5.2.1 %SetIteratorPrototype%.next ( )
          2. 24.2.5.2.2 %SetIteratorPrototype% [ @@toStringTag ]
    3. 24.3 WeakMap Objects
      1. 24.3.1 The WeakMap Constructor
        1. 24.3.1.1 WeakMap ( [iterable ] )
      2. 24.3.2 Properties of the WeakMap Constructor
        1. 24.3.2.1 WeakMap.prototype
      3. 24.3.3 Properties of the WeakMap Prototype Object
        1. 24.3.3.1 WeakMap.prototype.constructor
        2. 24.3.3.2 WeakMap.prototype.delete (key )
        3. 24.3.3.3 WeakMap.prototype.get (key )
        4. 24.3.3.4 WeakMap.prototype.has (key )
        5. 24.3.3.5 WeakMap.prototype.set (key,value )
        6. 24.3.3.6 WeakMap.prototype [ @@toStringTag ]
      4. 24.3.4 Properties of WeakMap Instances
    4. 24.4 WeakSet Objects
      1. 24.4.1 The WeakSet Constructor
        1. 24.4.1.1 WeakSet ( [iterable ] )
      2. 24.4.2 Properties of the WeakSet Constructor
        1. 24.4.2.1 WeakSet.prototype
      3. 24.4.3 Properties of the WeakSet Prototype Object
        1. 24.4.3.1 WeakSet.prototype.add (value )
        2. 24.4.3.2 WeakSet.prototype.constructor
        3. 24.4.3.3 WeakSet.prototype.delete (value )
        4. 24.4.3.4 WeakSet.prototype.has (value )
        5. 24.4.3.5 WeakSet.prototype [ @@toStringTag ]
      4. 24.4.4 Properties of WeakSet Instances
  26. 25 Structured Data
    1. 25.1 ArrayBuffer Objects
      1. 25.1.1 Notation
      2. 25.1.2 Abstract Operations For ArrayBuffer Objects
        1. 25.1.2.1 AllocateArrayBuffer (constructor,byteLength )
        2. 25.1.2.2 IsDetachedBuffer (arrayBuffer )
        3. 25.1.2.3 DetachArrayBuffer (arrayBuffer [ ,key ] )
        4. 25.1.2.4 CloneArrayBuffer (srcBuffer,srcByteOffset,srcLength,cloneConstructor )
        5. 25.1.2.5 IsUnsignedElementType (type )
        6. 25.1.2.6 IsUnclampedIntegerElementType (type )
        7. 25.1.2.7 IsBigIntElementType (type )
        8. 25.1.2.8 IsNoTearConfiguration (type,order )
        9. 25.1.2.9 RawBytesToNumeric (type,rawBytes,isLittleEndian )
        10. 25.1.2.10 GetValueFromBuffer (arrayBuffer,byteIndex,type,isTypedArray,order [ ,isLittleEndian ] )
        11. 25.1.2.11 NumericToRawBytes (type,value,isLittleEndian )
        12. 25.1.2.12 SetValueInBuffer (arrayBuffer,byteIndex,type,value,isTypedArray,order [ ,isLittleEndian ] )
        13. 25.1.2.13 GetModifySetValueInBuffer (arrayBuffer,byteIndex,type,value,op [ ,isLittleEndian ] )
      3. 25.1.3 The ArrayBuffer Constructor
        1. 25.1.3.1 ArrayBuffer (length )
      4. 25.1.4 Properties of the ArrayBuffer Constructor
        1. 25.1.4.1 ArrayBuffer.isView (arg )
        2. 25.1.4.2 ArrayBuffer.prototype
        3. 25.1.4.3 get ArrayBuffer [ @@species ]
      5. 25.1.5 Properties of the ArrayBuffer Prototype Object
        1. 25.1.5.1 get ArrayBuffer.prototype.byteLength
        2. 25.1.5.2 ArrayBuffer.prototype.constructor
        3. 25.1.5.3 ArrayBuffer.prototype.slice (start,end )
        4. 25.1.5.4 ArrayBuffer.prototype [ @@toStringTag ]
      6. 25.1.6 Properties of ArrayBuffer Instances
    2. 25.2 SharedArrayBuffer Objects
      1. 25.2.1 Abstract Operations for SharedArrayBuffer Objects
        1. 25.2.1.1 AllocateSharedArrayBuffer (constructor,byteLength )
        2. 25.2.1.2 IsSharedArrayBuffer (obj )
      2. 25.2.2 The SharedArrayBuffer Constructor
        1. 25.2.2.1 SharedArrayBuffer ( [length ] )
      3. 25.2.3 Properties of the SharedArrayBuffer Constructor
        1. 25.2.3.1 SharedArrayBuffer.prototype
        2. 25.2.3.2 get SharedArrayBuffer [ @@species ]
      4. 25.2.4 Properties of the SharedArrayBuffer Prototype Object
        1. 25.2.4.1 get SharedArrayBuffer.prototype.byteLength
        2. 25.2.4.2 SharedArrayBuffer.prototype.constructor
        3. 25.2.4.3 SharedArrayBuffer.prototype.slice (start,end )
        4. 25.2.4.4 SharedArrayBuffer.prototype [ @@toStringTag ]
      5. 25.2.5 Properties of SharedArrayBuffer Instances
    3. 25.3 DataView Objects
      1. 25.3.1 Abstract Operations For DataView Objects
        1. 25.3.1.1 GetViewValue (view,requestIndex,isLittleEndian,type )
        2. 25.3.1.2 SetViewValue (view,requestIndex,isLittleEndian,type,value )
      2. 25.3.2 The DataView Constructor
        1. 25.3.2.1 DataView (buffer [ ,byteOffset [ ,byteLength ] ] )
      3. 25.3.3 Properties of the DataView Constructor
        1. 25.3.3.1 DataView.prototype
      4. 25.3.4 Properties of the DataView Prototype Object
        1. 25.3.4.1 get DataView.prototype.buffer
        2. 25.3.4.2 get DataView.prototype.byteLength
        3. 25.3.4.3 get DataView.prototype.byteOffset
        4. 25.3.4.4 DataView.prototype.constructor
        5. 25.3.4.5 DataView.prototype.getBigInt64 (byteOffset [ ,littleEndian ] )
        6. 25.3.4.6 DataView.prototype.getBigUint64 (byteOffset [ ,littleEndian ] )
        7. 25.3.4.7 DataView.prototype.getFloat32 (byteOffset [ ,littleEndian ] )
        8. 25.3.4.8 DataView.prototype.getFloat64 (byteOffset [ ,littleEndian ] )
        9. 25.3.4.9 DataView.prototype.getInt8 (byteOffset )
        10. 25.3.4.10 DataView.prototype.getInt16 (byteOffset [ ,littleEndian ] )
        11. 25.3.4.11 DataView.prototype.getInt32 (byteOffset [ ,littleEndian ] )
        12. 25.3.4.12 DataView.prototype.getUint8 (byteOffset )
        13. 25.3.4.13 DataView.prototype.getUint16 (byteOffset [ ,littleEndian ] )
        14. 25.3.4.14 DataView.prototype.getUint32 (byteOffset [ ,littleEndian ] )
        15. 25.3.4.15 DataView.prototype.setBigInt64 (byteOffset,value [ ,littleEndian ] )
        16. 25.3.4.16 DataView.prototype.setBigUint64 (byteOffset,value [ ,littleEndian ] )
        17. 25.3.4.17 DataView.prototype.setFloat32 (byteOffset,value [ ,littleEndian ] )
        18. 25.3.4.18 DataView.prototype.setFloat64 (byteOffset,value [ ,littleEndian ] )
        19. 25.3.4.19 DataView.prototype.setInt8 (byteOffset,value )
        20. 25.3.4.20 DataView.prototype.setInt16 (byteOffset,value [ ,littleEndian ] )
        21. 25.3.4.21 DataView.prototype.setInt32 (byteOffset,value [ ,littleEndian ] )
        22. 25.3.4.22 DataView.prototype.setUint8 (byteOffset,value )
        23. 25.3.4.23 DataView.prototype.setUint16 (byteOffset,value [ ,littleEndian ] )
        24. 25.3.4.24 DataView.prototype.setUint32 (byteOffset,value [ ,littleEndian ] )
        25. 25.3.4.25 DataView.prototype [ @@toStringTag ]
      5. 25.3.5 Properties of DataView Instances
    4. 25.4 The Atomics Object
      1. 25.4.1 Abstract Operations for Atomics
        1. 25.4.1.1 ValidateIntegerTypedArray (typedArray [ ,waitable ] )
        2. 25.4.1.2 ValidateAtomicAccess (typedArray,requestIndex )
        3. 25.4.1.3 GetWaiterList (block,i )
        4. 25.4.1.4 EnterCriticalSection (WL )
        5. 25.4.1.5 LeaveCriticalSection (WL )
        6. 25.4.1.6 AddWaiter (WL,W )
        7. 25.4.1.7 RemoveWaiter (WL,W )
        8. 25.4.1.8 RemoveWaiters (WL,c )
        9. 25.4.1.9 SuspendAgent (WL,W,timeout )
        10. 25.4.1.10 NotifyWaiter (WL,W )
        11. 25.4.1.11 AtomicReadModifyWrite (typedArray,index,value,op )
        12. 25.4.1.12 ByteListBitwiseOp (op,xBytes,yBytes )
        13. 25.4.1.13 ByteListEqual (xBytes,yBytes )
      2. 25.4.2 Atomics.add (typedArray,index,value )
      3. 25.4.3 Atomics.and (typedArray,index,value )
      4. 25.4.4 Atomics.compareExchange (typedArray,index,expectedValue,replacementValue )
      5. 25.4.5 Atomics.exchange (typedArray,index,value )
      6. 25.4.6 Atomics.isLockFree (size )
      7. 25.4.7 Atomics.load (typedArray,index )
      8. 25.4.8 Atomics.or (typedArray,index,value )
      9. 25.4.9 Atomics.store (typedArray,index,value )
      10. 25.4.10 Atomics.sub (typedArray,index,value )
      11. 25.4.11 Atomics.wait (typedArray,index,value,timeout )
      12. 25.4.12 Atomics.notify (typedArray,index,count )
      13. 25.4.13 Atomics.xor (typedArray,index,value )
      14. 25.4.14 Atomics [ @@toStringTag ]
    5. 25.5 The JSON Object
      1. 25.5.1 JSON.parse (text [ ,reviver ] )
        1. 25.5.1.1 InternalizeJSONProperty (holder,name,reviver )
      2. 25.5.2 JSON.stringify (value [ ,replacer [ ,space ] ] )
        1. 25.5.2.1 SerializeJSONProperty (state,key,holder )
        2. 25.5.2.2 QuoteJSONString (value )
        3. 25.5.2.3 UnicodeEscape (C )
        4. 25.5.2.4 SerializeJSONObject (state,value )
        5. 25.5.2.5 SerializeJSONArray (state,value )
      3. 25.5.3 JSON [ @@toStringTag ]
  27. 26 Managing Memory
    1. 26.1 WeakRef Objects
      1. 26.1.1 The WeakRef Constructor
        1. 26.1.1.1 WeakRef (target )
      2. 26.1.2 Properties of the WeakRef Constructor
        1. 26.1.2.1 WeakRef.prototype
      3. 26.1.3 Properties of the WeakRef Prototype Object
        1. 26.1.3.1 WeakRef.prototype.constructor
        2. 26.1.3.2 WeakRef.prototype.deref ( )
        3. 26.1.3.3 WeakRef.prototype [ @@toStringTag ]
      4. 26.1.4 WeakRef Abstract Operations
        1. 26.1.4.1 WeakRefDeref (weakRef )
      5. 26.1.5 Properties of WeakRef Instances
    2. 26.2 FinalizationRegistry Objects
      1. 26.2.1 The FinalizationRegistry Constructor
        1. 26.2.1.1 FinalizationRegistry (cleanupCallback )
      2. 26.2.2 Properties of the FinalizationRegistry Constructor
        1. 26.2.2.1 FinalizationRegistry.prototype
      3. 26.2.3 Properties of the FinalizationRegistry Prototype Object
        1. 26.2.3.1 FinalizationRegistry.prototype.constructor
        2. 26.2.3.2 FinalizationRegistry.prototype.register (target,heldValue [ ,unregisterToken ] )
        3. 26.2.3.3 FinalizationRegistry.prototype.unregister (unregisterToken )
        4. 26.2.3.4 FinalizationRegistry.prototype [ @@toStringTag ]
      4. 26.2.4 Properties of FinalizationRegistry Instances
  28. 27 Control Abstraction Objects
    1. 27.1 Iteration
      1. 27.1.1 Common Iteration Interfaces
        1. 27.1.1.1 TheIterable Interface
        2. 27.1.1.2 TheIterator Interface
        3. 27.1.1.3 TheAsyncIterable Interface
        4. 27.1.1.4 TheAsyncIterator Interface
        5. 27.1.1.5 TheIteratorResult Interface
      2. 27.1.2 The %IteratorPrototype% Object
        1. 27.1.2.1 %IteratorPrototype% [ @@iterator ] ( )
      3. 27.1.3 The %AsyncIteratorPrototype% Object
        1. 27.1.3.1 %AsyncIteratorPrototype% [ @@asyncIterator ] ( )
      4. 27.1.4 Async-from-Sync Iterator Objects
        1. 27.1.4.1 CreateAsyncFromSyncIterator (syncIteratorRecord )
        2. 27.1.4.2 The %AsyncFromSyncIteratorPrototype% Object
          1. 27.1.4.2.1 %AsyncFromSyncIteratorPrototype%.next ( [value ] )
          2. 27.1.4.2.2 %AsyncFromSyncIteratorPrototype%.return ( [value ] )
          3. 27.1.4.2.3 %AsyncFromSyncIteratorPrototype%.throw ( [value ] )
          4. 27.1.4.2.4 Async-from-Sync Iterator Value Unwrap Functions
        3. 27.1.4.3 Properties of Async-from-Sync Iterator Instances
        4. 27.1.4.4 AsyncFromSyncIteratorContinuation (result,promiseCapability )
    2. 27.2 Promise Objects
      1. 27.2.1 Promise Abstract Operations
        1. 27.2.1.1 PromiseCapability Records
          1. 27.2.1.1.1 IfAbruptRejectPromise (value,capability )
        2. 27.2.1.2 PromiseReaction Records
        3. 27.2.1.3 CreateResolvingFunctions (promise )
          1. 27.2.1.3.1 Promise Reject Functions
          2. 27.2.1.3.2 Promise Resolve Functions
        4. 27.2.1.4 FulfillPromise (promise,value )
        5. 27.2.1.5 NewPromiseCapability (C )
          1. 27.2.1.5.1 GetCapabilitiesExecutor Functions
        6. 27.2.1.6 IsPromise (x )
        7. 27.2.1.7 RejectPromise (promise,reason )
        8. 27.2.1.8 TriggerPromiseReactions (reactions,argument )
        9. 27.2.1.9 HostPromiseRejectionTracker (promise,operation )
      2. 27.2.2 Promise Jobs
        1. 27.2.2.1 NewPromiseReactionJob (reaction,argument )
        2. 27.2.2.2 NewPromiseResolveThenableJob (promiseToResolve,thenable,then )
      3. 27.2.3 The Promise Constructor
        1. 27.2.3.1 Promise (executor )
      4. 27.2.4 Properties of the Promise Constructor
        1. 27.2.4.1 Promise.all (iterable )
          1. 27.2.4.1.1 GetPromiseResolve (promiseConstructor )
          2. 27.2.4.1.2 PerformPromiseAll (iteratorRecord,constructor,resultCapability,promiseResolve )
          3. 27.2.4.1.3Promise.all Resolve Element Functions
        2. 27.2.4.2 Promise.allSettled (iterable )
          1. 27.2.4.2.1 PerformPromiseAllSettled (iteratorRecord,constructor,resultCapability,promiseResolve )
          2. 27.2.4.2.2Promise.allSettled Resolve Element Functions
          3. 27.2.4.2.3Promise.allSettled Reject Element Functions
        3. 27.2.4.3 Promise.any (iterable )
          1. 27.2.4.3.1 PerformPromiseAny (iteratorRecord,constructor,resultCapability,promiseResolve )
          2. 27.2.4.3.2Promise.any Reject Element Functions
        4. 27.2.4.4 Promise.prototype
        5. 27.2.4.5 Promise.race (iterable )
          1. 27.2.4.5.1 PerformPromiseRace (iteratorRecord,constructor,resultCapability,promiseResolve )
        6. 27.2.4.6 Promise.reject (r )
        7. 27.2.4.7 Promise.resolve (x )
          1. 27.2.4.7.1 PromiseResolve (C,x )
        8. 27.2.4.8 get Promise [ @@species ]
      5. 27.2.5 Properties of the Promise Prototype Object
        1. 27.2.5.1 Promise.prototype.catch (onRejected )
        2. 27.2.5.2 Promise.prototype.constructor
        3. 27.2.5.3 Promise.prototype.finally (onFinally )
          1. 27.2.5.3.1 Then Finally Functions
          2. 27.2.5.3.2 Catch Finally Functions
        4. 27.2.5.4 Promise.prototype.then (onFulfilled,onRejected )
          1. 27.2.5.4.1 PerformPromiseThen (promise,onFulfilled,onRejected [ ,resultCapability ] )
        5. 27.2.5.5 Promise.prototype [ @@toStringTag ]
      6. 27.2.6 Properties of Promise Instances
    3. 27.3 GeneratorFunction Objects
      1. 27.3.1 The GeneratorFunction Constructor
        1. 27.3.1.1 GeneratorFunction (p1,p2, … ,pn,body )
      2. 27.3.2 Properties of the GeneratorFunction Constructor
        1. 27.3.2.1 GeneratorFunction.length
        2. 27.3.2.2 GeneratorFunction.prototype
      3. 27.3.3 Properties of the GeneratorFunction Prototype Object
        1. 27.3.3.1 GeneratorFunction.prototype.constructor
        2. 27.3.3.2 GeneratorFunction.prototype.prototype
        3. 27.3.3.3 GeneratorFunction.prototype [ @@toStringTag ]
      4. 27.3.4 GeneratorFunction Instances
        1. 27.3.4.1 length
        2. 27.3.4.2 name
        3. 27.3.4.3 prototype
    4. 27.4 AsyncGeneratorFunction Objects
      1. 27.4.1 The AsyncGeneratorFunction Constructor
        1. 27.4.1.1 AsyncGeneratorFunction (p1,p2, … ,pn,body )
      2. 27.4.2 Properties of the AsyncGeneratorFunction Constructor
        1. 27.4.2.1 AsyncGeneratorFunction.length
        2. 27.4.2.2 AsyncGeneratorFunction.prototype
      3. 27.4.3 Properties of the AsyncGeneratorFunction Prototype Object
        1. 27.4.3.1 AsyncGeneratorFunction.prototype.constructor
        2. 27.4.3.2 AsyncGeneratorFunction.prototype.prototype
        3. 27.4.3.3 AsyncGeneratorFunction.prototype [ @@toStringTag ]
      4. 27.4.4 AsyncGeneratorFunction Instances
        1. 27.4.4.1 length
        2. 27.4.4.2 name
        3. 27.4.4.3 prototype
    5. 27.5 Generator Objects
      1. 27.5.1 Properties of the Generator Prototype Object
        1. 27.5.1.1 Generator.prototype.constructor
        2. 27.5.1.2 Generator.prototype.next (value )
        3. 27.5.1.3 Generator.prototype.return (value )
        4. 27.5.1.4 Generator.prototype.throw (exception )
        5. 27.5.1.5 Generator.prototype [ @@toStringTag ]
      2. 27.5.2 Properties of Generator Instances
      3. 27.5.3 Generator Abstract Operations
        1. 27.5.3.1 GeneratorStart (generator,generatorBody )
        2. 27.5.3.2 GeneratorValidate (generator,generatorBrand )
        3. 27.5.3.3 GeneratorResume (generator,value,generatorBrand )
        4. 27.5.3.4 GeneratorResumeAbrupt (generator,abruptCompletion,generatorBrand )
        5. 27.5.3.5 GetGeneratorKind ( )
        6. 27.5.3.6 GeneratorYield (iterNextObj )
        7. 27.5.3.7 Yield (value )
        8. 27.5.3.8 CreateIteratorFromClosure (closure,generatorBrand,generatorPrototype )
    6. 27.6 AsyncGenerator Objects
      1. 27.6.1 Properties of the AsyncGenerator Prototype Object
        1. 27.6.1.1 AsyncGenerator.prototype.constructor
        2. 27.6.1.2 AsyncGenerator.prototype.next (value )
        3. 27.6.1.3 AsyncGenerator.prototype.return (value )
        4. 27.6.1.4 AsyncGenerator.prototype.throw (exception )
        5. 27.6.1.5 AsyncGenerator.prototype [ @@toStringTag ]
      2. 27.6.2 Properties of AsyncGenerator Instances
      3. 27.6.3 AsyncGenerator Abstract Operations
        1. 27.6.3.1 AsyncGeneratorRequest Records
        2. 27.6.3.2 AsyncGeneratorStart (generator,generatorBody )
        3. 27.6.3.3 AsyncGeneratorValidate (generator,generatorBrand )
        4. 27.6.3.4 AsyncGeneratorResolve (generator,value,done )
        5. 27.6.3.5 AsyncGeneratorReject (generator,exception )
        6. 27.6.3.6 AsyncGeneratorResumeNext (generator )
          1. 27.6.3.6.1 AsyncGeneratorResumeNext Return Processor Fulfilled Functions
          2. 27.6.3.6.2 AsyncGeneratorResumeNext Return Processor Rejected Functions
        7. 27.6.3.7 AsyncGeneratorEnqueue (generator,completion,generatorBrand )
        8. 27.6.3.8 AsyncGeneratorYield (value )
        9. 27.6.3.9 CreateAsyncIteratorFromClosure (closure,generatorBrand,generatorPrototype )
    7. 27.7 AsyncFunction Objects
      1. 27.7.1 The AsyncFunction Constructor
        1. 27.7.1.1 AsyncFunction (p1,p2, … ,pn,body )
      2. 27.7.2 Properties of the AsyncFunction Constructor
        1. 27.7.2.1 AsyncFunction.length
        2. 27.7.2.2 AsyncFunction.prototype
      3. 27.7.3 Properties of the AsyncFunction Prototype Object
        1. 27.7.3.1 AsyncFunction.prototype.constructor
        2. 27.7.3.2 AsyncFunction.prototype [ @@toStringTag ]
      4. 27.7.4 AsyncFunction Instances
        1. 27.7.4.1 length
        2. 27.7.4.2 name
      5. 27.7.5 Async Functions Abstract Operations
        1. 27.7.5.1 AsyncFunctionStart (promiseCapability,asyncFunctionBody )
  29. 28 Reflection
    1. 28.1 The Reflect Object
      1. 28.1.1 Reflect.apply (target,thisArgument,argumentsList )
      2. 28.1.2 Reflect.construct (target,argumentsList [ ,newTarget ] )
      3. 28.1.3 Reflect.defineProperty (target,propertyKey,attributes )
      4. 28.1.4 Reflect.deleteProperty (target,propertyKey )
      5. 28.1.5 Reflect.get (target,propertyKey [ ,receiver ] )
      6. 28.1.6 Reflect.getOwnPropertyDescriptor (target,propertyKey )
      7. 28.1.7 Reflect.getPrototypeOf (target )
      8. 28.1.8 Reflect.has (target,propertyKey )
      9. 28.1.9 Reflect.isExtensible (target )
      10. 28.1.10 Reflect.ownKeys (target )
      11. 28.1.11 Reflect.preventExtensions (target )
      12. 28.1.12 Reflect.set (target,propertyKey,V [ ,receiver ] )
      13. 28.1.13 Reflect.setPrototypeOf (target,proto )
      14. 28.1.14 Reflect [ @@toStringTag ]
    2. 28.2 Proxy Objects
      1. 28.2.1 The Proxy Constructor
        1. 28.2.1.1 Proxy (target,handler )
      2. 28.2.2 Properties of the Proxy Constructor
        1. 28.2.2.1 Proxy.revocable (target,handler )
          1. 28.2.2.1.1 Proxy Revocation Functions
    3. 28.3 Module Namespace Objects
      1. 28.3.1 @@toStringTag
  30. 29 Memory Model
    1. 29.1 Memory Model Fundamentals
    2. 29.2 Agent Events Records
    3. 29.3 Chosen Value Records
    4. 29.4 Candidate Executions
    5. 29.5 Abstract Operations for the Memory Model
      1. 29.5.1 EventSet (execution )
      2. 29.5.2 SharedDataBlockEventSet (execution )
      3. 29.5.3 HostEventSet (execution )
      4. 29.5.4 ComposeWriteEventBytes (execution,byteIndex,Ws )
      5. 29.5.5 ValueOfReadEvent (execution,R )
    6. 29.6 Relations of Candidate Executions
      1. 29.6.1 agent-order
      2. 29.6.2 reads-bytes-from
      3. 29.6.3 reads-from
      4. 29.6.4 host-synchronizes-with
      5. 29.6.5 synchronizes-with
      6. 29.6.6 happens-before
    7. 29.7 Properties of Valid Executions
      1. 29.7.1 Valid Chosen Reads
      2. 29.7.2 Coherent Reads
      3. 29.7.3 Tear Free Reads
      4. 29.7.4 Sequentially Consistent Atomics
      5. 29.7.5 Valid Executions
    8. 29.8 Races
    9. 29.9 Data Races
    10. 29.10 Data Race Freedom
    11. 29.11 Shared Memory Guidelines
  31. A Grammar Summary
    1. A.1 Lexical Grammar
    2. A.2 Expressions
    3. A.3 Statements
    4. A.4 Functions and Classes
    5. A.5 Scripts and Modules
    6. A.6 Number Conversions
    7. A.7 Universal Resource Identifier Character Classes
    8. A.8 Regular Expressions
  32. B Additional ECMAScript Features for Web Browsers
    1. B.1 Additional Syntax
      1. B.1.1 Numeric Literals
        1. B.1.1.1 Static Semantics
      2. B.1.2 String Literals
        1. B.1.2.1 Static Semantics
      3. B.1.3 HTML-like Comments
      4. B.1.4 Regular Expressions Patterns
        1. B.1.4.1 SS: Early Errors
        2. B.1.4.2 SS: IsCharacterClass
        3. B.1.4.3 SS: CharacterValue
        4. B.1.4.4 Pattern Semantics
          1. B.1.4.4.1 CharacterRangeOrUnion (A,B )
    2. B.2 Additional Built-in Properties
      1. B.2.1 Additional Properties of the Global Object
        1. B.2.1.1 escape (string )
        2. B.2.1.2 unescape (string )
      2. B.2.2 Additional Properties of the Object.prototype Object
        1. B.2.2.1 Object.prototype.__proto__
          1. B.2.2.1.1 get Object.prototype.__proto__
          2. B.2.2.1.2 set Object.prototype.__proto__
        2. B.2.2.2 Object.prototype.__defineGetter__ (P,getter )
        3. B.2.2.3 Object.prototype.__defineSetter__ (P,setter )
        4. B.2.2.4 Object.prototype.__lookupGetter__ (P )
        5. B.2.2.5 Object.prototype.__lookupSetter__ (P )
      3. B.2.3 Additional Properties of the String.prototype Object
        1. B.2.3.1 String.prototype.substr (start,length )
        2. B.2.3.2 String.prototype.anchor (name )
          1. B.2.3.2.1 CreateHTML (string,tag,attribute,value )
        3. B.2.3.3 String.prototype.big ( )
        4. B.2.3.4 String.prototype.blink ( )
        5. B.2.3.5 String.prototype.bold ( )
        6. B.2.3.6 String.prototype.fixed ( )
        7. B.2.3.7 String.prototype.fontcolor (color )
        8. B.2.3.8 String.prototype.fontsize (size )
        9. B.2.3.9 String.prototype.italics ( )
        10. B.2.3.10 String.prototype.link (url )
        11. B.2.3.11 String.prototype.small ( )
        12. B.2.3.12 String.prototype.strike ( )
        13. B.2.3.13 String.prototype.sub ( )
        14. B.2.3.14 String.prototype.sup ( )
        15. B.2.3.15 String.prototype.trimLeft ( )
        16. B.2.3.16 String.prototype.trimRight ( )
      4. B.2.4 Additional Properties of the Date.prototype Object
        1. B.2.4.1 Date.prototype.getYear ( )
        2. B.2.4.2 Date.prototype.setYear (year )
        3. B.2.4.3 Date.prototype.toGMTString ( )
      5. B.2.5 Additional Properties of the RegExp.prototype Object
        1. B.2.5.1 RegExp.prototype.compile (pattern,flags )
    3. B.3 Other Additional Features
      1. B.3.1 __proto__ Property Names in Object Initializers
      2. B.3.2 Labelled Function Declarations
      3. B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics
        1. B.3.3.1 Changes to FunctionDeclarationInstantiation
        2. B.3.3.2 Changes to GlobalDeclarationInstantiation
        3. B.3.3.3 Changes to EvalDeclarationInstantiation
        4. B.3.3.4 Changes to Block SS: Early Errors
        5. B.3.3.5 Changes toswitch Statement SS: Early Errors
        6. B.3.3.6 Changes to BlockDeclarationInstantiation
      4. B.3.4 FunctionDeclarations in IfStatement Statement Clauses
      5. B.3.5 VariableStatements in Catch Blocks
      6. B.3.6 Initializers in ForIn Statement Heads
      7. B.3.7 The [[IsHTMLDDA]] Internal Slot
        1. B.3.7.1 Changes to ToBoolean
        2. B.3.7.2 Changes to Abstract Equality Comparison
        3. B.3.7.3 Changes to thetypeof Operator
  33. C The Strict Mode of ECMAScript
  34. D Host Layering Points
    1. D.1 Host Hooks
    2. D.2 Host-defined Fields
    3. D.3 Host-defined Objects
    4. D.4 Running Jobs
    5. D.5 Internal Methods of Exotic Objects
    6. D.6 Built-in Objects and Methods
  35. E Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact
  36. F Additions and Changes That Introduce Incompatibilities with Prior Editions
  37. G Colophon
  38. H Bibliography
  39. I Copyright & Software License

ECMA-262, 12th edition, June 2021
ECMAScript® 2021 Language Specification


About this Specification

The document athttps://tc39.es/ecma262/ is the most accurate and up-to-date ECMAScript specification. It contains the content of the most recent yearly snapshot plus anyfinished proposals (those that have reached Stage 4 in theproposal process and thus are implemented in several implementations and will be in the next practical revision) since that snapshot was taken.

Contributing to this Specification

This specification is developed on GitHub with the help of the ECMAScript community. There are a number of ways to contribute to the development of this specification:

Refer to thecolophon for more information on how this document is created.

Introduction

This Ecma Standard defines the ECMAScript 2021 Language. It is the twelfth edition of the ECMAScript Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely used general-purpose programming languages. It is best known as the language embedded in web browsers but has also been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation of future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web where it has become the programming language that is supported by essentially all web browsers. Significant work was done to develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language specification that have become common among browser implementations and added support for new features that had emerged since the publication of the third edition. Such features include accessor properties, reflective creation and inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The fifth edition was adopted by the Ecma General Assembly of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication. However, this was preceded by significant experimentation and language enhancement design efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a fifteen year effort. The goals for this edition included providing better support for large applications, library creation, and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming, destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode supplemental characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth edition was adopted by the General Assembly of June 2015.

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally, numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown. ES2016 also included support for a new exponentiation operator and adds a new method toArray.prototype calledincludes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language and library enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous programming experience by providing syntax for promise-returning functions. Shared Memory and Atomics introduce a newmemory model that allows multi-agent programs to communicate using atomic operations that ensure a well-defined execution order even on parallel CPUs. It also included new static methods on Object:Object.values,Object.entries, andObject.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the AsyncIterator protocol and async generators. It also included four new regular expression features: thedotAll flag, named capture groups, Unicode property escapes, and look-behind assertions. Lastly it included object rest and spread properties.

ECMAScript 2019 introduced a few new built-in functions:flat andflatMap onArray.prototype for flattening arrays,Object.fromEntries for directly turning the return value ofObject.entries into a new Object, andtrimStart andtrimEnd onString.prototype as better-named alternatives to the widely implemented but non-standardString.prototype.trimLeft andtrimRight built-ins. In addition, it included a few minor updates to syntax and semantics. Updated syntax included optional catch binding parameters and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in string literals to align with JSON. Other updates included requiring thatArray.prototype.sort be a stable sort, requiring thatJSON.stringify return well-formed UTF-8 regardless of input, and clarifyingFunction.prototype.toString by requiring that it either return the corresponding original source text or a standard placeholder.

ECMAScript 2020, the 11th edition, introduces thematchAll method for Strings, to produce an iterator for all match objects generated by a global regular expression;import(), a syntax to asynchronously import Modules with a dynamic specifier;BigInt, a new number primitive for working with arbitrary precision integers;Promise.allSettled, a new Promise combinator that does not short-circuit;globalThis, a universal way to access the globalthis value; dedicatedexport * as ns from 'module' syntax for use within modules; increased standardization offor-in enumeration order;import.meta, ahost-populated object available in Modules that may contain contextual information about the Module; as well as adding two new syntax features to improve working with “nullish” values (null orundefined): nullish coalescing, a value selection operator; and optional chaining, a property access and function invocation operator that short-circuits if the value to access/invoke is nullish.

This specification, the 12th edition, introduces thereplaceAll method for Strings;Promise.any, a Promise combinator that short-circuits when an input value is fulfilled;AggregateError, a new Error type to represent multiple errors at once; logical assignment operators (??=,&&=,||=);WeakRef, for referring to a target object without preserving it from garbage collection, andFinalizationRegistry, to manage registration and unregistration of cleanup operations performed when target objects are garbage collected; separators for numeric literals (1_000); andArray.prototype.sort was made more precise, reducing the amount of cases that result in animplementation-defined sort order.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed implementation experiments, contributed test suites, and educated the world-wide developer community about ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, Project Editor, 6th Edition

Brian Terlson
ECMA-262, Project Editor, 7th through 10th Editions

Jordan Harband
ECMA-262, Project Editor, 10th through 12th Editions

1 Scope

This Standard defines the ECMAScript 2021 general-purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version of the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that supports programs that need to adapt to the linguistic and cultural conventions used by different human languages and countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide properties not described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of any “future reserved words” noted in subclause12.6.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension in subclause17.1.

A conforming implementation of ECMAScript must not redefine any facilities that are notimplementation-defined,implementation-approximated, orhost-defined.

A conforming implementation of ECMAScript may choose to implement or not implementNormative Optional subclauses. If any Normative Optional behaviour is implemented, all of the behaviour in the containing Normative Optional clause must be implemented. A Normative Optional clause is denoted in this specification with the words "Normative Optional" in a coloured box, as shown below.

Normative Optional

2.1 Example Clause Heading

Example clause contents.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10646Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda, or successor

ECMA-402,ECMAScript 2015 Internationalization API Specification.
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/

ECMA-404,The JSON Data Interchange Format.
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational objects within ahost environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-purpose programming language. Ascripting language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide ahost environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be aWeb scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used to provide core scripting capabilities for a variety ofhost environments. Therefore the core language is specified in this document apart from any particularhost environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in many different environments and scales. As the usage of ECMAScript has expanded, so have the features and facilities it provides. ECMAScript is now a fully featured general-purpose programming language.

4.1 Web Scripting

A web browser provides an ECMAScripthost environment for client-side computation including, for instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further, thehost environment provides a means to attach scripting code to events such as change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is reactive to user interaction, and there is no need for a main program.

A web server provides a differenthost environment for server-side computation including objects representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is possible to distribute computation between the client and server while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its ownhost environment, completing the ECMAScript execution environment.

4.2 Hosts and Implementations

To aid integrating ECMAScript intohost environments, this specification defers the definition of certain facilities (e.g.,abstract operations), either in whole or in part, to a source outside of this specification. Editorially, this specification distinguishes the following kinds of deferrals.

Animplementation is an external source that further defines facilities enumerated in AnnexD or those that are marked asimplementation-defined orimplementation-approximated. In informal use, an implementation refers to a concrete artefact, such as a particular web browser.

Animplementation-defined facility is one that defers its definition to an external source without further qualification. This specification does not make any recommendations for particular behaviours, and conforming implementations are free to choose any behaviour within the constraints put forth by this specification.

Animplementation-approximated facility is one that defers its definition to an external source while recommending an ideal behaviour. While conforming implementations are free to choose any behaviour within the constraints put forth by this specification, they are encouraged to strive to approximate the ideal. Some mathematical operations, such asMath.exp, areimplementation-approximated.

Ahost is an external source that further defines facilities listed in AnnexD but does not further define otherimplementation-defined orimplementation-approximated facilities. In informal use, ahost refers to the set of all implementations, such as the set of all web browsers, that interface with this specification in the same way via AnnexD. Ahost is often an external specification, such as WHATWG HTML (https://html.spec.whatwg.org/). In other words, facilities that arehost-defined are often further defined in external specifications.

Ahost hook is an abstract operation that is defined in whole or in part by an external source. Allhost hooks must be listed in AnnexD.

Ahost-defined facility is one that defers its definition to an external source without further qualification and is listed in AnnexD. Implementations that are not hosts may also provide definitions forhost-defined facilities.

Ahost environment is a particular choice of definition for allhost-defined facilities. Ahost environment typically includes objects or functions which allow obtaining input and providing output ashost-defined properties of theglobal object.

This specification follows the editorial convention of always using the most specific term. For example, if a facility ishost-defined, it should not be referred to asimplementation-defined.

Both hosts and implementations may interface with this specification via the language types, specification types,abstract operations, grammar productions, intrinsic objects, and intrinsic symbols defined herein.

4.3 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part of the standard proper.

ECMAScript is object-based: basic language andhost facilities are provided by objects, and an ECMAScript program is a cluster of communicating objects. In ECMAScript, anobject is a collection of zero or moreproperties each withattributes that determine how each property can be used—for example, when the Writable attribute for a property is set tofalse, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are containers that hold other objects,primitive values, orfunctions. A primitive value is a member of one of the following built-in types:Undefined,Null,Boolean,Number,BigInt,String, andSymbol; an object is a member of the built-in typeObject; and a function is a callable object. A function that is associated with an object via a property is called amethod.

ECMAScript defines a collection ofbuilt-in objects that round out the definition of ECMAScript entities. These built-in objects include theglobal object; objects that are fundamental to theruntime semantics of the language includingObject,Function,Boolean,Symbol, and variousError objects; objects that represent and manipulate numeric values includingMath,Number, andDate; the text processing objectsString andRegExp; objects that are indexed collections of values includingArray and nine different kinds of Typed Arrays whose elements all have a specific numeric data representation; keyed collections includingMap andSet objects; objects supporting structured data including theJSON object,ArrayBuffer,SharedArrayBuffer, andDataView; objects supporting control abstractions including generator functions andPromise objects; and reflection objects includingProxy andReflect.

ECMAScript also defines a set of built-inoperators. ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported bymodules which allow a program to be divided into multiple sequences of statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with properties, and defined functions are not required to have their declarations appear textually before calls to them.

4.3.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or viaconstructors which create objects and then execute code that initializes all or part of them by assigning initial values to their properties. Eachconstructor is a function that has a property named"prototype" that is used to implementprototype-based inheritance andshared properties. Objects are created by using constructors innew expressions; for example,new Date(2009, 11) creates a new Date object. Invoking aconstructor without usingnew has consequences that depend on theconstructor. For example,Date() produces a string representation of the current date and time rather than an object.

Every object created by aconstructor has an implicit reference (called the object'sprototype) to the value of itsconstructor's"prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called theprototype chain. When a reference is made to a property in an object, that reference is to the property of that name in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned directly is examined for such a property; if that object contains the named property, that is the property to which the reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

Figure 1: Object/Prototype Relationships
An image of lots of boxes and arrows.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value. Figure 1 illustrates this:

CF is aconstructor (and also an object). Five objects have been created by usingnew expressions:cf1,cf2,cf3,cf4, andcf5. Each of these objects contains properties named"q1" and"q2". The dashed lines represent the implicit prototype relationship; so, for example,cf3's prototype isCFp. Theconstructor,CF, has two properties itself, named"P1" and"P2", which are not visible toCFp,cf1,cf2,cf3,cf4, orcf5. The property named"CFP1" inCFp is shared bycf1,cf2,cf3,cf4, andcf5 (but not byCF), as are any properties found inCFp's implicit prototype chain that are not named"q1","q2", or"CFP1". Notice that there is no implicit prototype link betweenCF andCFp.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them. That is, constructors are not required to name or assign values to all or any of the constructed object's properties. In the above diagram, one could add a new shared property forcf1,cf2,cf3,cf4, andcf5 by assigning a new value to the property inCFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based upon a common pattern ofconstructor functions, prototype objects, and methods. The ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like abstraction pattern used by the built-in objects.

4.3.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of some features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as thestrict mode of the language. Strict mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript source text units as described in11.2.2. Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes restrictions that have local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple source text units. A complete ECMAScript program may be composed of both strict mode and non-strict mode ECMAScript source text units. In this case, strict mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an implementation must support the combination of unrestricted and strict mode source text units into a single composite program.

4.4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.4.1 implementation-approximated

animplementation-approximated facility is defined in whole or in part by an external source but has a recommended, ideal behaviour in this specification

4.4.2 implementation-defined

animplementation-defined facility is defined in whole or in part by an external source to this specification

4.4.3 host-defined

same asimplementation-defined

Note

Editorially, see clause4.2.

4.4.4 type

set of data values as defined in clause6

4.4.5 primitive value

member of one of the types Undefined, Null, Boolean, Number, BigInt, Symbol, or String as defined in clause6

Note

A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.4.6 object

member of the type Object

Note

An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4.4.7 constructor

function object that creates and initializes objects

Note

The value of aconstructor's"prototype" property is a prototype object that is used to implement inheritance and shared properties.

4.4.8 prototype

object that provides shared properties for other objects

Note

When aconstructor creates an object, that object implicitly references theconstructor's"prototype" property for the purpose of resolving property references. Theconstructor's"prototype" property can be referenced by the program expressionconstructor.prototype, and properties added to an object's prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by using theObject.create built-in function.

4.4.9 ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.4.10 exotic object

object that does not have the default behaviour for one or more of the essential internal methods

Note

Any object that is not anordinary object is anexotic object.

4.4.11 standard object

object whose semantics are defined by this specification

4.4.12 built-in object

object specified and supplied by an ECMAScript implementation

Note

Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and supply additional kinds of built-in objects. Abuilt-inconstructor is a built-in object that is also aconstructor.

4.4.13 undefined value

primitive value used when a variable has not been assigned a value

4.4.14 Undefined type

type whose sole value is theundefined value

4.4.15 null value

primitive value that represents the intentional absence of any object value

4.4.16 Null type

type whose sole value is thenull value

4.4.17 Boolean value

member of the Boolean type

Note

There are only two Boolean values,true andfalse.

4.4.18 Boolean type

type consisting of the primitive valuestrue andfalse

4.4.19 Boolean object

member of the Object type that is an instance of the standard built-in Booleanconstructor

Note

A Boolean object is created by using the Booleanconstructor in anew expression, supplying a Boolean value as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be coerced to a Boolean value.

4.4.20 String value

primitive value that is a finite ordered sequence of zero or more 16-bit unsignedinteger values

Note

A String value is a member of the String type. Eachinteger value in the sequence usually represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they must be 16-bit unsigned integers.

4.4.21 String type

set of all possible String values

4.4.22 String object

member of the Object type that is an instance of the standard built-in Stringconstructor

Note

A String object is created by using the Stringconstructor in anew expression, supplying a String value as an argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a String value by calling the Stringconstructor as a function (22.1.1.1).

4.4.23 Number value

primitive value corresponding to a double-precision 64-bit binary formatIEEE 754-2019 value

Note

ANumber value is a member of the Number type and is a direct representation of a number.

4.4.24 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative infinity

4.4.25 Number object

member of the Object type that is an instance of the standard built-in Numberconstructor

Note

A Number object is created by using the Numberconstructor in anew expression, supplying aNumber value as an argument. The resulting object has an internal slot whose value is theNumber value. A Number object can be coerced to aNumber value by calling the Numberconstructor as a function (21.1.1.1).

4.4.26 Infinity

Number value that is the positive infiniteNumber value

4.4.27 NaN

Number value that is anIEEE 754-2019 “Not-a-Number” value

4.4.28 BigInt value

primitive value corresponding to an arbitrary-precisioninteger value

4.4.29 BigInt type

set of all possible BigInt values

4.4.30 BigInt object

member of the Object type that is an instance of the standard built-in BigIntconstructor

4.4.31 Symbol value

primitive value that represents a unique, non-String Object property key

4.4.32 Symbol type

set of all possible Symbol values

4.4.33 Symbol object

member of the Object type that is an instance of the standard built-in Symbolconstructor

4.4.34 function

member of the Object type that may be invoked as a subroutine

Note

In addition to its properties, a function contains executable code and state that determine how it behaves when invoked. A function's code may or may not be written in ECMAScript.

4.4.35 built-in function

built-in object that is a function

Note

Examples of built-in functions includeparseInt andMath.exp. Ahost or implementation may provide additional built-in functions that are not described in this specification.

4.4.36 property

part of an object that associates a key (either a String value or a Symbol value) and a value

Note

Depending upon the form of the property the value may be represented either directly as a data value (a primitive value, an object, or afunction object) or indirectly by a pair of accessor functions.

4.4.37 method

function that is the value of a property

Note

When a function is called as a method of an object, the object is passed to the function as itsthis value.

4.4.38 built-in method

method that is a built-in function

Note

Standard built-in methods are defined in this specification. Ahost or implementation may provide additional built-in methods that are not described in this specification.

4.4.39 attribute

internal value that defines some characteristic of a property

4.4.40 own property

property that is directly contained by its object

4.4.41 inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.5 Organization of This Specification

The remainder of this specification is organized as follows:

Clause5 defines the notational conventions used throughout the specification.

Clauses6 through10 define the execution environment within which ECMAScript programs operate.

Clauses11 through17 define the actual ECMAScript programming language including its syntactic encoding and the execution semantics of all language features.

Clauses18 through28 define the ECMAScript standard library. They include the definitions of all of the standard objects that are available for use by ECMAScript programs as they execute.

Clause29 describes the memory consistency model of accesses on SharedArrayBuffer-backed memory and methods of the Atomics object.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

Acontext-free grammar consists of a number ofproductions. Each production has an abstract symbol called anonterminal as itsleft-hand side, and a sequence of zero or more nonterminal andterminal symbols as itsright-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Achain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called thegoal symbol, a given context-free grammar specifies alanguage, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

Alexical grammar for ECMAScript is given in clause12. This grammar has as its terminal symbols Unicode code points that conform to the rules forSourceCharacter defined in11.1. It defines a set of productions, starting from thegoal symbolInputElementDiv,InputElementTemplateTail, orInputElementRegExp, orInputElementRegExpOrTemplateTail, that describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for ECMAScript and are called ECMAScripttokens. These tokens are the reserved words, identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become part of the stream of input elements and guide the process of automatic semicolon insertion (12.9). Simple white space and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. AMultiLineComment (that is, a comment of the form/**/ regardless of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if aMultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

ARegExp grammar for ECMAScript is given in22.2.1. This grammar also has as its terminal symbols the code points as defined bySourceCharacter. It defines a set of productions, starting from thegoal symbolPattern, that describe how sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with numeric literals and has as its terminal symbolsSourceCharacter. This grammar appears in7.1.4.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

Thesyntactic grammar for ECMAScript is given in clauses13 through16. This grammar has ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two alternative goal symbolsScript andModule, that describe how sequences of tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScriptScript orModule, it is first converted to a stream of input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal (Script orModule), with no tokens left over.

When a parse is successful, it constructs aparse tree, a rooted tree structure in which each node is aParse Node. Each Parse Node is aninstance of a symbol in the grammar; it represents a span of the source text that can be derived from that symbol. The root node of the parse tree, representing the whole of the source text, is an instance of the parse'sgoal symbol. When a Parse Node is an instance of a nonterminal, it is also an instance of some production that has that nonterminal as its left-hand side. Moreover, it has zero or morechildren, one for each symbol on the production's right-hand side: each child is a Parse Node that is an instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even of identical source text. Parse Nodes are consideredthe same Parse Node if and only if they represent the same span of source text, are instances of the same grammar symbol, and resulted from the same parser invocation.

Note 1

Parsing the same String multiple times will lead to different Parse Nodes. For example, consider:

let str ="1 + 1;";eval(str);eval(str);

Each call toeval converts the value ofstr into an ECMAScript source text and performs an independent parse that creates its own separate tree of Parse Nodes. The trees are distinct even though each parse operates upon a source text that was derived from the same String value.

Note 2
Parse Nodes are specification artefacts, and implementations are not required to use an analogous data structure.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses13 through16 is not a complete account of which token sequences are accepted as a correct ECMAScriptScript orModule. Certain additional token sequences are also accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered acceptable if a line terminator character appears in certain “awkward” places.

In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that permit token sequences that do not form a valid ECMAScriptScript orModule. For example, this technique is used for object literals and object destructuring patterns. In such cases a more restrictivesupplemental grammar is provided that further restricts the acceptable token sequences. Typically, anearly error rule will then define an error condition if "P is notcovering anN", whereP is a Parse Node (an instance of the generalized production) andN is a nonterminal from the supplemental grammar. Here, the sequence of tokens originally matched byP is parsed again usingN as thegoal symbol. (IfN takes grammatical parameters, then they are set to the same values used whenP was originally parsed.) An error occurs if the sequence of tokens cannot be parsed as a single instance ofN, with no tokens left over. Subsequently, algorithms access the result of the parse using a phrase of the form "theN that iscovered byP". This will always be a Parse Node (an instance ofN, unique for a givenP), since any parsing failure would have been detected by anearly error rule.

5.1.5 Grammar Notation

Terminal symbols are shown infixed width font, both in the productions of the grammars and throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear in a script exactly as written. All terminal symbol code points specified in this way are to be understood as the appropriate Unicode code points from the Basic Latin range, as opposed to any similar-looking code points from other Unicode ranges. A code point in a terminal symbol cannot be expressed by a\UnicodeEscapeSequence.

Nonterminal symbols are shown initalic type. The definition of a nonterminal (also called a “production”) is introduced by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement:while(Expression)Statement

states that the nonterminalWhileStatement represents the tokenwhile, followed by a left parenthesis token, followed by anExpression, followed by a right parenthesis token, followed by aStatement. The occurrences ofExpression andStatement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList:AssignmentExpressionArgumentList,AssignmentExpression

states that anArgumentList may represent either a singleAssignmentExpression or anArgumentList, followed by a comma, followed by anAssignmentExpression. This definition ofArgumentList is recursive, that is, it is defined in terms of itself. The result is that anArgumentList may contain any positive number of arguments, separated by commas, where each argument expression is anAssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and one that includes it. This means that:

VariableDeclaration:BindingIdentifierInitializeropt

is a convenient abbreviation for:

VariableDeclaration:BindingIdentifierBindingIdentifierInitializer

and that:

ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement

is a convenient abbreviation for:

ForStatement:for(LexicalDeclaration;Expressionopt)Statementfor(LexicalDeclarationExpression;Expressionopt)Statement

which in turn is an abbreviation for:

ForStatement:for(LexicalDeclaration;)Statementfor(LexicalDeclaration;Expression)Statementfor(LexicalDeclarationExpression;)Statementfor(LexicalDeclarationExpression;Expression)Statement

so, in this example, the nonterminalForStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “[parameters]”, which may appear as a suffix to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma separated list of names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList[Return]:ReturnStatementExpressionStatement

is a convenient abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ReturnStatementExpressionStatement

and that:

StatementList[Return, In]:ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ReturnStatementExpressionStatementStatementList_In:ReturnStatementExpressionStatementStatementList_Return_In:ReturnStatementExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList:ReturnStatementExpressionStatement[+In]

is equivalent to saying:

StatementList:ReturnStatementExpressionStatement_In

and:

StatementList:ReturnStatementExpressionStatement[~In]

is equivalent to:

StatementList:ReturnStatementExpressionStatement

A nonterminal reference may have both a parameter list and an “opt” suffix. For example:

VariableDeclaration:BindingIdentifierInitializer[+In]opt

is an abbreviation for:

VariableDeclaration:BindingIdentifierBindingIdentifierInitializer_In

Prefixing a parameter name with “?” on a right-hand side nonterminal reference makes that parameter value dependent upon the occurrence of the parameter name on the reference to the current production's left-hand side symbol. For example:

VariableDeclaration[In]:BindingIdentifierInitializer[?In]

is an abbreviation for:

VariableDeclaration:BindingIdentifierInitializerVariableDeclaration_In:BindingIdentifierInitializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named parameter was used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed with “[~parameter]” that alternative is only available if the named parameter wasnot used in referencing the production's nonterminal symbol. This means that:

StatementList[Return]:[+Return]ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ExpressionStatementStatementList_Return:ReturnStatementExpressionStatement

and that:

StatementList[Return]:[~Return]ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the production:

NonZeroDigit::one of123456789

which is merely a convenient abbreviation for:

NonZeroDigit::123456789

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand side contains no terminals or nonterminals.

If the phrase “[lookahead =seq]” appears in the right-hand side of a production, it indicates that the production may only be used if the token sequenceseq is a prefix of the immediately following input token sequence. Similarly, “[lookahead ∈set]”, whereset is a finite nonempty set of token sequences, indicates that the production may only be used if some element ofset is a prefix of the immediately following token sequence. For convenience, the set can also be written as a nonterminal, in which case it represents the set of all token sequences to which that nonterminal could expand. It is considered an editorial error if the nonterminal could expand to infinitely many distinct token sequences.

These conditions may be negated. “[lookahead ≠seq]” indicates that the containing production may only be used ifseq isnot a prefix of the immediately following input token sequence, and “[lookahead ∉set]” indicates that the production may only be used ifno element ofset is a prefix of the immediately following token sequence.

As an example, given the definitions:

DecimalDigit::one of0123456789DecimalDigits::DecimalDigitDecimalDigitsDecimalDigit

the definition:

LookaheadExample::n[lookahead ∉ {1,3,5,7,9 }]DecimalDigitsDecimalDigit[lookahead ∉DecimalDigit]

matches either the lettern followed by one or more decimal digits the first of which is even, or a decimal digit not followed by another decimal digit.

Note that when these phrases are used in the syntactic grammar, it may not be possible to unambiguously identify the immediately following token sequence because determining later tokens requires knowing which lexicalgoal symbol to use at later positions. As such, when these are used in the syntactic grammar, it is considered an editorial error for a token sequenceseq to appear in a lookahead restriction (including as part of a set of sequences) if the choices of lexical goal symbols to use could change whether or notseq would be a prefix of the resulting token sequence.

If the phrase “[noLineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it indicates that the production isa restricted production: it may not be used if aLineTerminator occurs in the input stream at the indicated position. For example, the production:

ThrowStatement:throw[noLineTerminator here]Expression;

indicates that the production may not be used if aLineTerminator occurs in the script between thethrow token and theExpression.

Unless the presence of aLineTerminator is forbidden by a restricted production, any number of occurrences ofLineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-code point token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier::IdentifierNamebut notReservedWord

means that the nonterminalIdentifier may be replaced by any sequence of code points that could replaceIdentifierName provided that the same sequence of code points could not replaceReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be impractical to list all the alternatives:

SourceCharacter::any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized with an ordered, comma-separated sequence of alias names which may be used within the algorithm steps to reference the argument passed in that position. Optional parameters are denoted with surrounding brackets ([ ,name ]) and are no different from required parameters within algorithm steps. A rest parameter may appear at the end of a parameter list, denoted with leading ellipsis (, ...name). The rest parameter captures all of the arguments provided following the required and optional parameters into aList. If there are no such additional arguments, thatList is empty.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower case roman numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For example:

  1. Top-level step
    1. Substep.
    2. Substep.
      1. Subsubstep.
        1. Subsubsubstep
          1. Subsubsubsubstep
            1. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and hence need not be checked by an implementation. They are used simply to clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Letx besomeValue”. These aliases are reference-like in that bothx andsomeValue refer to the same underlying data and modifications to either are visible to both. Algorithm steps that want to avoid this reference-like behaviour should explicitly make a copy of the right-hand side: “Letx be a copy ofsomeValue” creates a shallow copy ofsomeValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps prior to the alias's declaration. Aliases may be modified using the form “Setx tosomeOtherValue”.

5.2.1 Abstract Operations

In order to facilitate their use in multiple parts of this specification, some algorithms, calledabstract operations, are named and written in parameterized functional form so that they may be referenced by name from within other algorithms. Abstract operations are typically referenced using a functional application style such as OperationName(arg1,arg2). Some abstract operations are treated as polymorphically dispatched methods of class-like specification abstractions. Such method-like abstract operations are typically referenced using a method application style such assomeValue.OperationName(arg1,arg2).

5.2.2 Syntax-Directed Operations

Asyntax-directed operation is a named operation whose definition consists of algorithms, each of which is associated with one or more productions from one of the ECMAScript grammars. A production that has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a grammar production, it may reference the terminal and nonterminal symbols of the production alternative as if they were parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative definition that is matched when parsing the source text. Thesource text matched by a grammar production is the portion of the source text that starts at the beginning of the first terminal that participated in the match and ends at the end of the last terminal that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[ ]” grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have no effect on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the conventions on steps1,3, and4 in the following algorithm:

  1. Letstatus be SyntaxDirectedOperation ofSomeNonTerminal.
  2. LetsomeParseNode be the parse of some source text.
  3. Perform SyntaxDirectedOperation ofsomeParseNode.
  4. Perform SyntaxDirectedOperation ofsomeParseNode passing"value" as the argument.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every operation that might be applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same operation with the same parameters, if any, to thechain production's sole right-hand side nonterminal and then returns the result. For example, assume that some algorithm has a step of the form: “Return the result of evaluatingBlock” and that there is a production:

Block:{StatementList}

but the Evaluation operation does not associate an algorithm with that production. In that case, the Evaluation operation implicitly includes an association of the form:

Runtime Semantics: Evaluation

Block:{StatementList}
  1. Return the result of evaluatingStatementList.

5.2.3 Runtime Semantics

Algorithms which specify semantics that must be called at runtime are calledruntime semantics. Runtime semantics are defined byabstract operations or syntax-directed operations. Such algorithms always return a completion record.

5.2.3.1 Implicit Completion Values

The algorithms of this specification often implicitly returnCompletion Records whose [[Type]] isnormal. Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not aCompletion Record, such as:

  1. Return"Infinity".

means the same thing as:

  1. ReturnNormalCompletion("Infinity").

However, if the value expression of a “return” statement is aCompletion Record construction literal, the resultingCompletion Record is returned. If the value expression is a call to an abstract operation, the “return” statement simply returns theCompletion Record produced by the abstract operation.

The abstract operationCompletion(completionRecord) is used to emphasize that a previously computedCompletion Record is being returned. TheCompletion abstract operation takes a single argument,completionRecord, and performs the following steps:

  1. Assert:completionRecord is aCompletion Record.
  2. ReturncompletionRecord as theCompletion Record of this abstract operation.

A “return” statement without a value in an algorithm step means the same thing as:

  1. ReturnNormalCompletion(undefined).

Any reference to aCompletion Record value that is in a context that does not explicitly require a completeCompletion Record value is equivalent to an explicit reference to the [[Value]] field of theCompletion Record value unless theCompletion Record is anabrupt completion.

5.2.3.2 Throw an Exception

Algorithms steps that say to throw an exception, such as

  1. Throw aTypeError exception.

mean the same things as:

  1. ReturnThrowCompletion(a newly createdTypeError object).

5.2.3.3 ReturnIfAbrupt

Algorithms steps that say or are otherwise equivalent to:

  1. ReturnIfAbrupt(argument).

mean the same thing as:

  1. Ifargument is anabrupt completion, returnargument.
  2. Else ifargument is aCompletion Record, setargument toargument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

  1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

  1. LethygienicTemp be AbstractOperation().
  2. IfhygienicTemp is anabrupt completion, returnhygienicTemp.
  3. Else ifhygienicTemp is aCompletion Record, sethygienicTemp tohygienicTemp.[[Value]].

WherehygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

  1. Letresult be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

  1. Ifargument is anabrupt completion, returnargument.
  2. Ifargument is aCompletion Record, setargument toargument.[[Value]].
  3. Letresult be AbstractOperation(argument).

5.2.3.4 ReturnIfAbrupt Shorthands

Invocations ofabstract operations and syntax-directed operations that are prefixed by? indicate thatReturnIfAbrupt should be applied to the resultingCompletion Record. For example, the step:

  1. ? OperationName().

is equivalent to the following step:

  1. ReturnIfAbrupt(OperationName()).

Similarly, for method application style, the step:

  1. ?someValue.OperationName().

is equivalent to:

  1. ReturnIfAbrupt(someValue.OperationName()).

Similarly, prefix! is used to indicate that the following invocation of an abstract orsyntax-directed operation will never return anabrupt completion and that the resultingCompletion Record's [[Value]] field should be used in place of the return value of the operation. For example, the step:

  1. Letval be ! OperationName().

is equivalent to the following steps:

  1. Letval be OperationName().
  2. Assert:val is never anabrupt completion.
  3. Ifval is aCompletion Record, setval toval.[[Value]].

Syntax-directed operations forruntime semantics make use of this shorthand by placing! or? before the invocation of the operation:

  1. Perform ! SyntaxDirectedOperation ofNonTerminal.

5.2.4 Static Semantics

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input elements form a valid ECMAScriptScript orModule that may be evaluated. In some situations additional rules are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are always associated with a production of a grammar and are called thestatic semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are associated with grammar productions and a production that has multiple alternative definitions will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

A special kind of static semantic rule is anEarly Error Rule.Early error rules defineearly error conditions (see clause17) that are associated with specific grammar productions. Evaluation of mostearly error rules are not explicitly invoked within the algorithms of this specification. A conforming implementation must, prior to the first evaluation of aScript orModule, validate all of theearly error rules of the productions used to parse thatScript orModule. If any of theearly error rules are violated theScript orModule is invalid and cannot be evaluated.

5.2.5 Mathematical Operations

This specification makes reference to these kinds of numeric values:

  • Mathematical values: Arbitrary real numbers, used as the default numeric type.
  • Extended mathematical values: Mathematical values together with +∞ and -∞.
  • Numbers:IEEE 754-2019 double-precision floating point values.
  • BigInts: ECMAScript values representing arbitrary integers in a one-to-one correspondence.

In the language of this specification, numerical values are distinguished among different numeric kinds using subscript suffixes. The subscript𝔽 refers to Numbers, and the subscript refers to BigInts. Numeric values without a subscript suffix refer to mathematical values.

Numeric operators such as +, ×, =, and ≥ refer to those operations as determined by the type of the operands. When applied to mathematical values, the operators refer to the usual mathematical operations. When applied to Numbers, the operators refer to the relevant operations withinIEEE 754-2019. When applied to BigInts, the operators refer to the usual mathematical operations applied to themathematical value of the BigInt.

In general, when this specification refers to a numerical value, such as in the phrase, "the length ofy" or "theinteger represented by the four hexadecimal digits ...", without explicitly specifying a numeric kind, the phrase refers to amathematical value. Phrases which refer to a Number or a BigInt value are explicitly annotated as such; for example, "theNumber value for the number of code points in …" or "the BigInt value for …".

Numeric operators applied to mixed-type operands (such as a Number and amathematical value) are not defined and should be considered an editorial error in this specification.

This specification denotes most numeric values in base 10; it also uses numeric values of the form 0x followed by digits 0-9 or A-F as base-16 values.

When the terminteger is used in this specification, it refers to amathematical value which is in the set of integers, unless otherwise stated. When the termintegral Number is used in this specification, it refers to aNumber value whosemathematical value is in the set of integers.

Conversions between mathematical values and Numbers or BigInts are always explicit in this document. A conversion from amathematical value orextended mathematical valuex to a Number is denoted as "theNumber value forx" or𝔽(x), and is defined in6.1.6.1. A conversion from anintegerx to a BigInt is denoted as "the BigInt value forx" or(x). A conversion from a Number or BigIntx to amathematical value is denoted as "themathematical value ofx", or(x). Themathematical value of+0𝔽 and-0𝔽 is themathematical value 0. Themathematical value of non-finite values is not defined. Theextended mathematical value ofx is themathematical value ofx for finite values, and is +∞ and -∞ for+∞𝔽 and-∞𝔽 respectively; it is not defined forNaN.

The mathematical functionabs(x) produces the absolute value ofx, which is-x ifx < 0 and otherwise isx itself.

The mathematical functionmin(x1,x2, … ,xN) produces the mathematically smallest ofx1 throughxN. The mathematical functionmax(x1,x2, ...,xN) produces the mathematically largest ofx1 throughxN. The domain and range of these mathematical functions are the extended mathematical values.

The notation “x moduloy” (y must be finite and non-zero) computes a valuek of the same sign asy (or zero) such thatabs(k) <abs(y) andx -k =q ×y for someintegerq.

The phrase "the result ofclampingx betweenlower andupper" (wherex is anextended mathematical value andlower andupper are mathematical values such thatlowerupper) produceslower ifx <lower, producesupper ifx >upper, and otherwise producesx.

The mathematical functionfloor(x) produces the largestinteger (closest to +∞) that is not larger thanx.

Mathematical functions min, max,abs, andfloor are not defined for Numbers and BigInts, and any usage of those methods that have non-mathematical value arguments would be an editorial error in this specification.

Note

floor(x) =x - (xmodulo 1).

5.2.6 Value Notation

In this specification, ECMAScript language values are displayed inbold. Examples includenull,true, or"hello". These are distinguished from longer ECMAScript code sequences such asFunction.prototype.apply orlet n = 42;.

Values which are internal to the specification and not directly observable from ECMAScript code are indicated with asans-serif typeface. For instance, aCompletion Record's [[Type]] field takes on values likenormal,return, orthrow.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “thetype ofx” where “type” refers to the ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was naming a value, it is equivalent to saying “no value of any type”.

6.1 ECMAScript Language Types

AnECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol, Number, BigInt, and Object. AnECMAScript language value is a value that is characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, calledundefined. Any variable that has not been assigned a value has the valueundefined.

6.1.2 The Null Type

The Null type has exactly one value, callednull.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, calledtrue andfalse.

6.1.4 The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsignedinteger values (“elements”) up to a maximum length of 253 - 1 elements. The String type is generally used to represent textual data in a running ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as occupying a position within the sequence. These positions are indexed with non-negative integers. The first element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do interpret String values treat each element as a single UTF-16 code unit. However, ECMAScript does not restrict the value of or relationships between these code units, so operations that further interpret String contents as sequences of Unicode code points encoded in UTF-16 must account for ill-formed subsequences. Such operations apply special treatment to every code unit with a numeric value in the inclusive range 0xD800 to 0xDBFF (defined by the Unicode Standard as aleading surrogate, or more formally as ahigh-surrogate code unit) and every code unit with a numeric value in the inclusive range 0xDC00 to 0xDFFF (defined as atrailing surrogate, or more formally as alow-surrogate code unit) using the following rules:

The functionString.prototype.normalize (see22.1.3.13) can be used to explicitly normalize a String value.String.prototype.localeCompare (see22.1.3.10) internally normalizes String values, but no other operations implicitly normalize the strings upon which they operate. Only operations that are explicitly specified to be language or locale sensitive produce language-sensitive results.

Note

The rationale behind this design was to keep the implementation of Strings as simple and high-performing as possible. If ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be normalized, as long as they do not contain any Unicode escape sequences.

In this specification, the phrase "thestring-concatenation ofA,B, ..." (where each argument is a String value, a code unit, or a sequence of code units) denotes the String value whose sequence of code units is the concatenation of the code units (in order) of each of the arguments (in order).

The phrase "thesubstring ofS frominclusiveStart toexclusiveEnd" (whereS is a String value or a sequence of code units andinclusiveStart andexclusiveEnd are integers) denotes the String value consisting of the consecutive code units ofS beginning at indexinclusiveStart and ending immediately before indexexclusiveEnd (which is the empty String wheninclusiveStart =exclusiveEnd). If the "to" suffix is omitted, the length ofS is used as the value ofexclusiveEnd.

6.1.4.1 StringIndexOf (string,searchValue,fromIndex )

The abstract operation StringIndexOf takes argumentsstring (a String),searchValue (a String), andfromIndex (a non-negativeinteger). It performs the following steps when called:

  1. Assert:Type(string) is String.
  2. Assert:Type(searchValue) is String.
  3. Assert:fromIndex is a non-negativeinteger.
  4. Letlen be the length ofstring.
  5. IfsearchValue is the empty String andfromIndexlen, returnfromIndex.
  6. LetsearchLen be the length ofsearchValue.
  7. For eachintegeri starting withfromIndex such thatilen -searchLen, in ascending order, do
    1. Letcandidate be thesubstring ofstring fromi toi +searchLen.
    2. Ifcandidate is the same sequence of code units assearchValue, returni.
  8. Return -1.
Note 1

IfsearchValue is the empty String andfromIndex is less than or equal to the length ofstring, this algorithm returnsfromIndex. The empty String is effectively found at every position within a string, including after the last code unit.

Note 2

This algorithm always returns -1 iffromIndex > the length ofstring.

6.1.5 The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is eitherundefined or a String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They are typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless otherwise specified, well-known symbols values are shared by all realms (9.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where “name” is one of the values listed inTable 1.

Table 1: Well-known Symbols
Specification Name [[Description]] Value and Purpose
@@asyncIterator"Symbol.asyncIterator" A method that returns the default AsyncIterator for an object. Called by the semantics of thefor-await-of statement.
@@hasInstance"Symbol.hasInstance" A method that determines if aconstructor object recognizes an object as one of theconstructor's instances. Called by the semantics of theinstanceof operator.
@@isConcatSpreadable"Symbol.isConcatSpreadable" A Boolean valued property that if true indicates that an object should be flattened to its array elements byArray.prototype.concat.
@@iterator"Symbol.iterator" A method that returns the default Iterator for an object. Called by the semantics of the for-of statement.
@@match"Symbol.match" A regular expression method that matches the regular expression against a string. Called by theString.prototype.match method.
@@matchAll"Symbol.matchAll" A regular expression method that returns an iterator, that yields matches of the regular expression against a string. Called by theString.prototype.matchAll method.
@@replace"Symbol.replace" A regular expression method that replaces matched substrings of a string. Called by theString.prototype.replace method.
@@search"Symbol.search" A regular expression method that returns the index within a string that matches the regular expression. Called by theString.prototype.search method.
@@species"Symbol.species" A function valued property that is theconstructor function that is used to create derived objects.
@@split"Symbol.split" A regular expression method that splits a string at the indices that match the regular expression. Called by theString.prototype.split method.
@@toPrimitive"Symbol.toPrimitive" A method that converts an object to a corresponding primitive value. Called by theToPrimitive abstract operation.
@@toStringTag"Symbol.toStringTag" A String valued property that is used in the creation of the default string description of an object. Accessed by the built-in methodObject.prototype.toString.
@@unscopables"Symbol.unscopables" An object valued property whose own and inherited property names are property names that are excluded from thewith environment bindings of the associated object.

6.1.6 Numeric Types

ECMAScript has two built-in numeric types: Number and BigInt. In this specification, every numeric typeT contains a multiplicative identity value denotedT::unit. The specification types also have the followingabstract operations, likewise denotedT::op for a given operation with specification nameop. All argument types areT. The "Result" column shows the return type, along with an indication if it is possible for some invocations of the operation to return anabrupt completion.

Table 2: Numeric Type Operations
Invocation Synopsis Example source Invoked by the Evaluation semantics of ... Result
T::unaryMinus(x)-xUnary- OperatorT
T::bitwiseNOT(x)~xBitwise NOT Operator (~ )T
T::exponentiate(x, y)x ** yExponentiation Operator andMath.pow (base,exponent )T, may throwRangeError
T::multiply(x, y)x * yMultiplicative OperatorsT
T::divide(x, y)x / yMultiplicative OperatorsT, may throwRangeError
T::remainder(x, y)x % yMultiplicative OperatorsT, may throwRangeError
T::add(x, y)x ++
++ x
x + y
Postfix Increment Operator,Prefix Increment Operator, andThe Addition Operator (+ )T
T::subtract(x, y)x --
-- x
x - y
Postfix Decrement Operator,Prefix Decrement Operator, andThe Subtraction Operator (- )T
T::leftShift(x, y)x << yThe Left Shift Operator (<< )T
T::signedRightShift(x, y)x >> yThe Signed Right Shift Operator (>> )T
T::unsignedRightShift(x, y)x >>> yThe Unsigned Right Shift Operator (>>> )T, may throwTypeError
T::lessThan(x, y)x < y
x > y
x <= y
x >= y
Relational Operators, viaAbstract Relational Comparison Boolean orundefined (for unordered inputs)
T::equal(x, y)x == y
x != y
x === y
x !== y
Equality Operators, viaStrict Equality Comparison Boolean
T::sameValue(x, y) Object internal methods, viaSameValue (x,y ), to test exact value equality Boolean
T::sameValueZero(x, y) Array, Map, and Set methods, viaSameValueZero (x,y ), to test value equality ignoring differences among members of the zero cohort (i.e.,-0𝔽 and+0𝔽) Boolean
T::bitwiseAND(x, y)x & yBinary Bitwise OperatorsT
T::bitwiseXOR(x, y)x ^ yBinary Bitwise OperatorsT
T::bitwiseOR(x, y)x | yBinary Bitwise OperatorsT
T::toString(x)String(x) Many expressions and built-in functions, viaToString (argument ) String

TheT::unit value andT::op operations are not a part of the ECMAScript language; they are defined here solely to aid the specification of the semantics of the ECMAScript language. Otherabstract operations are defined throughout this specification.

Because the numeric types are in general not convertible without loss of precision or truncation, the ECMAScript language provides no implicit conversion among these types. Programmers must explicitly callNumber andBigInt functions to convert among types when calling a function which requires another type.

Note

The first and subsequent editions of ECMAScript have provided, for certain operators, implicit numeric conversions that could lose precision or truncate. These legacy implicit conversions are maintained for backward compatibility, but not provided for BigInt in order to minimize opportunity for programmer error, and to leave open the option of generalizedvalue types in a future edition.

6.1.6.1 The Number Type

The Number type has exactly 18,437,736,874,454,810,627 (that is,264 - 253 + 3) values, representing the double-precision 64-bit formatIEEE 754-2019 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that the 9,007,199,254,740,990 (that is,253 - 2) distinct “Not-a-Number” values of the IEEE Standard are represented in ECMAScript as a single specialNaN value. (Note that theNaN value is produced by the program expressionNaN.) In some implementations, external code might be able to detect a difference between various Not-a-Number values, but such behaviour isimplementation-defined; to ECMAScript code, allNaN values are indistinguishable from each other.

Note

The bit pattern that might be observed in an ArrayBuffer (see25.1) or a SharedArrayBuffer (see25.2) after aNumber value has been stored into it is not necessarily the same as the internal representation of thatNumber value used by the ECMAScript implementation.

There are two other special values, calledpositive Infinity andnegative Infinity. For brevity, these values are also referred to for expository purposes by the symbols+∞𝔽 and-∞𝔽, respectively. (Note that these two infinite Number values are produced by the program expressions+Infinity (or simplyInfinity) and-Infinity.)

The other 18,437,736,874,454,810,624 (that is,264 - 253) values are called the finite numbers. Half of these are positive numbers and half are negative numbers; for every finite positiveNumber value there is a corresponding negative value having the same magnitude.

Note that there is both apositive zero and anegative zero. For brevity, these values are also referred to for expository purposes by the symbols+0𝔽 and-0𝔽, respectively. (Note that these two different zero Number values are produced by the program expressions+0 (or simply0) and-0.)

The 18,437,736,874,454,810,622 (that is,264 - 253 - 2) finite non-zero values are of two kinds:

18,428,729,675,200,069,632 (that is,264 - 254) of them are normalized, having the form

s ×m × 2e

wheres is 1 or -1,m is aninteger such that 252m < 253, ande is aninteger such that -1074 ≤e ≤ 971.

The remaining 9,007,199,254,740,990 (that is,253 - 2) values are denormalized, having the form

s ×m × 2e

wheres is 1 or -1,m is aninteger such that 0 <m < 252, ande is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in the Number type. Theinteger 0 has two representations in the Number type:+0𝔽 and-0𝔽.

A finite number has anodd significand if it is non-zero and theintegerm used to express it (in one of the two forms shown above) is odd. Otherwise, it has aneven significand.

In this specification, the phrase “theNumber value forx” wherex represents an exact real mathematical quantity (which might even be an irrational number such as π) means aNumber value chosen in the following manner. Consider the set of all finite values of the Number type, with-0𝔽 removed and with two additional values added to it that are not representable in the Number type, namely 21024 (which is+1 × 253 × 2971) and-21024 (which is-1 × 253 × 2971). Choose the member of this set that is closest in value tox. If two values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two extra values 21024 and-21024 are considered to have even significands. Finally, if 21024 was chosen, replace it with+∞𝔽; if-21024 was chosen, replace it with-∞𝔽; if+0𝔽 was chosen, replace it with-0𝔽 if and only ifx < 0; any other chosen value is used unchanged. The result is theNumber value forx. (This procedure corresponds exactly to the behaviour of theIEEE 754-2019 roundTiesToEven mode.)

TheNumber value for +∞ is+∞𝔽, and theNumber value for -∞ is-∞𝔽.

Some ECMAScript operators deal only with integers in specific ranges such as-231 through231 - 1, inclusive, or in the range 0 through216 - 1, inclusive. These operators accept any value of the Number type but first convert each such value to aninteger value in the expected range. See the descriptions of the numeric conversion operations in7.1.

The Number::unit value is1𝔽.

6.1.6.1.1 Number::unaryMinus (x )

The abstract operation Number::unaryMinus takes argumentx (a Number). It performs the following steps when called:

  1. Ifx isNaN, returnNaN.
  2. Return the result of negatingx; that is, compute a Number with the same magnitude but opposite sign.

6.1.6.1.2 Number::bitwiseNOT (x )

The abstract operation Number::bitwiseNOT takes argumentx (a Number). It performs the following steps when called:

  1. LetoldValue be ! ToInt32(x).
  2. Return the result of applying bitwise complement tooldValue. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.3 Number::exponentiate (base,exponent )

The abstract operation Number::exponentiate takes argumentsbase (a Number) andexponent (a Number). It returns animplementation-approximated value representing the result of raisingbase to theexponent power. It performs the following steps when called:

  1. Ifexponent isNaN, returnNaN.
  2. Ifexponent is+0𝔽 orexponent is-0𝔽, return1𝔽.
  3. Ifbase isNaN, returnNaN.
  4. Ifbase is+∞𝔽, then
    1. Ifexponent >+0𝔽, return+∞𝔽. Otherwise, return+0𝔽.
  5. Ifbase is-∞𝔽, then
    1. Ifexponent >+0𝔽, then
      1. Ifexponent is an oddintegral Number, return-∞𝔽. Otherwise, return+∞𝔽.
    2. Else,
      1. Ifexponent is an oddintegral Number, return-0𝔽. Otherwise, return+0𝔽.
  6. Ifbase is+0𝔽, then
    1. Ifexponent >+0𝔽, return+0𝔽. Otherwise, return+∞𝔽.
  7. Ifbase is-0𝔽, then
    1. Ifexponent >+0𝔽, then
      1. Ifexponent is an oddintegral Number, return-0𝔽. Otherwise, return+0𝔽.
    2. Else,
      1. Ifexponent is an oddintegral Number, return-∞𝔽. Otherwise, return+∞𝔽.
  8. Assert:base is finite and is neither+0𝔽 nor-0𝔽.
  9. Ifexponent is+∞𝔽, then
    1. Ifabs((base)) > 1, return+∞𝔽.
    2. Ifabs((base)) is 1, returnNaN.
    3. Ifabs((base)) < 1, return+0𝔽.
  10. Ifexponent is-∞𝔽, then
    1. Ifabs((base)) > 1, return+0𝔽.
    2. Ifabs((base)) is 1, returnNaN.
    3. Ifabs((base)) < 1, return+∞𝔽.
  11. Assert:exponent is finite and is neither+0𝔽 nor-0𝔽.
  12. Ifbase <+0𝔽 andexponent is not anintegral Number, returnNaN.
  13. Return animplementation-approximated value representing the result of raising(base) to the(exponent) power.
Note

The result ofbase**exponent whenbase is1𝔽 or-1𝔽 andexponent is+∞𝔽 or-∞𝔽, or whenbase is1𝔽 andexponent isNaN, differs fromIEEE 754-2019. The first edition of ECMAScript specified a result ofNaN for this operation, whereas later versions ofIEEE 754-2019 specified1𝔽. The historical ECMAScript behaviour is preserved for compatibility reasons.

6.1.6.1.4 Number::multiply (x,y )

The abstract operation Number::multiply takes argumentsx (a Number) andy (a Number). It performs multiplication according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the product ofx andy. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is+∞𝔽 orx is-∞𝔽, then
    1. Ify is+0𝔽 ory is-0𝔽, returnNaN.
    2. Ify >+0𝔽, returnx.
    3. Return -x.
  3. Ify is+∞𝔽 ory is-∞𝔽, then
    1. Ifx is+0𝔽 orx is-0𝔽, returnNaN.
    2. Ifx >+0𝔽, returny.
    3. Return -y.
  4. Return𝔽((x) ×(y)).
Note

Finite-precision multiplication is commutative, but not always associative.

6.1.6.1.5 Number::divide (x,y )

The abstract operation Number::divide takes argumentsx (a Number) andy (a Number). It performs division according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the quotient ofx andy wherex is the dividend andy is the divisor. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is+∞𝔽 orx is-∞𝔽, then
    1. Ify is+∞𝔽 ory is-∞𝔽, returnNaN.
    2. Ify is+0𝔽 ory >+0𝔽, returnx.
    3. Return -x.
  3. Ify is+∞𝔽, then
    1. Ifx is+0𝔽 orx >+0𝔽, return+0𝔽. Otherwise, return-0𝔽.
  4. Ify is-∞𝔽, then
    1. Ifx is+0𝔽 orx >+0𝔽, return-0𝔽. Otherwise, return+0𝔽.
  5. Ifx is+0𝔽 orx is-0𝔽, then
    1. Ify is+0𝔽 ory is-0𝔽, returnNaN.
    2. Ify >+0𝔽, returnx.
    3. Return -x.
  6. Ify is+0𝔽, then
    1. Ifx >+0𝔽, return+∞𝔽. Otherwise, return-∞𝔽.
  7. Ify is-0𝔽, then
    1. Ifx >+0𝔽, return-∞𝔽. Otherwise, return+∞𝔽.
  8. Return𝔽((x) /(y)).

6.1.6.1.6 Number::remainder (n,d )

The abstract operation Number::remainder takes argumentsn (a Number) andd (a Number). It yields the remainder from an implied division of its operands wheren is the dividend andd is the divisor. It performs the following steps when called:

  1. Ifn isNaN ord isNaN, returnNaN.
  2. Ifn is+∞𝔽 orn is-∞𝔽, returnNaN.
  3. Ifd is+∞𝔽 ord is-∞𝔽, returnn.
  4. Ifd is+0𝔽 ord is-0𝔽, returnNaN.
  5. Ifn is+0𝔽 orn is-0𝔽, returnn.
  6. Assert:n andd are finite and non-zero.
  7. Letr be(n) - ((d) ×q) whereq is aninteger that is negative if and only ifn andd have opposite sign, and whose magnitude is as large as possible without exceeding the magnitude of(n) /(d).
  8. Return𝔽(r).
Note 1

In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-point operands.

Note 2
The result of a floating-point remainder operation as computed by the% operator is not the same as the “remainder” operation defined byIEEE 754-2019. TheIEEE 754-2019 “remainder” operation computes the remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usualinteger remainder operator. Instead the ECMAScript language defines% on floating-point operations to behave in a manner analogous to that of the Javainteger remainder operator; this may be compared with the C library function fmod.

6.1.6.1.7 Number::add (x,y )

The abstract operation Number::add takes argumentsx (a Number) andy (a Number). It performs addition according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the sum of its arguments. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is+∞𝔽 andy is-∞𝔽, returnNaN.
  3. Ifx is-∞𝔽 andy is+∞𝔽, returnNaN.
  4. Ifx is+∞𝔽 orx is-∞𝔽, returnx.
  5. Ify is+∞𝔽 ory is-∞𝔽, returny.
  6. Assert:x andy are both finite.
  7. Ifx is-0𝔽 andy is-0𝔽, return-0𝔽.
  8. Return𝔽((x) +(y)).
Note

Finite-precision addition is commutative, but not always associative.

6.1.6.1.8 Number::subtract (x,y )

The abstract operation Number::subtract takes argumentsx (a Number) andy (a Number). It performs subtraction, producing the difference of its operands;x is the minuend andy is the subtrahend. It performs the following steps when called:

  1. Return Number::add(x, Number::unaryMinus(y)).
Note

It is always the case thatx - y produces the same result asx + (-y).

6.1.6.1.9 Number::leftShift (x,y )

The abstract operation Number::leftShift takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Letlnum be ! ToInt32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of left shiftinglnum byshiftCount bits. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.10 Number::signedRightShift (x,y )

The abstract operation Number::signedRightShift takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Letlnum be ! ToInt32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of performing a sign-extending right shift oflnum byshiftCount bits. The most significant bit is propagated. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.11 Number::unsignedRightShift (x,y )

The abstract operation Number::unsignedRightShift takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Letlnum be ! ToUint32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of performing a zero-filling right shift oflnum byshiftCount bits. Vacated bits are filled with zero. Themathematical value of the result is exactly representable as a 32-bit unsigned bit string.

6.1.6.1.12 Number::lessThan (x,y )

The abstract operation Number::lessThan takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Ifx isNaN, returnundefined.
  2. Ify isNaN, returnundefined.
  3. Ifx andy are the sameNumber value, returnfalse.
  4. Ifx is+0𝔽 andy is-0𝔽, returnfalse.
  5. Ifx is-0𝔽 andy is+0𝔽, returnfalse.
  6. Ifx is+∞𝔽, returnfalse.
  7. Ify is+∞𝔽, returntrue.
  8. Ify is-∞𝔽, returnfalse.
  9. Ifx is-∞𝔽, returntrue.
  10. Assert:x andy are finite and non-zero.
  11. If(x) <(y), returntrue. Otherwise, returnfalse.

6.1.6.1.13 Number::equal (x,y )

The abstract operation Number::equal takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Ifx isNaN, returnfalse.
  2. Ify isNaN, returnfalse.
  3. Ifx is the sameNumber value asy, returntrue.
  4. Ifx is+0𝔽 andy is-0𝔽, returntrue.
  5. Ifx is-0𝔽 andy is+0𝔽, returntrue.
  6. Returnfalse.

6.1.6.1.14 Number::sameValue (x,y )

The abstract operation Number::sameValue takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Ifx isNaN andy isNaN, returntrue.
  2. Ifx is+0𝔽 andy is-0𝔽, returnfalse.
  3. Ifx is-0𝔽 andy is+0𝔽, returnfalse.
  4. Ifx is the sameNumber value asy, returntrue.
  5. Returnfalse.

6.1.6.1.15 Number::sameValueZero (x,y )

The abstract operation Number::sameValueZero takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. Ifx isNaN andy isNaN, returntrue.
  2. Ifx is+0𝔽 andy is-0𝔽, returntrue.
  3. Ifx is-0𝔽 andy is+0𝔽, returntrue.
  4. Ifx is the sameNumber value asy, returntrue.
  5. Returnfalse.

6.1.6.1.16 NumberBitwiseOp (op,x,y )

The abstract operation NumberBitwiseOp takes argumentsop (a sequence of Unicode code points),x, andy. It performs the following steps when called:

  1. Assert:op is&,^, or|.
  2. Letlnum be ! ToInt32(x).
  3. Letrnum be ! ToInt32(y).
  4. Letlbits be the 32-bit two's complement bit string representing(lnum).
  5. Letrbits be the 32-bit two's complement bit string representing(rnum).
  6. Ifop is&, letresult be the result of applying the bitwise AND operation tolbits andrbits.
  7. Else ifop is^, letresult be the result of applying the bitwise exclusive OR (XOR) operation tolbits andrbits.
  8. Else,op is|. Letresult be the result of applying the bitwise inclusive OR operation tolbits andrbits.
  9. Return theNumber value for theinteger represented by the 32-bit two's complement bit stringresult.

6.1.6.1.17 Number::bitwiseAND (x,y )

The abstract operation Number::bitwiseAND takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. ReturnNumberBitwiseOp(&,x,y).

6.1.6.1.18 Number::bitwiseXOR (x,y )

The abstract operation Number::bitwiseXOR takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. ReturnNumberBitwiseOp(^,x,y).

6.1.6.1.19 Number::bitwiseOR (x,y )

The abstract operation Number::bitwiseOR takes argumentsx (a Number) andy (a Number). It performs the following steps when called:

  1. ReturnNumberBitwiseOp(|,x,y).

6.1.6.1.20 Number::toString (x )

The abstract operation Number::toString takes argumentx (a Number). It convertsx to String format. It performs the following steps when called:

  1. Ifx isNaN, return the String"NaN".
  2. Ifx is+0𝔽 or-0𝔽, return the String"0".
  3. Ifx <+0𝔽, return thestring-concatenation of"-" and !Number::toString(-x).
  4. Ifx is+∞𝔽, return the String"Infinity".
  5. Otherwise, letn,k, ands be integers such thatk ≥ 1, 10k - 1s < 10k,s × 10n -k is(x), andk is as small as possible. Note thatk is the number of digits in the decimal representation ofs, thats is not divisible by 10, and that the least significant digit ofs is not necessarily uniquely determined by these criteria.
  6. Ifkn ≤ 21, return thestring-concatenation of:
    • the code units of thek digits of the decimal representation ofs (in order, with no leading zeroes)
    • n -k occurrences of the code unit 0x0030 (DIGIT ZERO)
  7. If 0 <n ≤ 21, return thestring-concatenation of:
    • the code units of the most significantn digits of the decimal representation ofs
    • the code unit 0x002E (FULL STOP)
    • the code units of the remainingk -n digits of the decimal representation ofs
  8. If -6 <n ≤ 0, return thestring-concatenation of:
    • the code unit 0x0030 (DIGIT ZERO)
    • the code unit 0x002E (FULL STOP)
    • -n occurrences of the code unit 0x0030 (DIGIT ZERO)
    • the code units of thek digits of the decimal representation ofs
  9. Otherwise, ifk = 1, return thestring-concatenation of:
    • the code unit of the single digit ofs
    • the code unit 0x0065 (LATIN SMALL LETTER E)
    • the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whethern - 1 is positive or negative
    • the code units of the decimal representation of theintegerabs(n - 1) (with no leading zeroes)
  10. Return thestring-concatenation of:
    • the code units of the most significant digit of the decimal representation ofs
    • the code unit 0x002E (FULL STOP)
    • the code units of the remainingk - 1 digits of the decimal representation ofs
    • the code unit 0x0065 (LATIN SMALL LETTER E)
    • the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whethern - 1 is positive or negative
    • the code units of the decimal representation of theintegerabs(n - 1) (with no leading zeroes)
Note 1

The following observations may be useful as guidelines for implementations, but are not part of the normative requirements of this Standard:

  • If x is anyNumber value other than-0𝔽, thenToNumber(ToString(x)) is exactly the sameNumber value as x.
  • The least significant digit of s is not always uniquely determined by the requirements listed in step5.
Note 2

For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step5 be used as a guideline:

  1. Otherwise, letn,k, ands be integers such thatk ≥ 1, 10k - 1s < 10k,s × 10n -k is(x), andk is as small as possible. If there are multiple possibilities fors, choose the value ofs for whichs × 10n -k is closest in value to(x). If there are two such possible values ofs, choose the one that is even. Note thatk is the number of digits in the decimal representation ofs and thats is not divisible by 10.
Note 3

Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis, Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). 30 November 1990. Available as
http://ampl.com/REFS/abstracts.html#rounding. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the variousnetlib mirror sites.

6.1.6.2 The BigInt Type

The BigInt type represents aninteger value. The value may be any size and is not limited to a particular bit-width. Generally, where not otherwise noted, operations are designed to return exact mathematically-based answers. For binary operations, BigInts act as two's complement binary strings, with negative numbers treated as having bits set infinitely to the left.

The BigInt::unit value is1.

6.1.6.2.1 BigInt::unaryMinus (x )

The abstract operation BigInt::unaryMinus takes argumentx (a BigInt). It performs the following steps when called:

  1. Ifx is0, return0.
  2. Return the BigInt value that represents the negation of(x).

6.1.6.2.2 BigInt::bitwiseNOT (x )

The abstract operation BigInt::bitwiseNOT takes argumentx (a BigInt). It returns the one's complement ofx; that is, -x -1.

6.1.6.2.3 BigInt::exponentiate (base,exponent )

The abstract operation BigInt::exponentiate takes argumentsbase (a BigInt) andexponent (a BigInt). It performs the following steps when called:

  1. Ifexponent <0, throw aRangeError exception.
  2. Ifbase is0 andexponent is0, return1.
  3. Return the BigInt value that represents(base) raised to the power(exponent).

6.1.6.2.4 BigInt::multiply (x,y )

The abstract operation BigInt::multiply takes argumentsx (a BigInt) andy (a BigInt). It returns the BigInt value that represents the result of multiplyingx andy.

Note
Even if the result has a much larger bit width than the input, the exact mathematical answer is given.

6.1.6.2.5 BigInt::divide (x,y )

The abstract operation BigInt::divide takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Ify is0, throw aRangeError exception.
  2. Letquotient be(x) /(y).
  3. Return the BigInt value that representsquotient rounded towards 0 to the nextinteger value.

6.1.6.2.6 BigInt::remainder (n,d )

The abstract operation BigInt::remainder takes argumentsn (a BigInt) andd (a BigInt). It performs the following steps when called:

  1. Ifd is0, throw aRangeError exception.
  2. Ifn is0, return0.
  3. Letr be the BigInt defined by the mathematical relationr =n - (d ×q) whereq is a BigInt that is negative only ifn/d is negative and positive only ifn/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient ofn andd.
  4. Returnr.
Note
The sign of the result equals the sign of the dividend.

6.1.6.2.7 BigInt::add (x,y )

The abstract operation BigInt::add takes argumentsx (a BigInt) andy (a BigInt). It returns the BigInt value that represents the sum ofx andy.

6.1.6.2.8 BigInt::subtract (x,y )

The abstract operation BigInt::subtract takes argumentsx (a BigInt) andy (a BigInt). It returns the BigInt value that represents the differencex minusy.

6.1.6.2.9 BigInt::leftShift (x,y )

The abstract operation BigInt::leftShift takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Ify <0, then
    1. Return the BigInt value that represents(x) / 2-y, rounding down to the nearestinteger, including for negative numbers.
  2. Return the BigInt value that represents(x) × 2y.
Note
Semantics here should be equivalent to a bitwise shift, treating the BigInt as an infinite length string of binary two's complement digits.

6.1.6.2.10 BigInt::signedRightShift (x,y )

The abstract operation BigInt::signedRightShift takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Return BigInt::leftShift(x, -y).

6.1.6.2.11 BigInt::unsignedRightShift (x,y )

The abstract operation BigInt::unsignedRightShift takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Throw aTypeError exception.

6.1.6.2.12 BigInt::lessThan (x,y )

The abstract operation BigInt::lessThan takes argumentsx (a BigInt) andy (a BigInt). It returnstrue if(x) <(y) andfalse otherwise.

6.1.6.2.13 BigInt::equal (x,y )

The abstract operation BigInt::equal takes argumentsx (a BigInt) andy (a BigInt). It returnstrue if(x) =(y) andfalse otherwise.

6.1.6.2.14 BigInt::sameValue (x,y )

The abstract operation BigInt::sameValue takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Return BigInt::equal(x,y).

6.1.6.2.15 BigInt::sameValueZero (x,y )

The abstract operation BigInt::sameValueZero takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. Return BigInt::equal(x,y).

6.1.6.2.16 BinaryAnd (x,y )

The abstract operation BinaryAnd takes argumentsx andy. It performs the following steps when called:

  1. Assert:x is 0 or 1.
  2. Assert:y is 0 or 1.
  3. Ifx is 1 andy is 1, return 1.
  4. Else, return 0.

6.1.6.2.17 BinaryOr (x,y )

The abstract operation BinaryOr takes argumentsx andy. It performs the following steps when called:

  1. Assert:x is 0 or 1.
  2. Assert:y is 0 or 1.
  3. Ifx is 1 ory is 1, return 1.
  4. Else, return 0.

6.1.6.2.18 BinaryXor (x,y )

The abstract operation BinaryXor takes argumentsx andy. It performs the following steps when called:

  1. Assert:x is 0 or 1.
  2. Assert:y is 0 or 1.
  3. Ifx is 1 andy is 0, return 1.
  4. Else ifx is 0 andy is 1, return 1.
  5. Else, return 0.

6.1.6.2.19 BigIntBitwiseOp (op,x,y )

The abstract operation BigIntBitwiseOp takes argumentsop (a sequence of Unicode code points),x (a BigInt), andy (a BigInt). It performs the following steps when called:

  1. Assert:op is&,^, or|.
  2. Setx to(x).
  3. Sety to(y).
  4. Letresult be 0.
  5. Letshift be 0.
  6. Repeat, until (x = 0 orx = -1) and (y = 0 ory = -1),
    1. LetxDigit bexmodulo 2.
    2. LetyDigit beymodulo 2.
    3. Ifop is&, setresult toresult + 2shift ×BinaryAnd(xDigit,yDigit).
    4. Else ifop is|, setresult toresult + 2shift ×BinaryOr(xDigit,yDigit).
    5. Else,
      1. Assert:op is^.
      2. Setresult toresult + 2shift ×BinaryXor(xDigit,yDigit).
    6. Setshift toshift + 1.
    7. Setx to (x -xDigit) / 2.
    8. Sety to (y -yDigit) / 2.
  7. Ifop is&, lettmp beBinaryAnd(xmodulo 2,ymodulo 2).
  8. Else ifop is|, lettmp beBinaryOr(xmodulo 2,ymodulo 2).
  9. Else,
    1. Assert:op is^.
    2. Lettmp beBinaryXor(xmodulo 2,ymodulo 2).
  10. Iftmp ≠ 0, then
    1. Setresult toresult - 2shift.
    2. NOTE: This extends the sign.
  11. Return the BigInt value forresult.

6.1.6.2.20 BigInt::bitwiseAND (x,y )

The abstract operation BigInt::bitwiseAND takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(&,x,y).

6.1.6.2.21 BigInt::bitwiseXOR (x,y )

The abstract operation BigInt::bitwiseXOR takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(^,x,y).

6.1.6.2.22 BigInt::bitwiseOR (x,y )

The abstract operation BigInt::bitwiseOR takes argumentsx (a BigInt) andy (a BigInt). It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(|,x,y).

6.1.6.2.23 BigInt::toString (x )

The abstract operation BigInt::toString takes argumentx (a BigInt). It convertsx to String format. It performs the following steps when called:

  1. Ifx <0, return thestring-concatenation of the String"-" and !BigInt::toString(-x).
  2. Return the String value consisting of the code units of the digits of the decimal representation ofx.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

  • Adata property associates a key value with anECMAScript language value and a set of Boolean attributes.
  • Anaccessor property associates a key value with one or two accessor functions, and a set of Boolean attributes. The accessor functions are used to store or retrieve anECMAScript language value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a Symbol value. All String and Symbol values, including the empty String, are valid as property keys. Aproperty name is a property key that is a String value.

Aninteger index is a String-valued property key that is a canonical numeric String (see7.1.21) and whose numeric value is either+0𝔽 or a positiveintegral Number𝔽(253 - 1). Anarray index is aninteger index whose numeric valuei is in the range+0𝔽i <𝔽(232 - 1).

Property keys are used to access properties and their values. There are two kinds of access for properties:get andset, corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes bothown properties that are a direct part of an object andinherited properties which are provided by another associated object via a property inheritance relationship. Inherited properties may be either own or inherited properties of the associated object. Each own property of an object must each have a key value that is distinct from the key values of the other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics for accessing and manipulating their properties. Please see6.1.7.2 for definitions of the multiple forms of objects.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. Adata property associates a key value with the attributes listed inTable 3.

Table 3: Attributes of a Data Property
Attribute Name Value Domain Description
[[Value]] AnyECMAScript language type The value retrieved by a get access of the property.
[[Writable]] Boolean Iffalse, attempts by ECMAScript code to change the property's [[Value]] attribute using [[Set]] will not succeed.
[[Enumerable]] Boolean Iftrue, the property will be enumerated by a for-in enumeration (see14.7.5). Otherwise, the property is said to be non-enumerable.
[[Configurable]] Boolean Iffalse, attempts to delete the property, change the property to be anaccessor property, or change its attributes (other than [[Value]], or changing [[Writable]] tofalse) will fail.

Anaccessor property associates a key value with the attributes listed inTable 4.

Table 4: Attributes of an Accessor Property
Attribute Name Value Domain Description
[[Get]] Object | Undefined If the value is an Object it must be afunction object. The function's [[Call]] internal method (Table 7) is called with an empty arguments list to retrieve the property value each time a get access of the property is performed.
[[Set]] Object | Undefined If the value is an Object it must be afunction object. The function's [[Call]] internal method (Table 7) is called with an arguments list containing the assigned value as its sole argument each time a set access of the property is performed. The effect of a property's [[Set]] internal method may, but is not required to, have an effect on the value returned by subsequent calls to the property's [[Get]] internal method.
[[Enumerable]] Boolean Iftrue, the property is to be enumerated by a for-in enumeration (see14.7.5). Otherwise, the property is said to be non-enumerable.
[[Configurable]] Boolean Iffalse, attempts to delete the property, change the property to be adata property, or change its attributes will fail.

If the initial values of a property's attributes are not explicitly specified by this specification, the default value defined inTable 5 is used.

Table 5: Default Attribute Values
Attribute Name Default Value
[[Value]]undefined
[[Get]]undefined
[[Set]]undefined
[[Writable]]false
[[Enumerable]]false
[[Configurable]]false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms calledinternal methods. Each object in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal methods are not part of the ECMAScript language. They are defined by this specification purely for expository purposes. However, each object within an implementation of ECMAScript must behave as specified by the internal methods associated with it. The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms when a common internal method name is invoked upon them. That actual object upon which an internal method is invoked is the “target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an internal method of an object that the object does not support, aTypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon the specific internal slot specification, such state may consist of values of anyECMAScript language type or of specific ECMAScript specification type values. Unless explicitly specified otherwise, internal slots are allocated as part of the process of creating an object and may not be dynamically added to an object. Unless specified otherwise, the initial value of an internal slot is the valueundefined. Various algorithms within this specification create objects that have internal slots. However, the ECMAScript language provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double square brackets [[ ]].

Table 6 summarizes theessential internal methods used by this specification that are applicable to all objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods. However, all objects do not necessarily use the same algorithms for those methods.

Anordinary object is an object that satisfies all of the following criteria:

  • For the internal methods listed inTable 6, the object uses those defined in10.1.
  • If the object has a [[Call]] internal method, it uses the one defined in10.2.1.
  • If the object has a [[Construct]] internal method, it uses the one defined in10.2.2.

Anexotic object is an object that is not anordinary object.

This specification recognizes different kinds of exotic objects by those objects' internal methods. An object that is behaviourally equivalent to a particular kind ofexotic object (such as anArray exotic object or abound function exotic object), but does not have the same collection of internal methods specified for that kind, is not recognized as that kind ofexotic object.

The “Signature” column ofTable 6 and other similar tables describes the invocation pattern for each internal method. The invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is the same as an ECMAScript type name then the name describes the required type of the parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol “→” and the type name of the returned value. The type names used in signatures refer to the types defined in clause6 augmented by the following additional names. “any” means the value may be anyECMAScript language type.

In addition to its parameters, an internal method always has access to the object that is the target of the method invocation.

An internal method implicitly returns aCompletion Record, either a normal completion that wraps a value of the return type shown in its invocation pattern, or a throw completion.

Table 6: Essential Internal Methods
Internal Method Signature Description
[[GetPrototypeOf]] ( ) Object | Null Determine the object that provides inherited properties for this object. Anull value indicates that there are no inherited properties.
[[SetPrototypeOf]] (Object | Null) Boolean Associate this object with another object that provides inherited properties. Passingnull indicates that there are no inherited properties. Returnstrue indicating that the operation was completed successfully orfalse indicating that the operation was not successful.
[[IsExtensible]] ( ) Boolean Determine whether it is permitted to add additional properties to this object.
[[PreventExtensions]] ( ) Boolean Control whether new properties may be added to this object. Returnstrue if the operation was successful orfalse if the operation was unsuccessful.
[[GetOwnProperty]] (propertyKey) Undefined |Property Descriptor Return aProperty Descriptor for the own property of this object whose key ispropertyKey, orundefined if no such property exists.
[[DefineOwnProperty]] (propertyKey,PropertyDescriptor) Boolean Create or alter the own property, whose key ispropertyKey, to have the state described byPropertyDescriptor. Returntrue if that property was successfully created/updated orfalse if the property could not be created or updated.
[[HasProperty]] (propertyKey) Boolean Return a Boolean value indicating whether this object already has either an own or inherited property whose key ispropertyKey.
[[Get]] (propertyKey,Receiver)any Return the value of the property whose key ispropertyKey from this object. If any ECMAScript code must be executed to retrieve the property value,Receiver is used as thethis value when evaluating the code.
[[Set]] (propertyKey,value,Receiver) Boolean Set the value of the property whose key ispropertyKey tovalue. If any ECMAScript code must be executed to set the property value,Receiver is used as thethis value when evaluating the code. Returnstrue if the property value was set orfalse if it could not be set.
[[Delete]] (propertyKey) Boolean Remove the own property whose key ispropertyKey from this object. Returnfalse if the property was not deleted and is still present. Returntrue if the property was deleted or is not present.
[[OwnPropertyKeys]] ( )List of propertyKey Return aList whose elements are all of the own property keys for the object.

Table 7 summarizes additional essential internal methods that are supported by objects that may be called as functions. Afunction object is an object that supports the [[Call]] internal method. Aconstructor is an object that supports the [[Construct]] internal method. Every object that supports [[Construct]] must support [[Call]]; that is, everyconstructor must be afunction object. Therefore, aconstructor may also be referred to as aconstructor function orconstructorfunction object.

Table 7: Additional Essential Internal Methods of Function Objects
Internal Method Signature Description
[[Call]] (any, aList ofany)any Executes code associated with this object. Invoked via a function call expression. The arguments to the internal method are athis value and aList whose elements are the arguments passed to the function by a call expression. Objects that implement this internal method arecallable.
[[Construct]] (aList ofany, Object) Object Creates an object. Invoked via thenew operator or asuper call. The first argument to the internal method is aList whose elements are the arguments of theconstructor invocation or thesuper call. The second argument is the object to which thenew operator was initially applied. Objects that implement this internal method are calledconstructors. Afunction object is not necessarily aconstructor and such non-constructor function objects do not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in clause10. If any specified use of an internal method of anexotic object is not supported by an implementation, that usage must throw aTypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below. Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of these invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However, violation of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing alternative interfaces that implement the functionality of the essential internal methods without enforcing their invariants.

Definitions:

  • Thetarget of an internal method is the object upon which the internal method is called.
  • A target isnon-extensible if it has been observed to returnfalse from its [[IsExtensible]] internal method, ortrue from its [[PreventExtensions]] internal method.
  • Anon-existent property is a property that does not exist as an own property on a non-extensible target.
  • All references toSameValue are according to the definition of theSameValue algorithm.

Return value:

The value returned by any internal method must be aCompletion Record with either:

  • [[Type]] =normal, [[Target]] =empty, and [[Value]] = a value of the "normal return type" shown below for that internal method, or
  • [[Type]] =throw, [[Target]] =empty, and [[Value]] = anyECMAScript language value.
Note 1

An internal method must not return a completion with [[Type]] =continue,break, orreturn.

[[GetPrototypeOf]] ( )

  • The normal return type is either Object or Null.
  • If target is non-extensible, and [[GetPrototypeOf]] returns a valueV, then any future calls to [[GetPrototypeOf]] should return theSameValue asV.
Note 2

An object's prototype chain should have finite length (that is, starting from any object, recursively applying the [[GetPrototypeOf]] internal method to its result should eventually lead to the valuenull). However, this requirement is not enforceable as an object level invariant if the prototype chain includes any exotic objects that do not use theordinary object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when accessing object properties.

[[SetPrototypeOf]] (V )

  • The normal return type is Boolean.
  • If target is non-extensible, [[SetPrototypeOf]] must returnfalse, unlessV is theSameValue as the target's observed [[GetPrototypeOf]] value.

[[IsExtensible]] ( )

  • The normal return type is Boolean.
  • If [[IsExtensible]] returnsfalse, all future calls to [[IsExtensible]] on the target must returnfalse.

[[PreventExtensions]] ( )

  • The normal return type is Boolean.
  • If [[PreventExtensions]] returnstrue, all future calls to [[IsExtensible]] on the target must returnfalse and the target is now considered non-extensible.

[[GetOwnProperty]] (P )

  • The normal return type is eitherProperty Descriptor or Undefined.
  • If the Type of the return value isProperty Descriptor, the return value must be a fully populatedProperty Descriptor.
  • IfP is described as a non-configurable, non-writable owndata property, all future calls to [[GetOwnProperty]] (P ) must returnProperty Descriptor whose [[Value]] isSameValue asP's [[Value]] attribute.
  • IfP's attributes other than [[Writable]] may change over time or if the property might be deleted, thenP's [[Configurable]] attribute must betrue.
  • If the [[Writable]] attribute may change fromfalse totrue, then the [[Configurable]] attribute must betrue.
  • If the target is non-extensible andP is non-existent, then all future calls to [[GetOwnProperty]] (P) on the target must describeP as non-existent (i.e. [[GetOwnProperty]] (P) must returnundefined).
Note 3

As a consequence of the third invariant, if a property is described as adata property and it may return different values over time, then either or both of the [[Writable]] and [[Configurable]] attributes must betrue even if no mechanism to change the value is exposed via the other essential internal methods.

[[DefineOwnProperty]] (P,Desc )

  • The normal return type is Boolean.
  • [[DefineOwnProperty]] must returnfalse ifP has previously been observed as a non-configurable own property of the target, unless either:
    1. P is a writabledata property. A non-configurable writabledata property can be changed into a non-configurable non-writabledata property.
    2. All attributes ofDesc are theSameValue asP's attributes.
  • [[DefineOwnProperty]] (P,Desc) must returnfalse if target is non-extensible andP is a non-existent own property. That is, a non-extensible target object cannot be extended with new properties.

[[HasProperty]] (P )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable own data oraccessor property of the target, [[HasProperty]] must returntrue.

[[Get]] (P,Receiver )

  • The normal return type is anyECMAScript language type.
  • IfP was previously observed as a non-configurable, non-writable owndata property of the target with valueV, then [[Get]] must return theSameValue asV.
  • IfP was previously observed as a non-configurable ownaccessor property of the target whose [[Get]] attribute isundefined, the [[Get]] operation must returnundefined.

[[Set]] (P,V,Receiver )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable, non-writable owndata property of the target, then [[Set]] must returnfalse unlessV is theSameValue asP's [[Value]] attribute.
  • IfP was previously observed as a non-configurable ownaccessor property of the target whose [[Set]] attribute isundefined, the [[Set]] operation must returnfalse.

[[Delete]] (P )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable own data oraccessor property of the target, [[Delete]] must returnfalse.

[[OwnPropertyKeys]] ( )

  • The normal return type isList.
  • The returnedList must not contain any duplicate entries.
  • The Type of each element of the returnedList is either String or Symbol.
  • The returnedList must contain at least the keys of all non-configurable own properties that have previously been observed.
  • If the target is non-extensible, the returnedList must contain only the keys of all own properties of the target that are observable using [[GetOwnProperty]].

[[Call]] ( )

[[Construct]] ( )

  • The normal return type is Object.
  • The target must also have a [[Call]] internal method.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and which usually haverealm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a set of similar objects, one perrealm.

Within this specification a reference such as %name% means the intrinsic object, associated with the currentrealm, corresponding to the name. A reference such as %name.a.b% means, as if the "b" property of the "a" property of the intrinsic object %name% was accessed prior to any ECMAScript code being evaluated. Determination of the currentrealm and its intrinsics is described in9.3. The well-known intrinsics are listed inTable 8.

Table 8: Well-Known Intrinsic Objects
Intrinsic Name Global Name ECMAScript Language Association
%AggregateError%AggregateError TheAggregateErrorconstructor (20.5.7.1)
%Array%Array The Arrayconstructor (23.1.1)
%ArrayBuffer%ArrayBuffer The ArrayBufferconstructor (25.1.3)
%ArrayIteratorPrototype% The prototype of Array iterator objects (23.1.5)
%AsyncFromSyncIteratorPrototype% The prototype of async-from-sync iterator objects (27.1.4)
%AsyncFunction% Theconstructor of async function objects (27.7.1)
%AsyncGeneratorFunction% Theconstructor of async iterator objects (27.4.1)
%AsyncIteratorPrototype% An object that all standard built-in async iterator objects indirectly inherit from
%Atomics%Atomics TheAtomics object (25.4)
%BigInt%BigInt The BigIntconstructor (21.2.1)
%BigInt64Array%BigInt64Array The BigInt64Arrayconstructor (23.2)
%BigUint64Array%BigUint64Array The BigUint64Arrayconstructor (23.2)
%Boolean%Boolean The Booleanconstructor (20.3.1)
%DataView%DataView The DataViewconstructor (25.3.2)
%Date%Date The Dateconstructor (21.4.2)
%decodeURI%decodeURI ThedecodeURI function (19.2.6.2)
%decodeURIComponent%decodeURIComponent ThedecodeURIComponent function (19.2.6.3)
%encodeURI%encodeURI TheencodeURI function (19.2.6.4)
%encodeURIComponent%encodeURIComponent TheencodeURIComponent function (19.2.6.5)
%Error%Error The Errorconstructor (20.5.1)
%eval%eval Theeval function (19.2.1)
%EvalError%EvalError The EvalErrorconstructor (20.5.5.1)
%FinalizationRegistry%FinalizationRegistry TheFinalizationRegistryconstructor (26.2.1)
%Float32Array%Float32Array The Float32Arrayconstructor (23.2)
%Float64Array%Float64Array The Float64Arrayconstructor (23.2)
%ForInIteratorPrototype% The prototype of For-In iterator objects (14.7.5.10)
%Function%Function The Functionconstructor (20.2.1)
%GeneratorFunction% Theconstructor of generator objects (27.3.1)
%Int8Array%Int8Array The Int8Arrayconstructor (23.2)
%Int16Array%Int16Array The Int16Arrayconstructor (23.2)
%Int32Array%Int32Array The Int32Arrayconstructor (23.2)
%isFinite%isFinite TheisFinite function (19.2.2)
%isNaN%isNaN TheisNaN function (19.2.3)
%IteratorPrototype% An object that all standard built-in iterator objects indirectly inherit from
%JSON%JSON TheJSON object (25.5)
%Map%Map The Mapconstructor (24.1.1)
%MapIteratorPrototype% The prototype of Map iterator objects (24.1.5)
%Math%Math TheMath object (21.3)
%Number%Number The Numberconstructor (21.1.1)
%Object%Object The Objectconstructor (20.1.1)
%parseFloat%parseFloat TheparseFloat function (19.2.4)
%parseInt%parseInt TheparseInt function (19.2.5)
%Promise%Promise The Promiseconstructor (27.2.3)
%Proxy%Proxy The Proxyconstructor (28.2.1)
%RangeError%RangeError The RangeErrorconstructor (20.5.5.2)
%ReferenceError%ReferenceError The ReferenceErrorconstructor (20.5.5.3)
%Reflect%Reflect TheReflect object (28.1)
%RegExp%RegExp The RegExpconstructor (22.2.3)
%RegExpStringIteratorPrototype% The prototype of RegExp String Iterator objects (22.2.7)
%Set%Set The Setconstructor (24.2.1)
%SetIteratorPrototype% The prototype of Set iterator objects (24.2.5)
%SharedArrayBuffer%SharedArrayBuffer The SharedArrayBufferconstructor (25.2.2)
%String%String The Stringconstructor (22.1.1)
%StringIteratorPrototype% The prototype of String iterator objects (22.1.5)
%Symbol%Symbol The Symbolconstructor (20.4.1)
%SyntaxError%SyntaxError The SyntaxErrorconstructor (20.5.5.4)
%ThrowTypeError% Afunction object that unconditionally throws a new instance of%TypeError%
%TypedArray% The super class of all typed Array constructors (23.2.1)
%TypeError%TypeError The TypeErrorconstructor (20.5.5.5)
%Uint8Array%Uint8Array The Uint8Arrayconstructor (23.2)
%Uint8ClampedArray%Uint8ClampedArray The Uint8ClampedArrayconstructor (23.2)
%Uint16Array%Uint16Array The Uint16Arrayconstructor (23.2)
%Uint32Array%Uint32Array The Uint32Arrayconstructor (23.2)
%URIError%URIError The URIErrorconstructor (20.5.5.6)
%WeakMap%WeakMap The WeakMapconstructor (24.3.1)
%WeakRef%WeakRef TheWeakRefconstructor (26.1.1)
%WeakSet%WeakSet The WeakSetconstructor (24.4.1)
Note

Additional entries inTable 82.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript language constructs and ECMAScript language types. The specification types includeReference,List,Completion,Property Descriptor,Environment Record,Abstract Closure, andData Block. Specification type values are specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript implementation. Specification type values may be used to describe intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Types

TheList type is used to explain the evaluation of argument lists (see13.3.8) innew expressions, in function calls, and in other algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered sequences of list elements containing the individual values. These sequences may be of any length. The elements of a list may be randomly accessed using 0-origin indices. For notational convenience an array-like syntax can be used to access List elements. For example,arguments[2] is shorthand for saying the 3rd element of the Listarguments.

When an algorithm iterates over the elements of a List without specifying an order, the order used is the order of the elements in the List.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific value. A new empty List can be expressed as « ».

TheRecord type is used to describe data aggregations within the algorithms of this specification. A Record type value consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract value represented by a name associated with the Record type. Field names are always enclosed in double brackets, for example [[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value. For example, { [[Field1]]: 42, [[Field2]]:false, [[Field3]]:empty } defines a Record value that has three fields, each of which is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example, if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named [[Field2]]”.

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a literal Record value to identify the specific kind of aggregations that is being described. For example: PropertyDescriptor { [[Value]]: 42, [[Writable]]:false, [[Configurable]]:true }.

6.2.2 The Set and Relation Specification Types

TheSet type is used to explain a collection of unordered elements for use in thememory model. Values of the Set type are simple collections of elements, where no element appears more than once. Elements may be added to and removed from Sets. Sets may be unioned, intersected, or subtracted from each other.

TheRelation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered pairs of values from its value domain. For example, a Relation on events is a set of ordered pairs of events. For a RelationR and two valuesa andb in the value domain ofR,aRb is shorthand for saying the ordered pair (a,b) is a member ofR. A Relation is least with respect to some conditions when it is the smallest Relation that satisfies those conditions.

Astrict partial order is a Relation valueR that satisfies the following.

  • For alla,b, andc inR's domain:

    • It is not the case thataRa, and
    • IfaRb andbRc, thenaRc.
Note 1

The two properties above are called irreflexivity and transitivity, respectively.

Astrict total order is a Relation valueR that satisfies the following.

  • For alla,b, andc inR's domain:

    • a is identical tob oraRb orbRa, and
    • It is not the case thataRa, and
    • IfaRb andbRc, thenaRc.
Note 2

The three properties above are called totality, irreflexivity, and transitivity, respectively.

6.2.3 The Completion Record Specification Type

The Completion type is aRecord used to explain the runtime propagation of values and control flow such as the behaviour of statements (break,continue,return andthrow) that perform nonlocal transfers of control.

Values of the Completion type areRecord values whose fields are defined byTable 9. Such values are referred to asCompletion Records.

Table 9:Completion Record Fields
Field Name Value Meaning
[[Type]] One ofnormal,break,continue,return, orthrow The type of completion that occurred.
[[Value]] anyECMAScript language value orempty The value that was produced.
[[Target]] any ECMAScript string orempty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[Type]] value other thannormal.

6.2.3.1 Await

Algorithm steps that say

  1. Letcompletion beAwait(value).

mean the same thing as:

  1. LetasyncContext be therunning execution context.
  2. Letpromise be ? PromiseResolve(%Promise%,value).
  3. LetstepsFulfilled be the algorithm steps defined inAwait Fulfilled Functions.
  4. LetlengthFulfilled be the number of non-optional parameters of the function definition inAwait Fulfilled Functions.
  5. LetonFulfilled be ! CreateBuiltinFunction(stepsFulfilled,lengthFulfilled,"", « [[AsyncContext]] »).
  6. SetonFulfilled.[[AsyncContext]] toasyncContext.
  7. LetstepsRejected be the algorithm steps defined inAwait Rejected Functions.
  8. LetlengthRejected be the number of non-optional parameters of the function definition inAwait Rejected Functions.
  9. LetonRejected be ! CreateBuiltinFunction(stepsRejected,lengthRejected,"", « [[AsyncContext]] »).
  10. SetonRejected.[[AsyncContext]] toasyncContext.
  11. Perform ! PerformPromiseThen(promise,onFulfilled,onRejected).
  12. RemoveasyncContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
  13. Set the code evaluation state ofasyncContext such that when evaluation is resumed with aCompletioncompletion, the following steps of the algorithm that invokedAwait will be performed, withcompletion available.
  14. Return.
  15. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation ofasyncContext.

where all aliases in the above steps, with the exception ofcompletion, are ephemeral and visible only in the steps pertaining to Await.

Note

Await can be combined with the? and! prefixes, so that for example

  1. Letresult be ? Await(value).

means the same thing as:

  1. Letresult beAwait(value).
  2. ReturnIfAbrupt(result).

6.2.3.1.1 Await Fulfilled Functions

AnAwait fulfilled function is an anonymous built-in function that is used as part of theAwait specification device to deliver the promise fulfillment value to the caller as a normal completion. EachAwait fulfilled function has an [[AsyncContext]] internal slot.

When anAwait fulfilled function is called with argumentvalue, the following steps are taken:

  1. LetF be theactive function object.
  2. LetasyncContext beF.[[AsyncContext]].
  3. LetprevContext be therunning execution context.
  4. SuspendprevContext.
  5. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
  6. Resume the suspended evaluation ofasyncContext usingNormalCompletion(value) as the result of the operation that suspended it.
  7. Assert: When we reach this step,asyncContext has already been removed from theexecution context stack andprevContext is the currentlyrunning execution context.
  8. Returnundefined.

The"length" property of anAwait fulfilled function is1𝔽.

6.2.3.1.2 Await Rejected Functions

AnAwait rejected function is an anonymous built-in function that is used as part of theAwait specification device to deliver the promise rejection reason to the caller as an abrupt throw completion. EachAwait rejected function has an [[AsyncContext]] internal slot.

When anAwait rejected function is called with argumentreason, the following steps are taken:

  1. LetF be theactive function object.
  2. LetasyncContext beF.[[AsyncContext]].
  3. LetprevContext be therunning execution context.
  4. SuspendprevContext.
  5. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
  6. Resume the suspended evaluation ofasyncContext usingThrowCompletion(reason) as the result of the operation that suspended it.
  7. Assert: When we reach this step,asyncContext has already been removed from theexecution context stack andprevContext is the currentlyrunning execution context.
  8. Returnundefined.

The"length" property of anAwait rejected function is1𝔽.

6.2.3.2 NormalCompletion

The abstract operation NormalCompletion with a singleargument, such as:

  1. ReturnNormalCompletion(argument).

Is a shorthand that is defined as follows:

  1. ReturnCompletion { [[Type]]:normal, [[Value]]:argument, [[Target]]:empty }.

6.2.3.3 ThrowCompletion

The abstract operation ThrowCompletion with a singleargument, such as:

  1. ReturnThrowCompletion(argument).

Is a shorthand that is defined as follows:

  1. ReturnCompletion { [[Type]]:throw, [[Value]]:argument, [[Target]]:empty }.

6.2.3.4 UpdateEmpty (completionRecord,value )

The abstract operation UpdateEmpty takes argumentscompletionRecord andvalue. It performs the following steps when called:

  1. Assert: IfcompletionRecord.[[Type]] is eitherreturn orthrow, thencompletionRecord.[[Value]] is notempty.
  2. IfcompletionRecord.[[Value]] is notempty, returnCompletion(completionRecord).
  3. ReturnCompletion { [[Type]]:completionRecord.[[Type]], [[Value]]:value, [[Target]]:completionRecord.[[Target]] }.

6.2.4 The Reference Record Specification Type

TheReference Record type is used to explain the behaviour of such operators asdelete,typeof, the assignment operators, thesuperkeyword and other language features. For example, the left-hand operand of an assignment is expected to produce a Reference Record.

A Reference Record is a resolved name or property binding; its fields are defined byTable 10.

Table 10:Reference Record Fields
Field NameValueMeaning
[[Base]] One of:The value orEnvironment Record which holds the binding. A [[Base]] ofunresolvable indicates that the binding could not be resolved.
[[ReferencedName]]String or SymbolThe name of the binding. Always a String if [[Base]] value is anEnvironment Record.
[[Strict]]Booleantrue if theReference Record originated instrict mode code,false otherwise.
[[ThisValue]]anyECMAScript language value oremptyIf notempty, theReference Record represents a property binding that was expressed using thesuperkeyword; it is called aSuper Reference Record and its [[Base]] value will never be anEnvironment Record. In that case, the [[ThisValue]] field holds thethis value at the time theReference Record was created.

The followingabstract operations are used in this specification to operate upon References:

6.2.4.1 IsPropertyReference (V )

The abstract operation IsPropertyReference takes argumentV. It performs the following steps when called:

  1. Assert:V is aReference Record.
  2. IfV.[[Base]] isunresolvable, returnfalse.
  3. IfType(V.[[Base]]) is Boolean, String, Symbol, BigInt, Number, or Object, returntrue; otherwise returnfalse.

6.2.4.2 IsUnresolvableReference (V )

The abstract operation IsUnresolvableReference takes argumentV. It performs the following steps when called:

  1. Assert:V is aReference Record.
  2. IfV.[[Base]] isunresolvable, returntrue; otherwise returnfalse.

6.2.4.3 IsSuperReference (V )

The abstract operation IsSuperReference takes argumentV. It performs the following steps when called:

  1. Assert:V is aReference Record.
  2. IfV.[[ThisValue]] is notempty, returntrue; otherwise returnfalse.

6.2.4.4 GetValue (V )

The abstract operation GetValue takes argumentV. It performs the following steps when called:

  1. ReturnIfAbrupt(V).
  2. IfV is not aReference Record, returnV.
  3. IfIsUnresolvableReference(V) istrue, throw aReferenceError exception.
  4. IfIsPropertyReference(V) istrue, then
    1. LetbaseObj be ! ToObject(V.[[Base]]).
    2. Return ?baseObj.[[Get]](V.[[ReferencedName]],GetThisValue(V)).
  5. Else,
    1. Letbase beV.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ?base.GetBindingValue(V.[[ReferencedName]],V.[[Strict]]) (see9.1).
Note

The object that may be created in step4.a is not accessible outside of the above abstract operation and theordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.2.4.5 PutValue (V,W )

The abstract operation PutValue takes argumentsV andW. It performs the following steps when called:

  1. ReturnIfAbrupt(V).
  2. ReturnIfAbrupt(W).
  3. IfV is not aReference Record, throw aReferenceError exception.
  4. IfIsUnresolvableReference(V) istrue, then
    1. IfV.[[Strict]] istrue, throw aReferenceError exception.
    2. LetglobalObj beGetGlobalObject().
    3. Return ? Set(globalObj,V.[[ReferencedName]],W,false).
  5. IfIsPropertyReference(V) istrue, then
    1. LetbaseObj be ! ToObject(V.[[Base]]).
    2. Letsucceeded be ?baseObj.[[Set]](V.[[ReferencedName]],W,GetThisValue(V)).
    3. Ifsucceeded isfalse andV.[[Strict]] istrue, throw aTypeError exception.
    4. Return.
  6. Else,
    1. Letbase beV.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ?base.SetMutableBinding(V.[[ReferencedName]],W,V.[[Strict]]) (see9.1).
Note

The object that may be created in step5.a is not accessible outside of the above abstract operation and theordinary object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.4.6 GetThisValue (V )

The abstract operation GetThisValue takes argumentV. It performs the following steps when called:

  1. Assert:IsPropertyReference(V) istrue.
  2. IfIsSuperReference(V) istrue, returnV.[[ThisValue]]; otherwise returnV.[[Base]].

6.2.4.7 InitializeReferencedBinding (V,W )

The abstract operation InitializeReferencedBinding takes argumentsV andW. It performs the following steps when called:

  1. ReturnIfAbrupt(V).
  2. ReturnIfAbrupt(W).
  3. Assert:V is aReference Record.
  4. Assert:IsUnresolvableReference(V) isfalse.
  5. Letbase beV.[[Base]].
  6. Assert:base is anEnvironment Record.
  7. Returnbase.InitializeBinding(V.[[ReferencedName]],W).

6.2.5 The Property Descriptor Specification Type

TheProperty Descriptor type is used to explain the manipulation and reification of Object property attributes. Values of the Property Descriptor type are Records. Each field's name is an attribute name and its value is a corresponding attribute value as specified in6.1.7.1. In addition, any field may be present or absent. The schema name used within this specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any fields named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor Property Descriptor; however, it may be neither. A generic Property Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor Property Descriptor. A fully populated Property Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all of the fields that correspond to the property attributes defined in eitherTable 3 orTable 4.

The followingabstract operations are used in this specification to operate upon Property Descriptor values:

6.2.5.1 IsAccessorDescriptor (Desc )

The abstract operation IsAccessorDescriptor takes argumentDesc (aProperty Descriptor orundefined). It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. If bothDesc.[[Get]] andDesc.[[Set]] are absent, returnfalse.
  3. Returntrue.

6.2.5.2 IsDataDescriptor (Desc )

The abstract operation IsDataDescriptor takes argumentDesc (aProperty Descriptor orundefined). It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. If bothDesc.[[Value]] andDesc.[[Writable]] are absent, returnfalse.
  3. Returntrue.

6.2.5.3 IsGenericDescriptor (Desc )

The abstract operation IsGenericDescriptor takes argumentDesc (aProperty Descriptor orundefined). It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. IfIsAccessorDescriptor(Desc) andIsDataDescriptor(Desc) are bothfalse, returntrue.
  3. Returnfalse.

6.2.5.4 FromPropertyDescriptor (Desc )

The abstract operation FromPropertyDescriptor takes argumentDesc (aProperty Descriptor orundefined). It performs the following steps when called:

  1. IfDesc isundefined, returnundefined.
  2. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  3. Assert:obj is an extensibleordinary object with no own properties.
  4. IfDesc has a [[Value]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"value",Desc.[[Value]]).
  5. IfDesc has a [[Writable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"writable",Desc.[[Writable]]).
  6. IfDesc has a [[Get]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"get",Desc.[[Get]]).
  7. IfDesc has a [[Set]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"set",Desc.[[Set]]).
  8. IfDesc has an [[Enumerable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"enumerable",Desc.[[Enumerable]]).
  9. IfDesc has a [[Configurable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"configurable",Desc.[[Configurable]]).
  10. Returnobj.

6.2.5.5 ToPropertyDescriptor (Obj )

The abstract operation ToPropertyDescriptor takes argumentObj. It performs the following steps when called:

  1. IfType(Obj) is not Object, throw aTypeError exception.
  2. Letdesc be a newProperty Descriptor that initially has no fields.
  3. LethasEnumerable be ? HasProperty(Obj,"enumerable").
  4. IfhasEnumerable istrue, then
    1. Letenumerable be ! ToBoolean(?Get(Obj,"enumerable")).
    2. Setdesc.[[Enumerable]] toenumerable.
  5. LethasConfigurable be ? HasProperty(Obj,"configurable").
  6. IfhasConfigurable istrue, then
    1. Letconfigurable be ! ToBoolean(?Get(Obj,"configurable")).
    2. Setdesc.[[Configurable]] toconfigurable.
  7. LethasValue be ? HasProperty(Obj,"value").
  8. IfhasValue istrue, then
    1. Letvalue be ? Get(Obj,"value").
    2. Setdesc.[[Value]] tovalue.
  9. LethasWritable be ? HasProperty(Obj,"writable").
  10. IfhasWritable istrue, then
    1. Letwritable be ! ToBoolean(?Get(Obj,"writable")).
    2. Setdesc.[[Writable]] towritable.
  11. LethasGet be ? HasProperty(Obj,"get").
  12. IfhasGet istrue, then
    1. Letgetter be ? Get(Obj,"get").
    2. IfIsCallable(getter) isfalse andgetter is notundefined, throw aTypeError exception.
    3. Setdesc.[[Get]] togetter.
  13. LethasSet be ? HasProperty(Obj,"set").
  14. IfhasSet istrue, then
    1. Letsetter be ? Get(Obj,"set").
    2. IfIsCallable(setter) isfalse andsetter is notundefined, throw aTypeError exception.
    3. Setdesc.[[Set]] tosetter.
  15. Ifdesc.[[Get]] is present ordesc.[[Set]] is present, then
    1. Ifdesc.[[Value]] is present ordesc.[[Writable]] is present, throw aTypeError exception.
  16. Returndesc.

6.2.5.6 CompletePropertyDescriptor (Desc )

The abstract operation CompletePropertyDescriptor takes argumentDesc (aProperty Descriptor). It performs the following steps when called:

  1. Assert:Desc is aProperty Descriptor.
  2. Letlike be theRecord { [[Value]]:undefined, [[Writable]]:false, [[Get]]:undefined, [[Set]]:undefined, [[Enumerable]]:false, [[Configurable]]:false }.
  3. IfIsGenericDescriptor(Desc) istrue orIsDataDescriptor(Desc) istrue, then
    1. IfDesc does not have a [[Value]] field, setDesc.[[Value]] tolike.[[Value]].
    2. IfDesc does not have a [[Writable]] field, setDesc.[[Writable]] tolike.[[Writable]].
  4. Else,
    1. IfDesc does not have a [[Get]] field, setDesc.[[Get]] tolike.[[Get]].
    2. IfDesc does not have a [[Set]] field, setDesc.[[Set]] tolike.[[Set]].
  5. IfDesc does not have an [[Enumerable]] field, setDesc.[[Enumerable]] tolike.[[Enumerable]].
  6. IfDesc does not have a [[Configurable]] field, setDesc.[[Configurable]] tolike.[[Configurable]].
  7. ReturnDesc.

6.2.6 The Environment Record Specification Type

TheEnvironment Record type is used to explain the behaviour of name resolution in nested functions and blocks. This type and the operations upon it are defined in9.1.

6.2.7 The Abstract Closure Specification Type

TheAbstract Closure specification type is used to refer to algorithm steps together with a collection of values. Abstract Closures are meta-values and are invoked using function application style such asclosure(arg1,arg2). Likeabstract operations, invocations perform the algorithm steps described by the Abstract Closure.

In algorithm steps that create an Abstract Closure, values are captured with the verb "capture" followed by a list of aliases. When an Abstract Closure is created, it captures the value that is associated with each alias at that time. In steps that specify the algorithm to be performed when an Abstract Closure is called, each captured value is referred to by the alias that was used to capture the value.

If an Abstract Closure returns aCompletion Record, thatCompletion Record's [[Type]] must be eithernormal orthrow.

Abstract Closures are created inline as part of other algorithms, shown in the following example.

  1. Letaddend be 41.
  2. Letclosure be a newAbstract Closure with parameters (x) that capturesaddend and performs the following steps when called:
    1. Returnx +addend.
  3. Letval beclosure(1).
  4. Assert:val is 42.

6.2.8 Data Blocks

TheData Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric values. Abyte value is aninteger value in the range 0 through 255, inclusive. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of a Data Block value. This notation presents a Data Block value as a 0-originedinteger-indexed sequence of bytes. For example, ifdb is a 5 byte Data Block value thendb[2] can be used to access its 3rd byte.

A data block that resides in memory that can be referenced from multiple agents concurrently is designated aShared Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data Block values) that isaddress-free: it is tied not to the virtual addresses the block is mapped to in any process, but to the set of locations in memory that the block represents. Two data blocks are equal only if the sets of the locations they contain are equal; otherwise, they are not equal and the intersection of the sets of locations they contain is empty. Finally, Shared Data Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined using Shared Data Block events by thememory model.Abstract operations below introduce Shared Data Block events and act as the interface between evaluation semantics and the event semantics of thememory model. The events form acandidate execution, on which thememory model acts as a filter. Please consult thememory model for full semantics.

Shared Data Block events are modeled by Records, defined in thememory model.

The followingabstract operations are used in this specification to operate upon Data Block values:

6.2.8.1 CreateByteDataBlock (size )

The abstract operation CreateByteDataBlock takes argumentsize (aninteger). It performs the following steps when called:

  1. Assert:size ≥ 0.
  2. Letdb be a newData Block value consisting ofsize bytes. If it is impossible to create such aData Block, throw aRangeError exception.
  3. Set all of the bytes ofdb to 0.
  4. Returndb.

6.2.8.2 CreateSharedByteDataBlock (size )

The abstract operation CreateSharedByteDataBlock takes argumentsize (a non-negativeinteger). It performs the following steps when called:

  1. Assert:size ≥ 0.
  2. Letdb be a newShared Data Block value consisting ofsize bytes. If it is impossible to create such aShared Data Block, throw aRangeError exception.
  3. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
  4. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
  5. Letzero be « 0 ».
  6. For each indexi ofdb, do
    1. AppendWriteSharedMemory { [[Order]]:Init, [[NoTear]]:true, [[Block]]:db, [[ByteIndex]]:i, [[ElementSize]]: 1, [[Payload]]:zero } toeventList.
  7. Returndb.

6.2.8.3 CopyDataBlockBytes (toBlock,toIndex,fromBlock,fromIndex,count )

The abstract operation CopyDataBlockBytes takes argumentstoBlock,toIndex (a non-negativeinteger),fromBlock,fromIndex (a non-negativeinteger), andcount (a non-negativeinteger). It performs the following steps when called:

  1. Assert:fromBlock andtoBlock are distinctData Block orShared Data Block values.
  2. LetfromSize be the number of bytes infromBlock.
  3. Assert:fromIndex +countfromSize.
  4. LettoSize be the number of bytes intoBlock.
  5. Assert:toIndex +counttoSize.
  6. Repeat, whilecount > 0,
    1. IffromBlock is aShared Data Block, then
      1. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
      2. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
      3. Letbytes be aList whose sole element is a nondeterministically chosenbyte value.
      4. NOTE: In implementations,bytes is the result of a non-atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
      5. LetreadEvent beReadSharedMemory { [[Order]]:Unordered, [[NoTear]]:true, [[Block]]:fromBlock, [[ByteIndex]]:fromIndex, [[ElementSize]]: 1 }.
      6. AppendreadEvent toeventList.
      7. AppendChosen Value Record { [[Event]]:readEvent, [[ChosenValue]]:bytes } toexecution.[[ChosenValues]].
      8. IftoBlock is aShared Data Block, then
        1. AppendWriteSharedMemory { [[Order]]:Unordered, [[NoTear]]:true, [[Block]]:toBlock, [[ByteIndex]]:toIndex, [[ElementSize]]: 1, [[Payload]]:bytes } toeventList.
      9. Else,
        1. SettoBlock[toIndex] tobytes[0].
    2. Else,
      1. Assert:toBlock is not aShared Data Block.
      2. SettoBlock[toIndex] tofromBlock[fromIndex].
    3. SettoIndex totoIndex + 1.
    4. SetfromIndex tofromIndex + 1.
    5. Setcount tocount - 1.
  7. ReturnNormalCompletion(empty).

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here solely to aid the specification of the semantics of the ECMAScript language. Other, more specializedabstract operations are defined throughout this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain constructs it is useful to define a set of conversionabstract operations. The conversionabstract operations are polymorphic; they can accept a value of anyECMAScript language type. But no other specification types are used with these operations.

The BigInt type has no implicit conversions in the ECMAScript language; programmers must call BigInt explicitly to convert values from other types.

7.1.1 ToPrimitive (input [ ,preferredType ] )

The abstract operation ToPrimitive takes argumentinput and optional argumentpreferredType. It converts itsinput argument to a non-Object type. If an object is capable of converting to more than one primitive type, it may use the optional hintpreferredType to favour that type. It performs the following steps when called:

  1. Assert:input is anECMAScript language value.
  2. IfType(input) is Object, then
    1. LetexoticToPrim be ? GetMethod(input,@@toPrimitive).
    2. IfexoticToPrim is notundefined, then
      1. IfpreferredType is not present, lethint be"default".
      2. Else ifpreferredType isstring, lethint be"string".
      3. Else,
        1. Assert:preferredType isnumber.
        2. Lethint be"number".
      4. Letresult be ? Call(exoticToPrim,input, «hint »).
      5. IfType(result) is not Object, returnresult.
      6. Throw aTypeError exception.
    3. IfpreferredType is not present, letpreferredType benumber.
    4. Return ? OrdinaryToPrimitive(input,preferredType).
  3. Returninput.
Note

When ToPrimitive is called with no hint, then it generally behaves as if the hint werenumber. However, objects may over-ride this behaviour by defining a@@toPrimitive method. Of the objects defined in this specification only Date objects (see21.4.4.45) and Symbol objects (see20.4.3.5) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint werestring.

7.1.1.1 OrdinaryToPrimitive (O,hint )

The abstract operation OrdinaryToPrimitive takes argumentsO andhint. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:hint is eitherstring ornumber.
  3. Ifhint isstring, then
    1. LetmethodNames be «"toString","valueOf" ».
  4. Else,
    1. LetmethodNames be «"valueOf","toString" ».
  5. For each elementname ofmethodNames, do
    1. Letmethod be ? Get(O,name).
    2. IfIsCallable(method) istrue, then
      1. Letresult be ? Call(method,O).
      2. IfType(result) is not Object, returnresult.
  6. Throw aTypeError exception.

7.1.2 ToBoolean (argument )

The abstract operation ToBoolean takes argumentargument. It convertsargument to a value of type Boolean according toTable 11:

Table 11:ToBoolean Conversions
Argument Type Result
Undefined Returnfalse.
Null Returnfalse.
Boolean Returnargument.
Number Ifargument is+0𝔽,-0𝔽, orNaN, returnfalse; otherwise returntrue.
String Ifargument is the empty String (its length is 0), returnfalse; otherwise returntrue.
Symbol Returntrue.
BigInt Ifargument is0, returnfalse; otherwise returntrue.
Object Returntrue.Note

An alternate algorithm related to the[[IsHTMLDDA]] internal slot is mandated in sectionB.3.7.1.

7.1.3 ToNumeric (value )

The abstract operation ToNumeric takes argumentvalue. It returnsvalue converted to a Number or a BigInt. It performs the following steps when called:

  1. LetprimValue be ? ToPrimitive(value,number).
  2. IfType(primValue) is BigInt, returnprimValue.
  3. Return ? ToNumber(primValue).

7.1.4 ToNumber (argument )

The abstract operation ToNumber takes argumentargument. It convertsargument to a value of type Number according toTable 12:

Table 12:ToNumber Conversions
Argument Type Result
Undefined ReturnNaN.
Null Return+0𝔽.
Boolean Ifargument istrue, return1𝔽. Ifargument isfalse, return+0𝔽.
Number Returnargument (no conversion).
String See grammar and conversion algorithm below.
Symbol Throw aTypeError exception.
BigInt Throw aTypeError exception.
Object

Apply the following steps:

  1. LetprimValue be ? ToPrimitive(argument,number).
  2. Return ? ToNumber(primValue).

7.1.4.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of UTF-16 encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion ofStringNumericLiteral, then the result ofToNumber isNaN.

Note 1

The terminal symbols of this grammar are all composed of characters in the Unicode Basic Multilingual Plane (BMP). Therefore, the result ofToNumber will beNaN if the string contains anyleading surrogate ortrailing surrogate code units, whether paired or unpaired.

Syntax

StringNumericLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrNumericLiteralStrWhiteSpaceoptStrWhiteSpace:::StrWhiteSpaceCharStrWhiteSpaceoptStrWhiteSpaceChar:::WhiteSpaceLineTerminatorStrNumericLiteral:::StrDecimalLiteralNonDecimalIntegerLiteral[~Sep]StrDecimalLiteral:::StrUnsignedDecimalLiteral+StrUnsignedDecimalLiteral-StrUnsignedDecimalLiteralStrUnsignedDecimalLiteral:::InfinityDecimalDigits[~Sep].DecimalDigits[~Sep]optExponentPart[~Sep]opt.DecimalDigits[~Sep]ExponentPart[~Sep]optDecimalDigits[~Sep]ExponentPart[~Sep]opt

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric literals (12.8.3)

Note 2

Some differences should be noted between the syntax of aStringNumericLiteral and aNumericLiteral:

7.1.4.1.1 Runtime Semantics: MV

The conversion of a String to aNumber value is similar overall to the determination of theNumber value for a numeric literal (see12.8.3), but some of the details are different, so the process for converting a String numeric literal to a value of Number type is given here. This value is determined in two steps: first, amathematical value (MV) is derived from the String numeric literal; second, thismathematical value is rounded as described below. The MV on any grammar symbol, not provided below, is the MV for that symbol defined in12.8.3.1.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0, then the rounded value is+0𝔽 unless the first non white space code point in the String numeric literal is-, in which case the rounded value is-0𝔽. Otherwise, the rounded value must be theNumber value for the MV (in the sense defined in6.1.6.1), unless the literal includes aStrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case theNumber value may be either theNumber value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or theNumber value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of anExponentPart and

  • it is not0; or
  • there is a non-zero digit to its left and there is a non-zero digit, not in theExponentPart, to its right.

7.1.5 ToIntegerOrInfinity (argument )

The abstract operation ToIntegerOrInfinity takes argumentargument. It convertsargument to aninteger, +∞, or -∞. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽, or-0𝔽, return 0.
  3. Ifnumber is+∞𝔽, return +∞.
  4. Ifnumber is-∞𝔽, return -∞.
  5. Letinteger befloor(abs((number))).
  6. Ifnumber <+0𝔽, setinteger to -integer.
  7. Returninteger.

7.1.6 ToInt32 (argument )

The abstract operation ToInt32 takes argumentargument. It convertsargument to one of 232integral Number values in the range𝔽(-231) through𝔽(231 - 1), inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint32bit beintmodulo 232.
  5. Ifint32bit ≥ 231, return𝔽(int32bit - 232); otherwise return𝔽(int32bit).
Note

Given the above definition of ToInt32:

  • The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
  • ToInt32(ToUint32(x)) is the same value as ToInt32(x) for all values ofx. (It is to preserve this latter property that+∞𝔽 and-∞𝔽 are mapped to+0𝔽.)
  • ToInt32 maps-0𝔽 to+0𝔽.

7.1.7 ToUint32 (argument )

The abstract operation ToUint32 takes argumentargument. It convertsargument to one of 232integral Number values in the range+0𝔽 through𝔽(232 - 1), inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint32bit beintmodulo 232.
  5. Return𝔽(int32bit).
Note

Given the above definition of ToUint32:

  • Step5 is the only difference between ToUint32 andToInt32.
  • The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
  • ToUint32(ToInt32(x)) is the same value as ToUint32(x) for all values ofx. (It is to preserve this latter property that+∞𝔽 and-∞𝔽 are mapped to+0𝔽.)
  • ToUint32 maps-0𝔽 to+0𝔽.

7.1.8 ToInt16 (argument )

The abstract operation ToInt16 takes argumentargument. It convertsargument to one of 216integral Number values in the range𝔽(-215) through𝔽(215 - 1), inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint16bit beintmodulo 216.
  5. Ifint16bit ≥ 215, return𝔽(int16bit - 216); otherwise return𝔽(int16bit).

7.1.9 ToUint16 (argument )

The abstract operation ToUint16 takes argumentargument. It convertsargument to one of 216integral Number values in the range+0𝔽 through𝔽(216 - 1), inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint16bit beintmodulo 216.
  5. Return𝔽(int16bit).
Note

Given the above definition of ToUint16:

  • The substitution of 216 for 232 in step4 is the only difference betweenToUint32 and ToUint16.
  • ToUint16 maps-0𝔽 to+0𝔽.

7.1.10 ToInt8 (argument )

The abstract operation ToInt8 takes argumentargument. It convertsargument to one of 28integral Number values in the range-128𝔽 through127𝔽, inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint8bit beintmodulo 28.
  5. Ifint8bit ≥ 27, return𝔽(int8bit - 28); otherwise return𝔽(int8bit).

7.1.11 ToUint8 (argument )

The abstract operation ToUint8 takes argumentargument. It convertsargument to one of 28integral Number values in the range+0𝔽 through255𝔽, inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN,+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, return+0𝔽.
  3. Letint be themathematical value that is the same sign asnumber and whose magnitude isfloor(abs((number))).
  4. Letint8bit beintmodulo 28.
  5. Return𝔽(int8bit).

7.1.12 ToUint8Clamp (argument )

The abstract operation ToUint8Clamp takes argumentargument. It convertsargument to one of 28integral Number values in the range+0𝔽 through255𝔽, inclusive. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN, return+0𝔽.
  3. If(number) ≤ 0, return+0𝔽.
  4. If(number) ≥ 255, return255𝔽.
  5. Letf befloor((number)).
  6. Iff + 0.5 <(number), return𝔽(f + 1).
  7. If(number) <f + 0.5, return𝔽(f).
  8. Iff is odd, return𝔽(f + 1).
  9. Return𝔽(f).
Note

Unlike the other ECMAScriptinteger conversion abstract operation, ToUint8Clamp rounds rather than truncates non-integral values and does not convert+∞𝔽 to+0𝔽. ToUint8Clamp does “round half to even” tie-breaking. This differs fromMath.round which does “round half up” tie-breaking.

7.1.13 ToBigInt (argument )

The abstract operation ToBigInt takes argumentargument. It convertsargument to a BigInt value, or throws if an implicit conversion from Number would be required. It performs the following steps when called:

  1. Letprim be ? ToPrimitive(argument,number).
  2. Return the value thatprim corresponds to inTable 13.
Table 13: BigInt Conversions
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Return1n ifprim istrue and0n ifprim isfalse.
BigInt Returnprim.
Number Throw aTypeError exception.
String
  1. Letn be ! StringToBigInt(prim).
  2. Ifn isNaN, throw aSyntaxError exception.
  3. Returnn.
Symbol Throw aTypeError exception.

7.1.14 StringToBigInt (argument )

Apply the algorithm in7.1.4.1 with the following changes:

  • Replace theStrUnsignedDecimalLiteral production withDecimalDigits to not allowInfinity, decimal points, or exponents.
  • If the MV isNaN, returnNaN, otherwise return the BigInt which exactly corresponds to the MV, rather than rounding to a Number.

7.1.15 ToBigInt64 (argument )

The abstract operation ToBigInt64 takes argumentargument. It convertsargument to one of 264 BigInt values in the range(-263) through(263-1), inclusive. It performs the following steps when called:

  1. Letn be ? ToBigInt(argument).
  2. Letint64bit be(n)modulo 264.
  3. Ifint64bit ≥ 263, return(int64bit - 264); otherwise return(int64bit).

7.1.16 ToBigUint64 (argument )

The abstract operation ToBigUint64 takes argumentargument. It convertsargument to one of 264 BigInt values in the range0 through the BigInt value for(264-1), inclusive. It performs the following steps when called:

  1. Letn be ? ToBigInt(argument).
  2. Letint64bit be(n)modulo 264.
  3. Return(int64bit).

7.1.17 ToString (argument )

The abstract operation ToString takes argumentargument. It convertsargument to a value of type String according toTable 14:

Table 14:ToString Conversions
Argument Type Result
Undefined Return"undefined".
Null Return"null".
Boolean

Ifargument istrue, return"true".

Ifargument isfalse, return"false".

Number Return !Number::toString(argument).
String Returnargument.
Symbol Throw aTypeError exception.
BigInt Return !BigInt::toString(argument).
Object

Apply the following steps:

  1. LetprimValue be ? ToPrimitive(argument,string).
  2. Return ? ToString(primValue).

7.1.18 ToObject (argument )

The abstract operation ToObject takes argumentargument. It convertsargument to a value of type Object according toTable 15:

Table 15:ToObject Conversions
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set toargument. See20.3 for a description of Boolean objects.
Number Return a new Number object whose [[NumberData]] internal slot is set toargument. See21.1 for a description of Number objects.
String Return a new String object whose [[StringData]] internal slot is set toargument. See22.1 for a description of String objects.
Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set toargument. See20.4 for a description of Symbol objects.
BigInt Return a new BigInt object whose [[BigIntData]] internal slot is set toargument. See21.2 for a description of BigInt objects.
Object Returnargument.

7.1.19 ToPropertyKey (argument )

The abstract operation ToPropertyKey takes argumentargument. It convertsargument to a value that can be used as a property key. It performs the following steps when called:

  1. Letkey be ? ToPrimitive(argument,string).
  2. IfType(key) is Symbol, then
    1. Returnkey.
  3. Return ! ToString(key).

7.1.20 ToLength (argument )

The abstract operation ToLength takes argumentargument. It convertsargument to anintegral Number suitable for use as the length of anarray-like object. It performs the following steps when called:

  1. Letlen be ? ToIntegerOrInfinity(argument).
  2. Iflen ≤ 0, return+0𝔽.
  3. Return𝔽(min(len, 253 - 1)).

7.1.21 CanonicalNumericIndexString (argument )

The abstract operation CanonicalNumericIndexString takes argumentargument. It returnsargument converted to aNumber value if it is a String representation of a Number that would be produced byToString, or the string"-0". Otherwise, it returnsundefined. It performs the following steps when called:

  1. Assert:Type(argument) is String.
  2. Ifargument is"-0", return-0𝔽.
  3. Letn be ! ToNumber(argument).
  4. IfSameValue(!ToString(n),argument) isfalse, returnundefined.
  5. Returnn.

Acanonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not returnundefined.

7.1.22 ToIndex (value )

The abstract operation ToIndex takes argumentvalue. It returnsvalue argument converted to a non-negativeinteger if it is a validinteger index value. It performs the following steps when called:

  1. Ifvalue isundefined, then
    1. Return 0.
  2. Else,
    1. LetintegerIndex be𝔽(?ToIntegerOrInfinity(value)).
    2. IfintegerIndex <+0𝔽, throw aRangeError exception.
    3. Letindex be ! ToLength(integerIndex).
    4. If ! SameValue(integerIndex,index) isfalse, throw aRangeError exception.
    5. Return(index).

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible (argument )

The abstract operation RequireObjectCoercible takes argumentargument. It throws an error ifargument is a value that cannot be converted to an Object usingToObject. It is defined byTable 16:

Table 16:RequireObjectCoercible Results
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Returnargument.
Number Returnargument.
String Returnargument.
Symbol Returnargument.
BigInt Returnargument.
Object Returnargument.

7.2.2 IsArray (argument )

The abstract operation IsArray takes argumentargument. It performs the following steps when called:

  1. IfType(argument) is not Object, returnfalse.
  2. Ifargument is anArray exotic object, returntrue.
  3. Ifargument is aProxy exotic object, then
    1. Ifargument.[[ProxyHandler]] isnull, throw aTypeError exception.
    2. Lettarget beargument.[[ProxyTarget]].
    3. Return ? IsArray(target).
  4. Returnfalse.

7.2.3 IsCallable (argument )

The abstract operation IsCallable takes argumentargument (anECMAScript language value). It determines ifargument is a callable function with a [[Call]] internal method. It performs the following steps when called:

  1. IfType(argument) is not Object, returnfalse.
  2. Ifargument has a [[Call]] internal method, returntrue.
  3. Returnfalse.

7.2.4 IsConstructor (argument )

The abstract operation IsConstructor takes argumentargument (anECMAScript language value). It determines ifargument is afunction object with a [[Construct]] internal method. It performs the following steps when called:

  1. IfType(argument) is not Object, returnfalse.
  2. Ifargument has a [[Construct]] internal method, returntrue.
  3. Returnfalse.

7.2.5 IsExtensible (O )

The abstract operation IsExtensible takes argumentO (an Object) and returns a completion record which, if its [[Type]] isnormal, has a [[Value]] which is a Boolean. It is used to determine whether additional properties can be added toO. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Return ?O.[[IsExtensible]]().

7.2.6 IsIntegralNumber (argument )

The abstract operation IsIntegralNumber takes argumentargument. It determines ifargument is a finiteintegral Number value. It performs the following steps when called:

  1. IfType(argument) is not Number, returnfalse.
  2. Ifargument isNaN,+∞𝔽, or-∞𝔽, returnfalse.
  3. Iffloor(abs((argument))) ≠abs((argument)), returnfalse.
  4. Returntrue.

7.2.7 IsPropertyKey (argument )

The abstract operation IsPropertyKey takes argumentargument (anECMAScript language value). It determines ifargument is a value that may be used as a property key. It performs the following steps when called:

  1. IfType(argument) is String, returntrue.
  2. IfType(argument) is Symbol, returntrue.
  3. Returnfalse.

7.2.8 IsRegExp (argument )

The abstract operation IsRegExp takes argumentargument. It performs the following steps when called:

  1. IfType(argument) is not Object, returnfalse.
  2. Letmatcher be ? Get(argument,@@match).
  3. Ifmatcher is notundefined, return ! ToBoolean(matcher).
  4. Ifargument has a [[RegExpMatcher]] internal slot, returntrue.
  5. Returnfalse.

7.2.9 IsStringPrefix (p,q )

The abstract operation IsStringPrefix takes argumentsp (a String) andq (a String). It determines ifp is a prefix ofq. It performs the following steps when called:

  1. Assert:Type(p) is String.
  2. Assert:Type(q) is String.
  3. Ifq can be thestring-concatenation ofp and some other Stringr, returntrue. Otherwise, returnfalse.
Note

Any String is a prefix of itself, becauser may be the empty String.

7.2.10 SameValue (x,y )

The abstract operation SameValue takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a completion record whose [[Type]] isnormal and whose [[Value]] is a Boolean. It performs the following steps when called:

  1. IfType(x) is different fromType(y), returnfalse.
  2. IfType(x) is Number or BigInt, then
    1. Return ! Type(x)::sameValue(x,y).
  3. Return ! SameValueNonNumeric(x,y).
Note

This algorithm differs from theStrict Equality Comparison Algorithm in its treatment of signed zeroes and NaNs.

7.2.11 SameValueZero (x,y )

The abstract operation SameValueZero takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a completion record whose [[Type]] isnormal and whose [[Value]] is a Boolean. It performs the following steps when called:

  1. IfType(x) is different fromType(y), returnfalse.
  2. IfType(x) is Number or BigInt, then
    1. Return ! Type(x)::sameValueZero(x,y).
  3. Return ! SameValueNonNumeric(x,y).
Note

SameValueZero differs fromSameValue only in its treatment of+0𝔽 and-0𝔽.

7.2.12 SameValueNonNumeric (x,y )

The abstract operation SameValueNonNumeric takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a completion record whose [[Type]] isnormal and whose [[Value]] is a Boolean. It performs the following steps when called:

  1. Assert:Type(x) is not Number or BigInt.
  2. Assert:Type(x) is the same asType(y).
  3. IfType(x) is Undefined, returntrue.
  4. IfType(x) is Null, returntrue.
  5. IfType(x) is String, then
    1. Ifx andy are exactly the same sequence of code units (same length and same code units at corresponding indices), returntrue; otherwise, returnfalse.
  6. IfType(x) is Boolean, then
    1. Ifx andy are bothtrue or bothfalse, returntrue; otherwise, returnfalse.
  7. IfType(x) is Symbol, then
    1. Ifx andy are both the same Symbol value, returntrue; otherwise, returnfalse.
  8. Ifx andy are the same Object value, returntrue. Otherwise, returnfalse.

7.2.13 Abstract Relational Comparison

The comparisonx <y, wherex andy are values, producestrue,false, orundefined (which indicates that at least one operand isNaN). In addition tox andy the algorithm takes a Boolean flag namedLeftFirst as a parameter. The flag is used to control the order in which operations with potentially visible side-effects are performed uponx andy. It is necessary because ECMAScript specifies left to right evaluation of expressions. The default value ofLeftFirst istrue and indicates that thex parameter corresponds to an expression that occurs to the left of they parameter's corresponding expression. IfLeftFirst isfalse, the reverse is the case and operations must be performed upony beforex. Such a comparison is performed as follows:

  1. If theLeftFirst flag istrue, then
    1. Letpx be ? ToPrimitive(x,number).
    2. Letpy be ? ToPrimitive(y,number).
  2. Else,
    1. NOTE: The order of evaluation needs to be reversed to preserve left to right evaluation.
    2. Letpy be ? ToPrimitive(y,number).
    3. Letpx be ? ToPrimitive(x,number).
  3. IfType(px) is String andType(py) is String, then
    1. IfIsStringPrefix(py,px) istrue, returnfalse.
    2. IfIsStringPrefix(px,py) istrue, returntrue.
    3. Letk be the smallest non-negativeinteger such that the code unit at indexk withinpx is different from the code unit at indexk withinpy. (There must be such ak, for neither String is a prefix of the other.)
    4. Letm be theinteger that is the numeric value of the code unit at indexk withinpx.
    5. Letn be theinteger that is the numeric value of the code unit at indexk withinpy.
    6. Ifm <n, returntrue. Otherwise, returnfalse.
  4. Else,
    1. IfType(px) is BigInt andType(py) is String, then
      1. Letny be ! StringToBigInt(py).
      2. Ifny isNaN, returnundefined.
      3. Return BigInt::lessThan(px,ny).
    2. IfType(px) is String andType(py) is BigInt, then
      1. Letnx be ! StringToBigInt(px).
      2. Ifnx isNaN, returnundefined.
      3. Return BigInt::lessThan(nx,py).
    3. NOTE: Becausepx andpy are primitive values, evaluation order is not important.
    4. Letnx be ! ToNumeric(px).
    5. Letny be ! ToNumeric(py).
    6. IfType(nx) is the same asType(ny), returnType(nx)::lessThan(nx,ny).
    7. Assert:Type(nx) is BigInt andType(ny) is Number, orType(nx) is Number andType(ny) is BigInt.
    8. Ifnx orny isNaN, returnundefined.
    9. Ifnx is-∞𝔽 orny is+∞𝔽, returntrue.
    10. Ifnx is+∞𝔽 orny is-∞𝔽, returnfalse.
    11. If(nx) <(ny), returntrue; otherwise returnfalse.
Note 1

Step3 differs from step2.c in the algorithm that handles the addition operator+ (13.15.3) by using the logical-and operation instead of the logical-or operation.

Note 2

The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized form. Also, note that for strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from that on sequences of code point values.

7.2.14 Abstract Equality Comparison

The comparisonx ==y, wherex andy are values, producestrue orfalse. Such a comparison is performed as follows:

  1. IfType(x) is the same asType(y), then
    1. Return the result of performingStrict Equality Comparisonx ===y.
  2. Ifx isnull andy isundefined, returntrue.
  3. Ifx isundefined andy isnull, returntrue.
  4. NOTE: This step is replaced in sectionB.3.7.2.
  5. IfType(x) is Number andType(y) is String, return the result of the comparisonx == ! ToNumber(y).
  6. IfType(x) is String andType(y) is Number, return the result of the comparison ! ToNumber(x) ==y.
  7. IfType(x) is BigInt andType(y) is String, then
    1. Letn be ! StringToBigInt(y).
    2. Ifn isNaN, returnfalse.
    3. Return the result of the comparisonx ==n.
  8. IfType(x) is String andType(y) is BigInt, return the result of the comparisony ==x.
  9. IfType(x) is Boolean, return the result of the comparison ! ToNumber(x) ==y.
  10. IfType(y) is Boolean, return the result of the comparisonx == ! ToNumber(y).
  11. IfType(x) is either String, Number, BigInt, or Symbol andType(y) is Object, return the result of the comparisonx == ? ToPrimitive(y).
  12. IfType(x) is Object andType(y) is either String, Number, BigInt, or Symbol, return the result of the comparison ? ToPrimitive(x) ==y.
  13. IfType(x) is BigInt andType(y) is Number, or ifType(x) is Number andType(y) is BigInt, then
    1. Ifx ory are any ofNaN,+∞𝔽, or-∞𝔽, returnfalse.
    2. If(x) =(y), returntrue; otherwise returnfalse.
  14. Returnfalse.

7.2.15 Strict Equality Comparison

The comparisonx ===y, wherex andy are values, producestrue orfalse. Such a comparison is performed as follows:

  1. IfType(x) is different fromType(y), returnfalse.
  2. IfType(x) is Number or BigInt, then
    1. Return ! Type(x)::equal(x,y).
  3. Return ! SameValueNonNumeric(x,y).
Note

This algorithm differs from theSameValue Algorithm in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 MakeBasicObject (internalSlotsList )

The abstract operation MakeBasicObject takes argumentinternalSlotsList. It is the source of all ECMAScript objects that are created algorithmically, including both ordinary objects and exotic objects. It factors out common steps used in creating all objects, and centralizes object creation. It performs the following steps when called:

  1. Assert:internalSlotsList is aList of internal slot names.
  2. Letobj be a newly created object with an internal slot for each name ininternalSlotsList.
  3. Setobj's essential internal methods to the defaultordinary object definitions specified in10.1.
  4. Assert: If the caller will not be overriding bothobj's [[GetPrototypeOf]] and [[SetPrototypeOf]] essential internal methods, theninternalSlotsList contains [[Prototype]].
  5. Assert: If the caller will not be overriding all ofobj's [[SetPrototypeOf]], [[IsExtensible]], and [[PreventExtensions]] essential internal methods, theninternalSlotsList contains [[Extensible]].
  6. IfinternalSlotsList contains [[Extensible]], setobj.[[Extensible]] totrue.
  7. Returnobj.
Note

Within this specification, exotic objects are created inabstract operations such asArrayCreate andBoundFunctionCreate by first calling MakeBasicObject to obtain a basic, foundational object, and then overriding some or all of that object's internal methods. In order to encapsulateexotic object creation, the object's essential internal methods are never modified outside those operations.

7.3.2 Get (O,P )

The abstract operation Get takes argumentsO (an Object) andP (a property key). It is used to retrieve the value of a specific property of an object. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Return ?O.[[Get]](P,O).

7.3.3 GetV (V,P )

The abstract operation GetV takes argumentsV (anECMAScript language value) andP (a property key). It is used to retrieve the value of a specific property of anECMAScript language value. If the value is not an object, the property lookup is performed using a wrapper object appropriate for the type of the value. It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. LetO be ? ToObject(V).
  3. Return ?O.[[Get]](P,V).

7.3.4 Set (O,P,V,Throw )

The abstract operation Set takes argumentsO (an Object),P (a property key),V (anECMAScript language value), andThrow (a Boolean). It is used to set the value of a specific property of an object.V is the new value for the property. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Assert:Type(Throw) is Boolean.
  4. Letsuccess be ?O.[[Set]](P,V,O).
  5. Ifsuccess isfalse andThrow istrue, throw aTypeError exception.
  6. Returnsuccess.

7.3.5 CreateDataProperty (O,P,V )

The abstract operation CreateDataProperty takes argumentsO (an Object),P (a property key), andV (anECMAScript language value). It is used to create a new own property of an object. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. LetnewDesc be the PropertyDescriptor { [[Value]]:V, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:true }.
  4. Return ?O.[[DefineOwnProperty]](P,newDesc).
Note

This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not configurable or ifO is not extensible, [[DefineOwnProperty]] will returnfalse.

7.3.6 CreateMethodProperty (O,P,V )

The abstract operation CreateMethodProperty takes argumentsO (an Object),P (a property key), andV (anECMAScript language value). It is used to create a new own property of an object. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. LetnewDesc be the PropertyDescriptor { [[Value]]:V, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }.
  4. Return ?O.[[DefineOwnProperty]](P,newDesc).
Note

This abstract operation creates a property whose attributes are set to the same defaults used for built-in methods and methods defined using class declaration syntax. Normally, the property will not already exist. If it does exist and is not configurable or ifO is not extensible, [[DefineOwnProperty]] will returnfalse.

7.3.7 CreateDataPropertyOrThrow (O,P,V )

The abstract operation CreateDataPropertyOrThrow takes argumentsO (an Object),P (a property key), andV (anECMAScript language value). It is used to create a new own property of an object. It throws aTypeError exception if the requested property update cannot be performed. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Letsuccess be ? CreateDataProperty(O,P,V).
  4. Ifsuccess isfalse, throw aTypeError exception.
  5. Returnsuccess.
Note

This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not configurable or ifO is not extensible, [[DefineOwnProperty]] will returnfalse causing this operation to throw aTypeError exception.

7.3.8 DefinePropertyOrThrow (O,P,desc )

The abstract operation DefinePropertyOrThrow takes argumentsO (an Object),P (a property key), anddesc (aProperty Descriptor). It is used to call the [[DefineOwnProperty]] internal method of an object in a manner that will throw aTypeError exception if the requested property update cannot be performed. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Letsuccess be ?O.[[DefineOwnProperty]](P,desc).
  4. Ifsuccess isfalse, throw aTypeError exception.
  5. Returnsuccess.

7.3.9 DeletePropertyOrThrow (O,P )

The abstract operation DeletePropertyOrThrow takes argumentsO (an Object) andP (a property key). It is used to remove a specific own property of an object. It throws an exception if the property is not configurable. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Letsuccess be ?O.[[Delete]](P).
  4. Ifsuccess isfalse, throw aTypeError exception.
  5. Returnsuccess.

7.3.10 GetMethod (V,P )

The abstract operation GetMethod takes argumentsV (anECMAScript language value) andP (a property key). It is used to get the value of a specific property of anECMAScript language value when the value of the property is expected to be a function. It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Letfunc be ? GetV(V,P).
  3. Iffunc is eitherundefined ornull, returnundefined.
  4. IfIsCallable(func) isfalse, throw aTypeError exception.
  5. Returnfunc.

7.3.11 HasProperty (O,P )

The abstract operation HasProperty takes argumentsO (an Object) andP (a property key) and returns a completion record which, if its [[Type]] isnormal, has a [[Value]] which is a Boolean. It is used to determine whether an object has a property with the specified property key. The property may be either an own or inherited. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Return ?O.[[HasProperty]](P).

7.3.12 HasOwnProperty (O,P )

The abstract operation HasOwnProperty takes argumentsO (an Object) andP (a property key) and returns a completion record which, if its [[Type]] isnormal, has a [[Value]] which is a Boolean. It is used to determine whether an object has an own property with the specified property key. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:IsPropertyKey(P) istrue.
  3. Letdesc be ?O.[[GetOwnProperty]](P).
  4. Ifdesc isundefined, returnfalse.
  5. Returntrue.

7.3.13 Call (F,V [ ,argumentsList ] )

The abstract operation Call takes argumentsF (anECMAScript language value) andV (anECMAScript language value) and optional argumentargumentsList (aList of ECMAScript language values). It is used to call the [[Call]] internal method of afunction object.F is thefunction object,V is anECMAScript language value that is thethis value of the [[Call]], andargumentsList is the value passed to the corresponding argument of the internal method. IfargumentsList is not present, a new emptyList is used as its value. It performs the following steps when called:

  1. IfargumentsList is not present, setargumentsList to a new emptyList.
  2. IfIsCallable(F) isfalse, throw aTypeError exception.
  3. Return ?F.[[Call]](V,argumentsList).

7.3.14 Construct (F [ ,argumentsList [ ,newTarget ] ] )

The abstract operation Construct takes argumentF (afunction object) and optional argumentsargumentsList andnewTarget. It is used to call the [[Construct]] internal method of afunction object.argumentsList andnewTarget are the values to be passed as the corresponding arguments of the internal method. IfargumentsList is not present, a new emptyList is used as its value. IfnewTarget is not present,F is used as its value. It performs the following steps when called:

  1. IfnewTarget is not present, setnewTarget toF.
  2. IfargumentsList is not present, setargumentsList to a new emptyList.
  3. Assert:IsConstructor(F) istrue.
  4. Assert:IsConstructor(newTarget) istrue.
  5. Return ?F.[[Construct]](argumentsList,newTarget).
Note

IfnewTarget is not present, this operation is equivalent to:new F(...argumentsList)

7.3.15 SetIntegrityLevel (O,level )

The abstract operation SetIntegrityLevel takes argumentsO andlevel. It is used to fix the set of own properties of an object. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:level is eithersealed orfrozen.
  3. Letstatus be ?O.[[PreventExtensions]]().
  4. Ifstatus isfalse, returnfalse.
  5. Letkeys be ?O.[[OwnPropertyKeys]]().
  6. Iflevel issealed, then
    1. For each elementk ofkeys, do
      1. Perform ? DefinePropertyOrThrow(O,k, PropertyDescriptor { [[Configurable]]:false }).
  7. Else,
    1. Assert:level isfrozen.
    2. For each elementk ofkeys, do
      1. LetcurrentDesc be ?O.[[GetOwnProperty]](k).
      2. IfcurrentDesc is notundefined, then
        1. IfIsAccessorDescriptor(currentDesc) istrue, then
          1. Letdesc be the PropertyDescriptor { [[Configurable]]:false }.
        2. Else,
          1. Letdesc be the PropertyDescriptor { [[Configurable]]:false, [[Writable]]:false }.
        3. Perform ? DefinePropertyOrThrow(O,k,desc).
  8. Returntrue.

7.3.16 TestIntegrityLevel (O,level )

The abstract operation TestIntegrityLevel takes argumentsO andlevel. It is used to determine if the set of own properties of an object are fixed. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Assert:level is eithersealed orfrozen.
  3. Letextensible be ? IsExtensible(O).
  4. Ifextensible istrue, returnfalse.
  5. NOTE: If the object is extensible, none of its properties are examined.
  6. Letkeys be ?O.[[OwnPropertyKeys]]().
  7. For each elementk ofkeys, do
    1. LetcurrentDesc be ?O.[[GetOwnProperty]](k).
    2. IfcurrentDesc is notundefined, then
      1. IfcurrentDesc.[[Configurable]] istrue, returnfalse.
      2. Iflevel isfrozen andIsDataDescriptor(currentDesc) istrue, then
        1. IfcurrentDesc.[[Writable]] istrue, returnfalse.
  8. Returntrue.

7.3.17 CreateArrayFromList (elements )

The abstract operation CreateArrayFromList takes argumentelements (aList). It is used to create an Array object whose elements are provided byelements. It performs the following steps when called:

  1. Assert:elements is aList whose elements are all ECMAScript language values.
  2. Letarray be ! ArrayCreate(0).
  3. Letn be 0.
  4. For each elemente ofelements, do
    1. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(n)),e).
    2. Setn ton + 1.
  5. Returnarray.

7.3.18 LengthOfArrayLike (obj )

The abstract operation LengthOfArrayLike takes argumentobj. It returns the value of the"length" property of an array-like object (as a non-negativeinteger). It performs the following steps when called:

  1. Assert:Type(obj) is Object.
  2. Return(?ToLength(?Get(obj,"length"))).

Anarray-like object is any object for which this operation returns aninteger rather than anabrupt completion.

Note 1
Typically, an array-like object would also have some properties withinteger index names. However, that is not a requirement of this definition.
Note 2
Array objects and String objects are examples of array-like objects.

7.3.19 CreateListFromArrayLike (obj [ ,elementTypes ] )

The abstract operation CreateListFromArrayLike takes argumentobj and optional argumentelementTypes (aList of names of ECMAScript Language Types). It is used to create aList value whose elements are provided by the indexed properties ofobj.elementTypes contains the names of ECMAScript Language Types that are allowed for element values of theList that is created. It performs the following steps when called:

  1. IfelementTypes is not present, setelementTypes to « Undefined, Null, Boolean, String, Symbol, Number, BigInt, Object ».
  2. IfType(obj) is not Object, throw aTypeError exception.
  3. Letlen be ? LengthOfArrayLike(obj).
  4. Letlist be a new emptyList.
  5. Letindex be 0.
  6. Repeat, whileindex <len,
    1. LetindexName be ! ToString(𝔽(index)).
    2. Letnext be ? Get(obj,indexName).
    3. IfType(next) is not an element ofelementTypes, throw aTypeError exception.
    4. Appendnext as the last element oflist.
    5. Setindex toindex + 1.
  7. Returnlist.

7.3.20 Invoke (V,P [ ,argumentsList ] )

The abstract operation Invoke takes argumentsV (anECMAScript language value) andP (a property key) and optional argumentargumentsList (aList of ECMAScript language values). It is used to call a method property of anECMAScript language value.V serves as both the lookup point for the property and thethis value of the call.argumentsList is the list of arguments values passed to the method. IfargumentsList is not present, a new emptyList is used as its value. It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfargumentsList is not present, setargumentsList to a new emptyList.
  3. Letfunc be ? GetV(V,P).
  4. Return ? Call(func,V,argumentsList).

7.3.21 OrdinaryHasInstance (C,O )

The abstract operation OrdinaryHasInstance takes argumentsC (anECMAScript language value) andO. It implements the default algorithm for determining ifO inherits from the instance object inheritance path provided byC. It performs the following steps when called:

  1. IfIsCallable(C) isfalse, returnfalse.
  2. IfC has a [[BoundTargetFunction]] internal slot, then
    1. LetBC beC.[[BoundTargetFunction]].
    2. Return ? InstanceofOperator(O,BC).
  3. IfType(O) is not Object, returnfalse.
  4. LetP be ? Get(C,"prototype").
  5. IfType(P) is not Object, throw aTypeError exception.
  6. Repeat,
    1. SetO to ?O.[[GetPrototypeOf]]().
    2. IfO isnull, returnfalse.
    3. IfSameValue(P,O) istrue, returntrue.

7.3.22 SpeciesConstructor (O,defaultConstructor )

The abstract operation SpeciesConstructor takes argumentsO (an Object) anddefaultConstructor (aconstructor). It is used to retrieve theconstructor that should be used to create new objects that are derived fromO.defaultConstructor is theconstructor to use if aconstructor@@species property cannot be found starting fromO. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. LetC be ? Get(O,"constructor").
  3. IfC isundefined, returndefaultConstructor.
  4. IfType(C) is not Object, throw aTypeError exception.
  5. LetS be ? Get(C,@@species).
  6. IfS is eitherundefined ornull, returndefaultConstructor.
  7. IfIsConstructor(S) istrue, returnS.
  8. Throw aTypeError exception.

7.3.23 EnumerableOwnPropertyNames (O,kind )

The abstract operation EnumerableOwnPropertyNames takes argumentsO (an Object) andkind (one ofkey,value, orkey+value). It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. LetownKeys be ?O.[[OwnPropertyKeys]]().
  3. Letproperties be a new emptyList.
  4. For each elementkey ofownKeys, do
    1. IfType(key) is String, then
      1. Letdesc be ?O.[[GetOwnProperty]](key).
      2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
        1. Ifkind iskey, appendkey toproperties.
        2. Else,
          1. Letvalue be ? Get(O,key).
          2. Ifkind isvalue, appendvalue toproperties.
          3. Else,
            1. Assert:kind iskey+value.
            2. Letentry be ! CreateArrayFromListkey,value »).
            3. Appendentry toproperties.
  5. Returnproperties.

7.3.24 GetFunctionRealm (obj )

The abstract operation GetFunctionRealm takes argumentobj. It performs the following steps when called:

  1. Assert: ! IsCallable(obj) istrue.
  2. Ifobj has a [[Realm]] internal slot, then
    1. Returnobj.[[Realm]].
  3. Ifobj is abound function exotic object, then
    1. Lettarget beobj.[[BoundTargetFunction]].
    2. Return ? GetFunctionRealm(target).
  4. Ifobj is aProxy exotic object, then
    1. Ifobj.[[ProxyHandler]] isnull, throw aTypeError exception.
    2. LetproxyTarget beobj.[[ProxyTarget]].
    3. Return ? GetFunctionRealm(proxyTarget).
  5. Returnthe current Realm Record.
Note

Step5 will only be reached ifobj is a non-standard functionexotic object that does not have a [[Realm]] internal slot.

7.3.25 CopyDataProperties (target,source,excludedItems )

The abstract operation CopyDataProperties takes argumentstarget,source, andexcludedItems. It performs the following steps when called:

  1. Assert:Type(target) is Object.
  2. Assert:excludedItems is aList of property keys.
  3. Ifsource isundefined ornull, returntarget.
  4. Letfrom be ! ToObject(source).
  5. Letkeys be ?from.[[OwnPropertyKeys]]().
  6. For each elementnextKey ofkeys, do
    1. Letexcluded befalse.
    2. For each elemente ofexcludedItems, do
      1. IfSameValue(e,nextKey) istrue, then
        1. Setexcluded totrue.
    3. Ifexcluded isfalse, then
      1. Letdesc be ?from.[[GetOwnProperty]](nextKey).
      2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
        1. LetpropValue be ? Get(from,nextKey).
        2. Perform ! CreateDataPropertyOrThrow(target,nextKey,propValue).
  7. Returntarget.
Note

The target passed in here is always a newly created object which is not directly accessible in case of an error being thrown.

7.4 Operations on Iterator Objects

See Common Iteration Interfaces (27.1).

7.4.1 GetIterator (obj [ ,hint [ ,method ] ] )

The abstract operation GetIterator takes argumentobj and optional argumentshint andmethod. It performs the following steps when called:

  1. Ifhint is not present, sethint tosync.
  2. Assert:hint is eithersync orasync.
  3. Ifmethod is not present, then
    1. Ifhint isasync, then
      1. Setmethod to ? GetMethod(obj,@@asyncIterator).
      2. Ifmethod isundefined, then
        1. LetsyncMethod be ? GetMethod(obj,@@iterator).
        2. LetsyncIteratorRecord be ? GetIterator(obj,sync,syncMethod).
        3. Return ! CreateAsyncFromSyncIterator(syncIteratorRecord).
    2. Otherwise, setmethod to ? GetMethod(obj,@@iterator).
  4. Letiterator be ? Call(method,obj).
  5. IfType(iterator) is not Object, throw aTypeError exception.
  6. LetnextMethod be ? GetV(iterator,"next").
  7. LetiteratorRecord be theRecord { [[Iterator]]:iterator, [[NextMethod]]:nextMethod, [[Done]]:false }.
  8. ReturniteratorRecord.

7.4.2 IteratorNext (iteratorRecord [ ,value ] )

The abstract operation IteratorNext takes argumentiteratorRecord and optional argumentvalue. It performs the following steps when called:

  1. Ifvalue is not present, then
    1. Letresult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]]).
  2. Else,
    1. Letresult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]], «value »).
  3. IfType(result) is not Object, throw aTypeError exception.
  4. Returnresult.

7.4.3 IteratorComplete (iterResult )

The abstract operation IteratorComplete takes argumentiterResult. It performs the following steps when called:

  1. Assert:Type(iterResult) is Object.
  2. Return ! ToBoolean(?Get(iterResult,"done")).

7.4.4 IteratorValue (iterResult )

The abstract operation IteratorValue takes argumentiterResult. It performs the following steps when called:

  1. Assert:Type(iterResult) is Object.
  2. Return ? Get(iterResult,"value").

7.4.5 IteratorStep (iteratorRecord )

The abstract operation IteratorStep takes argumentiteratorRecord. It requests the next value fromiteratorRecord.[[Iterator]] by callingiteratorRecord.[[NextMethod]] and returns eitherfalse indicating that the iterator has reached its end or the IteratorResult object if a next value is available. It performs the following steps when called:

  1. Letresult be ? IteratorNext(iteratorRecord).
  2. Letdone be ? IteratorComplete(result).
  3. Ifdone istrue, returnfalse.
  4. Returnresult.

7.4.6 IteratorClose (iteratorRecord,completion )

The abstract operation IteratorClose takes argumentsiteratorRecord andcompletion. It is used to notify an iterator that it should perform any actions it would normally perform when it has reached its completed state. It performs the following steps when called:

  1. Assert:Type(iteratorRecord.[[Iterator]]) is Object.
  2. Assert:completion is aCompletion Record.
  3. Letiterator beiteratorRecord.[[Iterator]].
  4. LetinnerResult beGetMethod(iterator,"return").
  5. IfinnerResult.[[Type]] isnormal, then
    1. Letreturn beinnerResult.[[Value]].
    2. Ifreturn isundefined, returnCompletion(completion).
    3. SetinnerResult toCall(return,iterator).
  6. Ifcompletion.[[Type]] isthrow, returnCompletion(completion).
  7. IfinnerResult.[[Type]] isthrow, returnCompletion(innerResult).
  8. IfType(innerResult.[[Value]]) is not Object, throw aTypeError exception.
  9. ReturnCompletion(completion).

7.4.7 AsyncIteratorClose (iteratorRecord,completion )

The abstract operation AsyncIteratorClose takes argumentsiteratorRecord andcompletion. It is used to notify an async iterator that it should perform any actions it would normally perform when it has reached its completed state. It performs the following steps when called:

  1. Assert:Type(iteratorRecord.[[Iterator]]) is Object.
  2. Assert:completion is aCompletion Record.
  3. Letiterator beiteratorRecord.[[Iterator]].
  4. LetinnerResult beGetMethod(iterator,"return").
  5. IfinnerResult.[[Type]] isnormal, then
    1. Letreturn beinnerResult.[[Value]].
    2. Ifreturn isundefined, returnCompletion(completion).
    3. SetinnerResult toCall(return,iterator).
    4. IfinnerResult.[[Type]] isnormal, setinnerResult toAwait(innerResult.[[Value]]).
  6. Ifcompletion.[[Type]] isthrow, returnCompletion(completion).
  7. IfinnerResult.[[Type]] isthrow, returnCompletion(innerResult).
  8. IfType(innerResult.[[Value]]) is not Object, throw aTypeError exception.
  9. ReturnCompletion(completion).

7.4.8 CreateIterResultObject (value,done )

The abstract operation CreateIterResultObject takes argumentsvalue anddone. It creates an object that supports the IteratorResult interface. It performs the following steps when called:

  1. Assert:Type(done) is Boolean.
  2. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  3. Perform ! CreateDataPropertyOrThrow(obj,"value",value).
  4. Perform ! CreateDataPropertyOrThrow(obj,"done",done).
  5. Returnobj.

7.4.9 CreateListIteratorRecord (list )

The abstract operation CreateListIteratorRecord takes argumentlist. It creates an Iterator (27.1.1.2) object record whose next method returns the successive elements oflist. It performs the following steps when called:

  1. Letclosure be a newAbstract Closure with no parameters that captureslist and performs the following steps when called:
    1. For each elementE oflist, do
      1. Perform ? Yield(E).
    2. Returnundefined.
  2. Letiterator be ! CreateIteratorFromClosure(closure,empty,%IteratorPrototype%).
  3. ReturnRecord { [[Iterator]]:iterator, [[NextMethod]]: %GeneratorFunction.prototype.prototype.next%, [[Done]]:false }.
Note

The list iterator object is never directly accessible to ECMAScript code.

7.4.10 IterableToList (items [ ,method ] )

The abstract operation IterableToList takes argumentitems and optional argumentmethod. It performs the following steps when called:

  1. Ifmethod is present, then
    1. LetiteratorRecord be ? GetIterator(items,sync,method).
  2. Else,
    1. LetiteratorRecord be ? GetIterator(items,sync).
  3. Letvalues be a new emptyList.
  4. Letnext betrue.
  5. Repeat, whilenext is notfalse,
    1. Setnext to ? IteratorStep(iteratorRecord).
    2. Ifnext is notfalse, then
      1. LetnextValue be ? IteratorValue(next).
      2. AppendnextValue to the end of theListvalues.
  6. Returnvalues.

8 Syntax-Directed Operations

In addition to those defined in this section, specialized syntax-directed operations are defined throughout this specification.

8.1 Scope Analysis

8.1.1 Static Semantics: BoundNames

Note

"*default*" is used within this specification as a synthetic name for hoistable anonymous functions that are defined using export declarations.

BindingIdentifier:Identifier
  1. Return aList whose sole element is theStringValue ofIdentifier.
BindingIdentifier:yield
  1. Return aList whose sole element is"yield".
BindingIdentifier:await
  1. Return aList whose sole element is"await".
LexicalDeclaration:LetOrConstBindingList;
  1. Return theBoundNames ofBindingList.
BindingList:BindingList,LexicalBinding
  1. Letnames be theBoundNames ofBindingList.
  2. Append tonames the elements of theBoundNames ofLexicalBinding.
  3. Returnnames.
LexicalBinding:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
LexicalBinding:BindingPatternInitializer
  1. Return theBoundNames ofBindingPattern.
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Letnames beBoundNames ofVariableDeclarationList.
  2. Append tonames the elements ofBoundNames ofVariableDeclaration.
  3. Returnnames.
VariableDeclaration:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
VariableDeclaration:BindingPatternInitializer
  1. Return theBoundNames ofBindingPattern.
ObjectBindingPattern:{}
  1. Return a new emptyList.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. Letnames beBoundNames ofBindingPropertyList.
  2. Append tonames the elements ofBoundNames ofBindingRestProperty.
  3. Returnnames.
ArrayBindingPattern:[Elisionopt]
  1. Return a new emptyList.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. Return theBoundNames ofBindingRestElement.
ArrayBindingPattern:[BindingElementList,Elisionopt]
  1. Return theBoundNames ofBindingElementList.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Letnames beBoundNames ofBindingElementList.
  2. Append tonames the elements ofBoundNames ofBindingRestElement.
  3. Returnnames.
BindingPropertyList:BindingPropertyList,BindingProperty
  1. Letnames beBoundNames ofBindingPropertyList.
  2. Append tonames the elements ofBoundNames ofBindingProperty.
  3. Returnnames.
BindingElementList:BindingElementList,BindingElisionElement
  1. Letnames beBoundNames ofBindingElementList.
  2. Append tonames the elements ofBoundNames ofBindingElisionElement.
  3. Returnnames.
BindingElisionElement:ElisionoptBindingElement
  1. ReturnBoundNames ofBindingElement.
BindingProperty:PropertyName:BindingElement
  1. Return theBoundNames ofBindingElement.
SingleNameBinding:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
BindingElement:BindingPatternInitializeropt
  1. Return theBoundNames ofBindingPattern.
ForDeclaration:LetOrConstForBinding
  1. Return theBoundNames ofForBinding.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Return theBoundNames ofBindingIdentifier.
FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. Return «"*default*" ».
FormalParameters:[empty]
  1. Return a new emptyList.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Letnames beBoundNames ofFormalParameterList.
  2. Append tonames theBoundNames ofFunctionRestParameter.
  3. Returnnames.
FormalParameterList:FormalParameterList,FormalParameter
  1. Letnames beBoundNames ofFormalParameterList.
  2. Append tonames theBoundNames ofFormalParameter.
  3. Returnnames.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. Return theBoundNames offormals.
GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Return theBoundNames ofBindingIdentifier.
GeneratorDeclaration:function*(FormalParameters){GeneratorBody}
  1. Return «"*default*" ».
AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Return theBoundNames ofBindingIdentifier.
AsyncGeneratorDeclaration:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. Return «"*default*" ».
ClassDeclaration:classBindingIdentifierClassTail
  1. Return theBoundNames ofBindingIdentifier.
ClassDeclaration:classClassTail
  1. Return «"*default*" ».
AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Return theBoundNames ofBindingIdentifier.
AsyncFunctionDeclaration:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Return «"*default*" ».
CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Lethead beCoveredAsyncArrowHead ofCoverCallExpressionAndAsyncArrowHead.
  2. Return theBoundNames ofhead.
ImportDeclaration:importImportClauseFromClause;
  1. Return theBoundNames ofImportClause.
ImportDeclaration:importModuleSpecifier;
  1. Return a new emptyList.
ImportClause:ImportedDefaultBinding,NameSpaceImport
  1. Letnames be theBoundNames ofImportedDefaultBinding.
  2. Append tonames the elements of theBoundNames ofNameSpaceImport.
  3. Returnnames.
ImportClause:ImportedDefaultBinding,NamedImports
  1. Letnames be theBoundNames ofImportedDefaultBinding.
  2. Append tonames the elements of theBoundNames ofNamedImports.
  3. Returnnames.
NamedImports:{}
  1. Return a new emptyList.
ImportsList:ImportsList,ImportSpecifier
  1. Letnames be theBoundNames ofImportsList.
  2. Append tonames the elements of theBoundNames ofImportSpecifier.
  3. Returnnames.
ImportSpecifier:IdentifierNameasImportedBinding
  1. Return theBoundNames ofImportedBinding.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;
  1. Return a new emptyList.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. LetdeclarationNames be theBoundNames ofHoistableDeclaration.
  2. IfdeclarationNames does not include the element"*default*", append"*default*" todeclarationNames.
  3. ReturndeclarationNames.
ExportDeclaration:exportdefaultClassDeclaration
  1. LetdeclarationNames be theBoundNames ofClassDeclaration.
  2. IfdeclarationNames does not include the element"*default*", append"*default*" todeclarationNames.
  3. ReturndeclarationNames.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Return «"*default*" ».

8.1.2 Static Semantics: DeclarationPart

HoistableDeclaration:FunctionDeclaration
  1. ReturnFunctionDeclaration.
HoistableDeclaration:GeneratorDeclaration
  1. ReturnGeneratorDeclaration.
HoistableDeclaration:AsyncFunctionDeclaration
  1. ReturnAsyncFunctionDeclaration.
HoistableDeclaration:AsyncGeneratorDeclaration
  1. ReturnAsyncGeneratorDeclaration.
Declaration:ClassDeclaration
  1. ReturnClassDeclaration.
Declaration:LexicalDeclaration
  1. ReturnLexicalDeclaration.

8.1.3 Static Semantics: IsConstantDeclaration

LexicalDeclaration:LetOrConstBindingList;
  1. ReturnIsConstantDeclaration ofLetOrConst.
LetOrConst:let
  1. Returnfalse.
LetOrConst:const
  1. Returntrue.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Returnfalse.
ClassDeclaration:classBindingIdentifierClassTailclassClassTail
  1. Returnfalse.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportdefaultAssignmentExpression;
  1. Returnfalse.
Note

It is not necessary to treatexport defaultAssignmentExpression as a constant declaration because there is no syntax that permits assignment to the internal bound name used to reference a module's default object.

8.1.4 Static Semantics: LexicallyDeclaredNames

Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letnames beLexicallyDeclaredNames ofStatementList.
  2. Append tonames the elements of theLexicallyDeclaredNames ofStatementListItem.
  3. Returnnames.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnLexicallyDeclaredNames ofLabelledStatement.
  2. Return a new emptyList.
StatementListItem:Declaration
  1. Return theBoundNames ofDeclaration.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letnames be theLexicallyDeclaredNames of the firstCaseClauses.
  2. Else, letnames be a new emptyList.
  3. Append tonames the elements of theLexicallyDeclaredNames ofDefaultClause.
  4. If the secondCaseClauses is not present, returnnames.
  5. Return the result of appending tonames the elements of theLexicallyDeclaredNames of the secondCaseClauses.
CaseClauses:CaseClausesCaseClause
  1. Letnames beLexicallyDeclaredNames ofCaseClauses.
  2. Append tonames the elements of theLexicallyDeclaredNames ofCaseClause.
  3. Returnnames.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theLexicallyDeclaredNames ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theLexicallyDeclaredNames ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theLexicallyDeclaredNames ofLabelledItem.
LabelledItem:Statement
  1. Return a new emptyList.
LabelledItem:FunctionDeclaration
  1. ReturnBoundNames ofFunctionDeclaration.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. ReturnTopLevelLexicallyDeclaredNames ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelLexicallyDeclaredNames ofStatementList.
Note 1

At the top level of aScript, function declarations are treated like var declarations rather than like lexical declarations.

Note 2

The LexicallyDeclaredNames of aModule includes the names of all of its imported bindings.

ModuleItemList:ModuleItemListModuleItem
  1. Letnames beLexicallyDeclaredNames ofModuleItemList.
  2. Append tonames the elements of theLexicallyDeclaredNames ofModuleItem.
  3. Returnnames.
ModuleItem:ImportDeclaration
  1. Return theBoundNames ofImportDeclaration.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, return a new emptyList.
  2. Return theBoundNames ofExportDeclaration.
ModuleItem:StatementListItem
  1. ReturnLexicallyDeclaredNames ofStatementListItem.
Note 3

At the top level of aModule, function declarations are treated like lexical declarations rather than like var declarations.

8.1.5 Static Semantics: LexicallyScopedDeclarations

StatementList:StatementListStatementListItem
  1. Letdeclarations beLexicallyScopedDeclarations ofStatementList.
  2. Append todeclarations the elements of theLexicallyScopedDeclarations ofStatementListItem.
  3. Returndeclarations.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnLexicallyScopedDeclarations ofLabelledStatement.
  2. Return a new emptyList.
StatementListItem:Declaration
  1. Return aList whose sole element isDeclarationPart ofDeclaration.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letdeclarations be theLexicallyScopedDeclarations of the firstCaseClauses.
  2. Else, letdeclarations be a new emptyList.
  3. Append todeclarations the elements of theLexicallyScopedDeclarations ofDefaultClause.
  4. If the secondCaseClauses is not present, returndeclarations.
  5. Return the result of appending todeclarations the elements of theLexicallyScopedDeclarations of the secondCaseClauses.
CaseClauses:CaseClausesCaseClause
  1. Letdeclarations beLexicallyScopedDeclarations ofCaseClauses.
  2. Append todeclarations the elements of theLexicallyScopedDeclarations ofCaseClause.
  3. Returndeclarations.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theLexicallyScopedDeclarations ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theLexicallyScopedDeclarations ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theLexicallyScopedDeclarations ofLabelledItem.
LabelledItem:Statement
  1. Return a new emptyList.
LabelledItem:FunctionDeclaration
  1. Return aList whose sole element isFunctionDeclaration.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. Return theTopLevelLexicallyScopedDeclarations ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelLexicallyScopedDeclarations ofStatementList.
Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letdeclarations beLexicallyScopedDeclarations ofModuleItemList.
  2. Append todeclarations the elements of theLexicallyScopedDeclarations ofModuleItem.
  3. Returndeclarations.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement
  1. Return a new emptyList.
ExportDeclaration:exportDeclaration
  1. Return aList whose sole element isDeclarationPart ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Return aList whose sole element isDeclarationPart ofHoistableDeclaration.
ExportDeclaration:exportdefaultClassDeclaration
  1. Return aList whose sole element isClassDeclaration.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Return aList whose sole element is thisExportDeclaration.

8.1.6 Static Semantics: VarDeclaredNames

Statement:EmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatement
  1. Return a new emptyList.
Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letnames beVarDeclaredNames ofStatementList.
  2. Append tonames the elements of theVarDeclaredNames ofStatementListItem.
  3. Returnnames.
StatementListItem:Declaration
  1. Return a new emptyList.
VariableStatement:varVariableDeclarationList;
  1. ReturnBoundNames ofVariableDeclarationList.
IfStatement:if(Expression)StatementelseStatement
  1. Letnames beVarDeclaredNames of the firstStatement.
  2. Append tonames the elements of theVarDeclaredNames of the secondStatement.
  3. Returnnames.
IfStatement:if(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
DoWhileStatement:doStatementwhile(Expression);
  1. Return theVarDeclaredNames ofStatement.
WhileStatement:while(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. Return theVarDeclaredNames ofStatement.
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. Letnames beBoundNames ofVariableDeclarationList.
  2. Append tonames the elements of theVarDeclaredNames ofStatement.
  3. Returnnames.
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. Return theVarDeclaredNames ofStatement.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. Return theVarDeclaredNames ofStatement.
ForInOfStatement:for(varForBindinginExpression)Statementfor(varForBindingofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statement
  1. Letnames be theBoundNames ofForBinding.
  2. Append tonames the elements of theVarDeclaredNames ofStatement.
  3. Returnnames.
Note

This section is extended by AnnexB.3.6.

WithStatement:with(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
SwitchStatement:switch(Expression)CaseBlock
  1. Return theVarDeclaredNames ofCaseBlock.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letnames be theVarDeclaredNames of the firstCaseClauses.
  2. Else, letnames be a new emptyList.
  3. Append tonames the elements of theVarDeclaredNames ofDefaultClause.
  4. If the secondCaseClauses is not present, returnnames.
  5. Return the result of appending tonames the elements of theVarDeclaredNames of the secondCaseClauses.
CaseClauses:CaseClausesCaseClause
  1. Letnames beVarDeclaredNames ofCaseClauses.
  2. Append tonames the elements of theVarDeclaredNames ofCaseClause.
  3. Returnnames.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theVarDeclaredNames ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theVarDeclaredNames ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theVarDeclaredNames ofLabelledItem.
LabelledItem:FunctionDeclaration
  1. Return a new emptyList.
TryStatement:tryBlockCatch
  1. Letnames beVarDeclaredNames ofBlock.
  2. Append tonames the elements of theVarDeclaredNames ofCatch.
  3. Returnnames.
TryStatement:tryBlockFinally
  1. Letnames beVarDeclaredNames ofBlock.
  2. Append tonames the elements of theVarDeclaredNames ofFinally.
  3. Returnnames.
TryStatement:tryBlockCatchFinally
  1. Letnames beVarDeclaredNames ofBlock.
  2. Append tonames the elements of theVarDeclaredNames ofCatch.
  3. Append tonames the elements of theVarDeclaredNames ofFinally.
  4. Returnnames.
Catch:catch(CatchParameter)Block
  1. Return theVarDeclaredNames ofBlock.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. ReturnTopLevelVarDeclaredNames ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelVarDeclaredNames ofStatementList.
Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letnames beVarDeclaredNames ofModuleItemList.
  2. Append tonames the elements of theVarDeclaredNames ofModuleItem.
  3. Returnnames.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, returnBoundNames ofExportDeclaration.
  2. Return a new emptyList.

8.1.7 Static Semantics: VarScopedDeclarations

Statement:EmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatement
  1. Return a new emptyList.
Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letdeclarations beVarScopedDeclarations ofStatementList.
  2. Append todeclarations the elements of theVarScopedDeclarations ofStatementListItem.
  3. Returndeclarations.
StatementListItem:Declaration
  1. Return a new emptyList.
VariableDeclarationList:VariableDeclaration
  1. Return aList whose sole element isVariableDeclaration.
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Letdeclarations beVarScopedDeclarations ofVariableDeclarationList.
  2. AppendVariableDeclaration todeclarations.
  3. Returndeclarations.
IfStatement:if(Expression)StatementelseStatement
  1. Letdeclarations beVarScopedDeclarations of the firstStatement.
  2. Append todeclarations the elements of theVarScopedDeclarations of the secondStatement.
  3. Returndeclarations.
IfStatement:if(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
DoWhileStatement:doStatementwhile(Expression);
  1. Return theVarScopedDeclarations ofStatement.
WhileStatement:while(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. Letdeclarations beVarScopedDeclarations ofVariableDeclarationList.
  2. Append todeclarations the elements of theVarScopedDeclarations ofStatement.
  3. Returndeclarations.
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForInOfStatement:for(varForBindinginExpression)Statementfor(varForBindingofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statement
  1. Letdeclarations be aList whose sole element isForBinding.
  2. Append todeclarations the elements of theVarScopedDeclarations ofStatement.
  3. Returndeclarations.
Note

This section is extended by AnnexB.3.6.

WithStatement:with(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
SwitchStatement:switch(Expression)CaseBlock
  1. Return theVarScopedDeclarations ofCaseBlock.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letdeclarations be theVarScopedDeclarations of the firstCaseClauses.
  2. Else, letdeclarations be a new emptyList.
  3. Append todeclarations the elements of theVarScopedDeclarations ofDefaultClause.
  4. If the secondCaseClauses is not present, returndeclarations.
  5. Return the result of appending todeclarations the elements of theVarScopedDeclarations of the secondCaseClauses.
CaseClauses:CaseClausesCaseClause
  1. Letdeclarations beVarScopedDeclarations ofCaseClauses.
  2. Append todeclarations the elements of theVarScopedDeclarations ofCaseClause.
  3. Returndeclarations.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theVarScopedDeclarations ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theVarScopedDeclarations ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theVarScopedDeclarations ofLabelledItem.
LabelledItem:FunctionDeclaration
  1. Return a new emptyList.
TryStatement:tryBlockCatch
  1. Letdeclarations beVarScopedDeclarations ofBlock.
  2. Append todeclarations the elements of theVarScopedDeclarations ofCatch.
  3. Returndeclarations.
TryStatement:tryBlockFinally
  1. Letdeclarations beVarScopedDeclarations ofBlock.
  2. Append todeclarations the elements of theVarScopedDeclarations ofFinally.
  3. Returndeclarations.
TryStatement:tryBlockCatchFinally
  1. Letdeclarations beVarScopedDeclarations ofBlock.
  2. Append todeclarations the elements of theVarScopedDeclarations ofCatch.
  3. Append todeclarations the elements of theVarScopedDeclarations ofFinally.
  4. Returndeclarations.
Catch:catch(CatchParameter)Block
  1. Return theVarScopedDeclarations ofBlock.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. Return theTopLevelVarScopedDeclarations ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelVarScopedDeclarations ofStatementList.
Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letdeclarations beVarScopedDeclarations ofModuleItemList.
  2. Append todeclarations the elements of theVarScopedDeclarations ofModuleItem.
  3. Returndeclarations.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, returnVarScopedDeclarations ofVariableStatement.
  2. Return a new emptyList.

8.1.8 Static Semantics: TopLevelLexicallyDeclaredNames

StatementList:StatementListStatementListItem
  1. Letnames beTopLevelLexicallyDeclaredNames ofStatementList.
  2. Append tonames the elements of theTopLevelLexicallyDeclaredNames ofStatementListItem.
  3. Returnnames.
StatementListItem:Statement
  1. Return a new emptyList.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration , then
    1. Return « ».
  2. Return theBoundNames ofDeclaration.
Note

At the top level of a function, or script, function declarations are treated like var declarations rather than like lexical declarations.

LabelledStatement:LabelIdentifier:LabelledItem
  1. Return a new emptyList.

8.1.9 Static Semantics: TopLevelLexicallyScopedDeclarations

Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letdeclarations beTopLevelLexicallyScopedDeclarations ofStatementList.
  2. Append todeclarations the elements of theTopLevelLexicallyScopedDeclarations ofStatementListItem.
  3. Returndeclarations.
StatementListItem:Statement
  1. Return a new emptyList.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration , then
    1. Return « ».
  2. Return aList whose sole element isDeclaration.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return a new emptyList.

8.1.10 Static Semantics: TopLevelVarDeclaredNames

Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letnames beTopLevelVarDeclaredNames ofStatementList.
  2. Append tonames the elements of theTopLevelVarDeclaredNames ofStatementListItem.
  3. Returnnames.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration , then
    1. Return theBoundNames ofHoistableDeclaration.
  2. Return a new emptyList.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnTopLevelVarDeclaredNames ofStatement.
  2. ReturnVarDeclaredNames ofStatement.
Note

At the top level of a function or script, inner function declarations are treated like var declarations.

LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theTopLevelVarDeclaredNames ofLabelledItem.
LabelledItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnTopLevelVarDeclaredNames ofStatement.
  2. ReturnVarDeclaredNames ofStatement.
LabelledItem:FunctionDeclaration
  1. ReturnBoundNames ofFunctionDeclaration.

8.1.11 Static Semantics: TopLevelVarScopedDeclarations

Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letdeclarations beTopLevelVarScopedDeclarations ofStatementList.
  2. Append todeclarations the elements of theTopLevelVarScopedDeclarations ofStatementListItem.
  3. Returndeclarations.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnTopLevelVarScopedDeclarations ofStatement.
  2. ReturnVarScopedDeclarations ofStatement.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration , then
    1. Letdeclaration beDeclarationPart ofHoistableDeclaration.
    2. Return «declaration ».
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theTopLevelVarScopedDeclarations ofLabelledItem.
LabelledItem:Statement
  1. IfStatement isStatement:LabelledStatement , returnTopLevelVarScopedDeclarations ofStatement.
  2. ReturnVarScopedDeclarations ofStatement.
LabelledItem:FunctionDeclaration
  1. Return aList whose sole element isFunctionDeclaration.

8.2 Labels

8.2.1 Static Semantics: ContainsDuplicateLabels

With parameterlabelSet.

Statement:VariableStatementEmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
StatementList:StatementListStatementListItem
  1. LethasDuplicates beContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofStatementListItem with argumentlabelSet.
IfStatement:if(Expression)StatementelseStatement
  1. LethasDuplicate beContainsDuplicateLabels of the firstStatement with argumentlabelSet.
  2. IfhasDuplicate istrue, returntrue.
  3. ReturnContainsDuplicateLabels of the secondStatement with argumentlabelSet.
IfStatement:if(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
WhileStatement:while(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
Note

This section is extended by AnnexB.3.6.

WithStatement:with(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsDuplicateLabels ofCaseBlock with argumentlabelSet.
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. LethasDuplicates beContainsDuplicateLabels of the firstCaseClauses with argumentlabelSet.
    2. IfhasDuplicates istrue, returntrue.
  2. LethasDuplicates beContainsDuplicateLabels ofDefaultClause with argumentlabelSet.
  3. IfhasDuplicates istrue, returntrue.
  4. If the secondCaseClauses is not present, returnfalse.
  5. ReturnContainsDuplicateLabels of the secondCaseClauses with argumentlabelSet.
CaseClauses:CaseClausesCaseClause
  1. LethasDuplicates beContainsDuplicateLabels ofCaseClauses with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofCaseClause with argumentlabelSet.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. Iflabel is an element oflabelSet, returntrue.
  3. LetnewLabelSet be a copy oflabelSet withlabel appended.
  4. ReturnContainsDuplicateLabels ofLabelledItem with argumentnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasDuplicates beContainsDuplicateLabels ofBlock with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofCatch with argumentlabelSet.
TryStatement:tryBlockFinally
  1. LethasDuplicates beContainsDuplicateLabels ofBlock with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofFinally with argumentlabelSet.
TryStatement:tryBlockCatchFinally
  1. LethasDuplicates beContainsDuplicateLabels ofBlock with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. LethasDuplicates beContainsDuplicateLabels ofCatch with argumentlabelSet.
  4. IfhasDuplicates istrue, returntrue.
  5. ReturnContainsDuplicateLabels ofFinally with argumentlabelSet.
Catch:catch(CatchParameter)Block
  1. ReturnContainsDuplicateLabels ofBlock with argumentlabelSet.
FunctionStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasDuplicates beContainsDuplicateLabels ofModuleItemList with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofModuleItem with argumentlabelSet.
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.2.2 Static Semantics: ContainsUndefinedBreakTarget

With parameterlabelSet.

Statement:VariableStatementEmptyStatementExpressionStatementContinueStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
StatementList:StatementListStatementListItem
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofStatementListItem with argumentlabelSet.
IfStatement:if(Expression)StatementelseStatement
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget of the firstStatement with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget of the secondStatement with argumentlabelSet.
IfStatement:if(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
WhileStatement:while(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
Note

This section is extended by AnnexB.3.6.

BreakStatement:break;
  1. Returnfalse.
BreakStatement:breakLabelIdentifier;
  1. If theStringValue ofLabelIdentifier is not an element oflabelSet, returntrue.
  2. Returnfalse.
WithStatement:with(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsUndefinedBreakTarget ofCaseBlock with argumentlabelSet.
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. LethasUndefinedLabels beContainsUndefinedBreakTarget of the firstCaseClauses with argumentlabelSet.
    2. IfhasUndefinedLabels istrue, returntrue.
  2. LethasUndefinedLabels beContainsUndefinedBreakTarget ofDefaultClause with argumentlabelSet.
  3. IfhasUndefinedLabels istrue, returntrue.
  4. If the secondCaseClauses is not present, returnfalse.
  5. ReturnContainsUndefinedBreakTarget of the secondCaseClauses with argumentlabelSet.
CaseClauses:CaseClausesCaseClause
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofCaseClauses with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofCaseClause with argumentlabelSet.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. LetnewLabelSet be a copy oflabelSet withlabel appended.
  3. ReturnContainsUndefinedBreakTarget ofLabelledItem with argumentnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofCatch with argumentlabelSet.
TryStatement:tryBlockFinally
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofFinally with argumentlabelSet.
TryStatement:tryBlockCatchFinally
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. LethasUndefinedLabels beContainsUndefinedBreakTarget ofCatch with argumentlabelSet.
  4. IfhasUndefinedLabels istrue, returntrue.
  5. ReturnContainsUndefinedBreakTarget ofFinally with argumentlabelSet.
Catch:catch(CatchParameter)Block
  1. ReturnContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
FunctionStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofModuleItemList with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofModuleItem with argumentlabelSet.
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.2.3 Static Semantics: ContainsUndefinedContinueTarget

With parametersiterationSet andlabelSet.

Statement:VariableStatementEmptyStatementExpressionStatementBreakStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
BreakableStatement:IterationStatement
  1. LetnewIterationSet be a copy ofiterationSet with all the elements oflabelSet appended.
  2. ReturnContainsUndefinedContinueTarget ofIterationStatement with argumentsnewIterationSet and « ».
StatementList:StatementListStatementListItem
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofStatementListItem with argumentsiterationSet and « ».
IfStatement:if(Expression)StatementelseStatement
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget of the firstStatement with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget of the secondStatement with argumentsiterationSet and « ».
IfStatement:if(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
WhileStatement:while(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
Note

This section is extended by AnnexB.3.6.

ContinueStatement:continue;
  1. Returnfalse.
ContinueStatement:continueLabelIdentifier;
  1. If theStringValue ofLabelIdentifier is not an element ofiterationSet, returntrue.
  2. Returnfalse.
WithStatement:with(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsUndefinedContinueTarget ofCaseBlock with argumentsiterationSet and « ».
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. LethasUndefinedLabels beContainsUndefinedContinueTarget of the firstCaseClauses with argumentsiterationSet and « ».
    2. IfhasUndefinedLabels istrue, returntrue.
  2. LethasUndefinedLabels beContainsUndefinedContinueTarget ofDefaultClause with argumentsiterationSet and « ».
  3. IfhasUndefinedLabels istrue, returntrue.
  4. If the secondCaseClauses is not present, returnfalse.
  5. ReturnContainsUndefinedContinueTarget of the secondCaseClauses with argumentsiterationSet and « ».
CaseClauses:CaseClausesCaseClause
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofCaseClauses with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofCaseClause with argumentsiterationSet and « ».
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. LetnewLabelSet be a copy oflabelSet withlabel appended.
  3. ReturnContainsUndefinedContinueTarget ofLabelledItem with argumentsiterationSet andnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofCatch with argumentsiterationSet and « ».
TryStatement:tryBlockFinally
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofFinally with argumentsiterationSet and « ».
TryStatement:tryBlockCatchFinally
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. LethasUndefinedLabels beContainsUndefinedContinueTarget ofCatch with argumentsiterationSet and « ».
  4. IfhasUndefinedLabels istrue, returntrue.
  5. ReturnContainsUndefinedContinueTarget ofFinally with argumentsiterationSet and « ».
Catch:catch(CatchParameter)Block
  1. ReturnContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
FunctionStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofModuleItemList with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofModuleItem with argumentsiterationSet and « ».
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.3 Function Name Inference

8.3.1 Static Semantics: HasName

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. IfIsFunctionDefinition ofexpr isfalse, returnfalse.
  3. ReturnHasName ofexpr.
FunctionExpression:function(FormalParameters){FunctionBody}GeneratorExpression:function*(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}ArrowFunction:ArrowParameters=>ConciseBodyAsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBodyClassExpression:classClassTail
  1. Returnfalse.
FunctionExpression:functionBindingIdentifier(FormalParameters){FunctionBody}GeneratorExpression:function*BindingIdentifier(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}ClassExpression:classBindingIdentifierClassTail
  1. Returntrue.

8.3.2 Static Semantics: IsFunctionDefinition

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnIsFunctionDefinition ofexpr.
PrimaryExpression:thisIdentifierReferenceLiteralArrayLiteralObjectLiteralRegularExpressionLiteralTemplateLiteralMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionLogicalANDExpression:LogicalANDExpression&&BitwiseORExpressionLogicalORExpression:LogicalORExpression||LogicalANDExpressionCoalesceExpression:CoalesceExpressionHead??BitwiseORExpressionConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpressionAssignmentExpression:YieldExpressionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionExpression:Expression,AssignmentExpression
  1. Returnfalse.
AssignmentExpression:ArrowFunctionAsyncArrowFunctionFunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}ClassExpression:classBindingIdentifieroptClassTail
  1. Returntrue.

8.3.3 Static Semantics: IsAnonymousFunctionDefinition (expr )

The abstract operation IsAnonymousFunctionDefinition takes argumentexpr (aParse Node forAssignmentExpression or aParse Node forInitializer). It determines if its argument is a function definition that does not bind a name. It performs the following steps when called:

  1. IfIsFunctionDefinition ofexpr isfalse, returnfalse.
  2. LethasName beHasName ofexpr.
  3. IfhasName istrue, returnfalse.
  4. Returntrue.

8.3.4 Static Semantics: IsIdentifierRef

PrimaryExpression:IdentifierReference
  1. Returntrue.
PrimaryExpression:thisLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteralCoverParenthesizedExpressionAndArrowParameterListMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpression
  1. Returnfalse.

8.3.5 Runtime Semantics: NamedEvaluation

With parametername.

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. Return the result of performingNamedEvaluation forexpr with argumentname.
ParenthesizedExpression:(Expression)
  1. Assert:IsAnonymousFunctionDefinition(Expression) istrue.
  2. Return the result of performingNamedEvaluation forExpression with argumentname.
FunctionExpression:function(FormalParameters){FunctionBody}
  1. ReturnInstantiateOrdinaryFunctionExpression ofFunctionExpression with argumentname.
GeneratorExpression:function*(FormalParameters){GeneratorBody}
  1. ReturnInstantiateGeneratorFunctionExpression ofGeneratorExpression with argumentname.
AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. ReturnInstantiateAsyncGeneratorFunctionExpression ofAsyncGeneratorExpression with argumentname.
AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. ReturnInstantiateAsyncFunctionExpression ofAsyncFunctionExpression with argumentname.
ArrowFunction:ArrowParameters=>ConciseBody
  1. ReturnInstantiateArrowFunctionExpression ofArrowFunction with argumentname.
AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. ReturnInstantiateAsyncArrowFunctionExpression ofAsyncArrowFunction with argumentname.
ClassExpression:classClassTail
  1. Letvalue be the result ofClassDefinitionEvaluation ofClassTail with argumentsundefined andname.
  2. ReturnIfAbrupt(value).
  3. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  4. Returnvalue.

8.4 Contains

8.4.1 Static Semantics: Contains

With parametersymbol.

Every grammar production alternative in this specification which is not listed below implicitly has the following default definition of Contains:

  1. For each child nodechild of thisParse Node, do
    1. Ifchild is an instance ofsymbol, returntrue.
    2. Ifchild is an instance of a nonterminal, then
      1. Letcontained be the result ofchildContainssymbol.
      2. Ifcontained istrue, returntrue.
  2. Returnfalse.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}
  1. Returnfalse.
Note 1

Static semantic rules that depend upon substructure generally do not look into function definitions.

ClassTail:ClassHeritageopt{ClassBody}
  1. Ifsymbol isClassBody, returntrue.
  2. Ifsymbol isClassHeritage, then
    1. IfClassHeritage is present, returntrue; otherwise returnfalse.
  3. LetinHeritage beClassHeritageContainssymbol.
  4. IfinHeritage istrue, returntrue.
  5. Return the result ofComputedPropertyContains forClassBody with argumentsymbol.
Note 2

Static semantic rules that depend upon substructure generally do not look into class bodies except forPropertyNames.

ArrowFunction:ArrowParameters=>ConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super orthis, returnfalse.
  2. IfArrowParametersContainssymbol istrue, returntrue.
  3. ReturnConciseBodyContainssymbol.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnformalsContainssymbol.
AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super, orthis, returnfalse.
  2. ReturnAsyncConciseBodyContainssymbol.
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super, orthis, returnfalse.
  2. Lethead beCoveredAsyncArrowHead ofCoverCallExpressionAndAsyncArrowHead.
  3. IfheadContainssymbol istrue, returntrue.
  4. ReturnAsyncConciseBodyContainssymbol.
Note 3

Contains is used to detectnew.target,this, andsuper usage within anArrowFunction orAsyncArrowFunction.

PropertyDefinition:MethodDefinition
  1. Ifsymbol isMethodDefinition, returntrue.
  2. Return the result ofComputedPropertyContains forMethodDefinition with argumentsymbol.
LiteralPropertyName:IdentifierName
  1. Returnfalse.
MemberExpression:MemberExpression.IdentifierName
  1. IfMemberExpressionContainssymbol istrue, returntrue.
  2. Returnfalse.
SuperProperty:super.IdentifierName
  1. Ifsymbol is theReservedWordsuper, returntrue.
  2. Returnfalse.
CallExpression:CallExpression.IdentifierName
  1. IfCallExpressionContainssymbol istrue, returntrue.
  2. Returnfalse.
OptionalChain:?.IdentifierName
  1. Returnfalse.
OptionalChain:OptionalChain.IdentifierName
  1. IfOptionalChainContainssymbol istrue, returntrue.
  2. Returnfalse.

8.4.2 Static Semantics: ComputedPropertyContains

With parametersymbol.

PropertyName:LiteralPropertyName
  1. Returnfalse.
PropertyName:ComputedPropertyName
  1. Return the result ofComputedPropertyNameContainssymbol.
MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}getPropertyName(){FunctionBody}setPropertyName(PropertySetParameterList){FunctionBody}
  1. Return the result ofComputedPropertyContains forPropertyName with argumentsymbol.
GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}
  1. Return the result ofComputedPropertyContains forPropertyName with argumentsymbol.
AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}
  1. Return the result ofComputedPropertyContains forPropertyName with argumentsymbol.
ClassElementList:ClassElementListClassElement
  1. LetinList beComputedPropertyContains ofClassElementList with argumentsymbol.
  2. IfinList istrue, returntrue.
  3. Return the result ofComputedPropertyContains forClassElement with argumentsymbol.
ClassElement:;
  1. Returnfalse.
AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}
  1. Return the result ofComputedPropertyContains forPropertyName with argumentsymbol.

8.5 Miscellaneous

These operations are used in multiple places throughout the specification.

8.5.1 Runtime Semantics: InstantiateFunctionObject

With parameterscope.

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}
  1. Return ?InstantiateOrdinaryFunctionObject ofFunctionDeclaration with argumentscope.
GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}
  1. Return ?InstantiateGeneratorFunctionObject ofGeneratorDeclaration with argumentscope.
AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. Return ?InstantiateAsyncGeneratorFunctionObject ofAsyncGeneratorDeclaration with argumentscope.
AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Return ?InstantiateAsyncFunctionObject ofAsyncFunctionDeclaration with argumentscope.

8.5.2 Runtime Semantics: BindingInitialization

With parametersvalue andenvironment.

Note

undefined is passed forenvironment to indicate that aPutValue operation should be used to assign the initialization value. This is the case forvar statements and formal parameter lists of some non-strict functions (See10.2.10). In those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

BindingIdentifier:Identifier
  1. Letname beStringValue ofIdentifier.
  2. Return ? InitializeBoundName(name,value,environment).
BindingIdentifier:yield
  1. Return ? InitializeBoundName("yield",value,environment).
BindingIdentifier:await
  1. Return ? InitializeBoundName("await",value,environment).
BindingPattern:ObjectBindingPattern
  1. Perform ? RequireObjectCoercible(value).
  2. Return the result of performingBindingInitialization forObjectBindingPattern usingvalue andenvironment as arguments.
BindingPattern:ArrayBindingPattern
  1. LetiteratorRecord be ? GetIterator(value).
  2. Letresult beIteratorBindingInitialization ofArrayBindingPattern with argumentsiteratorRecord andenvironment.
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Returnresult.
ObjectBindingPattern:{}
  1. ReturnNormalCompletion(empty).
ObjectBindingPattern:{BindingPropertyList}{BindingPropertyList,}
  1. Perform ?PropertyBindingInitialization forBindingPropertyList usingvalue andenvironment as the arguments.
  2. ReturnNormalCompletion(empty).
ObjectBindingPattern:{BindingRestProperty}
  1. LetexcludedNames be a new emptyList.
  2. Return the result of performingRestBindingInitialization ofBindingRestProperty withvalue,environment, andexcludedNames as the arguments.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. LetexcludedNames be ?PropertyBindingInitialization ofBindingPropertyList with argumentsvalue andenvironment.
  2. Return the result of performingRestBindingInitialization ofBindingRestProperty with argumentsvalue,environment, andexcludedNames.

8.5.2.1 InitializeBoundName (name,value,environment )

The abstract operation InitializeBoundName takes argumentsname,value, andenvironment. It performs the following steps when called:

  1. Assert:Type(name) is String.
  2. Ifenvironment is notundefined, then
    1. Performenvironment.InitializeBinding(name,value).
    2. ReturnNormalCompletion(undefined).
  3. Else,
    1. Letlhs beResolveBinding(name).
    2. Return ? PutValue(lhs,value).

8.5.3 Runtime Semantics: IteratorBindingInitialization

With parametersiteratorRecord andenvironment.

Note

Whenundefined is passed forenvironment it indicates that aPutValue operation should be used to assign the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

ArrayBindingPattern:[]
  1. ReturnNormalCompletion(empty).
ArrayBindingPattern:[Elision]
  1. Return the result of performingIteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. IfElision is present, then
    1. Perform ?IteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
  2. Return the result of performingIteratorBindingInitialization forBindingRestElement withiteratorRecord andenvironment as arguments.
ArrayBindingPattern:[BindingElementList,Elision]
  1. Perform ?IteratorBindingInitialization forBindingElementList withiteratorRecord andenvironment as arguments.
  2. Return the result of performingIteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Perform ?IteratorBindingInitialization forBindingElementList withiteratorRecord andenvironment as arguments.
  2. IfElision is present, then
    1. Perform ?IteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
  3. Return the result of performingIteratorBindingInitialization forBindingRestElement withiteratorRecord andenvironment as arguments.
BindingElementList:BindingElementList,BindingElisionElement
  1. Perform ?IteratorBindingInitialization forBindingElementList withiteratorRecord andenvironment as arguments.
  2. Return the result of performingIteratorBindingInitialization forBindingElisionElement usingiteratorRecord andenvironment as arguments.
BindingElisionElement:ElisionBindingElement
  1. Perform ?IteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
  2. Return the result of performingIteratorBindingInitialization ofBindingElement withiteratorRecord andenvironment as the arguments.
SingleNameBinding:BindingIdentifierInitializeropt
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId,environment).
  3. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    5. Else,
      1. Letv beIteratorValue(next).
      2. Ifv is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(v).
  4. IfiteratorRecord.[[Done]] istrue, letv beundefined.
  5. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to the result of performingNamedEvaluation forInitializer with argumentbindingId.
    2. Else,
      1. LetdefaultValue be the result of evaluatingInitializer.
      2. Setv to ? GetValue(defaultValue).
  6. Ifenvironment isundefined, return ? PutValue(lhs,v).
  7. ReturnInitializeReferencedBinding(lhs,v).
BindingElement:BindingPatternInitializeropt
  1. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    5. Else,
      1. Letv beIteratorValue(next).
      2. Ifv is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(v).
  2. IfiteratorRecord.[[Done]] istrue, letv beundefined.
  3. IfInitializer is present andv isundefined, then
    1. LetdefaultValue be the result of evaluatingInitializer.
    2. Setv to ? GetValue(defaultValue).
  4. Return the result of performingBindingInitialization ofBindingPattern withv andenvironment as the arguments.
BindingRestElement:...BindingIdentifier
  1. Letlhs be ? ResolveBinding(StringValue ofBindingIdentifier,environment).
  2. LetA be ! ArrayCreate(0).
  3. Letn be 0.
  4. Repeat,
    1. IfiteratorRecord.[[Done]] isfalse, then
      1. Letnext beIteratorStep(iteratorRecord).
      2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(next).
      4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    2. IfiteratorRecord.[[Done]] istrue, then
      1. Ifenvironment isundefined, return ? PutValue(lhs,A).
      2. ReturnInitializeReferencedBinding(lhs,A).
    3. LetnextValue beIteratorValue(next).
    4. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    5. ReturnIfAbrupt(nextValue).
    6. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),nextValue).
    7. Setn ton + 1.
BindingRestElement:...BindingPattern
  1. LetA be ! ArrayCreate(0).
  2. Letn be 0.
  3. Repeat,
    1. IfiteratorRecord.[[Done]] isfalse, then
      1. Letnext beIteratorStep(iteratorRecord).
      2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(next).
      4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    2. IfiteratorRecord.[[Done]] istrue, then
      1. Return the result of performingBindingInitialization ofBindingPattern withA andenvironment as the arguments.
    3. LetnextValue beIteratorValue(next).
    4. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    5. ReturnIfAbrupt(nextValue).
    6. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),nextValue).
    7. Setn ton + 1.
FormalParameters:[empty]
  1. ReturnNormalCompletion(empty).
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Perform ?IteratorBindingInitialization forFormalParameterList usingiteratorRecord andenvironment as the arguments.
  2. Return the result of performingIteratorBindingInitialization forFunctionRestParameter usingiteratorRecord andenvironment as the arguments.
FormalParameterList:FormalParameterList,FormalParameter
  1. Perform ?IteratorBindingInitialization forFormalParameterList usingiteratorRecord andenvironment as the arguments.
  2. Return the result of performingIteratorBindingInitialization forFormalParameter usingiteratorRecord andenvironment as the arguments.
ArrowParameters:BindingIdentifier
  1. Assert:iteratorRecord.[[Done]] isfalse.
  2. Letnext beIteratorStep(iteratorRecord).
  3. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
  4. ReturnIfAbrupt(next).
  5. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  6. Else,
    1. Letv beIteratorValue(next).
    2. Ifv is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(v).
  7. IfiteratorRecord.[[Done]] istrue, letv beundefined.
  8. Return the result of performingBindingInitialization forBindingIdentifier usingv andenvironment as the arguments.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnIteratorBindingInitialization offormals with argumentsiteratorRecord andenvironment.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Assert:iteratorRecord.[[Done]] isfalse.
  2. Letnext beIteratorStep(iteratorRecord).
  3. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
  4. ReturnIfAbrupt(next).
  5. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  6. Else,
    1. Letv beIteratorValue(next).
    2. Ifv is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(v).
  7. IfiteratorRecord.[[Done]] istrue, letv beundefined.
  8. Return the result of performingBindingInitialization forBindingIdentifier usingv andenvironment as the arguments.

8.5.4 Static Semantics: AssignmentTargetType

IdentifierReference:Identifier
  1. If thisIdentifierReference is contained instrict mode code andStringValue ofIdentifier is"eval" or"arguments", returninvalid.
  2. Returnsimple.
IdentifierReference:yieldawaitCallExpression:CallExpression[Expression]CallExpression.IdentifierNameMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameSuperProperty
  1. Returnsimple.
PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnAssignmentTargetType ofexpr.
PrimaryExpression:thisLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteralCallExpression:CoverCallExpressionAndAsyncArrowHeadSuperCallImportCallCallExpressionArgumentsCallExpressionTemplateLiteralNewExpression:newNewExpressionMemberExpression:MemberExpressionTemplateLiteralnewMemberExpressionArgumentsNewTarget:new.targetImportMeta:import.metaLeftHandSideExpression:OptionalExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionLogicalANDExpression:LogicalANDExpression&&BitwiseORExpressionLogicalORExpression:LogicalORExpression||LogicalANDExpressionCoalesceExpression:CoalesceExpressionHead??BitwiseORExpressionConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpressionAssignmentExpression:YieldExpressionArrowFunctionAsyncArrowFunctionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionExpression:Expression,AssignmentExpression
  1. Returninvalid.

8.5.5 Static Semantics: PropName

PropertyDefinition:IdentifierReference
  1. ReturnStringValue ofIdentifierReference.
PropertyDefinition:...AssignmentExpression
  1. Returnempty.
PropertyDefinition:PropertyName:AssignmentExpression
  1. ReturnPropName ofPropertyName.
LiteralPropertyName:IdentifierName
  1. ReturnStringValue ofIdentifierName.
LiteralPropertyName:StringLiteral
  1. Return theSV ofStringLiteral.
LiteralPropertyName:NumericLiteral
  1. Letnbr be theNumericValue ofNumericLiteral.
  2. Return ! ToString(nbr).
ComputedPropertyName:[AssignmentExpression]
  1. Returnempty.
MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}getPropertyName(){FunctionBody}setPropertyName(PropertySetParameterList){FunctionBody}
  1. ReturnPropName ofPropertyName.
GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}
  1. ReturnPropName ofPropertyName.
AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}
  1. ReturnPropName ofPropertyName.
ClassElement:;
  1. Returnempty.
AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}
  1. ReturnPropName ofPropertyName.

9 Executable Code and Execution Contexts

9.1 Environment Records

Environment Record is a specification type used to define the association ofIdentifiers to specific variables and functions, based upon the lexical nesting structure of ECMAScript code. Usually an Environment Record is associated with some specific syntactic structure of ECMAScript code such as aFunctionDeclaration, aBlockStatement, or aCatch clause of aTryStatement. Each time such code is evaluated, a new Environment Record is created to record the identifier bindings that are created by that code.

Every Environment Record has an [[OuterEnv]] field, which is eithernull or a reference to an outer Environment Record. This is used to model the logical nesting of Environment Record values. The outer reference of an (inner) Environment Record is a reference to the Environment Record that logically surrounds the inner Environment Record. An outer Environment Record may, of course, have its own outer Environment Record. An Environment Record may serve as the outer environment for multiple inner Environment Records. For example, if aFunctionDeclaration contains two nestedFunctionDeclarations then the Environment Records of each of the nested functions will have as their outer Environment Record the Environment Record of the current evaluation of the surrounding function.

Environment Records are purely specification mechanisms and need not correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or manipulate such values.

9.1.1 The Environment Record Type Hierarchy

Environment Records can be thought of as existing in a simple object-oriented hierarchy whereEnvironment Record is an abstract class with three concrete subclasses:declarative Environment Record,object Environment Record, andglobal Environment Record. Function Environment Records and module Environment Records are subclasses ofdeclarative Environment Record.

TheEnvironment Record abstract class includes the abstract specification methods defined inTable 17. These abstract methods have distinct concrete algorithms for each of the concrete subclasses.

Table 17: Abstract Methods of Environment Records
Method Purpose
HasBinding(N) Determine if anEnvironment Record has a binding for the String valueN. Returntrue if it does andfalse if it does not.
CreateMutableBinding(N, D) Create a new but uninitialized mutable binding in anEnvironment Record. The String valueN is the text of the bound name. If the Boolean argumentD istrue the binding may be subsequently deleted.
CreateImmutableBinding(N, S) Create a new but uninitialized immutable binding in anEnvironment Record. The String valueN is the text of the bound name. IfS istrue then attempts to set it after it has been initialized will always throw an exception, regardless of the strict mode setting of operations that reference that binding.
InitializeBinding(N, V) Set the value of an already existing but uninitialized binding in anEnvironment Record. The String valueN is the text of the bound name.V is the value for the binding and is a value of anyECMAScript language type.
SetMutableBinding(N, V, S) Set the value of an already existing mutable binding in anEnvironment Record. The String valueN is the text of the bound name.V is the value for the binding and may be a value of anyECMAScript language type.S is a Boolean flag. IfS istrue and the binding cannot be set throw aTypeError exception.
GetBindingValue(N, S) Returns the value of an already existing binding from anEnvironment Record. The String valueN is the text of the bound name.S is used to identify references originating instrict mode code or that otherwise require strict mode reference semantics. IfS istrue and the binding does not exist throw aReferenceError exception. If the binding exists but is uninitialized aReferenceError is thrown, regardless of the value ofS.
DeleteBinding(N) Delete a binding from anEnvironment Record. The String valueN is the text of the bound name. If a binding forN exists, remove the binding and returntrue. If the binding exists but cannot be removed returnfalse. If the binding does not exist returntrue.
HasThisBinding() Determine if anEnvironment Record establishes athis binding. Returntrue if it does andfalse if it does not.
HasSuperBinding() Determine if anEnvironment Record establishes asuper method binding. Returntrue if it does andfalse if it does not.
WithBaseObject() If thisEnvironment Record is associated with awith statement, return the with object. Otherwise, returnundefined.

9.1.1.1 Declarative Environment Records

Eachdeclarative Environment Record is associated with an ECMAScript program scope containing variable, constant, let, class, module, import, and/or function declarations. A declarative Environment Record binds the set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for declarative Environment Records is defined by the following algorithms.

9.1.1.1.1 HasBinding (N )

The HasBinding concrete method of adeclarative Environment RecordenvRec takes argumentN (a String). It determines if the argument identifier is one of the identifiers bound by the record. It performs the following steps when called:

  1. IfenvRec has a binding for the name that is the value ofN, returntrue.
  2. Returnfalse.

9.1.1.1.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of adeclarative Environment RecordenvRec takes argumentsN (a String) andD (a Boolean). It creates a new mutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfD has the valuetrue, the new binding is marked as being subject to deletion. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Create a mutable binding inenvRec forN and record that it is uninitialized. IfD istrue, record that the newly created binding may be deleted by a subsequent DeleteBinding call.
  3. ReturnNormalCompletion(empty).

9.1.1.1.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of adeclarative Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It creates a new immutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfS has the valuetrue, the new binding is marked as a strict binding. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Create an immutable binding inenvRec forN and record that it is uninitialized. IfS istrue, record that the newly created binding is a strict binding.
  3. ReturnNormalCompletion(empty).

9.1.1.1.4 InitializeBinding (N,V )

The InitializeBinding concrete method of adeclarative Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value). It is used to set the bound value of the current binding of the identifier whose name is the value of the argumentN to the value of argumentV. An uninitialized binding forN must already exist. It performs the following steps when called:

  1. Assert:envRec must have an uninitialized binding forN.
  2. Set the bound value forN inenvRec toV.
  3. Record that the binding forN inenvRec has been initialized.
  4. ReturnNormalCompletion(empty).

9.1.1.1.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of adeclarative Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean). It attempts to change the bound value of the current binding of the identifier whose name is the value of the argumentN to the value of argumentV. A binding forN normally already exists, but in rare cases it may not. If the binding is an immutable binding, aTypeError is thrown ifS istrue. It performs the following steps when called:

  1. IfenvRec does not have a binding forN, then
    1. IfS istrue, throw aReferenceError exception.
    2. PerformenvRec.CreateMutableBinding(N,true).
    3. PerformenvRec.InitializeBinding(N,V).
    4. ReturnNormalCompletion(empty).
  2. If the binding forN inenvRec is a strict binding, setS totrue.
  3. If the binding forN inenvRec has not yet been initialized, throw aReferenceError exception.
  4. Else if the binding forN inenvRec is a mutable binding, change its bound value toV.
  5. Else,
    1. Assert: This is an attempt to change the value of an immutable binding.
    2. IfS istrue, throw aTypeError exception.
  6. ReturnNormalCompletion(empty).
Note

An example of ECMAScript code that results in a missing binding at step1 is:

functionf(){eval("var x; x = (delete x, 0);"); }

9.1.1.1.6 GetBindingValue (N,S )

The GetBindingValue concrete method of adeclarative Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It returns the value of its bound identifier whose name is the value of the argumentN. If the binding exists but is uninitialized aReferenceError is thrown, regardless of the value ofS. It performs the following steps when called:

  1. Assert:envRec has a binding forN.
  2. If the binding forN inenvRec is an uninitialized binding, throw aReferenceError exception.
  3. Return the value currently bound toN inenvRec.

9.1.1.1.7 DeleteBinding (N )

The DeleteBinding concrete method of adeclarative Environment RecordenvRec takes argumentN (a String). It can only delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps when called:

  1. Assert:envRec has a binding for the name that is the value ofN.
  2. If the binding forN inenvRec cannot be deleted, returnfalse.
  3. Remove the binding forN fromenvRec.
  4. Returntrue.

9.1.1.1.8 HasThisBinding ( )

The HasThisBinding concrete method of adeclarative Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnfalse.
Note

A regulardeclarative Environment Record (i.e., one that is neither afunction Environment Record nor amodule Environment Record) does not provide athis binding.

9.1.1.1.9 HasSuperBinding ( )

The HasSuperBinding concrete method of adeclarative Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnfalse.
Note

A regulardeclarative Environment Record (i.e., one that is neither afunction Environment Record nor amodule Environment Record) does not provide asuper binding.

9.1.1.1.10 WithBaseObject ( )

The WithBaseObject concrete method of adeclarative Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnundefined.

9.1.1.2 Object Environment Records

Eachobject Environment Record is associated with an object called itsbinding object. An object Environment Record binds the set of string identifier names that directly correspond to the property names of its binding object. Property keys that are not strings in the form of anIdentifierName are not included in the set of bound identifiers. Both own and inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because properties can be dynamically added and deleted from objects, the set of identifiers bound by an object Environment Record may potentially change as a side-effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding property has the valuefalse. Immutable bindings do not exist for object Environment Records.

Object Environment Records created forwith statements (14.11) can provide their binding object as an implicitthis value for use in function calls. The capability is controlled by awithEnvironment Boolean value that is associated with each object Environment Record. By default, the value ofwithEnvironment isfalse for any object Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following algorithms.

9.1.1.2.1 HasBinding (N )

The HasBinding concrete method of anobject Environment RecordenvRec takes argumentN (a String). It determines if its associated binding object has a property whose name is the value of the argumentN. It performs the following steps when called:

  1. Letbindings be the binding object forenvRec.
  2. LetfoundBinding be ? HasProperty(bindings,N).
  3. IffoundBinding isfalse, returnfalse.
  4. If thewithEnvironment flag ofenvRec isfalse, returntrue.
  5. Letunscopables be ? Get(bindings,@@unscopables).
  6. IfType(unscopables) is Object, then
    1. Letblocked be ! ToBoolean(?Get(unscopables,N)).
    2. Ifblocked istrue, returnfalse.
  7. Returntrue.

9.1.1.2.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of anobject Environment RecordenvRec takes argumentsN (a String) andD (a Boolean). It creates in anEnvironment Record's associated binding object a property whose name is the String value and initializes it to the valueundefined. IfD has the valuetrue, the new property's [[Configurable]] attribute is set totrue; otherwise it is set tofalse. It performs the following steps when called:

  1. Letbindings be the binding object forenvRec.
  2. Return ? DefinePropertyOrThrow(bindings,N, PropertyDescriptor { [[Value]]:undefined, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:D }).
Note

NormallyenvRec will not have a binding forN but if it does, the semantics ofDefinePropertyOrThrow may result in an existing binding being replaced or shadowed or cause anabrupt completion to be returned.

9.1.1.2.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of anobject Environment Record is never used within this specification.

9.1.1.2.4 InitializeBinding (N,V )

The InitializeBinding concrete method of anobject Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value). It is used to set the bound value of the current binding of the identifier whose name is the value of the argumentN to the value of argumentV. It performs the following steps when called:

  1. Return ?envRec.SetMutableBinding(N,V,false).
Note

In this specification, all uses of CreateMutableBinding for object Environment Records are immediately followed by a call to InitializeBinding for the same name. Hence, this specification does not explicitly track the initialization state of bindings in object Environment Records.

9.1.1.2.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of anobject Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean). It attempts to set the value of theEnvironment Record's associated binding object's property whose name is the value of the argumentN to the value of argumentV. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. Letbindings be the binding object forenvRec.
  2. LetstillExists be ? HasProperty(bindings,N).
  3. IfstillExists isfalse andS istrue, throw aReferenceError exception.
  4. Return ? Set(bindings,N,V,S).

9.1.1.2.6 GetBindingValue (N,S )

The GetBindingValue concrete method of anobject Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It returns the value of its associated binding object's property whose name is the String value of the argument identifierN. The property should already exist but if it does not the result depends uponS. It performs the following steps when called:

  1. Letbindings be the binding object forenvRec.
  2. Letvalue be ? HasProperty(bindings,N).
  3. Ifvalue isfalse, then
    1. IfS isfalse, return the valueundefined; otherwise throw aReferenceError exception.
  4. Return ? Get(bindings,N).

9.1.1.2.7 DeleteBinding (N )

The DeleteBinding concrete method of anobject Environment RecordenvRec takes argumentN (a String). It can only delete bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the valuetrue. It performs the following steps when called:

  1. Letbindings be the binding object forenvRec.
  2. Return ?bindings.[[Delete]](N).

9.1.1.2.8 HasThisBinding ( )

The HasThisBinding concrete method of anobject Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnfalse.
Note

Object Environment Records do not provide athis binding.

9.1.1.2.9 HasSuperBinding ( )

The HasSuperBinding concrete method of anobject Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnfalse.
Note

Object Environment Records do not provide asuper binding.

9.1.1.2.10 WithBaseObject ( )

The WithBaseObject concrete method of anobject Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. If thewithEnvironment flag ofenvRec istrue, return the binding object forenvRec.
  2. Otherwise, returnundefined.

9.1.1.3 Function Environment Records

Afunction Environment Record is adeclarative Environment Record that is used to represent the top-level scope of a function and, if the function is not anArrowFunction, provides athis binding. If a function is not anArrowFunction function and referencessuper, its function Environment Record also contains the state that is used to performsuper method invocations from within the function.

Function Environment Records have the additional state fields listed inTable 18.

Table 18: Additional Fields of Function Environment Records
Field Name Value Meaning
[[ThisValue]] Any This is thethis value used for this invocation of the function.
[[ThisBindingStatus]]lexical |initialized |uninitialized If the value islexical, this is anArrowFunction and does not have a localthis value.
[[FunctionObject]] Object Thefunction object whose invocation caused thisEnvironment Record to be created.
[[NewTarget]] Object |undefined If thisEnvironment Record was created by the [[Construct]] internal method, [[NewTarget]] is the value of the [[Construct]]newTarget parameter. Otherwise, its value isundefined.

Function Environment Records support all of thedeclarative Environment Record methods listed inTable 17 and share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition, function Environment Records support the methods listed inTable 19:

Table 19: Additional Methods of Function Environment Records
Method Purpose
BindThisValue(V) Set the [[ThisValue]] and record that it has been initialized.
GetThisBinding() Return the value of thisEnvironment Record'sthis binding. Throws aReferenceError if thethis binding has not been initialized.
GetSuperBase() Return the object that is the base forsuper property accesses bound in thisEnvironment Record. The valueundefined indicates thatsuper property accesses will produce runtime errors.

The behaviour of the additional concrete specification methods for function Environment Records is defined by the following algorithms:

9.1.1.3.1 BindThisValue (V )

The BindThisValue concrete method of afunction Environment RecordenvRec takes argumentV (anECMAScript language value). It performs the following steps when called:

  1. Assert:envRec.[[ThisBindingStatus]] is notlexical.
  2. IfenvRec.[[ThisBindingStatus]] isinitialized, throw aReferenceError exception.
  3. SetenvRec.[[ThisValue]] toV.
  4. SetenvRec.[[ThisBindingStatus]] toinitialized.
  5. ReturnV.

9.1.1.3.2 HasThisBinding ( )

The HasThisBinding concrete method of afunction Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. IfenvRec.[[ThisBindingStatus]] islexical, returnfalse; otherwise, returntrue.

9.1.1.3.3 HasSuperBinding ( )

The HasSuperBinding concrete method of afunction Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. IfenvRec.[[ThisBindingStatus]] islexical, returnfalse.
  2. IfenvRec.[[FunctionObject]].[[HomeObject]] has the valueundefined, returnfalse; otherwise, returntrue.

9.1.1.3.4 GetThisBinding ( )

The GetThisBinding concrete method of afunction Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Assert:envRec.[[ThisBindingStatus]] is notlexical.
  2. IfenvRec.[[ThisBindingStatus]] isuninitialized, throw aReferenceError exception.
  3. ReturnenvRec.[[ThisValue]].

9.1.1.3.5 GetSuperBase ( )

The GetSuperBase concrete method of afunction Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Lethome beenvRec.[[FunctionObject]].[[HomeObject]].
  2. Ifhome has the valueundefined, returnundefined.
  3. Assert:Type(home) is Object.
  4. Return ?home.[[GetPrototypeOf]]().

9.1.1.4 Global Environment Records

Aglobal Environment Record is used to represent the outer most scope that is shared by all of the ECMAScriptScript elements that are processed in a commonrealm. A global Environment Record provides the bindings for built-in globals (clause19), properties of theglobal object, and for all top-level declarations (8.1.9,8.1.11) that occur within aScript.

A global Environment Record is logically a single record but it is specified as a composite encapsulating anobject Environment Record and adeclarative Environment Record. Theobject Environment Record has as its base object theglobal object of the associatedRealm Record. Thisglobal object is the value returned by the global Environment Record's GetThisBinding concrete method. Theobject Environment Record component of a global Environment Record contains the bindings for all built-in globals (clause19) and all bindings introduced by aFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, orVariableStatement contained in global code. The bindings for all other ECMAScript declarations in global code are contained in thedeclarative Environment Record component of the global Environment Record.

Properties may be created directly on aglobal object. Hence, theobject Environment Record component of a global Environment Record may contain both bindings created explicitly byFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, orVariableDeclaration declarations and bindings created implicitly as properties of theglobal object. In order to identify which bindings were explicitly created using declarations, a global Environment Record maintains a list of the names bound using its CreateGlobalVarBinding and CreateGlobalFunctionBinding concrete methods.

Global Environment Records have the additional fields listed inTable 20 and the additional methods listed inTable 21.

Table 20: Additional Fields of Global Environment Records
Field Name Value Meaning
[[ObjectRecord]]Object Environment Record Binding object is theglobal object. It contains global built-in bindings as well asFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclaration bindings in global code for the associatedrealm.
[[GlobalThisValue]] Object The value returned bythis in global scope. Hosts may provide any ECMAScript Object value.
[[DeclarativeRecord]]Declarative Environment RecordContains bindings for all declarations in global code for the associatedrealm code except forFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclarationbindings.
[[VarNames]]List of String The string names bound byFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclaration declarations in global code for the associatedrealm.
Table 21: Additional Methods of Global Environment Records
Method Purpose
GetThisBinding() Return the value of thisEnvironment Record'sthis binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in thisEnvironment Record that was created using aVariableDeclaration,FunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration, orAsyncGeneratorDeclaration.
HasLexicalDeclaration (N) Determines if the argument identifier has a binding in thisEnvironment Record that was created using a lexical declaration such as aLexicalDeclaration or aClassDeclaration.
HasRestrictedGlobalProperty (N) Determines if the argument is the name of aglobal object property that may not be shadowed by a global lexical binding.
CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same argumentN.
CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argumentN.
CreateGlobalVarBinding(N, D) Used to create and initialize toundefined a globalvar binding in the [[ObjectRecord]] component of aglobal Environment Record. The binding will be a mutable binding. The correspondingglobal object property will have attribute values appropriate for avar. The String valueN is the bound name. IfD istrue the binding may be deleted. Logically equivalent to CreateMutableBinding followed by a SetMutableBinding but it allows var declarations to receive special treatment.
CreateGlobalFunctionBinding(N, V, D) Create and initialize a globalfunction binding in the [[ObjectRecord]] component of aglobal Environment Record. The binding will be a mutable binding. The correspondingglobal object property will have attribute values appropriate for afunction. The String valueN is the bound name.V is the initialization value. If the Boolean argumentD istrue the binding may be deleted. Logically equivalent to CreateMutableBinding followed by a SetMutableBinding but it allows function declarations to receive special treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following algorithms.

9.1.1.4.1 HasBinding (N )

The HasBinding concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if the argument identifier is one of the identifiers bound by the record. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, returntrue.
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ?ObjRec.HasBinding(N).

9.1.1.4.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String) andD (a Boolean). It creates a new mutable binding for the nameN that is uninitialized. The binding is created in the associated DeclarativeRecord. A binding forN must not already exist in the DeclarativeRecord. IfD has the valuetrue, the new binding is marked as being subject to deletion. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, throw aTypeError exception.
  3. ReturnDclRec.CreateMutableBinding(N,D).

9.1.1.4.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It creates a new immutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfS has the valuetrue, the new binding is marked as a strict binding. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, throw aTypeError exception.
  3. ReturnDclRec.CreateImmutableBinding(N,S).

9.1.1.4.4 InitializeBinding (N,V )

The InitializeBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value). It is used to set the bound value of the current binding of the identifier whose name is the value of the argumentN to the value of argumentV. An uninitialized binding forN must already exist. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, then
    1. ReturnDclRec.InitializeBinding(N,V).
  3. Assert: If the binding exists, it must be in theobject Environment Record.
  4. LetObjRec beenvRec.[[ObjectRecord]].
  5. Return ?ObjRec.InitializeBinding(N,V).

9.1.1.4.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean). It attempts to change the bound value of the current binding of the identifier whose name is the value of the argumentN to the value of argumentV. If the binding is an immutable binding, aTypeError is thrown ifS istrue. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, then
    1. ReturnDclRec.SetMutableBinding(N,V,S).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ?ObjRec.SetMutableBinding(N,V,S).

9.1.1.4.6 GetBindingValue (N,S )

The GetBindingValue concrete method of aglobal Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It returns the value of its bound identifier whose name is the value of the argumentN. If the binding is an uninitialized binding throw aReferenceError exception. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, then
    1. ReturnDclRec.GetBindingValue(N,S).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ?ObjRec.GetBindingValue(N,S).

9.1.1.4.7 DeleteBinding (N )

The DeleteBinding concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It can only delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. IfDclRec.HasBinding(N) istrue, then
    1. ReturnDclRec.DeleteBinding(N).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. LetglobalObject be the binding object forObjRec.
  5. LetexistingProp be ? HasOwnProperty(globalObject,N).
  6. IfexistingProp istrue, then
    1. Letstatus be ?ObjRec.DeleteBinding(N).
    2. Ifstatus istrue, then
      1. LetvarNames beenvRec.[[VarNames]].
      2. IfN is an element ofvarNames, remove that element from thevarNames.
    3. Returnstatus.
  7. Returntrue.

9.1.1.4.8 HasThisBinding ( )

The HasThisBinding concrete method of aglobal Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returntrue.
Note

Global Environment Records always provide athis binding.

9.1.1.4.9 HasSuperBinding ( )

The HasSuperBinding concrete method of aglobal Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnfalse.
Note

Global Environment Records do not provide asuper binding.

9.1.1.4.10 WithBaseObject ( )

The WithBaseObject concrete method of aglobal Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnundefined.

9.1.1.4.11 GetThisBinding ( )

The GetThisBinding concrete method of aglobal Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. ReturnenvRec.[[GlobalThisValue]].

9.1.1.4.12 HasVarDeclaration (N )

The HasVarDeclaration concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if the argument identifier has a binding in this record that was created using aVariableStatement or aFunctionDeclaration. It performs the following steps when called:

  1. LetvarDeclaredNames beenvRec.[[VarNames]].
  2. IfvarDeclaredNames containsN, returntrue.
  3. Returnfalse.

9.1.1.4.13 HasLexicalDeclaration (N )

The HasLexicalDeclaration concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if the argument identifier has a binding in this record that was created using a lexical declaration such as aLexicalDeclaration or aClassDeclaration. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. ReturnDclRec.HasBinding(N).

9.1.1.4.14 HasRestrictedGlobalProperty (N )

The HasRestrictedGlobalProperty concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if the argument identifier is the name of a property of theglobal object that must not be shadowed by a global lexical binding. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject be the binding object forObjRec.
  3. LetexistingProp be ?globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined, returnfalse.
  5. IfexistingProp.[[Configurable]] istrue, returnfalse.
  6. Returntrue.
Note

Properties may exist upon aglobal object that were directly created rather than being declared using a var or function declaration. A global lexical binding may not be created that has the same name as a non-configurable property of theglobal object. The global property"undefined" is an example of such a property.

9.1.1.4.15 CanDeclareGlobalVar (N )

The CanDeclareGlobalVar concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same argumentN. Redundant var declarations and var declarations for pre-existingglobal object properties are allowed. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject be the binding object forObjRec.
  3. LethasProperty be ? HasOwnProperty(globalObject,N).
  4. IfhasProperty istrue, returntrue.
  5. Return ? IsExtensible(globalObject).

9.1.1.4.16 CanDeclareGlobalFunction (N )

The CanDeclareGlobalFunction concrete method of aglobal Environment RecordenvRec takes argumentN (a String). It determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argumentN. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject be the binding object forObjRec.
  3. LetexistingProp be ?globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined, return ? IsExtensible(globalObject).
  5. IfexistingProp.[[Configurable]] istrue, returntrue.
  6. IfIsDataDescriptor(existingProp) istrue andexistingProp has attribute values { [[Writable]]:true, [[Enumerable]]:true }, returntrue.
  7. Returnfalse.

9.1.1.4.17 CreateGlobalVarBinding (N,D )

The CreateGlobalVarBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String) andD (a Boolean). It creates and initializes a mutable binding in the associatedobject Environment Record and records the bound name in the associated [[VarNames]]List. If a binding already exists, it is reused and assumed to be initialized. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject be the binding object forObjRec.
  3. LethasProperty be ? HasOwnProperty(globalObject,N).
  4. Letextensible be ? IsExtensible(globalObject).
  5. IfhasProperty isfalse andextensible istrue, then
    1. Perform ?ObjRec.CreateMutableBinding(N,D).
    2. Perform ?ObjRec.InitializeBinding(N,undefined).
  6. LetvarDeclaredNames beenvRec.[[VarNames]].
  7. IfvarDeclaredNames does not containN, then
    1. AppendN tovarDeclaredNames.
  8. ReturnNormalCompletion(empty).

9.1.1.4.18 CreateGlobalFunctionBinding (N,V,D )

The CreateGlobalFunctionBinding concrete method of aglobal Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andD (a Boolean). It creates and initializes a mutable binding in the associatedobject Environment Record and records the bound name in the associated [[VarNames]]List. If a binding already exists, it is replaced. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject be the binding object forObjRec.
  3. LetexistingProp be ?globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined orexistingProp.[[Configurable]] istrue, then
    1. Letdesc be the PropertyDescriptor { [[Value]]:V, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:D }.
  5. Else,
    1. Letdesc be the PropertyDescriptor { [[Value]]:V }.
  6. Perform ? DefinePropertyOrThrow(globalObject,N,desc).
  7. Perform ? Set(globalObject,N,V,false).
  8. LetvarDeclaredNames beenvRec.[[VarNames]].
  9. IfvarDeclaredNames does not containN, then
    1. AppendN tovarDeclaredNames.
  10. ReturnNormalCompletion(empty).
Note

Global function declarations are always represented as own properties of theglobal object. If possible, an existing own property is reconfigured to have a standard set of attribute values. Step7 is equivalent to what calling the InitializeBinding concrete method would do and ifglobalObject is a Proxy will produce the same sequence of Proxy trap calls.

9.1.1.5 Module Environment Records

Amodule Environment Record is adeclarative Environment Record that is used to represent the outer scope of an ECMAScriptModule. In additional to normal mutable and immutable bindings, module Environment Records also provide immutable import bindings which are bindings that provide indirect access to a target binding that exists in anotherEnvironment Record.

Module Environment Records support all of thedeclarative Environment Record methods listed inTable 17 and share the same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and GetThisBinding. In addition, module Environment Records support the methods listed inTable 22:

Table 22: Additional Methods of Module Environment Records
Method Purpose
CreateImportBinding(N, M, N2) Create an immutable indirect binding in amodule Environment Record. The String valueN is the text of the bound name.M is aModule Record, andN2 is a binding that exists inM'smodule Environment Record.
GetThisBinding() Return the value of thisEnvironment Record'sthis binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by the following algorithms:

9.1.1.5.1 GetBindingValue (N,S )

The GetBindingValue concrete method of amodule Environment RecordenvRec takes argumentsN (a String) andS (a Boolean). It returns the value of its bound identifier whose name is the value of the argumentN. However, if the binding is an indirect binding the value of the target binding is returned. If the binding exists but is uninitialized aReferenceError is thrown. It performs the following steps when called:

  1. Assert:S istrue.
  2. Assert:envRec has a binding forN.
  3. If the binding forN is an indirect binding, then
    1. LetM andN2 be the indirection values provided when this binding forN was created.
    2. LettargetEnv beM.[[Environment]].
    3. IftargetEnv isundefined, throw aReferenceError exception.
    4. Return ?targetEnv.GetBindingValue(N2,true).
  4. If the binding forN inenvRec is an uninitialized binding, throw aReferenceError exception.
  5. Return the value currently bound toN inenvRec.
Note

S will always betrue because aModule is alwaysstrict mode code.

9.1.1.5.2 DeleteBinding (N )

The DeleteBinding concrete method of amodule Environment Record is never used within this specification.

Note

Module Environment Records are only used within strict code and anearly error rule prevents the delete operator, in strict code, from being applied to aReference Record that would resolve to amodule Environment Record binding. See13.5.1.1.

9.1.1.5.3 HasThisBinding ( )

The HasThisBinding concrete method of amodule Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returntrue.
Note

Module Environment Records always provide athis binding.

9.1.1.5.4 GetThisBinding ( )

The GetThisBinding concrete method of amodule Environment RecordenvRec takes no arguments. It performs the following steps when called:

  1. Returnundefined.

9.1.1.5.5 CreateImportBinding (N,M,N2 )

The CreateImportBinding concrete method of amodule Environment RecordenvRec takes argumentsN (a String),M (aModule Record), andN2 (a String). It creates a new initialized immutable indirect binding for the nameN. A binding must not already exist in thisEnvironment Record forN.N2 is the name of a binding that exists inM'smodule Environment Record. Accesses to the value of the new binding will indirectly access the bound value of the target binding. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Assert:M is aModule Record.
  3. Assert: WhenM.[[Environment]] is instantiated it will have a direct binding forN2.
  4. Create an immutable indirect binding inenvRec forN that referencesM andN2 as its target binding and record that the binding is initialized.
  5. ReturnNormalCompletion(empty).

9.1.2 Environment Record Operations

The followingabstract operations are used in this specification to operate upon Environment Records:

9.1.2.1 GetIdentifierReference (env,name,strict )

The abstract operation GetIdentifierReference takes argumentsenv (anEnvironment Record ornull),name (a String), andstrict (a Boolean). It performs the following steps when called:

  1. Ifenv is the valuenull, then
    1. Return theReference Record { [[Base]]:unresolvable, [[ReferencedName]]:name, [[Strict]]:strict, [[ThisValue]]:empty }.
  2. Letexists be ?env.HasBinding(name).
  3. Ifexists istrue, then
    1. Return theReference Record { [[Base]]:env, [[ReferencedName]]:name, [[Strict]]:strict, [[ThisValue]]:empty }.
  4. Else,
    1. Letouter beenv.[[OuterEnv]].
    2. Return ? GetIdentifierReference(outer,name,strict).

9.1.2.2 NewDeclarativeEnvironment (E )

The abstract operation NewDeclarativeEnvironment takes argumentE (anEnvironment Record). It performs the following steps when called:

  1. Letenv be a newdeclarative Environment Record containing no bindings.
  2. Setenv.[[OuterEnv]] toE.
  3. Returnenv.

9.1.2.3 NewObjectEnvironment (O,E )

The abstract operation NewObjectEnvironment takes argumentsO (an Object) andE (anEnvironment Record). It performs the following steps when called:

  1. Letenv be a newobject Environment Record containingO as the binding object.
  2. Setenv.[[OuterEnv]] toE.
  3. Returnenv.

9.1.2.4 NewFunctionEnvironment (F,newTarget )

The abstract operation NewFunctionEnvironment takes argumentsF andnewTarget. It performs the following steps when called:

  1. Assert:F is an ECMAScript function.
  2. Assert:Type(newTarget) is Undefined or Object.
  3. Letenv be a newfunction Environment Record containing no bindings.
  4. Setenv.[[FunctionObject]] toF.
  5. IfF.[[ThisMode]] islexical, setenv.[[ThisBindingStatus]] tolexical.
  6. Else, setenv.[[ThisBindingStatus]] touninitialized.
  7. Setenv.[[NewTarget]] tonewTarget.
  8. Setenv.[[OuterEnv]] toF.[[Environment]].
  9. Returnenv.

9.1.2.5 NewGlobalEnvironment (G,thisValue )

The abstract operation NewGlobalEnvironment takes argumentsG andthisValue. It performs the following steps when called:

  1. LetobjRec be a newobject Environment Record containingG as the binding object.
  2. LetdclRec be a newdeclarative Environment Record containing no bindings.
  3. Letenv be a newglobal Environment Record.
  4. Setenv.[[ObjectRecord]] toobjRec.
  5. Setenv.[[GlobalThisValue]] tothisValue.
  6. Setenv.[[DeclarativeRecord]] todclRec.
  7. Setenv.[[VarNames]] to a new emptyList.
  8. Setenv.[[OuterEnv]] tonull.
  9. Returnenv.

9.1.2.6 NewModuleEnvironment (E )

The abstract operation NewModuleEnvironment takes argumentE (anEnvironment Record). It performs the following steps when called:

  1. Letenv be a newmodule Environment Record containing no bindings.
  2. Setenv.[[OuterEnv]] toE.
  3. Returnenv.

9.2 Realms

Before it is evaluated, all ECMAScript code must be associated with arealm. Conceptually, arealm consists of a set of intrinsic objects, an ECMAScriptglobal environment, all of the ECMAScript code that is loaded within the scope of thatglobal environment, and other associated state and resources.

Arealm is represented in this specification as aRealm Record with the fields specified inTable 23:

Table 23:Realm Record Fields
Field Name Value Meaning
[[Intrinsics]]Record whose field names are intrinsic keys and whose values are objects The intrinsic values used by code associated with thisrealm
[[GlobalObject]] Object Theglobal object for thisrealm
[[GlobalEnv]]global Environment Record Theglobal environment for thisrealm
[[TemplateMap]] AList ofRecord { [[Site]]:Parse Node, [[Array]]: Object }.

Template objects are canonicalized separately for eachrealm using itsRealm Record's [[TemplateMap]]. Each [[Site]] value is aParse Node that is aTemplateLiteral. The associated [[Array]] value is the corresponding template object that is passed to a tag function.

Note
Once aParse Node becomes unreachable, the corresponding [[Array]] is also unreachable, and it would be unobservable if an implementation removed the pair from the [[TemplateMap]] list.
[[HostDefined]] Any, default value isundefined. Field reserved for use by hosts that need to associate additional information with aRealm Record.

9.2.1 CreateRealm ( )

The abstract operation CreateRealm takes no arguments. It performs the following steps when called:

  1. LetrealmRec be a newRealm Record.
  2. PerformCreateIntrinsics(realmRec).
  3. SetrealmRec.[[GlobalObject]] toundefined.
  4. SetrealmRec.[[GlobalEnv]] toundefined.
  5. SetrealmRec.[[TemplateMap]] to a new emptyList.
  6. ReturnrealmRec.

9.2.2 CreateIntrinsics (realmRec )

The abstract operation CreateIntrinsics takes argumentrealmRec. It performs the following steps when called:

  1. Letintrinsics be a newRecord.
  2. SetrealmRec.[[Intrinsics]] tointrinsics.
  3. Set fields ofintrinsics with the values listed inTable 8. The field names are the names listed in column one of the table. The value of each field is a new object value fully and recursively populated with property values as defined by the specification of each object in clauses19 through28. All object property values are newly created object values. All values that are built-in function objects are created by performingCreateBuiltinFunction(steps,length,name,slots,realmRec,prototype) wheresteps is the definition of that function provided by this specification,name is the initial value of the function'sname property,length is the initial value of the function'slength property,slots is a list of the names, if any, of the function's specified internal slots, andprototype is the specified value of the function's [[Prototype]] internal slot. The creation of the intrinsics and their properties must be ordered to avoid any dependencies upon objects that have not yet been created.
  4. PerformAddRestrictedFunctionProperties(intrinsics.[[%Function.prototype%]],realmRec).
  5. Returnintrinsics.

9.2.3 SetRealmGlobalObject (realmRec,globalObj,thisValue )

The abstract operation SetRealmGlobalObject takes argumentsrealmRec,globalObj, andthisValue. It performs the following steps when called:

  1. IfglobalObj isundefined, then
    1. Letintrinsics berealmRec.[[Intrinsics]].
    2. SetglobalObj to ! OrdinaryObjectCreate(intrinsics.[[%Object.prototype%]]).
  2. Assert:Type(globalObj) is Object.
  3. IfthisValue isundefined, setthisValue toglobalObj.
  4. SetrealmRec.[[GlobalObject]] toglobalObj.
  5. LetnewGlobalEnv beNewGlobalEnvironment(globalObj,thisValue).
  6. SetrealmRec.[[GlobalEnv]] tonewGlobalEnv.
  7. ReturnrealmRec.

9.2.4 SetDefaultGlobalBindings (realmRec )

The abstract operation SetDefaultGlobalBindings takes argumentrealmRec. It performs the following steps when called:

  1. Letglobal berealmRec.[[GlobalObject]].
  2. For each property of the Global Object specified in clause19, do
    1. Letname be the String value of theproperty name.
    2. Letdesc be the fully populated dataProperty Descriptor for the property, containing the specified attributes for the property. For properties listed in19.2,19.3, or19.4 the value of the [[Value]] attribute is the corresponding intrinsic object fromrealmRec.
    3. Perform ? DefinePropertyOrThrow(global,name,desc).
  3. Returnglobal.

9.3 Execution Contexts

Anexecution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript implementation. At any point in time, there is at most one execution context peragent that is actually executing code. This is known as theagent'srunning execution context. All references to therunning execution context in this specification denote therunning execution context of thesurrounding agent.

Theexecution context stack is used to track execution contexts. Therunning execution context is always the top element of this stack. A new execution context is created whenever control is transferred from the executable code associated with the currentlyrunning execution context to executable code that is not associated with that execution context. The newly created execution context is pushed onto the stack and becomes therunning execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its associated code. Each execution context has at least the state components listed inTable 24.

Table 24: State Components for All Execution Contexts
Component Purpose
code evaluation state Any state needed to perform, suspend, and resume evaluation of the code associated with thisexecution context.
Function If thisexecution context is evaluating the code of afunction object, then the value of this component is thatfunction object. If the context is evaluating the code of aScript orModule, the value isnull.
Realm TheRealm Record from which associated code accesses ECMAScript resources.
ScriptOrModule TheModule Record orScript Record from which associated code originates. If there is no originating script or module, as is the case for the originalexecution context created inInitializeHostDefinedRealm, the value isnull.

Evaluation of code by therunning execution context may be suspended at various points defined within this specification. Once therunning execution context has been suspended a different execution context may become therunning execution context and commence evaluating its code. At some later time a suspended execution context may again become therunning execution context and continue evaluating its code at the point where it had previously been suspended. Transition of therunning execution context status among execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features require non-LIFO transitions of therunning execution context.

The value of theRealm component of therunning execution context is also calledthe current Realm Record. The value of the Function component of therunning execution context is also called theactive function object.

Execution contexts for ECMAScript code have the additional state components listed inTable 25.

Table 25: Additional State Components for ECMAScript Code Execution Contexts
Component Purpose
LexicalEnvironment Identifies theEnvironment Record used to resolve identifier references made by code within thisexecution context.
VariableEnvironment Identifies theEnvironment Record that holds bindings created byVariableStatements within thisexecution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Environment Records.

Execution contexts representing the evaluation of generator objects have the additional state components listed inTable 26.

Table 26: Additional State Components for Generator Execution Contexts
Component Purpose
Generator The generator object that thisexecution context is evaluating.

In most situations only therunning execution context (the top of theexecution context stack) is directly manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used without qualification they are in reference to those components of therunning execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

9.3.1 GetActiveScriptOrModule ( )

The abstract operation GetActiveScriptOrModule takes no arguments. It is used to determine the running script or module, based on therunning execution context. It performs the following steps when called:

  1. If theexecution context stack is empty, returnnull.
  2. Letec be the topmostexecution context on theexecution context stack whose ScriptOrModule component is notnull.
  3. If no suchexecution context exists, returnnull. Otherwise, returnec's ScriptOrModule.

9.3.2 ResolveBinding (name [ ,env ] )

The abstract operation ResolveBinding takes argumentname (a String) and optional argumentenv (anEnvironment Record). It is used to determine the binding ofname.env can be used to explicitly provide theEnvironment Record that is to be searched for the binding. It performs the following steps when called:

  1. Ifenv is not present or ifenv isundefined, then
    1. Setenv to therunning execution context's LexicalEnvironment.
  2. Assert:env is anEnvironment Record.
  3. If the code matching the syntactic production that is being evaluated is contained instrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? GetIdentifierReference(env,name,strict).
Note

The result of ResolveBinding is always aReference Record whose [[ReferencedName]] field isname.

9.3.3 GetThisEnvironment ( )

The abstract operation GetThisEnvironment takes no arguments. It finds theEnvironment Record that currently supplies the binding of thekeywordthis. It performs the following steps when called:

  1. Letenv be therunning execution context's LexicalEnvironment.
  2. Repeat,
    1. Letexists beenv.HasThisBinding().
    2. Ifexists istrue, returnenv.
    3. Letouter beenv.[[OuterEnv]].
    4. Assert:outer is notnull.
    5. Setenv toouter.
Note

The loop in step2 will always terminate because the list of environments always ends with theglobal environment which has athis binding.

9.3.4 ResolveThisBinding ( )

The abstract operation ResolveThisBinding takes no arguments. It determines the binding of thekeywordthis using the LexicalEnvironment of therunning execution context. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Return ?envRec.GetThisBinding().

9.3.5 GetNewTarget ( )

The abstract operation GetNewTarget takes no arguments. It determines the NewTarget value using the LexicalEnvironment of therunning execution context. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Assert:envRec has a [[NewTarget]] field.
  3. ReturnenvRec.[[NewTarget]].

9.3.6 GetGlobalObject ( )

The abstract operation GetGlobalObject takes no arguments. It returns theglobal object used by the currentlyrunning execution context. It performs the following steps when called:

  1. LetcurrentRealm bethe current Realm Record.
  2. ReturncurrentRealm.[[GlobalObject]].

9.4 Jobs and Host Operations to Enqueue Jobs

AJob is anAbstract Closure with no parameters that initiates an ECMAScript computation when no other ECMAScript computation is currently in progress.

Jobs are scheduled for execution by ECMAScripthost environments. This specification describes thehost hookHostEnqueuePromiseJob to schedule one kind of job; hosts may define additionalabstract operations which schedule jobs. Such operations accept aJobAbstract Closure as the parameter and schedule it to be performed at some future time. Their implementations must conform to the following requirements:

Note 1
Host environments are not required to treat Jobs uniformly with respect to scheduling. For example, web browsers and Node.js treat Promise-handling Jobs as a higher priority than other work; future features may add Jobs that are not treated at such a high priority.

At any particular time,scriptOrModule (aScript Record, aModule Record, ornull) is theactive script or module if all of the following conditions are true:

At any particular time, an execution isprepared to evaluate ECMAScript code if all of the following conditions are true:

Note 2

Host environments may prepare an execution to evaluate code by pushing execution contexts onto theexecution context stack. The specific steps areimplementation-defined.

The specific choice ofRealm is up to thehost environment. This initialexecution context andRealm is only in use before any callback function is invoked. When a callback function related to aJob, like a Promise handler, is invoked, the invocation pushes its ownexecution context andRealm.

Particular kinds of Jobs have additional conformance requirements.

9.4.1 JobCallback Records

AJobCallback Record is aRecord value used to store afunction object and ahost-defined value. Function objects that are invoked via aJob enqueued by thehost may have additionalhost-defined context. To propagate the state,Job Abstract Closures should not capture and call function objects directly. Instead, useHostMakeJobCallback andHostCallJobCallback.

Note

The WHATWG HTML specification (https://html.spec.whatwg.org/), for example, uses thehost-defined value to propagate the incumbent settings object for Promise callbacks.

JobCallback Records have the fields listed inTable 27.

Table 27:JobCallback Record Fields
Field Name Value Meaning
[[Callback]] Afunction object The function to invoke when theJob is invoked.
[[HostDefined]] Any, default value isempty. Field reserved for use by hosts.

9.4.2 HostMakeJobCallback (callback )

Thehost-defined abstract operation HostMakeJobCallback takes argumentcallback (afunction object).

The implementation of HostMakeJobCallback must conform to the following requirements:

The default implementation of HostMakeJobCallback performs the following steps when called:

  1. Assert:IsCallable(callback) istrue.
  2. Return theJobCallback Record { [[Callback]]:callback, [[HostDefined]]:empty }.

ECMAScript hosts that are not web browsers must use the default implementation of HostMakeJobCallback.

Note

This is called at the time that the callback is passed to the function that is responsible for its being eventually scheduled and run. For example,promise.then(thenAction) calls MakeJobCallback onthenAction at the time of invokingPromise.prototype.then, not at the time of scheduling the reactionJob.

9.4.3 HostCallJobCallback (jobCallback,V,argumentsList )

Thehost-defined abstract operation HostCallJobCallback takes argumentsjobCallback (aJobCallback Record),V (anECMAScript language value), andargumentsList (aList of ECMAScript language values).

The implementation of HostCallJobCallback must conform to the following requirements:

  • It must always perform and return the result ofCall(jobCallback.[[Callback]],V,argumentsList).
Note

This requirement means that hosts cannot change the [[Call]] behaviour of function objects defined in this specification.

The default implementation of HostCallJobCallback performs the following steps when called:

  1. Assert:IsCallable(jobCallback.[[Callback]]) istrue.
  2. Return ? Call(jobCallback.[[Callback]],V,argumentsList).

ECMAScript hosts that are not web browsers must use the default implementation of HostCallJobCallback.

9.4.4 HostEnqueuePromiseJob (job,realm )

Thehost-defined abstract operation HostEnqueuePromiseJob takes argumentsjob (aJobAbstract Closure) andrealm (aRealm Record ornull). It schedulesjob to be performed at some future time. The Abstract Closures used with this algorithm are intended to be related to the handling of Promises, or otherwise, to be scheduled with equal priority to Promise handling operations.

The implementation of HostEnqueuePromiseJob must conform to the requirements in9.4 as well as the following:

Note

Therealm for Jobs returned byNewPromiseResolveThenableJob is usually the result of callingGetFunctionRealm on thethenfunction object. Therealm for Jobs returned byNewPromiseReactionJob is usually the result of callingGetFunctionRealm on the handler if the handler is notundefined. If the handler isundefined,realm isnull. For both kinds of Jobs, whenGetFunctionRealm completes abnormally (i.e. called on a revoked Proxy),realm is the currentRealm at the time of theGetFunctionRealm call. When therealm isnull, no user ECMAScript code will be evaluated and no new ECMAScript objects (e.g. Error objects) will be created. The WHATWG HTML specification (https://html.spec.whatwg.org/), for example, usesrealm to check for the ability to run script and for theentry concept.

9.5 InitializeHostDefinedRealm ( )

The abstract operation InitializeHostDefinedRealm takes no arguments. It performs the following steps when called:

  1. Letrealm beCreateRealm().
  2. LetnewContext be a newexecution context.
  3. Set the Function ofnewContext tonull.
  4. Set theRealm ofnewContext torealm.
  5. Set the ScriptOrModule ofnewContext tonull.
  6. PushnewContext onto theexecution context stack;newContext is now therunning execution context.
  7. If thehost requires use of anexotic object to serve asrealm'sglobal object, letglobal be such an object created in ahost-defined manner. Otherwise, letglobal beundefined, indicating that anordinary object should be created as theglobal object.
  8. If thehost requires that thethis binding inrealm's global scope return an object other than theglobal object, letthisValue be such an object created in ahost-defined manner. Otherwise, letthisValue beundefined, indicating thatrealm's globalthis binding should be theglobal object.
  9. PerformSetRealmGlobalObject(realm,global,thisValue).
  10. LetglobalObj be ? SetDefaultGlobalBindings(realm).
  11. Create anyhost-definedglobal object properties onglobalObj.
  12. ReturnNormalCompletion(empty).

9.6 Agents

Anagent comprises a set of ECMAScript execution contexts, anexecution context stack, arunning execution context, anAgent Record, and anexecuting thread. Except for theexecuting thread, the constituents of anagent belong exclusively to thatagent.

Anagent'sexecuting thread executes a job on theagent's execution contexts independently of other agents, except that anexecuting thread may be used as theexecuting thread by multiple agents, provided none of the agents sharing the thread have anAgent Record whose [[CanBlock]] property istrue.

Note 1

Some web browsers share a singleexecuting thread across multiple unrelated tabs of a browser window, for example.

While anagent'sexecuting thread executes jobs, theagent is thesurrounding agent for the code in those jobs. The code uses thesurrounding agent to access the specification level execution objects held within theagent: therunning execution context, theexecution context stack, and theAgent Record's fields.

Table 28:Agent Record Fields
Field NameValueMeaning
[[LittleEndian]]BooleanThe default value computed for theisLittleEndian parameter when it is needed by the algorithmsGetValueFromBuffer andSetValueInBuffer. The choice isimplementation-defined and should be the alternative that is most efficient for the implementation. Once the value has been observed it cannot change.
[[CanBlock]]BooleanDetermines whether theagent can block or not.
[[Signifier]]Any globally-unique valueUniquely identifies theagent within itsagent cluster.
[[IsLockFree1]]Booleantrue if atomic operations on one-byte values are lock-free,false otherwise.
[[IsLockFree2]]Booleantrue if atomic operations on two-byte values are lock-free,false otherwise.
[[IsLockFree8]]Booleantrue if atomic operations on eight-byte values are lock-free,false otherwise.
[[CandidateExecution]]Acandidate executionRecordSee thememory model.
[[KeptAlive]]List of objectsInitially a new emptyList, representing the list of objects to be kept alive until the end of the currentJob

Once the values of [[Signifier]], [[IsLockFree1]], and [[IsLockFree2]] have been observed by anyagent in theagent cluster they cannot change.

Note 2

The values of [[IsLockFree1]] and [[IsLockFree2]] are not necessarily determined by the hardware, but may also reflect implementation choices that can vary over time and between ECMAScript implementations.

There is no [[IsLockFree4]] property: 4-byte atomic operations are always lock-free.

In practice, if an atomic operation is implemented with any type of lock the operation is not lock-free. Lock-free does not imply wait-free: there is no upper bound on how many machine steps may be required to complete a lock-free atomic operation.

That an atomic access of sizen is lock-free does not imply anything about the (perceived) atomicity of non-atomic accesses of sizen, specifically, non-atomic accesses may still be performed as a sequence of several separate memory accesses. SeeReadSharedMemory andWriteSharedMemory for details.

Note 3

Anagent is a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation.

9.6.1 AgentSignifier ( )

The abstract operation AgentSignifier takes no arguments. It performs the following steps when called:

  1. LetAR be theAgent Record of thesurrounding agent.
  2. ReturnAR.[[Signifier]].

9.6.2 AgentCanSuspend ( )

The abstract operation AgentCanSuspend takes no arguments. It performs the following steps when called:

  1. LetAR be theAgent Record of thesurrounding agent.
  2. ReturnAR.[[CanBlock]].
Note

In some environments it may not be reasonable for a givenagent to suspend. For example, in a web browser environment, it may be reasonable to disallow suspending a document's main event handling thread, while still allowing workers' event handling threads to suspend.

9.7 Agent Clusters

Anagent cluster is a maximal set of agents that can communicate by operating on shared memory.

Note 1

Programs within different agents may share memory by unspecified means. At a minimum, the backing memory for SharedArrayBuffer objects can be shared among the agents in the cluster.

There may be agents that can communicate by message passing that cannot share memory; they are never in the same agent cluster.

Everyagent belongs to exactly one agent cluster.

Note 2

The agents in a cluster need not all be alive at some particular point in time. IfagentA creates anotheragentB, after whichA terminates andB createsagentC, the three agents are in the same cluster ifA could share some memory withB andB could share some memory withC.

All agents within a cluster must have the same value for the [[LittleEndian]] property in their respectiveAgent Records.

Note 3

If different agents within an agent cluster have different values of [[LittleEndian]] it becomes hard to use shared memory for multi-byte data.

All agents within a cluster must have the same values for the [[IsLockFree1]] property in their respectiveAgent Records; similarly for the [[IsLockFree2]] property.

All agents within a cluster must have different values for the [[Signifier]] property in their respectiveAgent Records.

An embedding may deactivate (stop forward progress) or activate (resume forward progress) anagent without theagent's knowledge or cooperation. If the embedding does so, it must not leave some agents in the cluster active while other agents in the cluster are deactivated indefinitely.

Note 4

The purpose of the preceding restriction is to avoid a situation where anagent deadlocks or starves because anotheragent has been deactivated. For example, if an HTML shared worker that has a lifetime independent of documents in any windows were allowed to share memory with the dedicated worker of such an independent document, and the document and its dedicated worker were to be deactivated while the dedicated worker holds a lock (say, the document is pushed into its window's history), and the shared worker then tries to acquire the lock, then the shared worker will be blocked until the dedicated worker is activated again, if ever. Meanwhile other workers trying to access the shared worker from other windows will starve.

The implication of the restriction is that it will not be possible to share memory between agents that don't belong to the same suspend/wake collective within the embedding.

An embedding may terminate anagent without any of theagent's cluster's other agents' prior knowledge or cooperation. If anagent is terminated not by programmatic action of its own or of anotheragent in the cluster but by forces external to the cluster, then the embedding must choose one of two strategies: Either terminate all the agents in the cluster, or provide reliable APIs that allow the agents in the cluster to coordinate so that at least one remaining member of the cluster will be able to detect the termination, with the termination data containing enough information to identify theagent that was terminated.

Note 5

Examples of that type of termination are: operating systems or users terminating agents that are running in separate processes; the embedding itself terminating anagent that is running in-process with the other agents when per-agent resource accounting indicates that theagent is runaway.

Prior to any evaluation of any ECMAScript code by anyagent in a cluster, the [[CandidateExecution]] field of theAgent Record for all agents in the cluster is set to the initialcandidate execution. The initialcandidate execution is anempty candidate execution whose [[EventsRecords]] field is aList containing, for eachagent, anAgent Events Record whose [[AgentSignifier]] field is thatagent's signifier, and whose [[EventList]] and [[AgentSynchronizesWith]] fields are empty Lists.

Note 6

All agents in an agent cluster share the samecandidate execution in itsAgent Record's [[CandidateExecution]] field. Thecandidate execution is a specification mechanism used by thememory model.

Note 7

An agent cluster is a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation.

9.8 Forward Progress

For anagent tomake forward progress is for it to perform an evaluation step according to this specification.

Anagent becomesblocked when itsrunning execution context waits synchronously and indefinitely for an external event. Only agents whoseAgent Record's [[CanBlock]] property istrue can become blocked in this sense. Anunblockedagent is one that is not blocked.

Implementations must ensure that:

  • every unblockedagent with a dedicatedexecuting thread eventually makes forward progress
  • in a set of agents that share anexecuting thread, oneagent eventually makes forward progress
  • anagent does not cause anotheragent to become blocked except via explicit APIs that provide blocking.
Note

This, along with the liveness guarantee in thememory model, ensures that allSeqCst writes eventually become observable to all agents.

9.9 Processing Model of WeakRef and FinalizationRegistry Objects

9.9.1 Objectives

This specification does not make any guarantees that any object will be garbage collected. Objects which are notlive may be released after long periods of time, or never at all. For this reason, this specification uses the term "may" when describing behaviour triggered by garbage collection.

The semantics ofWeakRef andFinalizationRegistry objects is based on two operations which happen at particular points in time:

  • WhenWeakRef.prototype.deref is called, the referent (ifundefined is not returned) is kept alive so that subsequent, synchronous accesses also return the object. This list is reset when synchronous work is done using theClearKeptObjects abstract operation.
  • When an object which is registered with aFinalizationRegistry becomes unreachable, a call of theFinalizationRegistry's cleanup callback may eventually be made, after synchronous ECMAScript execution completes. TheFinalizationRegistry cleanup is performed with theCleanupFinalizationRegistry abstract operation.

Neither of these actions (ClearKeptObjects orCleanupFinalizationRegistry) may interrupt synchronous ECMAScript execution. Because hosts may assemble longer, synchronous ECMAScript execution runs, this specification defers the scheduling ofClearKeptObjects andCleanupFinalizationRegistry to thehost environment.

Some ECMAScript implementations include garbage collector implementations which run in the background, including when ECMAScript is idle. Letting thehost environment scheduleCleanupFinalizationRegistry allows it to resume ECMAScript execution in order to run finalizer work, which may free up held values, reducing overall memory usage.

9.9.2 Liveness

For some set of objectsS, ahypothetical WeakRef-oblivious execution with respect toS is an execution whereby the abstract operationWeakRefDeref of aWeakRef whose referent is an element ofS always returnsundefined.

Note 1
WeakRef-obliviousness, together with liveness, capture two notions. One, that aWeakRef itself does not keep an object alive. Two, that cycles in liveness does not imply that an object is live. To be concrete, if determiningobj's liveness depends on determining the liveness of anotherWeakRef referent,obj2,obj2's liveness cannot assumeobj's liveness, which would be circular reasoning.
Note 2
WeakRef-obliviousness is defined on sets of objects instead of individual objects to account for cycles. If it were defined on individual objects, then an object in a cycle will be considered live even though its Object value is only observed via WeakRefs of other objects in the cycle.
Note 3
Colloquially, we say that an individual object is live if every set of objects containing it is live.

At any point during evaluation, a set of objectsS is consideredlive if either of the following conditions is met:

  • Any element inS is included in anyagent's [[KeptAlive]]List.
  • There exists a valid future hypothetical WeakRef-oblivious execution with respect toS that observes the Object value of any object inS.
Note 4
The intuition the second condition above intends to capture is that an object is live if its identity is observable via non-WeakRef means. An object's identity may be observed by observing a strict equality comparison between objects or observing the object being used as key in a Map.
Note 5

Presence of an object in a field, an internal slot, or a property does not imply that the object is live. For example if the object in question is never passed back to the program, then it cannot be observed.

This is the case for keys in a WeakMap, members of a WeakSet, as well as the [[WeakRefTarget]] and [[UnregisterToken]] fields of aFinalizationRegistry Cell record.

The above definition implies that, if a key in a WeakMap is not live, then its corresponding value is not necessarily live either.

Note 6
Liveness is the lower bound for guaranteeing which WeakRefs engines must not empty. Liveness as defined here is undecidable. In practice, engines use conservative approximations such as reachability. There is expected to be significant implementation leeway.

9.9.3 Execution

At any time, if a set of objectsS is notlive, an ECMAScript implementation may perform the following steps atomically:

  1. For each elementobj ofS, do
    1. For eachWeakRefref such thatref.[[WeakRefTarget]] isobj, do
      1. Setref.[[WeakRefTarget]] toempty.
    2. For eachFinalizationRegistryfg such thatfg.[[Cells]] contains aRecordcell such thatcell.[[WeakRefTarget]] isobj, do
      1. Setcell.[[WeakRefTarget]] toempty.
      2. Optionally, perform ! HostEnqueueFinalizationRegistryCleanupJob(fg).
    3. For each WeakMapmap such thatmap.[[WeakMapData]] contains aRecordr such thatr.[[Key]] isobj, do
      1. Setr.[[Key]] toempty.
      2. Setr.[[Value]] toempty.
    4. For each WeakSetset such thatset.[[WeakSetData]] containsobj, do
      1. Replace the element ofset.[[WeakSetData]] whose value isobj with an element whose value isempty.
Note 1

Together with the definition of liveness, this clause prescribes legal optimizations that an implementation may apply regarding WeakRefs.

It is possible to access an object without observing its identity. Optimizations such as dead variable elimination and scalar replacement on properties of non-escaping objects whose identity is not observed are allowed. These optimizations are thus allowed to observably empty WeakRefs that point to such objects.

On the other hand, if an object's identity is observable, and that object is in the [[WeakRefTarget]] internal slot of aWeakRef, optimizations such as rematerialization that observably empty theWeakRef are prohibited.

Because callingHostEnqueueFinalizationRegistryCleanupJob is optional, registered objects in aFinalizationRegistry do not necessarily hold thatFinalizationRegistrylive. Implementations may omitFinalizationRegistry callbacks for any reason, e.g., if theFinalizationRegistry itself becomes dead, or if the application is shutting down.

Note 2

Implementations are not obligated to empty WeakRefs for maximal sets of non-live objects.

If an implementation chooses a non-live setS in which to empty WeakRefs, it must empty WeakRefs for all objects inS simultaneously. In other words, an implementation must not empty aWeakRef pointing to an objectobj without emptying out other WeakRefs that, if not emptied, could result in an execution that observes the Object value ofobj.

9.9.4 Host Hooks

9.9.4.1 HostEnqueueFinalizationRegistryCleanupJob (finalizationRegistry )

The abstract operation HostEnqueueFinalizationRegistryCleanupJob takes argumentfinalizationRegistry (aFinalizationRegistry). HostEnqueueFinalizationRegistryCleanupJob is animplementation-defined abstract operation that is expected to callCleanupFinalizationRegistry(finalizationRegistry) at some point in the future, if possible. Thehost's responsibility is to make this call at a time which does not interrupt synchronous ECMAScript code execution.

9.10 ClearKeptObjects ( )

The abstract operation ClearKeptObjects takes no arguments. ECMAScript implementations are expected to call ClearKeptObjects when a synchronous sequence of ECMAScript executions completes. It performs the following steps when called:

  1. LetagentRecord be thesurrounding agent'sAgent Record.
  2. SetagentRecord.[[KeptAlive]] to a new emptyList.

9.11 AddToKeptObjects (object )

The abstract operation AddToKeptObjects takes argumentobject (an Object). It performs the following steps when called:

  1. LetagentRecord be thesurrounding agent'sAgent Record.
  2. Appendobject toagentRecord.[[KeptAlive]].
Note
When the abstract operation AddToKeptObjects is called with a target object reference, it adds the target to a list that will point strongly at the target untilClearKeptObjects is called.

9.12 CleanupFinalizationRegistry (finalizationRegistry )

The abstract operation CleanupFinalizationRegistry takes argumentfinalizationRegistry (aFinalizationRegistry). It performs the following steps when called:

  1. Assert:finalizationRegistry has [[Cells]] and [[CleanupCallback]] internal slots.
  2. Letcallback befinalizationRegistry.[[CleanupCallback]].
  3. WhilefinalizationRegistry.[[Cells]] contains aRecordcell such thatcell.[[WeakRefTarget]] isempty, an implementation may perform the following steps:
    1. Choose any suchcell.
    2. Removecell fromfinalizationRegistry.[[Cells]].
    3. Perform ? Call(callback,undefined, «cell.[[HeldValue]] »).
  4. ReturnNormalCompletion(undefined).

10 Ordinary and Exotic Objects Behaviours

10.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is eithernull or an object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (and visible as properties of the child object) for the purposes of get access, but not for set access. Accessor properties are inherited for both get access and set access.

Everyordinary object has a Boolean-valued [[Extensible]] internal slot which is used to fulfill the extensibility-related internal method invariants specified in6.1.7.3. Namely, once the value of an object's [[Extensible]] internal slot has been set tofalse, it is no longer possible to add properties to the object, to modify the value of the object's [[Prototype]] internal slot, or to subsequently change the value of [[Extensible]] totrue.

In the following algorithm descriptions, assumeO is anordinary object,P is a property key value,V is anyECMAScript language value, andDesc is aProperty Descriptor record.

Eachordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation depends on another internal method, then the internal method is invoked onO rather than calling the similarly-named abstract operation directly. These semantics ensure that exotic objects have their overridden internal methods invoked whenordinary object internal methods are applied to them.

10.1.1 [[GetPrototypeOf]] ( )

The [[GetPrototypeOf]] internal method of anordinary objectO takes no arguments. It performs the following steps when called:

  1. Return ! OrdinaryGetPrototypeOf(O).

10.1.1.1 OrdinaryGetPrototypeOf (O )

The abstract operation OrdinaryGetPrototypeOf takes argumentO (an Object). It performs the following steps when called:

  1. ReturnO.[[Prototype]].

10.1.2 [[SetPrototypeOf]] (V )

The [[SetPrototypeOf]] internal method of anordinary objectO takes argumentV (an Object ornull). It performs the following steps when called:

  1. Return ! OrdinarySetPrototypeOf(O,V).

10.1.2.1 OrdinarySetPrototypeOf (O,V )

The abstract operation OrdinarySetPrototypeOf takes argumentsO (an Object) andV (anECMAScript language value). It performs the following steps when called:

  1. Assert: EitherType(V) is Object orType(V) is Null.
  2. Letcurrent beO.[[Prototype]].
  3. IfSameValue(V,current) istrue, returntrue.
  4. Letextensible beO.[[Extensible]].
  5. Ifextensible isfalse, returnfalse.
  6. Letp beV.
  7. Letdone befalse.
  8. Repeat, whiledone isfalse,
    1. Ifp isnull, setdone totrue.
    2. Else ifSameValue(p,O) istrue, returnfalse.
    3. Else,
      1. Ifp.[[GetPrototypeOf]] is not theordinary object internal method defined in10.1.1, setdone totrue.
      2. Else, setp top.[[Prototype]].
  9. SetO.[[Prototype]] toV.
  10. Returntrue.
Note

The loop in step8 guarantees that there will be no circularities in any prototype chain that only includes objects that use theordinary object definitions for [[GetPrototypeOf]] and [[SetPrototypeOf]].

10.1.3 [[IsExtensible]] ( )

The [[IsExtensible]] internal method of anordinary objectO takes no arguments. It performs the following steps when called:

  1. Return ! OrdinaryIsExtensible(O).

10.1.3.1 OrdinaryIsExtensible (O )

The abstract operation OrdinaryIsExtensible takes argumentO (an Object). It performs the following steps when called:

  1. ReturnO.[[Extensible]].

10.1.4 [[PreventExtensions]] ( )

The [[PreventExtensions]] internal method of anordinary objectO takes no arguments. It performs the following steps when called:

  1. Return ! OrdinaryPreventExtensions(O).

10.1.4.1 OrdinaryPreventExtensions (O )

The abstract operation OrdinaryPreventExtensions takes argumentO (an Object). It performs the following steps when called:

  1. SetO.[[Extensible]] tofalse.
  2. Returntrue.

10.1.5 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of anordinary objectO takes argumentP (a property key). It performs the following steps when called:

  1. Return ! OrdinaryGetOwnProperty(O,P).

10.1.5.1 OrdinaryGetOwnProperty (O,P )

The abstract operation OrdinaryGetOwnProperty takes argumentsO (an Object) andP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfO does not have an own property with keyP, returnundefined.
  3. LetD be a newly createdProperty Descriptor with no fields.
  4. LetX beO's own property whose key isP.
  5. IfX is adata property, then
    1. SetD.[[Value]] to the value ofX's [[Value]] attribute.
    2. SetD.[[Writable]] to the value ofX's [[Writable]] attribute.
  6. Else,
    1. Assert:X is anaccessor property.
    2. SetD.[[Get]] to the value ofX's [[Get]] attribute.
    3. SetD.[[Set]] to the value ofX's [[Set]] attribute.
  7. SetD.[[Enumerable]] to the value ofX's [[Enumerable]] attribute.
  8. SetD.[[Configurable]] to the value ofX's [[Configurable]] attribute.
  9. ReturnD.

10.1.6 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of anordinary objectO takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Return ? OrdinaryDefineOwnProperty(O,P,Desc).

10.1.6.1 OrdinaryDefineOwnProperty (O,P,Desc )

The abstract operation OrdinaryDefineOwnProperty takes argumentsO (an Object),P (a property key), andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Letcurrent be ?O.[[GetOwnProperty]](P).
  2. Letextensible be ? IsExtensible(O).
  3. ReturnValidateAndApplyPropertyDescriptor(O,P,extensible,Desc,current).

10.1.6.2 IsCompatiblePropertyDescriptor (Extensible,Desc,Current )

The abstract operation IsCompatiblePropertyDescriptor takes argumentsExtensible (a Boolean),Desc (aProperty Descriptor), andCurrent (aProperty Descriptor). It performs the following steps when called:

  1. ReturnValidateAndApplyPropertyDescriptor(undefined,undefined,Extensible,Desc,Current).

10.1.6.3 ValidateAndApplyPropertyDescriptor (O,P,extensible,Desc,current )

The abstract operation ValidateAndApplyPropertyDescriptor takes argumentsO (an Object orundefined),P (a property key),extensible (a Boolean),Desc (aProperty Descriptor), andcurrent (aProperty Descriptor). It performs the following steps when called:

Note

Ifundefined is passed asO, only validation is performed and no object updates are performed.

  1. Assert: IfO is notundefined, thenIsPropertyKey(P) istrue.
  2. Ifcurrent isundefined, then
    1. Ifextensible isfalse, returnfalse.
    2. Assert:extensible istrue.
    3. IfIsGenericDescriptor(Desc) istrue orIsDataDescriptor(Desc) istrue, then
      1. IfO is notundefined, create an owndata property namedP of objectO whose [[Value]], [[Writable]], [[Enumerable]], and [[Configurable]] attribute values are described byDesc. If the value of an attribute field ofDesc is absent, the attribute of the newly created property is set to itsdefault value.
    4. Else,
      1. Assert: ! IsAccessorDescriptor(Desc) istrue.
      2. IfO is notundefined, create an ownaccessor property namedP of objectO whose [[Get]], [[Set]], [[Enumerable]], and [[Configurable]] attribute values are described byDesc. If the value of an attribute field ofDesc is absent, the attribute of the newly created property is set to itsdefault value.
    5. Returntrue.
  3. If every field inDesc is absent, returntrue.
  4. Ifcurrent.[[Configurable]] isfalse, then
    1. IfDesc.[[Configurable]] is present and its value istrue, returnfalse.
    2. IfDesc.[[Enumerable]] is present and ! SameValue(Desc.[[Enumerable]],current.[[Enumerable]]) isfalse, returnfalse.
  5. If ! IsGenericDescriptor(Desc) istrue, then
    1. NOTE: No further validation is required.
  6. Else if ! SameValue(!IsDataDescriptor(current), ! IsDataDescriptor(Desc)) isfalse, then
    1. Ifcurrent.[[Configurable]] isfalse, returnfalse.
    2. IfIsDataDescriptor(current) istrue, then
      1. IfO is notundefined, convert the property namedP of objectO from adata property to anaccessor property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and set the rest of the property's attributes to theirdefault values.
    3. Else,
      1. IfO is notundefined, convert the property namedP of objectO from anaccessor property to adata property. Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and set the rest of the property's attributes to theirdefault values.
  7. Else ifIsDataDescriptor(current) andIsDataDescriptor(Desc) are bothtrue, then
    1. Ifcurrent.[[Configurable]] isfalse andcurrent.[[Writable]] isfalse, then
      1. IfDesc.[[Writable]] is present andDesc.[[Writable]] istrue, returnfalse.
      2. IfDesc.[[Value]] is present andSameValue(Desc.[[Value]],current.[[Value]]) isfalse, returnfalse.
      3. Returntrue.
  8. Else,
    1. Assert: ! IsAccessorDescriptor(current) and ! IsAccessorDescriptor(Desc) are bothtrue.
    2. Ifcurrent.[[Configurable]] isfalse, then
      1. IfDesc.[[Set]] is present andSameValue(Desc.[[Set]],current.[[Set]]) isfalse, returnfalse.
      2. IfDesc.[[Get]] is present andSameValue(Desc.[[Get]],current.[[Get]]) isfalse, returnfalse.
      3. Returntrue.
  9. IfO is notundefined, then
    1. For each field ofDesc that is present, set the corresponding attribute of the property namedP of objectO to the value of the field.
  10. Returntrue.

10.1.7 [[HasProperty]] (P )

The [[HasProperty]] internal method of anordinary objectO takes argumentP (a property key). It performs the following steps when called:

  1. Return ? OrdinaryHasProperty(O,P).

10.1.7.1 OrdinaryHasProperty (O,P )

The abstract operation OrdinaryHasProperty takes argumentsO (an Object) andP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. LethasOwn be ?O.[[GetOwnProperty]](P).
  3. IfhasOwn is notundefined, returntrue.
  4. Letparent be ?O.[[GetPrototypeOf]]().
  5. Ifparent is notnull, then
    1. Return ?parent.[[HasProperty]](P).
  6. Returnfalse.

10.1.8 [[Get]] (P,Receiver )

The [[Get]] internal method of anordinary objectO takes argumentsP (a property key) andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Return ? OrdinaryGet(O,P,Receiver).

10.1.8.1 OrdinaryGet (O,P,Receiver )

The abstract operation OrdinaryGet takes argumentsO (an Object),P (a property key), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Letdesc be ?O.[[GetOwnProperty]](P).
  3. Ifdesc isundefined, then
    1. Letparent be ?O.[[GetPrototypeOf]]().
    2. Ifparent isnull, returnundefined.
    3. Return ?parent.[[Get]](P,Receiver).
  4. IfIsDataDescriptor(desc) istrue, returndesc.[[Value]].
  5. Assert:IsAccessorDescriptor(desc) istrue.
  6. Letgetter bedesc.[[Get]].
  7. Ifgetter isundefined, returnundefined.
  8. Return ? Call(getter,Receiver).

10.1.9 [[Set]] (P,V,Receiver )

The [[Set]] internal method of anordinary objectO takes argumentsP (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Return ? OrdinarySet(O,P,V,Receiver).

10.1.9.1 OrdinarySet (O,P,V,Receiver )

The abstract operation OrdinarySet takes argumentsO (an Object),P (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. LetownDesc be ?O.[[GetOwnProperty]](P).
  3. ReturnOrdinarySetWithOwnDescriptor(O,P,V,Receiver,ownDesc).

10.1.9.2 OrdinarySetWithOwnDescriptor (O,P,V,Receiver,ownDesc )

The abstract operation OrdinarySetWithOwnDescriptor takes argumentsO (an Object),P (a property key),V (anECMAScript language value),Receiver (anECMAScript language value), andownDesc (aProperty Descriptor orundefined). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfownDesc isundefined, then
    1. Letparent be ?O.[[GetPrototypeOf]]().
    2. Ifparent is notnull, then
      1. Return ?parent.[[Set]](P,V,Receiver).
    3. Else,
      1. SetownDesc to the PropertyDescriptor { [[Value]]:undefined, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:true }.
  3. IfIsDataDescriptor(ownDesc) istrue, then
    1. IfownDesc.[[Writable]] isfalse, returnfalse.
    2. IfType(Receiver) is not Object, returnfalse.
    3. LetexistingDescriptor be ?Receiver.[[GetOwnProperty]](P).
    4. IfexistingDescriptor is notundefined, then
      1. IfIsAccessorDescriptor(existingDescriptor) istrue, returnfalse.
      2. IfexistingDescriptor.[[Writable]] isfalse, returnfalse.
      3. LetvalueDesc be the PropertyDescriptor { [[Value]]:V }.
      4. Return ?Receiver.[[DefineOwnProperty]](P,valueDesc).
    5. Else,
      1. Assert:Receiver does not currently have a propertyP.
      2. Return ? CreateDataProperty(Receiver,P,V).
  4. Assert:IsAccessorDescriptor(ownDesc) istrue.
  5. Letsetter beownDesc.[[Set]].
  6. Ifsetter isundefined, returnfalse.
  7. Perform ? Call(setter,Receiver, «V »).
  8. Returntrue.

10.1.10 [[Delete]] (P )

The [[Delete]] internal method of anordinary objectO takes argumentP (a property key). It performs the following steps when called:

  1. Return ? OrdinaryDelete(O,P).

10.1.10.1 OrdinaryDelete (O,P )

The abstract operation OrdinaryDelete takes argumentsO (an Object) andP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Letdesc be ?O.[[GetOwnProperty]](P).
  3. Ifdesc isundefined, returntrue.
  4. Ifdesc.[[Configurable]] istrue, then
    1. Remove the own property with nameP fromO.
    2. Returntrue.
  5. Returnfalse.

10.1.11 [[OwnPropertyKeys]] ( )

The [[OwnPropertyKeys]] internal method of anordinary objectO takes no arguments. It performs the following steps when called:

  1. Return ! OrdinaryOwnPropertyKeys(O).

10.1.11.1 OrdinaryOwnPropertyKeys (O )

The abstract operation OrdinaryOwnPropertyKeys takes argumentO (an Object). It performs the following steps when called:

  1. Letkeys be a new emptyList.
  2. For each own property keyP ofO such thatP is anarray index, in ascending numeric index order, do
    1. AddP as the last element ofkeys.
  3. For each own property keyP ofO such thatType(P) is String andP is not anarray index, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  4. For each own property keyP ofO such thatType(P) is Symbol, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  5. Returnkeys.

10.1.12 OrdinaryObjectCreate (proto [ ,additionalInternalSlotsList ] )

The abstract operation OrdinaryObjectCreate takes argumentproto (an Object ornull) and optional argumentadditionalInternalSlotsList (aList of names of internal slots). It is used to specify the runtime creation of new ordinary objects.additionalInternalSlotsList contains the names of additional internal slots that must be defined as part of the object, beyond [[Prototype]] and [[Extensible]]. IfadditionalInternalSlotsList is not provided, a new emptyList is used. It performs the following steps when called:

  1. LetinternalSlotsList be « [[Prototype]], [[Extensible]] ».
  2. IfadditionalInternalSlotsList is present, append each of its elements tointernalSlotsList.
  3. LetO be ! MakeBasicObject(internalSlotsList).
  4. SetO.[[Prototype]] toproto.
  5. ReturnO.
Note

Although OrdinaryObjectCreate does little more than callMakeBasicObject, its use communicates the intention to create anordinary object, and not an exotic one. Thus, within this specification, it is not called by any algorithm that subsequently modifies the internal methods of the object in ways that would make the result non-ordinary. Operations that create exotic objects invokeMakeBasicObject directly.

10.1.13 OrdinaryCreateFromConstructor (constructor,intrinsicDefaultProto [ ,internalSlotsList ] )

The abstract operation OrdinaryCreateFromConstructor takes argumentsconstructor andintrinsicDefaultProto and optional argumentinternalSlotsList (aList of names of internal slots). It creates anordinary object whose [[Prototype]] value is retrieved from aconstructor's"prototype" property, if it exists. Otherwise the intrinsic named byintrinsicDefaultProto is used for [[Prototype]].internalSlotsList contains the names of additional internal slots that must be defined as part of the object. IfinternalSlotsList is not provided, a new emptyList is used. It performs the following steps when called:

  1. Assert:intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
  2. Letproto be ? GetPrototypeFromConstructor(constructor,intrinsicDefaultProto).
  3. Return ! OrdinaryObjectCreate(proto,internalSlotsList).

10.1.14 GetPrototypeFromConstructor (constructor,intrinsicDefaultProto )

The abstract operation GetPrototypeFromConstructor takes argumentsconstructor andintrinsicDefaultProto. It determines the [[Prototype]] value that should be used to create an object corresponding to a specificconstructor. The value is retrieved from theconstructor's"prototype" property, if it exists. Otherwise the intrinsic named byintrinsicDefaultProto is used for [[Prototype]]. It performs the following steps when called:

  1. Assert:intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
  2. Assert:IsCallable(constructor) istrue.
  3. Letproto be ? Get(constructor,"prototype").
  4. IfType(proto) is not Object, then
    1. Letrealm be ? GetFunctionRealm(constructor).
    2. Setproto torealm's intrinsic object namedintrinsicDefaultProto.
  5. Returnproto.
Note

Ifconstructor does not supply a [[Prototype]] value, the default value that is used is obtained from therealm of theconstructor function rather than from therunning execution context.

10.1.15 RequireInternalSlot (O,internalSlot )

The abstract operation RequireInternalSlot takes argumentsO andinternalSlot. It throws an exception unlessO is an Object and has the given internal slot. It performs the following steps when called:

  1. IfType(O) is not Object, throw aTypeError exception.
  2. IfO does not have aninternalSlot internal slot, throw aTypeError exception.

10.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment and support the dynamic evaluation of that code. An ECMAScriptfunction object is anordinary object and has the same internal slots and the same internal methods as other ordinary objects. The code of an ECMAScriptfunction object may be eitherstrict mode code (11.2.2) ornon-strict code. An ECMAScriptfunction object whose code isstrict mode code is called astrict function. One whose code is notstrict mode code is called anon-strict function.

In addition to [[Extensible]] and [[Prototype]], ECMAScript function objects also have the internal slots listed inTable 29.

Table 29: Internal Slots of ECMAScript Function Objects
Internal Slot Type Description
[[Environment]]Environment Record TheEnvironment Record that the function was closed over. Used as the outer environment when evaluating the code of the function.
[[FormalParameters]]Parse Node The root parse node of the source text that defines the function's formal parameter list.
[[ECMAScriptCode]]Parse Node The root parse node of the source text that defines the function's body.
[[ConstructorKind]]base |derived Whether or not the function is a derived classconstructor.
[[Realm]]Realm Record Therealm in which the function was created and which provides any intrinsic objects that are accessed when evaluating the function.
[[ScriptOrModule]]Script Record orModule Record The script or module in which the function was created.
[[ThisMode]]lexical |strict |global Defines howthis references are interpreted within the formal parameters and code body of the function.lexical means thatthis refers to thethis value of a lexically enclosing function.strict means that thethis value is used exactly as provided by an invocation of the function.global means that athis value ofundefined ornull is interpreted as a reference to theglobal object, and any otherthis value is first passed toToObject.
[[Strict]] Booleantrue if this is astrict function,false if this is anon-strict function.
[[HomeObject]] Object If the function usessuper, this is the object whose [[GetPrototypeOf]] provides the object wheresuper property lookups begin.
[[SourceText]] sequence of Unicode code points Thesource text that defines the function.
[[IsClassConstructor]] Boolean Indicates whether the function is a classconstructor. (Iftrue, invoking the function's [[Call]] will immediately throw aTypeError exception.)

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are also constructors in addition have the [[Construct]] internal method.

10.2.1 [[Call]] (thisArgument,argumentsList )

The [[Call]] internal method of an ECMAScriptfunction objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList of ECMAScript language values). It performs the following steps when called:

  1. Assert:F is an ECMAScriptfunction object.
  2. LetcallerContext be therunning execution context.
  3. LetcalleeContext bePrepareForOrdinaryCall(F,undefined).
  4. Assert:calleeContext is now therunning execution context.
  5. IfF.[[IsClassConstructor]] istrue, then
    1. Leterror be a newly createdTypeError object.
    2. NOTE:error is created incalleeContext withF's associatedRealm Record.
    3. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
    4. ReturnThrowCompletion(error).
  6. PerformOrdinaryCallBindThis(F,calleeContext,thisArgument).
  7. Letresult beOrdinaryCallEvaluateBody(F,argumentsList).
  8. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  9. Ifresult.[[Type]] isreturn, returnNormalCompletion(result.[[Value]]).
  10. ReturnIfAbrupt(result).
  11. ReturnNormalCompletion(undefined).
Note

WhencalleeContext is removed from theexecution context stack in step8 it must not be destroyed if it is suspended and retained for later resumption by an accessible generator object.

10.2.1.1 PrepareForOrdinaryCall (F,newTarget )

The abstract operation PrepareForOrdinaryCall takes argumentsF (afunction object) andnewTarget (anECMAScript language value). It performs the following steps when called:

  1. Assert:Type(newTarget) is Undefined or Object.
  2. LetcallerContext be therunning execution context.
  3. LetcalleeContext be a new ECMAScript codeexecution context.
  4. Set the Function ofcalleeContext toF.
  5. LetcalleeRealm beF.[[Realm]].
  6. Set theRealm ofcalleeContext tocalleeRealm.
  7. Set the ScriptOrModule ofcalleeContext toF.[[ScriptOrModule]].
  8. LetlocalEnv beNewFunctionEnvironment(F,newTarget).
  9. Set the LexicalEnvironment ofcalleeContext tolocalEnv.
  10. Set the VariableEnvironment ofcalleeContext tolocalEnv.
  11. IfcallerContext is not already suspended, suspendcallerContext.
  12. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  13. NOTE: Any exception objects produced after this point are associated withcalleeRealm.
  14. ReturncalleeContext.

10.2.1.2 OrdinaryCallBindThis (F,calleeContext,thisArgument )

The abstract operation OrdinaryCallBindThis takes argumentsF (afunction object),calleeContext (anexecution context), andthisArgument (anECMAScript language value). It performs the following steps when called:

  1. LetthisMode beF.[[ThisMode]].
  2. IfthisMode islexical, returnNormalCompletion(undefined).
  3. LetcalleeRealm beF.[[Realm]].
  4. LetlocalEnv be the LexicalEnvironment ofcalleeContext.
  5. IfthisMode isstrict, letthisValue bethisArgument.
  6. Else,
    1. IfthisArgument isundefined ornull, then
      1. LetglobalEnv becalleeRealm.[[GlobalEnv]].
      2. Assert:globalEnv is aglobal Environment Record.
      3. LetthisValue beglobalEnv.[[GlobalThisValue]].
    2. Else,
      1. LetthisValue be ! ToObject(thisArgument).
      2. NOTE:ToObject produces wrapper objects usingcalleeRealm.
  7. Assert:localEnv is afunction Environment Record.
  8. Assert: The next step never returns anabrupt completion becauselocalEnv.[[ThisBindingStatus]] is notinitialized.
  9. ReturnlocalEnv.BindThisValue(thisValue).

10.2.1.3 Runtime Semantics: EvaluateBody

With parametersfunctionObject andargumentsList (aList).

FunctionBody:FunctionStatementList
  1. Return ?EvaluateFunctionBody ofFunctionBody with argumentsfunctionObject andargumentsList.
ConciseBody:ExpressionBody
  1. Return ?EvaluateConciseBody ofConciseBody with argumentsfunctionObject andargumentsList.
GeneratorBody:FunctionBody
  1. Return ?EvaluateGeneratorBody ofGeneratorBody with argumentsfunctionObject andargumentsList.
AsyncGeneratorBody:FunctionBody
  1. Return ?EvaluateAsyncGeneratorBody ofAsyncGeneratorBody with argumentsfunctionObject andargumentsList.
AsyncFunctionBody:FunctionBody
  1. Return ?EvaluateAsyncFunctionBody ofAsyncFunctionBody with argumentsfunctionObject andargumentsList.
AsyncConciseBody:ExpressionBody
  1. Return ?EvaluateAsyncConciseBody ofAsyncConciseBody with argumentsfunctionObject andargumentsList.

10.2.1.4 OrdinaryCallEvaluateBody (F,argumentsList )

The abstract operation OrdinaryCallEvaluateBody takes argumentsF (afunction object) andargumentsList (aList). It performs the following steps when called:

  1. Return the result ofEvaluateBody of the parsed code that isF.[[ECMAScriptCode]] passingF andargumentsList as the arguments.

10.2.2 [[Construct]] (argumentsList,newTarget )

The [[Construct]] internal method of an ECMAScriptfunction objectF takes argumentsargumentsList (aList of ECMAScript language values) andnewTarget (aconstructor). It performs the following steps when called:

  1. Assert:F is an ECMAScriptfunction object.
  2. Assert:Type(newTarget) is Object.
  3. LetcallerContext be therunning execution context.
  4. Letkind beF.[[ConstructorKind]].
  5. Ifkind isbase, then
    1. LetthisArgument be ? OrdinaryCreateFromConstructor(newTarget,"%Object.prototype%").
  6. LetcalleeContext bePrepareForOrdinaryCall(F,newTarget).
  7. Assert:calleeContext is now therunning execution context.
  8. Ifkind isbase, performOrdinaryCallBindThis(F,calleeContext,thisArgument).
  9. LetconstructorEnv be the LexicalEnvironment ofcalleeContext.
  10. Letresult beOrdinaryCallEvaluateBody(F,argumentsList).
  11. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  12. Ifresult.[[Type]] isreturn, then
    1. IfType(result.[[Value]]) is Object, returnNormalCompletion(result.[[Value]]).
    2. Ifkind isbase, returnNormalCompletion(thisArgument).
    3. Ifresult.[[Value]] is notundefined, throw aTypeError exception.
  13. Else,ReturnIfAbrupt(result).
  14. Return ?constructorEnv.GetThisBinding().

10.2.3 OrdinaryFunctionCreate (functionPrototype,sourceText,ParameterList,Body,thisMode,Scope )

The abstract operation OrdinaryFunctionCreate takes argumentsfunctionPrototype (an Object),sourceText (a sequence of Unicode code points),ParameterList (aParse Node),Body (aParse Node),thisMode (eitherlexical-this ornon-lexical-this), andScope (anEnvironment Record).sourceText is the source text of the syntactic definition of the function to be created. It performs the following steps when called:

  1. Assert:Type(functionPrototype) is Object.
  2. LetinternalSlotsList be the internal slots listed inTable 29.
  3. LetF be ! OrdinaryObjectCreate(functionPrototype,internalSlotsList).
  4. SetF.[[Call]] to the definition specified in10.2.1.
  5. SetF.[[SourceText]] tosourceText.
  6. SetF.[[FormalParameters]] toParameterList.
  7. SetF.[[ECMAScriptCode]] toBody.
  8. If the source text matchingBody isstrict mode code, letStrict betrue; else letStrict befalse.
  9. SetF.[[Strict]] toStrict.
  10. IfthisMode islexical-this, setF.[[ThisMode]] tolexical.
  11. Else ifStrict istrue, setF.[[ThisMode]] tostrict.
  12. Else, setF.[[ThisMode]] toglobal.
  13. SetF.[[IsClassConstructor]] tofalse.
  14. SetF.[[Environment]] toScope.
  15. SetF.[[ScriptOrModule]] toGetActiveScriptOrModule().
  16. SetF.[[Realm]] tothe current Realm Record.
  17. SetF.[[HomeObject]] toundefined.
  18. Letlen be theExpectedArgumentCount ofParameterList.
  19. Perform ! SetFunctionLength(F,len).
  20. ReturnF.

10.2.4 AddRestrictedFunctionProperties (F,realm )

The abstract operation AddRestrictedFunctionProperties takes argumentsF (afunction object) andrealm (aRealm Record). It performs the following steps when called:

  1. Assert:realm.[[Intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.
  2. Letthrower berealm.[[Intrinsics]].[[%ThrowTypeError%]].
  3. Perform ! DefinePropertyOrThrow(F,"caller", PropertyDescriptor { [[Get]]:thrower, [[Set]]:thrower, [[Enumerable]]:false, [[Configurable]]:true }).
  4. Return ! DefinePropertyOrThrow(F,"arguments", PropertyDescriptor { [[Get]]:thrower, [[Set]]:thrower, [[Enumerable]]:false, [[Configurable]]:true }).

10.2.4.1 %ThrowTypeError% ( )

The%ThrowTypeError% intrinsic is an anonymous built-infunction object that is defined once for eachrealm. When %ThrowTypeError% is called it performs the following steps:

  1. Throw aTypeError exception.

The value of the [[Extensible]] internal slot of a %ThrowTypeError% function isfalse.

The"length" property of a %ThrowTypeError% function has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

The"name" property of a %ThrowTypeError% function has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

10.2.5 MakeConstructor (F [ ,writablePrototype [ ,prototype ] ] )

The abstract operation MakeConstructor takes argumentF (afunction object) and optional argumentswritablePrototype (a Boolean) andprototype (an Object). It convertsF into aconstructor. It performs the following steps when called:

  1. Assert:F is an ECMAScriptfunction object or a built-infunction object.
  2. IfF is an ECMAScriptfunction object, then
    1. Assert:IsConstructor(F) isfalse.
    2. Assert:F is an extensible object that does not have a"prototype" own property.
    3. SetF.[[Construct]] to the definition specified in10.2.2.
  3. SetF.[[ConstructorKind]] tobase.
  4. IfwritablePrototype is not present, setwritablePrototype totrue.
  5. Ifprototype is not present, then
    1. Setprototype to ! OrdinaryObjectCreate(%Object.prototype%).
    2. Perform ! DefinePropertyOrThrow(prototype,"constructor", PropertyDescriptor { [[Value]]:F, [[Writable]]:writablePrototype, [[Enumerable]]:false, [[Configurable]]:true }).
  6. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:writablePrototype, [[Enumerable]]:false, [[Configurable]]:false }).
  7. ReturnNormalCompletion(undefined).

10.2.6 MakeClassConstructor (F )

The abstract operation MakeClassConstructor takes argumentF. It performs the following steps when called:

  1. Assert:F is an ECMAScriptfunction object.
  2. Assert:F.[[IsClassConstructor]] isfalse.
  3. SetF.[[IsClassConstructor]] totrue.
  4. ReturnNormalCompletion(undefined).

10.2.7 MakeMethod (F,homeObject )

The abstract operation MakeMethod takes argumentsF andhomeObject. It configuresF as a method. It performs the following steps when called:

  1. Assert:F is an ECMAScriptfunction object.
  2. Assert:Type(homeObject) is Object.
  3. SetF.[[HomeObject]] tohomeObject.
  4. ReturnNormalCompletion(undefined).

10.2.8 SetFunctionName (F,name [ ,prefix ] )

The abstract operation SetFunctionName takes argumentsF (afunction object) andname (a property key) and optional argumentprefix (a String). It adds a"name" property toF. It performs the following steps when called:

  1. Assert:F is an extensible object that does not have a"name" own property.
  2. Assert:Type(name) is either Symbol or String.
  3. Assert: Ifprefix is present, thenType(prefix) is String.
  4. IfType(name) is Symbol, then
    1. Letdescription bename's [[Description]] value.
    2. Ifdescription isundefined, setname to the empty String.
    3. Else, setname to thestring-concatenation of"[",description, and"]".
  5. IfF has an [[InitialName]] internal slot, then
    1. SetF.[[InitialName]] toname.
  6. Ifprefix is present, then
    1. Setname to thestring-concatenation ofprefix, the code unit 0x0020 (SPACE), andname.
    2. IfF has an [[InitialName]] internal slot, then
      1. Optionally, setF.[[InitialName]] toname.
  7. Return ! DefinePropertyOrThrow(F,"name", PropertyDescriptor { [[Value]]:name, [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }).

10.2.9 SetFunctionLength (F,length )

The abstract operation SetFunctionLength takes argumentsF (afunction object) andlength (a non-negativeinteger or +∞). It adds a"length" property toF. It performs the following steps when called:

  1. Assert:F is an extensible object that does not have a"length" own property.
  2. Return ! DefinePropertyOrThrow(F,"length", PropertyDescriptor { [[Value]]:𝔽(length), [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }).

10.2.10 FunctionDeclarationInstantiation (func,argumentsList )

Note 1

When anexecution context is established for evaluating an ECMAScript function a newfunction Environment Record is created and bindings for each formal parameter are instantiated in thatEnvironment Record. Each declaration in the function body is also instantiated. If the function's formal parameters do not include any default value initializers then the body declarations are instantiated in the sameEnvironment Record as the parameters. If default value parameter initializers exist, a secondEnvironment Record is created for the body declarations. Formal parameters and functions are initialized as part of FunctionDeclarationInstantiation. All other bindings are initialized during evaluation of the function body.

The abstract operation FunctionDeclarationInstantiation takes argumentsfunc (afunction object) andargumentsList.func is thefunction object for which theexecution context is being established. It performs the following steps when called:

  1. LetcalleeContext be therunning execution context.
  2. Letcode befunc.[[ECMAScriptCode]].
  3. Letstrict befunc.[[Strict]].
  4. Letformals befunc.[[FormalParameters]].
  5. LetparameterNames be theBoundNames offormals.
  6. IfparameterNames has any duplicate entries, lethasDuplicates betrue. Otherwise, lethasDuplicates befalse.
  7. LetsimpleParameterList beIsSimpleParameterList offormals.
  8. LethasParameterExpressions beContainsExpression offormals.
  9. LetvarNames be theVarDeclaredNames ofcode.
  10. LetvarDeclarations be theVarScopedDeclarations ofcode.
  11. LetlexicalNames be theLexicallyDeclaredNames ofcode.
  12. LetfunctionNames be a new emptyList.
  13. LetfunctionsToInitialize be a new emptyList.
  14. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is neither aVariableDeclaration nor aForBinding nor aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. Letfn be the sole element of theBoundNames ofd.
      3. Iffn is not an element offunctionNames, then
        1. Insertfn as the first element offunctionNames.
        2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
        3. Insertd as the first element offunctionsToInitialize.
  15. LetargumentsObjectNeeded betrue.
  16. Iffunc.[[ThisMode]] islexical, then
    1. NOTE: Arrow functions never have an arguments objects.
    2. SetargumentsObjectNeeded tofalse.
  17. Else if"arguments" is an element ofparameterNames, then
    1. SetargumentsObjectNeeded tofalse.
  18. Else ifhasParameterExpressions isfalse, then
    1. If"arguments" is an element offunctionNames or if"arguments" is an element oflexicalNames, then
      1. SetargumentsObjectNeeded tofalse.
  19. Ifstrict istrue or ifhasParameterExpressions isfalse, then
    1. NOTE: Only a singleEnvironment Record is needed for the parameters and top-level vars.
    2. Letenv be the LexicalEnvironment ofcalleeContext.
  20. Else,
    1. NOTE: A separateEnvironment Record is needed to ensure that bindings created bydirect eval calls in the formal parameter list are outside the environment where parameters are declared.
    2. LetcalleeEnv be the LexicalEnvironment ofcalleeContext.
    3. Letenv beNewDeclarativeEnvironment(calleeEnv).
    4. Assert: The VariableEnvironment ofcalleeContext iscalleeEnv.
    5. Set the LexicalEnvironment ofcalleeContext toenv.
  21. For each StringparamName ofparameterNames, do
    1. LetalreadyDeclared beenv.HasBinding(paramName).
    2. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do not have parameter default values or rest parameters.
    3. IfalreadyDeclared isfalse, then
      1. Perform !env.CreateMutableBinding(paramName,false).
      2. IfhasDuplicates istrue, then
        1. Perform !env.InitializeBinding(paramName,undefined).
  22. IfargumentsObjectNeeded istrue, then
    1. Ifstrict istrue or ifsimpleParameterList isfalse, then
      1. Letao beCreateUnmappedArgumentsObject(argumentsList).
    2. Else,
      1. NOTE: A mapped argument object is only provided for non-strict functions that don't have a rest parameter, any parameter default value initializers, or any destructured parameters.
      2. Letao beCreateMappedArgumentsObject(func,formals,argumentsList,env).
    3. Ifstrict istrue, then
      1. Perform !env.CreateImmutableBinding("arguments",false).
    4. Else,
      1. Perform !env.CreateMutableBinding("arguments",false).
    5. Callenv.InitializeBinding("arguments",ao).
    6. LetparameterBindings be aList whose elements are the elements ofparameterNames, followed by"arguments".
  23. Else,
    1. LetparameterBindings beparameterNames.
  24. LetiteratorRecord beCreateListIteratorRecord(argumentsList).
  25. IfhasDuplicates istrue, then
    1. Perform ?IteratorBindingInitialization forformals withiteratorRecord andundefined as arguments.
  26. Else,
    1. Perform ?IteratorBindingInitialization forformals withiteratorRecord andenv as arguments.
  27. IfhasParameterExpressions isfalse, then
    1. NOTE: Only a singleEnvironment Record is needed for the parameters and top-level vars.
    2. LetinstantiatedVarNames be a copy of theListparameterBindings.
    3. For each elementn ofvarNames, do
      1. Ifn is not an element ofinstantiatedVarNames, then
        1. Appendn toinstantiatedVarNames.
        2. Perform !env.CreateMutableBinding(n,false).
        3. Callenv.InitializeBinding(n,undefined).
    4. LetvarEnv beenv.
  28. Else,
    1. NOTE: A separateEnvironment Record is needed to ensure that closures created by expressions in the formal parameter list do not have visibility of declarations in the function body.
    2. LetvarEnv beNewDeclarativeEnvironment(env).
    3. Set the VariableEnvironment ofcalleeContext tovarEnv.
    4. LetinstantiatedVarNames be a new emptyList.
    5. For each elementn ofvarNames, do
      1. Ifn is not an element ofinstantiatedVarNames, then
        1. Appendn toinstantiatedVarNames.
        2. Perform !varEnv.CreateMutableBinding(n,false).
        3. Ifn is not an element ofparameterBindings or ifn is an element offunctionNames, letinitialValue beundefined.
        4. Else,
          1. LetinitialValue be !env.GetBindingValue(n,false).
        5. CallvarEnv.InitializeBinding(n,initialValue).
        6. NOTE: A var with the same name as a formal parameter initially has the same value as the corresponding initialized parameter.
  29. NOTE: AnnexB.3.3.1 adds additional steps at this point.
  30. Ifstrict isfalse, then
    1. LetlexEnv beNewDeclarativeEnvironment(varEnv).
    2. NOTE: Non-strict functions use a separateEnvironment Record for top-level lexical declarations so that adirect eval can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level lexically scoped declarations. This is not needed for strict functions because a strictdirect eval always places all declarations into a newEnvironment Record.
  31. Else, letlexEnv bevarEnv.
  32. Set the LexicalEnvironment ofcalleeContext tolexEnv.
  33. LetlexDeclarations be theLexicallyScopedDeclarations ofcode.
  34. For each elementd oflexDeclarations, do
    1. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform !lexEnv.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform !lexEnv.CreateMutableBinding(dn,false).
  35. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentlexEnv.
    3. Perform !varEnv.SetMutableBinding(fn,fo,false).
  36. ReturnNormalCompletion(empty).
Note 2

B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility with web browser implementations of ECMAScript that predate ECMAScript 2015.

Note 3

ParameterInitializers may containdirect eval expressions. Any top level declarations of such evals are only visible to the eval code (11.2). The creation of the environment for such declarations is described in8.5.3.

10.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript function objects (10.2) whose behaviour is provided using ECMAScript code or as implementation provided function exotic objects whose behaviour is provided in some other manner. In either case, the effect of calling such functions must conform to their specifications. An implementation may also provide additional built-in function objects that are not defined in this specification.

If a built-infunction object is implemented as anexotic object it must have theordinary object behaviour specified in10.1. All such function exotic objects also have [[Prototype]], [[Extensible]], and [[Realm]] internal slots.

Unless otherwise specified every built-infunction object has the%Function.prototype% object as the initial value of its [[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of the function body behaviour for both [[Call]] and [[Construct]] invocations of the function. However, [[Construct]] invocation is not supported by all built-in functions. For each built-in function, when invoked with [[Call]], the [[Call]]thisArgument provides thethis value, the [[Call]]argumentsList provides the named parameters, and the NewTarget value isundefined. When invoked with [[Construct]], thethis value is uninitialized, the [[Construct]]argumentsList provides the named parameters, and the [[Construct]]newTarget parameter provides the NewTarget value. If the built-in function is implemented as an ECMAScriptfunction object then this specified behaviour must be implemented by the ECMAScript code that is the body of the function. Built-in functions that are ECMAScript function objects must be strict functions. If a built-inconstructor has any [[Call]] behaviour other than throwing aTypeError exception, an ECMAScript implementation of the function must be done in a manner that does not cause the function's [[IsClassConstructor]] internal slot to have the valuetrue.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method unless otherwise specified in the description of a particular function. When a built-inconstructor is called as part of anew expression theargumentsList parameter of the invoked [[Construct]] internal method provides the values for the built-inconstructor's named parameters.

Built-in functions that are not constructors do not have a"prototype" property unless otherwise specified in the description of a particular function.

Built-in functions have an [[InitialName]] internal slot.

If a built-infunction object is not implemented as an ECMAScript function it must provide [[Call]] and [[Construct]] internal methods that conform to the following definitions:

10.3.1 [[Call]] (thisArgument,argumentsList )

The [[Call]] internal method of a built-infunction objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList of ECMAScript language values). It performs the following steps when called:

  1. LetcallerContext be therunning execution context.
  2. IfcallerContext is not already suspended, suspendcallerContext.
  3. LetcalleeContext be a newexecution context.
  4. Set the Function ofcalleeContext toF.
  5. LetcalleeRealm beF.[[Realm]].
  6. Set theRealm ofcalleeContext tocalleeRealm.
  7. Set the ScriptOrModule ofcalleeContext tonull.
  8. Perform any necessaryimplementation-defined initialization ofcalleeContext.
  9. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  10. Letresult be theCompletion Record that is the result of evaluatingF in a manner that conforms to the specification ofF.thisArgument is thethis value,argumentsList provides the named parameters, and the NewTarget value isundefined.
  11. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  12. Returnresult.
Note

WhencalleeContext is removed from theexecution context stack it must not be destroyed if it has been suspended and retained by an accessible generator object for later resumption.

10.3.2 [[Construct]] (argumentsList,newTarget )

The [[Construct]] internal method of a built-infunction objectF takes argumentsargumentsList (aList of ECMAScript language values) andnewTarget (aconstructor). The steps performed are the same as [[Call]] (see10.3.1) except that step10 is replaced by:

  1. Letresult be theCompletion Record that is the result of evaluatingF in a manner that conforms to the specification ofF. Thethis value is uninitialized,argumentsList provides the named parameters, andnewTarget provides the NewTarget value.

10.3.3 CreateBuiltinFunction (steps,length,name,internalSlotsList [ ,realm [ ,prototype [ ,prefix ] ] ] )

The abstract operation CreateBuiltinFunction takes argumentssteps,length,name, andinternalSlotsList (aList of names of internal slots) and optional argumentsrealm,prototype, andprefix.internalSlotsList contains the names of additional internal slots that must be defined as part of the object. This operation creates a built-infunction object. It performs the following steps when called:

  1. Assert:steps is either a set of algorithm steps or other definition of a function's behaviour provided in this specification.
  2. Ifrealm is not present orrealm isempty, setrealm tothe current Realm Record.
  3. Assert:realm is aRealm Record.
  4. Ifprototype is not present, setprototype torealm.[[Intrinsics]].[[%Function.prototype%]].
  5. Letfunc be a new built-infunction object that when called performs the action described bysteps. The newfunction object has internal slots whose names are the elements ofinternalSlotsList, and an [[InitialName]] internal slot.
  6. Setfunc.[[Realm]] torealm.
  7. Setfunc.[[Prototype]] toprototype.
  8. Setfunc.[[Extensible]] totrue.
  9. Setfunc.[[InitialName]] tonull.
  10. Perform ! SetFunctionLength(func,length).
  11. Ifprefix is not present, then
    1. Perform ! SetFunctionName(func,name).
  12. Else,
    1. Perform ! SetFunctionName(func,name,prefix).
  13. Returnfunc.

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation.

10.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to ordinary objects except for a few specific situations. The following exotic objects use theordinary object internal methods except where it is explicitly specified otherwise below:

10.4.1 Bound Function Exotic Objects

Abound function exotic object is anexotic object that wraps anotherfunction object. Abound function exotic object is callable (it has a [[Call]] internal method and may have a [[Construct]] internal method). Calling abound function exotic object generally results in a call of its wrapped function.

An object is abound function exotic object if its [[Call]] and (if applicable) [[Construct]] internal methods use the following implementations, and its other essential internal methods use the definitions found in10.1. These methods are installed inBoundFunctionCreate.

Bound function exotic objects do not have the internal slots of ECMAScript function objects listed inTable 29. Instead they have the internal slots listed inTable 30, in addition to [[Prototype]] and [[Extensible]].

Table 30: Internal Slots of Bound Function Exotic Objects
Internal Slot Type Description
[[BoundTargetFunction]] Callable Object The wrappedfunction object.
[[BoundThis]] Any The value that is always passed as thethis value when calling the wrapped function.
[[BoundArguments]]List of Any A list of values whose elements are used as the first arguments to any call to the wrapped function.

10.4.1.1 [[Call]] (thisArgument,argumentsList )

The [[Call]] internal method of abound function exotic objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList of ECMAScript language values). It performs the following steps when called:

  1. Lettarget beF.[[BoundTargetFunction]].
  2. LetboundThis beF.[[BoundThis]].
  3. LetboundArgs beF.[[BoundArguments]].
  4. Letargs be aList whose elements are the elements ofboundArgs, followed by the elements ofargumentsList.
  5. Return ? Call(target,boundThis,args).

10.4.1.2 [[Construct]] (argumentsList,newTarget )

The [[Construct]] internal method of abound function exotic objectF takes argumentsargumentsList (aList of ECMAScript language values) andnewTarget (aconstructor). It performs the following steps when called:

  1. Lettarget beF.[[BoundTargetFunction]].
  2. Assert:IsConstructor(target) istrue.
  3. LetboundArgs beF.[[BoundArguments]].
  4. Letargs be aList whose elements are the elements ofboundArgs, followed by the elements ofargumentsList.
  5. IfSameValue(F,newTarget) istrue, setnewTarget totarget.
  6. Return ? Construct(target,args,newTarget).

10.4.1.3 BoundFunctionCreate (targetFunction,boundThis,boundArgs )

The abstract operation BoundFunctionCreate takes argumentstargetFunction,boundThis, andboundArgs. It is used to specify the creation of newbound function exotic objects. It performs the following steps when called:

  1. Assert:Type(targetFunction) is Object.
  2. Letproto be ?targetFunction.[[GetPrototypeOf]]().
  3. LetinternalSlotsList be the internal slots listed inTable 30, plus [[Prototype]] and [[Extensible]].
  4. Letobj be ! MakeBasicObject(internalSlotsList).
  5. Setobj.[[Prototype]] toproto.
  6. Setobj.[[Call]] as described in10.4.1.1.
  7. IfIsConstructor(targetFunction) istrue, then
    1. Setobj.[[Construct]] as described in10.4.1.2.
  8. Setobj.[[BoundTargetFunction]] totargetFunction.
  9. Setobj.[[BoundThis]] toboundThis.
  10. Setobj.[[BoundArguments]] toboundArgs.
  11. Returnobj.

10.4.2 Array Exotic Objects

An Array object is anexotic object that gives special treatment toarray index property keys (see6.1.7). A property whoseproperty name is anarray index is also called anelement. Every Array object has a non-configurable"length" property whose value is always a non-negativeintegral Number whosemathematical value is less than 232. The value of the"length" property is numerically greater than the name of every own property whose name is anarray index; whenever an own property of an Array object is created or changed, other properties are adjusted as necessary to maintain this invariant. Specifically, whenever an own property is added whose name is anarray index, the value of the"length" property is changed, if necessary, to be one more than the numeric value of thatarray index; and whenever the value of the"length" property is changed, every own property whose name is anarray index whose value is not smaller than the new length is deleted. This constraint applies only to own properties of an Array object and is unaffected by"length" orarray index properties that may be inherited from its prototypes.

Note

A Stringproperty nameP is anarray index if and only ifToString(ToUint32(P)) equalsP andToUint32(P) is not the same value as𝔽(232 - 1).

An object is anArray exotic object (or simply, an Array object) if its [[DefineOwnProperty]] internal method uses the following implementation, and its other essential internal methods use the definitions found in10.1. These methods are installed inArrayCreate.

10.4.2.1 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of anArray exotic objectA takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfP is"length", then
    1. Return ? ArraySetLength(A,Desc).
  3. Else ifP is anarray index, then
    1. LetoldLenDesc beOrdinaryGetOwnProperty(A,"length").
    2. Assert: ! IsDataDescriptor(oldLenDesc) istrue.
    3. Assert:oldLenDesc.[[Configurable]] isfalse.
    4. LetoldLen beoldLenDesc.[[Value]].
    5. Assert:oldLen is a non-negativeintegral Number.
    6. Letindex be ! ToUint32(P).
    7. IfindexoldLen andoldLenDesc.[[Writable]] isfalse, returnfalse.
    8. Letsucceeded be ! OrdinaryDefineOwnProperty(A,P,Desc).
    9. Ifsucceeded isfalse, returnfalse.
    10. IfindexoldLen, then
      1. SetoldLenDesc.[[Value]] toindex +1𝔽.
      2. Letsucceeded beOrdinaryDefineOwnProperty(A,"length",oldLenDesc).
      3. Assert:succeeded istrue.
    11. Returntrue.
  4. ReturnOrdinaryDefineOwnProperty(A,P,Desc).

10.4.2.2 ArrayCreate (length [ ,proto ] )

The abstract operation ArrayCreate takes argumentlength (a non-negativeinteger) and optional argumentproto. It is used to specify the creation of new Array exotic objects. It performs the following steps when called:

  1. Iflength > 232 - 1, throw aRangeError exception.
  2. Ifproto is not present, setproto to%Array.prototype%.
  3. LetA be ! MakeBasicObject(« [[Prototype]], [[Extensible]] »).
  4. SetA.[[Prototype]] toproto.
  5. SetA.[[DefineOwnProperty]] as specified in10.4.2.1.
  6. Perform ! OrdinaryDefineOwnProperty(A,"length", PropertyDescriptor { [[Value]]:𝔽(length), [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  7. ReturnA.

10.4.2.3 ArraySpeciesCreate (originalArray,length )

The abstract operation ArraySpeciesCreate takes argumentsoriginalArray andlength (a non-negativeinteger). It is used to specify the creation of a new Array object using aconstructor function that is derived fromoriginalArray. It performs the following steps when called:

  1. LetisArray be ? IsArray(originalArray).
  2. IfisArray isfalse, return ? ArrayCreate(length).
  3. LetC be ? Get(originalArray,"constructor").
  4. IfIsConstructor(C) istrue, then
    1. LetthisRealm bethe current Realm Record.
    2. LetrealmC be ? GetFunctionRealm(C).
    3. IfthisRealm andrealmC are not the sameRealm Record, then
      1. IfSameValue(C,realmC.[[Intrinsics]].[[%Array%]]) istrue, setC toundefined.
  5. IfType(C) is Object, then
    1. SetC to ? Get(C,@@species).
    2. IfC isnull, setC toundefined.
  6. IfC isundefined, return ? ArrayCreate(length).
  7. IfIsConstructor(C) isfalse, throw aTypeError exception.
  8. Return ? Construct(C, «𝔽(length) »).
Note

IforiginalArray was created using the standard built-in Arrayconstructor for arealm that is not therealm of therunning execution context, then a new Array is created using therealm of therunning execution context. This maintains compatibility with Web browsers that have historically had that behaviour for theArray.prototype methods that now are defined using ArraySpeciesCreate.

10.4.2.4 ArraySetLength (A,Desc )

The abstract operation ArraySetLength takes argumentsA (an Array object) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. IfDesc.[[Value]] is absent, then
    1. ReturnOrdinaryDefineOwnProperty(A,"length",Desc).
  2. LetnewLenDesc be a copy ofDesc.
  3. LetnewLen be ? ToUint32(Desc.[[Value]]).
  4. LetnumberLen be ? ToNumber(Desc.[[Value]]).
  5. IfnewLen is not the same value asnumberLen, throw aRangeError exception.
  6. SetnewLenDesc.[[Value]] tonewLen.
  7. LetoldLenDesc beOrdinaryGetOwnProperty(A,"length").
  8. Assert: ! IsDataDescriptor(oldLenDesc) istrue.
  9. Assert:oldLenDesc.[[Configurable]] isfalse.
  10. LetoldLen beoldLenDesc.[[Value]].
  11. IfnewLenoldLen, then
    1. ReturnOrdinaryDefineOwnProperty(A,"length",newLenDesc).
  12. IfoldLenDesc.[[Writable]] isfalse, returnfalse.
  13. IfnewLenDesc.[[Writable]] is absent or has the valuetrue, letnewWritable betrue.
  14. Else,
    1. NOTE: Setting the [[Writable]] attribute tofalse is deferred in case any elements cannot be deleted.
    2. LetnewWritable befalse.
    3. SetnewLenDesc.[[Writable]] totrue.
  15. Letsucceeded be ! OrdinaryDefineOwnProperty(A,"length",newLenDesc).
  16. Ifsucceeded isfalse, returnfalse.
  17. For each own property keyP ofA that is anarray index, whose numeric value is greater than or equal tonewLen, in descending numeric index order, do
    1. LetdeleteSucceeded be !A.[[Delete]](P).
    2. IfdeleteSucceeded isfalse, then
      1. SetnewLenDesc.[[Value]] to ! ToUint32(P) +1𝔽.
      2. IfnewWritable isfalse, setnewLenDesc.[[Writable]] tofalse.
      3. Perform ! OrdinaryDefineOwnProperty(A,"length",newLenDesc).
      4. Returnfalse.
  18. IfnewWritable isfalse, then
    1. Letsucceeded be ! OrdinaryDefineOwnProperty(A,"length", PropertyDescriptor { [[Writable]]:false }).
    2. Assert:succeeded istrue.
  19. Returntrue.
Note

In steps3 and4, ifDesc.[[Value]] is an object then itsvalueOf method is called twice. This is legacy behaviour that was specified with this effect starting with the 2nd Edition of this specification.

10.4.3 String Exotic Objects

A String object is anexotic object that encapsulates a String value and exposes virtualinteger-indexed data properties corresponding to the individual code unit elements of the String value. String exotic objects always have adata property named"length" whose value is the number of code unit elements in the encapsulated String value. Both the code unit data properties and the"length" property are non-writable and non-configurable.

An object is aString exotic object (or simply, a String object) if its [[GetOwnProperty]], [[DefineOwnProperty]], and [[OwnPropertyKeys]] internal methods use the following implementations, and its other essential internal methods use the definitions found in10.1. These methods are installed inStringCreate.

String exotic objects have the same internal slots as ordinary objects. They also have a [[StringData]] internal slot.

10.4.3.1 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of aString exotic objectS takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Letdesc beOrdinaryGetOwnProperty(S,P).
  3. Ifdesc is notundefined, returndesc.
  4. Return ! StringGetOwnProperty(S,P).

10.4.3.2 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of aString exotic objectS takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. LetstringDesc be ! StringGetOwnProperty(S,P).
  3. IfstringDesc is notundefined, then
    1. Letextensible beS.[[Extensible]].
    2. Return ! IsCompatiblePropertyDescriptor(extensible,Desc,stringDesc).
  4. Return ! OrdinaryDefineOwnProperty(S,P,Desc).

10.4.3.3 [[OwnPropertyKeys]] ( )

The [[OwnPropertyKeys]] internal method of aString exotic objectO takes no arguments. It performs the following steps when called:

  1. Letkeys be a new emptyList.
  2. Letstr beO.[[StringData]].
  3. Assert:Type(str) is String.
  4. Letlen be the length ofstr.
  5. For eachintegeri starting with 0 such thati <len, in ascending order, do
    1. Add ! ToString(𝔽(i)) as the last element ofkeys.
  6. For each own property keyP ofO such thatP is anarray index and ! ToIntegerOrInfinity(P) ≥len, in ascending numeric index order, do
    1. AddP as the last element ofkeys.
  7. For each own property keyP ofO such thatType(P) is String andP is not anarray index, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  8. For each own property keyP ofO such thatType(P) is Symbol, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  9. Returnkeys.

10.4.3.4 StringCreate (value,prototype )

The abstract operation StringCreate takes argumentsvalue (a String) andprototype. It is used to specify the creation of new String exotic objects. It performs the following steps when called:

  1. LetS be ! MakeBasicObject(« [[Prototype]], [[Extensible]], [[StringData]] »).
  2. SetS.[[Prototype]] toprototype.
  3. SetS.[[StringData]] tovalue.
  4. SetS.[[GetOwnProperty]] as specified in10.4.3.1.
  5. SetS.[[DefineOwnProperty]] as specified in10.4.3.2.
  6. SetS.[[OwnPropertyKeys]] as specified in10.4.3.3.
  7. Letlength be the number of code unit elements invalue.
  8. Perform ! DefinePropertyOrThrow(S,"length", PropertyDescriptor { [[Value]]:𝔽(length), [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }).
  9. ReturnS.

10.4.3.5 StringGetOwnProperty (S,P )

The abstract operation StringGetOwnProperty takes argumentsS andP. It performs the following steps when called:

  1. Assert:S is an Object that has a [[StringData]] internal slot.
  2. Assert:IsPropertyKey(P) istrue.
  3. IfType(P) is not String, returnundefined.
  4. Letindex be ! CanonicalNumericIndexString(P).
  5. Ifindex isundefined, returnundefined.
  6. IfIsIntegralNumber(index) isfalse, returnundefined.
  7. Ifindex is-0𝔽, returnundefined.
  8. Letstr beS.[[StringData]].
  9. Assert:Type(str) is String.
  10. Letlen be the length ofstr.
  11. If(index) < 0 orlen(index), returnundefined.
  12. LetresultStr be the String value of length 1, containing one code unit fromstr, specifically the code unit at index(index).
  13. Return the PropertyDescriptor { [[Value]]:resultStr, [[Writable]]:false, [[Enumerable]]:true, [[Configurable]]:false }.

10.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments object available to their code. Depending upon the characteristics of the function definition, its arguments object is either anordinary object or anarguments exotic object. Anarguments exotic object is anexotic object whosearray index properties map to the formal parameters bindings of an invocation of its associated ECMAScript function.

An object is anarguments exotic object if its internal methods use the following implementations, with the ones not specified here using those found in10.1. These methods are installed inCreateMappedArgumentsObject.

Note 1

WhileCreateUnmappedArgumentsObject is grouped into this clause, it creates anordinary object, not anarguments exotic object.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a [[ParameterMap]] internal slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot whose value is always undefined. For ordinary argument objects the [[ParameterMap]] internal slot is only used byObject.prototype.toString (20.1.3.6) to identify them as such.

Note 2

Theinteger-indexed data properties of anarguments exotic object whose numeric name values are less than the number of formal parameters of the correspondingfunction object initially share their values with the corresponding argument bindings in the function'sexecution context. This means that changing the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such a property is deleted and then redefined or if the property is changed into anaccessor property. If the arguments object is anordinary object, the values of its properties are simply a copy of the arguments passed to the function and there is no dynamic linkage between the property values and the formal parameter values.

Note 3

The ParameterMap object and its property values are used as a device for specifying the arguments object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to actually create or use such objects to implement the specified semantics.

Note 4

Ordinary arguments objects define a non-configurableaccessor property named"callee" which throws aTypeError exception on access. The"callee" property has a more specific meaning for arguments exotic objects, which are created only for some class of non-strict functions. The definition of this property in the ordinary variant exists to ensure that it is not defined in any other manner by conforming ECMAScript implementations.

Note 5

ECMAScript implementations of arguments exotic objects have historically contained anaccessor property named"caller". Prior to ECMAScript 2017, this specification included the definition of a throwing"caller" property on ordinary arguments objects. Since implementations do not contain this extension any longer, ECMAScript 2017 dropped the requirement for a throwing"caller" accessor.

10.4.4.1 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of anarguments exotic objectargs takes argumentP (a property key). It performs the following steps when called:

  1. Letdesc beOrdinaryGetOwnProperty(args,P).
  2. Ifdesc isundefined, returndesc.
  3. Letmap beargs.[[ParameterMap]].
  4. LetisMapped be ! HasOwnProperty(map,P).
  5. IfisMapped istrue, then
    1. Setdesc.[[Value]] toGet(map,P).
  6. Returndesc.

10.4.4.2 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of anarguments exotic objectargs takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped beHasOwnProperty(map,P).
  3. LetnewArgDesc beDesc.
  4. IfisMapped istrue andIsDataDescriptor(Desc) istrue, then
    1. IfDesc.[[Value]] is not present andDesc.[[Writable]] is present and its value isfalse, then
      1. SetnewArgDesc to a copy ofDesc.
      2. SetnewArgDesc.[[Value]] toGet(map,P).
  5. Letallowed be ? OrdinaryDefineOwnProperty(args,P,newArgDesc).
  6. Ifallowed isfalse, returnfalse.
  7. IfisMapped istrue, then
    1. IfIsAccessorDescriptor(Desc) istrue, then
      1. Callmap.[[Delete]](P).
    2. Else,
      1. IfDesc.[[Value]] is present, then
        1. LetsetStatus beSet(map,P,Desc.[[Value]],false).
        2. Assert:setStatus istrue because formal parameters mapped by argument objects are always writable.
      2. IfDesc.[[Writable]] is present and its value isfalse, then
        1. Callmap.[[Delete]](P).
  8. Returntrue.

10.4.4.3 [[Get]] (P,Receiver )

The [[Get]] internal method of anarguments exotic objectargs takes argumentsP (a property key) andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped be ! HasOwnProperty(map,P).
  3. IfisMapped isfalse, then
    1. Return ? OrdinaryGet(args,P,Receiver).
  4. Else,
    1. Assert:map contains a formal parameter mapping forP.
    2. ReturnGet(map,P).

10.4.4.4 [[Set]] (P,V,Receiver )

The [[Set]] internal method of anarguments exotic objectargs takes argumentsP (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. IfSameValue(args,Receiver) isfalse, then
    1. LetisMapped befalse.
  2. Else,
    1. Letmap beargs.[[ParameterMap]].
    2. LetisMapped be ! HasOwnProperty(map,P).
  3. IfisMapped istrue, then
    1. LetsetStatus beSet(map,P,V,false).
    2. Assert:setStatus istrue because formal parameters mapped by argument objects are always writable.
  4. Return ? OrdinarySet(args,P,V,Receiver).

10.4.4.5 [[Delete]] (P )

The [[Delete]] internal method of anarguments exotic objectargs takes argumentP (a property key). It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped be ! HasOwnProperty(map,P).
  3. Letresult be ? OrdinaryDelete(args,P).
  4. Ifresult istrue andisMapped istrue, then
    1. Callmap.[[Delete]](P).
  5. Returnresult.

10.4.4.6 CreateUnmappedArgumentsObject (argumentsList )

The abstract operation CreateUnmappedArgumentsObject takes argumentargumentsList. It performs the following steps when called:

  1. Letlen be the number of elements inargumentsList.
  2. Letobj be ! OrdinaryObjectCreate(%Object.prototype%, « [[ParameterMap]] »).
  3. Setobj.[[ParameterMap]] toundefined.
  4. PerformDefinePropertyOrThrow(obj,"length", PropertyDescriptor { [[Value]]:𝔽(len), [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }).
  5. Letindex be 0.
  6. Repeat, whileindex <len,
    1. Letval beargumentsList[index].
    2. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)),val).
    3. Setindex toindex + 1.
  7. Perform ! DefinePropertyOrThrow(obj,@@iterator, PropertyDescriptor { [[Value]]: %Array.prototype.values%, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }).
  8. Perform ! DefinePropertyOrThrow(obj,"callee", PropertyDescriptor { [[Get]]:%ThrowTypeError%, [[Set]]:%ThrowTypeError%, [[Enumerable]]:false, [[Configurable]]:false }).
  9. Returnobj.

10.4.4.7 CreateMappedArgumentsObject (func,formals,argumentsList,env )

The abstract operation CreateMappedArgumentsObject takes argumentsfunc (an Object),formals (aParse Node),argumentsList (aList), andenv (anEnvironment Record). It performs the following steps when called:

  1. Assert:formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain duplicate identifiers.
  2. Letlen be the number of elements inargumentsList.
  3. Letobj be ! MakeBasicObject(« [[Prototype]], [[Extensible]], [[ParameterMap]] »).
  4. Setobj.[[GetOwnProperty]] as specified in10.4.4.1.
  5. Setobj.[[DefineOwnProperty]] as specified in10.4.4.2.
  6. Setobj.[[Get]] as specified in10.4.4.3.
  7. Setobj.[[Set]] as specified in10.4.4.4.
  8. Setobj.[[Delete]] as specified in10.4.4.5.
  9. Setobj.[[Prototype]] to%Object.prototype%.
  10. Letmap be ! OrdinaryObjectCreate(null).
  11. Setobj.[[ParameterMap]] tomap.
  12. LetparameterNames be theBoundNames offormals.
  13. LetnumberOfParameters be the number of elements inparameterNames.
  14. Letindex be 0.
  15. Repeat, whileindex <len,
    1. Letval beargumentsList[index].
    2. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)),val).
    3. Setindex toindex + 1.
  16. Perform ! DefinePropertyOrThrow(obj,"length", PropertyDescriptor { [[Value]]:𝔽(len), [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }).
  17. LetmappedNames be a new emptyList.
  18. Letindex benumberOfParameters - 1.
  19. Repeat, whileindex ≥ 0,
    1. Letname beparameterNames[index].
    2. Ifname is not an element ofmappedNames, then
      1. Addname as an element of the listmappedNames.
      2. Ifindex <len, then
        1. Letg beMakeArgGetter(name,env).
        2. Letp beMakeArgSetter(name,env).
        3. Performmap.[[DefineOwnProperty]](!ToString(𝔽(index)), PropertyDescriptor { [[Set]]:p, [[Get]]:g, [[Enumerable]]:false, [[Configurable]]:true }).
    3. Setindex toindex - 1.
  20. Perform ! DefinePropertyOrThrow(obj,@@iterator, PropertyDescriptor { [[Value]]: %Array.prototype.values%, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }).
  21. Perform ! DefinePropertyOrThrow(obj,"callee", PropertyDescriptor { [[Value]]:func, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }).
  22. Returnobj.

10.4.4.7.1 MakeArgGetter (name,env )

The abstract operation MakeArgGetter takes argumentsname (a String) andenv (anEnvironment Record). It creates a built-infunction object that when executed returns the value bound forname inenv. It performs the following steps when called:

  1. Letsteps be the steps of an ArgGetter function as specified below.
  2. Letlength be the number of non-optional parameters of an ArgGetter function as specified below.
  3. Letgetter be ! CreateBuiltinFunction(steps,length,"", « [[Name]], [[Env]] »).
  4. Setgetter.[[Name]] toname.
  5. Setgetter.[[Env]] toenv.
  6. Returngetter.

An ArgGetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgGetter function that expects no arguments is called it performs the following steps:

  1. Letf be theactive function object.
  2. Letname bef.[[Name]].
  3. Letenv bef.[[Env]].
  4. Returnenv.GetBindingValue(name,false).
Note

ArgGetter functions are never directly accessible to ECMAScript code.

10.4.4.7.2 MakeArgSetter (name,env )

The abstract operation MakeArgSetter takes argumentsname (a String) andenv (anEnvironment Record). It creates a built-infunction object that when executed sets the value bound forname inenv. It performs the following steps when called:

  1. Letsteps be the steps of an ArgSetter function as specified below.
  2. Letlength be the number of non-optional parameters of an ArgSetter function as specified below.
  3. Letsetter be ! CreateBuiltinFunction(steps,length,"", « [[Name]], [[Env]] »).
  4. Setsetter.[[Name]] toname.
  5. Setsetter.[[Env]] toenv.
  6. Returnsetter.

An ArgSetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgSetter function is called with argumentvalue it performs the following steps:

  1. Letf be theactive function object.
  2. Letname bef.[[Name]].
  3. Letenv bef.[[Env]].
  4. Returnenv.SetMutableBinding(name,value,false).
Note

ArgSetter functions are never directly accessible to ECMAScript code.

10.4.5 Integer-Indexed Exotic Objects

AnInteger-Indexed exotic object is anexotic object that performs special handling ofinteger index property keys.

Integer-Indexed exotic objects have the same internal slots as ordinary objects and additionally [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], [[ContentType]], and [[TypedArrayName]] internal slots.

An object is anInteger-Indexed exotic object if its [[GetOwnProperty]], [[HasProperty]], [[DefineOwnProperty]], [[Get]], [[Set]], [[Delete]], and [[OwnPropertyKeys]] internal methods use the definitions in this section, and its other essential internal methods use the definitions found in10.1. These methods are installed byIntegerIndexedObjectCreate.

10.4.5.1 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of anInteger-Indexed exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Assert:O is anInteger-Indexed exotic object.
  3. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. Letvalue be ! IntegerIndexedElementGet(O,numericIndex).
      2. Ifvalue isundefined, returnundefined.
      3. Return the PropertyDescriptor { [[Value]]:value, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:true }.
  4. ReturnOrdinaryGetOwnProperty(O,P).

10.4.5.2 [[HasProperty]] (P )

The [[HasProperty]] internal method of anInteger-Indexed exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Assert:O is anInteger-Indexed exotic object.
  3. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, return ! IsValidIntegerIndex(O,numericIndex).
  4. Return ? OrdinaryHasProperty(O,P).

10.4.5.3 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of anInteger-Indexed exotic objectO takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Assert:O is anInteger-Indexed exotic object.
  3. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. If ! IsValidIntegerIndex(O,numericIndex) isfalse, returnfalse.
      2. IfDesc has a [[Configurable]] field and ifDesc.[[Configurable]] isfalse, returnfalse.
      3. IfDesc has an [[Enumerable]] field and ifDesc.[[Enumerable]] isfalse, returnfalse.
      4. If ! IsAccessorDescriptor(Desc) istrue, returnfalse.
      5. IfDesc has a [[Writable]] field and ifDesc.[[Writable]] isfalse, returnfalse.
      6. IfDesc has a [[Value]] field, perform ? IntegerIndexedElementSet(O,numericIndex,Desc.[[Value]]).
      7. Returntrue.
  4. Return ! OrdinaryDefineOwnProperty(O,P,Desc).

10.4.5.4 [[Get]] (P,Receiver )

The [[Get]] internal method of anInteger-Indexed exotic objectO takes argumentsP (a property key) andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. Return ! IntegerIndexedElementGet(O,numericIndex).
  3. Return ? OrdinaryGet(O,P,Receiver).

10.4.5.5 [[Set]] (P,V,Receiver )

The [[Set]] internal method of anInteger-Indexed exotic objectO takes argumentsP (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. Perform ? IntegerIndexedElementSet(O,numericIndex,V).
      2. Returntrue.
  3. Return ? OrdinarySet(O,P,V,Receiver).

10.4.5.6 [[Delete]] (P )

The [[Delete]] internal method of anInteger-Indexed exotic objectO takes argumentsP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Assert:O is anInteger-Indexed exotic object.
  3. IfType(P) is String, then
    1. LetnumericIndex be ! CanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. If ! IsValidIntegerIndex(O,numericIndex) isfalse, returntrue; else returnfalse.
  4. Return ? OrdinaryDelete(O,P).

10.4.5.7 [[OwnPropertyKeys]] ( )

The [[OwnPropertyKeys]] internal method of anInteger-Indexed exotic objectO takes no arguments. It performs the following steps when called:

  1. Letkeys be a new emptyList.
  2. Assert:O is anInteger-Indexed exotic object.
  3. IfIsDetachedBuffer(O.[[ViewedArrayBuffer]]) isfalse, then
    1. For eachintegeri starting with 0 such thati <O.[[ArrayLength]], in ascending order, do
      1. Add ! ToString(𝔽(i)) as the last element ofkeys.
  4. For each own property keyP ofO such thatType(P) is String andP is not aninteger index, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  5. For each own property keyP ofO such thatType(P) is Symbol, in ascending chronological order of property creation, do
    1. AddP as the last element ofkeys.
  6. Returnkeys.

10.4.5.8 IntegerIndexedObjectCreate (prototype )

The abstract operation IntegerIndexedObjectCreate takes argumentprototype. It is used to specify the creation of newInteger-Indexed exotic objects. It performs the following steps when called:

  1. LetinternalSlotsList be « [[Prototype]], [[Extensible]], [[ViewedArrayBuffer]], [[TypedArrayName]], [[ContentType]], [[ByteLength]], [[ByteOffset]], [[ArrayLength]] ».
  2. LetA be ! MakeBasicObject(internalSlotsList).
  3. SetA.[[GetOwnProperty]] as specified in10.4.5.1.
  4. SetA.[[HasProperty]] as specified in10.4.5.2.
  5. SetA.[[DefineOwnProperty]] as specified in10.4.5.3.
  6. SetA.[[Get]] as specified in10.4.5.4.
  7. SetA.[[Set]] as specified in10.4.5.5.
  8. SetA.[[Delete]] as specified in10.4.5.6.
  9. SetA.[[OwnPropertyKeys]] as specified in10.4.5.7.
  10. SetA.[[Prototype]] toprototype.
  11. ReturnA.

10.4.5.9 IsValidIntegerIndex (O,index )

The abstract operation IsValidIntegerIndex takes argumentsO andindex (a Number). It performs the following steps when called:

  1. Assert:O is anInteger-Indexed exotic object.
  2. IfIsDetachedBuffer(O.[[ViewedArrayBuffer]]) istrue, returnfalse.
  3. If ! IsIntegralNumber(index) isfalse, returnfalse.
  4. Ifindex is-0𝔽, returnfalse.
  5. If(index) < 0 or(index) ≥O.[[ArrayLength]], returnfalse.
  6. Returntrue.

10.4.5.10 IntegerIndexedElementGet (O,index )

The abstract operation IntegerIndexedElementGet takes argumentsO andindex (a Number). It performs the following steps when called:

  1. Assert:O is anInteger-Indexed exotic object.
  2. If ! IsValidIntegerIndex(O,index) isfalse, returnundefined.
  3. Letoffset beO.[[ByteOffset]].
  4. LetarrayTypeName be the String value ofO.[[TypedArrayName]].
  5. LetelementSize be the Element Size value specified inTable 60 forarrayTypeName.
  6. LetindexedPosition be ((index) ×elementSize) +offset.
  7. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  8. ReturnGetValueFromBuffer(O.[[ViewedArrayBuffer]],indexedPosition,elementType,true,Unordered).

10.4.5.11 IntegerIndexedElementSet (O,index,value )

The abstract operation IntegerIndexedElementSet takes argumentsO,index (a Number), andvalue. It performs the following steps when called:

  1. Assert:O is anInteger-Indexed exotic object.
  2. IfO.[[ContentType]] isBigInt, letnumValue be ? ToBigInt(value).
  3. Otherwise, letnumValue be ? ToNumber(value).
  4. If ! IsValidIntegerIndex(O,index) istrue, then
    1. Letoffset beO.[[ByteOffset]].
    2. LetarrayTypeName be the String value ofO.[[TypedArrayName]].
    3. LetelementSize be the Element Size value specified inTable 60 forarrayTypeName.
    4. LetindexedPosition be ((index) ×elementSize) +offset.
    5. LetelementType be the Element Type value inTable 60 forarrayTypeName.
    6. PerformSetValueInBuffer(O.[[ViewedArrayBuffer]],indexedPosition,elementType,numValue,true,Unordered).
  5. ReturnNormalCompletion(undefined).
Note

This operation always appears to succeed, but it has no effect when attempting to write past the end of a TypedArray or to a TypedArray which is backed by a detached ArrayBuffer.

10.4.6 Module Namespace Exotic Objects

Amodule namespace exotic object is anexotic object that exposes the bindings exported from an ECMAScriptModule (See16.2.3). There is a one-to-one correspondence between the String-keyed own properties of amodule namespace exotic object and the binding names exported by theModule. The exported bindings include any bindings that are indirectly exported usingexport * export items. Each String-valued own property key is theStringValue of the corresponding exported binding name. These are the only String-keyed properties of amodule namespace exotic object. Each such property has the attributes { [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:false }. Module namespace exotic objects are not extensible.

An object is amodule namespace exotic object if its [[SetPrototypeOf]], [[IsExtensible]], [[PreventExtensions]], [[GetOwnProperty]], [[DefineOwnProperty]], [[HasProperty]], [[Get]], [[Set]], [[Delete]], and [[OwnPropertyKeys]] internal methods use the definitions in this section, and its other essential internal methods use the definitions found in10.1. These methods are installed byModuleNamespaceCreate.

Module namespace exotic objects have the internal slots defined inTable 31.

Table 31: Internal Slots of Module Namespace Exotic Objects
Internal Slot Type Description
[[Module]]Module Record TheModule Record whose exports this namespace exposes.
[[Exports]]List of String AList whose elements are the String values of the exported names exposed as own properties of this object. The list is ordered as if an Array of those String values had been sorted using %Array.prototype.sort% usingundefined ascomparefn.
[[Prototype]] Null This slot always contains the valuenull (see10.4.6.1).

Module namespace exotic objects provide alternative definitions for all of the internal methods except [[GetPrototypeOf]], which behaves as defined in10.1.1.

10.4.6.1 [[SetPrototypeOf]] (V )

The [[SetPrototypeOf]] internal method of amodule namespace exotic objectO takes argumentV (an Object ornull). It performs the following steps when called:

  1. Return ? SetImmutablePrototype(O,V).

10.4.6.2 [[IsExtensible]] ( )

The [[IsExtensible]] internal method of amodule namespace exotic object takes no arguments. It performs the following steps when called:

  1. Returnfalse.

10.4.6.3 [[PreventExtensions]] ( )

The [[PreventExtensions]] internal method of amodule namespace exotic object takes no arguments. It performs the following steps when called:

  1. Returntrue.

10.4.6.4 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of amodule namespace exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. IfType(P) is Symbol, returnOrdinaryGetOwnProperty(O,P).
  2. Letexports beO.[[Exports]].
  3. IfP is not an element ofexports, returnundefined.
  4. Letvalue be ?O.[[Get]](P,O).
  5. Return PropertyDescriptor { [[Value]]:value, [[Writable]]:true, [[Enumerable]]:true, [[Configurable]]:false }.

10.4.6.5 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of amodule namespace exotic objectO takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. IfType(P) is Symbol, returnOrdinaryDefineOwnProperty(O,P,Desc).
  2. Letcurrent be ?O.[[GetOwnProperty]](P).
  3. Ifcurrent isundefined, returnfalse.
  4. IfDesc.[[Configurable]] is present and has valuetrue, returnfalse.
  5. IfDesc.[[Enumerable]] is present and has valuefalse, returnfalse.
  6. If ! IsAccessorDescriptor(Desc) istrue, returnfalse.
  7. IfDesc.[[Writable]] is present and has valuefalse, returnfalse.
  8. IfDesc.[[Value]] is present, returnSameValue(Desc.[[Value]],current.[[Value]]).
  9. Returntrue.

10.4.6.6 [[HasProperty]] (P )

The [[HasProperty]] internal method of amodule namespace exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. IfType(P) is Symbol, returnOrdinaryHasProperty(O,P).
  2. Letexports beO.[[Exports]].
  3. IfP is an element ofexports, returntrue.
  4. Returnfalse.

10.4.6.7 [[Get]] (P,Receiver )

The [[Get]] internal method of amodule namespace exotic objectO takes argumentsP (a property key) andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfType(P) is Symbol, then
    1. Return ? OrdinaryGet(O,P,Receiver).
  3. Letexports beO.[[Exports]].
  4. IfP is not an element ofexports, returnundefined.
  5. Letm beO.[[Module]].
  6. Letbinding be !m.ResolveExport(P).
  7. Assert:binding is aResolvedBinding Record.
  8. LettargetModule bebinding.[[Module]].
  9. Assert:targetModule is notundefined.
  10. Ifbinding.[[BindingName]] is"*namespace*", then
    1. Return ? GetModuleNamespace(targetModule).
  11. LettargetEnv betargetModule.[[Environment]].
  12. IftargetEnv isundefined, throw aReferenceError exception.
  13. Return ?targetEnv.GetBindingValue(binding.[[BindingName]],true).
Note

ResolveExport is side-effect free. Each time this operation is called with a specificexportName,resolveSet pair as arguments it must return the same result. An implementation might choose to pre-compute or cache the ResolveExport results for the [[Exports]] of eachmodule namespace exotic object.

10.4.6.8 [[Set]] (P,V,Receiver )

The [[Set]] internal method of amodule namespace exotic object takes argumentsP (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Returnfalse.

10.4.6.9 [[Delete]] (P )

The [[Delete]] internal method of amodule namespace exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. IfType(P) is Symbol, then
    1. Return ? OrdinaryDelete(O,P).
  3. Letexports beO.[[Exports]].
  4. IfP is an element ofexports, returnfalse.
  5. Returntrue.

10.4.6.10 [[OwnPropertyKeys]] ( )

The [[OwnPropertyKeys]] internal method of amodule namespace exotic objectO takes no arguments. It performs the following steps when called:

  1. Letexports be a copy ofO.[[Exports]].
  2. LetsymbolKeys be ! OrdinaryOwnPropertyKeys(O).
  3. Append all the entries ofsymbolKeys to the end ofexports.
  4. Returnexports.

10.4.6.11 ModuleNamespaceCreate (module,exports )

The abstract operation ModuleNamespaceCreate takes argumentsmodule andexports. It is used to specify the creation of new module namespace exotic objects. It performs the following steps when called:

  1. Assert:module is aModule Record.
  2. Assert:module.[[Namespace]] isundefined.
  3. Assert:exports is aList of String values.
  4. LetinternalSlotsList be the internal slots listed inTable 31.
  5. LetM be ! MakeBasicObject(internalSlotsList).
  6. SetM's essential internal methods to the definitions specified in10.4.6.
  7. SetM.[[Prototype]] tonull.
  8. SetM.[[Module]] tomodule.
  9. LetsortedExports be aList whose elements are the elements ofexports ordered as if an Array of the same values had been sorted using %Array.prototype.sort% usingundefined ascomparefn.
  10. SetM.[[Exports]] tosortedExports.
  11. Create own properties ofM corresponding to the definitions in28.3.
  12. Setmodule.[[Namespace]] toM.
  13. ReturnM.

10.4.7 Immutable Prototype Exotic Objects

Animmutable prototype exotic object is anexotic object that has a [[Prototype]] internal slot that will not change once it is initialized.

An object is animmutable prototype exotic object if its [[SetPrototypeOf]] internal method uses the following implementation. (Its other essential internal methods may use any implementation, depending on the specificimmutable prototype exotic object in question.)

Note

Unlike other exotic objects, there is not a dedicated creation abstract operation provided for immutable prototype exotic objects. This is because they are only used by%Object.prototype% and byhost environments, and inhost environments, the relevant objects are potentially exotic in other ways and thus need their own dedicated creation operation.

10.4.7.1 [[SetPrototypeOf]] (V )

The [[SetPrototypeOf]] internal method of animmutable prototype exotic objectO takes argumentV (an Object ornull). It performs the following steps when called:

  1. Return ? SetImmutablePrototype(O,V).

10.4.7.2 SetImmutablePrototype (O,V )

The abstract operation SetImmutablePrototype takes argumentsO andV. It performs the following steps when called:

  1. Assert: EitherType(V) is Object orType(V) is Null.
  2. Letcurrent be ?O.[[GetPrototypeOf]]().
  3. IfSameValue(V,current) istrue, returntrue.
  4. Returnfalse.

10.5 Proxy Object Internal Methods and Internal Slots

A proxy object is anexotic object whose essential internal methods are partially implemented using ECMAScript code. Every proxy object has an internal slot called [[ProxyHandler]]. The value of [[ProxyHandler]] is an object, called the proxy'shandler object, ornull. Methods (seeTable 32) of a handler object may be used to augment the implementation for one or more of the proxy object's internal methods. Every proxy object also has an internal slot called [[ProxyTarget]] whose value is either an object or thenull value. This object is called the proxy'starget object.

An object is aProxy exotic object if its essential internal methods (including [[Call]] and [[Construct]], if applicable) use the definitions in this section. These internal methods are installed inProxyCreate.

Table 32: Proxy Handler Methods
Internal Method Handler Method
[[GetPrototypeOf]]getPrototypeOf
[[SetPrototypeOf]]setPrototypeOf
[[IsExtensible]]isExtensible
[[PreventExtensions]]preventExtensions
[[GetOwnProperty]]getOwnPropertyDescriptor
[[DefineOwnProperty]]defineProperty
[[HasProperty]]has
[[Get]]get
[[Set]]set
[[Delete]]deleteProperty
[[OwnPropertyKeys]]ownKeys
[[Call]]apply
[[Construct]]construct

When a handler method is called to provide the implementation of a proxy object internal method, the handler method is passed the proxy's target object as a parameter. A proxy's handler object does not necessarily have a method corresponding to every essential internal method. Invoking an internal method on the proxy results in the invocation of the corresponding internal method on the proxy's target object if the handler object does not have a method corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the object is created and typically may not be modified. Some proxy objects are created in a manner that permits them to be subsequentlyrevoked. When a proxy is revoked, its [[ProxyHandler]] and [[ProxyTarget]] internal slots are set tonull causing subsequent invocations of internal methods on that proxy object to throw aTypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript code, it is possible to define a proxy object whose handler methods violates the invariants defined in6.1.7.3. Some of the internal method invariants defined in6.1.7.3 are essential integrity invariants. These invariants are explicitly enforced by the proxy object internal methods specified in this section. An ECMAScript implementation must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assumeO is an ECMAScript proxy object,P is a property key value,V is anyECMAScript language value andDesc is aProperty Descriptor record.

10.5.1 [[GetPrototypeOf]] ( )

The [[GetPrototypeOf]] internal method of aProxy exotic objectO takes no arguments. It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Lettrap be ? GetMethod(handler,"getPrototypeOf").
  6. Iftrap isundefined, then
    1. Return ?target.[[GetPrototypeOf]]().
  7. LethandlerProto be ? Call(trap,handler, «target »).
  8. IfType(handlerProto) is neither Object nor Null, throw aTypeError exception.
  9. LetextensibleTarget be ? IsExtensible(target).
  10. IfextensibleTarget istrue, returnhandlerProto.
  11. LettargetProto be ?target.[[GetPrototypeOf]]().
  12. IfSameValue(handlerProto,targetProto) isfalse, throw aTypeError exception.
  13. ReturnhandlerProto.
Note

[[GetPrototypeOf]] for proxy objects enforces the following invariants:

  • The result of [[GetPrototypeOf]] must be either an Object ornull.
  • If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same value as [[GetPrototypeOf]] applied to the proxy object's target object.

10.5.2 [[SetPrototypeOf]] (V )

The [[SetPrototypeOf]] internal method of aProxy exotic objectO takes argumentV (an Object ornull). It performs the following steps when called:

  1. Assert: EitherType(V) is Object orType(V) is Null.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"setPrototypeOf").
  7. Iftrap isundefined, then
    1. Return ?target.[[SetPrototypeOf]](V).
  8. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target,V »)).
  9. IfbooleanTrapResult isfalse, returnfalse.
  10. LetextensibleTarget be ? IsExtensible(target).
  11. IfextensibleTarget istrue, returntrue.
  12. LettargetProto be ?target.[[GetPrototypeOf]]().
  13. IfSameValue(V,targetProto) isfalse, throw aTypeError exception.
  14. Returntrue.
Note

[[SetPrototypeOf]] for proxy objects enforces the following invariants:

  • The result of [[SetPrototypeOf]] is a Boolean value.
  • If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]] applied to target object.

10.5.3 [[IsExtensible]] ( )

The [[IsExtensible]] internal method of aProxy exotic objectO takes no arguments. It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Lettrap be ? GetMethod(handler,"isExtensible").
  6. Iftrap isundefined, then
    1. Return ? IsExtensible(target).
  7. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target »)).
  8. LettargetResult be ? IsExtensible(target).
  9. IfSameValue(booleanTrapResult,targetResult) isfalse, throw aTypeError exception.
  10. ReturnbooleanTrapResult.
Note

[[IsExtensible]] for proxy objects enforces the following invariants:

  • The result of [[IsExtensible]] is a Boolean value.
  • [[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the proxy object's target object with the same argument.

10.5.4 [[PreventExtensions]] ( )

The [[PreventExtensions]] internal method of aProxy exotic objectO takes no arguments. It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Lettrap be ? GetMethod(handler,"preventExtensions").
  6. Iftrap isundefined, then
    1. Return ?target.[[PreventExtensions]]().
  7. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target »)).
  8. IfbooleanTrapResult istrue, then
    1. LetextensibleTarget be ? IsExtensible(target).
    2. IfextensibleTarget istrue, throw aTypeError exception.
  9. ReturnbooleanTrapResult.
Note

[[PreventExtensions]] for proxy objects enforces the following invariants:

  • The result of [[PreventExtensions]] is a Boolean value.
  • [[PreventExtensions]] applied to the proxy object only returnstrue if [[IsExtensible]] applied to the proxy object's target object isfalse.

10.5.5 [[GetOwnProperty]] (P )

The [[GetOwnProperty]] internal method of aProxy exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"getOwnPropertyDescriptor").
  7. Iftrap isundefined, then
    1. Return ?target.[[GetOwnProperty]](P).
  8. LettrapResultObj be ? Call(trap,handler, «target,P »).
  9. IfType(trapResultObj) is neither Object nor Undefined, throw aTypeError exception.
  10. LettargetDesc be ?target.[[GetOwnProperty]](P).
  11. IftrapResultObj isundefined, then
    1. IftargetDesc isundefined, returnundefined.
    2. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
    3. LetextensibleTarget be ? IsExtensible(target).
    4. IfextensibleTarget isfalse, throw aTypeError exception.
    5. Returnundefined.
  12. LetextensibleTarget be ? IsExtensible(target).
  13. LetresultDesc be ? ToPropertyDescriptor(trapResultObj).
  14. CallCompletePropertyDescriptor(resultDesc).
  15. Letvalid beIsCompatiblePropertyDescriptor(extensibleTarget,resultDesc,targetDesc).
  16. Ifvalid isfalse, throw aTypeError exception.
  17. IfresultDesc.[[Configurable]] isfalse, then
    1. IftargetDesc isundefined ortargetDesc.[[Configurable]] istrue, then
      1. Throw aTypeError exception.
    2. IfresultDesc has a [[Writable]] field andresultDesc.[[Writable]] isfalse, then
      1. IftargetDesc.[[Writable]] istrue, throw aTypeError exception.
  18. ReturnresultDesc.
Note

[[GetOwnProperty]] for proxy objects enforces the following invariants:

  • The result of [[GetOwnProperty]] must be either an Object orundefined.
  • A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as non-existent, if the target object is not extensible, unless it does not exist as an own property of the target object.
  • A property cannot be reported as existent, if the target object is not extensible, unless it exists as an own property of the target object.
  • A property cannot be reported as non-configurable, unless it exists as a non-configurable own property of the target object.
  • A property cannot be reported as both non-configurable and non-writable, unless it exists as a non-configurable, non-writable own property of the target object.

10.5.6 [[DefineOwnProperty]] (P,Desc )

The [[DefineOwnProperty]] internal method of aProxy exotic objectO takes argumentsP (a property key) andDesc (aProperty Descriptor). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"defineProperty").
  7. Iftrap isundefined, then
    1. Return ?target.[[DefineOwnProperty]](P,Desc).
  8. LetdescObj beFromPropertyDescriptor(Desc).
  9. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target,P,descObj »)).
  10. IfbooleanTrapResult isfalse, returnfalse.
  11. LettargetDesc be ?target.[[GetOwnProperty]](P).
  12. LetextensibleTarget be ? IsExtensible(target).
  13. IfDesc has a [[Configurable]] field and ifDesc.[[Configurable]] isfalse, then
    1. LetsettingConfigFalse betrue.
  14. Else, letsettingConfigFalse befalse.
  15. IftargetDesc isundefined, then
    1. IfextensibleTarget isfalse, throw aTypeError exception.
    2. IfsettingConfigFalse istrue, throw aTypeError exception.
  16. Else,
    1. IfIsCompatiblePropertyDescriptor(extensibleTarget,Desc,targetDesc) isfalse, throw aTypeError exception.
    2. IfsettingConfigFalse istrue andtargetDesc.[[Configurable]] istrue, throw aTypeError exception.
    3. IfIsDataDescriptor(targetDesc) istrue,targetDesc.[[Configurable]] isfalse, andtargetDesc.[[Writable]] istrue, then
      1. IfDesc has a [[Writable]] field andDesc.[[Writable]] isfalse, throw aTypeError exception.
  17. Returntrue.
Note

[[DefineOwnProperty]] for proxy objects enforces the following invariants:

  • The result of [[DefineOwnProperty]] is a Boolean value.
  • A property cannot be added, if the target object is not extensible.
  • A property cannot be non-configurable, unless there exists a corresponding non-configurable own property of the target object.
  • A non-configurable property cannot be non-writable, unless there exists a corresponding non-configurable, non-writable own property of the target object.
  • If a property has a corresponding target object property then applying theProperty Descriptor of the property to the target object using [[DefineOwnProperty]] will not throw an exception.

10.5.7 [[HasProperty]] (P )

The [[HasProperty]] internal method of aProxy exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"has").
  7. Iftrap isundefined, then
    1. Return ?target.[[HasProperty]](P).
  8. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target,P »)).
  9. IfbooleanTrapResult isfalse, then
    1. LettargetDesc be ?target.[[GetOwnProperty]](P).
    2. IftargetDesc is notundefined, then
      1. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
      2. LetextensibleTarget be ? IsExtensible(target).
      3. IfextensibleTarget isfalse, throw aTypeError exception.
  10. ReturnbooleanTrapResult.
Note

[[HasProperty]] for proxy objects enforces the following invariants:

  • The result of [[HasProperty]] is a Boolean value.
  • A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as non-existent, if it exists as an own property of the target object and the target object is not extensible.

10.5.8 [[Get]] (P,Receiver )

The [[Get]] internal method of aProxy exotic objectO takes argumentsP (a property key) andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"get").
  7. Iftrap isundefined, then
    1. Return ?target.[[Get]](P,Receiver).
  8. LettrapResult be ? Call(trap,handler, «target,P,Receiver »).
  9. LettargetDesc be ?target.[[GetOwnProperty]](P).
  10. IftargetDesc is notundefined andtargetDesc.[[Configurable]] isfalse, then
    1. IfIsDataDescriptor(targetDesc) istrue andtargetDesc.[[Writable]] isfalse, then
      1. IfSameValue(trapResult,targetDesc.[[Value]]) isfalse, throw aTypeError exception.
    2. IfIsAccessorDescriptor(targetDesc) istrue andtargetDesc.[[Get]] isundefined, then
      1. IftrapResult is notundefined, throw aTypeError exception.
  11. ReturntrapResult.
Note

[[Get]] for proxy objects enforces the following invariants:

  • The value reported for a property must be the same as the value of the corresponding target object property if the target object property is a non-writable, non-configurable owndata property.
  • The value reported for a property must beundefined if the corresponding target object property is a non-configurable ownaccessor property that hasundefined as its [[Get]] attribute.

10.5.9 [[Set]] (P,V,Receiver )

The [[Set]] internal method of aProxy exotic objectO takes argumentsP (a property key),V (anECMAScript language value), andReceiver (anECMAScript language value). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"set").
  7. Iftrap isundefined, then
    1. Return ?target.[[Set]](P,V,Receiver).
  8. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target,P,V,Receiver »)).
  9. IfbooleanTrapResult isfalse, returnfalse.
  10. LettargetDesc be ?target.[[GetOwnProperty]](P).
  11. IftargetDesc is notundefined andtargetDesc.[[Configurable]] isfalse, then
    1. IfIsDataDescriptor(targetDesc) istrue andtargetDesc.[[Writable]] isfalse, then
      1. IfSameValue(V,targetDesc.[[Value]]) isfalse, throw aTypeError exception.
    2. IfIsAccessorDescriptor(targetDesc) istrue, then
      1. IftargetDesc.[[Set]] isundefined, throw aTypeError exception.
  12. Returntrue.
Note

[[Set]] for proxy objects enforces the following invariants:

  • The result of [[Set]] is a Boolean value.
  • Cannot change the value of a property to be different from the value of the corresponding target object property if the corresponding target object property is a non-writable, non-configurable owndata property.
  • Cannot set the value of a property if the corresponding target object property is a non-configurable ownaccessor property that hasundefined as its [[Set]] attribute.

10.5.10 [[Delete]] (P )

The [[Delete]] internal method of aProxy exotic objectO takes argumentP (a property key). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Lethandler beO.[[ProxyHandler]].
  3. Ifhandler isnull, throw aTypeError exception.
  4. Assert:Type(handler) is Object.
  5. Lettarget beO.[[ProxyTarget]].
  6. Lettrap be ? GetMethod(handler,"deleteProperty").
  7. Iftrap isundefined, then
    1. Return ?target.[[Delete]](P).
  8. LetbooleanTrapResult be ! ToBoolean(?Call(trap,handler, «target,P »)).
  9. IfbooleanTrapResult isfalse, returnfalse.
  10. LettargetDesc be ?target.[[GetOwnProperty]](P).
  11. IftargetDesc isundefined, returntrue.
  12. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
  13. LetextensibleTarget be ? IsExtensible(target).
  14. IfextensibleTarget isfalse, throw aTypeError exception.
  15. Returntrue.
Note

[[Delete]] for proxy objects enforces the following invariants:

  • The result of [[Delete]] is a Boolean value.
  • A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as deleted, if it exists as an own property of the target object and the target object is non-extensible.

10.5.11 [[OwnPropertyKeys]] ( )

The [[OwnPropertyKeys]] internal method of aProxy exotic objectO takes no arguments. It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Lettrap be ? GetMethod(handler,"ownKeys").
  6. Iftrap isundefined, then
    1. Return ?target.[[OwnPropertyKeys]]().
  7. LettrapResultArray be ? Call(trap,handler, «target »).
  8. LettrapResult be ? CreateListFromArrayLike(trapResultArray, « String, Symbol »).
  9. IftrapResult contains any duplicate entries, throw aTypeError exception.
  10. LetextensibleTarget be ? IsExtensible(target).
  11. LettargetKeys be ?target.[[OwnPropertyKeys]]().
  12. Assert:targetKeys is aList whose elements are only String and Symbol values.
  13. Assert:targetKeys contains no duplicate entries.
  14. LettargetConfigurableKeys be a new emptyList.
  15. LettargetNonconfigurableKeys be a new emptyList.
  16. For each elementkey oftargetKeys, do
    1. Letdesc be ?target.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined anddesc.[[Configurable]] isfalse, then
      1. Appendkey as an element oftargetNonconfigurableKeys.
    3. Else,
      1. Appendkey as an element oftargetConfigurableKeys.
  17. IfextensibleTarget istrue andtargetNonconfigurableKeys is empty, then
    1. ReturntrapResult.
  18. LetuncheckedResultKeys be aList whose elements are the elements oftrapResult.
  19. For each elementkey oftargetNonconfigurableKeys, do
    1. Ifkey is not an element ofuncheckedResultKeys, throw aTypeError exception.
    2. Removekey fromuncheckedResultKeys.
  20. IfextensibleTarget istrue, returntrapResult.
  21. For each elementkey oftargetConfigurableKeys, do
    1. Ifkey is not an element ofuncheckedResultKeys, throw aTypeError exception.
    2. Removekey fromuncheckedResultKeys.
  22. IfuncheckedResultKeys is not empty, throw aTypeError exception.
  23. ReturntrapResult.
Note

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:

  • The result of [[OwnPropertyKeys]] is aList.
  • The returnedList contains no duplicate entries.
  • The Type of each resultList element is either String or Symbol.
  • The resultList must contain the keys of all non-configurable own properties of the target object.
  • If the target object is not extensible, then the resultList must contain all the keys of the own properties of the target object and no other values.

10.5.12 [[Call]] (thisArgument,argumentsList )

The [[Call]] internal method of aProxy exotic objectO takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList of ECMAScript language values). It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Lettrap be ? GetMethod(handler,"apply").
  6. Iftrap isundefined, then
    1. Return ? Call(target,thisArgument,argumentsList).
  7. LetargArray be ! CreateArrayFromList(argumentsList).
  8. Return ? Call(trap,handler, «target,thisArgument,argArray »).
Note

AProxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal slot is an object that has a [[Call]] internal method.

10.5.13 [[Construct]] (argumentsList,newTarget )

The [[Construct]] internal method of aProxy exotic objectO takes argumentsargumentsList (aList of ECMAScript language values) andnewTarget (aconstructor). It performs the following steps when called:

  1. Lethandler beO.[[ProxyHandler]].
  2. Ifhandler isnull, throw aTypeError exception.
  3. Assert:Type(handler) is Object.
  4. Lettarget beO.[[ProxyTarget]].
  5. Assert:IsConstructor(target) istrue.
  6. Lettrap be ? GetMethod(handler,"construct").
  7. Iftrap isundefined, then
    1. Return ? Construct(target,argumentsList,newTarget).
  8. LetargArray be ! CreateArrayFromList(argumentsList).
  9. LetnewObj be ? Call(trap,handler, «target,argArray,newTarget »).
  10. IfType(newObj) is not Object, throw aTypeError exception.
  11. ReturnnewObj.
Note 1

AProxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal slot is an object that has a [[Construct]] internal method.

Note 2

[[Construct]] for proxy objects enforces the following invariants:

  • The result of [[Construct]] must be an Object.

10.5.14 ProxyCreate (target,handler )

The abstract operation ProxyCreate takes argumentstarget andhandler. It is used to specify the creation of new Proxy exotic objects. It performs the following steps when called:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. IfType(handler) is not Object, throw aTypeError exception.
  3. LetP be ! MakeBasicObject(« [[ProxyHandler]], [[ProxyTarget]] »).
  4. SetP's essential internal methods, except for [[Call]] and [[Construct]], to the definitions specified in10.5.
  5. IfIsCallable(target) istrue, then
    1. SetP.[[Call]] as specified in10.5.12.
    2. IfIsConstructor(target) istrue, then
      1. SetP.[[Construct]] as specified in10.5.13.
  6. SetP.[[ProxyTarget]] totarget.
  7. SetP.[[ProxyHandler]] tohandler.
  8. ReturnP.

11 ECMAScript Language: Source Code

11.1 Source Text

Syntax

SourceCharacter::any Unicode code point

ECMAScript code is expressed using Unicode. ECMAScript source text is a sequence of code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate code points, may occur in source text where permitted by the ECMAScript grammars. The actual encodings used to store and interchange ECMAScript source text is not relevant to this specification. Regardless of the external source text encoding, a conforming ECMAScript implementation processes the source text as if it was an equivalent sequence ofSourceCharacter values, eachSourceCharacter being a Unicode code point. Conforming ECMAScript implementations are not required to perform any normalization of source text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though a user might think of the whole sequence as a single character.

Note

In string literals, regular expression literals, template literals and identifiers, any Unicode code point may also be expressed using Unicode escape sequences that explicitly express a code point's numeric value. Within a comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java program, if the Unicode escape sequence\u000A, for example, occurs within a single-line comment, it is interpreted as a line terminator (Unicode code point U+000A is LINE FEED (LF)) and therefore the next code point is not part of the comment. Similarly, if the Unicode escape sequence\u000A occurs within a string literal in a Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one must write\n instead of\u000A to cause a LINE FEED (LF) to be part of the String value of a string literal. In an ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes to the literal and is never interpreted as a line terminator or as a code point that might terminate the string literal.

11.1.1 Static Semantics: UTF16EncodeCodePoint (cp )

The abstract operation UTF16EncodeCodePoint takes argumentcp (a Unicode code point). It performs the following steps when called:

  1. Assert: 0 ≤cp ≤ 0x10FFFF.
  2. Ifcp ≤ 0xFFFF, return the String value consisting of the code unit whose value iscp.
  3. Letcu1 be the code unit whose value isfloor((cp - 0x10000) / 0x400) + 0xD800.
  4. Letcu2 be the code unit whose value is ((cp - 0x10000)modulo 0x400) + 0xDC00.
  5. Return thestring-concatenation ofcu1 andcu2.

11.1.2 Static Semantics: CodePointsToString (text )

The abstract operation CodePointsToString takes argumenttext (a sequence of Unicode code points). It convertstext into a String value, as described in6.1.4. It performs the following steps when called:

  1. Letresult be the empty String.
  2. For each code pointcp oftext, do
    1. Setresult to thestring-concatenation ofresult and ! UTF16EncodeCodePoint(cp).
  3. Returnresult.

11.1.3 Static Semantics: UTF16SurrogatePairToCodePoint (lead,trail )

The abstract operation UTF16SurrogatePairToCodePoint takes argumentslead (a code unit) andtrail (a code unit). Two code units that form a UTF-16surrogate pair are converted to a code point. It performs the following steps when called:

  1. Assert:lead is aleading surrogate andtrail is atrailing surrogate.
  2. Letcp be (lead - 0xD800) × 0x400 + (trail - 0xDC00) + 0x10000.
  3. Return the code pointcp.

11.1.4 Static Semantics: CodePointAt (string,position )

The abstract operation CodePointAt takes argumentsstring (a String) andposition (a non-negativeinteger). It interpretsstring as a sequence of UTF-16 encoded code points, as described in6.1.4, and reads from it a single code point starting with the code unit at indexposition. It performs the following steps when called:

  1. Letsize be the length ofstring.
  2. Assert:position ≥ 0 andposition <size.
  3. Letfirst be the code unit at indexposition withinstring.
  4. Letcp be the code point whose numeric value is that offirst.
  5. Iffirst is not aleading surrogate ortrailing surrogate, then
    1. Return theRecord { [[CodePoint]]:cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]:false }.
  6. Iffirst is atrailing surrogate orposition + 1 =size, then
    1. Return theRecord { [[CodePoint]]:cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]:true }.
  7. Letsecond be the code unit at indexposition + 1 withinstring.
  8. Ifsecond is not atrailing surrogate, then
    1. Return theRecord { [[CodePoint]]:cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]:true }.
  9. Setcp to ! UTF16SurrogatePairToCodePoint(first,second).
  10. Return theRecord { [[CodePoint]]:cp, [[CodeUnitCount]]: 2, [[IsUnpairedSurrogate]]:false }.

11.1.5 Static Semantics: StringToCodePoints (string )

The abstract operation StringToCodePoints takes argumentstring (a String). It returns the sequence of Unicode code points that results from interpretingstring as UTF-16 encoded Unicode text as described in6.1.4. It performs the following steps when called:

  1. LetcodePoints be a new emptyList.
  2. Letsize be the length ofstring.
  3. Letposition be 0.
  4. Repeat, whileposition <size,
    1. Letcp be ! CodePointAt(string,position).
    2. Appendcp.[[CodePoint]] tocodePoints.
    3. Setposition toposition +cp.[[CodeUnitCount]].
  5. ReturncodePoints.

11.1.6 Static Semantics: ParseText (sourceText,goalSymbol )

The abstract operation ParseText takes argumentssourceText (a sequence of Unicode code points) andgoalSymbol (a nonterminal in one of the ECMAScript grammars). It performs the following steps when called:

  1. Attempt to parsesourceText usinggoalSymbol as thegoal symbol, and analyse the parse result for anyearly error conditions. Parsing andearly error detection may be interleaved in animplementation-defined manner.
  2. If the parse succeeded and no early errors were found, return theParse Node (an instance ofgoalSymbol) at the root of the parse tree resulting from the parse.
  3. Otherwise, return aList of one or moreSyntaxError objects representing the parsing errors and/or early errors. If more than one parsing error orearly error is present, the number and ordering of error objects in the list isimplementation-defined, but at least one must be present.
Note 1

Consider a text that has anearly error at a particular point, and also a syntax error at a later point. An implementation that does a parse pass followed by an early errors pass might report the syntax error and not proceed to the early errors pass. An implementation that interleaves the two activities might report theearly error and not proceed to find the syntax error. A third implementation might report both errors. All of these behaviours are conformant.

Note 2

See also clause17.

11.2 Types of Source Code

There are four types of ECMAScript code:

Note 1

Function code is generally provided as the bodies of Function Definitions (15.2), Arrow Function Definitions (15.3), Method Definitions (15.4), Generator Function Definitions (15.5), Async Function Definitions (15.8), Async Generator Function Definitions (15.6), and Async Arrow Functions (15.9). Function code is also derived from the arguments to the Functionconstructor (20.2.1.1), the GeneratorFunctionconstructor (27.3.1.1), and the AsyncFunctionconstructor (27.7.1.1).

Note 2

The practical effect of including theBindingIdentifier in function code is that the Early Errors forstrict mode code are applied to aBindingIdentifier that is the name of a function whose body contains a "use strict" directive, even if the surrounding code is notstrict mode code.

11.2.1 Directive Prologues and the Use Strict Directive

ADirective Prologue is the longest sequence ofExpressionStatements occurring as the initialStatementListItems orModuleItems of aFunctionBody, aScriptBody, or aModuleBody and where eachExpressionStatement in the sequence consists entirely of aStringLiteral token followed by a semicolon. The semicolon may appear explicitly or may be inserted by automatic semicolon insertion (12.9). ADirective Prologue may be an empty sequence.

AUse Strict Directive is anExpressionStatement in aDirective Prologue whoseStringLiteral is either of the exact code point sequences"use strict" or'use strict'. AUse Strict Directive may not contain anEscapeSequence orLineContinuation.

ADirective Prologue may contain more than oneUse Strict Directive. However, an implementation may issue a warning if this occurs.

Note

TheExpressionStatements of aDirective Prologue are evaluated normally during evaluation of the containing production. Implementations may define implementation specific meanings forExpressionStatements which are not aUse Strict Directive and which occur in aDirective Prologue. If an appropriate notification mechanism exists, an implementation should issue a warning if it encounters in aDirective Prologue anExpressionStatement that is not aUse Strict Directive and which does not have a meaning defined by the implementation.

11.2.2 Strict Mode Code

An ECMAScript syntactic unit may be processed using either unrestricted or strict mode syntax and semantics (4.3.2). Code is interpreted asstrict mode code in the following situations:

ECMAScript code that is not strict mode code is callednon-strict code.

11.2.3 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function exotic objects whose evaluative behaviour is expressed in somehost-defined form of executable code other than via ECMAScript code. Whether afunction object is an ECMAScript code function or a non-ECMAScript function is not semantically observable from the perspective of an ECMAScript code function that calls or is called by such a non-ECMAScript function.

12 ECMAScript Language: Lexical Grammar

The source text of an ECMAScriptScript orModule is first converted into a sequence of input elements, which are tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical grammar. TheInputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where aRegularExpressionLiteral, aTemplateMiddle, or aTemplateTail is permitted. TheInputElementRegExpgoal symbol is used in all syntactic grammar contexts where aRegularExpressionLiteral is permitted but neither aTemplateMiddle, nor aTemplateTail is permitted. TheInputElementTemplateTail goal is used in all syntactic grammar contexts where aTemplateMiddle or aTemplateTail is permitted but aRegularExpressionLiteral is not permitted. In all other contexts,InputElementDiv is used as the lexicalgoal symbol.

Note

The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect automatic semicolon insertion. For example, there are no syntactic grammar contexts where both a leading division or division-assignment, and a leadingRegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see12.9); in examples such as the following:

a = b/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment code point after aLineTerminator is U+002F (SOLIDUS) and the syntactic context allows division or division-assignment, no semicolon is inserted at theLineTerminator. That is, the above example is interpreted in the same way as:

a = b / hi / g.exec(c).map(d);

Syntax

InputElementDiv::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorRightBracePunctuatorInputElementRegExp::WhiteSpaceLineTerminatorCommentCommonTokenRightBracePunctuatorRegularExpressionLiteralInputElementRegExpOrTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenRegularExpressionLiteralTemplateSubstitutionTailInputElementTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorTemplateSubstitutionTail

12.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control characters may be used within comments, and within string literals, template literals, and regular expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters that are used to make necessary distinctions when forming words or phrases in certain languages. In ECMAScript source text these code points may also be used in anIdentifierName after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to mark it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters intended for this purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. In ECMAScript source text <ZWNBSP> code points are treated as white space characters (see12.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression literals is summarized inTable 33.

Table 33: Format-Control Code Point Usage
Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ>IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ>IdentifierPart
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>WhiteSpace

12.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible lexical units) from each other, but are otherwise insignificant. White space code points may occur between any two tokens and at the start or end of input. White space code points may occur within aStringLiteral, aRegularExpressionLiteral, aTemplate, or aTemplateSubstitutionTail where they are considered significant code points forming part of a literal value. They may also occur within aComment, but cannot appear within any other kind of token.

The ECMAScript white space code points are listed inTable 34.

Table 34: White Space Code Points
Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
U+000C FORM FEED (FF) <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>
Other category “Zs” Any other Unicode “Space_Separator” code point <USP>

ECMAScript implementations must recognize asWhiteSpace code points listed in the “Space_Separator” (“Zs”) category.

Note

Other than for the code points listed inTable 34, ECMAScriptWhiteSpace intentionally excludes all code points that have the Unicode “White_Space” property but which are not classified in category “Space_Separator” (“Zs”).

Syntax

WhiteSpace::<TAB><VT><FF><SP><NBSP><ZWNBSP><USP>

12.3 Line Terminators

Like white space code points, line terminator code points are used to improve source text readability and to separate tokens (indivisible lexical units) from each other. However, unlike white space code points, line terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two tokens, but there are a few places where they are forbidden by the syntactic grammar. Line terminators also affect the process of automatic semicolon insertion (12.9). A line terminator cannot occur within any token except aStringLiteral,Template, orTemplateSubstitutionTail. <LF> and <CR> line terminators cannot occur within aStringLiteral token except as part of aLineContinuation.

A line terminator can occur within aMultiLineComment but cannot occur within aSingleLineComment.

Line terminators are included in the set of white space code points that are matched by the\s class in regular expressions.

The ECMAScript line terminator code points are listed inTable 35.

Table 35: Line Terminator Code Points
Code Point Unicode Name Abbreviation
U+000A LINE FEED (LF) <LF>
U+000D CARRIAGE RETURN (CR) <CR>
U+2028 LINE SEPARATOR <LS>
U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points inTable 35 are treated as line terminators. Other new line or line breaking Unicode code points are not treated as line terminators but are treated as white space if they meet the requirements listed inTable 34. The sequence <CR><LF> is commonly used as a line terminator. It should be considered a singleSourceCharacter for the purpose of reporting line numbers.

Syntax

LineTerminator::<LF><CR><LS><PS>LineTerminatorSequence::<LF><CR>[lookahead ≠<LF>]<LS><PS><CR><LF>

12.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except aLineTerminator code point, and because of the general rule that a token is always as long as possible, a single-line comment always consists of all code points from the// marker to the end of the line. However, theLineTerminator at the end of the line is not considered to be part of the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point is very important, because it implies that the presence or absence of single-line comments does not affect the process of automatic semicolon insertion (see12.9).

Comments behave like white space and are discarded except that, if aMultiLineComment contains a line terminator code point, then the entire comment is considered to be aLineTerminator for purposes of parsing by the syntactic grammar.

Syntax

Comment::MultiLineCommentSingleLineCommentMultiLineComment::/*MultiLineCommentCharsopt*/MultiLineCommentChars::MultiLineNotAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptPostAsteriskCommentChars::MultiLineNotForwardSlashOrAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptMultiLineNotAsteriskChar::SourceCharacterbut not*MultiLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or*SingleLineComment:://SingleLineCommentCharsoptSingleLineCommentChars::SingleLineCommentCharSingleLineCommentCharsoptSingleLineCommentChar::SourceCharacterbut notLineTerminator

A number of productions in this section are given alternative definitions in sectionB.1.3

12.5 Tokens

Syntax

CommonToken::IdentifierNamePunctuatorNumericLiteralStringLiteralTemplateNote

TheDivPunctuator,RegularExpressionLiteral,RightBracePunctuator, andTemplateSubstitutionTail productions derive additional tokens that are not included in theCommonToken production.

12.6 Names and Keywords

IdentifierName andReservedWord are tokens that are interpreted according to the Default Identifier Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.ReservedWord is an enumerated subset ofIdentifierName. The syntactic grammar definesIdentifier as anIdentifierName that is not aReservedWord. The Unicode identifier grammar is based on character properties specified by the Unicode Standard. The Unicode code points in the specified categories in the latest version of the Unicode standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript implementations may recognize identifier code points defined in later editions of the Unicode Standard.

Note 1

This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE) are permitted anywhere in anIdentifierName, and the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are permitted anywhere after the first code point of anIdentifierName.

Unicode escape sequences are permitted in anIdentifierName, where they contribute a single Unicode code point to theIdentifierName. The code point is expressed by theCodePoint of theUnicodeEscapeSequence (see12.8.4). The\ preceding theUnicodeEscapeSequence and theu and{ } code units, if they appear, do not contribute code points to theIdentifierName. AUnicodeEscapeSequence cannot be used to put a code point into anIdentifierName that would otherwise be illegal. In other words, if a\UnicodeEscapeSequence sequence were replaced by theSourceCharacter it contributes, the result must still be a validIdentifierName that has the exact same sequence ofSourceCharacter elements as the originalIdentifierName. All interpretations ofIdentifierName within this specification are based upon their actual code points regardless of whether or not an escape sequence was used to contribute any particular code point.

TwoIdentifierNames that are canonically equivalent according to the Unicode standard arenot equal unless, after replacement of eachUnicodeEscapeSequence, they are represented by the exact same sequence of code points.

Syntax

IdentifierName::IdentifierStartIdentifierNameIdentifierPartIdentifierStart::UnicodeIDStart$_\UnicodeEscapeSequenceIdentifierPart::UnicodeIDContinue$\UnicodeEscapeSequence<ZWNJ><ZWJ>UnicodeIDStart::any Unicode code point with the Unicode property “ID_Start”UnicodeIDContinue::any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminalUnicodeEscapeSequence is given in12.8.4.

Note 2

The nonterminalIdentifierPart derives_ viaUnicodeIDContinue.

Note 3

The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include, respectively, the code points with Unicode properties “Other_ID_Start” and “Other_ID_Continue”.

12.6.1 Identifier Names

12.6.1.1 Static Semantics: Early Errors

IdentifierStart::\UnicodeEscapeSequenceIdentifierPart::\UnicodeEscapeSequence

12.6.2 Keywords and Reserved Words

Akeyword is a token that matchesIdentifierName, but also has a syntactic use; that is, it appears literally, in afixed width font, in some syntactic production. The keywords of ECMAScript includeif,while,async,await, and many others.

Areserved word is anIdentifierName that cannot be used as an identifier. Many keywords are reserved words, but some are not, and some are reserved only in certain contexts.if andwhile are reserved words.await is reserved only inside async functions and modules.async is not reserved; it can be used as a variable name or statement label without restriction.

This specification uses a combination of grammatical productions andearly error rules to specify which names are valid identifiers and which are reserved words. All tokens in theReservedWord list below, except forawait andyield, are unconditionally reserved. Exceptions forawait andyield are specified in13.1, using parameterized syntactic productions. Lastly, severalearly error rules restrict the set of valid identifiers. See13.1.1,14.3.1.1,14.7.5.1, and15.7.1. In summary, there are five categories of identifier names:

  • Those that are always allowed as identifiers, and are not keywords, such asMath,window,toString, and_;

  • Those that are never allowed as identifiers, namely theReservedWords listed below exceptawait andyield;

  • Those that are contextually allowed as identifiers, namelyawait andyield;

  • Those that are contextually disallowed as identifiers, instrict mode code:let,static,implements,interface,package,private,protected, andpublic;

  • Those that are always allowed as identifiers, but also appear as keywords within certain syntactic productions, at places whereIdentifier is not allowed:as,async,from,get,of,set, andtarget.

The termconditional keyword, orcontextual keyword, is sometimes used to refer to the keywords that fall in the last three categories, and thus can be used as identifiers in some contexts and as keywords in others.

Syntax

ReservedWord::one ofawaitbreakcasecatchclassconstcontinuedebuggerdefaultdeletedoelseenumexportextendsfalsefinallyforfunctionifimportininstanceofnewnullreturnsuperswitchthisthrowtruetrytypeofvarvoidwhilewithyieldNote 1

Per5.1.5, keywords in the grammar match literal sequences of specificSourceCharacter elements. A code point in a keyword cannot be expressed by a\UnicodeEscapeSequence.

AnIdentifierName can contain\UnicodeEscapeSequences, but it is not possible to declare a variable named "else" by spelling itels\u{65}. Theearly error rules in13.1.1 rule out identifiers with the sameStringValue as a reserved word.

Note 2

enum is not currently used as a keyword in this specification. It is afuture reserved word, set aside for use as a keyword in future language extensions.

Similarly,implements,interface,package,private,protected, andpublic are future reserved words instrict mode code.

Note 3

The namesarguments andeval are not keywords, but they are subject to some restrictions instrict mode code. See13.1.1,8.5.4,15.2.1,15.5.1,15.6.1, and15.8.1.

12.7 Punctuators

Syntax

Punctuator::OptionalChainingPunctuatorOtherPunctuatorOptionalChainingPunctuator::?.[lookahead ∉DecimalDigit]OtherPunctuator::one of{()[]....;,<><=>===!====!==+-*%**++--<<>>>>>&|^!~&&||???:=+=-=*=%=**=<<=>>=>>>=&=|=^=&&=||=??==>DivPunctuator:://=RightBracePunctuator::}

12.8 Literals

12.8.1 Null Literals

Syntax

NullLiteral::null

12.8.2 Boolean Literals

Syntax

BooleanLiteral::truefalse

12.8.3 Numeric Literals

Syntax

NumericLiteralSeparator::_NumericLiteral::DecimalLiteralDecimalBigIntegerLiteralNonDecimalIntegerLiteral[+Sep]NonDecimalIntegerLiteral[+Sep]BigIntLiteralSuffixDecimalBigIntegerLiteral::0BigIntLiteralSuffixNonZeroDigitDecimalDigits[+Sep]optBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigits[+Sep]BigIntLiteralSuffixNonDecimalIntegerLiteral[Sep]::BinaryIntegerLiteral[?Sep]OctalIntegerLiteral[?Sep]HexIntegerLiteral[?Sep]BigIntLiteralSuffix::nDecimalLiteral::DecimalIntegerLiteral.DecimalDigits[+Sep]optExponentPart[+Sep]opt.DecimalDigits[+Sep]ExponentPart[+Sep]optDecimalIntegerLiteralExponentPart[+Sep]optDecimalIntegerLiteral::0NonZeroDigitNonZeroDigitNumericLiteralSeparatoroptDecimalDigits[+Sep]DecimalDigits[Sep]::DecimalDigitDecimalDigits[?Sep]DecimalDigit[+Sep]DecimalDigits[+Sep]NumericLiteralSeparatorDecimalDigitDecimalDigit::one of0123456789NonZeroDigit::one of123456789ExponentPart[Sep]::ExponentIndicatorSignedInteger[?Sep]ExponentIndicator::one ofeESignedInteger[Sep]::DecimalDigits[?Sep]+DecimalDigits[?Sep]-DecimalDigits[?Sep]BinaryIntegerLiteral[Sep]::0bBinaryDigits[?Sep]0BBinaryDigits[?Sep]BinaryDigits[Sep]::BinaryDigitBinaryDigits[?Sep]BinaryDigit[+Sep]BinaryDigits[+Sep]NumericLiteralSeparatorBinaryDigitBinaryDigit::one of01OctalIntegerLiteral[Sep]::0oOctalDigits[?Sep]0OOctalDigits[?Sep]OctalDigits[Sep]::OctalDigitOctalDigits[?Sep]OctalDigit[+Sep]OctalDigits[+Sep]NumericLiteralSeparatorOctalDigitOctalDigit::one of01234567HexIntegerLiteral[Sep]::0xHexDigits[?Sep]0XHexDigits[?Sep]HexDigits[Sep]::HexDigitHexDigits[?Sep]HexDigit[+Sep]HexDigits[+Sep]NumericLiteralSeparatorHexDigitHexDigit::one of0123456789abcdefABCDEF

TheSourceCharacter immediately following aNumericLiteral must not be anIdentifierStart orDecimalDigit.

Note

For example:3in is an error and not the two input elements3 andin.

A conforming implementation, when processingstrict mode code, must not extend, as described inB.1.1, the syntax ofNumericLiteral to includeLegacyOctalIntegerLiteral, nor extend the syntax ofDecimalIntegerLiteral to includeNonOctalDecimalIntegerLiteral.

12.8.3.1 Static Semantics: MV

A numeric literal stands for a value of the Number type or the BigInt type.

12.8.3.2 Static Semantics: NumericValue

NumericLiteral::DecimalLiteral
  1. Return theNumber value that results from rounding the MV ofDecimalLiteral as described below.
NumericLiteral::NonDecimalIntegerLiteral
  1. Return theNumber value that results from rounding the MV ofNonDecimalIntegerLiteral as described below.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If the MV is 0, then the rounded value is+0𝔽; otherwise, the rounded value must be theNumber value for the MV (as specified in6.1.6.1), unless the literal is aDecimalLiteral and the literal has more than 20 significant digits, in which case theNumber value may be either theNumber value for the MV of a literal produced by replacing each significant digit after the 20th with a0 digit or theNumber value for the MV of a literal produced by replacing each significant digit after the 20th with a0 digit and then incrementing the literal at the 20th significant digit position. A digit issignificant if it is not part of anExponentPart and

  • it is not0; or
  • there is a non-zero digit to its left and there is a non-zero digit, not in theExponentPart, to its right.
NumericLiteral::NonDecimalIntegerLiteralBigIntLiteralSuffix
  1. Return the BigInt value that represents the MV ofNonDecimalIntegerLiteral.
DecimalBigIntegerLiteral::0BigIntLiteralSuffix
  1. Return0.
DecimalBigIntegerLiteral::NonZeroDigitBigIntLiteralSuffix
  1. Return the BigInt value that represents the MV ofNonZeroDigit.
DecimalBigIntegerLiteral::NonZeroDigitDecimalDigitsBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigitsBigIntLiteralSuffix
  1. Letn be the number of code points inDecimalDigits, excluding all occurrences ofNumericLiteralSeparator.
  2. Letmv be (the MV ofNonZeroDigit × 10) plus the MV ofDecimalDigits.
  3. Return(mv).

12.8.4 String Literals

Note 1

A string literal is 0 or more Unicode code points enclosed in single or double quotes. Unicode code points may also be represented by an escape sequence. All code points may appear literally in a string literal except for the closing quote code points, U+005C (REVERSE SOLIDUS), U+000D (CARRIAGE RETURN), and U+000A (LINE FEED). Any code points may appear in the form of an escape sequence. String literals evaluate to ECMAScript String values. When generating these String values Unicode code points are UTF-16 encoded as defined in11.1.1. Code points belonging to the Basic Multilingual Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit elements of the string.

Syntax

StringLiteral::"DoubleStringCharactersopt"'SingleStringCharactersopt'DoubleStringCharacters::DoubleStringCharacterDoubleStringCharactersoptSingleStringCharacters::SingleStringCharacterSingleStringCharactersoptDoubleStringCharacter::SourceCharacterbut not one of" or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationSingleStringCharacter::SourceCharacterbut not one of' or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationLineContinuation::\LineTerminatorSequenceEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]HexEscapeSequenceUnicodeEscapeSequence

A conforming implementation, when processingstrict mode code, must not extend the syntax ofEscapeSequence to includeLegacyOctalEscapeSequence orNonOctalDecimalEscapeSequence as described inB.1.2.

CharacterEscapeSequence::SingleEscapeCharacterNonEscapeCharacterSingleEscapeCharacter::one of'"\bfnrtvNonEscapeCharacter::SourceCharacterbut not one ofEscapeCharacter orLineTerminatorEscapeCharacter::SingleEscapeCharacterDecimalDigitxuHexEscapeSequence::xHexDigitHexDigitUnicodeEscapeSequence::uHex4Digitsu{CodePoint}Hex4Digits::HexDigitHexDigitHexDigitHexDigit

The definition of the nonterminalHexDigit is given in12.8.3.SourceCharacter is defined in11.1.

Note 2

<LF> and <CR> cannot appear in a string literal, except as part of aLineContinuation to produce the empty code points sequence. The proper way to include either in the String value of a string literal is to use an escape sequence such as\n or\u000A.

12.8.4.1 Static Semantics: SV

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of String values contributed by the various parts of the string literal. As part of this process, some Unicode code points within the string literal are interpreted as having amathematical value (MV), as described below or in12.8.3.

Table 36: String Single Character Escape Sequences
Escape Sequence Code Unit Value Unicode Character Name Symbol
\b0x0008 BACKSPACE <BS>
\t0x0009 CHARACTER TABULATION <HT>
\n0x000A LINE FEED (LF) <LF>
\v0x000B LINE TABULATION <VT>
\f0x000C FORM FEED (FF) <FF>
\r0x000D CARRIAGE RETURN (CR) <CR>
\"0x0022 QUOTATION MARK"
\'0x0027 APOSTROPHE'
\\0x005C REVERSE SOLIDUS\

12.8.4.2 Static Semantics: MV

12.8.5 Regular Expression Literals

Note 1

A regular expression literal is an input element that is converted to a RegExp object (see22.2) each time the literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare as=== to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime bynew RegExp or calling the RegExpconstructor as a function (see22.2.3).

The productions below describe the syntax for a regular expression literal and are used by the input element scanner to find the end of the regular expression literal. The source text comprising theRegularExpressionBody and theRegularExpressionFlags are subsequently parsed again using the more stringent ECMAScript Regular Expression grammar (22.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in22.2.1, but it must not extend theRegularExpressionBody andRegularExpressionFlags productions defined below or the productions used by these productions.

Syntax

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlagsRegularExpressionBody::RegularExpressionFirstCharRegularExpressionCharsRegularExpressionChars::[empty]RegularExpressionCharsRegularExpressionCharRegularExpressionFirstChar::RegularExpressionNonTerminatorbut not one of* or\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionChar::RegularExpressionNonTerminatorbut not one of\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionBackslashSequence::\RegularExpressionNonTerminatorRegularExpressionNonTerminator::SourceCharacterbut notLineTerminatorRegularExpressionClass::[RegularExpressionClassChars]RegularExpressionClassChars::[empty]RegularExpressionClassCharsRegularExpressionClassCharRegularExpressionClassChar::RegularExpressionNonTerminatorbut not one of] or\RegularExpressionBackslashSequenceRegularExpressionFlags::[empty]RegularExpressionFlagsIdentifierPartNote 2

Regular expression literals may not be empty; instead of representing an empty regular expression literal, the code unit sequence// starts a single-line comment. To specify an empty regular expression, use:/(?:)/.

12.8.5.1 Static Semantics: Early Errors

RegularExpressionFlags::RegularExpressionFlagsIdentifierPart
  • It is a Syntax Error ifIdentifierPart contains a Unicode escape sequence.

12.8.5.2 Static Semantics: BodyText

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlags
  1. Return the source text that was recognized asRegularExpressionBody.

12.8.5.3 Static Semantics: FlagText

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlags
  1. Return the source text that was recognized asRegularExpressionFlags.

12.8.6 Template Literal Lexical Components

Syntax

Template::NoSubstitutionTemplateTemplateHeadNoSubstitutionTemplate::`TemplateCharactersopt`TemplateHead::`TemplateCharactersopt${TemplateSubstitutionTail::TemplateMiddleTemplateTailTemplateMiddle::}TemplateCharactersopt${TemplateTail::}TemplateCharactersopt`TemplateCharacters::TemplateCharacterTemplateCharactersoptTemplateCharacter::$[lookahead ≠{]\EscapeSequence\NotEscapeSequenceLineContinuationLineTerminatorSequenceSourceCharacterbut not one of` or\ or$ orLineTerminatorNotEscapeSequence::0DecimalDigitDecimalDigitbut not0x[lookahead ∉HexDigit]xHexDigit[lookahead ∉HexDigit]u[lookahead ∉HexDigit][lookahead ≠{]uHexDigit[lookahead ∉HexDigit]uHexDigitHexDigit[lookahead ∉HexDigit]uHexDigitHexDigitHexDigit[lookahead ∉HexDigit]u{[lookahead ∉HexDigit]u{NotCodePoint[lookahead ∉HexDigit]u{CodePoint[lookahead ∉HexDigit][lookahead ≠}]NotCodePoint::HexDigits[~Sep]but only if MV ofHexDigits > 0x10FFFFCodePoint::HexDigits[~Sep]but only if MV ofHexDigits ≤ 0x10FFFF

A conforming implementation must not use the extended definition ofEscapeSequence described inB.1.2 when parsing aTemplateCharacter.

Note

TemplateSubstitutionTail is used by theInputElementTemplateTail alternative lexical goal.

12.8.6.1 Static Semantics: TV and TRV

A template literal component is interpreted as a sequence of Unicode code points. The Template Value (TV) of a literal component is described in terms of String values (SV,12.8.4) contributed by the various parts of the template literal component. As part of this process, some Unicode code points within the template component are interpreted as having amathematical value (MV,12.8.3). In determining a TV, escape sequences are replaced by the UTF-16 code unit(s) of the Unicode code point represented by the escape sequence. The Template Raw Value (TRV) is similar to a Template Value with the difference that in TRVs escape sequences are interpreted literally.

Note

TV excludes the code units ofLineContinuation while TRV includes them. <CR><LF> and <CR>LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicitEscapeSequence is needed to include a <CR> or <CR><LF> sequence.

12.9 Automatic Semicolon Insertion

Most ECMAScript statements and declarations must be terminated with a semicolon. Such semicolons may always appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in certain situations. These situations are described by saying that semicolons are automatically inserted into the source code token stream in those situations.

12.9.1 Rules of Automatic Semicolon Insertion

In the following rules, “token” means the actual recognized lexical token determined using the current lexicalgoal symbol as described in clause12.

There are three basic rules of semicolon insertion:

  1. When, as the source text is parsed from left to right, a token (called theoffending token) is encountered that is not allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token if one or more of the following conditions is true:

    • The offending token is separated from the previous token by at least oneLineTerminator.
    • The offending token is}.
    • The previous token is) and the inserted semicolon would then be parsed as the terminating semicolon of a do-while statement (14.7.2).
  2. When, as the source text is parsed from left to right, the end of the input stream of tokens is encountered and the parser is unable to parse the input token stream as a single instance of the goal nonterminal, then a semicolon is automatically inserted at the end of the input stream.
  3. When, as the source text is parsed from left to right, a token is encountered that is allowed by some production of the grammar, but the production is arestricted production and the token would be the first token for a terminal or nonterminal immediately following the annotation “[noLineTerminator here]” within the restricted production (and therefore such a token is called a restricted token), and the restricted token is separated from the previous token by at least oneLineTerminator, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become one of the two semicolons in the header of afor statement (see14.7.4).

Note

The following are the only restricted productions in the grammar:

UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];ArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]

The practical effect of these restricted productions is as follows:

  • When a++ or-- token is encountered where the parser would treat it as a postfix operator, and at least oneLineTerminator occurred between the preceding token and the++ or-- token, then a semicolon is automatically inserted before the++ or-- token.
  • When acontinue,break,return,throw, oryield token is encountered and aLineTerminator is encountered before the next token, a semicolon is automatically inserted after thecontinue,break,return,throw, oryield token.

The resulting practical advice to ECMAScript programmers is:

  • A postfix++ or-- operator should appear on the same line as its operand.
  • AnExpression in areturn orthrow statement or anAssignmentExpression in ayield expression should start on the same line as thereturn,throw, oryield token.
  • ALabelIdentifier in abreak orcontinue statement should be on the same line as thebreak orcontinue token.

12.9.2 Examples of Automatic Semicolon Insertion

This section is non-normative.

The source

{12 }3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the source

{12 }3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

{1;2 ;}3;

which is a valid ECMAScript sentence.

The source

for (a; b)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is needed for the header of afor statement. Automatic semicolon insertion never inserts one of the two semicolons in the header of afor statement.

The source

returna + b

is transformed by automatic semicolon insertion into the following:

return;a + b;
Note 1

The expressiona + b is not treated as a value to be returned by thereturn statement, because aLineTerminator separates it from the tokenreturn.

The source

a = b++c

is transformed by automatic semicolon insertion into the following:

a = b;++c;
Note 2

The token++ is not treated as a postfix operator applying to the variableb, because aLineTerminator occurs betweenb and++.

The source

if (a > b)else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before theelse token, even though no production of the grammar applies at that point, because an automatically inserted semicolon would then be parsed as an empty statement.

The source

a = b + c(d + e).print()

isnot transformed by automatic semicolon insertion, because the parenthesized expression that begins the second line can be interpreted as an argument list for a function call:

a = b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic semicolon insertion.

12.9.3 Interesting Cases of Automatic Semicolon Insertion

This section is non-normative.

ECMAScript programs can be written in a style with very few semicolons by relying on automatic semicolon insertion. As described above, semicolons are not inserted at every newline, and automatic semicolon insertion can depend on multiple tokens across line terminators.

As new syntactic features are added to ECMAScript, additional grammar productions could be added that cause lines relying on automatic semicolon insertion preceding them to change grammar productions when parsed.

For the purposes of this section, a case of automatic semicolon insertion is considered interesting if it is a place where a semicolon may or may not be inserted, depending on the source text which precedes it. The rest of this section describes a number of interesting cases of automatic semicolon insertion in this version of ECMAScript.

12.9.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists

In aStatementList, manyStatementListItems end in semicolons, which may be omitted using automatic semicolon insertion. As a consequence of the rules above, at the end of a line ending an expression, a semicolon is required if the following line begins with any of the following:

  • An opening parenthesis ((). Without a semicolon, the two lines together are treated as aCallExpression.
  • An opening square bracket ([). Without a semicolon, the two lines together are treated as property access, rather than anArrayLiteral orArrayAssignmentPattern.
  • A template literal (`). Without a semicolon, the two lines together are interpreted as a tagged Template (13.3.11), with the previous expression as theMemberExpression.
  • Unary+ or-. Without a semicolon, the two lines together are interpreted as a usage of the corresponding binary operator.
  • A RegExp literal. Without a semicolon, the two lines together may be parsed instead as the/MultiplicativeOperator, for example if the RegExp has flags.

12.9.3.2 Cases of Automatic Semicolon Insertion and “[noLineTerminator here]”

This section is non-normative.

ECMAScript contains grammar productions which include “[noLineTerminator here]”. These productions are sometimes a means to have optional operands in the grammar. Introducing aLineTerminator in these locations would change the grammar production of a source text by using the grammar production without the optional operand.

The rest of this section describes a number of productions using “[noLineTerminator here]” in this version of ECMAScript.

12.9.3.2.1 List of Grammar Productions with Optional Operands and “[noLineTerminator here]”

13 ECMAScript Language: Expressions

13.1 Identifiers

Syntax

IdentifierReference[Yield, Await]:Identifier[~Yield]yield[~Await]awaitBindingIdentifier[Yield, Await]:IdentifieryieldawaitLabelIdentifier[Yield, Await]:Identifier[~Yield]yield[~Await]awaitIdentifier:IdentifierNamebut notReservedWordNote

yield andawait are permitted asBindingIdentifier in the grammar, and prohibited withstatic semantics below, to prohibit automatic semicolon insertion in cases such as

letawait0;

13.1.1 Static Semantics: Early Errors

BindingIdentifier:IdentifierIdentifierReference:yieldBindingIdentifier:yieldLabelIdentifier:yield
  • It is a Syntax Error if the code matched by this production is contained instrict mode code.
IdentifierReference:awaitBindingIdentifier:awaitLabelIdentifier:awaitBindingIdentifier[Yield, Await]:yield
  • It is a Syntax Error if this production has a[Yield] parameter.
BindingIdentifier[Yield, Await]:await
  • It is a Syntax Error if this production has an[Await] parameter.
IdentifierReference[Yield, Await]:IdentifierBindingIdentifier[Yield, Await]:IdentifierLabelIdentifier[Yield, Await]:IdentifierIdentifier:IdentifierNamebut notReservedWordNote

StringValue ofIdentifierName normalizes any Unicode escape sequences inIdentifierName hence such escapes cannot be used to write anIdentifier whose code point sequence is the same as aReservedWord.

13.1.2 Static Semantics: StringValue

IdentifierName::IdentifierStartIdentifierNameIdentifierPart
  1. LetidText be thesource text matched byIdentifierName.
  2. LetidTextUnescaped be the result of replacing any occurrences of\UnicodeEscapeSequence inidText with the code point represented by theUnicodeEscapeSequence.
  3. Return ! CodePointsToString(idTextUnescaped).
IdentifierReference:yieldBindingIdentifier:yieldLabelIdentifier:yield
  1. Return"yield".
IdentifierReference:awaitBindingIdentifier:awaitLabelIdentifier:await
  1. Return"await".
Identifier:IdentifierNamebut notReservedWord
  1. Return theStringValue ofIdentifierName.

13.1.3 Runtime Semantics: Evaluation

IdentifierReference:Identifier
  1. Return ? ResolveBinding(StringValue ofIdentifier).
IdentifierReference:yield
  1. Return ? ResolveBinding("yield").
IdentifierReference:await
  1. Return ? ResolveBinding("await").
Note 1

The result of evaluating anIdentifierReference is always a value of typeReference.

Note 2

Innon-strict code, thekeywordyield may be used as an identifier. Evaluating theIdentifierReference resolves the binding ofyield as if it was anIdentifier. Early Error restriction ensures that such an evaluation only can occur fornon-strict code.

13.2 Primary Expression

Syntax

PrimaryExpression[Yield, Await]:thisIdentifierReference[?Yield, ?Await]LiteralArrayLiteral[?Yield, ?Await]ObjectLiteral[?Yield, ?Await]FunctionExpressionClassExpression[?Yield, ?Await]GeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral[?Yield, ?Await, ~Tagged]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[Yield, Await]:(Expression[+In, ?Yield, ?Await])(Expression[+In, ?Yield, ?Await],)()(...BindingIdentifier[?Yield, ?Await])(...BindingPattern[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingIdentifier[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingPattern[?Yield, ?Await])

Supplemental Syntax

When processing an instance of the production
PrimaryExpression[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await]:(Expression[+In, ?Yield, ?Await])

13.2.1 Semantics

13.2.1.1 Static Semantics: CoveredParenthesizedExpression

CoverParenthesizedExpressionAndArrowParameterList:(Expression)
  1. Return theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.

13.2.2 Thethis Keyword

13.2.2.1 Runtime Semantics: Evaluation

PrimaryExpression:this
  1. Return ? ResolveThisBinding().

13.2.3 Identifier Reference

See13.1 forIdentifierReference.

13.2.4 Literals

Syntax

Literal:NullLiteralBooleanLiteralNumericLiteralStringLiteral

13.2.4.1 Runtime Semantics: Evaluation

Literal:NullLiteral
  1. Returnnull.
Literal:BooleanLiteral
  1. IfBooleanLiteral is the tokenfalse, returnfalse.
  2. IfBooleanLiteral is the tokentrue, returntrue.
Literal:NumericLiteral
  1. Return theNumericValue ofNumericLiteral as defined in12.8.3.
Literal:StringLiteral
  1. Return theSV ofStringLiteral as defined in12.8.4.1.

13.2.5 Array Initializer

Note

AnArrayLiteral is an expression describing the initialization of an Array object, using a list, of zero or more expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals; they are evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is not preceded by anAssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral[Yield, Await]:[Elisionopt][ElementList[?Yield, ?Await]][ElementList[?Yield, ?Await],Elisionopt]ElementList[Yield, Await]:ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElisionoptSpreadElement[?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptSpreadElement[?Yield, ?Await]Elision:,Elision,SpreadElement[Yield, Await]:...AssignmentExpression[+In, ?Yield, ?Await]

13.2.5.1 Runtime Semantics: ArrayAccumulation

With parametersarray andnextIndex.

Elision:,
  1. Letlen benextIndex + 1.
  2. Perform ? Set(array,"length",𝔽(len),true).
  3. NOTE: The above Set throws iflen exceeds 232-1.
  4. Returnlen.
Elision:Elision,
  1. Return the result of performingArrayAccumulation forElision with argumentsarray andnextIndex + 1.
ElementList:ElisionoptAssignmentExpression
  1. IfElision is present, then
    1. SetnextIndex to the result of performingArrayAccumulation forElision with argumentsarray andnextIndex.
    2. ReturnIfAbrupt(nextIndex).
  2. LetinitResult be the result of evaluatingAssignmentExpression.
  3. LetinitValue be ? GetValue(initResult).
  4. Letcreated be ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),initValue).
  5. ReturnnextIndex + 1.
ElementList:ElisionoptSpreadElement
  1. IfElision is present, then
    1. SetnextIndex to the result of performingArrayAccumulation forElision with argumentsarray andnextIndex.
    2. ReturnIfAbrupt(nextIndex).
  2. Return the result of performingArrayAccumulation forSpreadElement with argumentsarray andnextIndex.
ElementList:ElementList,ElisionoptAssignmentExpression
  1. SetnextIndex to the result of performingArrayAccumulation forElementList with argumentsarray andnextIndex.
  2. ReturnIfAbrupt(nextIndex).
  3. IfElision is present, then
    1. SetnextIndex to the result of performingArrayAccumulation forElision with argumentsarray andnextIndex.
    2. ReturnIfAbrupt(nextIndex).
  4. LetinitResult be the result of evaluatingAssignmentExpression.
  5. LetinitValue be ? GetValue(initResult).
  6. Letcreated be ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),initValue).
  7. ReturnnextIndex + 1.
ElementList:ElementList,ElisionoptSpreadElement
  1. SetnextIndex to the result of performingArrayAccumulation forElementList with argumentsarray andnextIndex.
  2. ReturnIfAbrupt(nextIndex).
  3. IfElision is present, then
    1. SetnextIndex to the result of performingArrayAccumulation forElision with argumentsarray andnextIndex.
    2. ReturnIfAbrupt(nextIndex).
  4. Return the result of performingArrayAccumulation forSpreadElement with argumentsarray andnextIndex.
SpreadElement:...AssignmentExpression
  1. LetspreadRef be the result of evaluatingAssignmentExpression.
  2. LetspreadObj be ? GetValue(spreadRef).
  3. LetiteratorRecord be ? GetIterator(spreadObj).
  4. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returnnextIndex.
    3. LetnextValue be ? IteratorValue(next).
    4. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),nextValue).
    5. SetnextIndex tonextIndex + 1.
Note

CreateDataPropertyOrThrow is used to ensure that own properties are defined for the array even if the standard built-inArray prototype object has been modified in a manner that would preclude the creation of new own properties using [[Set]].

13.2.5.2 Runtime Semantics: Evaluation

ArrayLiteral:[Elisionopt]
  1. Letarray be ! ArrayCreate(0).
  2. IfElision is present, then
    1. Letlen be the result of performingArrayAccumulation forElision with argumentsarray and 0.
    2. ReturnIfAbrupt(len).
  3. Returnarray.
ArrayLiteral:[ElementList]
  1. Letarray be ! ArrayCreate(0).
  2. Letlen be the result of performingArrayAccumulation forElementList with argumentsarray and 0.
  3. ReturnIfAbrupt(len).
  4. Returnarray.
ArrayLiteral:[ElementList,Elisionopt]
  1. Letarray be ! ArrayCreate(0).
  2. LetnextIndex be the result of performingArrayAccumulation forElementList with argumentsarray and 0.
  3. ReturnIfAbrupt(nextIndex).
  4. IfElision is present, then
    1. Letlen be the result of performingArrayAccumulation forElision with argumentsarray andnextIndex.
    2. ReturnIfAbrupt(len).
  5. Returnarray.

13.2.6 Object Initializer

Note 1

An object initializer is an expression describing the initialization of an Object, written in a form resembling a literal. It is a list of zero or more pairs of property keys and associated values, enclosed in curly brackets. The values need not be literals; they are evaluated each time the object initializer is evaluated.

Syntax

ObjectLiteral[Yield, Await]:{}{PropertyDefinitionList[?Yield, ?Await]}{PropertyDefinitionList[?Yield, ?Await],}PropertyDefinitionList[Yield, Await]:PropertyDefinition[?Yield, ?Await]PropertyDefinitionList[?Yield, ?Await],PropertyDefinition[?Yield, ?Await]PropertyDefinition[Yield, Await]:IdentifierReference[?Yield, ?Await]CoverInitializedName[?Yield, ?Await]PropertyName[?Yield, ?Await]:AssignmentExpression[+In, ?Yield, ?Await]MethodDefinition[?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]PropertyName[Yield, Await]:LiteralPropertyNameComputedPropertyName[?Yield, ?Await]LiteralPropertyName:IdentifierNameStringLiteralNumericLiteralComputedPropertyName[Yield, Await]:[AssignmentExpression[+In, ?Yield, ?Await]]CoverInitializedName[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]Initializer[In, Yield, Await]:=AssignmentExpression[?In, ?Yield, ?Await]Note 2

MethodDefinition is defined in15.4.

Note 3

In certain contexts,ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. TheCoverInitializedName production is necessary to fully cover these secondary grammars. However, use of this production results in an early Syntax Error in normal contexts where an actualObjectLiteral is expected.

13.2.6.1 Static Semantics: Early Errors

PropertyDefinition:MethodDefinition

In addition to describing an actual object initializer theObjectLiteral productions are also used as a cover grammar forObjectAssignmentPattern and may be recognized as part of aCoverParenthesizedExpressionAndArrowParameterList. WhenObjectLiteral appears in a context whereObjectAssignmentPattern is required the following Early Error rules arenot applied. In addition, they are not applied when initially parsing aCoverParenthesizedExpressionAndArrowParameterList orCoverCallExpressionAndAsyncArrowHead.

PropertyDefinition:CoverInitializedName
  • Always throw a Syntax Error if code matches this production.
Note

This production exists so thatObjectLiteral can serve as a cover grammar forObjectAssignmentPattern. It cannot occur in an actual object initializer.

13.2.6.2 Static Semantics: IsComputedPropertyKey

PropertyName:LiteralPropertyName
  1. Returnfalse.
PropertyName:ComputedPropertyName
  1. Returntrue.

13.2.6.3 Static Semantics: PropertyNameList

PropertyDefinitionList:PropertyDefinition
  1. IfPropName ofPropertyDefinition isempty, return a new emptyList.
  2. Return aList whose sole element isPropName ofPropertyDefinition.
PropertyDefinitionList:PropertyDefinitionList,PropertyDefinition
  1. Letlist bePropertyNameList ofPropertyDefinitionList.
  2. IfPropName ofPropertyDefinition isempty, returnlist.
  3. AppendPropName ofPropertyDefinition to the end oflist.
  4. Returnlist.

13.2.6.4 Runtime Semantics: Evaluation

ObjectLiteral:{}
  1. Return ! OrdinaryObjectCreate(%Object.prototype%).
ObjectLiteral:{PropertyDefinitionList}{PropertyDefinitionList,}
  1. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  2. Perform ?PropertyDefinitionEvaluation ofPropertyDefinitionList with argumentsobj andtrue.
  3. Returnobj.
LiteralPropertyName:IdentifierName
  1. ReturnStringValue ofIdentifierName.
LiteralPropertyName:StringLiteral
  1. Return theSV ofStringLiteral.
LiteralPropertyName:NumericLiteral
  1. Letnbr be theNumericValue ofNumericLiteral.
  2. Return ! ToString(nbr).
ComputedPropertyName:[AssignmentExpression]
  1. LetexprValue be the result of evaluatingAssignmentExpression.
  2. LetpropName be ? GetValue(exprValue).
  3. Return ? ToPropertyKey(propName).

13.2.6.5 Runtime Semantics: PropertyDefinitionEvaluation

With parametersobject andenumerable.

PropertyDefinitionList:PropertyDefinitionList,PropertyDefinition
  1. Perform ?PropertyDefinitionEvaluation ofPropertyDefinitionList with argumentsobject andenumerable.
  2. Return the result of performingPropertyDefinitionEvaluation ofPropertyDefinition with argumentsobject andenumerable.
PropertyDefinition:...AssignmentExpression
  1. LetexprValue be the result of evaluatingAssignmentExpression.
  2. LetfromValue be ? GetValue(exprValue).
  3. LetexcludedNames be a new emptyList.
  4. Return ? CopyDataProperties(object,fromValue,excludedNames).
PropertyDefinition:IdentifierReference
  1. LetpropName beStringValue ofIdentifierReference.
  2. LetexprValue be the result of evaluatingIdentifierReference.
  3. LetpropValue be ? GetValue(exprValue).
  4. Assert:enumerable istrue.
  5. Assert:object is an ordinary, extensible object with no non-configurable properties.
  6. Return ! CreateDataPropertyOrThrow(object,propName,propValue).
PropertyDefinition:PropertyName:AssignmentExpression
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue, then
    1. LetpropValue be ?NamedEvaluation ofAssignmentExpression with argumentpropKey.
  4. Else,
    1. LetexprValueRef be the result of evaluatingAssignmentExpression.
    2. LetpropValue be ? GetValue(exprValueRef).
  5. Assert:enumerable istrue.
  6. Assert:object is an ordinary, extensible object with no non-configurable properties.
  7. Return ! CreateDataPropertyOrThrow(object,propKey,propValue).
Note

An alternative semantics for this production is given inB.3.1.

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}getPropertyName(){FunctionBody}setPropertyName(PropertySetParameterList){FunctionBody}
  1. Return ?MethodDefinitionEvaluation ofMethodDefinition with argumentsobject andenumerable.
GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}
  1. Return ?MethodDefinitionEvaluation ofGeneratorMethod with argumentsobject andenumerable.
AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}
  1. Return ?MethodDefinitionEvaluation ofAsyncGeneratorMethod with argumentsobject andenumerable.
AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}
  1. Return ?MethodDefinitionEvaluation ofAsyncMethod with argumentsobject andenumerable.

13.2.7 Function Defining Expressions

See15.2 forPrimaryExpression:FunctionExpression.

See15.5 forPrimaryExpression:GeneratorExpression.

See15.7 forPrimaryExpression:ClassExpression.

See15.8 forPrimaryExpression:AsyncFunctionExpression.

See15.6 forPrimaryExpression:AsyncGeneratorExpression.

13.2.8 Regular Expression Literals

Syntax

See12.8.5.

13.2.8.1 Static Semantics: Early Errors

PrimaryExpression:RegularExpressionLiteral

13.2.8.2 Static Semantics: IsValidRegularExpressionLiteral (literal )

The abstract operation IsValidRegularExpressionLiteral takes argumentliteral. It determines if its argument is a valid regular expression literal. It performs the following steps when called:

  1. Assert:literal is aRegularExpressionLiteral.
  2. IfFlagText ofliteral contains any code points other thang,i,m,s,u, ory, or if it contains the same code point more than once, returnfalse.
  3. LetpatternText beBodyText ofliteral.
  4. IfFlagText ofliteral containsu, letu betrue; else letu befalse.
  5. Ifu isfalse, then
    1. LetstringValue beCodePointsToString(patternText).
    2. SetpatternText to the sequence of code points resulting from interpreting each of the 16-bit elements ofstringValue as a Unicode BMP code point. UTF-16 decoding is not applied to the elements.
  6. LetparseResult beParsePattern(patternText,u).
  7. IfparseResult is aParse Node, returntrue; else returnfalse.

13.2.8.3 Runtime Semantics: Evaluation

PrimaryExpression:RegularExpressionLiteral
  1. Letpattern be ! CodePointsToString(BodyText ofRegularExpressionLiteral).
  2. Letflags be ! CodePointsToString(FlagText ofRegularExpressionLiteral).
  3. ReturnRegExpCreate(pattern,flags).

13.2.9 Template Literals

Syntax

TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateSubstitutionTemplate[?Yield, ?Await, ?Tagged]SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]

13.2.9.1 Static Semantics: Early Errors

TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateTemplateLiteral[Yield, Await, Tagged]:SubstitutionTemplate[?Yield, ?Await, ?Tagged]SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]

13.2.9.2 Static Semantics: TemplateStrings

With parameterraw.

TemplateLiteral:NoSubstitutionTemplate
  1. Ifraw isfalse, then
    1. Letstring be the TV ofNoSubstitutionTemplate.
  2. Else,
    1. Letstring be the TRV ofNoSubstitutionTemplate.
  3. Return aList whose sole element isstring.
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. Ifraw isfalse, then
    1. Lethead be the TV ofTemplateHead.
  2. Else,
    1. Lethead be the TRV ofTemplateHead.
  3. Lettail beTemplateStrings ofTemplateSpans with argumentraw.
  4. Return aList whose elements arehead followed by the elements oftail.
TemplateSpans:TemplateTail
  1. Ifraw isfalse, then
    1. Lettail be the TV ofTemplateTail.
  2. Else,
    1. Lettail be the TRV ofTemplateTail.
  3. Return aList whose sole element istail.
TemplateSpans:TemplateMiddleListTemplateTail
  1. Letmiddle beTemplateStrings ofTemplateMiddleList with argumentraw.
  2. Ifraw isfalse, then
    1. Lettail be the TV ofTemplateTail.
  3. Else,
    1. Lettail be the TRV ofTemplateTail.
  4. Return aList whose elements are the elements ofmiddle followed bytail.
TemplateMiddleList:TemplateMiddleExpression
  1. Ifraw isfalse, then
    1. Letstring be the TV ofTemplateMiddle.
  2. Else,
    1. Letstring be the TRV ofTemplateMiddle.
  3. Return aList whose sole element isstring.
TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letfront beTemplateStrings ofTemplateMiddleList with argumentraw.
  2. Ifraw isfalse, then
    1. Letlast be the TV ofTemplateMiddle.
  3. Else,
    1. Letlast be the TRV ofTemplateMiddle.
  4. Appendlast as the last element of theListfront.
  5. Returnfront.

13.2.9.3 GetTemplateObject (templateLiteral )

The abstract operation GetTemplateObject takes argumenttemplateLiteral (aParse Node). It performs the following steps when called:

  1. Letrealm bethe current Realm Record.
  2. LettemplateRegistry berealm.[[TemplateMap]].
  3. For each elemente oftemplateRegistry, do
    1. Ife.[[Site]] isthe same Parse Node astemplateLiteral, then
      1. Returne.[[Array]].
  4. LetrawStrings beTemplateStrings oftemplateLiteral with argumenttrue.
  5. LetcookedStrings beTemplateStrings oftemplateLiteral with argumentfalse.
  6. Letcount be the number of elements in theListcookedStrings.
  7. Assert:count ≤ 232 - 1.
  8. Lettemplate be ! ArrayCreate(count).
  9. LetrawObj be ! ArrayCreate(count).
  10. Letindex be 0.
  11. Repeat, whileindex <count,
    1. Letprop be ! ToString(𝔽(index)).
    2. LetcookedValue becookedStrings[index].
    3. Perform ! DefinePropertyOrThrow(template,prop, PropertyDescriptor { [[Value]]:cookedValue, [[Writable]]:false, [[Enumerable]]:true, [[Configurable]]:false }).
    4. LetrawValue be the String valuerawStrings[index].
    5. Perform ! DefinePropertyOrThrow(rawObj,prop, PropertyDescriptor { [[Value]]:rawValue, [[Writable]]:false, [[Enumerable]]:true, [[Configurable]]:false }).
    6. Setindex toindex + 1.
  12. Perform ! SetIntegrityLevel(rawObj,frozen).
  13. Perform ! DefinePropertyOrThrow(template,"raw", PropertyDescriptor { [[Value]]:rawObj, [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }).
  14. Perform ! SetIntegrityLevel(template,frozen).
  15. Append theRecord { [[Site]]:templateLiteral, [[Array]]:template } totemplateRegistry.
  16. Returntemplate.
Note 1

The creation of a template object cannot result in anabrupt completion.

Note 2

EachTemplateLiteral in the program code of arealm is associated with a unique template object that is used in the evaluation of tagged Templates (13.2.9.5). The template objects are frozen and the same template object is used each time a specific tagged Template is evaluated. Whether template objects are created lazily upon first evaluation of theTemplateLiteral or eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript code.

Note 3

Future editions of this specification may define additional non-enumerable properties of template objects.

13.2.9.4 Runtime Semantics: SubstitutionEvaluation

TemplateSpans:TemplateTail
  1. Return a new emptyList.
TemplateSpans:TemplateMiddleListTemplateTail
  1. Return the result ofSubstitutionEvaluation ofTemplateMiddleList.
TemplateMiddleList:TemplateMiddleExpression
  1. LetsubRef be the result of evaluatingExpression.
  2. Letsub be ? GetValue(subRef).
  3. Return aList whose sole element issub.
TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letpreceding be ?SubstitutionEvaluation ofTemplateMiddleList.
  2. LetnextRef be the result of evaluatingExpression.
  3. Letnext be ? GetValue(nextRef).
  4. Appendnext as the last element of theListpreceding.
  5. Returnpreceding.

13.2.9.5 Runtime Semantics: Evaluation

TemplateLiteral:NoSubstitutionTemplate
  1. Return the TV ofNoSubstitutionTemplate as defined in12.8.6.
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. Lethead be the TV ofTemplateHead as defined in12.8.6.
  2. LetsubRef be the result of evaluatingExpression.
  3. Letsub be ? GetValue(subRef).
  4. Letmiddle be ? ToString(sub).
  5. Lettail be the result of evaluatingTemplateSpans.
  6. ReturnIfAbrupt(tail).
  7. Return thestring-concatenation ofhead,middle, andtail.
Note 1

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

TemplateSpans:TemplateTail
  1. Return the TV ofTemplateTail as defined in12.8.6.
TemplateSpans:TemplateMiddleListTemplateTail
  1. Lethead be the result of evaluatingTemplateMiddleList.
  2. ReturnIfAbrupt(head).
  3. Lettail be the TV ofTemplateTail as defined in12.8.6.
  4. Return thestring-concatenation ofhead andtail.
TemplateMiddleList:TemplateMiddleExpression
  1. Lethead be the TV ofTemplateMiddle as defined in12.8.6.
  2. LetsubRef be the result of evaluatingExpression.
  3. Letsub be ? GetValue(subRef).
  4. Letmiddle be ? ToString(sub).
  5. Return thestring-concatenation ofhead andmiddle.
Note 2

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letrest be the result of evaluatingTemplateMiddleList.
  2. ReturnIfAbrupt(rest).
  3. Letmiddle be the TV ofTemplateMiddle as defined in12.8.6.
  4. LetsubRef be the result of evaluatingExpression.
  5. Letsub be ? GetValue(subRef).
  6. Letlast be ? ToString(sub).
  7. Return thestring-concatenation ofrest,middle, andlast.
Note 3

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

13.2.10 The Grouping Operator

13.2.10.1 Static Semantics: Early Errors

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList

13.2.10.2 Runtime Semantics: Evaluation

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. Return the result of evaluatingexpr.
ParenthesizedExpression:(Expression)
  1. Return the result of evaluatingExpression. This may be of typeReference.
Note

This algorithm does not applyGetValue to the result of evaluatingExpression. The principal motivation for this is so that operators such asdelete andtypeof may be applied to parenthesized expressions.

13.3 Left-Hand-Side Expressions

Syntax

MemberExpression[Yield, Await]:PrimaryExpression[?Yield, ?Await]MemberExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]MemberExpression[?Yield, ?Await].IdentifierNameMemberExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]SuperProperty[?Yield, ?Await]MetaPropertynewMemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]SuperProperty[Yield, Await]:super[Expression[+In, ?Yield, ?Await]]super.IdentifierNameMetaProperty:NewTargetImportMetaNewTarget:new.targetImportMeta:import.metaNewExpression[Yield, Await]:MemberExpression[?Yield, ?Await]newNewExpression[?Yield, ?Await]CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]SuperCall[?Yield, ?Await]ImportCall[?Yield, ?Await]CallExpression[?Yield, ?Await]Arguments[?Yield, ?Await]CallExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]CallExpression[?Yield, ?Await].IdentifierNameCallExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]SuperCall[Yield, Await]:superArguments[?Yield, ?Await]ImportCall[Yield, Await]:import(AssignmentExpression[+In, ?Yield, ?Await])Arguments[Yield, Await]:()(ArgumentList[?Yield, ?Await])(ArgumentList[?Yield, ?Await],)ArgumentList[Yield, Await]:AssignmentExpression[+In, ?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],...AssignmentExpression[+In, ?Yield, ?Await]OptionalExpression[Yield, Await]:MemberExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalChain[Yield, Await]:?.Arguments[?Yield, ?Await]?.[Expression[+In, ?Yield, ?Await]]?.IdentifierName?.TemplateLiteral[?Yield, ?Await, +Tagged]OptionalChain[?Yield, ?Await]Arguments[?Yield, ?Await]OptionalChain[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]OptionalChain[?Yield, ?Await].IdentifierNameOptionalChain[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]LeftHandSideExpression[Yield, Await]:NewExpression[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalExpression[?Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
CallExpression:CoverCallExpressionAndAsyncArrowHead
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

13.3.1 Static Semantics

13.3.1.1 Static Semantics: Early Errors

OptionalChain:?.TemplateLiteralOptionalChainTemplateLiteral
  • It is a Syntax Error if any code matches this production.
Note

This production exists in order to prevent automatic semicolon insertion rules (12.9) from being applied to the following code:

a?.b`c`

so that it would be interpreted as two valid statements. The purpose is to maintain consistency with similar code without optional chaining:

a.b`c`

which is a valid statement and where automatic semicolon insertion does not apply.

ImportMeta:import.meta

13.3.1.2 Static Semantics: CoveredCallExpression

CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Return theCallMemberExpression that iscovered byCoverCallExpressionAndAsyncArrowHead.

13.3.2 Property Accessors

Note

Properties are accessed by name, using either the dot notation:

or the bracket notation:

The dot notation is explained by the following syntactic conversion:

is identical in its behaviour to

MemberExpression[ <identifier-name-string>]

and similarly

is identical in its behaviour to

CallExpression[ <identifier-name-string>]

where <identifier-name-string> is the result of evaluatingStringValue ofIdentifierName.

13.3.2.1 Runtime Semantics: Evaluation

MemberExpression:MemberExpression[Expression]
  1. LetbaseReference be the result of evaluatingMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If the code matched by thisMemberExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
MemberExpression:MemberExpression.IdentifierName
  1. LetbaseReference be the result of evaluatingMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If the code matched by thisMemberExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).
CallExpression:CallExpression[Expression]
  1. LetbaseReference be the result of evaluatingCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If the code matched by thisCallExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
CallExpression:CallExpression.IdentifierName
  1. LetbaseReference be the result of evaluatingCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If the code matched by thisCallExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).

13.3.3 EvaluatePropertyAccessWithExpressionKey (baseValue,expression,strict )

The abstract operation EvaluatePropertyAccessWithExpressionKey takes argumentsbaseValue (anECMAScript language value),expression (aParse Node), andstrict (a Boolean). It performs the following steps when called:

  1. LetpropertyNameReference be the result of evaluatingexpression.
  2. LetpropertyNameValue be ? GetValue(propertyNameReference).
  3. Letbv be ? RequireObjectCoercible(baseValue).
  4. LetpropertyKey be ? ToPropertyKey(propertyNameValue).
  5. Return theReference Record { [[Base]]:bv, [[ReferencedName]]:propertyKey, [[Strict]]:strict, [[ThisValue]]:empty }.

13.3.4 EvaluatePropertyAccessWithIdentifierKey (baseValue,identifierName,strict )

The abstract operation EvaluatePropertyAccessWithIdentifierKey takes argumentsbaseValue (anECMAScript language value),identifierName (aParse Node), andstrict (a Boolean). It performs the following steps when called:

  1. Assert:identifierName is anIdentifierName.
  2. Letbv be ? RequireObjectCoercible(baseValue).
  3. LetpropertyNameString beStringValue ofidentifierName.
  4. Return theReference Record { [[Base]]:bv, [[ReferencedName]]:propertyNameString, [[Strict]]:strict, [[ThisValue]]:empty }.

13.3.5 Thenew Operator

13.3.5.1 Runtime Semantics: Evaluation

NewExpression:newNewExpression
  1. Return ? EvaluateNew(NewExpression,empty).
MemberExpression:newMemberExpressionArguments
  1. Return ? EvaluateNew(MemberExpression,Arguments).

13.3.5.1.1 EvaluateNew (constructExpr,arguments )

The abstract operation EvaluateNew takes argumentsconstructExpr andarguments. It performs the following steps when called:

  1. Assert:constructExpr is either aNewExpression or aMemberExpression.
  2. Assert:arguments is eitherempty or anArguments.
  3. Letref be the result of evaluatingconstructExpr.
  4. Letconstructor be ? GetValue(ref).
  5. Ifarguments isempty, letargList be a new emptyList.
  6. Else,
    1. LetargList be ?ArgumentListEvaluation ofarguments.
  7. IfIsConstructor(constructor) isfalse, throw aTypeError exception.
  8. Return ? Construct(constructor,argList).

13.3.6 Function Calls

13.3.6.1 Runtime Semantics: Evaluation

CallExpression:CoverCallExpressionAndAsyncArrowHead
  1. Letexpr beCoveredCallExpression ofCoverCallExpressionAndAsyncArrowHead.
  2. LetmemberExpr be theMemberExpression ofexpr.
  3. Letarguments be theArguments ofexpr.
  4. Letref be the result of evaluatingmemberExpr.
  5. Letfunc be ? GetValue(ref).
  6. Ifref is aReference Record,IsPropertyReference(ref) isfalse, andref.[[ReferencedName]] is"eval", then
    1. IfSameValue(func,%eval%) istrue, then
      1. LetargList be ?ArgumentListEvaluation ofarguments.
      2. IfargList has no elements, returnundefined.
      3. LetevalArg be the first element ofargList.
      4. If the source code matching thisCallExpression isstrict mode code, letstrictCaller betrue. Otherwise letstrictCaller befalse.
      5. LetevalRealm bethe current Realm Record.
      6. Return ? PerformEval(evalArg,evalRealm,strictCaller,true).
  7. LetthisCall be thisCallExpression.
  8. LettailCall beIsInTailPosition(thisCall).
  9. Return ? EvaluateCall(func,ref,arguments,tailCall).

ACallExpression evaluation that executes step6.a.vi is adirect eval.

CallExpression:CallExpressionArguments
  1. Letref be the result of evaluatingCallExpression.
  2. Letfunc be ? GetValue(ref).
  3. LetthisCall be thisCallExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(func,ref,Arguments,tailCall).

13.3.6.2 EvaluateCall (func,ref,arguments,tailPosition )

The abstract operation EvaluateCall takes argumentsfunc (anECMAScript language value),ref (anECMAScript language value or aReference Record),arguments (aParse Node), andtailPosition (a Boolean). It performs the following steps when called:

  1. Ifref is aReference Record, then
    1. IfIsPropertyReference(ref) istrue, then
      1. LetthisValue beGetThisValue(ref).
    2. Else,
      1. LetrefEnv beref.[[Base]].
      2. Assert:refEnv is anEnvironment Record.
      3. LetthisValue berefEnv.WithBaseObject().
  2. Else,
    1. LetthisValue beundefined.
  3. LetargList be ?ArgumentListEvaluation ofarguments.
  4. IfType(func) is not Object, throw aTypeError exception.
  5. IfIsCallable(func) isfalse, throw aTypeError exception.
  6. IftailPosition istrue, performPrepareForTailCall().
  7. Letresult beCall(func,thisValue,argList).
  8. Assert: IftailPosition istrue, the above call will not return here, but instead evaluation will continue as if the following return has already occurred.
  9. Assert: Ifresult is not anabrupt completion, thenType(result) is anECMAScript language type.
  10. Returnresult.

13.3.7 Thesuper Keyword

13.3.7.1 Runtime Semantics: Evaluation

SuperProperty:super[Expression]
  1. Letenv beGetThisEnvironment().
  2. LetactualThis be ?env.GetThisBinding().
  3. LetpropertyNameReference be the result of evaluatingExpression.
  4. LetpropertyNameValue be ? GetValue(propertyNameReference).
  5. LetpropertyKey be ? ToPropertyKey(propertyNameValue).
  6. If the code matched by thisSuperProperty isstrict mode code, letstrict betrue; else letstrict befalse.
  7. Return ? MakeSuperPropertyReference(actualThis,propertyKey,strict).
SuperProperty:super.IdentifierName
  1. Letenv beGetThisEnvironment().
  2. LetactualThis be ?env.GetThisBinding().
  3. LetpropertyKey beStringValue ofIdentifierName.
  4. If the code matched by thisSuperProperty isstrict mode code, letstrict betrue; else letstrict befalse.
  5. Return ? MakeSuperPropertyReference(actualThis,propertyKey,strict).
SuperCall:superArguments
  1. LetnewTarget beGetNewTarget().
  2. Assert:Type(newTarget) is Object.
  3. Letfunc be ! GetSuperConstructor().
  4. LetargList be ?ArgumentListEvaluation ofArguments.
  5. IfIsConstructor(func) isfalse, throw aTypeError exception.
  6. Letresult be ? Construct(func,argList,newTarget).
  7. LetthisER beGetThisEnvironment().
  8. Return ?thisER.BindThisValue(result).

13.3.7.2 GetSuperConstructor ( )

The abstract operation GetSuperConstructor takes no arguments. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Assert:envRec is afunction Environment Record.
  3. LetactiveFunction beenvRec.[[FunctionObject]].
  4. Assert:activeFunction is an ECMAScriptfunction object.
  5. LetsuperConstructor be !activeFunction.[[GetPrototypeOf]]().
  6. ReturnsuperConstructor.

13.3.7.3 MakeSuperPropertyReference (actualThis,propertyKey,strict )

The abstract operation MakeSuperPropertyReference takes argumentsactualThis,propertyKey, andstrict. It performs the following steps when called:

  1. Letenv beGetThisEnvironment().
  2. Assert:env.HasSuperBinding() istrue.
  3. LetbaseValue be ?env.GetSuperBase().
  4. Letbv be ? RequireObjectCoercible(baseValue).
  5. Return theReference Record { [[Base]]:bv, [[ReferencedName]]:propertyKey, [[Strict]]:strict, [[ThisValue]]:actualThis }.
  6. NOTE: This returns aSuper Reference Record.

13.3.8 Argument Lists

Note

The evaluation of an argument list produces aList of values.

13.3.8.1 Runtime Semantics: ArgumentListEvaluation

Arguments:()
  1. Return a new emptyList.
ArgumentList:AssignmentExpression
  1. Letref be the result of evaluatingAssignmentExpression.
  2. Letarg be ? GetValue(ref).
  3. Return aList whose sole element isarg.
ArgumentList:...AssignmentExpression
  1. Letlist be a new emptyList.
  2. LetspreadRef be the result of evaluatingAssignmentExpression.
  3. LetspreadObj be ? GetValue(spreadRef).
  4. LetiteratorRecord be ? GetIterator(spreadObj).
  5. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returnlist.
    3. LetnextArg be ? IteratorValue(next).
    4. AppendnextArg as the last element oflist.
ArgumentList:ArgumentList,AssignmentExpression
  1. LetprecedingArgs be ?ArgumentListEvaluation ofArgumentList.
  2. Letref be the result of evaluatingAssignmentExpression.
  3. Letarg be ? GetValue(ref).
  4. Appendarg to the end ofprecedingArgs.
  5. ReturnprecedingArgs.
ArgumentList:ArgumentList,...AssignmentExpression
  1. LetprecedingArgs be ?ArgumentListEvaluation ofArgumentList.
  2. LetspreadRef be the result of evaluatingAssignmentExpression.
  3. LetiteratorRecord be ? GetIterator(?GetValue(spreadRef)).
  4. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returnprecedingArgs.
    3. LetnextArg be ? IteratorValue(next).
    4. AppendnextArg as the last element ofprecedingArgs.
TemplateLiteral:NoSubstitutionTemplate
  1. LettemplateLiteral be thisTemplateLiteral.
  2. LetsiteObj beGetTemplateObject(templateLiteral).
  3. Return aList whose sole element issiteObj.
TemplateLiteral:SubstitutionTemplate
  1. LettemplateLiteral be thisTemplateLiteral.
  2. LetsiteObj beGetTemplateObject(templateLiteral).
  3. Letremaining be ?ArgumentListEvaluation ofSubstitutionTemplate.
  4. Return aList whose first element issiteObj and whose subsequent elements are the elements ofremaining.
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. LetfirstSubRef be the result of evaluatingExpression.
  2. LetfirstSub be ? GetValue(firstSubRef).
  3. LetrestSub be ?SubstitutionEvaluation ofTemplateSpans.
  4. Assert:restSub is aList.
  5. Return aList whose first element isfirstSub and whose subsequent elements are the elements ofrestSub.restSub may contain no elements.

13.3.9 Optional Chains

Note
An optional chain is a chain of one or more property accesses and function calls, the first of which begins with the token?..

13.3.9.1 Runtime Semantics: Evaluation

OptionalExpression:MemberExpressionOptionalChain
  1. LetbaseReference be the result of evaluatingMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue isundefined ornull, then
    1. Returnundefined.
  4. Return the result of performingChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.
OptionalExpression:CallExpressionOptionalChain
  1. LetbaseReference be the result of evaluatingCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue isundefined ornull, then
    1. Returnundefined.
  4. Return the result of performingChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.
OptionalExpression:OptionalExpressionOptionalChain
  1. LetbaseReference be the result of evaluatingOptionalExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue isundefined ornull, then
    1. Returnundefined.
  4. Return the result of performingChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.

13.3.9.2 Runtime Semantics: ChainEvaluation

With parametersbaseValue andbaseReference.

OptionalChain:?.Arguments
  1. LetthisChain be thisOptionalChain.
  2. LettailCall beIsInTailPosition(thisChain).
  3. Return ? EvaluateCall(baseValue,baseReference,Arguments,tailCall).
OptionalChain:?.[Expression]
  1. If the code matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  2. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
OptionalChain:?.IdentifierName
  1. If the code matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  2. Return ? EvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).
OptionalChain:OptionalChainArguments
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ?ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. LetthisChain be thisOptionalChain.
  5. LettailCall beIsInTailPosition(thisChain).
  6. Return ? EvaluateCall(newValue,newReference,Arguments,tailCall).
OptionalChain:OptionalChain[Expression]
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ?ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. If the code matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  5. Return ? EvaluatePropertyAccessWithExpressionKey(newValue,Expression,strict).
OptionalChain:OptionalChain.IdentifierName
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ?ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. If the code matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  5. Return ? EvaluatePropertyAccessWithIdentifierKey(newValue,IdentifierName,strict).

13.3.10 Import Calls

13.3.10.1 Runtime Semantics: Evaluation

ImportCall:import(AssignmentExpression)
  1. LetreferencingScriptOrModule be ! GetActiveScriptOrModule().
  2. LetargRef be the result of evaluatingAssignmentExpression.
  3. Letspecifier be ? GetValue(argRef).
  4. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  5. LetspecifierString beToString(specifier).
  6. IfAbruptRejectPromise(specifierString,promiseCapability).
  7. Perform ! HostImportModuleDynamically(referencingScriptOrModule,specifierString,promiseCapability).
  8. ReturnpromiseCapability.[[Promise]].

13.3.11 Tagged Templates

Note

A tagged template is a function call where the arguments of the call are derived from aTemplateLiteral (13.2.9). The actual arguments include a template object (13.2.9.3) and the values produced by evaluating the expressions embedded within theTemplateLiteral.

13.3.11.1 Runtime Semantics: Evaluation

MemberExpression:MemberExpressionTemplateLiteral
  1. LettagRef be the result of evaluatingMemberExpression.
  2. LettagFunc be ? GetValue(tagRef).
  3. LetthisCall be thisMemberExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(tagFunc,tagRef,TemplateLiteral,tailCall).
CallExpression:CallExpressionTemplateLiteral
  1. LettagRef be the result of evaluatingCallExpression.
  2. LettagFunc be ? GetValue(tagRef).
  3. LetthisCall be thisCallExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(tagFunc,tagRef,TemplateLiteral,tailCall).

13.3.12 Meta Properties

13.3.12.1 Runtime Semantics: Evaluation

NewTarget:new.target
  1. ReturnGetNewTarget().
ImportMeta:import.meta
  1. Letmodule be ! GetActiveScriptOrModule().
  2. Assert:module is aSource Text Module Record.
  3. LetimportMeta bemodule.[[ImportMeta]].
  4. IfimportMeta isempty, then
    1. SetimportMeta to ! OrdinaryObjectCreate(null).
    2. LetimportMetaValues be ! HostGetImportMetaProperties(module).
    3. For eachRecord { [[Key]], [[Value]] }p ofimportMetaValues, do
      1. Perform ! CreateDataPropertyOrThrow(importMeta,p.[[Key]],p.[[Value]]).
    4. Perform ! HostFinalizeImportMeta(importMeta,module).
    5. Setmodule.[[ImportMeta]] toimportMeta.
    6. ReturnimportMeta.
  5. Else,
    1. Assert:Type(importMeta) is Object.
    2. ReturnimportMeta.

13.3.12.1.1 HostGetImportMetaProperties (moduleRecord )

Thehost-defined abstract operation HostGetImportMetaProperties takes argumentmoduleRecord (aModule Record). It allows hosts to provide property keys and values for the object returned fromimport.meta.

The implementation of HostGetImportMetaProperties must conform to the following requirements:

  • It must return aList, whose values are all Records with two fields, [[Key]] and [[Value]].
  • Each suchRecord's [[Key]] field must be a property key, i.e.,IsPropertyKey must returntrue when applied to it.
  • Each suchRecord's [[Value]] field must be an ECMAScript value.
  • It must always complete normally (i.e., not return anabrupt completion).

The default implementation of HostGetImportMetaProperties is to return a new emptyList.

13.3.12.1.2 HostFinalizeImportMeta (importMeta,moduleRecord )

Thehost-defined abstract operation HostFinalizeImportMeta takes argumentsimportMeta (an Object) andmoduleRecord (aModule Record). It allows hosts to perform any extraordinary operations to prepare the object returned fromimport.meta.

Most hosts will be able to simply defineHostGetImportMetaProperties, and leave HostFinalizeImportMeta with its default behaviour. However, HostFinalizeImportMeta provides an "escape hatch" for hosts which need to directly manipulate the object before it is exposed to ECMAScript code.

The implementation of HostFinalizeImportMeta must conform to the following requirements:

The default implementation of HostFinalizeImportMeta is to returnNormalCompletion(empty).

13.4 Update Expressions

Syntax

UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--++UnaryExpression[?Yield, ?Await]--UnaryExpression[?Yield, ?Await]

13.4.1 Static Semantics: Early Errors

UpdateExpression:LeftHandSideExpression++LeftHandSideExpression--UpdateExpression:++UnaryExpression--UnaryExpression

13.4.2 Postfix Increment Operator

13.4.2.1 Runtime Semantics: Evaluation

UpdateExpression:LeftHandSideExpression++
  1. Letlhs be the result of evaluatingLeftHandSideExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(lhs)).
  3. LetnewValue be ! Type(oldValue)::add(oldValue,Type(oldValue)::unit).
  4. Perform ? PutValue(lhs,newValue).
  5. ReturnoldValue.

13.4.3 Postfix Decrement Operator

13.4.3.1 Runtime Semantics: Evaluation

UpdateExpression:LeftHandSideExpression--
  1. Letlhs be the result of evaluatingLeftHandSideExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(lhs)).
  3. LetnewValue be ! Type(oldValue)::subtract(oldValue,Type(oldValue)::unit).
  4. Perform ? PutValue(lhs,newValue).
  5. ReturnoldValue.

13.4.4 Prefix Increment Operator

13.4.4.1 Runtime Semantics: Evaluation

UpdateExpression:++UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. LetnewValue be ! Type(oldValue)::add(oldValue,Type(oldValue)::unit).
  4. Perform ? PutValue(expr,newValue).
  5. ReturnnewValue.

13.4.5 Prefix Decrement Operator

13.4.5.1 Runtime Semantics: Evaluation

UpdateExpression:--UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. LetnewValue be ! Type(oldValue)::subtract(oldValue,Type(oldValue)::unit).
  4. Perform ? PutValue(expr,newValue).
  5. ReturnnewValue.

13.5 Unary Operators

Syntax

UnaryExpression[Yield, Await]:UpdateExpression[?Yield, ?Await]deleteUnaryExpression[?Yield, ?Await]voidUnaryExpression[?Yield, ?Await]typeofUnaryExpression[?Yield, ?Await]+UnaryExpression[?Yield, ?Await]-UnaryExpression[?Yield, ?Await]~UnaryExpression[?Yield, ?Await]!UnaryExpression[?Yield, ?Await][+Await]AwaitExpression[?Yield]

13.5.1 Thedelete Operator

13.5.1.1 Static Semantics: Early Errors

UnaryExpression:deleteUnaryExpressionNote

The last rule means that expressions such asdelete (((foo))) produce early errors because of recursive application of the first rule.

13.5.1.2 Runtime Semantics: Evaluation

UnaryExpression:deleteUnaryExpression
  1. Letref be the result of evaluatingUnaryExpression.
  2. ReturnIfAbrupt(ref).
  3. Ifref is not aReference Record, returntrue.
  4. IfIsUnresolvableReference(ref) istrue, then
    1. Assert:ref.[[Strict]] isfalse.
    2. Returntrue.
  5. IfIsPropertyReference(ref) istrue, then
    1. IfIsSuperReference(ref) istrue, throw aReferenceError exception.
    2. LetbaseObj be ! ToObject(ref.[[Base]]).
    3. LetdeleteStatus be ?baseObj.[[Delete]](ref.[[ReferencedName]]).
    4. IfdeleteStatus isfalse andref.[[Strict]] istrue, throw aTypeError exception.
    5. ReturndeleteStatus.
  6. Else,
    1. Letbase beref.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ?base.DeleteBinding(ref.[[ReferencedName]]).
Note 1

When adelete operator occurs withinstrict mode code, aSyntaxError exception is thrown if itsUnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if adelete operator occurs withinstrict mode code and the property to be deleted has the attribute { [[Configurable]]:false } (or otherwise cannot be deleted), aTypeError exception is thrown.

Note 2

The object that may be created in step5.b is not accessible outside of the above abstract operation and theordinary object [[Delete]] internal method. An implementation might choose to avoid the actual creation of that object.

13.5.2 Thevoid Operator

13.5.2.1 Runtime Semantics: Evaluation

UnaryExpression:voidUnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. Perform ? GetValue(expr).
  3. Returnundefined.
Note

GetValue must be called even though its value is not used because it may have observable side-effects.

13.5.3 Thetypeof Operator

13.5.3.1 Runtime Semantics: Evaluation

UnaryExpression:typeofUnaryExpression
  1. Letval be the result of evaluatingUnaryExpression.
  2. Ifval is aReference Record, then
    1. IfIsUnresolvableReference(val) istrue, return"undefined".
  3. Setval to ? GetValue(val).
  4. Return a String according toTable 37.
Table 37: typeof Operator Results
Type ofval Result
Undefined"undefined"
Null"object"
Boolean"boolean"
Number"number"
String"string"
Symbol"symbol"
BigInt"bigint"
Object (does not implement [[Call]])"object"
Object (implements [[Call]])"function"
Note

An additional entry related to [[IsHTMLDDA]] Internal Slot can be found inB.3.7.3.

13.5.4 Unary+ Operator

Note

The unary + operator converts its operand to Number type.

13.5.4.1 Runtime Semantics: Evaluation

UnaryExpression:+UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. Return ? ToNumber(?GetValue(expr)).

13.5.5 Unary- Operator

Note

The unary- operator converts its operand to Number type and then negates it. Negating+0𝔽 produces-0𝔽, and negating-0𝔽 produces+0𝔽.

13.5.5.1 Runtime Semantics: Evaluation

UnaryExpression:-UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. LetT beType(oldValue).
  4. Return !T::unaryMinus(oldValue).

13.5.6 Bitwise NOT Operator (~ )

13.5.6.1 Runtime Semantics: Evaluation

UnaryExpression:~UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. LetT beType(oldValue).
  4. Return !T::bitwiseNOT(oldValue).

13.5.7 Logical NOT Operator (! )

13.5.7.1 Runtime Semantics: Evaluation

UnaryExpression:!UnaryExpression
  1. Letexpr be the result of evaluatingUnaryExpression.
  2. LetoldValue be ! ToBoolean(?GetValue(expr)).
  3. IfoldValue istrue, returnfalse.
  4. Returntrue.

13.6 Exponentiation Operator

Syntax

ExponentiationExpression[Yield, Await]:UnaryExpression[?Yield, ?Await]UpdateExpression[?Yield, ?Await]**ExponentiationExpression[?Yield, ?Await]

13.6.1 Runtime Semantics: Evaluation

ExponentiationExpression:UpdateExpression**ExponentiationExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(UpdateExpression,**,ExponentiationExpression).

13.7 Multiplicative Operators

Syntax

MultiplicativeExpression[Yield, Await]:ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[?Yield, ?Await]MultiplicativeOperatorExponentiationExpression[?Yield, ?Await]MultiplicativeOperator:one of*/%Note
  • The* operator performs multiplication, producing the product of its operands.
  • The/ operator performs division, producing the quotient of its operands.
  • The% operator yields the remainder of its operands from an implied division.

13.7.1 Runtime Semantics: Evaluation

MultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpression
  1. LetopText be thesource text matched byMultiplicativeOperator.
  2. Return ? EvaluateStringOrNumericBinaryExpression(MultiplicativeExpression,opText,ExponentiationExpression).

13.8 Additive Operators

Syntax

AdditiveExpression[Yield, Await]:MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]+MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]-MultiplicativeExpression[?Yield, ?Await]

13.8.1 The Addition Operator (+ )

Note

The addition operator either performs string concatenation or numeric addition.

13.8.1.1 Runtime Semantics: Evaluation

AdditiveExpression:AdditiveExpression+MultiplicativeExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression,+,MultiplicativeExpression).

13.8.2 The Subtraction Operator (- )

Note

The- operator performs subtraction, producing the difference of its operands.

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression:AdditiveExpression-MultiplicativeExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression,-,MultiplicativeExpression).

13.9 Bitwise Shift Operators

Syntax

ShiftExpression[Yield, Await]:AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]<<AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>>AdditiveExpression[?Yield, ?Await]

13.9.1 The Left Shift Operator (<< )

Note

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

13.9.1.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression<<AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,<<,AdditiveExpression).

13.9.2 The Signed Right Shift Operator (>> )

Note

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

13.9.2.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression>>AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,>>,AdditiveExpression).

13.9.3 The Unsigned Right Shift Operator (>>> )

Note

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

13.9.3.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression>>>AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,>>>,AdditiveExpression).

13.10 Relational Operators

Note 1

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

RelationalExpression[In, Yield, Await]:ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]instanceofShiftExpression[?Yield, ?Await][+In]RelationalExpression[+In, ?Yield, ?Await]inShiftExpression[?Yield, ?Await]Note 2

The[In] grammar parameter is needed to avoid confusing thein operator in a relational expression with thein operator in afor statement.

13.10.1 Runtime Semantics: Evaluation

RelationalExpression:RelationalExpression<ShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingAbstract Relational Comparisonlval <rval.
  6. ReturnIfAbrupt(r).
  7. Ifr isundefined, returnfalse. Otherwise, returnr.
RelationalExpression:RelationalExpression>ShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingAbstract Relational Comparisonrval <lval withLeftFirst equal tofalse.
  6. ReturnIfAbrupt(r).
  7. Ifr isundefined, returnfalse. Otherwise, returnr.
RelationalExpression:RelationalExpression<=ShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingAbstract Relational Comparisonrval <lval withLeftFirst equal tofalse.
  6. ReturnIfAbrupt(r).
  7. Ifr istrue orundefined, returnfalse. Otherwise, returntrue.
RelationalExpression:RelationalExpression>=ShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingAbstract Relational Comparisonlval <rval.
  6. ReturnIfAbrupt(r).
  7. Ifr istrue orundefined, returnfalse. Otherwise, returntrue.
RelationalExpression:RelationalExpressioninstanceofShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Return ? InstanceofOperator(lval,rval).
RelationalExpression:RelationalExpressioninShiftExpression
  1. Letlref be the result of evaluatingRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. IfType(rval) is not Object, throw aTypeError exception.
  6. Return ? HasProperty(rval, ? ToPropertyKey(lval)).

13.10.2 InstanceofOperator (V,target )

The abstract operation InstanceofOperator takes argumentsV (anECMAScript language value) andtarget (anECMAScript language value). It implements the generic algorithm for determining ifV is an instance oftarget either by consultingtarget's@@hasInstance method or, if absent, determining whether the value oftarget's"prototype" property is present inV's prototype chain. It performs the following steps when called:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. LetinstOfHandler be ? GetMethod(target,@@hasInstance).
  3. IfinstOfHandler is notundefined, then
    1. Return ! ToBoolean(?Call(instOfHandler,target, «V »)).
  4. IfIsCallable(target) isfalse, throw aTypeError exception.
  5. Return ? OrdinaryHasInstance(target,V).
Note

Steps4 and5 provide compatibility with previous editions of ECMAScript that did not use a@@hasInstance method to define theinstanceof operator semantics. If an object does not define or inherit@@hasInstance it uses the defaultinstanceof semantics.

13.11 Equality Operators

Note

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

EqualityExpression[In, Yield, Await]:RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]==RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!=RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]===RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!==RelationalExpression[?In, ?Yield, ?Await]

13.11.1 Runtime Semantics: Evaluation

EqualityExpression:EqualityExpression==RelationalExpression
  1. Letlref be the result of evaluatingEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Return the result of performingAbstract Equality Comparisonrval ==lval.
EqualityExpression:EqualityExpression!=RelationalExpression
  1. Letlref be the result of evaluatingEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingAbstract Equality Comparisonrval ==lval.
  6. ReturnIfAbrupt(r).
  7. Ifr istrue, returnfalse. Otherwise, returntrue.
EqualityExpression:EqualityExpression===RelationalExpression
  1. Letlref be the result of evaluatingEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Return the result of performingStrict Equality Comparisonrval ===lval.
EqualityExpression:EqualityExpression!==RelationalExpression
  1. Letlref be the result of evaluatingEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be the result of performingStrict Equality Comparisonrval ===lval.
  6. Assert:r is a normal completion.
  7. Ifr.[[Value]] istrue, returnfalse. Otherwise, returntrue.
Note 1

Given the above definition of equality:

  • String comparison can be forced by:`${a}` == `${b}`.
  • Numeric comparison can be forced by:+a == +b.
  • Boolean comparison can be forced by:!a == !b.
Note 2

The equality operators maintain the following invariants:

  • A != B is equivalent to!(A == B).
  • A == B is equivalent toB == A, except in the order of evaluation ofA andB.
Note 3

The equality operator is not always transitive. For example, there might be two distinct String objects, each representing the same String value; each String object would be considered equal to the String value by the== operator, but the two String objects would not be equal to each other. For example:

  • new String("a") == "a" and"a" == new String("a") are bothtrue.
  • new String("a") == new String("a") isfalse.
Note 4

Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized form.

13.12 Binary Bitwise Operators

Syntax

BitwiseANDExpression[In, Yield, Await]:EqualityExpression[?In, ?Yield, ?Await]BitwiseANDExpression[?In, ?Yield, ?Await]&EqualityExpression[?In, ?Yield, ?Await]BitwiseXORExpression[In, Yield, Await]:BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseXORExpression[?In, ?Yield, ?Await]^BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseORExpression[In, Yield, Await]:BitwiseXORExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]|BitwiseXORExpression[?In, ?Yield, ?Await]

13.12.1 Runtime Semantics: Evaluation

BitwiseANDExpression:BitwiseANDExpression&EqualityExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseANDExpression,&,EqualityExpression).
BitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseXORExpression,^,BitwiseANDExpression).
BitwiseORExpression:BitwiseORExpression|BitwiseXORExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseORExpression,|,BitwiseXORExpression).

13.13 Binary Logical Operators

Syntax

LogicalANDExpression[In, Yield, Await]:BitwiseORExpression[?In, ?Yield, ?Await]LogicalANDExpression[?In, ?Yield, ?Await]&&BitwiseORExpression[?In, ?Yield, ?Await]LogicalORExpression[In, Yield, Await]:LogicalANDExpression[?In, ?Yield, ?Await]LogicalORExpression[?In, ?Yield, ?Await]||LogicalANDExpression[?In, ?Yield, ?Await]CoalesceExpression[In, Yield, Await]:CoalesceExpressionHead[?In, ?Yield, ?Await]??BitwiseORExpression[?In, ?Yield, ?Await]CoalesceExpressionHead[In, Yield, Await]:CoalesceExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]ShortCircuitExpression[In, Yield, Await]:LogicalORExpression[?In, ?Yield, ?Await]CoalesceExpression[?In, ?Yield, ?Await]Note

The value produced by a&& or|| operator is not necessarily of type Boolean. The value produced will always be the value of one of the two operand expressions.

13.13.1 Runtime Semantics: Evaluation

LogicalANDExpression:LogicalANDExpression&&BitwiseORExpression
  1. Letlref be the result of evaluatingLogicalANDExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool be ! ToBoolean(lval).
  4. Iflbool isfalse, returnlval.
  5. Letrref be the result of evaluatingBitwiseORExpression.
  6. Return ? GetValue(rref).
LogicalORExpression:LogicalORExpression||LogicalANDExpression
  1. Letlref be the result of evaluatingLogicalORExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool be ! ToBoolean(lval).
  4. Iflbool istrue, returnlval.
  5. Letrref be the result of evaluatingLogicalANDExpression.
  6. Return ? GetValue(rref).
CoalesceExpression:CoalesceExpressionHead??BitwiseORExpression
  1. Letlref be the result of evaluatingCoalesceExpressionHead.
  2. Letlval be ? GetValue(lref).
  3. Iflval isundefined ornull, then
    1. Letrref be the result of evaluatingBitwiseORExpression.
    2. Return ? GetValue(rref).
  4. Otherwise, returnlval.

13.14 Conditional Operator (? : )

Syntax

ConditionalExpression[In, Yield, Await]:ShortCircuitExpression[?In, ?Yield, ?Await]ShortCircuitExpression[?In, ?Yield, ?Await]?AssignmentExpression[+In, ?Yield, ?Await]:AssignmentExpression[?In, ?Yield, ?Await]Note

The grammar for aConditionalExpression in ECMAScript is slightly different from that in C and Java, which each allow the second subexpression to be anExpression but restrict the third expression to be aConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

13.14.1 Runtime Semantics: Evaluation

ConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpression
  1. Letlref be the result of evaluatingShortCircuitExpression.
  2. Letlval be ! ToBoolean(?GetValue(lref)).
  3. Iflval istrue, then
    1. LettrueRef be the result of evaluating the firstAssignmentExpression.
    2. Return ? GetValue(trueRef).
  4. Else,
    1. LetfalseRef be the result of evaluating the secondAssignmentExpression.
    2. Return ? GetValue(falseRef).

13.15 Assignment Operators

Syntax

AssignmentExpression[In, Yield, Await]:ConditionalExpression[?In, ?Yield, ?Await][+Yield]YieldExpression[?In, ?Await]ArrowFunction[?In, ?Yield, ?Await]AsyncArrowFunction[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]AssignmentOperatorAssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]&&=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]||=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]??=AssignmentExpression[?In, ?Yield, ?Await]AssignmentOperator:one of*=/=%=+=-=<<=>>=>>>=&=^=|=**=

13.15.1 Static Semantics: Early Errors

AssignmentExpression:LeftHandSideExpression=AssignmentExpression

IfLeftHandSideExpression is anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

AssignmentExpression:LeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpression

13.15.2 Runtime Semantics: Evaluation

AssignmentExpression:LeftHandSideExpression=AssignmentExpression
  1. IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be the result of evaluatingLeftHandSideExpression.
    2. ReturnIfAbrupt(lref).
    3. IfIsAnonymousFunctionDefinition(AssignmentExpression) andIsIdentifierRef ofLeftHandSideExpression are bothtrue, then
      1. Letrval beNamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
    4. Else,
      1. Letrref be the result of evaluatingAssignmentExpression.
      2. Letrval be ? GetValue(rref).
    5. Perform ? PutValue(lref,rval).
    6. Returnrval.
  2. LetassignmentPattern be theAssignmentPattern that iscovered byLeftHandSideExpression.
  3. Letrref be the result of evaluatingAssignmentExpression.
  4. Letrval be ? GetValue(rref).
  5. Perform ?DestructuringAssignmentEvaluation ofassignmentPattern usingrval as the argument.
  6. Returnrval.
AssignmentExpression:LeftHandSideExpressionAssignmentOperatorAssignmentExpression
  1. Letlref be the result of evaluatingLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingAssignmentExpression.
  4. Letrval be ? GetValue(rref).
  5. LetassignmentOpText be thesource text matched byAssignmentOperator.
  6. LetopText be the sequence of Unicode code points associated withassignmentOpText in the following table:
    assignmentOpTextopText
    **=**
    *=*
    /=/
    %=%
    +=+
    -=-
    <<=<<
    >>=>>
    >>>=>>>
    &=&
    ^=^
    |=|
  7. Letr beApplyStringOrNumericBinaryOperator(lval,opText,rval).
  8. Perform ? PutValue(lref,r).
  9. Returnr.
AssignmentExpression:LeftHandSideExpression&&=AssignmentExpression
  1. Letlref be the result of evaluatingLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool be ! ToBoolean(lval).
  4. Iflbool isfalse, returnlval.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval beNamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  6. Else,
    1. Letrref be the result of evaluatingAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  7. Perform ? PutValue(lref,rval).
  8. Returnrval.
AssignmentExpression:LeftHandSideExpression||=AssignmentExpression
  1. Letlref be the result of evaluatingLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool be ! ToBoolean(lval).
  4. Iflbool istrue, returnlval.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval beNamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  6. Else,
    1. Letrref be the result of evaluatingAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  7. Perform ? PutValue(lref,rval).
  8. Returnrval.
AssignmentExpression:LeftHandSideExpression??=AssignmentExpression
  1. Letlref be the result of evaluatingLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Iflval is neitherundefined nornull, returnlval.
  4. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval beNamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  5. Else,
    1. Letrref be the result of evaluatingAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  6. Perform ? PutValue(lref,rval).
  7. Returnrval.
Note

When this expression occurs withinstrict mode code, it is a runtime error iflref in step1.e,2,2,2,2 is an unresolvable reference. If it is, aReferenceError exception is thrown. Additionally, it is a runtime error if thelref in step8,7,7,6 is a reference to adata property with the attribute value { [[Writable]]:false }, to anaccessor property with the attribute value { [[Set]]:undefined }, or to a non-existent property of an object for which theIsExtensible predicate returns the valuefalse. In these cases aTypeError exception is thrown.

13.15.3 ApplyStringOrNumericBinaryOperator (lval,opText,rval )

The abstract operation ApplyStringOrNumericBinaryOperator takes argumentslval (anECMAScript language value),opText (a sequence of Unicode code points), andrval (anECMAScript language value). It performs the following steps when called:

  1. Assert:opText is present in the table in step8.
  2. IfopText is+, then
    1. Letlprim be ? ToPrimitive(lval).
    2. Letrprim be ? ToPrimitive(rval).
    3. IfType(lprim) is String orType(rprim) is String, then
      1. Letlstr be ? ToString(lprim).
      2. Letrstr be ? ToString(rprim).
      3. Return thestring-concatenation oflstr andrstr.
    4. Setlval tolprim.
    5. Setrval torprim.
  3. NOTE: At this point, it must be a numeric operation.
  4. Letlnum be ? ToNumeric(lval).
  5. Letrnum be ? ToNumeric(rval).
  6. IfType(lnum) is different fromType(rnum), throw aTypeError exception.
  7. LetT beType(lnum).
  8. Letoperation be the abstract operation associated withopText in the following table:
    opTextoperation
    **T::exponentiate
    *T::multiply
    /T::divide
    %T::remainder
    +T::add
    -T::subtract
    <<T::leftShift
    >>T::signedRightShift
    >>>T::unsignedRightShift
    &T::bitwiseAND
    ^T::bitwiseXOR
    |T::bitwiseOR
  9. Return ?operation(lnum,rnum).
Note 1

No hint is provided in the calls toToPrimitive in steps2.a and2.b. All standard objects except Date objects handle the absence of a hint as ifnumber were given; Date objects handle the absence of a hint as ifstring were given. Exotic objects may handle the absence of a hint in some other manner.

Note 2

Step2.c differs from step3 of theAbstract Relational Comparison algorithm, by using the logical-or operation instead of the logical-and operation.

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand,opText,rightOperand )

The abstract operation EvaluateStringOrNumericBinaryExpression takes argumentsleftOperand (aParse Node),opText (a sequence of Unicode code points), andrightOperand (aParse Node). It performs the following steps when called:

  1. Letlref be the result of evaluatingleftOperand.
  2. Letlval be ? GetValue(lref).
  3. Letrref be the result of evaluatingrightOperand.
  4. Letrval be ? GetValue(rref).
  5. Return ? ApplyStringOrNumericBinaryOperator(lval,opText,rval).

13.15.5 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing an instance of the production
AssignmentExpression:LeftHandSideExpression=AssignmentExpression
the interpretation ofLeftHandSideExpression is refined using the following grammar:

AssignmentPattern[Yield, Await]:ObjectAssignmentPattern[?Yield, ?Await]ArrayAssignmentPattern[?Yield, ?Await]ObjectAssignmentPattern[Yield, Await]:{}{AssignmentRestProperty[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await],AssignmentRestProperty[?Yield, ?Await]opt}ArrayAssignmentPattern[Yield, Await]:[ElisionoptAssignmentRestElement[?Yield, ?Await]opt][AssignmentElementList[?Yield, ?Await]][AssignmentElementList[?Yield, ?Await],ElisionoptAssignmentRestElement[?Yield, ?Await]opt]AssignmentRestProperty[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]AssignmentPropertyList[Yield, Await]:AssignmentProperty[?Yield, ?Await]AssignmentPropertyList[?Yield, ?Await],AssignmentProperty[?Yield, ?Await]AssignmentElementList[Yield, Await]:AssignmentElisionElement[?Yield, ?Await]AssignmentElementList[?Yield, ?Await],AssignmentElisionElement[?Yield, ?Await]AssignmentElisionElement[Yield, Await]:ElisionoptAssignmentElement[?Yield, ?Await]AssignmentProperty[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optPropertyName[?Yield, ?Await]:AssignmentElement[?Yield, ?Await]AssignmentElement[Yield, Await]:DestructuringAssignmentTarget[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optAssignmentRestElement[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]DestructuringAssignmentTarget[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]

13.15.5.1 Static Semantics: Early Errors

AssignmentProperty:IdentifierReferenceInitializeroptAssignmentRestProperty:...DestructuringAssignmentTargetDestructuringAssignmentTarget:LeftHandSideExpression

IfLeftHandSideExpression is anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

13.15.5.2 Runtime Semantics: DestructuringAssignmentEvaluation

With parametervalue.

ObjectAssignmentPattern:{}
  1. Perform ? RequireObjectCoercible(value).
  2. ReturnNormalCompletion(empty).
ObjectAssignmentPattern:{AssignmentPropertyList}{AssignmentPropertyList,}
  1. Perform ? RequireObjectCoercible(value).
  2. Perform ?PropertyDestructuringAssignmentEvaluation forAssignmentPropertyList usingvalue as the argument.
  3. ReturnNormalCompletion(empty).
ArrayAssignmentPattern:[]
  1. LetiteratorRecord be ? GetIterator(value).
  2. Return ? IteratorClose(iteratorRecord,NormalCompletion(empty)).
ArrayAssignmentPattern:[Elision]
  1. LetiteratorRecord be ? GetIterator(value).
  2. Letresult beIteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Returnresult.
ArrayAssignmentPattern:[ElisionoptAssignmentRestElement]
  1. LetiteratorRecord be ? GetIterator(value).
  2. IfElision is present, then
    1. Letstatus beIteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
    2. Ifstatus is anabrupt completion, then
      1. Assert:iteratorRecord.[[Done]] istrue.
      2. ReturnCompletion(status).
  3. Letresult beIteratorDestructuringAssignmentEvaluation ofAssignmentRestElement with argumentiteratorRecord.
  4. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  5. Returnresult.
ArrayAssignmentPattern:[AssignmentElementList]
  1. LetiteratorRecord be ? GetIterator(value).
  2. Letresult beIteratorDestructuringAssignmentEvaluation ofAssignmentElementList with argumentiteratorRecord.
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Returnresult.
ArrayAssignmentPattern:[AssignmentElementList,ElisionoptAssignmentRestElementopt]
  1. LetiteratorRecord be ? GetIterator(value).
  2. Letstatus beIteratorDestructuringAssignmentEvaluation ofAssignmentElementList with argumentiteratorRecord.
  3. Ifstatus is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,status).
    2. ReturnCompletion(status).
  4. IfElision is present, then
    1. Setstatus to the result of performingIteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
    2. Ifstatus is anabrupt completion, then
      1. Assert:iteratorRecord.[[Done]] istrue.
      2. ReturnCompletion(status).
  5. IfAssignmentRestElement is present, then
    1. Setstatus to the result of performingIteratorDestructuringAssignmentEvaluation ofAssignmentRestElement withiteratorRecord as the argument.
  6. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,status).
  7. ReturnCompletion(status).
ObjectAssignmentPattern:{AssignmentRestProperty}
  1. Perform ? RequireObjectCoercible(value).
  2. LetexcludedNames be a new emptyList.
  3. Return the result of performingRestDestructuringAssignmentEvaluation ofAssignmentRestProperty withvalue andexcludedNames as the arguments.
ObjectAssignmentPattern:{AssignmentPropertyList,AssignmentRestProperty}
  1. Perform ? RequireObjectCoercible(value).
  2. LetexcludedNames be ?PropertyDestructuringAssignmentEvaluation ofAssignmentPropertyList with argumentvalue.
  3. Return the result of performingRestDestructuringAssignmentEvaluation ofAssignmentRestProperty with argumentsvalue andexcludedNames.

13.15.5.3 Runtime Semantics: PropertyDestructuringAssignmentEvaluation

With parametervalue.

Note
The following operations collect a list of all destructured property names.
AssignmentPropertyList:AssignmentPropertyList,AssignmentProperty
  1. LetpropertyNames be ?PropertyDestructuringAssignmentEvaluation ofAssignmentPropertyList with argumentvalue.
  2. LetnextNames be ?PropertyDestructuringAssignmentEvaluation ofAssignmentProperty with argumentvalue.
  3. Append each item innextNames to the end ofpropertyNames.
  4. ReturnpropertyNames.
AssignmentProperty:IdentifierReferenceInitializeropt
  1. LetP beStringValue ofIdentifierReference.
  2. Letlref be ? ResolveBinding(P).
  3. Letv be ? GetV(value,P).
  4. IfInitializeropt is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to the result of performingNamedEvaluation forInitializer with argumentP.
    2. Else,
      1. LetdefaultValue be the result of evaluatingInitializer.
      2. Setv to ? GetValue(defaultValue).
  5. Perform ? PutValue(lref,v).
  6. Return aList whose sole element isP.
AssignmentProperty:PropertyName:AssignmentElement
  1. Letname be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(name).
  3. Perform ?KeyedDestructuringAssignmentEvaluation ofAssignmentElement withvalue andname as the arguments.
  4. Return aList whose sole element isname.

13.15.5.4 Runtime Semantics: RestDestructuringAssignmentEvaluation

With parametersvalue andexcludedNames.

AssignmentRestProperty:...DestructuringAssignmentTarget
  1. Letlref be the result of evaluatingDestructuringAssignmentTarget.
  2. ReturnIfAbrupt(lref).
  3. LetrestObj be ! OrdinaryObjectCreate(%Object.prototype%).
  4. Perform ? CopyDataProperties(restObj,value,excludedNames).
  5. ReturnPutValue(lref,restObj).

13.15.5.5 Runtime Semantics: IteratorDestructuringAssignmentEvaluation

With parameteriteratorRecord.

AssignmentElementList:AssignmentElisionElement
  1. Return the result of performingIteratorDestructuringAssignmentEvaluation ofAssignmentElisionElement usingiteratorRecord as the argument.
AssignmentElementList:AssignmentElementList,AssignmentElisionElement
  1. Perform ?IteratorDestructuringAssignmentEvaluation ofAssignmentElementList usingiteratorRecord as the argument.
  2. Return the result of performingIteratorDestructuringAssignmentEvaluation ofAssignmentElisionElement usingiteratorRecord as the argument.
AssignmentElisionElement:AssignmentElement
  1. Return the result of performingIteratorDestructuringAssignmentEvaluation ofAssignmentElement withiteratorRecord as the argument.
AssignmentElisionElement:ElisionAssignmentElement
  1. Perform ?IteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
  2. Return the result of performingIteratorDestructuringAssignmentEvaluation ofAssignmentElement withiteratorRecord as the argument.
Elision:,
  1. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  2. ReturnNormalCompletion(empty).
Elision:Elision,
  1. Perform ?IteratorDestructuringAssignmentEvaluation ofElision withiteratorRecord as the argument.
  2. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  3. ReturnNormalCompletion(empty).
AssignmentElement:DestructuringAssignmentTargetInitializeropt
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be the result of evaluatingDestructuringAssignmentTarget.
    2. ReturnIfAbrupt(lref).
  2. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    5. Else,
      1. Letvalue beIteratorValue(next).
      2. Ifvalue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(value).
  3. IfiteratorRecord.[[Done]] istrue, letvalue beundefined.
  4. IfInitializer is present andvalue isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue andIsIdentifierRef ofDestructuringAssignmentTarget istrue, then
      1. Letv be ?NamedEvaluation ofInitializer with argumentlref.[[ReferencedName]].
    2. Else,
      1. LetdefaultValue be the result of evaluatingInitializer.
      2. Letv be ? GetValue(defaultValue).
  5. Else, letv bevalue.
  6. IfDestructuringAssignmentTarget is anObjectLiteral or anArrayLiteral, then
    1. LetnestedAssignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
    2. Return the result of performingDestructuringAssignmentEvaluation ofnestedAssignmentPattern withv as the argument.
  7. Return ? PutValue(lref,v).
Note

Left to right evaluation order is maintained by evaluating aDestructuringAssignmentTarget that is not a destructuring pattern prior to accessing the iterator or evaluating theInitializer.

AssignmentRestElement:...DestructuringAssignmentTarget
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be the result of evaluatingDestructuringAssignmentTarget.
    2. ReturnIfAbrupt(lref).
  2. LetA be ! ArrayCreate(0).
  3. Letn be 0.
  4. Repeat, whileiteratorRecord.[[Done]] isfalse,
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
    5. Else,
      1. LetnextValue beIteratorValue(next).
      2. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
      3. ReturnIfAbrupt(nextValue).
      4. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),nextValue).
      5. Setn ton + 1.
  5. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Return ? PutValue(lref,A).
  6. LetnestedAssignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
  7. Return the result of performingDestructuringAssignmentEvaluation ofnestedAssignmentPattern withA as the argument.

13.15.5.6 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

With parametersvalue andpropertyName.

AssignmentElement:DestructuringAssignmentTargetInitializeropt
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be the result of evaluatingDestructuringAssignmentTarget.
    2. ReturnIfAbrupt(lref).
  2. Letv be ? GetV(value,propertyName).
  3. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) andIsIdentifierRef ofDestructuringAssignmentTarget are bothtrue, then
      1. LetrhsValue be ?NamedEvaluation ofInitializer with argumentlref.[[ReferencedName]].
    2. Else,
      1. LetdefaultValue be the result of evaluatingInitializer.
      2. LetrhsValue be ? GetValue(defaultValue).
  4. Else, letrhsValue bev.
  5. IfDestructuringAssignmentTarget is anObjectLiteral or anArrayLiteral, then
    1. LetassignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
    2. Return the result of performingDestructuringAssignmentEvaluation ofassignmentPattern withrhsValue as the argument.
  6. Return ? PutValue(lref,rhsValue).

13.16 Comma Operator (, )

Syntax

Expression[In, Yield, Await]:AssignmentExpression[?In, ?Yield, ?Await]Expression[?In, ?Yield, ?Await],AssignmentExpression[?In, ?Yield, ?Await]

13.16.1 Runtime Semantics: Evaluation

Expression:Expression,AssignmentExpression
  1. Letlref be the result of evaluatingExpression.
  2. Perform ? GetValue(lref).
  3. Letrref be the result of evaluatingAssignmentExpression.
  4. Return ? GetValue(rref).
Note

GetValue must be called even though its value is not used because it may have observable side-effects.

14 ECMAScript Language: Statements and Declarations

Syntax

Statement[Yield, Await, Return]:BlockStatement[?Yield, ?Await, ?Return]VariableStatement[?Yield, ?Await]EmptyStatementExpressionStatement[?Yield, ?Await]IfStatement[?Yield, ?Await, ?Return]BreakableStatement[?Yield, ?Await, ?Return]ContinueStatement[?Yield, ?Await]BreakStatement[?Yield, ?Await][+Return]ReturnStatement[?Yield, ?Await]WithStatement[?Yield, ?Await, ?Return]LabelledStatement[?Yield, ?Await, ?Return]ThrowStatement[?Yield, ?Await]TryStatement[?Yield, ?Await, ?Return]DebuggerStatementDeclaration[Yield, Await]:HoistableDeclaration[?Yield, ?Await, ~Default]ClassDeclaration[?Yield, ?Await, ~Default]LexicalDeclaration[+In, ?Yield, ?Await]HoistableDeclaration[Yield, Await, Default]:FunctionDeclaration[?Yield, ?Await, ?Default]GeneratorDeclaration[?Yield, ?Await, ?Default]AsyncFunctionDeclaration[?Yield, ?Await, ?Default]AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]BreakableStatement[Yield, Await, Return]:IterationStatement[?Yield, ?Await, ?Return]SwitchStatement[?Yield, ?Await, ?Return]

14.1 Statement Semantics

14.1.1 Runtime Semantics: Evaluation

HoistableDeclaration:GeneratorDeclarationAsyncFunctionDeclarationAsyncGeneratorDeclaration
  1. ReturnNormalCompletion(empty).
HoistableDeclaration:FunctionDeclaration
  1. Return the result of evaluatingFunctionDeclaration.
BreakableStatement:IterationStatementSwitchStatement
  1. LetnewLabelSet be a new emptyList.
  2. Return the result of performingLabelledEvaluation of thisBreakableStatement with argumentnewLabelSet.

14.2 Block

Syntax

BlockStatement[Yield, Await, Return]:Block[?Yield, ?Await, ?Return]Block[Yield, Await, Return]:{StatementList[?Yield, ?Await, ?Return]opt}StatementList[Yield, Await, Return]:StatementListItem[?Yield, ?Await, ?Return]StatementList[?Yield, ?Await, ?Return]StatementListItem[?Yield, ?Await, ?Return]StatementListItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]Declaration[?Yield, ?Await]

14.2.1 Static Semantics: Early Errors

Block:{StatementList}

14.2.2 Runtime Semantics: Evaluation

Block:{}
  1. ReturnNormalCompletion(empty).
Block:{StatementList}
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetblockEnv beNewDeclarativeEnvironment(oldEnv).
  3. PerformBlockDeclarationInstantiation(StatementList,blockEnv).
  4. Set therunning execution context's LexicalEnvironment toblockEnv.
  5. LetblockValue be the result of evaluatingStatementList.
  6. Set therunning execution context's LexicalEnvironment tooldEnv.
  7. ReturnblockValue.
Note 1

No matter how control leaves theBlock the LexicalEnvironment is always restored to its former state.

StatementList:StatementListStatementListItem
  1. Letsl be the result of evaluatingStatementList.
  2. ReturnIfAbrupt(sl).
  3. Lets be the result of evaluatingStatementListItem.
  4. ReturnCompletion(UpdateEmpty(s,sl)).
Note 2

The value of aStatementList is the value of the last value-producing item in theStatementList. For example, the following calls to theeval function all return the value 1:

eval("1;;;;;")eval("1;{}")eval("1;var a;")

14.2.3 BlockDeclarationInstantiation (code,env )

Note

When aBlock orCaseBlock is evaluated a newdeclarative Environment Record is created and bindings for each block scoped variable, constant, function, or class declared in the block are instantiated in theEnvironment Record.

The abstract operation BlockDeclarationInstantiation takes argumentscode (aParse Node) andenv (anEnvironment Record).code is theParse Node corresponding to the body of the block.env is theEnvironment Record in which bindings are to be created. It performs the following steps when called:

  1. Assert:env is adeclarative Environment Record.
  2. Letdeclarations be theLexicallyScopedDeclarations ofcode.
  3. For each elementd ofdeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform !env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform !env.CreateMutableBinding(dn,false). NOTE: This step is replaced in sectionB.3.3.6.
    2. Ifd is aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration, then
      1. Letfn be the sole element of theBoundNames ofd.
      2. Letfo beInstantiateFunctionObject ofd with argumentenv.
      3. Performenv.InitializeBinding(fn,fo). NOTE: This step is replaced in sectionB.3.3.6.

14.3 Declarations and the Variable Statement

14.3.1 Let and Const Declarations

Note

let andconst declarations define variables that are scoped to therunning execution context's LexicalEnvironment. The variables are created when their containingEnvironment Record is instantiated but may not be accessed in any way until the variable'sLexicalBinding is evaluated. A variable defined by aLexicalBinding with anInitializer is assigned the value of itsInitializer'sAssignmentExpression when theLexicalBinding is evaluated, not when the variable is created. If aLexicalBinding in alet declaration does not have anInitializer the variable is assigned the valueundefined when theLexicalBinding is evaluated.

Syntax

LexicalDeclaration[In, Yield, Await]:LetOrConstBindingList[?In, ?Yield, ?Await];LetOrConst:letconstBindingList[In, Yield, Await]:LexicalBinding[?In, ?Yield, ?Await]BindingList[?In, ?Yield, ?Await],LexicalBinding[?In, ?Yield, ?Await]LexicalBinding[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]

14.3.1.1 Static Semantics: Early Errors

LexicalDeclaration:LetOrConstBindingList;LexicalBinding:BindingIdentifierInitializeropt

14.3.1.2 Runtime Semantics: Evaluation

LexicalDeclaration:LetOrConstBindingList;
  1. Letnext be the result of evaluatingBindingList.
  2. ReturnIfAbrupt(next).
  3. ReturnNormalCompletion(empty).
BindingList:BindingList,LexicalBinding
  1. Letnext be the result of evaluatingBindingList.
  2. ReturnIfAbrupt(next).
  3. Return the result of evaluatingLexicalBinding.
LexicalBinding:BindingIdentifier
  1. Letlhs beResolveBinding(StringValue ofBindingIdentifier).
  2. ReturnInitializeReferencedBinding(lhs,undefined).
Note

Astatic semantics rule ensures that this form ofLexicalBinding never occurs in aconst declaration.

LexicalBinding:BindingIdentifierInitializer
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs beResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue beNamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be the result of evaluatingInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. ReturnInitializeReferencedBinding(lhs,value).
LexicalBinding:BindingPatternInitializer
  1. Letrhs be the result of evaluatingInitializer.
  2. Letvalue be ? GetValue(rhs).
  3. Letenv be therunning execution context's LexicalEnvironment.
  4. Return the result of performingBindingInitialization forBindingPattern usingvalue andenv as the arguments.

14.3.2 Variable Statement

Note

Avar statement declares variables that are scoped to therunning execution context's VariableEnvironment. Var variables are created when their containingEnvironment Record is instantiated and are initialized toundefined when created. Within the scope of any VariableEnvironment a commonBindingIdentifier may appear in more than oneVariableDeclaration but those declarations collectively define only one variable. A variable defined by aVariableDeclaration with anInitializer is assigned the value of itsInitializer'sAssignmentExpression when theVariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement[Yield, Await]:varVariableDeclarationList[+In, ?Yield, ?Await];VariableDeclarationList[In, Yield, Await]:VariableDeclaration[?In, ?Yield, ?Await]VariableDeclarationList[?In, ?Yield, ?Await],VariableDeclaration[?In, ?Yield, ?Await]VariableDeclaration[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]

14.3.2.1 Runtime Semantics: Evaluation

VariableStatement:varVariableDeclarationList;
  1. Letnext be the result of evaluatingVariableDeclarationList.
  2. ReturnIfAbrupt(next).
  3. ReturnNormalCompletion(empty).
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Letnext be the result of evaluatingVariableDeclarationList.
  2. ReturnIfAbrupt(next).
  3. Return the result of evaluatingVariableDeclaration.
VariableDeclaration:BindingIdentifier
  1. ReturnNormalCompletion(empty).
VariableDeclaration:BindingIdentifierInitializer
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue beNamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be the result of evaluatingInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. Return ? PutValue(lhs,value).
Note

If aVariableDeclaration is nested within a with statement and theBindingIdentifier in theVariableDeclaration is the same as aproperty name of the binding object of the with statement'sobject Environment Record, then step5 will assignvalue to the property instead of assigning to the VariableEnvironment binding of theIdentifier.

VariableDeclaration:BindingPatternInitializer
  1. Letrhs be the result of evaluatingInitializer.
  2. Letrval be ? GetValue(rhs).
  3. Return the result of performingBindingInitialization forBindingPattern passingrval andundefined as arguments.

14.3.3 Destructuring Binding Patterns

Syntax

BindingPattern[Yield, Await]:ObjectBindingPattern[?Yield, ?Await]ArrayBindingPattern[?Yield, ?Await]ObjectBindingPattern[Yield, Await]:{}{BindingRestProperty[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await],BindingRestProperty[?Yield, ?Await]opt}ArrayBindingPattern[Yield, Await]:[ElisionoptBindingRestElement[?Yield, ?Await]opt][BindingElementList[?Yield, ?Await]][BindingElementList[?Yield, ?Await],ElisionoptBindingRestElement[?Yield, ?Await]opt]BindingRestProperty[Yield, Await]:...BindingIdentifier[?Yield, ?Await]BindingPropertyList[Yield, Await]:BindingProperty[?Yield, ?Await]BindingPropertyList[?Yield, ?Await],BindingProperty[?Yield, ?Await]BindingElementList[Yield, Await]:BindingElisionElement[?Yield, ?Await]BindingElementList[?Yield, ?Await],BindingElisionElement[?Yield, ?Await]BindingElisionElement[Yield, Await]:ElisionoptBindingElement[?Yield, ?Await]BindingProperty[Yield, Await]:SingleNameBinding[?Yield, ?Await]PropertyName[?Yield, ?Await]:BindingElement[?Yield, ?Await]BindingElement[Yield, Await]:SingleNameBinding[?Yield, ?Await]BindingPattern[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optSingleNameBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optBindingRestElement[Yield, Await]:...BindingIdentifier[?Yield, ?Await]...BindingPattern[?Yield, ?Await]

14.3.3.1 Runtime Semantics: PropertyBindingInitialization

With parametersvalue andenvironment.

Note
These collect a list of all bound property names rather than just empty completion.
BindingPropertyList:BindingPropertyList,BindingProperty
  1. LetboundNames be ?PropertyBindingInitialization ofBindingPropertyList with argumentsvalue andenvironment.
  2. LetnextNames be ?PropertyBindingInitialization ofBindingProperty with argumentsvalue andenvironment.
  3. Append each item innextNames to the end ofboundNames.
  4. ReturnboundNames.
BindingProperty:SingleNameBinding
  1. Letname be the string that is the only element ofBoundNames ofSingleNameBinding.
  2. Perform ?KeyedBindingInitialization forSingleNameBinding usingvalue,environment, andname as the arguments.
  3. Return aList whose sole element isname.
BindingProperty:PropertyName:BindingElement
  1. LetP be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(P).
  3. Perform ?KeyedBindingInitialization ofBindingElement withvalue,environment, andP as the arguments.
  4. Return aList whose sole element isP.

14.3.3.2 Runtime Semantics: RestBindingInitialization

With parametersvalue,environment, andexcludedNames.

BindingRestProperty:...BindingIdentifier
  1. Letlhs be ? ResolveBinding(StringValue ofBindingIdentifier,environment).
  2. LetrestObj be ! OrdinaryObjectCreate(%Object.prototype%).
  3. Perform ? CopyDataProperties(restObj,value,excludedNames).
  4. Ifenvironment isundefined, returnPutValue(lhs,restObj).
  5. ReturnInitializeReferencedBinding(lhs,restObj).

14.3.3.3 Runtime Semantics: KeyedBindingInitialization

With parametersvalue,environment, andpropertyName.

Note

Whenundefined is passed forenvironment it indicates that aPutValue operation should be used to assign the initialization value. This is the case for formal parameter lists of non-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

BindingElement:BindingPatternInitializeropt
  1. Letv be ? GetV(value,propertyName).
  2. IfInitializer is present andv isundefined, then
    1. LetdefaultValue be the result of evaluatingInitializer.
    2. Setv to ? GetValue(defaultValue).
  3. Return the result of performingBindingInitialization forBindingPattern passingv andenvironment as arguments.
SingleNameBinding:BindingIdentifierInitializeropt
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId,environment).
  3. Letv be ? GetV(value,propertyName).
  4. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to the result of performingNamedEvaluation forInitializer with argumentbindingId.
    2. Else,
      1. LetdefaultValue be the result of evaluatingInitializer.
      2. Setv to ? GetValue(defaultValue).
  5. Ifenvironment isundefined, return ? PutValue(lhs,v).
  6. ReturnInitializeReferencedBinding(lhs,v).

14.4 Empty Statement

Syntax

EmptyStatement:;

14.4.1 Runtime Semantics: Evaluation

EmptyStatement:;
  1. ReturnNormalCompletion(empty).

14.5 Expression Statement

Syntax

ExpressionStatement[Yield, Await]:[lookahead ∉ {{,function,async[noLineTerminator here]function,class,let[ }]Expression[+In, ?Yield, ?Await];Note

AnExpressionStatement cannot start with a U+007B (LEFT CURLY BRACKET) because that might make it ambiguous with aBlock. AnExpressionStatement cannot start with thefunction orclass keywords because that would make it ambiguous with aFunctionDeclaration, aGeneratorDeclaration, or aClassDeclaration. AnExpressionStatement cannot start withasync function because that would make it ambiguous with anAsyncFunctionDeclaration or aAsyncGeneratorDeclaration. AnExpressionStatement cannot start with the two token sequencelet [ because that would make it ambiguous with aletLexicalDeclaration whose firstLexicalBinding was anArrayBindingPattern.

14.5.1 Runtime Semantics: Evaluation

ExpressionStatement:Expression;
  1. LetexprRef be the result of evaluatingExpression.
  2. Return ? GetValue(exprRef).

14.6 Theif Statement

Syntax

IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][lookahead ≠else]Note
The lookahead-restriction [lookahead ≠else] resolves the classic "dangling else" problem in the usual way. That is, when the choice of associatedif is otherwise ambiguous, theelse is associated with the nearest (innermost) of the candidateifs

14.6.1 Static Semantics: Early Errors

IfStatement:if(Expression)StatementelseStatementif(Expression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.2 is implemented.

14.6.2 Runtime Semantics: Evaluation

IfStatement:if(Expression)StatementelseStatement
  1. LetexprRef be the result of evaluatingExpression.
  2. LetexprValue be ! ToBoolean(?GetValue(exprRef)).
  3. IfexprValue istrue, then
    1. LetstmtCompletion be the result of evaluating the firstStatement.
  4. Else,
    1. LetstmtCompletion be the result of evaluating the secondStatement.
  5. ReturnCompletion(UpdateEmpty(stmtCompletion,undefined)).
IfStatement:if(Expression)Statement
  1. LetexprRef be the result of evaluatingExpression.
  2. LetexprValue be ! ToBoolean(?GetValue(exprRef)).
  3. IfexprValue isfalse, then
    1. ReturnNormalCompletion(undefined).
  4. Else,
    1. LetstmtCompletion be the result of evaluatingStatement.
    2. ReturnCompletion(UpdateEmpty(stmtCompletion,undefined)).

14.7 Iteration Statements

Syntax

IterationStatement[Yield, Await, Return]:DoWhileStatement[?Yield, ?Await, ?Return]WhileStatement[?Yield, ?Await, ?Return]ForStatement[?Yield, ?Await, ?Return]ForInOfStatement[?Yield, ?Await, ?Return]

14.7.1 Semantics

14.7.1.1 LoopContinues (completion,labelSet )

The abstract operation LoopContinues takes argumentscompletion andlabelSet. It performs the following steps when called:

  1. Ifcompletion.[[Type]] isnormal, returntrue.
  2. Ifcompletion.[[Type]] is notcontinue, returnfalse.
  3. Ifcompletion.[[Target]] isempty, returntrue.
  4. Ifcompletion.[[Target]] is an element oflabelSet, returntrue.
  5. Returnfalse.
Note

Within theStatement part of anIterationStatement aContinueStatement may be used to begin a new iteration.

14.7.1.2 Runtime Semantics: LoopEvaluation

With parameterlabelSet.

IterationStatement:DoWhileStatement
  1. Return ?DoWhileLoopEvaluation ofDoWhileStatement with argumentlabelSet.
IterationStatement:WhileStatement
  1. Return ?WhileLoopEvaluation ofWhileStatement with argumentlabelSet.
IterationStatement:ForStatement
  1. Return ?ForLoopEvaluation ofForStatement with argumentlabelSet.
IterationStatement:ForInOfStatement
  1. Return ?ForInOfLoopEvaluation ofForInOfStatement with argumentlabelSet.

14.7.2 Thedo-while Statement

Syntax

DoWhileStatement[Yield, Await, Return]:doStatement[?Yield, ?Await, ?Return]while(Expression[+In, ?Yield, ?Await]);

14.7.2.1 Static Semantics: Early Errors

DoWhileStatement:doStatementwhile(Expression);Note

It is only necessary to apply this rule if the extension specified inB.3.2 is implemented.

14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation

With parameterlabelSet.

DoWhileStatement:doStatementwhile(Expression);
  1. LetV beundefined.
  2. Repeat,
    1. LetstmtResult be the result of evaluatingStatement.
    2. IfLoopContinues(stmtResult,labelSet) isfalse, returnCompletion(UpdateEmpty(stmtResult,V)).
    3. IfstmtResult.[[Value]] is notempty, setV tostmtResult.[[Value]].
    4. LetexprRef be the result of evaluatingExpression.
    5. LetexprValue be ? GetValue(exprRef).
    6. If ! ToBoolean(exprValue) isfalse, returnNormalCompletion(V).

14.7.3 Thewhile Statement

Syntax

WhileStatement[Yield, Await, Return]:while(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]

14.7.3.1 Static Semantics: Early Errors

WhileStatement:while(Expression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.2 is implemented.

14.7.3.2 Runtime Semantics: WhileLoopEvaluation

With parameterlabelSet.

WhileStatement:while(Expression)Statement
  1. LetV beundefined.
  2. Repeat,
    1. LetexprRef be the result of evaluatingExpression.
    2. LetexprValue be ? GetValue(exprRef).
    3. If ! ToBoolean(exprValue) isfalse, returnNormalCompletion(V).
    4. LetstmtResult be the result of evaluatingStatement.
    5. IfLoopContinues(stmtResult,labelSet) isfalse, returnCompletion(UpdateEmpty(stmtResult,V)).
    6. IfstmtResult.[[Value]] is notempty, setV tostmtResult.[[Value]].

14.7.4 Thefor Statement

Syntax

ForStatement[Yield, Await, Return]:for([lookahead ≠let[]Expression[~In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(varVariableDeclarationList[~In, ?Yield, ?Await];Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(LexicalDeclaration[~In, ?Yield, ?Await]Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]

14.7.4.1 Static Semantics: Early Errors

ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.2 is implemented.

ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement

14.7.4.2 Runtime Semantics: ForLoopEvaluation

With parameterlabelSet.

ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. If the firstExpression is present, then
    1. LetexprRef be the result of evaluating the firstExpression.
    2. Perform ? GetValue(exprRef).
  2. Return ? ForBodyEvaluation(the secondExpression, the thirdExpression,Statement, « »,labelSet).
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. LetvarDcl be the result of evaluatingVariableDeclarationList.
  2. ReturnIfAbrupt(varDcl).
  3. Return ? ForBodyEvaluation(the firstExpression, the secondExpression,Statement, « »,labelSet).
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetloopEnv beNewDeclarativeEnvironment(oldEnv).
  3. LetisConst beIsConstantDeclaration ofLexicalDeclaration.
  4. LetboundNames be theBoundNames ofLexicalDeclaration.
  5. For each elementdn ofboundNames, do
    1. IfisConst istrue, then
      1. Perform !loopEnv.CreateImmutableBinding(dn,true).
    2. Else,
      1. Perform !loopEnv.CreateMutableBinding(dn,false).
  6. Set therunning execution context's LexicalEnvironment toloopEnv.
  7. LetforDcl be the result of evaluatingLexicalDeclaration.
  8. IfforDcl is anabrupt completion, then
    1. Set therunning execution context's LexicalEnvironment tooldEnv.
    2. ReturnCompletion(forDcl).
  9. IfisConst isfalse, letperIterationLets beboundNames; otherwise letperIterationLets be « ».
  10. LetbodyResult beForBodyEvaluation(the firstExpression, the secondExpression,Statement,perIterationLets,labelSet).
  11. Set therunning execution context's LexicalEnvironment tooldEnv.
  12. ReturnCompletion(bodyResult).

14.7.4.3 ForBodyEvaluation (test,increment,stmt,perIterationBindings,labelSet )

The abstract operation ForBodyEvaluation takes argumentstest,increment,stmt,perIterationBindings, andlabelSet. It performs the following steps when called:

  1. LetV beundefined.
  2. Perform ? CreatePerIterationEnvironment(perIterationBindings).
  3. Repeat,
    1. Iftest is not[empty], then
      1. LettestRef be the result of evaluatingtest.
      2. LettestValue be ? GetValue(testRef).
      3. If ! ToBoolean(testValue) isfalse, returnNormalCompletion(V).
    2. Letresult be the result of evaluatingstmt.
    3. IfLoopContinues(result,labelSet) isfalse, returnCompletion(UpdateEmpty(result,V)).
    4. Ifresult.[[Value]] is notempty, setV toresult.[[Value]].
    5. Perform ? CreatePerIterationEnvironment(perIterationBindings).
    6. Ifincrement is not[empty], then
      1. LetincRef be the result of evaluatingincrement.
      2. Perform ? GetValue(incRef).

14.7.4.4 CreatePerIterationEnvironment (perIterationBindings )

The abstract operation CreatePerIterationEnvironment takes argumentperIterationBindings. It performs the following steps when called:

  1. IfperIterationBindings has any elements, then
    1. LetlastIterationEnv be therunning execution context's LexicalEnvironment.
    2. Letouter belastIterationEnv.[[OuterEnv]].
    3. Assert:outer is notnull.
    4. LetthisIterationEnv beNewDeclarativeEnvironment(outer).
    5. For each elementbn ofperIterationBindings, do
      1. Perform !thisIterationEnv.CreateMutableBinding(bn,false).
      2. LetlastValue be ?lastIterationEnv.GetBindingValue(bn,true).
      3. PerformthisIterationEnv.InitializeBinding(bn,lastValue).
    6. Set therunning execution context's LexicalEnvironment tothisIterationEnv.
  2. Returnundefined.

14.7.5 Thefor-in,for-of, andfor-await-of Statements

Syntax

ForInOfStatement[Yield, Await, Return]:for([lookahead ≠let[]LeftHandSideExpression[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for([lookahead ∉ {let,asyncof }]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait([lookahead ≠let]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForDeclaration[Yield, Await]:LetOrConstForBinding[?Yield, ?Await]ForBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]Note

This section is extended by AnnexB.3.6.

14.7.5.1 Static Semantics: Early Errors

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.2 is implemented.

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statement

IfLeftHandSideExpression is either anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

ForInOfStatement:for(ForDeclarationinExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement

14.7.5.2 Static Semantics: IsDestructuring

MemberExpression:PrimaryExpression
  1. IfPrimaryExpression is either anObjectLiteral or anArrayLiteral, returntrue.
  2. Returnfalse.
MemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpression
  1. Returnfalse.
ForDeclaration:LetOrConstForBinding
  1. ReturnIsDestructuring ofForBinding.
ForBinding:BindingIdentifier
  1. Returnfalse.
ForBinding:BindingPattern
  1. Returntrue.
Note

This section is extended by AnnexB.3.6.

14.7.5.3 Runtime Semantics: ForDeclarationBindingInitialization

With parametersvalue andenvironment.

Note

undefined is passed forenvironment to indicate that aPutValue operation should be used to assign the initialization value. This is the case forvar statements and the formal parameter lists of some non-strict functions (see10.2.10). In those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

ForDeclaration:LetOrConstForBinding
  1. Return the result of performingBindingInitialization forForBinding passingvalue andenvironment as the arguments.

14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation

With parameterenvironment.

ForDeclaration:LetOrConstForBinding
  1. Assert:environment is adeclarative Environment Record.
  2. For each elementname of theBoundNames ofForBinding, do
    1. IfIsConstantDeclaration ofLetOrConst istrue, then
      1. Perform !environment.CreateImmutableBinding(name,true).
    2. Else,
      1. Perform !environment.CreateMutableBinding(name,false).

14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation

With parameterlabelSet.

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  2. Return ?ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,enumerate,assignment,labelSet).
ForInOfStatement:for(varForBindinginExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  2. Return ?ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,enumerate,varBinding,labelSet).
ForInOfStatement:for(ForDeclarationinExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,Expression,enumerate).
  2. Return ?ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,enumerate,lexicalBinding,labelSet).
ForInOfStatement:for(LeftHandSideExpressionofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,AssignmentExpression,iterate).
  2. Return ?ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,iterate,assignment,labelSet).
ForInOfStatement:for(varForBindingofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,AssignmentExpression,iterate).
  2. Return ?ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,iterate,varBinding,labelSet).
ForInOfStatement:for(ForDeclarationofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,AssignmentExpression,iterate).
  2. Return ?ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,iterate,lexicalBinding,labelSet).
ForInOfStatement:forawait(LeftHandSideExpressionofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,AssignmentExpression,async-iterate).
  2. Return ?ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,iterate,assignment,labelSet,async).
ForInOfStatement:forawait(varForBindingofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,AssignmentExpression,async-iterate).
  2. Return ?ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,iterate,varBinding,labelSet,async).
ForInOfStatement:forawait(ForDeclarationofAssignmentExpression)Statement
  1. LetkeyResult be ?ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,AssignmentExpression,async-iterate).
  2. Return ?ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,iterate,lexicalBinding,labelSet,async).
Note

This section is extended by AnnexB.3.6.

14.7.5.6 ForIn/OfHeadEvaluation (uninitializedBoundNames,expr,iterationKind )

The abstract operation ForIn/OfHeadEvaluation takes argumentsuninitializedBoundNames,expr, anditerationKind (eitherenumerate,iterate, orasync-iterate). It performs the following steps when called:

  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. IfuninitializedBoundNames is not an emptyList, then
    1. Assert:uninitializedBoundNames has no duplicate entries.
    2. LetnewEnv beNewDeclarativeEnvironment(oldEnv).
    3. For each Stringname ofuninitializedBoundNames, do
      1. Perform !newEnv.CreateMutableBinding(name,false).
    4. Set therunning execution context's LexicalEnvironment tonewEnv.
  3. LetexprRef be the result of evaluatingexpr.
  4. Set therunning execution context's LexicalEnvironment tooldEnv.
  5. LetexprValue be ? GetValue(exprRef).
  6. IfiterationKind isenumerate, then
    1. IfexprValue isundefined ornull, then
      1. ReturnCompletion { [[Type]]:break, [[Value]]:empty, [[Target]]:empty }.
    2. Letobj be ! ToObject(exprValue).
    3. Letiterator be ? EnumerateObjectProperties(obj).
    4. LetnextMethod be ! GetV(iterator,"next").
    5. Return theRecord { [[Iterator]]:iterator, [[NextMethod]]:nextMethod, [[Done]]:false }.
  7. Else,
    1. Assert:iterationKind isiterate orasync-iterate.
    2. IfiterationKind isasync-iterate, letiteratorHint beasync.
    3. Else, letiteratorHint besync.
    4. Return ? GetIterator(exprValue,iteratorHint).

14.7.5.7 ForIn/OfBodyEvaluation (lhs,stmt,iteratorRecord,iterationKind,lhsKind,labelSet [ ,iteratorKind ] )

The abstract operation ForIn/OfBodyEvaluation takes argumentslhs,stmt,iteratorRecord,iterationKind,lhsKind (eitherassignment,varBinding orlexicalBinding), andlabelSet and optional argumentiteratorKind (eithersync orasync). It performs the following steps when called:

  1. IfiteratorKind is not present, setiteratorKind tosync.
  2. LetoldEnv be therunning execution context's LexicalEnvironment.
  3. LetV beundefined.
  4. Letdestructuring beIsDestructuring oflhs.
  5. Ifdestructuring istrue and iflhsKind isassignment, then
    1. Assert:lhs is aLeftHandSideExpression.
    2. LetassignmentPattern be theAssignmentPattern that iscovered bylhs.
  6. Repeat,
    1. LetnextResult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]]).
    2. IfiteratorKind isasync, setnextResult to ? Await(nextResult).
    3. IfType(nextResult) is not Object, throw aTypeError exception.
    4. Letdone be ? IteratorComplete(nextResult).
    5. Ifdone istrue, returnNormalCompletion(V).
    6. LetnextValue be ? IteratorValue(nextResult).
    7. IflhsKind is eitherassignment orvarBinding, then
      1. Ifdestructuring isfalse, then
        1. LetlhsRef be the result of evaluatinglhs. (It may be evaluated repeatedly.)
    8. Else,
      1. Assert:lhsKind islexicalBinding.
      2. Assert:lhs is aForDeclaration.
      3. LetiterationEnv beNewDeclarativeEnvironment(oldEnv).
      4. PerformForDeclarationBindingInstantiation forlhs passingiterationEnv as the argument.
      5. Set therunning execution context's LexicalEnvironment toiterationEnv.
      6. Ifdestructuring isfalse, then
        1. Assert:lhs binds a single name.
        2. LetlhsName be the sole element ofBoundNames oflhs.
        3. LetlhsRef be ! ResolveBinding(lhsName).
    9. Ifdestructuring isfalse, then
      1. IflhsRef is anabrupt completion, then
        1. Letstatus belhsRef.
      2. Else iflhsKind islexicalBinding, then
        1. Letstatus beInitializeReferencedBinding(lhsRef,nextValue).
      3. Else,
        1. Letstatus bePutValue(lhsRef,nextValue).
    10. Else,
      1. IflhsKind isassignment, then
        1. Letstatus beDestructuringAssignmentEvaluation ofassignmentPattern with argumentnextValue.
      2. Else iflhsKind isvarBinding, then
        1. Assert:lhs is aForBinding.
        2. Letstatus beBindingInitialization oflhs with argumentsnextValue andundefined.
      3. Else,
        1. Assert:lhsKind islexicalBinding.
        2. Assert:lhs is aForDeclaration.
        3. Letstatus beForDeclarationBindingInitialization oflhs with argumentsnextValue anditerationEnv.
    11. Ifstatus is anabrupt completion, then
      1. Set therunning execution context's LexicalEnvironment tooldEnv.
      2. IfiteratorKind isasync, return ? AsyncIteratorClose(iteratorRecord,status).
      3. IfiterationKind isenumerate, then
        1. Returnstatus.
      4. Else,
        1. Assert:iterationKind isiterate.
        2. Return ? IteratorClose(iteratorRecord,status).
    12. Letresult be the result of evaluatingstmt.
    13. Set therunning execution context's LexicalEnvironment tooldEnv.
    14. IfLoopContinues(result,labelSet) isfalse, then
      1. IfiterationKind isenumerate, then
        1. ReturnCompletion(UpdateEmpty(result,V)).
      2. Else,
        1. Assert:iterationKind isiterate.
        2. Setstatus toUpdateEmpty(result,V).
        3. IfiteratorKind isasync, return ? AsyncIteratorClose(iteratorRecord,status).
        4. Return ? IteratorClose(iteratorRecord,status).
    15. Ifresult.[[Value]] is notempty, setV toresult.[[Value]].

14.7.5.8 Runtime Semantics: Evaluation

ForBinding:BindingIdentifier
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Return ? ResolveBinding(bindingId).

14.7.5.9 EnumerateObjectProperties (O )

The abstract operation EnumerateObjectProperties takes argumentO. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Return an Iterator object (27.1.1.2) whosenext method iterates over all the String-valued keys of enumerable properties ofO. The iterator object is never directly accessible to ECMAScript code. The mechanics and order of enumerating the properties is not specified but must conform to the rules specified below.

The iterator'sthrow andreturn methods arenull and are never invoked. The iterator'snext method processes object properties to determine whether the property key should be returned as an iterator value. Returned property keys do not include keys that are Symbols. Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator'snext method is ignored. If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration. Aproperty name will be returned by the iterator'snext method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator'snext method. The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed. The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument. EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method. Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method.

In addition, if neitherO nor any object in its prototype chain is aProxy exotic object,Integer-Indexed exotic object,module namespace exotic object, or implementation providedexotic object, then the iterator must behave as would the iterator given byCreateForInIterator(O) until one of the following occurs:

  • the value of the [[Prototype]] internal slot ofO or an object in its prototype chain changes,
  • a property is removed fromO or an object in its prototype chain,
  • a property is added to an object inO's prototype chain, or
  • the value of the [[Enumerable]] attribute of a property ofO or an object in its prototype chain changes.
Note 1

ECMAScript implementations are not required to implement the algorithm in14.7.5.10.2.1 directly. They may choose any implementation whose behaviour will not deviate from that algorithm unless one of the constraints in the previous paragraph is violated.

The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function*EnumerateObjectProperties(obj){const visited =newSet();for (const keyofReflect.ownKeys(obj)) {if (typeof key ==="symbol")continue;const desc =Reflect.getOwnPropertyDescriptor(obj, key);if (desc) {      visited.add(key);if (desc.enumerable)yield key;    }  }const proto =Reflect.getPrototypeOf(obj);if (proto ===null)return;for (const protoKeyof EnumerateObjectProperties(proto)) {if (!visited.has(protoKey))yield protoKey;  }}
Note 2
The list of exotic objects for which implementations are not required to matchCreateForInIterator was chosen because implementations historically differed in behaviour for those cases, and agreed in all others.

14.7.5.10 For-In Iterator Objects

A For-In Iterator is an object that represents a specific iteration over some specific object. For-In Iterator objects are never directly accessible to ECMAScript code; they exist solely to illustrate the behaviour ofEnumerateObjectProperties.

14.7.5.10.1 CreateForInIterator (object )

The abstract operation CreateForInIterator takes argumentobject. It is used to create a For-In Iterator object which iterates over the own and inherited enumerable string properties ofobject in a specific order. It performs the following steps when called:

  1. Assert:Type(object) is Object.
  2. Letiterator be ! OrdinaryObjectCreate(%ForInIteratorPrototype%, « [[Object]], [[ObjectWasVisited]], [[VisitedKeys]], [[RemainingKeys]] »).
  3. Setiterator.[[Object]] toobject.
  4. Setiterator.[[ObjectWasVisited]] tofalse.
  5. Setiterator.[[VisitedKeys]] to a new emptyList.
  6. Setiterator.[[RemainingKeys]] to a new emptyList.
  7. Returniterator.

14.7.5.10.2 The %ForInIteratorPrototype% Object

The%ForInIteratorPrototype% object:

  • has properties that are inherited by all For-In Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • is never directly accessible to ECMAScript code.
  • has the following properties:

14.7.5.10.2.1 %ForInIteratorPrototype%.next ( )

  1. LetO be thethis value.
  2. Assert:Type(O) is Object.
  3. Assert:O has all of the internal slots of a For-In Iterator Instance (14.7.5.10.3).
  4. Letobject beO.[[Object]].
  5. Letvisited beO.[[VisitedKeys]].
  6. Letremaining beO.[[RemainingKeys]].
  7. Repeat,
    1. IfO.[[ObjectWasVisited]] isfalse, then
      1. Letkeys be ?object.[[OwnPropertyKeys]]().
      2. For each elementkey ofkeys, do
        1. IfType(key) is String, then
          1. Appendkey toremaining.
      3. SetO.[[ObjectWasVisited]] totrue.
    2. Repeat, whileremaining is not empty,
      1. Letr be the first element ofremaining.
      2. Remove the first element fromremaining.
      3. If there does not exist an elementv ofvisited such thatSameValue(r,v) istrue, then
        1. Letdesc be ?object.[[GetOwnProperty]](r).
        2. Ifdesc is notundefined, then
          1. Appendr tovisited.
          2. Ifdesc.[[Enumerable]] istrue, returnCreateIterResultObject(r,false).
    3. Setobject to ?object.[[GetPrototypeOf]]().
    4. SetO.[[Object]] toobject.
    5. SetO.[[ObjectWasVisited]] tofalse.
    6. Ifobject isnull, returnCreateIterResultObject(undefined,true).

14.7.5.10.3 Properties of For-In Iterator Instances

For-In Iterator instances are ordinary objects that inherit properties from the%ForInIteratorPrototype% intrinsic object. For-In Iterator instances are initially created with the internal slots listed inTable 38.

Table 38: Internal Slots of For-In Iterator Instances
Internal Slot Description
[[Object]] The Object value whose properties are being iterated.
[[ObjectWasVisited]]true if the iterator has invoked [[OwnPropertyKeys]] on [[Object]],false otherwise.
[[VisitedKeys]] A list of String values which have been emitted by this iterator thus far.
[[RemainingKeys]] A list of String values remaining to be emitted for the current object, before iterating the properties of its prototype (if its prototype is notnull).

14.8 Thecontinue Statement

Syntax

ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];

14.8.1 Static Semantics: Early Errors

ContinueStatement:continue;continueLabelIdentifier;

14.8.2 Runtime Semantics: Evaluation

ContinueStatement:continue;
  1. ReturnCompletion { [[Type]]:continue, [[Value]]:empty, [[Target]]:empty }.
ContinueStatement:continueLabelIdentifier;
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. ReturnCompletion { [[Type]]:continue, [[Value]]:empty, [[Target]]:label }.

14.9 Thebreak Statement

Syntax

BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];

14.9.1 Static Semantics: Early Errors

BreakStatement:break;

14.9.2 Runtime Semantics: Evaluation

BreakStatement:break;
  1. ReturnCompletion { [[Type]]:break, [[Value]]:empty, [[Target]]:empty }.
BreakStatement:breakLabelIdentifier;
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. ReturnCompletion { [[Type]]:break, [[Value]]:empty, [[Target]]:label }.

14.10 Thereturn Statement

Syntax

ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];Note

Areturn statement causes a function to cease execution and, in most cases, returns a value to the caller. IfExpression is omitted, the return value isundefined. Otherwise, the return value is the value ofExpression. Areturn statement may not actually return a value to the caller depending on surrounding context. For example, in atry block, areturn statement's completion record may be replaced with another completion record during evaluation of thefinally block.

14.10.1 Runtime Semantics: Evaluation

ReturnStatement:return;
  1. ReturnCompletion { [[Type]]:return, [[Value]]:undefined, [[Target]]:empty }.
ReturnStatement:returnExpression;
  1. LetexprRef be the result of evaluatingExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. If ! GetGeneratorKind() isasync, setexprValue to ? Await(exprValue).
  4. ReturnCompletion { [[Type]]:return, [[Value]]:exprValue, [[Target]]:empty }.

14.11 Thewith Statement

Syntax

WithStatement[Yield, Await, Return]:with(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]Note

Thewith statement adds anobject Environment Record for a computed object to the lexical environment of therunning execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the original lexical environment.

14.11.1 Static Semantics: Early Errors

WithStatement:with(Expression)StatementNote

It is only necessary to apply the second rule if the extension specified inB.3.2 is implemented.

14.11.2 Runtime Semantics: Evaluation

WithStatement:with(Expression)Statement
  1. Letval be the result of evaluatingExpression.
  2. Letobj be ? ToObject(?GetValue(val)).
  3. LetoldEnv be therunning execution context's LexicalEnvironment.
  4. LetnewEnv beNewObjectEnvironment(obj,oldEnv).
  5. Set thewithEnvironment flag ofnewEnv totrue.
  6. Set therunning execution context's LexicalEnvironment tonewEnv.
  7. LetC be the result of evaluatingStatement.
  8. Set therunning execution context's LexicalEnvironment tooldEnv.
  9. ReturnCompletion(UpdateEmpty(C,undefined)).
Note

No matter how control leaves the embeddedStatement, whether normally or by some form ofabrupt completion or exception, the LexicalEnvironment is always restored to its former state.

14.12 Theswitch Statement

Syntax

SwitchStatement[Yield, Await, Return]:switch(Expression[+In, ?Yield, ?Await])CaseBlock[?Yield, ?Await, ?Return]CaseBlock[Yield, Await, Return]:{CaseClauses[?Yield, ?Await, ?Return]opt}{CaseClauses[?Yield, ?Await, ?Return]optDefaultClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]opt}CaseClauses[Yield, Await, Return]:CaseClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]CaseClause[?Yield, ?Await, ?Return]CaseClause[Yield, Await, Return]:caseExpression[+In, ?Yield, ?Await]:StatementList[?Yield, ?Await, ?Return]optDefaultClause[Yield, Await, Return]:default:StatementList[?Yield, ?Await, ?Return]opt

14.12.1 Static Semantics: Early Errors

SwitchStatement:switch(Expression)CaseBlock

14.12.2 Runtime Semantics: CaseBlockEvaluation

With parameterinput.

CaseBlock:{}
  1. ReturnNormalCompletion(undefined).
CaseBlock:{CaseClauses}
  1. LetV beundefined.
  2. LetA be theList ofCaseClause items inCaseClauses, in source text order.
  3. Letfound befalse.
  4. For eachCaseClauseC ofA, do
    1. Iffound isfalse, then
      1. Setfound to ? CaseClauseIsSelected(C,input).
    2. Iffound istrue, then
      1. LetR be the result of evaluatingC.
      2. IfR.[[Value]] is notempty, setV toR.[[Value]].
      3. IfR is anabrupt completion, returnCompletion(UpdateEmpty(R,V)).
  5. ReturnNormalCompletion(V).
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. LetV beundefined.
  2. If the firstCaseClauses is present, then
    1. LetA be theList ofCaseClause items in the firstCaseClauses, in source text order.
  3. Else,
    1. LetA be « ».
  4. Letfound befalse.
  5. For eachCaseClauseC ofA, do
    1. Iffound isfalse, then
      1. Setfound to ? CaseClauseIsSelected(C,input).
    2. Iffound istrue, then
      1. LetR be the result of evaluatingC.
      2. IfR.[[Value]] is notempty, setV toR.[[Value]].
      3. IfR is anabrupt completion, returnCompletion(UpdateEmpty(R,V)).
  6. LetfoundInB befalse.
  7. If the secondCaseClauses is present, then
    1. LetB be theList ofCaseClause items in the secondCaseClauses, in source text order.
  8. Else,
    1. LetB be « ».
  9. Iffound isfalse, then
    1. For eachCaseClauseC ofB, do
      1. IffoundInB isfalse, then
        1. SetfoundInB to ? CaseClauseIsSelected(C,input).
      2. IffoundInB istrue, then
        1. LetR be the result of evaluatingCaseClauseC.
        2. IfR.[[Value]] is notempty, setV toR.[[Value]].
        3. IfR is anabrupt completion, returnCompletion(UpdateEmpty(R,V)).
  10. IffoundInB istrue, returnNormalCompletion(V).
  11. LetR be the result of evaluatingDefaultClause.
  12. IfR.[[Value]] is notempty, setV toR.[[Value]].
  13. IfR is anabrupt completion, returnCompletion(UpdateEmpty(R,V)).
  14. NOTE: The following is another complete iteration of the secondCaseClauses.
  15. For eachCaseClauseC ofB, do
    1. LetR be the result of evaluatingCaseClauseC.
    2. IfR.[[Value]] is notempty, setV toR.[[Value]].
    3. IfR is anabrupt completion, returnCompletion(UpdateEmpty(R,V)).
  16. ReturnNormalCompletion(V).

14.12.3 CaseClauseIsSelected (C,input )

The abstract operation CaseClauseIsSelected takes argumentsC (aParse Node forCaseClause) andinput (anECMAScript language value). It determines whetherC matchesinput. It performs the following steps when called:

  1. Assert:C is an instance of the productionCaseClause:caseExpression:StatementListopt.
  2. LetexprRef be the result of evaluating theExpression ofC.
  3. LetclauseSelector be ? GetValue(exprRef).
  4. Return the result of performingStrict Equality Comparisoninput ===clauseSelector.
Note

This operation does not executeC'sStatementList (if any). TheCaseBlock algorithm uses its return value to determine whichStatementList to start executing.

14.12.4 Runtime Semantics: Evaluation

SwitchStatement:switch(Expression)CaseBlock
  1. LetexprRef be the result of evaluatingExpression.
  2. LetswitchValue be ? GetValue(exprRef).
  3. LetoldEnv be therunning execution context's LexicalEnvironment.
  4. LetblockEnv beNewDeclarativeEnvironment(oldEnv).
  5. PerformBlockDeclarationInstantiation(CaseBlock,blockEnv).
  6. Set therunning execution context's LexicalEnvironment toblockEnv.
  7. LetR beCaseBlockEvaluation ofCaseBlock with argumentswitchValue.
  8. Set therunning execution context's LexicalEnvironment tooldEnv.
  9. ReturnR.
Note

No matter how control leaves theSwitchStatement the LexicalEnvironment is always restored to its former state.

CaseClause:caseExpression:
  1. ReturnNormalCompletion(empty).
CaseClause:caseExpression:StatementList
  1. Return the result of evaluatingStatementList.
DefaultClause:default:
  1. ReturnNormalCompletion(empty).
DefaultClause:default:StatementList
  1. Return the result of evaluatingStatementList.

14.13 Labelled Statements

Syntax

LabelledStatement[Yield, Await, Return]:LabelIdentifier[?Yield, ?Await]:LabelledItem[?Yield, ?Await, ?Return]LabelledItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]FunctionDeclaration[?Yield, ?Await, ~Default]Note

AStatement may be prefixed by a label. Labelled statements are only used in conjunction with labelledbreak andcontinue statements. ECMAScript has nogoto statement. AStatement can be part of aLabelledStatement, which itself can be part of aLabelledStatement, and so on. The labels introduced this way are collectively referred to as the “current label set” when describing the semantics of individual statements.

14.13.1 Static Semantics: Early Errors

LabelledItem:FunctionDeclaration
  • It is a Syntax Error if any source text matches this rule.
Note

An alternative definition for this rule is provided inB.3.2.

14.13.2 Static Semantics: IsLabelledFunction (stmt )

The abstract operation IsLabelledFunction takes argumentstmt. It performs the following steps when called:

  1. Ifstmt is not aLabelledStatement, returnfalse.
  2. Letitem be theLabelledItem ofstmt.
  3. Ifitem isLabelledItem:FunctionDeclaration , returntrue.
  4. LetsubStmt be theStatement ofitem.
  5. ReturnIsLabelledFunction(subStmt).

14.13.3 Runtime Semantics: Evaluation

LabelledStatement:LabelIdentifier:LabelledItem
  1. LetnewLabelSet be a new emptyList.
  2. ReturnLabelledEvaluation of thisLabelledStatement with argumentnewLabelSet.

14.13.4 Runtime Semantics: LabelledEvaluation

With parameterlabelSet.

BreakableStatement:IterationStatement
  1. LetstmtResult beLoopEvaluation ofIterationStatement with argumentlabelSet.
  2. IfstmtResult.[[Type]] isbreak, then
    1. IfstmtResult.[[Target]] isempty, then
      1. IfstmtResult.[[Value]] isempty, setstmtResult toNormalCompletion(undefined).
      2. Else, setstmtResult toNormalCompletion(stmtResult.[[Value]]).
  3. ReturnCompletion(stmtResult).
BreakableStatement:SwitchStatement
  1. LetstmtResult be the result of evaluatingSwitchStatement.
  2. IfstmtResult.[[Type]] isbreak, then
    1. IfstmtResult.[[Target]] isempty, then
      1. IfstmtResult.[[Value]] isempty, setstmtResult toNormalCompletion(undefined).
      2. Else, setstmtResult toNormalCompletion(stmtResult.[[Value]]).
  3. ReturnCompletion(stmtResult).
Note 1

ABreakableStatement is one that can be exited via an unlabelledBreakStatement.

LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. Appendlabel as an element oflabelSet.
  3. LetstmtResult beLabelledEvaluation ofLabelledItem with argumentlabelSet.
  4. IfstmtResult.[[Type]] isbreak andSameValue(stmtResult.[[Target]],label) istrue, then
    1. SetstmtResult toNormalCompletion(stmtResult.[[Value]]).
  5. ReturnCompletion(stmtResult).
LabelledItem:FunctionDeclaration
  1. Return the result of evaluatingFunctionDeclaration.
Statement:BlockStatementVariableStatementEmptyStatementExpressionStatementIfStatementContinueStatementBreakStatementReturnStatementWithStatementThrowStatementTryStatementDebuggerStatement
  1. Return the result of evaluatingStatement.
Note 2

The only two productions ofStatement which have special semantics for LabelledEvaluation areBreakableStatement andLabelledStatement.

14.14 Thethrow Statement

Syntax

ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];

14.14.1 Runtime Semantics: Evaluation

ThrowStatement:throwExpression;
  1. LetexprRef be the result of evaluatingExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. ReturnThrowCompletion(exprValue).

14.15 Thetry Statement

Syntax

TryStatement[Yield, Await, Return]:tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]Catch[Yield, Await, Return]:catch(CatchParameter[?Yield, ?Await])Block[?Yield, ?Await, ?Return]catchBlock[?Yield, ?Await, ?Return]Finally[Yield, Await, Return]:finallyBlock[?Yield, ?Await, ?Return]CatchParameter[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]Note

Thetry statement encloses a block of code in which an exceptional condition can occur, such as a runtime error or athrow statement. Thecatch clause provides the exception-handling code. When a catch clause catches an exception, itsCatchParameter is bound to that exception.

14.15.1 Static Semantics: Early Errors

Catch:catch(CatchParameter)BlockNote

An alternativestatic semantics for this production is given inB.3.5.

14.15.2 Runtime Semantics: CatchClauseEvaluation

With parameterthrownValue.

Catch:catch(CatchParameter)Block
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetcatchEnv beNewDeclarativeEnvironment(oldEnv).
  3. For each elementargName of theBoundNames ofCatchParameter, do
    1. Perform !catchEnv.CreateMutableBinding(argName,false).
  4. Set therunning execution context's LexicalEnvironment tocatchEnv.
  5. Letstatus beBindingInitialization ofCatchParameter with argumentsthrownValue andcatchEnv.
  6. Ifstatus is anabrupt completion, then
    1. Set therunning execution context's LexicalEnvironment tooldEnv.
    2. ReturnCompletion(status).
  7. LetB be the result of evaluatingBlock.
  8. Set therunning execution context's LexicalEnvironment tooldEnv.
  9. ReturnCompletion(B).
Catch:catchBlock
  1. Return the result of evaluatingBlock.
Note

No matter how control leaves theBlock the LexicalEnvironment is always restored to its former state.

14.15.3 Runtime Semantics: Evaluation

TryStatement:tryBlockCatch
  1. LetB be the result of evaluatingBlock.
  2. IfB.[[Type]] isthrow, letC beCatchClauseEvaluation ofCatch with argumentB.[[Value]].
  3. Else, letC beB.
  4. ReturnCompletion(UpdateEmpty(C,undefined)).
TryStatement:tryBlockFinally
  1. LetB be the result of evaluatingBlock.
  2. LetF be the result of evaluatingFinally.
  3. IfF.[[Type]] isnormal, setF toB.
  4. ReturnCompletion(UpdateEmpty(F,undefined)).
TryStatement:tryBlockCatchFinally
  1. LetB be the result of evaluatingBlock.
  2. IfB.[[Type]] isthrow, letC beCatchClauseEvaluation ofCatch with argumentB.[[Value]].
  3. Else, letC beB.
  4. LetF be the result of evaluatingFinally.
  5. IfF.[[Type]] isnormal, setF toC.
  6. ReturnCompletion(UpdateEmpty(F,undefined)).

14.16 Thedebugger Statement

Syntax

DebuggerStatement:debugger;

14.16.1 Runtime Semantics: Evaluation

Note

Evaluating aDebuggerStatement may allow an implementation to cause a breakpoint when run under a debugger. If a debugger is not present or active this statement has no observable effect.

DebuggerStatement:debugger;
  1. If animplementation-defined debugging facility is available and enabled, then
    1. Perform animplementation-defined debugging action.
    2. Letresult be animplementation-definedCompletion value.
  2. Else,
    1. Letresult beNormalCompletion(empty).
  3. Returnresult.

15 ECMAScript Language: Functions and Classes

Note

Various ECMAScript language elements cause the creation of ECMAScript function objects (10.2). Evaluation of such functions starts with the execution of their [[Call]] internal method (10.2.1).

15.1 Parameter Lists

Syntax

UniqueFormalParameters[Yield, Await]:FormalParameters[?Yield, ?Await]FormalParameters[Yield, Await]:[empty]FunctionRestParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameterList[?Yield, ?Await],FunctionRestParameter[?Yield, ?Await]FormalParameterList[Yield, Await]:FormalParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameter[?Yield, ?Await]FunctionRestParameter[Yield, Await]:BindingRestElement[?Yield, ?Await]FormalParameter[Yield, Await]:BindingElement[?Yield, ?Await]

15.1.1 Static Semantics: Early Errors

UniqueFormalParameters:FormalParametersFormalParameters:FormalParameterListNote

Multiple occurrences of the sameBindingIdentifier in aFormalParameterList is only allowed for functions which have simple parameter lists and which are not defined instrict mode code.

15.1.2 Static Semantics: ContainsExpression

ObjectBindingPattern:{}{BindingRestProperty}
  1. Returnfalse.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. ReturnContainsExpression ofBindingPropertyList.
ArrayBindingPattern:[Elisionopt]
  1. Returnfalse.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. ReturnContainsExpression ofBindingRestElement.
ArrayBindingPattern:[BindingElementList,Elisionopt]
  1. ReturnContainsExpression ofBindingElementList.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Lethas beContainsExpression ofBindingElementList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingRestElement.
BindingPropertyList:BindingPropertyList,BindingProperty
  1. Lethas beContainsExpression ofBindingPropertyList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingProperty.
BindingElementList:BindingElementList,BindingElisionElement
  1. Lethas beContainsExpression ofBindingElementList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingElisionElement.
BindingElisionElement:ElisionoptBindingElement
  1. ReturnContainsExpression ofBindingElement.
BindingProperty:PropertyName:BindingElement
  1. Lethas beIsComputedPropertyKey ofPropertyName.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingElement.
BindingElement:BindingPatternInitializer
  1. Returntrue.
SingleNameBinding:BindingIdentifier
  1. Returnfalse.
SingleNameBinding:BindingIdentifierInitializer
  1. Returntrue.
BindingRestElement:...BindingIdentifier
  1. Returnfalse.
BindingRestElement:...BindingPattern
  1. ReturnContainsExpression ofBindingPattern.
FormalParameters:[empty]
  1. Returnfalse.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. IfContainsExpression ofFormalParameterList istrue, returntrue.
  2. ReturnContainsExpression ofFunctionRestParameter.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfContainsExpression ofFormalParameterList istrue, returntrue.
  2. ReturnContainsExpression ofFormalParameter.
ArrowParameters:BindingIdentifier
  1. Returnfalse.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnContainsExpression offormals.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Returnfalse.

15.1.3 Static Semantics: IsSimpleParameterList

BindingElement:BindingPattern
  1. Returnfalse.
BindingElement:BindingPatternInitializer
  1. Returnfalse.
SingleNameBinding:BindingIdentifier
  1. Returntrue.
SingleNameBinding:BindingIdentifierInitializer
  1. Returnfalse.
FormalParameters:[empty]
  1. Returntrue.
FormalParameters:FunctionRestParameter
  1. Returnfalse.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Returnfalse.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfIsSimpleParameterList ofFormalParameterList isfalse, returnfalse.
  2. ReturnIsSimpleParameterList ofFormalParameter.
FormalParameter:BindingElement
  1. ReturnIsSimpleParameterList ofBindingElement.
ArrowParameters:BindingIdentifier
  1. Returntrue.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnIsSimpleParameterList offormals.
AsyncArrowBindingIdentifier[Yield]:BindingIdentifier[?Yield, +Await]
  1. Returntrue.
CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Lethead beCoveredAsyncArrowHead ofCoverCallExpressionAndAsyncArrowHead.
  2. ReturnIsSimpleParameterList ofhead.

15.1.4 Static Semantics: HasInitializer

BindingElement:BindingPattern
  1. Returnfalse.
BindingElement:BindingPatternInitializer
  1. Returntrue.
SingleNameBinding:BindingIdentifier
  1. Returnfalse.
SingleNameBinding:BindingIdentifierInitializer
  1. Returntrue.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfHasInitializer ofFormalParameterList istrue, returntrue.
  2. ReturnHasInitializer ofFormalParameter.

15.1.5 Static Semantics: ExpectedArgumentCount

FormalParameters:[empty]FunctionRestParameter
  1. Return 0.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. ReturnExpectedArgumentCount ofFormalParameterList.
Note

The ExpectedArgumentCount of aFormalParameterList is the number ofFormalParameters to the left of either the rest parameter or the firstFormalParameter with an Initializer. AFormalParameter without an initializer is allowed after the first parameter with an initializer but such parameters are considered to be optional withundefined as their default value.

FormalParameterList:FormalParameter
  1. IfHasInitializer ofFormalParameter istrue, return 0.
  2. Return 1.
FormalParameterList:FormalParameterList,FormalParameter
  1. Letcount beExpectedArgumentCount ofFormalParameterList.
  2. IfHasInitializer ofFormalParameterList istrue orHasInitializer ofFormalParameter istrue, returncount.
  3. Returncount + 1.
ArrowParameters:BindingIdentifier
  1. Return 1.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals beCoveredFormalsList ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnExpectedArgumentCount offormals.
PropertySetParameterList:FormalParameter
  1. IfHasInitializer ofFormalParameter istrue, return 0.
  2. Return 1.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Return 1.

15.2 Function Definitions

Syntax

FunctionDeclaration[Yield, Await, Default]:functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}[+Default]function(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionExpression:functionBindingIdentifier[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionBody[Yield, Await]:FunctionStatementList[?Yield, ?Await]FunctionStatementList[Yield, Await]:StatementList[?Yield, ?Await, +Return]opt

15.2.1 Static Semantics: Early Errors

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}Note

TheLexicallyDeclaredNames of aFunctionBody does not include identifiers bound using var or function declarations.

FunctionBody:FunctionStatementList

15.2.2 Static Semantics: FunctionBodyContainsUseStrict

FunctionBody:FunctionStatementList
  1. If theDirective Prologue ofFunctionBody contains aUse Strict Directive, returntrue; otherwise, returnfalse.

15.2.3 Runtime Semantics: EvaluateFunctionBody

With parametersfunctionObject andargumentsList (aList).

FunctionBody:FunctionStatementList
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Return the result of evaluatingFunctionStatementList.

15.2.4 Runtime Semantics: InstantiateOrdinaryFunctionObject

With parameterscope.

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byFunctionDeclaration.
  3. LetF beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,scope).
  4. PerformSetFunctionName(F,name).
  5. PerformMakeConstructor(F).
  6. ReturnF.
FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. LetsourceText be thesource text matched byFunctionDeclaration.
  2. LetF beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,scope).
  3. PerformSetFunctionName(F,"default").
  4. PerformMakeConstructor(F).
  5. ReturnF.
Note

An anonymousFunctionDeclaration can only occur as part of anexport default declaration, and its function code is therefore alwaysstrict mode code.

15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression

With optional parametername.

FunctionExpression:function(FormalParameters){FunctionBody}
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byFunctionExpression.
  4. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,scope).
  5. PerformSetFunctionName(closure,name).
  6. PerformMakeConstructor(closure).
  7. Returnclosure.
FunctionExpression:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv beNewDeclarativeEnvironment(scope).
  5. PerformfuncEnv.CreateImmutableBinding(name,false).
  6. LetsourceText be thesource text matched byFunctionExpression.
  7. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,funcEnv).
  8. PerformSetFunctionName(closure,name).
  9. PerformMakeConstructor(closure).
  10. PerformfuncEnv.InitializeBinding(name,closure).
  11. Returnclosure.
Note

TheBindingIdentifier in aFunctionExpression can be referenced from inside theFunctionExpression'sFunctionBody to allow the function to call itself recursively. However, unlike in aFunctionDeclaration, theBindingIdentifier in aFunctionExpression cannot be referenced from and does not affect the scope enclosing theFunctionExpression.

15.2.6 Runtime Semantics: Evaluation

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. ReturnNormalCompletion(empty).
Note 1

An alternative semantics is provided inB.3.3.

FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. ReturnNormalCompletion(empty).
FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}
  1. ReturnInstantiateOrdinaryFunctionExpression ofFunctionExpression.
Note 2

A"prototype" property is automatically created for every function defined using aFunctionDeclaration orFunctionExpression, to allow for the possibility that the function will be used as aconstructor.

FunctionStatementList:[empty]
  1. ReturnNormalCompletion(undefined).

15.3 Arrow Function Definitions

Syntax

ArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]ArrowParameters[Yield, Await]:BindingIdentifier[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]ConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, ~Await]{FunctionBody[~Yield, ~Await]}ExpressionBody[In, Await]:AssignmentExpression[?In, ~Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
ArrowParameters[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ArrowFormalParameters[Yield, Await]:(UniqueFormalParameters[?Yield, ?Await])

15.3.1 Static Semantics: Early Errors

ArrowFunction:ArrowParameters=>ConciseBodyArrowParameters:CoverParenthesizedExpressionAndArrowParameterList

15.3.2 Static Semantics: ConciseBodyContainsUseStrict

ConciseBody:ExpressionBody
  1. Returnfalse.
ConciseBody:{FunctionBody}
  1. ReturnFunctionBodyContainsUseStrict ofFunctionBody.

15.3.3 Static Semantics: CoveredFormalsList

ArrowParameters:BindingIdentifier
  1. Return thisArrowParameters.
CoverParenthesizedExpressionAndArrowParameterList:(Expression)(Expression,)()(...BindingIdentifier)(...BindingPattern)(Expression,...BindingIdentifier)(Expression,...BindingPattern)
  1. Return theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.

15.3.4 Runtime Semantics: EvaluateConciseBody

With parametersfunctionObject andargumentsList (aList).

ConciseBody:ExpressionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Return the result of evaluatingExpressionBody.

15.3.5 Runtime Semantics: InstantiateArrowFunctionExpression

With optional parametername.

ArrowFunction:ArrowParameters=>ConciseBody
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byArrowFunction.
  4. Letparameters beCoveredFormalsList ofArrowParameters.
  5. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,parameters,ConciseBody,lexical-this,scope).
  6. PerformSetFunctionName(closure,name).
  7. Returnclosure.
Note

AnArrowFunction does not define local bindings forarguments,super,this, ornew.target. Any reference toarguments,super,this, ornew.target within anArrowFunction must resolve to a binding in a lexically enclosing environment. Typically this will be the Function Environment of an immediately enclosing function. Even though anArrowFunction may contain references tosuper, thefunction object created in step5 is not made into a method by performingMakeMethod. AnArrowFunction that referencessuper is always contained within a non-ArrowFunction and the necessary state to implementsuper is accessible via thescope that is captured by thefunction object of theArrowFunction.

15.3.6 Runtime Semantics: Evaluation

ArrowFunction:ArrowParameters=>ConciseBody
  1. ReturnInstantiateArrowFunctionExpression ofArrowFunction.
ExpressionBody:AssignmentExpression
  1. LetexprRef be the result of evaluatingAssignmentExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. ReturnCompletion { [[Type]]:return, [[Value]]:exprValue, [[Target]]:empty }.

15.4 Method Definitions

Syntax

MethodDefinition[Yield, Await]:PropertyName[?Yield, ?Await](UniqueFormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}GeneratorMethod[?Yield, ?Await]AsyncMethod[?Yield, ?Await]AsyncGeneratorMethod[?Yield, ?Await]getPropertyName[?Yield, ?Await](){FunctionBody[~Yield, ~Await]}setPropertyName[?Yield, ?Await](PropertySetParameterList){FunctionBody[~Yield, ~Await]}PropertySetParameterList:FormalParameter[~Yield, ~Await]

15.4.1 Static Semantics: Early Errors

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}MethodDefinition:setPropertyName(PropertySetParameterList){FunctionBody}

15.4.2 Static Semantics: HasDirectSuper

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnFunctionBodyContainsSuperCall.
MethodDefinition:getPropertyName(){FunctionBody}
  1. ReturnFunctionBodyContainsSuperCall.
MethodDefinition:setPropertyName(PropertySetParameterList){FunctionBody}
  1. IfPropertySetParameterListContainsSuperCall istrue, returntrue.
  2. ReturnFunctionBodyContainsSuperCall.
GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnGeneratorBodyContainsSuperCall.
AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnAsyncGeneratorBodyContainsSuperCall.
AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnAsyncFunctionBodyContainsSuperCall.

15.4.3 Static Semantics: SpecialMethod

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}
  1. Returnfalse.
MethodDefinition:GeneratorMethodAsyncMethodAsyncGeneratorMethodgetPropertyName(){FunctionBody}setPropertyName(PropertySetParameterList){FunctionBody}
  1. Returntrue.

15.4.4 Runtime Semantics: DefineMethod

With parameterobject and optional parameterfunctionPrototype.

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. IffunctionPrototype is present, then
    1. Letprototype befunctionPrototype.
  5. Else,
    1. Letprototype be%Function.prototype%.
  6. LetsourceText be thesource text matched byMethodDefinition.
  7. Letclosure beOrdinaryFunctionCreate(prototype,sourceText,UniqueFormalParameters,FunctionBody,non-lexical-this,scope).
  8. PerformMakeMethod(closure,object).
  9. Return theRecord { [[Key]]:propKey, [[Closure]]:closure }.

15.4.5 Runtime Semantics: MethodDefinitionEvaluation

With parametersobject andenumerable.

MethodDefinition:PropertyName(UniqueFormalParameters){FunctionBody}
  1. LetmethodDef be ?DefineMethod ofMethodDefinition with argumentobject.
  2. PerformSetFunctionName(methodDef.[[Closure]],methodDef.[[Key]]).
  3. Letdesc be the PropertyDescriptor { [[Value]]:methodDef.[[Closure]], [[Writable]]:true, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  4. Return ? DefinePropertyOrThrow(object,methodDef.[[Key]],desc).
MethodDefinition:getPropertyName(){FunctionBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetsourceText be thesource text matched byMethodDefinition.
  5. LetformalParameterList be an instance of the productionFormalParameters:[empty].
  6. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,formalParameterList,FunctionBody,non-lexical-this,scope).
  7. PerformMakeMethod(closure,object).
  8. PerformSetFunctionName(closure,propKey,"get").
  9. Letdesc be the PropertyDescriptor { [[Get]]:closure, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  10. Return ? DefinePropertyOrThrow(object,propKey,desc).
MethodDefinition:setPropertyName(PropertySetParameterList){FunctionBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetsourceText be thesource text matched byMethodDefinition.
  5. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,PropertySetParameterList,FunctionBody,non-lexical-this,scope).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey,"set").
  8. Letdesc be the PropertyDescriptor { [[Set]]:closure, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  9. Return ? DefinePropertyOrThrow(object,propKey,desc).
GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetsourceText be thesource text matched byGeneratorMethod.
  5. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,UniqueFormalParameters,GeneratorBody,non-lexical-this,scope).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey).
  8. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  9. PerformDefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  10. Letdesc be the PropertyDescriptor { [[Value]]:closure, [[Writable]]:true, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  11. Return ? DefinePropertyOrThrow(object,propKey,desc).
AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetsourceText be thesource text matched byAsyncGeneratorMethod.
  5. Letclosure be ! OrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,UniqueFormalParameters,AsyncGeneratorBody,non-lexical-this,scope).
  6. Perform ! MakeMethod(closure,object).
  7. Perform ! SetFunctionName(closure,propKey).
  8. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  9. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  10. Letdesc be PropertyDescriptor { [[Value]]:closure, [[Writable]]:true, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  11. Return ? DefinePropertyOrThrow(object,propKey,desc).
AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. Letscope be the LexicalEnvironment of therunning execution context.
  4. LetsourceText be thesource text matched byAsyncMethod.
  5. Letclosure be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,UniqueFormalParameters,AsyncFunctionBody,non-lexical-this,scope).
  6. Perform ! MakeMethod(closure,object).
  7. Perform ! SetFunctionName(closure,propKey).
  8. Letdesc be the PropertyDescriptor { [[Value]]:closure, [[Writable]]:true, [[Enumerable]]:enumerable, [[Configurable]]:true }.
  9. Return ? DefinePropertyOrThrow(object,propKey,desc).

15.5 Generator Function Definitions

Syntax

GeneratorMethod[Yield, Await]:*PropertyName[?Yield, ?Await](UniqueFormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorDeclaration[Yield, Await, Default]:function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, ~Await]){GeneratorBody}[+Default]function*(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorExpression:function*BindingIdentifier[+Yield, ~Await]opt(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorBody:FunctionBody[+Yield, ~Await]YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]Note 1

The syntactic context immediately followingyield requires use of theInputElementRegExpOrTemplateTail lexical goal.

Note 2

YieldExpression cannot be used within theFormalParameters of a generator function because any expressions that are part ofFormalParameters are evaluated before the resulting generator object is in a resumable state.

Note 3

Abstract operations relating to generator objects are defined in27.5.3.

15.5.1 Static Semantics: Early Errors

GeneratorMethod:*PropertyName(UniqueFormalParameters){GeneratorBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}

15.5.2 Runtime Semantics: EvaluateGeneratorBody

With parametersfunctionObject andargumentsList (aList).

GeneratorBody:FunctionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. LetG be ? OrdinaryCreateFromConstructor(functionObject,"%GeneratorFunction.prototype.prototype%", « [[GeneratorState]], [[GeneratorContext]], [[GeneratorBrand]] »).
  3. SetG.[[GeneratorBrand]] toempty.
  4. PerformGeneratorStart(G,FunctionBody).
  5. ReturnCompletion { [[Type]]:return, [[Value]]:G, [[Target]]:empty }.

15.5.3 Runtime Semantics: InstantiateGeneratorFunctionObject

With parameterscope.

GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byGeneratorDeclaration.
  3. LetF beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,scope).
  4. PerformSetFunctionName(F,name).
  5. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  6. PerformDefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  7. ReturnF.
GeneratorDeclaration:function*(FormalParameters){GeneratorBody}
  1. LetsourceText be thesource text matched byGeneratorDeclaration.
  2. LetF beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,scope).
  3. PerformSetFunctionName(F,"default").
  4. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  5. PerformDefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  6. ReturnF.
Note

An anonymousGeneratorDeclaration can only occur as part of anexport default declaration, and its function code is therefore alwaysstrict mode code.

15.5.4 Runtime Semantics: InstantiateGeneratorFunctionExpression

With optional parametername.

GeneratorExpression:function*(FormalParameters){GeneratorBody}
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byGeneratorExpression.
  4. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,scope).
  5. PerformSetFunctionName(closure,name).
  6. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  7. PerformDefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  8. Returnclosure.
GeneratorExpression:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv beNewDeclarativeEnvironment(scope).
  5. PerformfuncEnv.CreateImmutableBinding(name,false).
  6. LetsourceText be thesource text matched byGeneratorExpression.
  7. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,funcEnv).
  8. PerformSetFunctionName(closure,name).
  9. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  10. PerformDefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  11. PerformfuncEnv.InitializeBinding(name,closure).
  12. Returnclosure.
Note

TheBindingIdentifier in aGeneratorExpression can be referenced from inside theGeneratorExpression'sFunctionBody to allow the generator code to call itself recursively. However, unlike in aGeneratorDeclaration, theBindingIdentifier in aGeneratorExpression cannot be referenced from and does not affect the scope enclosing theGeneratorExpression.

15.5.5 Runtime Semantics: Evaluation

GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}
  1. ReturnInstantiateGeneratorFunctionExpression ofGeneratorExpression.
YieldExpression:yield
  1. Return ? Yield(undefined).
YieldExpression:yieldAssignmentExpression
  1. LetexprRef be the result of evaluatingAssignmentExpression.
  2. Letvalue be ? GetValue(exprRef).
  3. Return ? Yield(value).
YieldExpression:yield*AssignmentExpression
  1. LetgeneratorKind be ! GetGeneratorKind().
  2. LetexprRef be the result of evaluatingAssignmentExpression.
  3. Letvalue be ? GetValue(exprRef).
  4. LetiteratorRecord be ? GetIterator(value,generatorKind).
  5. Letiterator beiteratorRecord.[[Iterator]].
  6. Letreceived beNormalCompletion(undefined).
  7. Repeat,
    1. Ifreceived.[[Type]] isnormal, then
      1. LetinnerResult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]], «received.[[Value]] »).
      2. IfgeneratorKind isasync, setinnerResult to ? Await(innerResult).
      3. IfType(innerResult) is not Object, throw aTypeError exception.
      4. Letdone be ? IteratorComplete(innerResult).
      5. Ifdone istrue, then
        1. Return ? IteratorValue(innerResult).
      6. IfgeneratorKind isasync, setreceived toAsyncGeneratorYield(?IteratorValue(innerResult)).
      7. Else, setreceived toGeneratorYield(innerResult).
    2. Else ifreceived.[[Type]] isthrow, then
      1. Letthrow be ? GetMethod(iterator,"throw").
      2. Ifthrow is notundefined, then
        1. LetinnerResult be ? Call(throw,iterator, «received.[[Value]] »).
        2. IfgeneratorKind isasync, setinnerResult to ? Await(innerResult).
        3. NOTE: Exceptions from the inner iteratorthrow method are propagated. Normal completions from an innerthrow method are processed similarly to an innernext.
        4. IfType(innerResult) is not Object, throw aTypeError exception.
        5. Letdone be ? IteratorComplete(innerResult).
        6. Ifdone istrue, then
          1. Return ? IteratorValue(innerResult).
        7. IfgeneratorKind isasync, setreceived toAsyncGeneratorYield(?IteratorValue(innerResult)).
        8. Else, setreceived toGeneratorYield(innerResult).
      3. Else,
        1. NOTE: Ifiterator does not have athrow method, this throw is going to terminate theyield* loop. But first we need to giveiterator a chance to clean up.
        2. LetcloseCompletion beCompletion { [[Type]]:normal, [[Value]]:empty, [[Target]]:empty }.
        3. IfgeneratorKind isasync, perform ? AsyncIteratorClose(iteratorRecord,closeCompletion).
        4. Else, perform ? IteratorClose(iteratorRecord,closeCompletion).
        5. NOTE: The next step throws aTypeError to indicate that there was ayield* protocol violation:iterator does not have athrow method.
        6. Throw aTypeError exception.
    3. Else,
      1. Assert:received.[[Type]] isreturn.
      2. Letreturn be ? GetMethod(iterator,"return").
      3. Ifreturn isundefined, then
        1. IfgeneratorKind isasync, setreceived.[[Value]] to ? Await(received.[[Value]]).
        2. ReturnCompletion(received).
      4. LetinnerReturnResult be ? Call(return,iterator, «received.[[Value]] »).
      5. IfgeneratorKind isasync, setinnerReturnResult to ? Await(innerReturnResult).
      6. IfType(innerReturnResult) is not Object, throw aTypeError exception.
      7. Letdone be ? IteratorComplete(innerReturnResult).
      8. Ifdone istrue, then
        1. Letvalue be ? IteratorValue(innerReturnResult).
        2. ReturnCompletion { [[Type]]:return, [[Value]]:value, [[Target]]:empty }.
      9. IfgeneratorKind isasync, setreceived toAsyncGeneratorYield(?IteratorValue(innerReturnResult)).
      10. Else, setreceived toGeneratorYield(innerReturnResult).

15.6 Async Generator Function Definitions

Syntax

AsyncGeneratorMethod[Yield, Await]:async[noLineTerminator here]*PropertyName[?Yield, ?Await](UniqueFormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorDeclaration[Yield, Await, Default]:async[noLineTerminator here]function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, +Await]){AsyncGeneratorBody}[+Default]async[noLineTerminator here]function*(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorExpression:async[noLineTerminator here]function*BindingIdentifier[+Yield, +Await]opt(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorBody:FunctionBody[+Yield, +Await]Note 1

YieldExpression andAwaitExpression cannot be used within theFormalParameters of an async generator function because any expressions that are part ofFormalParameters are evaluated before the resulting async generator object is in a resumable state.

Note 2

Abstract operations relating to async generator objects are defined in27.6.3.

15.6.1 Static Semantics: Early Errors

AsyncGeneratorMethod:async*PropertyName(UniqueFormalParameters){AsyncGeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}

15.6.2 Runtime Semantics: EvaluateAsyncGeneratorBody

With parametersfunctionObject andargumentsList (aList).

AsyncGeneratorBody:FunctionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Letgenerator be ? OrdinaryCreateFromConstructor(functionObject,"%AsyncGeneratorFunction.prototype.prototype%", « [[AsyncGeneratorState]], [[AsyncGeneratorContext]], [[AsyncGeneratorQueue]], [[GeneratorBrand]] »).
  3. Setgenerator.[[GeneratorBrand]] toempty.
  4. Perform ! AsyncGeneratorStart(generator,FunctionBody).
  5. ReturnCompletion { [[Type]]:return, [[Value]]:generator, [[Target]]:empty }.

15.6.3 Runtime Semantics: InstantiateAsyncGeneratorFunctionObject

With parameterscope.

AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byAsyncGeneratorDeclaration.
  3. LetF be ! OrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,scope).
  4. Perform ! SetFunctionName(F,name).
  5. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  6. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  7. ReturnF.
AsyncGeneratorDeclaration:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. LetsourceText be thesource text matched byAsyncGeneratorDeclaration.
  2. LetF beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,scope).
  3. PerformSetFunctionName(F,"default").
  4. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  5. PerformDefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  6. ReturnF.
Note

An anonymousAsyncGeneratorDeclaration can only occur as part of anexport default declaration.

15.6.4 Runtime Semantics: InstantiateAsyncGeneratorFunctionExpression

With optional parametername.

AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byAsyncGeneratorExpression.
  4. Letclosure be ! OrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,scope).
  5. PerformSetFunctionName(closure,name).
  6. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  7. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  8. Returnclosure.
AsyncGeneratorExpression:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. Letscope be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv be ! NewDeclarativeEnvironment(scope).
  5. Perform !funcEnv.CreateImmutableBinding(name,false).
  6. LetsourceText be thesource text matched byAsyncGeneratorExpression.
  7. Letclosure be ! OrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,funcEnv).
  8. Perform ! SetFunctionName(closure,name).
  9. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  10. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  11. Perform !funcEnv.InitializeBinding(name,closure).
  12. Returnclosure.
Note

TheBindingIdentifier in anAsyncGeneratorExpression can be referenced from inside theAsyncGeneratorExpression'sAsyncGeneratorBody to allow the generator code to call itself recursively. However, unlike in anAsyncGeneratorDeclaration, theBindingIdentifier in anAsyncGeneratorExpression cannot be referenced from and does not affect the scope enclosing theAsyncGeneratorExpression.

15.6.5 Runtime Semantics: Evaluation

AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}
  1. ReturnInstantiateAsyncGeneratorFunctionExpression ofAsyncGeneratorExpression.

15.7 Class Definitions

Syntax

ClassDeclaration[Yield, Await, Default]:classBindingIdentifier[?Yield, ?Await]ClassTail[?Yield, ?Await][+Default]classClassTail[?Yield, ?Await]ClassExpression[Yield, Await]:classBindingIdentifier[?Yield, ?Await]optClassTail[?Yield, ?Await]ClassTail[Yield, Await]:ClassHeritage[?Yield, ?Await]opt{ClassBody[?Yield, ?Await]opt}ClassHeritage[Yield, Await]:extendsLeftHandSideExpression[?Yield, ?Await]ClassBody[Yield, Await]:ClassElementList[?Yield, ?Await]ClassElementList[Yield, Await]:ClassElement[?Yield, ?Await]ClassElementList[?Yield, ?Await]ClassElement[?Yield, ?Await]ClassElement[Yield, Await]:MethodDefinition[?Yield, ?Await]staticMethodDefinition[?Yield, ?Await];Note

A class definition is alwaysstrict mode code.

15.7.1 Static Semantics: Early Errors

ClassTail:ClassHeritageopt{ClassBody}ClassBody:ClassElementListClassElement:MethodDefinitionClassElement:staticMethodDefinition

15.7.2 Static Semantics: ClassElementKind

ClassElement:MethodDefinition
  1. IfPropName ofMethodDefinition is"constructor", returnConstructorMethod.
  2. ReturnNonConstructorMethod.
ClassElement:staticMethodDefinition
  1. ReturnNonConstructorMethod.
ClassElement:;
  1. Returnempty.

15.7.3 Static Semantics: ConstructorMethod

ClassElementList:ClassElement
  1. IfClassElementKind ofClassElement isConstructorMethod, returnClassElement.
  2. Returnempty.
ClassElementList:ClassElementListClassElement
  1. Lethead beConstructorMethod ofClassElementList.
  2. Ifhead is notempty, returnhead.
  3. IfClassElementKind ofClassElement isConstructorMethod, returnClassElement.
  4. Returnempty.
Note

Early Error rules ensure that there is only one method definition named"constructor" and that it is not anaccessor property or generator definition.

15.7.4 Static Semantics: IsStatic

ClassElement:MethodDefinition
  1. Returnfalse.
ClassElement:staticMethodDefinition
  1. Returntrue.
ClassElement:;
  1. Returnfalse.

15.7.5 Static Semantics: NonConstructorMethodDefinitions

ClassElementList:ClassElement
  1. IfClassElementKind ofClassElement isNonConstructorMethod, then
    1. Return aList whose sole element isClassElement.
  2. Return a new emptyList.
ClassElementList:ClassElementListClassElement
  1. Letlist beNonConstructorMethodDefinitions ofClassElementList.
  2. IfClassElementKind ofClassElement isNonConstructorMethod, then
    1. AppendClassElement to the end oflist.
  3. Returnlist.

15.7.6 Static Semantics: PrototypePropertyNameList

ClassElementList:ClassElement
  1. IfPropName ofClassElement isempty, return a new emptyList.
  2. IfIsStatic ofClassElement istrue, return a new emptyList.
  3. Return aList whose sole element isPropName ofClassElement.
ClassElementList:ClassElementListClassElement
  1. Letlist bePrototypePropertyNameList ofClassElementList.
  2. IfPropName ofClassElement isempty, returnlist.
  3. IfIsStatic ofClassElement istrue, returnlist.
  4. AppendPropName ofClassElement to the end oflist.
  5. Returnlist.

15.7.7 Runtime Semantics: ClassDefinitionEvaluation

With parametersclassBinding andclassName.

ClassTail:ClassHeritageopt{ClassBodyopt}
  1. Letenv be the LexicalEnvironment of therunning execution context.
  2. LetclassScope beNewDeclarativeEnvironment(env).
  3. IfclassBinding is notundefined, then
    1. PerformclassScope.CreateImmutableBinding(classBinding,true).
  4. IfClassHeritageopt is not present, then
    1. LetprotoParent be%Object.prototype%.
    2. LetconstructorParent be%Function.prototype%.
  5. Else,
    1. Set therunning execution context's LexicalEnvironment toclassScope.
    2. LetsuperclassRef be the result of evaluatingClassHeritage.
    3. Set therunning execution context's LexicalEnvironment toenv.
    4. Letsuperclass be ? GetValue(superclassRef).
    5. Ifsuperclass isnull, then
      1. LetprotoParent benull.
      2. LetconstructorParent be%Function.prototype%.
    6. Else ifIsConstructor(superclass) isfalse, throw aTypeError exception.
    7. Else,
      1. LetprotoParent be ? Get(superclass,"prototype").
      2. IfType(protoParent) is neither Object nor Null, throw aTypeError exception.
      3. LetconstructorParent besuperclass.
  6. Letproto be ! OrdinaryObjectCreate(protoParent).
  7. IfClassBodyopt is not present, letconstructor beempty.
  8. Else, letconstructor beConstructorMethod ofClassBody.
  9. Set therunning execution context's LexicalEnvironment toclassScope.
  10. Ifconstructor isempty, then
    1. Letsteps be the algorithm steps defined inDefault Constructor Functions.
    2. LetF be ! CreateBuiltinFunction(steps, 0,className, « [[ConstructorKind]], [[SourceText]] »,empty,constructorParent).
  11. Else,
    1. LetconstructorInfo be !DefineMethod ofconstructor with argumentsproto andconstructorParent.
    2. LetF beconstructorInfo.[[Closure]].
    3. Perform ! MakeClassConstructor(F).
    4. Perform ! SetFunctionName(F,className).
  12. Perform ! MakeConstructor(F,false,proto).
  13. IfClassHeritageopt is present, setF.[[ConstructorKind]] toderived.
  14. Perform ! CreateMethodProperty(proto,"constructor",F).
  15. IfClassBodyopt is not present, letmethods be a new emptyList.
  16. Else, letmethods beNonConstructorMethodDefinitions ofClassBody.
  17. For eachClassElementm ofmethods, do
    1. IfIsStatic ofm isfalse, then
      1. Letstatus bePropertyDefinitionEvaluation ofm with argumentsproto andfalse.
    2. Else,
      1. Letstatus bePropertyDefinitionEvaluation ofm with argumentsF andfalse.
    3. Ifstatus is anabrupt completion, then
      1. Set therunning execution context's LexicalEnvironment toenv.
      2. ReturnCompletion(status).
  18. Set therunning execution context's LexicalEnvironment toenv.
  19. IfclassBinding is notundefined, then
    1. PerformclassScope.InitializeBinding(classBinding,F).
  20. ReturnF.

15.7.7.1 Default Constructor Functions

When a DefaultConstructor Function is called with zero or more arguments which form the rest parameter ...args, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetF be theactive function object.
  3. IfF.[[ConstructorKind]] isderived, then
    1. NOTE: This branch behaves similarly toconstructor(...args) { super(...args); }. The most notable distinction is that while the aforementioned ECMAScript source text observably calls the@@iterator method on%Array.prototype%, a DefaultConstructor Function does not.
    2. Letfunc be !F.[[GetPrototypeOf]]().
    3. IfIsConstructor(func) isfalse, throw aTypeError exception.
    4. Return ? Construct(func,args, NewTarget).
  4. Else,
    1. NOTE: This branch behaves similarly toconstructor() {}.
    2. Return ? OrdinaryCreateFromConstructor(NewTarget,"%Object.prototype%").

The"length" property of a defaultconstructor function is+0𝔽.

15.7.8 Runtime Semantics: BindingClassDeclarationEvaluation

ClassDeclaration:classBindingIdentifierClassTail
  1. LetclassName beStringValue ofBindingIdentifier.
  2. Letvalue be ?ClassDefinitionEvaluation ofClassTail with argumentsclassName andclassName.
  3. Setvalue.[[SourceText]] to thesource text matched byClassDeclaration.
  4. Letenv be therunning execution context's LexicalEnvironment.
  5. Perform ? InitializeBoundName(className,value,env).
  6. Returnvalue.
ClassDeclaration:classClassTail
  1. Letvalue be ?ClassDefinitionEvaluation ofClassTail with argumentsundefined and"default".
  2. Setvalue.[[SourceText]] to thesource text matched byClassDeclaration.
  3. Returnvalue.
Note

ClassDeclaration:classClassTail only occurs as part of anExportDeclaration and establishing its binding is handled as part of the evaluation action for that production. See16.2.3.7.

15.7.9 Runtime Semantics: Evaluation

ClassDeclaration:classBindingIdentifierClassTail
  1. Perform ?BindingClassDeclarationEvaluation of thisClassDeclaration.
  2. ReturnNormalCompletion(empty).
Note

ClassDeclaration:classClassTail only occurs as part of anExportDeclaration and is never directly evaluated.

ClassExpression:classClassTail
  1. Letvalue be ?ClassDefinitionEvaluation ofClassTail with argumentsundefined and"".
  2. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  3. Returnvalue.
ClassExpression:classBindingIdentifierClassTail
  1. LetclassName beStringValue ofBindingIdentifier.
  2. Letvalue be ?ClassDefinitionEvaluation ofClassTail with argumentsclassName andclassName.
  3. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  4. Returnvalue.

15.8 Async Function Definitions

Syntax

AsyncFunctionDeclaration[Yield, Await, Default]:async[noLineTerminator here]functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, +Await]){AsyncFunctionBody}[+Default]async[noLineTerminator here]function(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionExpression:async[noLineTerminator here]functionBindingIdentifier[~Yield, +Await]opt(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncMethod[Yield, Await]:async[noLineTerminator here]PropertyName[?Yield, ?Await](UniqueFormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionBody:FunctionBody[~Yield, +Await]AwaitExpression[Yield]:awaitUnaryExpression[?Yield, +Await]Note 1

await is parsed as anAwaitExpression when the[Await] parameter is present. The[Await] parameter is present in the following contexts:

WhenModule is the syntacticgoal symbol and the[Await] parameter is absent,await is parsed as akeyword and will be a Syntax error. WhenScript is the syntacticgoal symbol,await may be parsed as an identifier when the[Await] parameter is absent. This includes the following contexts:

Note 2

UnlikeYieldExpression, it is a Syntax Error to omit the operand of anAwaitExpression. You must await something.

15.8.1 Static Semantics: Early Errors

AsyncMethod:asyncPropertyName(UniqueFormalParameters){AsyncFunctionBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}

15.8.2 Runtime Semantics: InstantiateAsyncFunctionObject

With parameterscope.

AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byAsyncFunctionDeclaration.
  3. LetF be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,scope).
  4. Perform ! SetFunctionName(F,name).
  5. ReturnF.
AsyncFunctionDeclaration:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. LetsourceText be thesource text matched byAsyncFunctionDeclaration.
  2. LetF be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,scope).
  3. Perform ! SetFunctionName(F,"default").
  4. ReturnF.

15.8.3 Runtime Semantics: InstantiateAsyncFunctionExpression

With optional parametername.

AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byAsyncFunctionExpression.
  4. Letclosure be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,scope).
  5. PerformSetFunctionName(closure,name).
  6. Returnclosure.
AsyncFunctionExpression:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. Letscope be the LexicalEnvironment of therunning execution context.
  4. LetfuncEnv be ! NewDeclarativeEnvironment(scope).
  5. Perform !funcEnv.CreateImmutableBinding(name,false).
  6. LetsourceText be thesource text matched byAsyncFunctionExpression.
  7. Letclosure be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,funcEnv).
  8. Perform ! SetFunctionName(closure,name).
  9. Perform !funcEnv.InitializeBinding(name,closure).
  10. Returnclosure.
Note

TheBindingIdentifier in anAsyncFunctionExpression can be referenced from inside theAsyncFunctionExpression'sAsyncFunctionBody to allow the function to call itself recursively. However, unlike in aFunctionDeclaration, theBindingIdentifier in aAsyncFunctionExpression cannot be referenced from and does not affect the scope enclosing theAsyncFunctionExpression.

15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody

With parametersfunctionObject andargumentsList (aList).

AsyncFunctionBody:FunctionBody
  1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  2. LetdeclResult beFunctionDeclarationInstantiation(functionObject,argumentsList).
  3. IfdeclResult is not anabrupt completion, then
    1. Perform ! AsyncFunctionStart(promiseCapability,FunctionBody).
  4. Else,
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «declResult.[[Value]] »).
  5. ReturnCompletion { [[Type]]:return, [[Value]]:promiseCapability.[[Promise]], [[Target]]:empty }.

15.8.5 Runtime Semantics: Evaluation

AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. ReturnNormalCompletion(empty).
AsyncFunctionDeclaration:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. ReturnNormalCompletion(empty).
AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}
  1. ReturnInstantiateAsyncFunctionExpression ofAsyncFunctionExpression.
AwaitExpression:awaitUnaryExpression
  1. LetexprRef be the result of evaluatingUnaryExpression.
  2. Letvalue be ? GetValue(exprRef).
  3. Return ? Await(value).

15.9 Async Arrow Function Definitions

Syntax

AsyncArrowFunction[In, Yield, Await]:async[noLineTerminator here]AsyncArrowBindingIdentifier[?Yield][noLineTerminator here]=>AsyncConciseBody[?In]CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]AsyncConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, +Await]{AsyncFunctionBody}AsyncArrowBindingIdentifier[Yield]:BindingIdentifier[?Yield, +Await]CoverCallExpressionAndAsyncArrowHead[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

AsyncArrowHead:async[noLineTerminator here]ArrowFormalParameters[~Yield, +Await]

15.9.1 Static Semantics: Early Errors

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyAsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody

15.9.2 Static Semantics: CoveredAsyncArrowHead

CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Return theAsyncArrowHead that iscovered byCoverCallExpressionAndAsyncArrowHead.

15.9.3 Static Semantics: AsyncConciseBodyContainsUseStrict

AsyncConciseBody:ExpressionBody
  1. Returnfalse.
AsyncConciseBody:{AsyncFunctionBody}
  1. ReturnFunctionBodyContainsUseStrict ofAsyncFunctionBody.

15.9.4 Runtime Semantics: EvaluateAsyncConciseBody

With parametersfunctionObject andargumentsList (aList).

AsyncConciseBody:ExpressionBody
  1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  2. LetdeclResult beFunctionDeclarationInstantiation(functionObject,argumentsList).
  3. IfdeclResult is not anabrupt completion, then
    1. Perform ! AsyncFunctionStart(promiseCapability,ExpressionBody).
  4. Else,
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «declResult.[[Value]] »).
  5. ReturnCompletion { [[Type]]:return, [[Value]]:promiseCapability.[[Promise]], [[Target]]:empty }.

15.9.5 Runtime Semantics: InstantiateAsyncArrowFunctionExpression

With optional parametername.

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBody
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byAsyncArrowFunction.
  4. Letparameters beAsyncArrowBindingIdentifier.
  5. Letclosure be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,parameters,AsyncConciseBody,lexical-this,scope).
  6. PerformSetFunctionName(closure,name).
  7. Returnclosure.
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. Ifname is not present, setname to"".
  2. Letscope be the LexicalEnvironment of therunning execution context.
  3. LetsourceText be thesource text matched byAsyncArrowFunction.
  4. Lethead beCoveredAsyncArrowHead ofCoverCallExpressionAndAsyncArrowHead.
  5. Letparameters be theArrowFormalParameters ofhead.
  6. Letclosure be ! OrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,parameters,AsyncConciseBody,lexical-this,scope).
  7. PerformSetFunctionName(closure,name).
  8. Returnclosure.

15.9.6 Runtime Semantics: Evaluation

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. ReturnInstantiateAsyncArrowFunctionExpression ofAsyncArrowFunction.

15.10 Tail Position Calls

15.10.1 Static Semantics: IsInTailPosition (call )

The abstract operation IsInTailPosition takes argumentcall. It performs the following steps when called:

  1. Assert:call is aParse Node.
  2. If the source code matchingcall isnon-strict code, returnfalse.
  3. Ifcall is not contained within aFunctionBody,ConciseBody, orAsyncConciseBody, returnfalse.
  4. Letbody be theFunctionBody,ConciseBody, orAsyncConciseBody that most closely containscall.
  5. Ifbody is theFunctionBody of aGeneratorBody, returnfalse.
  6. Ifbody is theFunctionBody of anAsyncFunctionBody, returnfalse.
  7. Ifbody is theFunctionBody of anAsyncGeneratorBody, returnfalse.
  8. Ifbody is anAsyncConciseBody, returnfalse.
  9. Return the result ofHasCallInTailPosition ofbody with argumentcall.
Note

Tail Position calls are only defined instrict mode code because of a common non-standard language extension (see10.2.4) that enables observation of the chain of caller contexts.

15.10.2 Static Semantics: HasCallInTailPosition

With parametercall.

Note

call is aParse Node that represents a specific range of source text. When the following algorithms comparecall to anotherParse Node, it is a test of whether they represent the same source text.

15.10.2.1 Statement Rules

StatementList:StatementListStatementListItem
  1. Lethas beHasCallInTailPosition ofStatementList with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition ofStatementListItem with argumentcall.
FunctionStatementList:[empty]StatementListItem:DeclarationStatement:VariableStatementEmptyStatementExpressionStatementContinueStatementBreakStatementThrowStatementDebuggerStatementBlock:{}ReturnStatement:return;LabelledItem:FunctionDeclarationForInOfStatement:for(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)StatementCaseBlock:{}
  1. Returnfalse.
IfStatement:if(Expression)StatementelseStatement
  1. Lethas beHasCallInTailPosition of the firstStatement with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition of the secondStatement with argumentcall.
IfStatement:if(Expression)StatementDoWhileStatement:doStatementwhile(Expression);WhileStatement:while(Expression)StatementForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)StatementForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)StatementWithStatement:with(Expression)Statement
  1. ReturnHasCallInTailPosition ofStatement with argumentcall.
LabelledStatement:LabelIdentifier:LabelledItem
  1. ReturnHasCallInTailPosition ofLabelledItem with argumentcall.
ReturnStatement:returnExpression;
  1. ReturnHasCallInTailPosition ofExpression with argumentcall.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnHasCallInTailPosition ofCaseBlock with argumentcall.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. Lethas befalse.
  2. If the firstCaseClauses is present, lethas beHasCallInTailPosition of the firstCaseClauses with argumentcall.
  3. Ifhas istrue, returntrue.
  4. Lethas beHasCallInTailPosition ofDefaultClause with argumentcall.
  5. Ifhas istrue, returntrue.
  6. If the secondCaseClauses is present, lethas beHasCallInTailPosition of the secondCaseClauses with argumentcall.
  7. Returnhas.
CaseClauses:CaseClausesCaseClause
  1. Lethas beHasCallInTailPosition ofCaseClauses with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition ofCaseClause with argumentcall.
CaseClause:caseExpression:StatementListoptDefaultClause:default:StatementListopt
  1. IfStatementList is present, returnHasCallInTailPosition ofStatementList with argumentcall.
  2. Returnfalse.
TryStatement:tryBlockCatch
  1. ReturnHasCallInTailPosition ofCatch with argumentcall.
TryStatement:tryBlockFinallyTryStatement:tryBlockCatchFinally
  1. ReturnHasCallInTailPosition ofFinally with argumentcall.
Catch:catch(CatchParameter)Block
  1. ReturnHasCallInTailPosition ofBlock with argumentcall.

15.10.2.2 Expression Rules

Note

A potential tail position call that is immediately followed by returnGetValue of the call result is also a possible tail position call. A function call cannot return aReference Record, so such aGetValue operation will always return the same value as the actual function call result.

AssignmentExpression:YieldExpressionArrowFunctionAsyncArrowFunctionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionCallExpression:SuperCallCallExpression[Expression]CallExpression.IdentifierNameNewExpression:newNewExpressionMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameSuperPropertyMetaPropertynewMemberExpressionArgumentsPrimaryExpression:thisIdentifierReferenceLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral
  1. Returnfalse.
Expression:AssignmentExpressionExpression,AssignmentExpression
  1. ReturnHasCallInTailPosition ofAssignmentExpression with argumentcall.
ConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpression
  1. Lethas beHasCallInTailPosition of the firstAssignmentExpression with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition of the secondAssignmentExpression with argumentcall.
LogicalANDExpression:LogicalANDExpression&&BitwiseORExpression
  1. ReturnHasCallInTailPosition ofBitwiseORExpression with argumentcall.
LogicalORExpression:LogicalORExpression||LogicalANDExpression
  1. ReturnHasCallInTailPosition ofLogicalANDExpression with argumentcall.
CoalesceExpression:CoalesceExpressionHead??BitwiseORExpression
  1. ReturnHasCallInTailPosition ofBitwiseORExpression with argumentcall.
CallExpression:CoverCallExpressionAndAsyncArrowHeadCallExpressionArgumentsCallExpressionTemplateLiteral
  1. If thisCallExpression iscall, returntrue.
  2. Returnfalse.
OptionalExpression:MemberExpressionOptionalChainCallExpressionOptionalChainOptionalExpressionOptionalChain
  1. ReturnHasCallInTailPosition ofOptionalChain with argumentcall.
OptionalChain:?.[Expression]?.IdentifierNameOptionalChain[Expression]OptionalChain.IdentifierName
  1. Returnfalse.
OptionalChain:?.ArgumentsOptionalChainArguments
  1. If thisOptionalChain iscall, returntrue.
  2. Returnfalse.
MemberExpression:MemberExpressionTemplateLiteral
  1. If thisMemberExpression iscall, returntrue.
  2. Returnfalse.
PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr beCoveredParenthesizedExpression ofCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnHasCallInTailPosition ofexpr with argumentcall.
ParenthesizedExpression:(Expression)
  1. ReturnHasCallInTailPosition ofExpression with argumentcall.

15.10.3 PrepareForTailCall ( )

The abstract operation PrepareForTailCall takes no arguments. It performs the following steps when called:

  1. LetleafContext be therunning execution context.
  2. SuspendleafContext.
  3. PopleafContext from theexecution context stack. Theexecution context now on the top of the stack becomes therunning execution context.
  4. Assert:leafContext has no further use. It will never be activated as therunning execution context.

A tail position call must either release any transient internal resources associated with the currently executing functionexecution context before invoking the target function or reuse those resources in support of the target function.

Note

For example, a tail position call should only grow an implementation's activation record stack by the amount that the size of the target function's activation record exceeds the size of the calling function's activation record. If the target function's activation record is smaller, then the total size of the stack should decrease.

16 ECMAScript Language: Scripts and Modules

16.1 Scripts

Syntax

Script:ScriptBodyoptScriptBody:StatementList[~Yield, ~Await, ~Return]

16.1.1 Static Semantics: Early Errors

Script:ScriptBodyScriptBody:StatementList

16.1.2 Static Semantics: IsStrict

Script:ScriptBodyopt
  1. IfScriptBody is present and theDirective Prologue ofScriptBody contains aUse Strict Directive, returntrue; otherwise, returnfalse.

16.1.3 Runtime Semantics: Evaluation

Script:[empty]
  1. ReturnNormalCompletion(undefined).

16.1.4 Script Records

AScript Record encapsulates information about a script being evaluated. Each script record contains the fields listed inTable 39.

Table 39:Script Record Fields
Field Name Value Type Meaning
[[Realm]]Realm Record |undefined Therealm within which this script was created.undefined if not yet assigned.
[[Environment]]Environment Record |undefined TheEnvironment Record containing the top level bindings for this script. This field is set when the script is instantiated.
[[ECMAScriptCode]] aParse Node The result of parsing the source text of this script usingScript as thegoal symbol.
[[HostDefined]] Any, default value isempty. Field reserved for use byhost environments that need to associate additional information with a script.

16.1.5 ParseScript (sourceText,realm,hostDefined )

The abstract operation ParseScript takes argumentssourceText,realm, andhostDefined. It creates aScript Record based upon the result of parsingsourceText as aScript. It performs the following steps when called:

  1. Assert:sourceText is an ECMAScript source text (see clause11).
  2. Letbody beParseText(sourceText,Script).
  3. Ifbody is aList of errors, returnbody.
  4. ReturnScript Record { [[Realm]]:realm, [[Environment]]:undefined, [[ECMAScriptCode]]:body, [[HostDefined]]:hostDefined }.
Note

An implementation may parse script source text and analyse it for Early Error conditions prior to evaluation of ParseScript for that script source text. However, the reporting of any errors must be deferred until the point where this specification actually performs ParseScript upon that source text.

16.1.6 ScriptEvaluation (scriptRecord )

The abstract operation ScriptEvaluation takes argumentscriptRecord. It performs the following steps when called:

  1. LetglobalEnv bescriptRecord.[[Realm]].[[GlobalEnv]].
  2. LetscriptContext be a new ECMAScript codeexecution context.
  3. Set the Function ofscriptContext tonull.
  4. Set theRealm ofscriptContext toscriptRecord.[[Realm]].
  5. Set the ScriptOrModule ofscriptContext toscriptRecord.
  6. Set the VariableEnvironment ofscriptContext toglobalEnv.
  7. Set the LexicalEnvironment ofscriptContext toglobalEnv.
  8. Suspend the currentlyrunning execution context.
  9. PushscriptContext onto theexecution context stack;scriptContext is now therunning execution context.
  10. LetscriptBody bescriptRecord.[[ECMAScriptCode]].
  11. Letresult beGlobalDeclarationInstantiation(scriptBody,globalEnv).
  12. Ifresult.[[Type]] isnormal, then
    1. Setresult to the result of evaluatingscriptBody.
  13. Ifresult.[[Type]] isnormal andresult.[[Value]] isempty, then
    1. Setresult toNormalCompletion(undefined).
  14. SuspendscriptContext and remove it from theexecution context stack.
  15. Assert: Theexecution context stack is not empty.
  16. Resume the context that is now on the top of theexecution context stack as therunning execution context.
  17. ReturnCompletion(result).

16.1.7 GlobalDeclarationInstantiation (script,env )

Note 1

When anexecution context is established for evaluating scripts, declarations are instantiated in the currentglobal environment. Each global binding declared in the code is instantiated.

The abstract operation GlobalDeclarationInstantiation takes argumentsscript (aParse Node forScriptBody) andenv (anEnvironment Record).script is theScriptBody for which theexecution context is being established.env is theglobal environment in which bindings are to be created. It performs the following steps when called:

  1. Assert:env is aglobal Environment Record.
  2. LetlexNames be theLexicallyDeclaredNames ofscript.
  3. LetvarNames be theVarDeclaredNames ofscript.
  4. For each elementname oflexNames, do
    1. Ifenv.HasVarDeclaration(name) istrue, throw aSyntaxError exception.
    2. Ifenv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
    3. LethasRestrictedGlobal be ?env.HasRestrictedGlobalProperty(name).
    4. IfhasRestrictedGlobal istrue, throw aSyntaxError exception.
  5. For each elementname ofvarNames, do
    1. Ifenv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
  6. LetvarDeclarations be theVarScopedDeclarations ofscript.
  7. LetfunctionsToInitialize be a new emptyList.
  8. LetdeclaredFunctionNames be a new emptyList.
  9. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is neither aVariableDeclaration nor aForBinding nor aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
      3. Letfn be the sole element of theBoundNames ofd.
      4. Iffn is not an element ofdeclaredFunctionNames, then
        1. LetfnDefinable be ?env.CanDeclareGlobalFunction(fn).
        2. IffnDefinable isfalse, throw aTypeError exception.
        3. Appendfn todeclaredFunctionNames.
        4. Insertd as the first element offunctionsToInitialize.
  10. LetdeclaredVarNames be a new emptyList.
  11. For each elementd ofvarDeclarations, do
    1. Ifd is aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. For each Stringvn of theBoundNames ofd, do
        1. Ifvn is not an element ofdeclaredFunctionNames, then
          1. LetvnDefinable be ?env.CanDeclareGlobalVar(vn).
          2. IfvnDefinable isfalse, throw aTypeError exception.
          3. Ifvn is not an element ofdeclaredVarNames, then
            1. Appendvn todeclaredVarNames.
  12. NOTE: No abnormal terminations occur after this algorithm step if theglobal object is anordinary object. However, if theglobal object is aProxy exotic object it may exhibit behaviours that cause abnormal terminations in some of the following steps.
  13. NOTE: AnnexB.3.3.2 adds additional steps at this point.
  14. LetlexDeclarations be theLexicallyScopedDeclarations ofscript.
  15. For each elementd oflexDeclarations, do
    1. NOTE: Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ?env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ?env.CreateMutableBinding(dn,false).
  16. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentenv.
    3. Perform ?env.CreateGlobalFunctionBinding(fn,fo,false).
  17. For each Stringvn ofdeclaredVarNames, do
    1. Perform ?env.CreateGlobalVarBinding(vn,false).
  18. ReturnNormalCompletion(empty).
Note 2

Early errors specified in16.1.1 prevent name conflicts between function/var declarations and let/const/class declarations as well as redeclaration of let/const/class bindings for declaration contained within a singleScript. However, such conflicts and redeclarations that span more than oneScript are detected as runtime errors during GlobalDeclarationInstantiation. If any such errors are detected, no bindings are instantiated for the script. However, if theglobal object is defined using Proxy exotic objects then the runtime tests for conflicting declarations may be unreliable resulting in anabrupt completion and some global declarations not being instantiated. If this occurs, the code for theScript is not evaluated.

Unlike explicit var or function declarations, properties that are directly created on theglobal object result in global bindings that may be shadowed by let/const/class declarations.

16.2 Modules

Syntax

Module:ModuleBodyoptModuleBody:ModuleItemListModuleItemList:ModuleItemModuleItemListModuleItemModuleItem:ImportDeclarationExportDeclarationStatementListItem[~Yield, ~Await, ~Return]

16.2.1 Module Semantics

16.2.1.1 Static Semantics: Early Errors

ModuleBody:ModuleItemListNote

The duplicateExportedNames rule implies that multipleexport defaultExportDeclaration items within aModuleBody is a Syntax Error. Additional error conditions relating to conflicting or duplicate declarations are checked during module linking prior to evaluation of aModule. If any such errors are detected theModule is not evaluated.

16.2.1.2 Static Semantics: ImportedLocalNames (importEntries )

The abstract operation ImportedLocalNames takes argumentimportEntries (aList of ImportEntry Records (seeTable 45)). It creates aList of all of the local name bindings defined byimportEntries. It performs the following steps when called:

  1. LetlocalNames be a new emptyList.
  2. For eachImportEntry Recordi ofimportEntries, do
    1. Appendi.[[LocalName]] tolocalNames.
  3. ReturnlocalNames.

16.2.1.3 Static Semantics: ModuleRequests

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItem
  1. ReturnModuleRequests ofModuleItem.
ModuleItemList:ModuleItemListModuleItem
  1. LetmoduleNames beModuleRequests ofModuleItemList.
  2. LetadditionalNames beModuleRequests ofModuleItem.
  3. Append tomoduleNames each element ofadditionalNames that is not already an element ofmoduleNames.
  4. ReturnmoduleNames.
ModuleItem:StatementListItem
  1. Return a new emptyList.
ImportDeclaration:importImportClauseFromClause;
  1. ReturnModuleRequests ofFromClause.
ModuleSpecifier:StringLiteral
  1. Return aList whose sole element is theSV ofStringLiteral.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return theModuleRequests ofFromClause.
ExportDeclaration:exportNamedExports;exportVariableStatementexportDeclarationexportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return a new emptyList.

16.2.1.4 Abstract Module Records

AModule Record encapsulates structural information about the imports and exports of a single module. This information is used to link the imports and exports of sets of connected modules. A Module Record includes four fields that are only used when evaluating a module.

For specification purposes Module Record values are values of theRecord specification type and can be thought of as existing in a simple object-oriented hierarchy where Module Record is an abstract class with both abstract and concrete subclasses. This specification defines the abstract subclass namedCyclic Module Record and its concrete subclass namedSource Text Module Record. Other specifications and implementations may define additional Module Record subclasses corresponding to alternative module definition facilities that they defined.

Module Record defines the fields listed inTable 40. All Module Definition subclasses include at least those fields. Module Record also defines the abstract method list inTable 41. All Module definition subclasses must provide concrete implementations of these abstract methods.

Table 40:Module Record Fields
Field Name Value Type Meaning
[[Realm]]Realm Record |undefined TheRealm within which this module was created.undefined if not yet assigned.
[[Environment]]module Environment Record |undefined TheEnvironment Record containing the top level bindings for this module. This field is set when the module is linked.
[[Namespace]] Object |undefined The Module Namespace Object (28.3) if one has been created for this module. Otherwiseundefined.
[[HostDefined]] Any, default value isundefined. Field reserved for use byhost environments that need to associate additional information with a module.
Table 41: Abstract Methods of Module Records
Method Purpose
GetExportedNames([exportStarSet]) Return a list of all names that are either directly or indirectly exported from this module.
ResolveExport(exportName [,resolveSet])

Return the binding of a name exported by this module. Bindings are represented by aResolvedBinding Record, of the form { [[Module]]:Module Record, [[BindingName]]: String }. If the export is a Module Namespace Object without a direct binding in any module, [[BindingName]] will be set to"*namespace*". Returnnull if the name cannot be resolved, or"ambiguous" if multiple bindings were found.

Each time this operation is called with a specificexportName,resolveSet pair as arguments it must return the same result if it completes normally.

Link()

Prepare the module for evaluation by transitively resolving all module dependencies and creating amodule Environment Record.

Evaluate()

If this module has already been evaluated successfully, returnundefined; if it has already been evaluated unsuccessfully, throw the exception that was produced. Otherwise, transitively evaluate all module dependencies of this module and then evaluate this module.

Link must have completed successfully prior to invoking this method.

16.2.1.5 Cyclic Module Records

ACyclic Module Record is used to represent information about a module that can participate in dependency cycles with other modules that are subclasses of theCyclic Module Record type. Module Records that are not subclasses of theCyclic Module Record type must not participate in dependency cycles with Source Text Module Records.

In addition to the fields defined inTable 40 Cyclic Module Records have the additional fields listed inTable 42

Table 42: Additional Fields of Cyclic Module Records
Field Name Value Type Meaning
[[Status]]unlinked |linking |linked |evaluating |evaluated Initiallyunlinked. Transitions tolinking,linked,evaluating,evaluated (in that order) as the module progresses throughout its lifecycle.
[[EvaluationError]] Anabrupt completion |undefined A completion of typethrow representing the exception that occurred during evaluation.undefined if no exception occurred or if [[Status]] is notevaluated.
[[DFSIndex]]Integer |undefined Auxiliary field used during Link and Evaluate only. If [[Status]] islinking orevaluating, this non-negative number records the point at which the module was first visited during the ongoing depth-first traversal of the dependency graph.
[[DFSAncestorIndex]]Integer |undefined Auxiliary field used during Link and Evaluate only. If [[Status]] islinking orevaluating, this is either the module's own [[DFSIndex]] or that of an "earlier" module in the same strongly connected component.
[[RequestedModules]]List of String AList of all theModuleSpecifier strings used by the module represented by this record to request the importation of a module. TheList is source code occurrence ordered.

In addition to the methods defined inTable 41 Cyclic Module Records have the additional methods listed inTable 43

Table 43: Additional Abstract Methods of Cyclic Module Records
Method Purpose
InitializeEnvironment() Initialize theEnvironment Record of the module, including resolving all imported bindings, and create the module'sexecution context.
ExecuteModule() Evaluate the module's code within itsexecution context.

16.2.1.5.1 Link ( ) Concrete Method

The Link concrete method of aCyclic Module Recordmodule takes no arguments. On success, Link transitions this module's [[Status]] fromunlinked tolinked. On failure, an exception is thrown and this module's [[Status]] remainsunlinked. (Most of the work is done by the auxiliary functionInnerModuleLinking.) It performs the following steps when called:

  1. Assert:module.[[Status]] is notlinking orevaluating.
  2. Letstack be a new emptyList.
  3. Letresult beInnerModuleLinking(module,stack, 0).
  4. Ifresult is anabrupt completion, then
    1. For eachCyclic Module Recordm ofstack, do
      1. Assert:m.[[Status]] islinking.
      2. Setm.[[Status]] tounlinked.
      3. Setm.[[Environment]] toundefined.
      4. Setm.[[DFSIndex]] toundefined.
      5. Setm.[[DFSAncestorIndex]] toundefined.
    2. Assert:module.[[Status]] isunlinked.
    3. Returnresult.
  5. Assert:module.[[Status]] islinked orevaluated.
  6. Assert:stack is empty.
  7. Returnundefined.

16.2.1.5.1.1 InnerModuleLinking (module,stack,index )

The abstract operation InnerModuleLinking takes argumentsmodule (aCyclic Module Record),stack, andindex (a non-negativeinteger). It is used by Link to perform the actual linking process formodule, as well as recursively on all other modules in the dependency graph. Thestack andindex parameters, as well as a module's [[DFSIndex]] and [[DFSAncestorIndex]] fields, keep track of the depth-first search (DFS) traversal. In particular, [[DFSAncestorIndex]] is used to discover strongly connected components (SCCs), such that all modules in an SCC transition tolinked together. It performs the following steps when called:

  1. Ifmodule is not aCyclic Module Record, then
    1. Perform ?module.Link().
    2. Returnindex.
  2. Ifmodule.[[Status]] islinking,linked, orevaluated, then
    1. Returnindex.
  3. Assert:module.[[Status]] isunlinked.
  4. Setmodule.[[Status]] tolinking.
  5. Setmodule.[[DFSIndex]] toindex.
  6. Setmodule.[[DFSAncestorIndex]] toindex.
  7. Setindex toindex + 1.
  8. Appendmodule tostack.
  9. For each Stringrequired ofmodule.[[RequestedModules]], do
    1. LetrequiredModule be ? HostResolveImportedModule(module,required).
    2. Setindex to ? InnerModuleLinking(requiredModule,stack,index).
    3. IfrequiredModule is aCyclic Module Record, then
      1. Assert:requiredModule.[[Status]] is eitherlinking,linked, orevaluated.
      2. Assert:requiredModule.[[Status]] islinking if and only ifrequiredModule is instack.
      3. IfrequiredModule.[[Status]] islinking, then
        1. Setmodule.[[DFSAncestorIndex]] tomin(module.[[DFSAncestorIndex]],requiredModule.[[DFSAncestorIndex]]).
  10. Perform ?module.InitializeEnvironment().
  11. Assert:module occurs exactly once instack.
  12. Assert:module.[[DFSAncestorIndex]] ≤module.[[DFSIndex]].
  13. Ifmodule.[[DFSAncestorIndex]] =module.[[DFSIndex]], then
    1. Letdone befalse.
    2. Repeat, whiledone isfalse,
      1. LetrequiredModule be the last element instack.
      2. Remove the last element ofstack.
      3. Assert:requiredModule is aCyclic Module Record.
      4. SetrequiredModule.[[Status]] tolinked.
      5. IfrequiredModule andmodule are the sameModule Record, setdone totrue.
  14. Returnindex.

16.2.1.5.2 Evaluate ( ) Concrete Method

The Evaluate concrete method of aCyclic Module Recordmodule takes no arguments. Evaluate transitions this module's [[Status]] fromlinked toevaluated. If execution results in an exception, that exception is recorded in the [[EvaluationError]] field and rethrown by future invocations of Evaluate. (Most of the work is done by the auxiliary functionInnerModuleEvaluation.) It performs the following steps when called:

  1. Assert: This call to Evaluate is not happening at the same time as another call to Evaluate within thesurrounding agent.
  2. Assert:module.[[Status]] islinked orevaluated.
  3. Letstack be a new emptyList.
  4. Letresult beInnerModuleEvaluation(module,stack, 0).
  5. Ifresult is anabrupt completion, then
    1. For eachCyclic Module Recordm ofstack, do
      1. Assert:m.[[Status]] isevaluating.
      2. Setm.[[Status]] toevaluated.
      3. Setm.[[EvaluationError]] toresult.
    2. Assert:module.[[Status]] isevaluated andmodule.[[EvaluationError]] isresult.
    3. Returnresult.
  6. Assert:module.[[Status]] isevaluated andmodule.[[EvaluationError]] isundefined.
  7. Assert:stack is empty.
  8. Returnundefined.

16.2.1.5.2.1 InnerModuleEvaluation (module,stack,index )

The abstract operation InnerModuleEvaluation takes argumentsmodule (aModule Record),stack, andindex (a non-negativeinteger). It is used by Evaluate to perform the actual evaluation process formodule, as well as recursively on all other modules in the dependency graph. Thestack andindex parameters, as well asmodule's [[DFSIndex]] and [[DFSAncestorIndex]] fields, are used the same way as inInnerModuleLinking. It performs the following steps when called:

  1. Ifmodule is not aCyclic Module Record, then
    1. Perform ?module.Evaluate().
    2. Returnindex.
  2. Ifmodule.[[Status]] isevaluated, then
    1. Ifmodule.[[EvaluationError]] isundefined, returnindex.
    2. Otherwise, returnmodule.[[EvaluationError]].
  3. Ifmodule.[[Status]] isevaluating, returnindex.
  4. Assert:module.[[Status]] islinked.
  5. Setmodule.[[Status]] toevaluating.
  6. Setmodule.[[DFSIndex]] toindex.
  7. Setmodule.[[DFSAncestorIndex]] toindex.
  8. Setindex toindex + 1.
  9. Appendmodule tostack.
  10. For each Stringrequired ofmodule.[[RequestedModules]], do
    1. LetrequiredModule be ! HostResolveImportedModule(module,required).
    2. NOTE: Link must be completed successfully prior to invoking this method, so every requested module is guaranteed to resolve successfully.
    3. Setindex to ? InnerModuleEvaluation(requiredModule,stack,index).
    4. IfrequiredModule is aCyclic Module Record, then
      1. Assert:requiredModule.[[Status]] is eitherevaluating orevaluated.
      2. Assert:requiredModule.[[Status]] isevaluating if and only ifrequiredModule is instack.
      3. IfrequiredModule.[[Status]] isevaluating, then
        1. Setmodule.[[DFSAncestorIndex]] tomin(module.[[DFSAncestorIndex]],requiredModule.[[DFSAncestorIndex]]).
  11. Perform ?module.ExecuteModule().
  12. Assert:module occurs exactly once instack.
  13. Assert:module.[[DFSAncestorIndex]] ≤module.[[DFSIndex]].
  14. Ifmodule.[[DFSAncestorIndex]] =module.[[DFSIndex]], then
    1. Letdone befalse.
    2. Repeat, whiledone isfalse,
      1. LetrequiredModule be the last element instack.
      2. Remove the last element ofstack.
      3. Assert:requiredModule is aCyclic Module Record.
      4. SetrequiredModule.[[Status]] toevaluated.
      5. IfrequiredModule andmodule are the sameModule Record, setdone totrue.
  15. Returnindex.

16.2.1.5.3 Example Cyclic Module Record Graphs

This non-normative section gives a series of examples of the linking and evaluation of a few common module graphs, with a specific focus on how errors can occur.

First consider the following simple module graph:

Figure 2: A simple module graph
A module graph in which module A depends on module B, and module B depends on module C

Let's first assume that there are no error conditions. When ahost first callsA.Link(), this will complete successfully by assumption, and recursively link modulesB andC as well, such thatA.[[Status]] =B.[[Status]] =C.[[Status]] =linked. This preparatory step can be performed at any time. Later, when thehost is ready to incur any possible side effects of the modules, it can callA.Evaluate(), which will complete successfully (again by assumption), recursively having evaluated firstC and thenB. Each module's [[Status]] at this point will beevaluated.

Consider then cases involving linking errors. IfInnerModuleLinking ofC succeeds but, thereafter, fails forB, for example because it imports something thatC does not provide, then the originalA.Link() will fail, and bothA andB's [[Status]] remainunlinked.C's [[Status]] has becomelinked, though.

Finally, consider a case involving evaluation errors. IfInnerModuleEvaluation ofC succeeds but, thereafter, fails forB, for example becauseB contains code that throws an exception, then the originalA.Evaluate() will fail. The resulting exception will be recorded in bothA andB's [[EvaluationError]] fields, and their [[Status]] will becomeevaluated.C will also becomeevaluated but, in contrast toA andB, will remain without an [[EvaluationError]], as it successfully completed evaluation. Storing the exception ensures that any time ahost tries to reuseA orB by calling their Evaluate() method, it will encounter the same exception. (Hosts are not required to reuse Cyclic Module Records; similarly, hosts are not required to expose the exception objects thrown by these methods. However, the specification enables such uses.)

The difference here between linking and evaluation errors is due to how evaluation must be only performed once, as it can cause side effects; it is thus important to remember whether evaluation has already been performed, even if unsuccessfully. (In the error case, it makes sense to also remember the exception because otherwise subsequent Evaluate() calls would have to synthesize a new one.) Linking, on the other hand, is side-effect-free, and thus even if it fails, it can be retried at a later time with no issues.

Now consider a different type of error condition:

Figure 3: A module graph with an unresolvable module
A module graph in which module A depends on a missing (unresolvable) module, represented by ???

In this scenario, moduleA declares a dependency on some other module, but noModule Record exists for that module, i.e.HostResolveImportedModule throws an exception when asked for it. This could occur for a variety of reasons, such as the corresponding resource not existing, or the resource existing butParseModule throwing an exception when trying to parse the resulting source text. Hosts can choose to expose the cause of failure via the exception they throw fromHostResolveImportedModule. In any case, this exception causes a linking failure, which as before results inA's [[Status]] remainingunlinked.

Lastly, consider a module graph with a cycle:

Figure 4: A cyclic module graph
A module graph in which module A depends on module B and C, but module B also depends on module A

Here we assume that the entry point is moduleA, so that thehost proceeds by callingA.Link(), which performsInnerModuleLinking onA. This in turn callsInnerModuleLinking onB. Because of the cycle, this again triggersInnerModuleLinking onA, but at this point it is a no-op sinceA.[[Status]] is alreadylinking.B.[[Status]] itself remainslinking when control gets back toA andInnerModuleLinking is triggered onC. After this returns withC.[[Status]] beinglinked, bothA andB transition fromlinking tolinked together; this is by design, since they form a strongly connected component.

An analogous story occurs for the evaluation phase of a cyclic module graph, in the success case.

Now consider a case whereA has an linking error; for example, it tries to import a binding fromC that does not exist. In that case, the above steps still occur, including the early return from the second call toInnerModuleLinking onA. However, once we unwind back to the originalInnerModuleLinking onA, it fails duringInitializeEnvironment, namely right afterC.ResolveExport(). The thrownSyntaxError exception propagates up toA.Link, which resets all modules that are currently on itsstack (these are always exactly the modules that are stilllinking). Hence bothA andB becomeunlinked. Note thatC is left aslinked.

Finally, consider a case whereA has an evaluation error; for example, its source code throws an exception. In that case, the evaluation-time analog of the above steps still occurs, including the early return from the second call toInnerModuleEvaluation onA. However, once we unwind back to the originalInnerModuleEvaluation onA, it fails by assumption. The exception thrown propagates up toA.Evaluate(), which records the error in all modules that are currently on itsstack (i.e., the modules that are stillevaluating). Hence bothA andB becomeevaluated and the exception is recorded in bothA andB's [[EvaluationError]] fields, whileC is left asevaluated with no [[EvaluationError]].

16.2.1.6 Source Text Module Records

ASource Text Module Record is used to represent information about a module that was defined from ECMAScript source text (11) that was parsed using thegoal symbolModule. Its fields contain digested information about the names that are imported by the module and its concrete methods use this digest to link, link, and evaluate the module.

ASource Text Module Record can exist in a module graph with other subclasses of the abstractModule Record type, and can participate in cycles with other subclasses of theCyclic Module Record type.

In addition to the fields defined inTable 42, Source Text Module Records have the additional fields listed inTable 44. Each of these fields is initially set inParseModule.

Table 44: Additional Fields of Source Text Module Records
Field Name Value Type Meaning
[[ECMAScriptCode]] aParse Node The result of parsing the source text of this module usingModule as thegoal symbol.
[[Context]] An ECMAScriptexecution context. Theexecution context associated with this module.
[[ImportMeta]] Object An object exposed through theimport.meta meta property. It isempty until it is accessed by ECMAScript code.
[[ImportEntries]]List of ImportEntry Records AList of ImportEntry records derived from the code of this module.
[[LocalExportEntries]]List of ExportEntry Records AList of ExportEntry records derived from the code of this module that correspond to declarations that occur within the module.
[[IndirectExportEntries]]List of ExportEntry Records AList of ExportEntry records derived from the code of this module that correspond to reexported imports that occur within the module or exports fromexport * as namespace declarations.
[[StarExportEntries]]List of ExportEntry Records AList of ExportEntry records derived from the code of this module that correspond toexport * declarations that occur within the module, not includingexport * as namespace declarations.

AnImportEntry Record is aRecord that digests information about a single declarative import. EachImportEntry Record has the fields defined inTable 45:

Table 45:ImportEntry Record Fields
Field Name Value Type Meaning
[[ModuleRequest]] String String value of theModuleSpecifier of theImportDeclaration.
[[ImportName]] String The name under which the desired binding is exported by the module identified by [[ModuleRequest]]. The value"*" indicates that the import request is for the target module's namespace object.
[[LocalName]] String The name that is used to locally access the imported value from within the importing module.
Note 1

Table 46 gives examples of ImportEntry records fields used to represent the syntactic import forms:

Table 46 (Informative): Import Forms Mappings to ImportEntry Records
Import Statement Form [[ModuleRequest]] [[ImportName]] [[LocalName]]
import v from "mod";"mod""default""v"
import * as ns from "mod";"mod""*""ns"
import {x} from "mod";"mod""x""x"
import {x as v} from "mod";"mod""x""v"
import "mod"; AnImportEntry Record is not created.

AnExportEntry Record is aRecord that digests information about a single declarative export. EachExportEntry Record has the fields defined inTable 47:

Table 47:ExportEntry Record Fields
Field Name Value Type Meaning
[[ExportName]] String | null The name used to export this binding by this module.
[[ModuleRequest]] String | null The String value of theModuleSpecifier of theExportDeclaration.null if theExportDeclaration does not have aModuleSpecifier.
[[ImportName]] String | null The name under which the desired binding is exported by the module identified by [[ModuleRequest]].null if theExportDeclaration does not have aModuleSpecifier."*" indicates that the export request is for all exported bindings.
[[LocalName]] String | null The name that is used to locally access the exported value from within the importing module.null if the exported value is not locally accessible from within the module.
Note 2

Table 48 gives examples of the ExportEntry record fields used to represent the syntactic export forms:

Table 48 (Informative): Export Forms Mappings to ExportEntry Records
Export Statement Form [[ExportName]] [[ModuleRequest]] [[ImportName]] [[LocalName]]
export var v;"v"nullnull"v"
export default function f() {}"default"nullnull"f"
export default function () {}"default"nullnull"*default*"
export default 42;"default"nullnull"*default*"
export {x};"x"nullnull"x"
export {v as x};"x"nullnull"v"
export {x} from "mod";"x""mod""x"null
export {v as x} from "mod";"x""mod""v"null
export * from "mod";null"mod""*"null
export * as ns from "mod";"ns""mod""*"null

The following definitions specify the required concrete methods and otherabstract operations for Source Text Module Records

16.2.1.6.1 ParseModule (sourceText,realm,hostDefined )

The abstract operation ParseModule takes argumentssourceText (ECMAScript source text),realm, andhostDefined. It creates aSource Text Module Record based upon the result of parsingsourceText as aModule. It performs the following steps when called:

  1. Assert:sourceText is an ECMAScript source text (see clause11).
  2. Letbody beParseText(sourceText,Module).
  3. Ifbody is aList of errors, returnbody.
  4. LetrequestedModules be theModuleRequests ofbody.
  5. LetimportEntries beImportEntries ofbody.
  6. LetimportedBoundNames beImportedLocalNames(importEntries).
  7. LetindirectExportEntries be a new emptyList.
  8. LetlocalExportEntries be a new emptyList.
  9. LetstarExportEntries be a new emptyList.
  10. LetexportEntries beExportEntries ofbody.
  11. For eachExportEntry Recordee ofexportEntries, do
    1. Ifee.[[ModuleRequest]] isnull, then
      1. Ifee.[[LocalName]] is not an element ofimportedBoundNames, then
        1. Appendee tolocalExportEntries.
      2. Else,
        1. Letie be the element ofimportEntries whose [[LocalName]] is the same asee.[[LocalName]].
        2. Ifie.[[ImportName]] is"*", then
          1. NOTE: This is a re-export of an imported module namespace object.
          2. Appendee tolocalExportEntries.
        3. Else,
          1. NOTE: This is a re-export of a single name.
          2. Append theExportEntry Record { [[ModuleRequest]]:ie.[[ModuleRequest]], [[ImportName]]:ie.[[ImportName]], [[LocalName]]:null, [[ExportName]]:ee.[[ExportName]] } toindirectExportEntries.
    2. Else ifee.[[ImportName]] is"*" andee.[[ExportName]] isnull, then
      1. Appendee tostarExportEntries.
    3. Else,
      1. Appendee toindirectExportEntries.
  12. ReturnSource Text Module Record { [[Realm]]:realm, [[Environment]]:undefined, [[Namespace]]:undefined, [[Status]]:unlinked, [[EvaluationError]]:undefined, [[HostDefined]]:hostDefined, [[ECMAScriptCode]]:body, [[Context]]:empty, [[ImportMeta]]:empty, [[RequestedModules]]:requestedModules, [[ImportEntries]]:importEntries, [[LocalExportEntries]]:localExportEntries, [[IndirectExportEntries]]:indirectExportEntries, [[StarExportEntries]]:starExportEntries, [[DFSIndex]]:undefined, [[DFSAncestorIndex]]:undefined }.
Note

An implementation may parse module source text and analyse it for Early Error conditions prior to the evaluation of ParseModule for that module source text. However, the reporting of any errors must be deferred until the point where this specification actually performs ParseModule upon that source text.

16.2.1.6.2 GetExportedNames ( [exportStarSet ] ) Concrete Method

The GetExportedNames concrete method of aSource Text Module Recordmodule takes optional argumentexportStarSet. It performs the following steps when called:

  1. IfexportStarSet is not present, setexportStarSet to a new emptyList.
  2. Assert:exportStarSet is aList of Source Text Module Records.
  3. IfexportStarSet containsmodule, then
    1. Assert: We've reached the starting point of anexport * circularity.
    2. Return a new emptyList.
  4. Appendmodule toexportStarSet.
  5. LetexportedNames be a new emptyList.
  6. For eachExportEntry Recorde ofmodule.[[LocalExportEntries]], do
    1. Assert:module provides the direct binding for this export.
    2. Appende.[[ExportName]] toexportedNames.
  7. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. Assert:module imports a specific binding for this export.
    2. Appende.[[ExportName]] toexportedNames.
  8. For eachExportEntry Recorde ofmodule.[[StarExportEntries]], do
    1. LetrequestedModule be ? HostResolveImportedModule(module,e.[[ModuleRequest]]).
    2. LetstarNames be ?requestedModule.GetExportedNames(exportStarSet).
    3. For each elementn ofstarNames, do
      1. IfSameValue(n,"default") isfalse, then
        1. Ifn is not an element ofexportedNames, then
          1. Appendn toexportedNames.
  9. ReturnexportedNames.
Note

GetExportedNames does not filter out or throw an exception for names that have ambiguous star export bindings.

16.2.1.6.3 ResolveExport (exportName [ ,resolveSet ] ) Concrete Method

The ResolveExport concrete method of aSource Text Module Recordmodule takes argumentexportName (a String) and optional argumentresolveSet.

ResolveExport attempts to resolve an imported binding to the actual defining module and local binding name. The defining module may be the module represented by theModule Record this method was invoked on or some other module that is imported by that module. The parameterresolveSet is used to detect unresolved circular import/export paths. If a pair consisting of specificModule Record andexportName is reached that is already inresolveSet, an import circularity has been encountered. Before recursively calling ResolveExport, a pair consisting ofmodule andexportName is added toresolveSet.

If a defining module is found, aResolvedBinding Record { [[Module]], [[BindingName]] } is returned. This record identifies the resolved binding of the originally requested export, unless this is the export of a namespace with no local binding. In this case, [[BindingName]] will be set to"*namespace*". If no definition was found or the request is found to be circular,null is returned. If the request is found to be ambiguous, the string"ambiguous" is returned.

This concrete method performs the following steps when called:

  1. IfresolveSet is not present, setresolveSet to a new emptyList.
  2. Assert:resolveSet is aList ofRecord { [[Module]], [[ExportName]] }.
  3. For eachRecord { [[Module]], [[ExportName]] }r ofresolveSet, do
    1. Ifmodule andr.[[Module]] are the sameModule Record andSameValue(exportName,r.[[ExportName]]) istrue, then
      1. Assert: This is a circular import request.
      2. Returnnull.
  4. Append theRecord { [[Module]]:module, [[ExportName]]:exportName } toresolveSet.
  5. For eachExportEntry Recorde ofmodule.[[LocalExportEntries]], do
    1. IfSameValue(exportName,e.[[ExportName]]) istrue, then
      1. Assert:module provides the direct binding for this export.
      2. ReturnResolvedBinding Record { [[Module]]:module, [[BindingName]]:e.[[LocalName]] }.
  6. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. IfSameValue(exportName,e.[[ExportName]]) istrue, then
      1. LetimportedModule be ? HostResolveImportedModule(module,e.[[ModuleRequest]]).
      2. Ife.[[ImportName]] is"*", then
        1. Assert:module does not provide the direct binding for this export.
        2. ReturnResolvedBinding Record { [[Module]]:importedModule, [[BindingName]]:"*namespace*" }.
      3. Else,
        1. Assert:module imports a specific binding for this export.
        2. ReturnimportedModule.ResolveExport(e.[[ImportName]],resolveSet).
  7. IfSameValue(exportName,"default") istrue, then
    1. Assert: Adefault export was not explicitly defined by this module.
    2. Returnnull.
    3. NOTE: Adefault export cannot be provided by anexport * orexport * from "mod" declaration.
  8. LetstarResolution benull.
  9. For eachExportEntry Recorde ofmodule.[[StarExportEntries]], do
    1. LetimportedModule be ? HostResolveImportedModule(module,e.[[ModuleRequest]]).
    2. Letresolution be ?importedModule.ResolveExport(exportName,resolveSet).
    3. Ifresolution is"ambiguous", return"ambiguous".
    4. Ifresolution is notnull, then
      1. Assert:resolution is aResolvedBinding Record.
      2. IfstarResolution isnull, setstarResolution toresolution.
      3. Else,
        1. Assert: There is more than one* import that includes the requested name.
        2. Ifresolution.[[Module]] andstarResolution.[[Module]] are not the sameModule Record orSameValue(resolution.[[BindingName]],starResolution.[[BindingName]]) isfalse, return"ambiguous".
  10. ReturnstarResolution.

16.2.1.6.4 InitializeEnvironment ( ) Concrete Method

The InitializeEnvironment concrete method of aSource Text Module Recordmodule takes no arguments. It performs the following steps when called:

  1. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. Letresolution be ?module.ResolveExport(e.[[ExportName]]).
    2. Ifresolution isnull or"ambiguous", throw aSyntaxError exception.
    3. Assert:resolution is aResolvedBinding Record.
  2. Assert: All named exports frommodule are resolvable.
  3. Letrealm bemodule.[[Realm]].
  4. Assert:realm is notundefined.
  5. Letenv beNewModuleEnvironment(realm.[[GlobalEnv]]).
  6. Setmodule.[[Environment]] toenv.
  7. For eachImportEntry Recordin ofmodule.[[ImportEntries]], do
    1. LetimportedModule be ! HostResolveImportedModule(module,in.[[ModuleRequest]]).
    2. NOTE: The above call cannot fail because imported module requests are a subset ofmodule.[[RequestedModules]], and these have been resolved earlier in this algorithm.
    3. Ifin.[[ImportName]] is"*", then
      1. Letnamespace be ? GetModuleNamespace(importedModule).
      2. Perform !env.CreateImmutableBinding(in.[[LocalName]],true).
      3. Callenv.InitializeBinding(in.[[LocalName]],namespace).
    4. Else,
      1. Letresolution be ?importedModule.ResolveExport(in.[[ImportName]]).
      2. Ifresolution isnull or"ambiguous", throw aSyntaxError exception.
      3. Ifresolution.[[BindingName]] is"*namespace*", then
        1. Letnamespace be ? GetModuleNamespace(resolution.[[Module]]).
        2. Perform !env.CreateImmutableBinding(in.[[LocalName]],true).
        3. Callenv.InitializeBinding(in.[[LocalName]],namespace).
      4. Else,
        1. Callenv.CreateImportBinding(in.[[LocalName]],resolution.[[Module]],resolution.[[BindingName]]).
  8. LetmoduleContext be a new ECMAScript codeexecution context.
  9. Set the Function ofmoduleContext tonull.
  10. Assert:module.[[Realm]] is notundefined.
  11. Set theRealm ofmoduleContext tomodule.[[Realm]].
  12. Set the ScriptOrModule ofmoduleContext tomodule.
  13. Set the VariableEnvironment ofmoduleContext tomodule.[[Environment]].
  14. Set the LexicalEnvironment ofmoduleContext tomodule.[[Environment]].
  15. Setmodule.[[Context]] tomoduleContext.
  16. PushmoduleContext onto theexecution context stack;moduleContext is now therunning execution context.
  17. Letcode bemodule.[[ECMAScriptCode]].
  18. LetvarDeclarations be theVarScopedDeclarations ofcode.
  19. LetdeclaredVarNames be a new emptyList.
  20. For each elementd ofvarDeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. Ifdn is not an element ofdeclaredVarNames, then
        1. Perform !env.CreateMutableBinding(dn,false).
        2. Callenv.InitializeBinding(dn,undefined).
        3. Appenddn todeclaredVarNames.
  21. LetlexDeclarations be theLexicallyScopedDeclarations ofcode.
  22. For each elementd oflexDeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform !env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform !env.CreateMutableBinding(dn,false).
      3. Ifd is aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration, then
        1. Letfo beInstantiateFunctionObject ofd with argumentenv.
        2. Callenv.InitializeBinding(dn,fo).
  23. RemovemoduleContext from theexecution context stack.
  24. ReturnNormalCompletion(empty).

16.2.1.6.5 ExecuteModule ( ) Concrete Method

The ExecuteModule concrete method of aSource Text Module Recordmodule takes no arguments. It performs the following steps when called:

  1. Suspend the currentlyrunning execution context.
  2. LetmoduleContext bemodule.[[Context]].
  3. PushmoduleContext onto theexecution context stack;moduleContext is now therunning execution context.
  4. Letresult be the result of evaluatingmodule.[[ECMAScriptCode]].
  5. SuspendmoduleContext and remove it from theexecution context stack.
  6. Resume the context that is now on the top of theexecution context stack as therunning execution context.
  7. ReturnCompletion(result).

16.2.1.7 HostResolveImportedModule (referencingScriptOrModule,specifier )

Thehost-defined abstract operation HostResolveImportedModule takes argumentsreferencingScriptOrModule (aScript Record orModule Record ornull) andspecifier (aModuleSpecifier String). It provides the concreteModule Record subclass instance that corresponds tospecifier occurring within the context of the script or module represented byreferencingScriptOrModule.referencingScriptOrModule may benull if the resolution is being performed in the context of animport() expression and there is noactive script or module at that time.

Note

An example of whenreferencingScriptOrModule can benull is in a web browserhost. There, if a user clicks on a control given by

<buttontype="button"onclick="import('./foo.mjs')">Click me</button>

there will be noactive script or module at the time theimport() expression runs. More generally, this can happen in any situation where thehost pushes execution contexts withnull ScriptOrModule components onto theexecution context stack.

The implementation of HostResolveImportedModule must conform to the following requirements:

  • The normal return value must be an instance of a concrete subclass ofModule Record.
  • If aModule Record corresponding to the pairreferencingScriptOrModule,specifier does not exist or cannot be created, an exception must be thrown.
  • Each time this operation is called with a specificreferencingScriptOrModule,specifier pair as arguments it must return the sameModule Record instance if it completes normally.

Multiple differentreferencingScriptOrModule,specifier pairs may map to the sameModule Record instance. The actual mapping semantic ishost-defined but typically a normalization process is applied tospecifier as part of the mapping process. A typical normalization process would include actions such as alphabetic case folding and expansion of relative and abbreviated path specifiers.

16.2.1.8 HostImportModuleDynamically (referencingScriptOrModule,specifier,promiseCapability )

Thehost-defined abstract operation HostImportModuleDynamically takes argumentsreferencingScriptOrModule (aScript Record orModule Record ornull),specifier (aModuleSpecifier String), andpromiseCapability (aPromiseCapability Record). It performs any necessary setup work in order to make available the module corresponding tospecifier occurring within the context of the script or module represented byreferencingScriptOrModule.referencingScriptOrModule may benull if there is noactive script or module when theimport() expression occurs. It then performsFinishDynamicImport to finish the dynamic import process.

The implementation of HostImportModuleDynamically must conform to the following requirements:

  • The abstract operation must always complete normally withundefined. Success or failure must instead be signaled as discussed below.
  • Thehost environment must conform to one of the two following sets of requirements:
    Success path
    Failure path
  • If thehost environment takes the success path once for a givenreferencingScriptOrModule,specifier pair, it must always do so for subsequent calls.
  • The operation must not callpromiseCapability.[[Resolve]] orpromiseCapability.[[Reject]], but instead must treatpromiseCapability as an opaque identifying value to be passed through toFinishDynamicImport.

The actual process performed ishost-defined, but typically consists of performing whatever I/O operations are necessary to allowHostResolveImportedModule to synchronously retrieve the appropriateModule Record, and then calling its Evaluate concrete method. This might require performing similar normalization asHostResolveImportedModule does.

16.2.1.9 FinishDynamicImport (referencingScriptOrModule,specifier,promiseCapability,completion )

The abstract operation FinishDynamicImport takes argumentsreferencingScriptOrModule,specifier,promiseCapability (aPromiseCapability Record), andcompletion. FinishDynamicImport completes the process of a dynamic import originally started by animport() call, resolving or rejecting the promise returned by that call as appropriate according tocompletion. It is performed byhost environments as part ofHostImportModuleDynamically. It performs the following steps when called:

  1. Ifcompletion is anabrupt completion, perform ! Call(promiseCapability.[[Reject]],undefined, «completion.[[Value]] »).
  2. Else,
    1. Assert:completion is a normal completion andcompletion.[[Value]] isundefined.
    2. LetmoduleRecord be ! HostResolveImportedModule(referencingScriptOrModule,specifier).
    3. Assert: Evaluate has already been invoked onmoduleRecord and successfully completed.
    4. Letnamespace beGetModuleNamespace(moduleRecord).
    5. Ifnamespace is anabrupt completion, perform ! Call(promiseCapability.[[Reject]],undefined, «namespace.[[Value]] »).
    6. Else, perform ! Call(promiseCapability.[[Resolve]],undefined, «namespace.[[Value]] »).

16.2.1.10 GetModuleNamespace (module )

The abstract operation GetModuleNamespace takes argumentmodule. It retrieves the Module Namespace Object representingmodule's exports, lazily creating it the first time it was requested, and storing it inmodule.[[Namespace]] for future retrieval. It performs the following steps when called:

  1. Assert:module is an instance of a concrete subclass ofModule Record.
  2. Assert: Ifmodule is aCyclic Module Record, thenmodule.[[Status]] is notunlinked.
  3. Letnamespace bemodule.[[Namespace]].
  4. Ifnamespace isundefined, then
    1. LetexportedNames be ?module.GetExportedNames().
    2. LetunambiguousNames be a new emptyList.
    3. For each elementname ofexportedNames, do
      1. Letresolution be ?module.ResolveExport(name).
      2. Ifresolution is aResolvedBinding Record, appendname tounambiguousNames.
    4. Setnamespace toModuleNamespaceCreate(module,unambiguousNames).
  5. Returnnamespace.
Note

The only way GetModuleNamespace can throw is via one of the triggeredHostResolveImportedModule calls. Unresolvable names are simply excluded from the namespace at this point. They will lead to a real linking error later unless they are all ambiguous star exports that are not explicitly requested anywhere.

16.2.1.11 Runtime Semantics: Evaluation

Module:[empty]
  1. ReturnNormalCompletion(undefined).
ModuleBody:ModuleItemList
  1. Letresult be the result of evaluatingModuleItemList.
  2. Ifresult.[[Type]] isnormal andresult.[[Value]] isempty, then
    1. ReturnNormalCompletion(undefined).
  3. ReturnCompletion(result).
ModuleItemList:ModuleItemListModuleItem
  1. Letsl be the result of evaluatingModuleItemList.
  2. ReturnIfAbrupt(sl).
  3. Lets be the result of evaluatingModuleItem.
  4. ReturnCompletion(UpdateEmpty(s,sl)).
Note

The value of aModuleItemList is the value of the last value-producing item in theModuleItemList.

ModuleItem:ImportDeclaration
  1. ReturnNormalCompletion(empty).

16.2.2 Imports

Syntax

ImportDeclaration:importImportClauseFromClause;importModuleSpecifier;ImportClause:ImportedDefaultBindingNameSpaceImportNamedImportsImportedDefaultBinding,NameSpaceImportImportedDefaultBinding,NamedImportsImportedDefaultBinding:ImportedBindingNameSpaceImport:*asImportedBindingNamedImports:{}{ImportsList}{ImportsList,}FromClause:fromModuleSpecifierImportsList:ImportSpecifierImportsList,ImportSpecifierImportSpecifier:ImportedBindingIdentifierNameasImportedBindingModuleSpecifier:StringLiteralImportedBinding:BindingIdentifier[~Yield, ~Await]

16.2.2.1 Static Semantics: Early Errors

ModuleItem:ImportDeclaration

16.2.2.2 Static Semantics: ImportEntries

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letentries beImportEntries ofModuleItemList.
  2. Append toentries the elements of theImportEntries ofModuleItem.
  3. Returnentries.
ModuleItem:ExportDeclarationStatementListItem
  1. Return a new emptyList.
ImportDeclaration:importImportClauseFromClause;
  1. Letmodule be the sole element ofModuleRequests ofFromClause.
  2. ReturnImportEntriesForModule ofImportClause with argumentmodule.
ImportDeclaration:importModuleSpecifier;
  1. Return a new emptyList.

16.2.2.3 Static Semantics: ImportEntriesForModule

With parametermodule.

ImportClause:ImportedDefaultBinding,NameSpaceImport
  1. Letentries beImportEntriesForModule ofImportedDefaultBinding with argumentmodule.
  2. Append toentries the elements of theImportEntriesForModule ofNameSpaceImport with argumentmodule.
  3. Returnentries.
ImportClause:ImportedDefaultBinding,NamedImports
  1. Letentries beImportEntriesForModule ofImportedDefaultBinding with argumentmodule.
  2. Append toentries the elements of theImportEntriesForModule ofNamedImports with argumentmodule.
  3. Returnentries.
ImportedDefaultBinding:ImportedBinding
  1. LetlocalName be the sole element ofBoundNames ofImportedBinding.
  2. LetdefaultEntry be theImportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:"default", [[LocalName]]:localName }.
  3. Return aList whose sole element isdefaultEntry.
NameSpaceImport:*asImportedBinding
  1. LetlocalName be theStringValue ofImportedBinding.
  2. Letentry be theImportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:"*", [[LocalName]]:localName }.
  3. Return aList whose sole element isentry.
NamedImports:{}
  1. Return a new emptyList.
ImportsList:ImportsList,ImportSpecifier
  1. Letspecs be theImportEntriesForModule ofImportsList with argumentmodule.
  2. Append tospecs the elements of theImportEntriesForModule ofImportSpecifier with argumentmodule.
  3. Returnspecs.
ImportSpecifier:ImportedBinding
  1. LetlocalName be the sole element ofBoundNames ofImportedBinding.
  2. Letentry be theImportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:localName, [[LocalName]]:localName }.
  3. Return aList whose sole element isentry.
ImportSpecifier:IdentifierNameasImportedBinding
  1. LetimportName be theStringValue ofIdentifierName.
  2. LetlocalName be theStringValue ofImportedBinding.
  3. Letentry be theImportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:importName, [[LocalName]]:localName }.
  4. Return aList whose sole element isentry.

16.2.3 Exports

Syntax

ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement[~Yield, ~Await]exportDeclaration[~Yield, ~Await]exportdefaultHoistableDeclaration[~Yield, ~Await, +Default]exportdefaultClassDeclaration[~Yield, ~Await, +Default]exportdefault[lookahead ∉ {function,async[noLineTerminator here]function,class }]AssignmentExpression[+In, ~Yield, ~Await];ExportFromClause:**asIdentifierNameNamedExportsNamedExports:{}{ExportsList}{ExportsList,}ExportsList:ExportSpecifierExportsList,ExportSpecifierExportSpecifier:IdentifierNameIdentifierNameasIdentifierName

16.2.3.1 Static Semantics: Early Errors

ExportDeclaration:exportNamedExports;Note

The above rule means that eachReferencedBindings ofNamedExports is treated as anIdentifierReference.

16.2.3.2 Static Semantics: ExportedBindings

Note

ExportedBindings are the locally bound names that are explicitly associated with aModule'sExportedNames.

ModuleItemList:ModuleItemListModuleItem
  1. Letnames beExportedBindings ofModuleItemList.
  2. Append tonames the elements of theExportedBindings ofModuleItem.
  3. Returnnames.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return a new emptyList.
ExportDeclaration:exportNamedExports;
  1. Return theExportedBindings ofNamedExports.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return theBoundNames of thisExportDeclaration.
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames be theExportedBindings ofExportsList.
  2. Append tonames the elements of theExportedBindings ofExportSpecifier.
  3. Returnnames.
ExportSpecifier:IdentifierName
  1. Return aList whose sole element is theStringValue ofIdentifierName.
ExportSpecifier:IdentifierNameasIdentifierName
  1. Return aList whose sole element is theStringValue of the firstIdentifierName.

16.2.3.3 Static Semantics: ExportedNames

Note

ExportedNames are the externally visible names that aModule explicitly maps to one of its local name bindings.

ModuleItemList:ModuleItemListModuleItem
  1. Letnames beExportedNames ofModuleItemList.
  2. Append tonames the elements of theExportedNames ofModuleItem.
  3. Returnnames.
ModuleItem:ExportDeclaration
  1. Return theExportedNames ofExportDeclaration.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return theExportedNames ofExportFromClause.
ExportFromClause:*
  1. Return a new emptyList.
ExportFromClause:*asIdentifierName
  1. Return aList whose sole element is theStringValue ofIdentifierName.
ExportFromClause:NamedExports
  1. Return theExportedNames ofNamedExports.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return «"default" ».
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames be theExportedNames ofExportsList.
  2. Append tonames the elements of theExportedNames ofExportSpecifier.
  3. Returnnames.
ExportSpecifier:IdentifierName
  1. Return aList whose sole element is theStringValue ofIdentifierName.
ExportSpecifier:IdentifierNameasIdentifierName
  1. Return aList whose sole element is theStringValue of the secondIdentifierName.

16.2.3.4 Static Semantics: ExportEntries

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letentries beExportEntries ofModuleItemList.
  2. Append toentries the elements of theExportEntries ofModuleItem.
  3. Returnentries.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Letmodule be the sole element ofModuleRequests ofFromClause.
  2. ReturnExportEntriesForModule ofExportFromClause with argumentmodule.
ExportDeclaration:exportNamedExports;
  1. ReturnExportEntriesForModule ofNamedExports with argumentnull.
ExportDeclaration:exportVariableStatement
  1. Letentries be a new emptyList.
  2. Letnames be theBoundNames ofVariableStatement.
  3. For each elementname ofnames, do
    1. Append theExportEntry Record { [[ModuleRequest]]:null, [[ImportName]]:null, [[LocalName]]:name, [[ExportName]]:name } toentries.
  4. Returnentries.
ExportDeclaration:exportDeclaration
  1. Letentries be a new emptyList.
  2. Letnames be theBoundNames ofDeclaration.
  3. For each elementname ofnames, do
    1. Append theExportEntry Record { [[ModuleRequest]]:null, [[ImportName]]:null, [[LocalName]]:name, [[ExportName]]:name } toentries.
  4. Returnentries.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Letnames beBoundNames ofHoistableDeclaration.
  2. LetlocalName be the sole element ofnames.
  3. Return aList whose sole element is theExportEntry Record { [[ModuleRequest]]:null, [[ImportName]]:null, [[LocalName]]:localName, [[ExportName]]:"default" }.
ExportDeclaration:exportdefaultClassDeclaration
  1. Letnames beBoundNames ofClassDeclaration.
  2. LetlocalName be the sole element ofnames.
  3. Return aList whose sole element is theExportEntry Record { [[ModuleRequest]]:null, [[ImportName]]:null, [[LocalName]]:localName, [[ExportName]]:"default" }.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Letentry be theExportEntry Record { [[ModuleRequest]]:null, [[ImportName]]:null, [[LocalName]]:"*default*", [[ExportName]]:"default" }.
  2. Return aList whose sole element isentry.
Note

"*default*" is used within this specification as a synthetic name for anonymous default export values.

16.2.3.5 Static Semantics: ExportEntriesForModule

With parametermodule.

ExportFromClause:*
  1. Letentry be theExportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:"*", [[LocalName]]:null, [[ExportName]]:null }.
  2. Return aList whose sole element isentry.
ExportFromClause:*asIdentifierName
  1. LetexportName be theStringValue ofIdentifierName.
  2. Letentry be theExportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:"*", [[LocalName]]:null, [[ExportName]]:exportName }.
  3. Return aList whose sole element isentry.
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letspecs be theExportEntriesForModule ofExportsList with argumentmodule.
  2. Append tospecs the elements of theExportEntriesForModule ofExportSpecifier with argumentmodule.
  3. Returnspecs.
ExportSpecifier:IdentifierName
  1. LetsourceName be theStringValue ofIdentifierName.
  2. Ifmodule isnull, then
    1. LetlocalName besourceName.
    2. LetimportName benull.
  3. Else,
    1. LetlocalName benull.
    2. LetimportName besourceName.
  4. Return aList whose sole element is theExportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:importName, [[LocalName]]:localName, [[ExportName]]:sourceName }.
ExportSpecifier:IdentifierNameasIdentifierName
  1. LetsourceName be theStringValue of the firstIdentifierName.
  2. LetexportName be theStringValue of the secondIdentifierName.
  3. Ifmodule isnull, then
    1. LetlocalName besourceName.
    2. LetimportName benull.
  4. Else,
    1. LetlocalName benull.
    2. LetimportName besourceName.
  5. Return aList whose sole element is theExportEntry Record { [[ModuleRequest]]:module, [[ImportName]]:importName, [[LocalName]]:localName, [[ExportName]]:exportName }.

16.2.3.6 Static Semantics: ReferencedBindings

NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames be theReferencedBindings ofExportsList.
  2. Append tonames the elements of theReferencedBindings ofExportSpecifier.
  3. Returnnames.
ExportSpecifier:IdentifierName
  1. Return aList whose sole element is theIdentifierName.
ExportSpecifier:IdentifierNameasIdentifierName
  1. Return aList whose sole element is the firstIdentifierName.

16.2.3.7 Runtime Semantics: Evaluation

ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;
  1. ReturnNormalCompletion(empty).
ExportDeclaration:exportVariableStatement
  1. Return the result of evaluatingVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return the result of evaluatingDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Return the result of evaluatingHoistableDeclaration.
ExportDeclaration:exportdefaultClassDeclaration
  1. Letvalue be ?BindingClassDeclarationEvaluation ofClassDeclaration.
  2. LetclassName be the sole element ofBoundNames ofClassDeclaration.
  3. IfclassName is"*default*", then
    1. Letenv be therunning execution context's LexicalEnvironment.
    2. Perform ? InitializeBoundName("*default*",value,env).
  4. ReturnNormalCompletion(empty).
ExportDeclaration:exportdefaultAssignmentExpression;
  1. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue, then
    1. Letvalue be ?NamedEvaluation ofAssignmentExpression with argument"default".
  2. Else,
    1. Letrhs be the result of evaluatingAssignmentExpression.
    2. Letvalue be ? GetValue(rhs).
  3. Letenv be therunning execution context's LexicalEnvironment.
  4. Perform ? InitializeBoundName("*default*",value,env).
  5. ReturnNormalCompletion(empty).

17 Error Handling and Language Extensions

An implementation must report most errors at the time the relevant ECMAScript language construct is evaluated. Anearly error is an error that can be detected and reported prior to the evaluation of any construct in theScript containing the error. The presence of anearly error prevents the evaluation of the construct. An implementation must report early errors in aScript as part of parsing thatScript inParseScript. Early errors in aModule are reported at the point when theModule would be evaluated and theModule is never initialized. Early errors ineval code are reported at the timeeval is called and prevent evaluation of theeval code. All errors that are not early errors are runtime errors.

An implementation must report as anearly error any occurrence of a condition that is listed in a “Static Semantics: Early Errors” subclause of this specification.

An implementation shall not treat other kinds of errors as early errors even if the compiler can prove that a construct cannot execute without error under any circumstances. An implementation may issue an early warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

17.1 Forbidden Extensions

An implementation must not extend this specification in the following ways:

18 ECMAScript Standard Built-in Objects

There are certain built-in objects available whenever an ECMAScriptScript orModule begins execution. One, theglobal object, is part of theglobal environment of the executing program. Others are accessible as initial properties of theglobal object or indirectly as properties of accessible built-in objects.

Unless specified otherwise, a built-in object that is callable as a function is a built-infunction object with the characteristics described in10.3. Unless specified otherwise, the [[Extensible]] internal slot of a built-in object initially has the valuetrue. Every built-infunction object has a [[Realm]] internal slot whose value is theRealm Record of therealm for which the object was initially created.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are constructors: they are functions intended for use with thenew operator. For each built-in function, this specification describes the arguments required by that function and the properties of thatfunction object. For each built-inconstructor, this specification furthermore describes properties of the prototype object of thatconstructor and properties of specific object instances returned by anew expression that invokes thatconstructor.

Unless otherwise specified in the description of a particular function, if a built-in function orconstructor is given fewer arguments than the function is specified to require, the function orconstructor shall behave exactly as if it had been given sufficient additional arguments, each such argument being theundefined value. Such missing arguments are considered to be “not present” and may be identified in that manner by specification algorithms. In the description of a particular function, the terms “this value” and “NewTarget” have the meanings given in10.3.

Unless otherwise specified in the description of a particular function, if a built-in function orconstructor described is given more arguments than the function is specified to allow, the extra arguments are evaluated by the call and then ignored by the function. However, an implementation may define implementation specific behaviour relating to such arguments as long as the behaviour is not the throwing of aTypeError exception that is predicated simply on the presence of an extra argument.

Note 1

Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by adding new functions rather than adding new parameters to existing functions.

Unless otherwise specified every built-in function and every built-inconstructor has theFunction prototype object, which is the initial value of the expressionFunction.prototype (20.2.3), as the value of its [[Prototype]] internal slot.

Unless otherwise specified every built-in prototype object has theObject prototype object, which is the initial value of the expressionObject.prototype (20.1.3), as the value of its [[Prototype]] internal slot, except theObject prototype object itself.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method unless otherwise specified in the description of a particular function.

Each built-in function defined in this specification is created by calling theCreateBuiltinFunction abstract operation (10.3.3). The values of thelength andname parameters are the initial values of the"length" and"name" properties as discussed below. The values of theprefix parameter are similarly discussed below.

Every built-infunction object, including constructors, has a"length" property whose value is a non-negativeintegral Number. Unless otherwise specified, this value is equal to the number of required parameters shown in the subclause headings for the function description. Optional parameters and rest parameters are not included in the parameter count.

Note 2

For example, thefunction object that is the initial value of the"map" property of theArray prototype object is described under the subclause heading «Array.prototype.map (callbackFn [ , thisArg])» which shows the two named arguments callbackFn and thisArg, the latter being optional; therefore the value of the"length" property of thatfunction object is1𝔽.

Unless otherwise specified, the"length" property of a built-infunction object has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

Every built-infunction object, including constructors, has a"name" property whose value is a String. Unless otherwise specified, this value is the name that is given to the function in this specification. Functions that are identified as anonymous functions use the empty String as the value of the"name" property. For functions that are specified as properties of objects, the name value is theproperty name string used to access the function. Functions that are specified as get or set accessor functions of built-in properties have"get" or"set" (respectively) passed to theprefix parameter when callingCreateBuiltinFunction.

The value of the"name" property is explicitly specified for each built-in functions whose property key is a Symbol value. If such an explicitly specified value starts with the prefix"get " or"set " and the function for which it is specified is a get or set accessor function of a built-in property, the value without the prefix is passed to thename parameter, and the value"get" or"set" (respectively) is passed to theprefix parameter when callingCreateBuiltinFunction.

Unless otherwise specified, the"name" property of a built-infunction object has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

Every otherdata property described in clauses19 through28 and in AnnexB.2 has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true } unless otherwise specified.

Everyaccessor property described in clauses19 through28 and in AnnexB.2 has the attributes { [[Enumerable]]:false, [[Configurable]]:true } unless otherwise specified. If only a get accessor function is described, the set accessor function is the default value,undefined. If only a set accessor is described the get accessor is the default value,undefined.

19 The Global Object

Theglobal object:

19.1 Value Properties of the Global Object

19.1.1 globalThis

The initial value of the"globalThis" property of theglobal object in aRealm Recordrealm isrealm.[[GlobalEnv]].[[GlobalThisValue]].

This property has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }.

19.1.2 Infinity

The value ofInfinity is+∞𝔽 (see6.1.6.1). This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

19.1.3 NaN

The value ofNaN isNaN (see6.1.6.1). This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

19.1.4 undefined

The value ofundefined isundefined (see6.1.1). This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

19.2 Function Properties of the Global Object

19.2.1 eval (x )

Theeval function is the%eval% intrinsic object. When theeval function is called with one argumentx, the following steps are taken:

  1. Assert: Theexecution context stack has at least two elements.
  2. LetcallerContext be the second to top element of theexecution context stack.
  3. LetcallerRealm becallerContext'sRealm.
  4. Return ? PerformEval(x,callerRealm,false,false).

19.2.1.1 PerformEval (x,callerRealm,strictCaller,direct )

The abstract operation PerformEval takes argumentsx,callerRealm,strictCaller, anddirect. It performs the following steps when called:

  1. Assert: Ifdirect isfalse, thenstrictCaller is alsofalse.
  2. IfType(x) is not String, returnx.
  3. LetevalRealm bethe current Realm Record.
  4. Perform ? HostEnsureCanCompileStrings(callerRealm,evalRealm).
  5. LetinFunction befalse.
  6. LetinMethod befalse.
  7. LetinDerivedConstructor befalse.
  8. Ifdirect istrue, then
    1. LetthisEnvRec be ! GetThisEnvironment().
    2. IfthisEnvRec is afunction Environment Record, then
      1. LetF bethisEnvRec.[[FunctionObject]].
      2. SetinFunction totrue.
      3. SetinMethod tothisEnvRec.HasSuperBinding().
      4. IfF.[[ConstructorKind]] isderived, setinDerivedConstructor totrue.
  9. Perform the following substeps in animplementation-defined order, possibly interleaving parsing and error detection:
    1. Letscript beParseText(!StringToCodePoints(x),Script).
    2. Ifscript is aList of errors, throw aSyntaxError exception.
    3. IfscriptContainsScriptBody isfalse, returnundefined.
    4. Letbody be theScriptBody ofscript.
    5. IfinFunction isfalse, andbodyContainsNewTarget, throw aSyntaxError exception.
    6. IfinMethod isfalse, andbodyContainsSuperProperty, throw aSyntaxError exception.
    7. IfinDerivedConstructor isfalse, andbodyContainsSuperCall, throw aSyntaxError exception.
  10. IfstrictCaller istrue, letstrictEval betrue.
  11. Else, letstrictEval beIsStrict ofscript.
  12. LetrunningContext be therunning execution context.
  13. NOTE: Ifdirect istrue,runningContext will be theexecution context that performed thedirect eval. Ifdirect isfalse,runningContext will be theexecution context for the invocation of theeval function.
  14. Ifdirect istrue, then
    1. LetlexEnv beNewDeclarativeEnvironment(runningContext's LexicalEnvironment).
    2. LetvarEnv berunningContext's VariableEnvironment.
  15. Else,
    1. LetlexEnv beNewDeclarativeEnvironment(evalRealm.[[GlobalEnv]]).
    2. LetvarEnv beevalRealm.[[GlobalEnv]].
  16. IfstrictEval istrue, setvarEnv tolexEnv.
  17. IfrunningContext is not already suspended, suspendrunningContext.
  18. LetevalContext be a new ECMAScript codeexecution context.
  19. SetevalContext's Function tonull.
  20. SetevalContext'sRealm toevalRealm.
  21. SetevalContext's ScriptOrModule torunningContext's ScriptOrModule.
  22. SetevalContext's VariableEnvironment tovarEnv.
  23. SetevalContext's LexicalEnvironment tolexEnv.
  24. PushevalContext onto theexecution context stack;evalContext is now therunning execution context.
  25. Letresult beEvalDeclarationInstantiation(body,varEnv,lexEnv,strictEval).
  26. Ifresult.[[Type]] isnormal, then
    1. Setresult to the result of evaluatingbody.
  27. Ifresult.[[Type]] isnormal andresult.[[Value]] isempty, then
    1. Setresult toNormalCompletion(undefined).
  28. SuspendevalContext and remove it from theexecution context stack.
  29. Resume the context that is now on the top of theexecution context stack as therunning execution context.
  30. ReturnCompletion(result).
Note

The eval code cannot instantiate variable or function bindings in the variable environment of the calling context that invoked the eval if the calling context is evaluating formal parameter initializers or if either the code of the calling context or the eval code isstrict mode code. Instead such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code. Bindings introduced bylet,const, orclass declarations are always instantiated in a new LexicalEnvironment.

19.2.1.2 HostEnsureCanCompileStrings (callerRealm,calleeRealm )

Thehost-defined abstract operation HostEnsureCanCompileStrings takes argumentscallerRealm (aRealm Record) andcalleeRealm (aRealm Record). It allowshost environments to block certain ECMAScript functions which allow developers to compile strings into ECMAScript code.

An implementation of HostEnsureCanCompileStrings may complete normally or abruptly. Any abrupt completions will be propagated to its callers. The default implementation of HostEnsureCanCompileStrings is to unconditionally return an empty normal completion.

19.2.1.3 EvalDeclarationInstantiation (body,varEnv,lexEnv,strict )

The abstract operation EvalDeclarationInstantiation takes argumentsbody,varEnv,lexEnv, andstrict. It performs the following steps when called:

  1. LetvarNames be theVarDeclaredNames ofbody.
  2. LetvarDeclarations be theVarScopedDeclarations ofbody.
  3. Ifstrict isfalse, then
    1. IfvarEnv is aglobal Environment Record, then
      1. For each elementname ofvarNames, do
        1. IfvarEnv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
        2. NOTE:eval will not create a global var declaration that would be shadowed by a global lexical declaration.
    2. LetthisEnv belexEnv.
    3. Assert: The following loop will terminate.
    4. Repeat, whilethisEnv is not the same asvarEnv,
      1. IfthisEnv is not anobject Environment Record, then
        1. NOTE: The environment of with statements cannot contain any lexical declaration so it doesn't need to be checked for var/let hoisting conflicts.
        2. For each elementname ofvarNames, do
          1. IfthisEnv.HasBinding(name) istrue, then
            1. Throw aSyntaxError exception.
            2. NOTE: AnnexB.3.5 defines alternate semantics for the above step.
          2. NOTE: Adirect eval will not hoist var declaration over a like-named lexical declaration.
      2. SetthisEnv tothisEnv.[[OuterEnv]].
  4. LetfunctionsToInitialize be a new emptyList.
  5. LetdeclaredFunctionNames be a new emptyList.
  6. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is neither aVariableDeclaration nor aForBinding nor aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
      3. Letfn be the sole element of theBoundNames ofd.
      4. Iffn is not an element ofdeclaredFunctionNames, then
        1. IfvarEnv is aglobal Environment Record, then
          1. LetfnDefinable be ?varEnv.CanDeclareGlobalFunction(fn).
          2. IffnDefinable isfalse, throw aTypeError exception.
        2. Appendfn todeclaredFunctionNames.
        3. Insertd as the first element offunctionsToInitialize.
  7. NOTE: AnnexB.3.3.3 adds additional steps at this point.
  8. LetdeclaredVarNames be a new emptyList.
  9. For each elementd ofvarDeclarations, do
    1. Ifd is aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. For each Stringvn of theBoundNames ofd, do
        1. Ifvn is not an element ofdeclaredFunctionNames, then
          1. IfvarEnv is aglobal Environment Record, then
            1. LetvnDefinable be ?varEnv.CanDeclareGlobalVar(vn).
            2. IfvnDefinable isfalse, throw aTypeError exception.
          2. Ifvn is not an element ofdeclaredVarNames, then
            1. Appendvn todeclaredVarNames.
  10. NOTE: No abnormal terminations occur after this algorithm step unlessvarEnv is aglobal Environment Record and theglobal object is aProxy exotic object.
  11. LetlexDeclarations be theLexicallyScopedDeclarations ofbody.
  12. For each elementd oflexDeclarations, do
    1. NOTE: Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ?lexEnv.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ?lexEnv.CreateMutableBinding(dn,false).
  13. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentlexEnv.
    3. IfvarEnv is aglobal Environment Record, then
      1. Perform ?varEnv.CreateGlobalFunctionBinding(fn,fo,true).
    4. Else,
      1. LetbindingExists bevarEnv.HasBinding(fn).
      2. IfbindingExists isfalse, then
        1. Letstatus be !varEnv.CreateMutableBinding(fn,true).
        2. Assert:status is not anabrupt completion because of validation preceding step10.
        3. Perform !varEnv.InitializeBinding(fn,fo).
      3. Else,
        1. Perform !varEnv.SetMutableBinding(fn,fo,false).
  14. For each Stringvn ofdeclaredVarNames, do
    1. IfvarEnv is aglobal Environment Record, then
      1. Perform ?varEnv.CreateGlobalVarBinding(vn,true).
    2. Else,
      1. LetbindingExists bevarEnv.HasBinding(vn).
      2. IfbindingExists isfalse, then
        1. Letstatus be !varEnv.CreateMutableBinding(vn,true).
        2. Assert:status is not anabrupt completion because of validation preceding step10.
        3. Perform !varEnv.InitializeBinding(vn,undefined).
  15. ReturnNormalCompletion(empty).
Note

An alternative version of this algorithm is described inB.3.5.

19.2.2 isFinite (number )

TheisFinite function is the%isFinite% intrinsic object. When theisFinite function is called with one argumentnumber, the following steps are taken:

  1. Letnum be ? ToNumber(number).
  2. Ifnum isNaN,+∞𝔽, or-∞𝔽, returnfalse.
  3. Otherwise, returntrue.

19.2.3 isNaN (number )

TheisNaN function is the%isNaN% intrinsic object. When theisNaN function is called with one argumentnumber, the following steps are taken:

  1. Letnum be ? ToNumber(number).
  2. Ifnum isNaN, returntrue.
  3. Otherwise, returnfalse.
Note

A reliable way for ECMAScript code to test if a valueX is aNaN is an expression of the formX !== X. The result will betrue if and only ifX is aNaN.

19.2.4 parseFloat (string )

TheparseFloat function produces aNumber value dictated by interpretation of the contents of thestring argument as a decimal literal.

TheparseFloat function is the%parseFloat% intrinsic object. When theparseFloat function is called with one argumentstring, the following steps are taken:

  1. LetinputString be ? ToString(string).
  2. LettrimmedString be ! TrimString(inputString,start).
  3. If neithertrimmedString nor any prefix oftrimmedString satisfies the syntax of aStrDecimalLiteral (see7.1.4.1), returnNaN.
  4. LetnumberString be the longest prefix oftrimmedString, which might betrimmedString itself, that satisfies the syntax of aStrDecimalLiteral.
  5. LetmathFloat be MV ofnumberString.
  6. IfmathFloat = 0, then
    1. If the first code unit oftrimmedString is the code unit 0x002D (HYPHEN-MINUS), return-0𝔽.
    2. Return+0𝔽.
  7. Return𝔽(mathFloat).
Note

parseFloat may interpret only a leading portion ofstring as aNumber value; it ignores any code units that cannot be interpreted as part of the notation of a decimal literal, and no indication is given that any such code units were ignored.

19.2.5 parseInt (string,radix )

TheparseInt function produces anintegral Number dictated by interpretation of the contents of thestring argument according to the specifiedradix. Leading white space instring is ignored. Ifradix isundefined or 0, it is assumed to be 10 except when the number begins with the code unit pairs0x or0X, in which case a radix of 16 is assumed. Ifradix is 16, the number may also optionally begin with the code unit pairs0x or0X.

TheparseInt function is the%parseInt% intrinsic object. When theparseInt function is called, the following steps are taken:

  1. LetinputString be ? ToString(string).
  2. LetS be ! TrimString(inputString,start).
  3. Letsign be 1.
  4. IfS is not empty and the first code unit ofS is the code unit 0x002D (HYPHEN-MINUS), setsign to -1.
  5. IfS is not empty and the first code unit ofS is the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS), remove the first code unit fromS.
  6. LetR be(?ToInt32(radix)).
  7. LetstripPrefix betrue.
  8. IfR ≠ 0, then
    1. IfR < 2 orR > 36, returnNaN.
    2. IfR ≠ 16, setstripPrefix tofalse.
  9. Else,
    1. SetR to 10.
  10. IfstripPrefix istrue, then
    1. If the length ofS is at least 2 and the first two code units ofS are either"0x" or"0X", then
      1. Remove the first two code units fromS.
      2. SetR to 16.
  11. IfS contains a code unit that is not a radix-R digit, letend be the index withinS of the first such code unit; otherwise, letend be the length ofS.
  12. LetZ be thesubstring ofS from 0 toend.
  13. IfZ is empty, returnNaN.
  14. LetmathInt be theinteger value that is represented byZ in radix-R notation, using the lettersA-Z anda-z for digits with values 10 through 35. (However, ifR is 10 andZ contains more than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and ifR is not 2, 4, 8, 10, 16, or 32, thenmathInt may be animplementation-approximated value representing theinteger value that is represented byZ in radix-R notation.)
  15. IfmathInt = 0, then
    1. Ifsign = -1, return-0𝔽.
    2. Return+0𝔽.
  16. Return𝔽(sign ×mathInt).
Note

parseInt may interpret only a leading portion ofstring as aninteger value; it ignores any code units that cannot be interpreted as part of the notation of aninteger, and no indication is given that any such code units were ignored.

19.2.6 URI Handling Functions

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any support for using URIs except for functions that encode and decode URIs as described in19.2.6.2,19.2.6.3,19.2.6.4 and19.2.6.5

Note

Many implementations of ECMAScript provide additional functions and methods that manipulate web pages; these functions are beyond the scope of this standard.

19.2.6.1 URI Syntax and Semantics

A URI is composed of a sequence of components separated by component separators. The general form is:

Scheme:First/Second;Third?Fourth

where the italicized names represent components and “:”, “/”, “;” and “?” are reserved for use as separators. TheencodeURI anddecodeURI functions are intended to work with complete URIs; they assume that any reserved code units in the URI are intended to have special meaning and so are not encoded. TheencodeURIComponent anddecodeURIComponent functions are intended to work with the individual component parts of a URI; they assume that any reserved code units represent text and so must be encoded so that they are not interpreted as reserved code units when the component is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.

Syntax

uri:::uriCharactersopturiCharacters:::uriCharacteruriCharactersopturiCharacter:::uriReserveduriUnescapeduriEscapeduriReserved:::one of;/?:@&=+$,uriUnescaped:::uriAlphaDecimalDigituriMarkuriEscaped:::%HexDigitHexDigituriAlpha:::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZuriMark:::one of-_.!~*'()Note

The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC 3986.

Runtime Semantics

When a code unit to be included in a URI is not listed above or is not intended to have the special meaning sometimes given to the reserved code units, that code unit must be encoded. The code unit is transformed into its UTF-8 encoding, withsurrogate pairs first converted from UTF-16 to the corresponding code point value. (Note that for code units in the range [0, 127] this results in a single octet with the same value.) The resulting sequence of octets is then transformed into a String with each octet represented by an escape sequence of the form"%xx".

19.2.6.1.1 Encode (string,unescapedSet )

The abstract operation Encode takes argumentsstring (a String) andunescapedSet (a String). It performs URI encoding and escaping. It performs the following steps when called:

  1. LetstrLen be the number of code units instring.
  2. LetR be the empty String.
  3. Letk be 0.
  4. Repeat,
    1. Ifk =strLen, returnR.
    2. LetC be the code unit at indexk withinstring.
    3. IfC is inunescapedSet, then
      1. Setk tok + 1.
      2. SetR to thestring-concatenation ofR andC.
    4. Else,
      1. Letcp be ! CodePointAt(string,k).
      2. Ifcp.[[IsUnpairedSurrogate]] istrue, throw aURIError exception.
      3. Setk tok +cp.[[CodeUnitCount]].
      4. LetOctets be theList of octets resulting by applying the UTF-8 transformation tocp.[[CodePoint]].
      5. For each elementoctet ofOctets, do
        1. SetR to thestring-concatenation of:
          • R
          • "%"
          • the String representation ofoctet, formatted as a two-digit uppercase hexadecimal number, padded to the left with a zero if necessary

19.2.6.1.2 Decode (string,reservedSet )

The abstract operation Decode takes argumentsstring (a String) andreservedSet (a String). It performs URI unescaping and decoding. It performs the following steps when called:

  1. LetstrLen be the length ofstring.
  2. LetR be the empty String.
  3. Letk be 0.
  4. Repeat,
    1. Ifk =strLen, returnR.
    2. LetC be the code unit at indexk withinstring.
    3. IfC is not the code unit 0x0025 (PERCENT SIGN), then
      1. LetS be the String value containing only the code unitC.
    4. Else,
      1. Letstart bek.
      2. Ifk + 2 ≥strLen, throw aURIError exception.
      3. If the code units at index (k + 1) and (k + 2) withinstring do not represent hexadecimal digits, throw aURIError exception.
      4. LetB be the 8-bit value represented by the two hexadecimal digits at index (k + 1) and (k + 2).
      5. Setk tok + 2.
      6. Letn be the number of leading 1 bits inB.
      7. Ifn = 0, then
        1. LetC be the code unit whose value isB.
        2. IfC is not inreservedSet, then
          1. LetS be the String value containing only the code unitC.
        3. Else,
          1. LetS be thesubstring ofstring fromstart tok + 1.
      8. Else,
        1. Ifn = 1 orn > 4, throw aURIError exception.
        2. Ifk + (3 × (n - 1)) ≥strLen, throw aURIError exception.
        3. LetOctets be aList whose sole element isB.
        4. Letj be 1.
        5. Repeat, whilej <n,
          1. Setk tok + 1.
          2. If the code unit at indexk withinstring is not the code unit 0x0025 (PERCENT SIGN), throw aURIError exception.
          3. If the code units at index (k + 1) and (k + 2) withinstring do not represent hexadecimal digits, throw aURIError exception.
          4. LetB be the 8-bit value represented by the two hexadecimal digits at index (k + 1) and (k + 2).
          5. Setk tok + 2.
          6. AppendB toOctets.
          7. Setj toj + 1.
        6. Assert: The length ofOctets isn.
        7. IfOctets does not contain a valid UTF-8 encoding of a Unicode code point, throw aURIError exception.
        8. LetV be the code point obtained by applying the UTF-8 transformation toOctets, that is, from aList of octets into a 21-bit value.
        9. LetS beUTF16EncodeCodePoint(V).
    5. SetR to thestring-concatenation ofR andS.
    6. Setk tok + 1.
Note

This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent RFC 3986 which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a sequence of one has the higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n > 1, the initial octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to 0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters are specified inTable 49.

Table 49 (Informative): UTF-8 Encodings
Code Unit Value Representation 1st Octet 2nd Octet 3rd Octet 4th Octet
0x0000 - 0x007F00000000 0zzzzzzz0zzzzzzz
0x0080 - 0x07FF00000yyy yyzzzzzz110yyyyy10zzzzzz
0x0800 - 0xD7FFxxxxyyyy yyzzzzzz1110xxxx10yyyyyy10zzzzzz
0xD800 - 0xDBFF
followed by
0xDC00 - 0xDFFF
110110vv vvwwwwxx
followed by
110111yy yyzzzzzz
11110uuu10uuwwww10xxyyyy10zzzzzz
0xD800 - 0xDBFF
not followed by
0xDC00 - 0xDFFF
causesURIError
0xDC00 - 0xDFFF causesURIError
0xE000 - 0xFFFFxxxxyyyy yyzzzzzz1110xxxx10yyyyyy10zzzzzz

Where
uuuuu =vvvv + 1
to account for the addition of 0x10000 as in section 3.8 of the Unicode Standard (Surrogates).

The above transformation combines eachsurrogate pair (for which code unit values in the inclusive range 0xD800 to 0xDFFF are reserved) into a UTF-32 representation and encodes the resulting 21-bit value into UTF-8. Decoding reconstructs thesurrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence C0 80 must not decode into the code unit 0x0000. Implementations of the Decode algorithm are required to throw aURIError when encountering such invalid sequences.

19.2.6.2 decodeURI (encodedURI )

ThedecodeURI function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by theencodeURI function is replaced with the UTF-16 encoding of the code points that it represents. Escape sequences that could not have been introduced byencodeURI are not replaced.

ThedecodeURI function is the%decodeURI% intrinsic object. When thedecodeURI function is called with one argumentencodedURI, the following steps are taken:

  1. LeturiString be ? ToString(encodedURI).
  2. LetreservedURISet be a String containing one instance of each code unit valid inuriReserved plus"#".
  3. Return ? Decode(uriString,reservedURISet).
Note

The code point# is not decoded from escape sequences even though it is not a reserved URI code point.

19.2.6.3 decodeURIComponent (encodedURIComponent )

ThedecodeURIComponent function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by theencodeURIComponent function is replaced with the UTF-16 encoding of the code points that it represents.

ThedecodeURIComponent function is the%decodeURIComponent% intrinsic object. When thedecodeURIComponent function is called with one argumentencodedURIComponent, the following steps are taken:

  1. LetcomponentString be ? ToString(encodedURIComponent).
  2. LetreservedURIComponentSet be the empty String.
  3. Return ? Decode(componentString,reservedURIComponentSet).

19.2.6.4 encodeURI (uri )

TheencodeURI function computes a new version of a UTF-16 encoded (6.1.4) URI in which each instance of certain code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the code points.

TheencodeURI function is the%encodeURI% intrinsic object. When theencodeURI function is called with one argumenturi, the following steps are taken:

  1. LeturiString be ? ToString(uri).
  2. LetunescapedURISet be a String containing one instance of each code unit valid inuriReserved anduriUnescaped plus"#".
  3. Return ? Encode(uriString,unescapedURISet).
Note

The code point# is not encoded to an escape sequence even though it is not a reserved or unescaped URI code point.

19.2.6.5 encodeURIComponent (uriComponent )

TheencodeURIComponent function computes a new version of a UTF-16 encoded (6.1.4) URI in which each instance of certain code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the code point.

TheencodeURIComponent function is the%encodeURIComponent% intrinsic object. When theencodeURIComponent function is called with one argumenturiComponent, the following steps are taken:

  1. LetcomponentString be ? ToString(uriComponent).
  2. LetunescapedURIComponentSet be a String containing one instance of each code unit valid inuriUnescaped.
  3. Return ? Encode(componentString,unescapedURIComponentSet).

19.3 Constructor Properties of the Global Object

19.3.1 Array ( . . . )

See23.1.1.

19.3.2 ArrayBuffer ( . . . )

See25.1.3.

19.3.3 BigInt ( . . . )

See21.2.1.

19.3.4 BigInt64Array ( . . . )

See23.2.5.

19.3.5 BigUint64Array ( . . . )

See23.2.5.

19.3.6 Boolean ( . . . )

See20.3.1.

19.3.7 DataView ( . . . )

See25.3.2.

19.3.8 Date ( . . . )

See21.4.2.

19.3.9 Error ( . . . )

See20.5.1.

19.3.10 EvalError ( . . . )

See20.5.5.1.

19.3.11 FinalizationRegistry ( . . . )

See26.2.1.

19.3.12 Float32Array ( . . . )

See23.2.5.

19.3.13 Float64Array ( . . . )

See23.2.5.

19.3.14 Function ( . . . )

See20.2.1.

19.3.15 Int8Array ( . . . )

See23.2.5.

19.3.16 Int16Array ( . . . )

See23.2.5.

19.3.17 Int32Array ( . . . )

See23.2.5.

19.3.18 Map ( . . . )

See24.1.1.

19.3.19 Number ( . . . )

See21.1.1.

19.3.20 Object ( . . . )

See20.1.1.

19.3.21 Promise ( . . . )

See27.2.3.

19.3.22 Proxy ( . . . )

See28.2.1.

19.3.23 RangeError ( . . . )

See20.5.5.2.

19.3.24 ReferenceError ( . . . )

See20.5.5.3.

19.3.25 RegExp ( . . . )

See22.2.3.

19.3.26 Set ( . . . )

See24.2.1.

19.3.27 SharedArrayBuffer ( . . . )

See25.2.2.

19.3.28 String ( . . . )

See22.1.1.

19.3.29 Symbol ( . . . )

See20.4.1.

19.3.30 SyntaxError ( . . . )

See20.5.5.4.

19.3.31 TypeError ( . . . )

See20.5.5.5.

19.3.32 Uint8Array ( . . . )

See23.2.5.

19.3.33 Uint8ClampedArray ( . . . )

See23.2.5.

19.3.34 Uint16Array ( . . . )

See23.2.5.

19.3.35 Uint32Array ( . . . )

See23.2.5.

19.3.36 URIError ( . . . )

See20.5.5.6.

19.3.37 WeakMap ( . . . )

See24.3.1.

19.3.38 WeakRef ( . . . )

See26.1.1.

19.3.39 WeakSet ( . . . )

See24.4.

19.4 Other Properties of the Global Object

19.4.1 Atomics

See25.4.

19.4.2 JSON

See25.5.

19.4.3 Math

See21.3.

19.4.4 Reflect

See28.1.

20 Fundamental Objects

20.1 Object Objects

20.1.1 The Object Constructor

The Objectconstructor:

  • is%Object%.
  • is the initial value of the"Object" property of theglobal object.
  • creates a newordinary object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition.

20.1.1.1 Object ( [value ] )

When theObject function is called with optional argumentvalue, the following steps are taken:

  1. If NewTarget is neitherundefined nor the active function, then
    1. Return ? OrdinaryCreateFromConstructor(NewTarget,"%Object.prototype%").
  2. Ifvalue isundefined ornull, return ! OrdinaryObjectCreate(%Object.prototype%).
  3. Return ! ToObject(value).

The"length" property of theObject function is1𝔽.

20.1.2 Properties of the Object Constructor

The Objectconstructor:

  • has a [[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"length" property.
  • has the following additional properties:

20.1.2.1 Object.assign (target, ...sources )

Theassign function is used to copy the values of all of the enumerable own properties from one or more source objects to atarget object. When theassign function is called, the following steps are taken:

  1. Letto be ? ToObject(target).
  2. If only one argument was passed, returnto.
  3. For each elementnextSource ofsources, do
    1. IfnextSource is neitherundefined nornull, then
      1. Letfrom be ! ToObject(nextSource).
      2. Letkeys be ?from.[[OwnPropertyKeys]]().
      3. For each elementnextKey ofkeys, do
        1. Letdesc be ?from.[[GetOwnProperty]](nextKey).
        2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
          1. LetpropValue be ? Get(from,nextKey).
          2. Perform ? Set(to,nextKey,propValue,true).
  4. Returnto.

The"length" property of theassign function is2𝔽.

20.1.2.2 Object.create (O,Properties )

Thecreate function creates a new object with a specified prototype. When thecreate function is called, the following steps are taken:

  1. IfType(O) is neither Object nor Null, throw aTypeError exception.
  2. Letobj be ! OrdinaryObjectCreate(O).
  3. IfProperties is notundefined, then
    1. Return ? ObjectDefineProperties(obj,Properties).
  4. Returnobj.

20.1.2.3 Object.defineProperties (O,Properties )

ThedefineProperties function is used to add own properties and/or update the attributes of existing own properties of an object. When thedefineProperties function is called, the following steps are taken:

  1. IfType(O) is not Object, throw aTypeError exception.
  2. Return ? ObjectDefineProperties(O,Properties).

20.1.2.3.1 ObjectDefineProperties (O,Properties )

The abstract operation ObjectDefineProperties takes argumentsO andProperties. It performs the following steps when called:

  1. Assert:Type(O) is Object.
  2. Letprops be ? ToObject(Properties).
  3. Letkeys be ?props.[[OwnPropertyKeys]]().
  4. Letdescriptors be a new emptyList.
  5. For each elementnextKey ofkeys, do
    1. LetpropDesc be ?props.[[GetOwnProperty]](nextKey).
    2. IfpropDesc is notundefined andpropDesc.[[Enumerable]] istrue, then
      1. LetdescObj be ? Get(props,nextKey).
      2. Letdesc be ? ToPropertyDescriptor(descObj).
      3. Append the pair (a two elementList) consisting ofnextKey anddesc to the end ofdescriptors.
  6. For each elementpair ofdescriptors, do
    1. LetP be the first element ofpair.
    2. Letdesc be the second element ofpair.
    3. Perform ? DefinePropertyOrThrow(O,P,desc).
  7. ReturnO.

20.1.2.4 Object.defineProperty (O,P,Attributes )

ThedefineProperty function is used to add an own property and/or update the attributes of an existing own property of an object. When thedefineProperty function is called, the following steps are taken:

  1. IfType(O) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(P).
  3. Letdesc be ? ToPropertyDescriptor(Attributes).
  4. Perform ? DefinePropertyOrThrow(O,key,desc).
  5. ReturnO.

20.1.2.5 Object.entries (O )

When theentries function is called with argumentO, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. LetnameList be ? EnumerableOwnPropertyNames(obj,key+value).
  3. ReturnCreateArrayFromList(nameList).

20.1.2.6 Object.freeze (O )

When thefreeze function is called, the following steps are taken:

  1. IfType(O) is not Object, returnO.
  2. Letstatus be ? SetIntegrityLevel(O,frozen).
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.7 Object.fromEntries (iterable )

When thefromEntries method is called with argumentiterable, the following steps are taken:

  1. Perform ? RequireObjectCoercible(iterable).
  2. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  3. Assert:obj is an extensibleordinary object with no own properties.
  4. LetstepsDefine be the algorithm steps defined inCreateDataPropertyOnObject Functions.
  5. LetlengthDefine be the number of non-optional parameters of the function definition inCreateDataPropertyOnObject Functions.
  6. Letadder be ! CreateBuiltinFunction(stepsDefine,lengthDefine,"", « »).
  7. Return ? AddEntriesFromIterable(obj,iterable,adder).
Note
The function created foradder is never directly accessible to ECMAScript code.

20.1.2.7.1 CreateDataPropertyOnObject Functions

A CreateDataPropertyOnObject function is an anonymous built-in function. When a CreateDataPropertyOnObject function is called with argumentskey andvalue, the following steps are taken:

  1. LetO be thethis value.
  2. Assert:Type(O) is Object.
  3. Assert:O is an extensibleordinary object.
  4. LetpropertyKey be ? ToPropertyKey(key).
  5. Perform ! CreateDataPropertyOrThrow(O,propertyKey,value).
  6. Returnundefined.

20.1.2.8 Object.getOwnPropertyDescriptor (O,P )

When thegetOwnPropertyDescriptor function is called, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. Letkey be ? ToPropertyKey(P).
  3. Letdesc be ?obj.[[GetOwnProperty]](key).
  4. ReturnFromPropertyDescriptor(desc).

20.1.2.9 Object.getOwnPropertyDescriptors (O )

When thegetOwnPropertyDescriptors function is called, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. LetownKeys be ?obj.[[OwnPropertyKeys]]().
  3. Letdescriptors be ! OrdinaryObjectCreate(%Object.prototype%).
  4. For each elementkey ofownKeys, do
    1. Letdesc be ?obj.[[GetOwnProperty]](key).
    2. Letdescriptor be ! FromPropertyDescriptor(desc).
    3. Ifdescriptor is notundefined, perform ! CreateDataPropertyOrThrow(descriptors,key,descriptor).
  5. Returndescriptors.

20.1.2.10 Object.getOwnPropertyNames (O )

When thegetOwnPropertyNames function is called, the following steps are taken:

  1. Return ? GetOwnPropertyKeys(O,string).

20.1.2.11 Object.getOwnPropertySymbols (O )

When thegetOwnPropertySymbols function is called with argumentO, the following steps are taken:

  1. Return ? GetOwnPropertyKeys(O,symbol).

20.1.2.11.1 GetOwnPropertyKeys (O,type )

The abstract operation GetOwnPropertyKeys takes argumentsO andtype (eitherstring orsymbol). It performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. Letkeys be ?obj.[[OwnPropertyKeys]]().
  3. LetnameList be a new emptyList.
  4. For each elementnextKey ofkeys, do
    1. IfType(nextKey) is Symbol andtype issymbol orType(nextKey) is String andtype isstring, then
      1. AppendnextKey as the last element ofnameList.
  5. ReturnCreateArrayFromList(nameList).

20.1.2.12 Object.getPrototypeOf (O )

When thegetPrototypeOf function is called with argumentO, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. Return ?obj.[[GetPrototypeOf]]().

20.1.2.13 Object.is (value1,value2 )

When theis function is called with argumentsvalue1 andvalue2, the following steps are taken:

  1. ReturnSameValue(value1,value2).

20.1.2.14 Object.isExtensible (O )

When theisExtensible function is called with argumentO, the following steps are taken:

  1. IfType(O) is not Object, returnfalse.
  2. Return ? IsExtensible(O).

20.1.2.15 Object.isFrozen (O )

When theisFrozen function is called with argumentO, the following steps are taken:

  1. IfType(O) is not Object, returntrue.
  2. Return ? TestIntegrityLevel(O,frozen).

20.1.2.16 Object.isSealed (O )

When theisSealed function is called with argumentO, the following steps are taken:

  1. IfType(O) is not Object, returntrue.
  2. Return ? TestIntegrityLevel(O,sealed).

20.1.2.17 Object.keys (O )

When thekeys function is called with argumentO, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. LetnameList be ? EnumerableOwnPropertyNames(obj,key).
  3. ReturnCreateArrayFromList(nameList).

20.1.2.18 Object.preventExtensions (O )

When thepreventExtensions function is called, the following steps are taken:

  1. IfType(O) is not Object, returnO.
  2. Letstatus be ?O.[[PreventExtensions]]().
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.19 Object.prototype

The initial value ofObject.prototype is theObject prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.1.2.20 Object.seal (O )

When theseal function is called, the following steps are taken:

  1. IfType(O) is not Object, returnO.
  2. Letstatus be ? SetIntegrityLevel(O,sealed).
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.21 Object.setPrototypeOf (O,proto )

When thesetPrototypeOf function is called with argumentsO andproto, the following steps are taken:

  1. SetO to ? RequireObjectCoercible(O).
  2. IfType(proto) is neither Object nor Null, throw aTypeError exception.
  3. IfType(O) is not Object, returnO.
  4. Letstatus be ?O.[[SetPrototypeOf]](proto).
  5. Ifstatus isfalse, throw aTypeError exception.
  6. ReturnO.

20.1.2.22 Object.values (O )

When thevalues function is called with argumentO, the following steps are taken:

  1. Letobj be ? ToObject(O).
  2. LetnameList be ? EnumerableOwnPropertyNames(obj,value).
  3. ReturnCreateArrayFromList(nameList).

20.1.3 Properties of the Object Prototype Object

TheObject prototype object:

  • is%Object.prototype%.
  • has an [[Extensible]] internal slot whose value istrue.
  • has the internal methods defined for ordinary objects, except for the [[SetPrototypeOf]] method, which is as defined in10.4.7.1. (Thus, it is animmutable prototype exotic object.)
  • has a [[Prototype]] internal slot whose value isnull.

20.1.3.1 Object.prototype.constructor

The initial value ofObject.prototype.constructor is%Object%.

20.1.3.2 Object.prototype.hasOwnProperty (V )

When thehasOwnProperty method is called with argumentV, the following steps are taken:

  1. LetP be ? ToPropertyKey(V).
  2. LetO be ? ToObject(this value).
  3. Return ? HasOwnProperty(O,P).
Note

The ordering of steps1 and2 is chosen to ensure that any exception that would have been thrown by step1 in previous editions of this specification will continue to be thrown even if thethis value isundefined ornull.

20.1.3.3 Object.prototype.isPrototypeOf (V )

When theisPrototypeOf method is called with argumentV, the following steps are taken:

  1. IfType(V) is not Object, returnfalse.
  2. LetO be ? ToObject(this value).
  3. Repeat,
    1. SetV to ?V.[[GetPrototypeOf]]().
    2. IfV isnull, returnfalse.
    3. IfSameValue(O,V) istrue, returntrue.
Note

The ordering of steps1 and2 preserves the behaviour specified by previous editions of this specification for the case whereV is not an object and thethis value isundefined ornull.

20.1.3.4 Object.prototype.propertyIsEnumerable (V )

When thepropertyIsEnumerable method is called with argumentV, the following steps are taken:

  1. LetP be ? ToPropertyKey(V).
  2. LetO be ? ToObject(this value).
  3. Letdesc be ?O.[[GetOwnProperty]](P).
  4. Ifdesc isundefined, returnfalse.
  5. Returndesc.[[Enumerable]].
Note 1

This method does not consider objects in the prototype chain.

Note 2

The ordering of steps1 and2 is chosen to ensure that any exception that would have been thrown by step1 in previous editions of this specification will continue to be thrown even if thethis value isundefined ornull.

20.1.3.5 Object.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

When thetoLocaleString method is called, the following steps are taken:

  1. LetO be thethis value.
  2. Return ? Invoke(O,"toString").

The optional parameters to this function are not used but are intended to correspond to the parameter pattern used by ECMA-402toLocaleString functions. Implementations that do not include ECMA-402 support must not use those parameter positions for other purposes.

Note 1

This function provides a generictoLocaleString implementation for objects that have no locale-specifictoString behaviour.Array,Number,Date, and%TypedArray% provide their own locale-sensitivetoLocaleString methods.

Note 2

ECMA-402 intentionally does not provide an alternative to this default implementation.

20.1.3.6 Object.prototype.toString ( )

When thetoString method is called, the following steps are taken:

  1. If thethis value isundefined, return"[object Undefined]".
  2. If thethis value isnull, return"[object Null]".
  3. LetO be ! ToObject(this value).
  4. LetisArray be ? IsArray(O).
  5. IfisArray istrue, letbuiltinTag be"Array".
  6. Else ifO has a [[ParameterMap]] internal slot, letbuiltinTag be"Arguments".
  7. Else ifO has a [[Call]] internal method, letbuiltinTag be"Function".
  8. Else ifO has an [[ErrorData]] internal slot, letbuiltinTag be"Error".
  9. Else ifO has a [[BooleanData]] internal slot, letbuiltinTag be"Boolean".
  10. Else ifO has a [[NumberData]] internal slot, letbuiltinTag be"Number".
  11. Else ifO has a [[StringData]] internal slot, letbuiltinTag be"String".
  12. Else ifO has a [[DateValue]] internal slot, letbuiltinTag be"Date".
  13. Else ifO has a [[RegExpMatcher]] internal slot, letbuiltinTag be"RegExp".
  14. Else, letbuiltinTag be"Object".
  15. Lettag be ? Get(O,@@toStringTag).
  16. IfType(tag) is not String, settag tobuiltinTag.
  17. Return thestring-concatenation of"[object ",tag, and"]".
Note

Historically, this function was occasionally used to access the String value of the [[Class]] internal slot that was used in previous editions of this specification as a nominal type tag for various built-in objects. The above definition oftoString preserves compatibility for legacy code that usestoString as a test for those specific kinds of built-in objects. It does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects. In addition, programs can use@@toStringTag in ways that will invalidate the reliability of such legacy type tests.

20.1.3.7 Object.prototype.valueOf ( )

When thevalueOf method is called, the following steps are taken:

  1. Return ? ToObject(this value).

20.1.4 Properties of Object Instances

Object instances have no special properties beyond those inherited from theObject prototype object.

20.2 Function Objects

20.2.1 The Function Constructor

The Functionconstructor:

  • is%Function%.
  • is the initial value of the"Function" property of theglobal object.
  • creates and initializes a newfunction object when called as a function rather than as aconstructor. Thus the function callFunction(…) is equivalent to the object creation expressionnew Function(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified Function behaviour must include asuper call to the Functionconstructor to create and initialize a subclass instance with the internal slots necessary for built-in function behaviour. All ECMAScript syntactic forms for defining function objects create instances of Function. There is no syntactic means to create instances of Function subclasses except for the built-in GeneratorFunction, AsyncFunction, and AsyncGeneratorFunction subclasses.

20.2.1.1 Function (p1,p2, … ,pn,body )

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal parameters.

When theFunction function is called with some argumentsp1,p2, … ,pn,body (wheren might be 0, that is, there are no “p ” arguments, and wherebody might also not be provided), the following steps are taken:

  1. LetC be theactive function object.
  2. Letargs be theargumentsList that was passed to this function by [[Call]] or [[Construct]].
  3. Return ? CreateDynamicFunction(C, NewTarget,normal,args).
Note

It is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three of the following expressions produce the same result:

newFunction("a","b","c","return a+b+c")newFunction("a, b, c","return a+b+c")newFunction("a,b","c","return a+b+c")

20.2.1.1.1 CreateDynamicFunction (constructor,newTarget,kind,args )

The abstract operation CreateDynamicFunction takes argumentsconstructor (aconstructor),newTarget (aconstructor),kind (eithernormal,generator,async, orasyncGenerator), andargs (aList of ECMAScript language values).constructor is theconstructor function that is performing this action.newTarget is theconstructor thatnew was initially applied to.args is the argument values that were passed toconstructor. It performs the following steps when called:

  1. Assert: Theexecution context stack has at least two elements.
  2. LetcallerContext be the second to top element of theexecution context stack.
  3. LetcallerRealm becallerContext'sRealm.
  4. LetcalleeRealm bethe current Realm Record.
  5. Perform ? HostEnsureCanCompileStrings(callerRealm,calleeRealm).
  6. IfnewTarget isundefined, setnewTarget toconstructor.
  7. Ifkind isnormal, then
    1. Letgoal be the grammar symbolFunctionBody[~Yield, ~Await].
    2. LetparameterGoal be the grammar symbolFormalParameters[~Yield, ~Await].
    3. LetfallbackProto be"%Function.prototype%".
  8. Else ifkind isgenerator, then
    1. Letgoal be the grammar symbolGeneratorBody.
    2. LetparameterGoal be the grammar symbolFormalParameters[+Yield, ~Await].
    3. LetfallbackProto be"%GeneratorFunction.prototype%".
  9. Else ifkind isasync, then
    1. Letgoal be the grammar symbolAsyncFunctionBody.
    2. LetparameterGoal be the grammar symbolFormalParameters[~Yield, +Await].
    3. LetfallbackProto be"%AsyncFunction.prototype%".
  10. Else,
    1. Assert:kind isasyncGenerator.
    2. Letgoal be the grammar symbolAsyncGeneratorBody.
    3. LetparameterGoal be the grammar symbolFormalParameters[+Yield, +Await].
    4. LetfallbackProto be"%AsyncGeneratorFunction.prototype%".
  11. LetargCount be the number of elements inargs.
  12. LetP be the empty String.
  13. IfargCount = 0, letbodyArg be the empty String.
  14. Else ifargCount = 1, letbodyArg beargs[0].
  15. Else,
    1. Assert:argCount > 1.
    2. LetfirstArg beargs[0].
    3. SetP to ? ToString(firstArg).
    4. Letk be 1.
    5. Repeat, whilek <argCount - 1,
      1. LetnextArg beargs[k].
      2. LetnextArgString be ? ToString(nextArg).
      3. SetP to thestring-concatenation ofP,"," (a comma), andnextArgString.
      4. Setk tok + 1.
    6. LetbodyArg beargs[k].
  16. LetbodyString be thestring-concatenation of 0x000A (LINE FEED), ? ToString(bodyArg), and 0x000A (LINE FEED).
  17. Letprefix be the prefix associated withkind inTable 50.
  18. LetsourceString be thestring-concatenation ofprefix," anonymous(",P, 0x000A (LINE FEED),") {",bodyString, and"}".
  19. LetsourceText be ! StringToCodePoints(sourceString).
  20. Perform the following substeps in animplementation-defined order, possibly interleaving parsing and error detection:
    1. Letparameters beParseText(!StringToCodePoints(P),parameterGoal).
    2. Ifparameters is aList of errors, throw aSyntaxError exception.
    3. Letbody beParseText(!StringToCodePoints(bodyString),goal).
    4. Ifbody is aList of errors, throw aSyntaxError exception.
    5. Letstrict beFunctionBodyContainsUseStrict ofbody.
    6. Ifstrict istrue, apply theearly error rules forUniqueFormalParameters:FormalParameters toparameters.
    7. Ifstrict istrue andIsSimpleParameterList ofparameters isfalse, throw aSyntaxError exception.
    8. If any element of theBoundNames ofparameters also occurs in theLexicallyDeclaredNames ofbody, throw aSyntaxError exception.
    9. IfbodyContainsSuperCall istrue, throw aSyntaxError exception.
    10. IfparametersContainsSuperCall istrue, throw aSyntaxError exception.
    11. IfbodyContainsSuperProperty istrue, throw aSyntaxError exception.
    12. IfparametersContainsSuperProperty istrue, throw aSyntaxError exception.
    13. Ifkind isgenerator orasyncGenerator, then
      1. IfparametersContainsYieldExpression istrue, throw aSyntaxError exception.
    14. Ifkind isasync orasyncGenerator, then
      1. IfparametersContainsAwaitExpression istrue, throw aSyntaxError exception.
    15. Ifstrict istrue, then
      1. IfBoundNames ofparameters contains any duplicate elements, throw aSyntaxError exception.
  21. Letproto be ? GetPrototypeFromConstructor(newTarget,fallbackProto).
  22. LetrealmF bethe current Realm Record.
  23. Letscope berealmF.[[GlobalEnv]].
  24. LetF be ! OrdinaryFunctionCreate(proto,sourceText,parameters,body,non-lexical-this,scope).
  25. PerformSetFunctionName(F,"anonymous").
  26. Ifkind isgenerator, then
    1. Letprototype be ! OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
    2. PerformDefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  27. Else ifkind isasyncGenerator, then
    1. Letprototype be ! OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
    2. PerformDefinePropertyOrThrow(F,"prototype", PropertyDescriptor { [[Value]]:prototype, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  28. Else ifkind isnormal, performMakeConstructor(F).
  29. NOTE: Functions whosekind isasync are not constructible and do not have a [[Construct]] internal method or a"prototype" property.
  30. ReturnF.
Note

CreateDynamicFunction defines a"prototype" property on any function it creates whosekind is notasync to provide for the possibility that the function will be used as aconstructor.

Table 50: Dynamic FunctionSourceText Prefixes
KindPrefix
normal"function"
generator"function*"
async"async function"
asyncGenerator"async function*"

20.2.2 Properties of the Function Constructor

The Functionconstructor:

20.2.2.1 Function.length

This is adata property with a value of 1. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

20.2.2.2 Function.prototype

The value ofFunction.prototype is theFunction prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.2.3 Properties of the Function Prototype Object

TheFunction prototype object:

  • is%Function.prototype%.
  • is itself a built-infunction object.
  • accepts any arguments and returnsundefined when invoked.
  • does not have a [[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a"prototype" property.
  • has a"length" property whose value is+0𝔽.
  • has a"name" property whose value is the empty String.
Note

The Function prototype object is specified to be afunction object to ensure compatibility with ECMAScript code that was created prior to the ECMAScript 2015 specification.

20.2.3.1 Function.prototype.apply (thisArg,argArray )

When theapply method is called with argumentsthisArg andargArray, the following steps are taken:

  1. Letfunc be thethis value.
  2. IfIsCallable(func) isfalse, throw aTypeError exception.
  3. IfargArray isundefined ornull, then
    1. PerformPrepareForTailCall().
    2. Return ? Call(func,thisArg).
  4. LetargList be ? CreateListFromArrayLike(argArray).
  5. PerformPrepareForTailCall().
  6. Return ? Call(func,thisArg,argList).
Note 1

ThethisArg value is passed without modification as thethis value. This is a change from Edition 3, where anundefined ornullthisArg is replaced with theglobal object andToObject is applied to all other values and that result is passed as thethis value. Even though thethisArg is passed without modification, non-strict functions still perform these transformations upon entry to the function.

Note 2

Iffunc is an arrow function or abound function exotic object then thethisArg will be ignored by the function [[Call]] in step6.

20.2.3.2 Function.prototype.bind (thisArg, ...args )

When thebind method is called with argumentthisArg and zero or moreargs, it performs the following steps:

  1. LetTarget be thethis value.
  2. IfIsCallable(Target) isfalse, throw aTypeError exception.
  3. LetF be ? BoundFunctionCreate(Target,thisArg,args).
  4. LetL be 0.
  5. LettargetHasLength be ? HasOwnProperty(Target,"length").
  6. IftargetHasLength istrue, then
    1. LettargetLen be ? Get(Target,"length").
    2. IfType(targetLen) is Number, then
      1. IftargetLen is+∞𝔽, setL to +∞.
      2. Else iftargetLen is-∞𝔽, setL to 0.
      3. Else,
        1. LettargetLenAsInt be ! ToIntegerOrInfinity(targetLen).
        2. Assert:targetLenAsInt is finite.
        3. LetargCount be the number of elements inargs.
        4. SetL tomax(targetLenAsInt -argCount, 0).
  7. Perform ! SetFunctionLength(F,L).
  8. LettargetName be ? Get(Target,"name").
  9. IfType(targetName) is not String, settargetName to the empty String.
  10. PerformSetFunctionName(F,targetName,"bound").
  11. ReturnF.
Note 1

Function objects created usingFunction.prototype.bind are exotic objects. They also do not have a"prototype" property.

Note 2

IfTarget is an arrow function or abound function exotic object then thethisArg passed to this method will not be used by subsequent calls toF.

20.2.3.3 Function.prototype.call (thisArg, ...args )

When thecall method is called with argumentthisArg and zero or moreargs, the following steps are taken:

  1. Letfunc be thethis value.
  2. IfIsCallable(func) isfalse, throw aTypeError exception.
  3. PerformPrepareForTailCall().
  4. Return ? Call(func,thisArg,args).
Note 1

ThethisArg value is passed without modification as thethis value. This is a change from Edition 3, where anundefined ornullthisArg is replaced with theglobal object andToObject is applied to all other values and that result is passed as thethis value. Even though thethisArg is passed without modification, non-strict functions still perform these transformations upon entry to the function.

Note 2

Iffunc is an arrow function or abound function exotic object then thethisArg will be ignored by the function [[Call]] in step4.

20.2.3.4 Function.prototype.constructor

The initial value ofFunction.prototype.constructor is%Function%.

20.2.3.5 Function.prototype.toString ( )

When thetoString method is called, the following steps are taken:

  1. Letfunc be thethis value.
  2. IfType(func) is Object andfunc has a [[SourceText]] internal slot andfunc.[[SourceText]] is a sequence of Unicode code points and ! HostHasSourceTextAvailable(func) istrue, then
    1. Return ! CodePointsToString(func.[[SourceText]]).
  3. Iffunc is abuilt-in function object, return animplementation-defined String source code representation offunc. The representation must have the syntax of aNativeFunction. Additionally, iffunc has an [[InitialName]] internal slot andfunc.[[InitialName]] is a String, the portion of the returned String that would be matched byNativeFunctionAccessoroptPropertyName must be the value offunc.[[InitialName]].
  4. IfType(func) is Object andIsCallable(func) istrue, return animplementation-defined String source code representation offunc. The representation must have the syntax of aNativeFunction.
  5. Throw aTypeError exception.
NativeFunction:functionNativeFunctionAccessoroptPropertyName[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){[nativecode]}NativeFunctionAccessor:getset

20.2.3.6 Function.prototype [ @@hasInstance ] (V )

When the@@hasInstance method of an objectF is called with valueV, the following steps are taken:

  1. LetF be thethis value.
  2. Return ? OrdinaryHasInstance(F,V).

The value of the"name" property of this function is"[Symbol.hasInstance]".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

Note

This is the default implementation of@@hasInstance that most functions inherit.@@hasInstance is called by theinstanceof operator to determine whether a value is an instance of a specificconstructor. An expression such as

vinstanceof F

evaluates as

F[@@hasInstance](v)

Aconstructor function can control which objects are recognized as its instances byinstanceof by exposing a different@@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the target function of abound function.

20.2.4 Function Instances

Every Function instance is an ECMAScriptfunction object and has the internal slots listed inTable 29. Function objects created using theFunction.prototype.bind method (20.2.3.2) have the internal slots listed inTable 30.

Function instances have the following properties:

20.2.4.1 length

The value of the"length" property is anintegral Number that indicates the typical number of arguments expected by the function. However, the language permits the function to be invoked with some other number of arguments. The behaviour of a function when invoked on a number of arguments other than the number specified by its"length" property depends on the function. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

20.2.4.2 name

The value of the"name" property is a String that is descriptive of the function. The name has no semantic significance but is typically a variable orproperty name that is used to refer to the function at its point of definition in ECMAScript code. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

Anonymous functions objects that do not have a contextual name associated with them by this specification use the empty String as the value of the"name" property.

20.2.4.3 prototype

Function instances that can be used as aconstructor have a"prototype" property. Whenever such a Function instance is created anotherordinary object is also created and is the initial value of the function's"prototype" property. Unless otherwise specified, the value of the"prototype" property is used to initialize the [[Prototype]] internal slot of the object created when that function is invoked as aconstructor.

This property has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.

Note

Function objects created usingFunction.prototype.bind, or by evaluating aMethodDefinition (that is not aGeneratorMethod orAsyncGeneratorMethod) or anArrowFunction do not have a"prototype" property.

20.2.5 HostHasSourceTextAvailable (func )

Thehost-defined abstract operation HostHasSourceTextAvailable takes argumentfunc (afunction object). It allowshost environments to prevent the source text from being provided forfunc.

An implementation of HostHasSourceTextAvailable must complete normally in all cases. This operation must be deterministic with respect to its parameters. Each time it is called with a specificfunc as its argument, it must return the same completion record. The default implementation of HostHasSourceTextAvailable is to unconditionally return a normal completion with a value oftrue.

20.3 Boolean Objects

20.3.1 The Boolean Constructor

The Booleanconstructor:

  • is%Boolean%.
  • is the initial value of the"Boolean" property of theglobal object.
  • creates and initializes a new Boolean object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified Boolean behaviour must include asuper call to the Booleanconstructor to create and initialize the subclass instance with a [[BooleanData]] internal slot.

20.3.1.1 Boolean (value )

WhenBoolean is called with argumentvalue, the following steps are taken:

  1. Letb be ! ToBoolean(value).
  2. If NewTarget isundefined, returnb.
  3. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Boolean.prototype%", « [[BooleanData]] »).
  4. SetO.[[BooleanData]] tob.
  5. ReturnO.

20.3.2 Properties of the Boolean Constructor

The Booleanconstructor:

20.3.2.1 Boolean.prototype

The initial value ofBoolean.prototype is theBoolean prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.3.3 Properties of the Boolean Prototype Object

TheBoolean prototype object:

  • is%Boolean.prototype%.
  • is anordinary object.
  • is itself a Boolean object; it has a [[BooleanData]] internal slot with the valuefalse.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

The abstract operationthisBooleanValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is Boolean, returnvalue.
  2. IfType(value) is Object andvalue has a [[BooleanData]] internal slot, then
    1. Letb bevalue.[[BooleanData]].
    2. Assert:Type(b) is Boolean.
    3. Returnb.
  3. Throw aTypeError exception.

20.3.3.1 Boolean.prototype.constructor

The initial value ofBoolean.prototype.constructor is%Boolean%.

20.3.3.2 Boolean.prototype.toString ( )

The following steps are taken:

  1. Letb be ? thisBooleanValue(this value).
  2. Ifb istrue, return"true"; else return"false".

20.3.3.3 Boolean.prototype.valueOf ( )

The following steps are taken:

  1. Return ? thisBooleanValue(this value).

20.3.4 Properties of Boolean Instances

Boolean instances are ordinary objects that inherit properties from theBoolean prototype object. Boolean instances have a [[BooleanData]] internal slot. The [[BooleanData]] internal slot is the Boolean value represented by this Boolean object.

20.4 Symbol Objects

20.4.1 The Symbol Constructor

The Symbolconstructor:

  • is%Symbol%.
  • is the initial value of the"Symbol" property of theglobal object.
  • returns a new Symbol value when called as a function.
  • is not intended to be used with thenew operator.
  • is not intended to be subclassed.
  • may be used as the value of anextends clause of a class definition but asuper call to it will cause an exception.

20.4.1.1 Symbol ( [description ] )

WhenSymbol is called with optional argumentdescription, the following steps are taken:

  1. If NewTarget is notundefined, throw aTypeError exception.
  2. Ifdescription isundefined, letdescString beundefined.
  3. Else, letdescString be ? ToString(description).
  4. Return a new unique Symbol value whose [[Description]] value isdescString.

20.4.2 Properties of the Symbol Constructor

The Symbolconstructor:

20.4.2.1 Symbol.asyncIterator

The initial value ofSymbol.asyncIterator is the well known symbol@@asyncIterator (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.2 Symbol.for (key )

WhenSymbol.for is called with argumentkey it performs the following steps:

  1. LetstringKey be ? ToString(key).
  2. For each elemente of the GlobalSymbolRegistryList, do
    1. IfSameValue(e.[[Key]],stringKey) istrue, returne.[[Symbol]].
  3. Assert: GlobalSymbolRegistry does not currently contain an entry forstringKey.
  4. LetnewSymbol be a new unique Symbol value whose [[Description]] value isstringKey.
  5. Append theRecord { [[Key]]:stringKey, [[Symbol]]:newSymbol } to the GlobalSymbolRegistryList.
  6. ReturnnewSymbol.

The GlobalSymbolRegistry is aList that is globally available. It is shared by all realms. Prior to the evaluation of any ECMAScript code it is initialized as a new emptyList. Elements of the GlobalSymbolRegistry are Records with the structure defined inTable 51.

Table 51: GlobalSymbolRegistryRecord Fields
Field Name Value Usage
[[Key]] A String A string key used to globally identify a Symbol.
[[Symbol]] A Symbol A symbol that can be retrieved from anyrealm.

20.4.2.3 Symbol.hasInstance

The initial value ofSymbol.hasInstance is the well-known symbol@@hasInstance (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.4 Symbol.isConcatSpreadable

The initial value ofSymbol.isConcatSpreadable is the well-known symbol@@isConcatSpreadable (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.5 Symbol.iterator

The initial value ofSymbol.iterator is the well-known symbol@@iterator (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.6 Symbol.keyFor (sym )

WhenSymbol.keyFor is called with argumentsym it performs the following steps:

  1. IfType(sym) is not Symbol, throw aTypeError exception.
  2. For each elemente of the GlobalSymbolRegistryList (see20.4.2.2), do
    1. IfSameValue(e.[[Symbol]],sym) istrue, returne.[[Key]].
  3. Assert: GlobalSymbolRegistry does not currently contain an entry forsym.
  4. Returnundefined.

20.4.2.7 Symbol.match

The initial value ofSymbol.match is the well-known symbol@@match (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.8 Symbol.matchAll

The initial value ofSymbol.matchAll is the well-known symbol@@matchAll (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.9 Symbol.prototype

The initial value ofSymbol.prototype is theSymbol prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.10 Symbol.replace

The initial value ofSymbol.replace is the well-known symbol@@replace (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.11 Symbol.search

The initial value ofSymbol.search is the well-known symbol@@search (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.12 Symbol.species

The initial value ofSymbol.species is the well-known symbol@@species (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.13 Symbol.split

The initial value ofSymbol.split is the well-known symbol@@split (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.14 Symbol.toPrimitive

The initial value ofSymbol.toPrimitive is the well-known symbol@@toPrimitive (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.15 Symbol.toStringTag

The initial value ofSymbol.toStringTag is the well-known symbol@@toStringTag (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.2.16 Symbol.unscopables

The initial value ofSymbol.unscopables is the well-known symbol@@unscopables (Table 1).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.4.3 Properties of the Symbol Prototype Object

TheSymbol prototype object:

  • is%Symbol.prototype%.
  • is anordinary object.
  • is not a Symbol instance and does not have a [[SymbolData]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

The abstract operationthisSymbolValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is Symbol, returnvalue.
  2. IfType(value) is Object andvalue has a [[SymbolData]] internal slot, then
    1. Lets bevalue.[[SymbolData]].
    2. Assert:Type(s) is Symbol.
    3. Returns.
  3. Throw aTypeError exception.

20.4.3.1 Symbol.prototype.constructor

The initial value ofSymbol.prototype.constructor is%Symbol%.

20.4.3.2 get Symbol.prototype.description

Symbol.prototype.description is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Lets be thethis value.
  2. Letsym be ? thisSymbolValue(s).
  3. Returnsym.[[Description]].

20.4.3.3 Symbol.prototype.toString ( )

The following steps are taken:

  1. Letsym be ? thisSymbolValue(this value).
  2. ReturnSymbolDescriptiveString(sym).

20.4.3.3.1 SymbolDescriptiveString (sym )

The abstract operation SymbolDescriptiveString takes argumentsym. It performs the following steps when called:

  1. Assert:Type(sym) is Symbol.
  2. Letdesc besym's [[Description]] value.
  3. Ifdesc isundefined, setdesc to the empty String.
  4. Assert:Type(desc) is String.
  5. Return thestring-concatenation of"Symbol(",desc, and")".

20.4.3.4 Symbol.prototype.valueOf ( )

The following steps are taken:

  1. Return ? thisSymbolValue(this value).

20.4.3.5 Symbol.prototype [ @@toPrimitive ] (hint )

This function is called by ECMAScript language operators to convert a Symbol object to a primitive value.

When the@@toPrimitive method is called with argumenthint, the following steps are taken:

  1. Return ? thisSymbolValue(this value).

The value of the"name" property of this function is"[Symbol.toPrimitive]".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

Note

The argument is ignored.

20.4.3.6 Symbol.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Symbol".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

20.4.4 Properties of Symbol Instances

Symbol instances are ordinary objects that inherit properties from theSymbol prototype object. Symbol instances have a [[SymbolData]] internal slot. The [[SymbolData]] internal slot is the Symbol value represented by this Symbol object.

20.5 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also serve as base objects for user-defined exception classes.

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of theNativeError objects defined in20.5.5 or a new instance of AggregateError object defined in20.5.7. Each of these objects has the structure described below, differing only in the name used as theconstructor name instead ofNativeError, in thename property of the prototype object, in theimplementation-definedmessage property of the prototype object, and in the presence of the%AggregateError%-specificerrors property.

20.5.1 The Error Constructor

The Errorconstructor:

  • is%Error%.
  • is the initial value of the"Error" property of theglobal object.
  • creates and initializes a new Error object when called as a function rather than as aconstructor. Thus the function callError(…) is equivalent to the object creation expressionnew Error(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified Error behaviour must include asuper call to the Errorconstructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.1.1 Error (message )

When theError function is called with argumentmessage, the following steps are taken:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%Error.prototype%", « [[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. LetmsgDesc be the PropertyDescriptor { [[Value]]:msg, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }.
    3. Perform ! DefinePropertyOrThrow(O,"message",msgDesc).
  4. ReturnO.

20.5.2 Properties of the Error Constructor

The Errorconstructor:

20.5.2.1 Error.prototype

The initial value ofError.prototype is theError prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.5.3 Properties of the Error Prototype Object

TheError prototype object:

  • is%Error.prototype%.
  • is anordinary object.
  • is not an Error instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

20.5.3.1 Error.prototype.constructor

The initial value ofError.prototype.constructor is%Error%.

20.5.3.2 Error.prototype.message

The initial value ofError.prototype.message is the empty String.

20.5.3.3 Error.prototype.name

The initial value ofError.prototype.name is"Error".

20.5.3.4 Error.prototype.toString ( )

The following steps are taken:

  1. LetO be thethis value.
  2. IfType(O) is not Object, throw aTypeError exception.
  3. Letname be ? Get(O,"name").
  4. Ifname isundefined, setname to"Error"; otherwise setname to ? ToString(name).
  5. Letmsg be ? Get(O,"message").
  6. Ifmsg isundefined, setmsg to the empty String; otherwise setmsg to ? ToString(msg).
  7. Ifname is the empty String, returnmsg.
  8. Ifmsg is the empty String, returnname.
  9. Return thestring-concatenation ofname, the code unit 0x003A (COLON), the code unit 0x0020 (SPACE), andmsg.

20.5.4 Properties of Error Instances

Error instances are ordinary objects that inherit properties from theError prototype object and have an [[ErrorData]] internal slot whose value isundefined. The only specified uses of [[ErrorData]] is to identify Error, AggregateError, andNativeError instances as Error objects withinObject.prototype.toString.

20.5.5 Native Error Types Used in This Standard

A new instance of one of theNativeError objects below or of the AggregateError object is thrown when a runtime error is detected. AllNativeError objects share the same structure, as described in20.5.6.

20.5.5.1 EvalError

The EvalErrorconstructor is%EvalError%.

This exception is not currently used within this specification. This object remains for compatibility with previous editions of this specification.

20.5.5.2 RangeError

The RangeErrorconstructor is%RangeError%.

Indicates a value that is not in the set or range of allowable values.

20.5.5.3 ReferenceError

The ReferenceErrorconstructor is%ReferenceError%.

Indicate that an invalid reference has been detected.

20.5.5.4 SyntaxError

The SyntaxErrorconstructor is%SyntaxError%.

Indicates that a parsing error has occurred.

20.5.5.5 TypeError

The TypeErrorconstructor is%TypeError%.

TypeError is used to indicate an unsuccessful operation when none of the otherNativeError objects are an appropriate indication of the failure cause.

20.5.5.6 URIError

The URIErrorconstructor is%URIError%.

Indicates that one of the global URI handling functions was used in a way that is incompatible with its definition.

20.5.6NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of theNativeError objects defined in20.5.5. Each of these objects has the structure described below, differing only in the name used as theconstructor name instead ofNativeError, in the"name" property of the prototype object, and in theimplementation-defined"message" property of the prototype object.

For each error object, references toNativeError in the definition should be replaced with the appropriate error object name from20.5.5.

20.5.6.1 TheNativeError Constructors

EachNativeErrorconstructor:

  • creates and initializes a newNativeError object when called as a function rather than as aconstructor. A call of the object as a function is equivalent to calling it as aconstructor with the same arguments. Thus the function callNativeError(…) is equivalent to the object creation expressionnewNativeError(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specifiedNativeError behaviour must include asuper call to theNativeErrorconstructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.6.1.1NativeError (message )

When aNativeError function is called with argumentmessage, the following steps are taken:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%NativeError.prototype%", « [[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. LetmsgDesc be the PropertyDescriptor { [[Value]]:msg, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }.
    3. Perform ! DefinePropertyOrThrow(O,"message",msgDesc).
  4. ReturnO.

The actual value of the string passed in step2 is either"%EvalError.prototype%","%RangeError.prototype%","%ReferenceError.prototype%","%SyntaxError.prototype%","%TypeError.prototype%", or"%URIError.prototype%" corresponding to whichNativeErrorconstructor is being defined.

20.5.6.2 Properties of theNativeError Constructors

EachNativeErrorconstructor:

  • has a [[Prototype]] internal slot whose value is%Error%.
  • has a"name" property whose value is the String value"NativeError".
  • has the following properties:

20.5.6.2.1NativeError.prototype

The initial value ofNativeError.prototype is aNativeError prototype object (20.5.6.3). EachNativeErrorconstructor has a distinct prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.5.6.3 Properties of theNativeError Prototype Objects

EachNativeError prototype object:

  • is anordinary object.
  • is not an Error instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Error.prototype%.

20.5.6.3.1NativeError.prototype.constructor

The initial value of the"constructor" property of the prototype for a givenNativeErrorconstructor is the corresponding intrinsic object %NativeError% (20.5.6.1).

20.5.6.3.2NativeError.prototype.message

The initial value of the"message" property of the prototype for a givenNativeErrorconstructor is the empty String.

20.5.6.3.3NativeError.prototype.name

The initial value of the"name" property of the prototype for a givenNativeErrorconstructor is the String value consisting of the name of theconstructor (the name used instead ofNativeError).

20.5.6.4 Properties ofNativeError Instances

NativeError instances are ordinary objects that inherit properties from theirNativeError prototype object and have an [[ErrorData]] internal slot whose value isundefined. The only specified use of [[ErrorData]] is byObject.prototype.toString (20.1.3.6) to identify Error, AggregateError, orNativeError instances.

20.5.7 AggregateError Objects

20.5.7.1 The AggregateError Constructor

The AggregateErrorconstructor:

  • is%AggregateError%.
  • is the initial value of the"AggregateError" property of theglobal object.
  • creates and initializes a new AggregateError object when called as a function rather than as aconstructor. Thus the function callAggregateError(…) is equivalent to the object creation expressionnew AggregateError(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified AggregateError behaviour must include asuper call to the AggregateErrorconstructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.7.1.1 AggregateError (errors,message )

When theAggregateError function is called with argumentserrors andmessage, the following steps are taken:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%AggregateError.prototype%", « [[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. LetmsgDesc be the PropertyDescriptor { [[Value]]:msg, [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:true }.
    3. Perform ! DefinePropertyOrThrow(O,"message",msgDesc).
  4. LeterrorsList be ? IterableToList(errors).
  5. Perform ! DefinePropertyOrThrow(O,"errors", PropertyDescriptor { [[Configurable]]:true, [[Enumerable]]:false, [[Writable]]:true, [[Value]]: ! CreateArrayFromList(errorsList) }).
  6. ReturnO.

20.5.7.2 Properties of the AggregateError Constructor

The AggregateErrorconstructor:

  • has a [[Prototype]] internal slot whose value is%Error%.
  • has the following properties:

20.5.7.2.1 AggregateError.prototype

The initial value ofAggregateError.prototype is%AggregateError.prototype%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

20.5.7.3 Properties of the AggregateError Prototype Object

TheAggregateError prototype object:

  • is%AggregateError.prototype%.
  • is anordinary object.
  • is not an Error instance or an AggregateError instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Error.prototype%.

20.5.7.3.1 AggregateError.prototype.constructor

The initial value ofAggregateError.prototype.constructor is%AggregateError%.

20.5.7.3.2 AggregateError.prototype.message

The initial value ofAggregateError.prototype.message is the empty String.

20.5.7.3.3 AggregateError.prototype.name

The initial value ofAggregateError.prototype.name is"AggregateError".

20.5.7.4 Properties of AggregateError Instances

AggregateError instances are ordinary objects that inherit properties from theirAggregateError prototype object and have an [[ErrorData]] internal slot whose value isundefined. The only specified use of [[ErrorData]] is byObject.prototype.toString (20.1.3.6) to identify Error, AggregateError, orNativeError instances.

21 Numbers and Dates

21.1 Number Objects

21.1.1 The Number Constructor

The Numberconstructor:

  • is%Number%.
  • is the initial value of the"Number" property of theglobal object.
  • creates and initializes a new Number object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified Number behaviour must include asuper call to the Numberconstructor to create and initialize the subclass instance with a [[NumberData]] internal slot.

21.1.1.1 Number (value )

WhenNumber is called with argumentvalue, the following steps are taken:

  1. Ifvalue is present, then
    1. Letprim be ? ToNumeric(value).
    2. IfType(prim) is BigInt, letn be𝔽((prim)).
    3. Otherwise, letn beprim.
  2. Else,
    1. Letn be+0𝔽.
  3. If NewTarget isundefined, returnn.
  4. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Number.prototype%", « [[NumberData]] »).
  5. SetO.[[NumberData]] ton.
  6. ReturnO.

21.1.2 Properties of the Number Constructor

The Numberconstructor:

21.1.2.1 Number.EPSILON

The value ofNumber.EPSILON is theNumber value for the magnitude of the difference between 1 and the smallest value greater than 1 that is representable as aNumber value, which is approximately 2.2204460492503130808472633361816 × 10-16.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.2 Number.isFinite (number )

WhenNumber.isFinite is called with one argumentnumber, the following steps are taken:

  1. IfType(number) is not Number, returnfalse.
  2. Ifnumber isNaN,+∞𝔽, or-∞𝔽, returnfalse.
  3. Otherwise, returntrue.

21.1.2.3 Number.isInteger (number )

WhenNumber.isInteger is called with one argumentnumber, the following steps are taken:

  1. Return ! IsIntegralNumber(number).

21.1.2.4 Number.isNaN (number )

WhenNumber.isNaN is called with one argumentnumber, the following steps are taken:

  1. IfType(number) is not Number, returnfalse.
  2. Ifnumber isNaN, returntrue.
  3. Otherwise, returnfalse.
Note

This function differs from the global isNaN function (19.2.3) in that it does not convert its argument to a Number before determining whether it isNaN.

21.1.2.5 Number.isSafeInteger (number )

WhenNumber.isSafeInteger is called with one argumentnumber, the following steps are taken:

  1. If ! IsIntegralNumber(number) istrue, then
    1. Ifabs((number)) ≤ 253 - 1, returntrue.
  2. Returnfalse.

21.1.2.6 Number.MAX_SAFE_INTEGER

Note

The value ofNumber.MAX_SAFE_INTEGER is the largestintegral Number n such that(n) and(n) + 1 are both exactly representable as aNumber value.

The value ofNumber.MAX_SAFE_INTEGER is9007199254740991𝔽 (𝔽(253 - 1)).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.7 Number.MAX_VALUE

The value ofNumber.MAX_VALUE is the largest positive finite value of the Number type, which is approximately1.7976931348623157 × 10308.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.8 Number.MIN_SAFE_INTEGER

Note

The value ofNumber.MIN_SAFE_INTEGER is the smallestintegral Number n such that(n) and(n) - 1 are both exactly representable as aNumber value.

The value ofNumber.MIN_SAFE_INTEGER is-9007199254740991𝔽 (𝔽(-(253 - 1))).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.9 Number.MIN_VALUE

The value ofNumber.MIN_VALUE is the smallest positive value of the Number type, which is approximately5 × 10-324.

In theIEEE 754-2019 double precision binary representation, the smallest possible value is a denormalized number. If an implementation does not support denormalized values, the value ofNumber.MIN_VALUE must be the smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.10 Number.NaN

The value ofNumber.NaN isNaN.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.11 Number.NEGATIVE_INFINITY

The value ofNumber.NEGATIVE_INFINITY is-∞𝔽.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.12 Number.parseFloat (string )

The value of theNumber.parseFloatdata property is the same built-infunction object that is the initial value of the"parseFloat" property of theglobal object defined in19.2.4.

21.1.2.13 Number.parseInt (string,radix )

The value of theNumber.parseIntdata property is the same built-infunction object that is the initial value of the"parseInt" property of theglobal object defined in19.2.5.

21.1.2.14 Number.POSITIVE_INFINITY

The value ofNumber.POSITIVE_INFINITY is+∞𝔽.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.2.15 Number.prototype

The initial value ofNumber.prototype is theNumber prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.1.3 Properties of the Number Prototype Object

TheNumber prototype object:

  • is%Number.prototype%.
  • is anordinary object.
  • is itself a Number object; it has a [[NumberData]] internal slot with the value+0𝔽.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic and thethis value passed to them must be either aNumber value or an object that has a [[NumberData]] internal slot that has been initialized to aNumber value.

The abstract operationthisNumberValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is Number, returnvalue.
  2. IfType(value) is Object andvalue has a [[NumberData]] internal slot, then
    1. Letn bevalue.[[NumberData]].
    2. Assert:Type(n) is Number.
    3. Returnn.
  3. Throw aTypeError exception.

The phrase “thisNumber value” within the specification of a method refers to the result returned by calling the abstract operationthisNumberValue with thethis value of the method invocation passed as the argument.

21.1.3.1 Number.prototype.constructor

The initial value ofNumber.prototype.constructor is%Number%.

21.1.3.2 Number.prototype.toExponential (fractionDigits )

Return a String containing thisNumber value represented in decimal exponential notation with one digit before the significand's decimal point andfractionDigits digits after the significand's decimal point. IffractionDigits isundefined, include as many significand digits as necessary to uniquely specify the Number (just like inToString except that in this case the Number is always output in exponential notation). Specifically, perform the following steps:

  1. Letx be ? thisNumberValue(this value).
  2. Letf be ? ToIntegerOrInfinity(fractionDigits).
  3. Assert: IffractionDigits isundefined, thenf is 0.
  4. Ifx is not finite, return !Number::toString(x).
  5. Iff < 0 orf > 100, throw aRangeError exception.
  6. Setx to(x).
  7. Lets be the empty String.
  8. Ifx < 0, then
    1. Sets to"-".
    2. Setx to -x.
  9. Ifx = 0, then
    1. Letm be the String value consisting off + 1 occurrences of the code unit 0x0030 (DIGIT ZERO).
    2. Lete be 0.
  10. Else,
    1. IffractionDigits is notundefined, then
      1. Lete andn be integers such that 10fn < 10f + 1 and for whichn × 10e -n -x is as close to zero as possible. If there are two such sets ofe andn, pick thee andn for whichn × 10e -f is larger.
    2. Else,
      1. Lete,n, andf be integers such thatf ≥ 0, 10fn < 10f + 1,n × 10e -f isx, andf is as small as possible. Note that the decimal representation ofn hasf + 1 digits,n is not divisible by 10, and the least significant digit ofn is not necessarily uniquely determined by these criteria.
    3. Letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
  11. Iff ≠ 0, then
    1. Leta be the first code unit ofm.
    2. Letb be the otherf code units ofm.
    3. Setm to thestring-concatenation ofa,".", andb.
  12. Ife = 0, then
    1. Letc be"+".
    2. Letd be"0".
  13. Else,
    1. Ife > 0, letc be"+".
    2. Else,
      1. Assert:e < 0.
      2. Letc be"-".
      3. Sete to -e.
    3. Letd be the String value consisting of the digits of the decimal representation ofe (in order, with no leading zeroes).
  14. Setm to thestring-concatenation ofm,"e",c, andd.
  15. Return thestring-concatenation ofs andm.
Note

For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step10.b.i be used as a guideline:

  1. Lete,n, andf be integers such thatf ≥ 0, 10fn < 10f + 1,n × 10e -f isx, andf is as small as possible. If there are multiple possibilities forn, choose the value ofn for whichn × 10e -f is closest in value tox. If there are two such possible values ofn, choose the one that is even.

21.1.3.3 Number.prototype.toFixed (fractionDigits )

Note 1

toFixed returns a String containing thisNumber value represented in decimal fixed-point notation withfractionDigits digits after the decimal point. IffractionDigits isundefined, 0 is assumed.

The following steps are performed:

  1. Letx be ? thisNumberValue(this value).
  2. Letf be ? ToIntegerOrInfinity(fractionDigits).
  3. Assert: IffractionDigits isundefined, thenf is 0.
  4. Iff is not finite, throw aRangeError exception.
  5. Iff < 0 orf > 100, throw aRangeError exception.
  6. Ifx is not finite, return !Number::toString(x).
  7. Setx to(x).
  8. Lets be the empty String.
  9. Ifx < 0, then
    1. Sets to"-".
    2. Setx to -x.
  10. Ifx ≥ 1021, then
    1. Letm be ! ToString(𝔽(x)).
  11. Else,
    1. Letn be aninteger for whichn / 10f -x is as close to zero as possible. If there are two suchn, pick the largern.
    2. Ifn = 0, letm be the String"0". Otherwise, letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
    3. Iff ≠ 0, then
      1. Letk be the length ofm.
      2. Ifkf, then
        1. Letz be the String value consisting off + 1 -k occurrences of the code unit 0x0030 (DIGIT ZERO).
        2. Setm to thestring-concatenation ofz andm.
        3. Setk tof + 1.
      3. Leta be the firstk -f code units ofm.
      4. Letb be the otherf code units ofm.
      5. Setm to thestring-concatenation ofa,".", andb.
  12. Return thestring-concatenation ofs andm.
Note 2

The output oftoFixed may be more precise thantoString for some values because toString only prints enough significant digits to distinguish the number from adjacent Number values. For example,

(1000000000000000128).toString() returns"1000000000000000100", while
(1000000000000000128).toFixed(0) returns"1000000000000000128".

21.1.3.4 Number.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theNumber.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleString method is used.

Produces a String value that represents thisNumber value formatted according to the conventions of thehost environment's current locale. This function isimplementation-defined, and it is permissible, but not encouraged, for it to return the same thing astoString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.1.3.5 Number.prototype.toPrecision (precision )

Return a String containing thisNumber value represented either in decimal exponential notation with one digit before the significand's decimal point andprecision - 1 digits after the significand's decimal point or in decimal fixed notation withprecision significant digits. Ifprecision isundefined, callToString instead. Specifically, perform the following steps:

  1. Letx be ? thisNumberValue(this value).
  2. Ifprecision isundefined, return ! ToString(x).
  3. Letp be ? ToIntegerOrInfinity(precision).
  4. Ifx is not finite, return !Number::toString(x).
  5. Ifp < 1 orp > 100, throw aRangeError exception.
  6. Setx to(x).
  7. Lets be the empty String.
  8. Ifx < 0, then
    1. Sets to the code unit 0x002D (HYPHEN-MINUS).
    2. Setx to -x.
  9. Ifx = 0, then
    1. Letm be the String value consisting ofp occurrences of the code unit 0x0030 (DIGIT ZERO).
    2. Lete be 0.
  10. Else,
    1. Lete andn be integers such that 10p - 1n < 10p and for whichn × 10e -p + 1 -x is as close to zero as possible. If there are two such sets ofe andn, pick thee andn for whichn × 10e -p + 1 is larger.
    2. Letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
    3. Ife < -6 orep, then
      1. Assert:e ≠ 0.
      2. Ifp ≠ 1, then
        1. Leta be the first code unit ofm.
        2. Letb be the otherp - 1 code units ofm.
        3. Setm to thestring-concatenation ofa,".", andb.
      3. Ife > 0, then
        1. Letc be the code unit 0x002B (PLUS SIGN).
      4. Else,
        1. Assert:e < 0.
        2. Letc be the code unit 0x002D (HYPHEN-MINUS).
        3. Sete to -e.
      5. Letd be the String value consisting of the digits of the decimal representation ofe (in order, with no leading zeroes).
      6. Return thestring-concatenation ofs,m, the code unit 0x0065 (LATIN SMALL LETTER E),c, andd.
  11. Ife =p - 1, return thestring-concatenation ofs andm.
  12. Ife ≥ 0, then
    1. Setm to thestring-concatenation of the firste + 1 code units ofm, the code unit 0x002E (FULL STOP), and the remainingp - (e + 1) code units ofm.
  13. Else,
    1. Setm to thestring-concatenation of the code unit 0x0030 (DIGIT ZERO), the code unit 0x002E (FULL STOP), -(e + 1) occurrences of the code unit 0x0030 (DIGIT ZERO), and the Stringm.
  14. Return thestring-concatenation ofs andm.

21.1.3.6 Number.prototype.toString ( [radix ] )

Note

The optionalradix should be anintegral Number value in the inclusive range2𝔽 to36𝔽. Ifradix isundefined then10𝔽 is used as the value ofradix.

The following steps are performed:

  1. Letx be ? thisNumberValue(this value).
  2. Ifradix isundefined, letradixMV be 10.
  3. Else, letradixMV be ? ToIntegerOrInfinity(radix).
  4. IfradixMV < 2 orradixMV > 36, throw aRangeError exception.
  5. IfradixMV = 10, return ! ToString(x).
  6. Return the String representation of thisNumber value using the radix specified byradixMV. Lettersa-z are used for digits with values 10 through 35. The precise algorithm isimplementation-defined, however the algorithm should be a generalization of that specified in6.1.6.1.20.

ThetoString function is not generic; it throws aTypeError exception if itsthis value is not a Number or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

The"length" property of thetoString method is1𝔽.

21.1.3.7 Number.prototype.valueOf ( )

  1. Return ? thisNumberValue(this value).

21.1.4 Properties of Number Instances

Number instances are ordinary objects that inherit properties from theNumber prototype object. Number instances also have a [[NumberData]] internal slot. The [[NumberData]] internal slot is theNumber value represented by this Number object.

21.2 BigInt Objects

21.2.1 The BigInt Constructor

The BigIntconstructor:

  • is%BigInt%.
  • is the initial value of the"BigInt" property of theglobal object.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is not intended to be used with thenew operator or to be subclassed. It may be used as the value of anextends clause of a class definition but asuper call to the BigIntconstructor will cause an exception.

21.2.1.1 BigInt (value )

WhenBigInt is called with argumentvalue, the following steps are taken:

  1. If NewTarget is notundefined, throw aTypeError exception.
  2. Letprim be ? ToPrimitive(value,number).
  3. IfType(prim) is Number, return ? NumberToBigInt(prim).
  4. Otherwise, return ? ToBigInt(value).

21.2.1.1.1 NumberToBigInt (number )

The abstract operation NumberToBigInt takes argumentnumber (a Number). It performs the following steps when called:

  1. IfIsIntegralNumber(number) isfalse, throw aRangeError exception.
  2. Return the BigInt value that represents(number).

21.2.2 Properties of the BigInt Constructor

The value of the [[Prototype]] internal slot of the BigIntconstructor is%Function.prototype%.

The BigIntconstructor has the following properties:

21.2.2.1 BigInt.asIntN (bits,bigint )

When theBigInt.asIntN function is called with two argumentsbits andbigint, the following steps are taken:

  1. Setbits to ? ToIndex(bits).
  2. Setbigint to ? ToBigInt(bigint).
  3. Letmod be(bigint)modulo 2bits.
  4. Ifmod ≥ 2bits - 1, return(mod - 2bits); otherwise, return(mod).

21.2.2.2 BigInt.asUintN (bits,bigint )

When theBigInt.asUintN function is called with two argumentsbits andbigint, the following steps are taken:

  1. Setbits to ? ToIndex(bits).
  2. Setbigint to ? ToBigInt(bigint).
  3. Return the BigInt value that represents(bigint)modulo 2bits.

21.2.2.3 BigInt.prototype

The initial value ofBigInt.prototype is theBigInt prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.2.3 Properties of the BigInt Prototype Object

TheBigInt prototype object:

  • is%BigInt.prototype%.
  • is anordinary object.
  • is not a BigInt object; it does not have a [[BigIntData]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

The abstract operationthisBigIntValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is BigInt, returnvalue.
  2. IfType(value) is Object andvalue has a [[BigIntData]] internal slot, then
    1. Assert:Type(value.[[BigIntData]]) is BigInt.
    2. Returnvalue.[[BigIntData]].
  3. Throw aTypeError exception.

The phrase “this BigInt value” within the specification of a method refers to the result returned by calling the abstract operationthisBigIntValue with thethis value of the method invocation passed as the argument.

21.2.3.1 BigInt.prototype.constructor

The initial value ofBigInt.prototype.constructor is%BigInt%.

21.2.3.2 BigInt.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theBigInt.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleString method is used.

Produces a String value that represents this BigInt value formatted according to the conventions of thehost environment's current locale. This function isimplementation-defined, and it is permissible, but not encouraged, for it to return the same thing astoString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.2.3.3 BigInt.prototype.toString ( [radix ] )

Note

The optionalradix should be anintegral Number value in the inclusive range2𝔽 to36𝔽. Ifradix isundefined then10𝔽 is used as the value ofradix.

The following steps are performed:

  1. Letx be ? thisBigIntValue(this value).
  2. Ifradix isundefined, letradixMV be 10.
  3. Else, letradixMV be ? ToIntegerOrInfinity(radix).
  4. IfradixMV < 2 orradixMV > 36, throw aRangeError exception.
  5. IfradixMV = 10, return ! ToString(x).
  6. Return the String representation of thisNumber value using the radix specified byradixMV. Lettersa-z are used for digits with values 10 through 35. The precise algorithm isimplementation-defined, however the algorithm should be a generalization of that specified in6.1.6.2.23.

ThetoString function is not generic; it throws aTypeError exception if itsthis value is not a BigInt or a BigInt object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

21.2.3.4 BigInt.prototype.valueOf ( )

  1. Return ? thisBigIntValue(this value).

21.2.3.5 BigInt.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"BigInt".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

21.3 The Math Object

The Math object:

  • is%Math%.
  • is the initial value of the"Math" property of theglobal object.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is not afunction object.
  • does not have a [[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a [[Call]] internal method; it cannot be invoked as a function.
Note

In this specification, the phrase “theNumber value forx” has a technical meaning defined in6.1.6.1.

21.3.1 Value Properties of the Math Object

21.3.1.1 Math.E

TheNumber value fore, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.3.1.2 Math.LN10

TheNumber value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.3.1.3 Math.LN2

TheNumber value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.3.1.4 Math.LOG10E

TheNumber value for the base-10 logarithm ofe, the base of the natural logarithms; this value is approximately 0.4342944819032518.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

Note

The value ofMath.LOG10E is approximately the reciprocal of the value ofMath.LN10.

21.3.1.5 Math.LOG2E

TheNumber value for the base-2 logarithm ofe, the base of the natural logarithms; this value is approximately 1.4426950408889634.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

Note

The value ofMath.LOG2E is approximately the reciprocal of the value ofMath.LN2.

21.3.1.6 Math.PI

TheNumber value for π, the ratio of the circumference of a circle to its diameter, which is approximately 3.1415926535897932.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.3.1.7 Math.SQRT1_2

TheNumber value for the square root of ½, which is approximately 0.7071067811865476.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

Note

The value ofMath.SQRT1_2 is approximately the reciprocal of the value ofMath.SQRT2.

21.3.1.8 Math.SQRT2

TheNumber value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.3.1.9 Math [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Math".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

21.3.2 Function Properties of the Math Object

Note

The behaviour of the functionsacos,acosh,asin,asinh,atan,atanh,atan2,cbrt,cos,cosh,exp,expm1,hypot,log,log1p,log2,log10,pow,random,sin,sinh,sqrt,tan, andtanh is not precisely specified here except to require specific results for certain argument values that represent boundary cases of interest. For other argument values, these functions are intended to compute approximations to the results of familiar mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that is available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that implementations use the approximation algorithms forIEEE 754-2019 arithmetic contained infdlibm, the freely distributable mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm).

21.3.2.1 Math.abs (x )

Returns the absolute value ofx; the result has the same magnitude asx but has positive sign.

When theMath.abs method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN, returnNaN.
  3. Ifn is-0𝔽, return+0𝔽.
  4. Ifn is-∞𝔽, return+∞𝔽.
  5. Ifn <+0𝔽, return -n.
  6. Returnn.

21.3.2.2 Math.acos (x )

Returns the inverse cosine ofx. The result is expressed in radians and ranges from+0𝔽 to𝔽(π), inclusive.

When theMath.acos method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n >1𝔽, orn <-1𝔽, returnNaN.
  3. Ifn is1𝔽, return+0𝔽.
  4. Return animplementation-approximated value representing the result of the inverse cosine of(n).

21.3.2.3 Math.acosh (x )

Returns the inverse hyperbolic cosine ofx.

When theMath.acosh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN orn is+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn <1𝔽, returnNaN.
  5. Return animplementation-approximated value representing the result of the inverse hyperbolic cosine of(n).

21.3.2.4 Math.asin (x )

Returns the inverse sine ofx. The result is expressed in radians and ranges from𝔽(-π / 2) to𝔽(π / 2), inclusive.

When theMath.asin method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn >1𝔽 orn <-1𝔽, returnNaN.
  4. Return animplementation-approximated value representing the result of the inverse sine of(n).

21.3.2.5 Math.asinh (x )

Returns the inverse hyperbolic sine ofx.

When theMath.asinh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Return animplementation-approximated value representing the result of the inverse hyperbolic sine of(n).

21.3.2.6 Math.atan (x )

Returns the inverse tangent ofx. The result is expressed in radians and ranges from𝔽(-π / 2) to𝔽(π / 2), inclusive.

When theMath.atan method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn is+∞𝔽, return animplementation-approximated value representing π / 2.
  4. Ifn is-∞𝔽, return animplementation-approximated value representing -π / 2.
  5. Return animplementation-approximated value representing the result of the inverse tangent of(n).

21.3.2.7 Math.atanh (x )

Returns the inverse hyperbolic tangent ofx.

When theMath.atanh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn >1𝔽 orn <-1𝔽, returnNaN.
  4. Ifn is1𝔽, return+∞𝔽.
  5. Ifn is-1𝔽, return-∞𝔽.
  6. Return animplementation-approximated value representing the result of the inverse hyperbolic tangent of(n).

21.3.2.8 Math.atan2 (y,x )

Returns the inverse tangent of the quotienty /x of the argumentsy andx, where the signs ofy andx are used to determine the quadrant of the result. Note that it is intentional and traditional for the two-argument inverse tangent function that the argument namedy be first and the argument namedx be second. The result is expressed in radians and ranges from -π to +π, inclusive.

When theMath.atan2 method is called with argumentsy andx, the following steps are taken:

  1. Letny be ? ToNumber(y).
  2. Letnx be ? ToNumber(x).
  3. Ifny isNaN ornx isNaN, returnNaN.
  4. Ifny is+∞𝔽, then
    1. Ifnx is+∞𝔽, return animplementation-approximated value representing π / 4.
    2. Ifnx is-∞𝔽, return animplementation-approximated value representing 3π / 4.
    3. Return animplementation-approximated value representing π / 2.
  5. Ifny is-∞𝔽, then
    1. Ifnx is+∞𝔽, return animplementation-approximated value representing -π / 4.
    2. Ifnx is-∞𝔽, return animplementation-approximated value representing -3π / 4.
    3. Return animplementation-approximated value representing -π / 2.
  6. Ifny is+0𝔽, then
    1. Ifnx >+0𝔽 ornx is+0𝔽, return+0𝔽.
    2. Return animplementation-approximated value representing π.
  7. Ifny is-0𝔽, then
    1. Ifnx >+0𝔽 ornx is+0𝔽, return-0𝔽.
    2. Return animplementation-approximated value representing -π.
  8. Assert:ny is finite and is neither+0𝔽 nor-0𝔽.
  9. Ifny >+0𝔽, then
    1. Ifnx is+∞𝔽, return+0𝔽.
    2. Ifnx is-∞𝔽, return animplementation-approximated value representing π.
    3. Ifnx is+0𝔽 ornx is-0𝔽, return animplementation-approximated value representing π / 2.
  10. Ifny <+0𝔽, then
    1. Ifnx is+∞𝔽, return-0𝔽.
    2. Ifnx is-∞𝔽, return animplementation-approximated value representing -π.
    3. Ifnx is+0𝔽 ornx is-0𝔽, return animplementation-approximated value representing -π / 2.
  11. Assert:nx is finite and is neither+0𝔽 nor-0𝔽.
  12. Return animplementation-approximated value representing the result of the inverse tangent of the quotient(ny) /(nx).

21.3.2.9 Math.cbrt (x )

Returns the cube root ofx.

When theMath.cbrt method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Return animplementation-approximated value representing the result of the cube root of(n).

21.3.2.10 Math.ceil (x )

Returns the smallest (closest to -∞)integral Number value that is not less thanx. Ifx is already anintegral Number, the result isx.

When theMath.ceil method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Ifn <+0𝔽 andn >-1𝔽, return-0𝔽.
  4. Ifn is anintegral Number, returnn.
  5. Return the smallest (closest to -∞)integral Number value that is not less thann.
Note

The value ofMath.ceil(x) is the same as the value of-Math.floor(-x).

21.3.2.11 Math.clz32 (x )

When theMath.clz32 method is called with argumentx, the following steps are taken:

  1. Letn be ? ToUint32(x).
  2. Letp be the number of leading zero bits in the unsigned 32-bit binary representation ofn.
  3. Return𝔽(p).
Note

Ifn is+0𝔽 orn is-0𝔽, this method returns32𝔽. If the most significant bit of the 32-bit binary encoding ofn is 1, this method returns+0𝔽.

21.3.2.12 Math.cos (x )

Returns the cosine ofx. The argument is expressed in radians.

When theMath.cos method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn is+∞𝔽 orn is-∞𝔽, returnNaN.
  4. Return animplementation-approximated value representing the result of the cosine of(n).

21.3.2.13 Math.cosh (x )

Returns the hyperbolic cosine ofx.

When theMath.cosh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Ifn is+0𝔽 orn is-0𝔽, return1𝔽.
  4. Return animplementation-approximated value representing the result of the hyperbolic cosine of(n).
Note

The value ofMath.cosh(x) is the same as the value of(Math.exp(x) + Math.exp(-x)) / 2.

21.3.2.14 Math.exp (x )

Returns the exponential function ofx (e raised to the power ofx, wheree is the base of the natural logarithms).

When theMath.exp method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN orn is+∞𝔽, returnn.
  3. Ifn is+0𝔽 orn is-0𝔽, return1𝔽.
  4. Ifn is-∞𝔽, return+0𝔽.
  5. Return animplementation-approximated value representing the result of the exponential function of(n).

21.3.2.15 Math.expm1 (x )

Returns the result of subtracting 1 from the exponential function ofx (e raised to the power ofx, wheree is the base of the natural logarithms). The result is computed in a way that is accurate even when the value ofx is close to 0.

When theMath.expm1 method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽, orn is+∞𝔽, returnn.
  3. Ifn is-∞𝔽, return-1𝔽.
  4. Return animplementation-approximated value representing the result of subtracting 1 from the exponential function of(n).

21.3.2.16 Math.floor (x )

Returns the greatest (closest to +∞)integral Number value that is not greater thanx. Ifx is already anintegral Number, the result isx.

When theMath.floor method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Ifn <1𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn is anintegral Number, returnn.
  5. Return the greatest (closest to +∞)integral Number value that is not greater thann.
Note

The value ofMath.floor(x) is the same as the value of-Math.ceil(-x).

21.3.2.17 Math.fround (x )

When theMath.fround method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN, returnNaN.
  3. Ifn is one of+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, returnn.
  4. Letn32 be the result of convertingn to a value inIEEE 754-2019 binary32 format using roundTiesToEven mode.
  5. Letn64 be the result of convertingn32 to a value inIEEE 754-2019 binary64 format.
  6. Return the ECMAScriptNumber value corresponding ton64.

21.3.2.18 Math.hypot ( ...args )

Returns the square root of the sum of squares of its arguments.

When theMath.hypot method is called with zero or more arguments which form the rest parameter ...args, the following steps are taken:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. LetonlyZero betrue.
  4. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN ornumber is+∞𝔽, returnnumber.
    2. Ifnumber is-∞𝔽, return+∞𝔽.
    3. Ifnumber is neither+0𝔽 nor-0𝔽, setonlyZero tofalse.
  5. IfonlyZero istrue, return+0𝔽.
  6. Return animplementation-approximated value representing the square root of the sum of squares of the mathematical values of the elements ofcoerced.

The"length" property of thehypot method is2𝔽.

Note

Implementations should take care to avoid the loss of precision from overflows and underflows that are prone to occur in naive implementations when this function is called with two or more arguments.

21.3.2.19 Math.imul (x,y )

WhenMath.imul is called with argumentsx andy, the following steps are taken:

  1. Leta be(?ToUint32(x)).
  2. Letb be(?ToUint32(y)).
  3. Letproduct be (a ×b)modulo 232.
  4. Ifproduct ≥ 231, return𝔽(product - 232); otherwise return𝔽(product).

21.3.2.20 Math.log (x )

Returns the natural logarithm ofx.

When theMath.log method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN orn is+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is+0𝔽 orn is-0𝔽, return-∞𝔽.
  5. Ifn <+0𝔽, returnNaN.
  6. Return animplementation-approximated value representing the result of the natural logarithm of(n).

21.3.2.21 Math.log1p (x )

Returns the natural logarithm of 1 +x. The result is computed in a way that is accurate even when the value of x is close to zero.

When theMath.log1p method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽, orn is+∞𝔽, returnn.
  3. Ifn is-1𝔽, return-∞𝔽.
  4. Ifn <-1𝔽, returnNaN.
  5. Return animplementation-approximated value representing the result of the natural logarithm of 1 +(n).

21.3.2.22 Math.log10 (x )

Returns the base 10 logarithm ofx.

When theMath.log10 method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN orn is+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is+0𝔽 orn is-0𝔽, return-∞𝔽.
  5. Ifn <+0𝔽, returnNaN.
  6. Return animplementation-approximated value representing the result of the base 10 logarithm of(n).

21.3.2.23 Math.log2 (x )

Returns the base 2 logarithm ofx.

When theMath.log2 method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN orn is+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is+0𝔽 orn is-0𝔽, return-∞𝔽.
  5. Ifn <+0𝔽, returnNaN.
  6. Return animplementation-approximated value representing the result of the base 2 logarithm of(n).

21.3.2.24 Math.max ( ...args )

Given zero or more arguments, callsToNumber on each of the arguments and returns the largest of the resulting values.

When theMath.max method is called with zero or more arguments which form the rest parameter ...args, the following steps are taken:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. Lethighest be-∞𝔽.
  4. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN, returnNaN.
    2. Ifnumber is+0𝔽 andhighest is-0𝔽, sethighest to+0𝔽.
    3. Ifnumber >highest, sethighest tonumber.
  5. Returnhighest.
Note

The comparison of values to determine the largest value is done using theAbstract Relational Comparison algorithm except that+0𝔽 is considered to be larger than-0𝔽.

The"length" property of themax method is2𝔽.

21.3.2.25 Math.min ( ...args )

Given zero or more arguments, callsToNumber on each of the arguments and returns the smallest of the resulting values.

When theMath.min method is called with zero or more arguments which form the rest parameter ...args, the following steps are taken:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. Letlowest be+∞𝔽.
  4. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN, returnNaN.
    2. Ifnumber is-0𝔽 andlowest is+0𝔽, setlowest to-0𝔽.
    3. Ifnumber <lowest, setlowest tonumber.
  5. Returnlowest.
Note

The comparison of values to determine the largest value is done using theAbstract Relational Comparison algorithm except that+0𝔽 is considered to be larger than-0𝔽.

The"length" property of themin method is2𝔽.

21.3.2.26 Math.pow (base,exponent )

When theMath.pow method is called with argumentsbase andexponent, the following steps are taken:

  1. Setbase to ? ToNumber(base).
  2. Setexponent to ? ToNumber(exponent).
  3. Return ! Number::exponentiate(base,exponent).

21.3.2.27 Math.random ( )

Returns aNumber value with positive sign, greater than or equal to+0𝔽 but strictly less than1𝔽, chosen randomly or pseudo randomly with approximately uniform distribution over that range, using animplementation-defined algorithm or strategy. This function takes no arguments.

EachMath.random function created for distinct realms must produce a distinct sequence of values from successive calls.

21.3.2.28 Math.round (x )

Returns theNumber value that is closest tox and is integral. If two integral Numbers are equally close tox, then the result is theNumber value that is closer to +∞. Ifx is already integral, the result isx.

When theMath.round method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,+∞𝔽,-∞𝔽, or anintegral Number, returnn.
  3. Ifn <0.5𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn <+0𝔽 andn-0.5𝔽, return-0𝔽.
  5. Return theintegral Number closest ton, preferring the Number closer to +∞ in the case of a tie.
Note 1

Math.round(3.5) returns 4, butMath.round(-3.5) returns -3.

Note 2

The value ofMath.round(x) is not always the same as the value ofMath.floor(x + 0.5). Whenx is-0𝔽 or is less than+0𝔽 but greater than or equal to-0.5𝔽,Math.round(x) returns-0𝔽, butMath.floor(x + 0.5) returns+0𝔽.Math.round(x) may also differ from the value ofMath.floor(x + 0.5)because of internal rounding when computingx + 0.5.

21.3.2.29 Math.sign (x )

Returns the sign ofx, indicating whetherx is positive, negative, or zero.

When theMath.sign method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn <+0𝔽, return-1𝔽.
  4. Return1𝔽.

21.3.2.30 Math.sin (x )

Returns the sine ofx. The argument is expressed in radians.

When theMath.sin method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn is+∞𝔽 orn is-∞𝔽, returnNaN.
  4. Return animplementation-approximated value representing the result of the sine of(n).

21.3.2.31 Math.sinh (x )

Returns the hyperbolic sine ofx.

When theMath.sinh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Return animplementation-approximated value representing the result of the hyperbolic sine of(n).
Note

The value ofMath.sinh(x) is the same as the value of(Math.exp(x) - Math.exp(-x)) / 2.

21.3.2.32 Math.sqrt (x )

Returns the square root ofx.

When theMath.sqrt method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽, orn is+∞𝔽, returnn.
  3. Ifn <+0𝔽, returnNaN.
  4. Return animplementation-approximated value representing the result of the square root of(n).

21.3.2.33 Math.tan (x )

Returns the tangent ofx. The argument is expressed in radians.

When theMath.tan method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn is+∞𝔽, orn is-∞𝔽, returnNaN.
  4. Return animplementation-approximated value representing the result of the tangent of(n).

21.3.2.34 Math.tanh (x )

Returns the hyperbolic tangent ofx.

When theMath.tanh method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽, orn is-0𝔽, returnn.
  3. Ifn is+∞𝔽, return1𝔽.
  4. Ifn is-∞𝔽, return-1𝔽.
  5. Return animplementation-approximated value representing the result of the hyperbolic tangent of(n).
Note

The value ofMath.tanh(x) is the same as the value of(Math.exp(x) - Math.exp(-x)) / (Math.exp(x) + Math.exp(-x)).

21.3.2.35 Math.trunc (x )

Returns the integral part of the numberx, removing any fractional digits. Ifx is already integral, the result isx.

When theMath.trunc method is called with argumentx, the following steps are taken:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n is+0𝔽,n is-0𝔽,n is+∞𝔽, orn is-∞𝔽, returnn.
  3. Ifn <1𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn <+0𝔽 andn >-1𝔽, return-0𝔽.
  5. Return theintegral Number nearestn in the direction of+0𝔽.

21.4 Date Objects

21.4.1 Overview of Date Objects and Definitions of Abstract Operations

The following functions areabstract operations that operate on time values (defined in21.4.1.1). Note that, in every case, if any argument to one of these functions isNaN, the result will beNaN.

21.4.1.1 Time Values and Time Range

Time measurement in ECMAScript is analogous to time measurement in POSIX, in particular sharing definition in terms of the proleptic Gregorian calendar, an epoch of midnight at the beginning of 1 January 1970 UTC, and an accounting of every day as comprising exactly 86,400 seconds (each of which is 1000 milliseconds long).

An ECMAScripttime value is a Number, either a finiteintegral Number representing an instant in time to millisecond precision orNaN representing no specific instant. A time value that is a multiple of24 × 60 × 60 × 1000 = 86,400,000 (i.e., is equal to 86,400,000 ×d for someintegerd) represents the instant at the start of the UTC day that follows the epoch byd whole UTC days (preceding the epoch for negatived). Every other finite time valuet is defined relative to the greatest preceding time values that is such a multiple, and represents the instant that occurs within the same UTC day ass but follows it byts milliseconds.

Time values do not account for UTC leap seconds—there are no time values representing instants within positive leap seconds, and there are time values representing instants removed from the UTC timeline by negative leap seconds. However, the definition of time values nonetheless yields piecewise alignment with UTC, with discontinuities only at leap second boundaries and zero difference outside of leap seconds.

A Number can exactly represent all integers from -9,007,199,254,740,992 to 9,007,199,254,740,992 (21.1.2.8 and21.1.2.6). A time value supports a slightly smaller range of -8,640,000,000,000,000 to 8,640,000,000,000,000 milliseconds. This yields a supported time value range of exactly -100,000,000 days to 100,000,000 days relative to midnight at the beginning of 1 January 1970 UTC.

The exact moment of midnight at the beginning of 1 January 1970 UTC is represented by the time value+0𝔽.

Note

The 400 year cycle of the proleptic Gregorian calendar contains 97 leap years. This yields an average of 365.2425 days per year, which is 31,556,952,000 milliseconds. Therefore, the maximum range a Number could represent exactly with millisecond precision is approximately -285,426 to 285,426 years relative to 1970. The smaller range supported by a time value as specified in this section is approximately -273,790 to 273,790 years relative to 1970.

21.4.1.2 Day Number and Time within Day

A giventime valuet belongs to day number

Day(t) =𝔽(floor((t /msPerDay)))

where the number of milliseconds per day is

msPerDay =86400000𝔽

The remainder is called the time within the day:

TimeWithinDay(t) =𝔽((t)modulo(msPerDay))

21.4.1.3 Year Number

ECMAScript uses a proleptic Gregorian calendar to map a day number to a year number and to determine the month and date within that year. In this calendar, leap years are precisely those which are (divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year numbery is therefore defined by

DaysInYear(y)
=365𝔽 if ((y)modulo 4) ≠ 0
=366𝔽 if ((y)modulo 4) = 0 and ((y)modulo 100) ≠ 0
=365𝔽 if ((y)modulo 100) = 0 and ((y)modulo 400) ≠ 0
=366𝔽 if ((y)modulo 400) = 0

All non-leap years have 365 days with the usual number of days per month and leap years have an extra day in February. The day number of the first day of yeary is given by:

DayFromYear(y) =𝔽(365 × ((y) - 1970) +floor(((y) - 1969) / 4) -floor(((y) - 1901) / 100) +floor(((y) - 1601) / 400))

Thetime value of the start of a year is:

TimeFromYear(y) =msPerDay ×DayFromYear(y)

Atime value determines a year by:

YearFromTime(t) = the largestintegral Numbery (closest to +∞) such thatTimeFromYear(y) ≤t

The leap-year function is1𝔽 for a time within a leap year and otherwise is+0𝔽:

InLeapYear(t)
=+0𝔽 ifDaysInYear(YearFromTime(t)) =365𝔽
=1𝔽 ifDaysInYear(YearFromTime(t)) =366𝔽

21.4.1.4 Month Number

Months are identified by anintegral Number in the range+0𝔽 to11𝔽, inclusive. The mappingMonthFromTime(t) from atime valuet to a month number is defined by:

MonthFromTime(t)
=+0𝔽 if+0𝔽DayWithinYear(t) <31𝔽
=1𝔽 if31𝔽DayWithinYear(t) <59𝔽 +InLeapYear(t)
=2𝔽 if59𝔽 +InLeapYear(t) ≤DayWithinYear(t) <90𝔽 +InLeapYear(t)
=3𝔽 if90𝔽 +InLeapYear(t) ≤DayWithinYear(t) <120𝔽 +InLeapYear(t)
=4𝔽 if120𝔽 +InLeapYear(t) ≤DayWithinYear(t) <151𝔽 +InLeapYear(t)
=5𝔽 if151𝔽 +InLeapYear(t) ≤DayWithinYear(t) <181𝔽 +InLeapYear(t)
=6𝔽 if181𝔽 +InLeapYear(t) ≤DayWithinYear(t) <212𝔽 +InLeapYear(t)
=7𝔽 if212𝔽 +InLeapYear(t) ≤DayWithinYear(t) <243𝔽 +InLeapYear(t)
=8𝔽 if243𝔽 +InLeapYear(t) ≤DayWithinYear(t) <273𝔽 +InLeapYear(t)
=9𝔽 if273𝔽 +InLeapYear(t) ≤DayWithinYear(t) <304𝔽 +InLeapYear(t)
=10𝔽 if304𝔽 +InLeapYear(t) ≤DayWithinYear(t) <334𝔽 +InLeapYear(t)
=11𝔽 if334𝔽 +InLeapYear(t) ≤DayWithinYear(t) <365𝔽 +InLeapYear(t)

where

DayWithinYear(t) =Day(t) -DayFromYear(YearFromTime(t))

A month value of+0𝔽 specifies January;1𝔽 specifies February;2𝔽 specifies March;3𝔽 specifies April;4𝔽 specifies May;5𝔽 specifies June;6𝔽 specifies July;7𝔽 specifies August;8𝔽 specifies September;9𝔽 specifies October;10𝔽 specifies November; and11𝔽 specifies December. Note thatMonthFromTime(+0𝔽) =+0𝔽, corresponding to Thursday, 1 January 1970.

21.4.1.5 Date Number

A date number is identified by anintegral Number in the range1𝔽 through31𝔽, inclusive. The mapping DateFromTime(t) from atime valuet to a date number is defined by:

DateFromTime(t)
=DayWithinYear(t) +1𝔽 ifMonthFromTime(t) =+0𝔽
=DayWithinYear(t) -30𝔽 ifMonthFromTime(t) =1𝔽
=DayWithinYear(t) -58𝔽 -InLeapYear(t) ifMonthFromTime(t) =2𝔽
=DayWithinYear(t) -89𝔽 -InLeapYear(t) ifMonthFromTime(t) =3𝔽
=DayWithinYear(t) -119𝔽 -InLeapYear(t) ifMonthFromTime(t) =4𝔽
=DayWithinYear(t) -150𝔽 -InLeapYear(t) ifMonthFromTime(t) =5𝔽
=DayWithinYear(t) -180𝔽 -InLeapYear(t) ifMonthFromTime(t) =6𝔽
=DayWithinYear(t) -211𝔽 -InLeapYear(t) ifMonthFromTime(t) =7𝔽
=DayWithinYear(t) -242𝔽 -InLeapYear(t) ifMonthFromTime(t) =8𝔽
=DayWithinYear(t) -272𝔽 -InLeapYear(t) ifMonthFromTime(t) =9𝔽
=DayWithinYear(t) -303𝔽 -InLeapYear(t) ifMonthFromTime(t) =10𝔽
=DayWithinYear(t) -333𝔽 -InLeapYear(t) ifMonthFromTime(t) =11𝔽

21.4.1.6 Week Day

The weekday for a particulartime valuet is defined as

WeekDay(t) =𝔽((Day(t) +4𝔽)modulo 7)

A weekday value of+0𝔽 specifies Sunday;1𝔽 specifies Monday;2𝔽 specifies Tuesday;3𝔽 specifies Wednesday;4𝔽 specifies Thursday;5𝔽 specifies Friday; and6𝔽 specifies Saturday. Note thatWeekDay(+0𝔽) =4𝔽, corresponding to Thursday, 1 January 1970.

21.4.1.7 LocalTZA (t,isUTC )

LocalTZA(t,isUTC ) is animplementation-defined algorithm that returns anintegral Number representing the local time zone adjustment, or offset, in milliseconds. The local political rules for standard time and daylight saving time in effect att should be used to determine the result in the way specified in this section.

WhenisUTC is true,LocalTZA(tUTC, true ) should return the offset of the local time zone from UTC measured in milliseconds at time represented bytime valuetUTC. When the result is added totUTC, it should yield the corresponding Numbertlocal.

WhenisUTC is false,LocalTZA(tlocal, false ) should return the offset of the local time zone from UTC measured in milliseconds at local time represented by Numbertlocal. When the result is subtracted fromtlocal, it should yield the correspondingtime valuetUTC.

Inputt is nominally atime value but may be anyNumber value. This can occur whenisUTC is false andtlocal represents atime value that is already offset outside of thetime value range at the range boundaries. The algorithm must not limittlocal to thetime value range, so that such inputs are supported.

Whentlocal represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transitions (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change),tlocal must be interpreted using the time zone offset before the transition.

If an implementation does not support a conversion described above or if political rules for timet are not available within the implementation, the result must be+0𝔽.

Note

It is recommended that implementations use the time zone information of the IANA Time Zone Databasehttps://www.iana.org/time-zones/.

1:30 AM on 5 November 2017 in America/New_York is repeated twice (fall backward), but it must be interpreted as 1:30 AM UTC-04 instead of 1:30 AM UTC-05. LocalTZA(TimeClip(MakeDate(MakeDay(2017, 10, 5),MakeTime(1, 30, 0, 0))), false) is-4 ×msPerHour.

2:30 AM on 12 March 2017 in America/New_York does not exist, but it must be interpreted as 2:30 AM UTC-05 (equivalent to 3:30 AM UTC-04). LocalTZA(TimeClip(MakeDate(MakeDay(2017, 2, 12),MakeTime(2, 30, 0, 0))), false) is-5 ×msPerHour.

Local time zone offset values may be positiveor negative.

21.4.1.8 LocalTime (t )

The abstract operation LocalTime takes argumentt. It convertst from UTC to local time. It performs the following steps when called:

  1. Returnt +LocalTZA(t,true).
Note

Two different input time valuestUTC are converted to the same local timetlocal at a negative time zone transition when there are repeated times (e.g. the daylight saving time ends or the time zone adjustment is decreased.).

LocalTime(UTC(tlocal)) is not necessarily always equal totlocal. Correspondingly,UTC(LocalTime(tUTC)) is not necessarily always equal totUTC.

21.4.1.9 UTC (t )

The abstract operation UTC takes argumentt. It convertst from local time to UTC. It performs the following steps when called:

  1. Returnt -LocalTZA(t,false).
Note

UTC(LocalTime(tUTC)) is not necessarily always equal totUTC. Correspondingly,LocalTime(UTC(tlocal)) is not necessarily always equal totlocal.

21.4.1.10 Hours, Minutes, Second, and Milliseconds

The followingabstract operations are useful in decomposing time values:

HourFromTime(t) =𝔽(floor((t /msPerHour))moduloHoursPerDay)
msFromTime(t) =𝔽((t)modulomsPerSecond)

where

HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond =1000𝔽
msPerMinute =60000𝔽 =msPerSecond ×𝔽(SecondsPerMinute)
msPerHour =3600000𝔽 =msPerMinute ×𝔽(MinutesPerHour)

21.4.1.11 MakeTime (hour,min,sec,ms )

The abstract operation MakeTime takes argumentshour (a Number),min (a Number),sec (a Number), andms (a Number). It calculates a number of milliseconds. It performs the following steps when called:

  1. Ifhour is not finite ormin is not finite orsec is not finite orms is not finite, returnNaN.
  2. Leth be𝔽(!ToIntegerOrInfinity(hour)).
  3. Letm be𝔽(!ToIntegerOrInfinity(min)).
  4. Lets be𝔽(!ToIntegerOrInfinity(sec)).
  5. Letmilli be𝔽(!ToIntegerOrInfinity(ms)).
  6. Lett be ((h*msPerHour+m*msPerMinute)+s*msPerSecond)+milli, performing the arithmetic according toIEEE 754-2019 rules (that is, as if using the ECMAScript operators* and+).
  7. Returnt.

21.4.1.12 MakeDay (year,month,date )

The abstract operation MakeDay takes argumentsyear (a Number),month (a Number), anddate (a Number). It calculates a number of days. It performs the following steps when called:

  1. Ifyear is not finite ormonth is not finite ordate is not finite, returnNaN.
  2. Lety be𝔽(!ToIntegerOrInfinity(year)).
  3. Letm be𝔽(!ToIntegerOrInfinity(month)).
  4. Letdt be𝔽(!ToIntegerOrInfinity(date)).
  5. Letym bey +𝔽(floor((m) / 12)).
  6. Ifym is not finite, returnNaN.
  7. Letmn be𝔽((m)modulo 12).
  8. Find a finitetime valuet such thatYearFromTime(t) isym andMonthFromTime(t) ismn andDateFromTime(t) is1𝔽; but if this is not possible (because some argument is out of range), returnNaN.
  9. ReturnDay(t) +dt -1𝔽.

21.4.1.13 MakeDate (day,time )

The abstract operation MakeDate takes argumentsday (a Number) andtime (a Number). It calculates a number of milliseconds. It performs the following steps when called:

  1. Ifday is not finite ortime is not finite, returnNaN.
  2. Lettv beday ×msPerDay +time.
  3. Iftv is not finite, returnNaN.
  4. Returntv.

21.4.1.14 TimeClip (time )

The abstract operation TimeClip takes argumenttime (a Number). It calculates a number of milliseconds. It performs the following steps when called:

  1. Iftime is not finite, returnNaN.
  2. Ifabs((time)) > 8.64 × 1015, returnNaN.
  3. Return𝔽(!ToIntegerOrInfinity(time)).

21.4.1.15 Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601 calendar date extended format. The format is as follows:YYYY-MM-DDTHH:mm:ss.sssZ

Where the elements are as follows:

YYYY is the year in the proleptic Gregorian calendar as four decimal digits from 0000 to 9999, or as anexpanded year of"+" or"-" followed by six decimal digits.
-"-" (hyphen) appears literally twice in the string.
MM is the month of the year as two decimal digits from 01 (January) to 12 (December).
DD is the day of the month as two decimal digits from 01 to 31.
T"T" appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal digits from 00 to 24.
:":" (colon) appears literally twice in the string.
mm is the number of complete minutes since the start of the hour as two decimal digits from 00 to 59.
ss is the number of complete seconds since the start of the minute as two decimal digits from 00 to 59.
."." (dot) appears literally in the string.
sss is the number of complete milliseconds since the start of the second as three decimal digits.
Z is the UTC offset representation specified as"Z" (for UTC with no offset) or an offset of either"+" or"-" followed by a time expressionHH:mm (indicating local time ahead of or behind UTC, respectively)

This format includes date-only forms:

YYYYYYYY-MMYYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one of the following time forms with an optional UTC offset representation appended:

THH:mmTHH:mm:ssTHH:mm:ss.sss

A string containing out-of-bounds or nonconforming elements is not a valid instance of this format.

Note 1

As every day both starts and ends with midnight, the two notations00:00 and24:00 are available to distinguish the two midnights that can be associated with one date. This means that the following two notations refer to exactly the same point in time:1995-02-04T24:00 and1995-02-05T00:00. This interpretation of the latter form as "end of a calendar day" is consistent with ISO 8601, even though that specification reserves it for describing time intervals and does not permit it within representations of single points in time.

Note 2

There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and sometimes the same abbreviation is even used for two very different time zones. For this reason, both ISO 8601 and this format specify numeric representations of time zone offsets.

21.4.1.15.1 Expanded Years

Covering the fulltime value range of approximately 273,790 years forward or backward from 1 January 1970 (21.4.1.1) requires representing years before 0 or after 9999. ISO 8601 permits expansion of the year representation, but only by mutual agreement of the partners in information interchange. In the simplified ECMAScript format, such an expanded year representation shall have 6 digits and is always prefixed with a + or - sign. The year 0 is considered positive and hence prefixed with a + sign. Strings matching theDate Time String Format with expanded years representing instants in time outside the range of atime value are treated as unrecognizable byDate.parse and cause that function to returnNaN without falling back to implementation-specific behaviour or heuristics.

Note

Examples of date-time values with expanded years:

-271821-04-20T00:00:00Z271822 B.C.
-000001-01-01T00:00:00Z2 B.C.
+000000-01-01T00:00:00Z1 B.C.
+000001-01-01T00:00:00Z1 A.D.
+001970-01-01T00:00:00Z1970 A.D.
+002009-12-15T00:00:00Z2009 A.D.
+275760-09-13T00:00:00Z275760 A.D.

21.4.2 The Date Constructor

The Dateconstructor:

  • is%Date%.
  • is the initial value of the"Date" property of theglobal object.
  • creates and initializes a new Date object when called as aconstructor.
  • returns a String representing the current time (UTC) when called as a function rather than as aconstructor.
  • is a function whose behaviour differs based upon the number and types of its arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified Date behaviour must include asuper call to the Dateconstructor to create and initialize the subclass instance with a [[DateValue]] internal slot.
  • has a"length" property whose value is7𝔽.

21.4.2.1 Date ( ...values )

When theDate function is called, the following steps are taken:

  1. If NewTarget isundefined, then
    1. Letnow be thetime value (UTC) identifying the current time.
    2. ReturnToDateString(now).
  2. LetnumberOfArgs be the number of elements invalues.
  3. IfnumberOfArgs = 0, then
    1. Letdv be thetime value (UTC) identifying the current time.
  4. Else ifnumberOfArgs = 1, then
    1. Letvalue bevalues[0].
    2. IfType(value) is Object andvalue has a [[DateValue]] internal slot, then
      1. Lettv be ! thisTimeValue(value).
    3. Else,
      1. Letv be ? ToPrimitive(value).
      2. IfType(v) is String, then
        1. Assert: The next step never returns anabrupt completion becauseType(v) is String.
        2. Lettv be the result of parsingv as a date, in exactly the same manner as for theparse method (21.4.3.2).
      3. Else,
        1. Lettv be ? ToNumber(v).
    4. Letdv beTimeClip(tv).
  5. Else,
    1. Assert:numberOfArgs ≥ 2.
    2. Lety be ? ToNumber(values[0]).
    3. Letm be ? ToNumber(values[1]).
    4. IfnumberOfArgs > 2, letdt be ? ToNumber(values[2]); else letdt be1𝔽.
    5. IfnumberOfArgs > 3, leth be ? ToNumber(values[3]); else leth be+0𝔽.
    6. IfnumberOfArgs > 4, letmin be ? ToNumber(values[4]); else letmin be+0𝔽.
    7. IfnumberOfArgs > 5, lets be ? ToNumber(values[5]); else lets be+0𝔽.
    8. IfnumberOfArgs > 6, letmilli be ? ToNumber(values[6]); else letmilli be+0𝔽.
    9. Ify isNaN, letyr beNaN.
    10. Else,
      1. Letyi be ! ToIntegerOrInfinity(y).
      2. If 0 ≤yi ≤ 99, letyr be1900𝔽 +𝔽(yi); otherwise, letyr bey.
    11. LetfinalDate beMakeDate(MakeDay(yr,m,dt),MakeTime(h,min,s,milli)).
    12. Letdv beTimeClip(UTC(finalDate)).
  6. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Date.prototype%", « [[DateValue]] »).
  7. SetO.[[DateValue]] todv.
  8. ReturnO.

21.4.3 Properties of the Date Constructor

The Dateconstructor:

21.4.3.1 Date.now ( )

Thenow function returns thetime value designating the UTC date and time of the occurrence of the call tonow.

21.4.3.2 Date.parse (string )

Theparse function applies theToString operator to its argument. IfToString results in anabrupt completion theCompletion Record is immediately returned. Otherwise,parse interprets the resulting String as a date and time; it returns a Number, the UTCtime value corresponding to the date and time. The String may be interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents of the String. The function first attempts to parse the String according to the format described in Date Time String Format (21.4.1.15), including expanded years. If the String does not conform to that format the function may fall back to any implementation-specific heuristics or implementation-specific date formats. Strings that are unrecognizable or contain out-of-bounds format element values shall causeDate.parse to returnNaN.

If the String conforms to theDate Time String Format, substitute values take the place of absent format elements. When theMM orDD elements are absent,"01" is used. When theHH,mm, orss elements are absent,"00" is used. When thesss element is absent,"000" is used. When the UTC offset representation is absent, date-only forms are interpreted as a UTC time and date-time forms are interpreted as a local time.

Ifx is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript, then all of the following expressions should produce the same numeric value in that implementation, if all the properties referenced have their initial values:

x.valueOf()Date.parse(x.toString())Date.parse(x.toUTCString())Date.parse(x.toISOString())

However, the expression

Date.parse(x.toLocaleString())

is not required to produce the sameNumber value as the preceding three expressions and, in general, the value produced byDate.parse isimplementation-defined when given any String value that does not conform to the Date Time String Format (21.4.1.15) and that could not be produced in that implementation by thetoString ortoUTCString method.

21.4.3.3 Date.prototype

The initial value ofDate.prototype is theDate prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

21.4.3.4 Date.UTC (year [ ,month [ ,date [ ,hours [ ,minutes [ ,seconds [ ,ms ] ] ] ] ] ] )

When theUTC function is called, the following steps are taken:

  1. Lety be ? ToNumber(year).
  2. Ifmonth is present, letm be ? ToNumber(month); else letm be+0𝔽.
  3. Ifdate is present, letdt be ? ToNumber(date); else letdt be1𝔽.
  4. Ifhours is present, leth be ? ToNumber(hours); else leth be+0𝔽.
  5. Ifminutes is present, letmin be ? ToNumber(minutes); else letmin be+0𝔽.
  6. Ifseconds is present, lets be ? ToNumber(seconds); else lets be+0𝔽.
  7. Ifms is present, letmilli be ? ToNumber(ms); else letmilli be+0𝔽.
  8. Ify isNaN, letyr beNaN.
  9. Else,
    1. Letyi be ! ToIntegerOrInfinity(y).
    2. If 0 ≤yi ≤ 99, letyr be1900𝔽 +𝔽(yi); otherwise, letyr bey.
  10. ReturnTimeClip(MakeDate(MakeDay(yr,m,dt),MakeTime(h,min,s,milli))).

The"length" property of theUTC function is7𝔽.

Note

TheUTC function differs from the Dateconstructor in two ways: it returns atime value as a Number, rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

21.4.4 Properties of the Date Prototype Object

TheDate prototype object:

  • is%Date.prototype%.
  • is itself anordinary object.
  • is not a Date instance and does not have a [[DateValue]] internal slot.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly defined otherwise, the methods of the Date prototype object defined below are not generic and thethis value passed to them must be an object that has a [[DateValue]] internal slot that has been initialized to atime value.

The abstract operationthisTimeValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is Object andvalue has a [[DateValue]] internal slot, then
    1. Returnvalue.[[DateValue]].
  2. Throw aTypeError exception.

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date object” refers to the object that is thethis value for the invocation of the function. If the Type of thethis value is not Object, aTypeError exception is thrown. The phrase “this time value” within the specification of a method refers to the result returned by calling the abstract operationthisTimeValue with thethis value of the method invocation passed as the argument.

21.4.4.1 Date.prototype.constructor

The initial value ofDate.prototype.constructor is%Date%.

21.4.4.2 Date.prototype.getDate ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnDateFromTime(LocalTime(t)).

21.4.4.3 Date.prototype.getDay ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnWeekDay(LocalTime(t)).

21.4.4.4 Date.prototype.getFullYear ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnYearFromTime(LocalTime(t)).

21.4.4.5 Date.prototype.getHours ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnHourFromTime(LocalTime(t)).

21.4.4.6 Date.prototype.getMilliseconds ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnmsFromTime(LocalTime(t)).

21.4.4.7 Date.prototype.getMinutes ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnMinFromTime(LocalTime(t)).

21.4.4.8 Date.prototype.getMonth ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnMonthFromTime(LocalTime(t)).

21.4.4.9 Date.prototype.getSeconds ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnSecFromTime(LocalTime(t)).

21.4.4.10 Date.prototype.getTime ( )

The following steps are performed:

  1. Return ? thisTimeValue(this value).

21.4.4.11 Date.prototype.getTimezoneOffset ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. Return (t -LocalTime(t)) /msPerMinute.

21.4.4.12 Date.prototype.getUTCDate ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnDateFromTime(t).

21.4.4.13 Date.prototype.getUTCDay ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnWeekDay(t).

21.4.4.14 Date.prototype.getUTCFullYear ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnYearFromTime(t).

21.4.4.15 Date.prototype.getUTCHours ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnHourFromTime(t).

21.4.4.16 Date.prototype.getUTCMilliseconds ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnmsFromTime(t).

21.4.4.17 Date.prototype.getUTCMinutes ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnMinFromTime(t).

21.4.4.18 Date.prototype.getUTCMonth ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnMonthFromTime(t).

21.4.4.19 Date.prototype.getUTCSeconds ( )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnSecFromTime(t).

21.4.4.20 Date.prototype.setDate (date )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Letdt be ? ToNumber(date).
  3. LetnewDate beMakeDate(MakeDay(YearFromTime(t),MonthFromTime(t),dt),TimeWithinDay(t)).
  4. Letu beTimeClip(UTC(newDate)).
  5. Set the [[DateValue]] internal slot ofthis Date object tou.
  6. Returnu.

21.4.4.21 Date.prototype.setFullYear (year [ ,month [ ,date ] ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, sett to+0𝔽; otherwise, sett toLocalTime(t).
  3. Lety be ? ToNumber(year).
  4. Ifmonth is not present, letm beMonthFromTime(t); otherwise, letm be ? ToNumber(month).
  5. Ifdate is not present, letdt beDateFromTime(t); otherwise, letdt be ? ToNumber(date).
  6. LetnewDate beMakeDate(MakeDay(y,m,dt),TimeWithinDay(t)).
  7. Letu beTimeClip(UTC(newDate)).
  8. Set the [[DateValue]] internal slot ofthis Date object tou.
  9. Returnu.

The"length" property of thesetFullYear method is3𝔽.

Note

Ifmonth is not present, this method behaves as ifmonth was present with the valuegetMonth(). Ifdate is not present, it behaves as ifdate was present with the valuegetDate().

21.4.4.22 Date.prototype.setHours (hour [ ,min [ ,sec [ ,ms ] ] ] )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Leth be ? ToNumber(hour).
  3. Ifmin is not present, letm beMinFromTime(t); otherwise, letm be ? ToNumber(min).
  4. Ifsec is not present, lets beSecFromTime(t); otherwise, lets be ? ToNumber(sec).
  5. Ifms is not present, letmilli bemsFromTime(t); otherwise, letmilli be ? ToNumber(ms).
  6. Letdate beMakeDate(Day(t),MakeTime(h,m,s,milli)).
  7. Letu beTimeClip(UTC(date)).
  8. Set the [[DateValue]] internal slot ofthis Date object tou.
  9. Returnu.

The"length" property of thesetHours method is4𝔽.

Note

Ifmin is not present, this method behaves as ifmin was present with the valuegetMinutes(). Ifsec is not present, it behaves as ifsec was present with the valuegetSeconds(). Ifms is not present, it behaves as ifms was present with the valuegetMilliseconds().

21.4.4.23 Date.prototype.setMilliseconds (ms )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Setms to ? ToNumber(ms).
  3. Lettime beMakeTime(HourFromTime(t),MinFromTime(t),SecFromTime(t),ms).
  4. Letu beTimeClip(UTC(MakeDate(Day(t),time))).
  5. Set the [[DateValue]] internal slot ofthis Date object tou.
  6. Returnu.

21.4.4.24 Date.prototype.setMinutes (min [ ,sec [ ,ms ] ] )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Letm be ? ToNumber(min).
  3. Ifsec is not present, lets beSecFromTime(t); otherwise, lets be ? ToNumber(sec).
  4. Ifms is not present, letmilli bemsFromTime(t); otherwise, letmilli be ? ToNumber(ms).
  5. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),m,s,milli)).
  6. Letu beTimeClip(UTC(date)).
  7. Set the [[DateValue]] internal slot ofthis Date object tou.
  8. Returnu.

The"length" property of thesetMinutes method is3𝔽.

Note

Ifsec is not present, this method behaves as ifsec was present with the valuegetSeconds(). Ifms is not present, this behaves as ifms was present with the valuegetMilliseconds().

21.4.4.25 Date.prototype.setMonth (month [ ,date ] )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Letm be ? ToNumber(month).
  3. Ifdate is not present, letdt beDateFromTime(t); otherwise, letdt be ? ToNumber(date).
  4. LetnewDate beMakeDate(MakeDay(YearFromTime(t),m,dt),TimeWithinDay(t)).
  5. Letu beTimeClip(UTC(newDate)).
  6. Set the [[DateValue]] internal slot ofthis Date object tou.
  7. Returnu.

The"length" property of thesetMonth method is2𝔽.

Note

Ifdate is not present, this method behaves as ifdate was present with the valuegetDate().

21.4.4.26 Date.prototype.setSeconds (sec [ ,ms ] )

The following steps are performed:

  1. Lett beLocalTime(?thisTimeValue(this value)).
  2. Lets be ? ToNumber(sec).
  3. Ifms is not present, letmilli bemsFromTime(t); otherwise, letmilli be ? ToNumber(ms).
  4. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),MinFromTime(t),s,milli)).
  5. Letu beTimeClip(UTC(date)).
  6. Set the [[DateValue]] internal slot ofthis Date object tou.
  7. Returnu.

The"length" property of thesetSeconds method is2𝔽.

Note

Ifms is not present, this method behaves as ifms was present with the valuegetMilliseconds().

21.4.4.27 Date.prototype.setTime (time )

The following steps are performed:

  1. Perform ? thisTimeValue(this value).
  2. Lett be ? ToNumber(time).
  3. Letv beTimeClip(t).
  4. Set the [[DateValue]] internal slot ofthis Date object tov.
  5. Returnv.

21.4.4.28 Date.prototype.setUTCDate (date )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Letdt be ? ToNumber(date).
  3. LetnewDate beMakeDate(MakeDay(YearFromTime(t),MonthFromTime(t),dt),TimeWithinDay(t)).
  4. Letv beTimeClip(newDate).
  5. Set the [[DateValue]] internal slot ofthis Date object tov.
  6. Returnv.

21.4.4.29 Date.prototype.setUTCFullYear (year [ ,month [ ,date ] ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, sett to+0𝔽.
  3. Lety be ? ToNumber(year).
  4. Ifmonth is not present, letm beMonthFromTime(t); otherwise, letm be ? ToNumber(month).
  5. Ifdate is not present, letdt beDateFromTime(t); otherwise, letdt be ? ToNumber(date).
  6. LetnewDate beMakeDate(MakeDay(y,m,dt),TimeWithinDay(t)).
  7. Letv beTimeClip(newDate).
  8. Set the [[DateValue]] internal slot ofthis Date object tov.
  9. Returnv.

The"length" property of thesetUTCFullYear method is3𝔽.

Note

Ifmonth is not present, this method behaves as ifmonth was present with the valuegetUTCMonth(). Ifdate is not present, it behaves as ifdate was present with the valuegetUTCDate().

21.4.4.30 Date.prototype.setUTCHours (hour [ ,min [ ,sec [ ,ms ] ] ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Leth be ? ToNumber(hour).
  3. Ifmin is not present, letm beMinFromTime(t); otherwise, letm be ? ToNumber(min).
  4. Ifsec is not present, lets beSecFromTime(t); otherwise, lets be ? ToNumber(sec).
  5. Ifms is not present, letmilli bemsFromTime(t); otherwise, letmilli be ? ToNumber(ms).
  6. LetnewDate beMakeDate(Day(t),MakeTime(h,m,s,milli)).
  7. Letv beTimeClip(newDate).
  8. Set the [[DateValue]] internal slot ofthis Date object tov.
  9. Returnv.

The"length" property of thesetUTCHours method is4𝔽.

Note

Ifmin is not present, this method behaves as ifmin was present with the valuegetUTCMinutes(). Ifsec is not present, it behaves as ifsec was present with the valuegetUTCSeconds(). Ifms is not present, it behaves as ifms was present with the valuegetUTCMilliseconds().

21.4.4.31 Date.prototype.setUTCMilliseconds (ms )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Letmilli be ? ToNumber(ms).
  3. Lettime beMakeTime(HourFromTime(t),MinFromTime(t),SecFromTime(t),milli).
  4. Letv beTimeClip(MakeDate(Day(t),time)).
  5. Set the [[DateValue]] internal slot ofthis Date object tov.
  6. Returnv.

21.4.4.32 Date.prototype.setUTCMinutes (min [ ,sec [ ,ms ] ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Letm be ? ToNumber(min).
  3. Ifsec is not present, lets beSecFromTime(t).
  4. Else,
    1. Lets be ? ToNumber(sec).
  5. Ifms is not present, letmilli bemsFromTime(t).
  6. Else,
    1. Letmilli be ? ToNumber(ms).
  7. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),m,s,milli)).
  8. Letv beTimeClip(date).
  9. Set the [[DateValue]] internal slot ofthis Date object tov.
  10. Returnv.

The"length" property of thesetUTCMinutes method is3𝔽.

Note

Ifsec is not present, this method behaves as ifsec was present with the valuegetUTCSeconds(). Ifms is not present, it function behaves as ifms was present with the value return bygetUTCMilliseconds().

21.4.4.33 Date.prototype.setUTCMonth (month [ ,date ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Letm be ? ToNumber(month).
  3. Ifdate is not present, letdt beDateFromTime(t).
  4. Else,
    1. Letdt be ? ToNumber(date).
  5. LetnewDate beMakeDate(MakeDay(YearFromTime(t),m,dt),TimeWithinDay(t)).
  6. Letv beTimeClip(newDate).
  7. Set the [[DateValue]] internal slot ofthis Date object tov.
  8. Returnv.

The"length" property of thesetUTCMonth method is2𝔽.

Note

Ifdate is not present, this method behaves as ifdate was present with the valuegetUTCDate().

21.4.4.34 Date.prototype.setUTCSeconds (sec [ ,ms ] )

The following steps are performed:

  1. Lett be ? thisTimeValue(this value).
  2. Lets be ? ToNumber(sec).
  3. Ifms is not present, letmilli bemsFromTime(t).
  4. Else,
    1. Letmilli be ? ToNumber(ms).
  5. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),MinFromTime(t),s,milli)).
  6. Letv beTimeClip(date).
  7. Set the [[DateValue]] internal slot ofthis Date object tov.
  8. Returnv.

The"length" property of thesetUTCSeconds method is2𝔽.

Note

Ifms is not present, this method behaves as ifms was present with the valuegetUTCMilliseconds().

21.4.4.35 Date.prototype.toDateString ( )

The following steps are performed:

  1. LetO bethis Date object.
  2. Lettv be ? thisTimeValue(O).
  3. Iftv isNaN, return"Invalid Date".
  4. Lett beLocalTime(tv).
  5. ReturnDateString(t).

21.4.4.36 Date.prototype.toISOString ( )

Ifthis time value is not a finite Number or if it corresponds with a year that cannot be represented in theDate Time String Format, this function throws aRangeError exception. Otherwise, it returns a String representation ofthis time value in that format on the UTC time scale, including all format elements and the UTC offset representation"Z".

21.4.4.37 Date.prototype.toJSON (key )

This function provides a String representation of a Date object for use byJSON.stringify (25.5.2).

When thetoJSON method is called with argumentkey, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Lettv be ? ToPrimitive(O,number).
  3. IfType(tv) is Number andtv is not finite, returnnull.
  4. Return ? Invoke(O,"toISOString").
Note 1

The argument is ignored.

Note 2

ThetoJSON function is intentionally generic; it does not require that itsthis value be a Date object. Therefore, it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have atoISOString method.

21.4.4.38 Date.prototype.toLocaleDateString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theDate.prototype.toLocaleDateString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleDateString method is used.

This function returns a String value. The contents of the String areimplementation-defined, but are intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.39 Date.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theDate.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleString method is used.

This function returns a String value. The contents of the String areimplementation-defined, but are intended to represent the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.40 Date.prototype.toLocaleTimeString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theDate.prototype.toLocaleTimeString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleTimeString method is used.

This function returns a String value. The contents of the String areimplementation-defined, but are intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.41 Date.prototype.toString ( )

The following steps are performed:

  1. Lettv be ? thisTimeValue(this value).
  2. ReturnToDateString(tv).
Note 1

For any Date objectd such thatd.[[DateValue]] is evenly divisible by 1000, the result ofDate.parse(d.toString()) =d.valueOf(). See21.4.3.2.

Note 2

ThetoString function is not generic; it throws aTypeError exception if itsthis value is not a Date object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

21.4.4.41.1 TimeString (tv )

The abstract operation TimeString takes argumenttv. It performs the following steps when called:

  1. Assert:Type(tv) is Number.
  2. Assert:tv is notNaN.
  3. Lethour be the String representation ofHourFromTime(tv), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  4. Letminute be the String representation ofMinFromTime(tv), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  5. Letsecond be the String representation ofSecFromTime(tv), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  6. Return thestring-concatenation ofhour,":",minute,":",second, the code unit 0x0020 (SPACE), and"GMT".

21.4.4.41.2 DateString (tv )

The abstract operation DateString takes argumenttv. It performs the following steps when called:

  1. Assert:Type(tv) is Number.
  2. Assert:tv is notNaN.
  3. Letweekday be the Name of the entry inTable 52 with the NumberWeekDay(tv).
  4. Letmonth be the Name of the entry inTable 53 with the NumberMonthFromTime(tv).
  5. Letday be the String representation ofDateFromTime(tv), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  6. Letyv beYearFromTime(tv).
  7. Ifyv+0𝔽, letyearSign be the empty String; otherwise, letyearSign be"-".
  8. Letyear be the String representation ofabs((yv)), formatted as a decimal number.
  9. LetpaddedYear be ! StringPad(year,4𝔽,"0",start).
  10. Return thestring-concatenation ofweekday, the code unit 0x0020 (SPACE),month, the code unit 0x0020 (SPACE),day, the code unit 0x0020 (SPACE),yearSign, andpaddedYear.
Table 52: Names of days of the week
Number Name
+0𝔽"Sun"
1𝔽"Mon"
2𝔽"Tue"
3𝔽"Wed"
4𝔽"Thu"
5𝔽"Fri"
6𝔽"Sat"
Table 53: Names of months of the year
Number Name
+0𝔽"Jan"
1𝔽"Feb"
2𝔽"Mar"
3𝔽"Apr"
4𝔽"May"
5𝔽"Jun"
6𝔽"Jul"
7𝔽"Aug"
8𝔽"Sep"
9𝔽"Oct"
10𝔽"Nov"
11𝔽"Dec"

21.4.4.41.3 TimeZoneString (tv )

The abstract operation TimeZoneString takes argumenttv. It performs the following steps when called:

  1. Assert:Type(tv) is Number.
  2. Assert:tv is notNaN.
  3. Letoffset beLocalTZA(tv,true).
  4. Ifoffset+0𝔽, then
    1. LetoffsetSign be"+".
    2. LetabsOffset beoffset.
  5. Else,
    1. LetoffsetSign be"-".
    2. LetabsOffset be -offset.
  6. LetoffsetMin be the String representation ofMinFromTime(absOffset), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  7. LetoffsetHour be the String representation ofHourFromTime(absOffset), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  8. LettzName be animplementation-defined string that is either the empty String or thestring-concatenation of the code unit 0x0020 (SPACE), the code unit 0x0028 (LEFT PARENTHESIS), animplementation-defined timezone name, and the code unit 0x0029 (RIGHT PARENTHESIS).
  9. Return thestring-concatenation ofoffsetSign,offsetHour,offsetMin, andtzName.

21.4.4.41.4 ToDateString (tv )

The abstract operation ToDateString takes argumenttv. It performs the following steps when called:

  1. Assert:Type(tv) is Number.
  2. Iftv isNaN, return"Invalid Date".
  3. Lett beLocalTime(tv).
  4. Return thestring-concatenation ofDateString(t), the code unit 0x0020 (SPACE),TimeString(t), andTimeZoneString(tv).

21.4.4.42 Date.prototype.toTimeString ( )

The following steps are performed:

  1. LetO bethis Date object.
  2. Lettv be ? thisTimeValue(O).
  3. Iftv isNaN, return"Invalid Date".
  4. Lett beLocalTime(tv).
  5. Return thestring-concatenation ofTimeString(t) andTimeZoneString(tv).

21.4.4.43 Date.prototype.toUTCString ( )

ThetoUTCString method returns a String value representing the instance in time corresponding tothis time value. The format of the String is based upon "HTTP-date" from RFC 7231, generalized to support the full range of times supported by ECMAScript Date objects. It performs the following steps when called:

  1. LetO bethis Date object.
  2. Lettv be ? thisTimeValue(O).
  3. Iftv isNaN, return"Invalid Date".
  4. Letweekday be the Name of the entry inTable 52 with the NumberWeekDay(tv).
  5. Letmonth be the Name of the entry inTable 53 with the NumberMonthFromTime(tv).
  6. Letday be the String representation ofDateFromTime(tv), formatted as a two-digit decimal number, padded to the left with the code unit 0x0030 (DIGIT ZERO) if necessary.
  7. Letyv beYearFromTime(tv).
  8. Ifyv+0𝔽, letyearSign be the empty String; otherwise, letyearSign be"-".
  9. Letyear be the String representation ofabs((yv)), formatted as a decimal number.
  10. LetpaddedYear be ! StringPad(year,4𝔽,"0",start).
  11. Return thestring-concatenation ofweekday,",", the code unit 0x0020 (SPACE),day, the code unit 0x0020 (SPACE),month, the code unit 0x0020 (SPACE),yearSign,paddedYear, the code unit 0x0020 (SPACE), andTimeString(tv).

21.4.4.44 Date.prototype.valueOf ( )

The following steps are performed:

  1. Return ? thisTimeValue(this value).

21.4.4.45 Date.prototype [ @@toPrimitive ] (hint )

This function is called by ECMAScript language operators to convert a Date object to a primitive value. The allowed values forhint are"default","number", and"string". Date objects, are unique among built-in ECMAScript object in that they treat"default" as being equivalent to"string", All other built-in ECMAScript objects treat"default" as being equivalent to"number".

When the@@toPrimitive method is called with argumenthint, the following steps are taken:

  1. LetO be thethis value.
  2. IfType(O) is not Object, throw aTypeError exception.
  3. Ifhint is"string" or"default", then
    1. LettryFirst bestring.
  4. Else ifhint is"number", then
    1. LettryFirst benumber.
  5. Else, throw aTypeError exception.
  6. Return ? OrdinaryToPrimitive(O,tryFirst).

The value of the"name" property of this function is"[Symbol.toPrimitive]".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

21.4.5 Properties of Date Instances

Date instances are ordinary objects that inherit properties from theDate prototype object. Date instances also have a [[DateValue]] internal slot. The [[DateValue]] internal slot is thetime value represented bythis Date object.

22 Text Processing

22.1 String Objects

22.1.1 The String Constructor

The Stringconstructor:

  • is%String%.
  • is the initial value of the"String" property of theglobal object.
  • creates and initializes a new String object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified String behaviour must include asuper call to the Stringconstructor to create and initialize the subclass instance with a [[StringData]] internal slot.

22.1.1.1 String (value )

WhenString is called with argumentvalue, the following steps are taken:

  1. Ifvalue is not present, lets be the empty String.
  2. Else,
    1. If NewTarget isundefined andType(value) is Symbol, returnSymbolDescriptiveString(value).
    2. Lets be ? ToString(value).
  3. If NewTarget isundefined, returns.
  4. Return ! StringCreate(s, ? GetPrototypeFromConstructor(NewTarget,"%String.prototype%")).

22.1.2 Properties of the String Constructor

The Stringconstructor:

22.1.2.1 String.fromCharCode ( ...codeUnits )

TheString.fromCharCode function may be called with any number of arguments which form the rest parametercodeUnits. The following steps are taken:

  1. Letlength be the number of elements incodeUnits.
  2. Letelements be a new emptyList.
  3. For each elementnext ofcodeUnits, do
    1. LetnextCU be(?ToUint16(next)).
    2. AppendnextCU to the end ofelements.
  4. Return the String value whose code units are the elements in theListelements. IfcodeUnits is empty, the empty String is returned.

The"length" property of thefromCharCode function is1𝔽.

22.1.2.2 String.fromCodePoint ( ...codePoints )

TheString.fromCodePoint function may be called with any number of arguments which form the rest parametercodePoints. The following steps are taken:

  1. Letresult be the empty String.
  2. For each elementnext ofcodePoints, do
    1. LetnextCP be ? ToNumber(next).
    2. If ! IsIntegralNumber(nextCP) isfalse, throw aRangeError exception.
    3. If(nextCP) < 0 or(nextCP) > 0x10FFFF, throw aRangeError exception.
    4. Setresult to thestring-concatenation ofresult and ! UTF16EncodeCodePoint((nextCP)).
  3. Assert: IfcodePoints is empty, thenresult is the empty String.
  4. Returnresult.

The"length" property of thefromCodePoint function is1𝔽.

22.1.2.3 String.prototype

The initial value ofString.prototype is theString prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

22.1.2.4 String.raw (template, ...substitutions )

TheString.raw function may be called with a variable number of arguments. The first argument istemplate and the remainder of the arguments form theListsubstitutions. The following steps are taken:

  1. LetnumberOfSubstitutions be the number of elements insubstitutions.
  2. Letcooked be ? ToObject(template).
  3. Letraw be ? ToObject(?Get(cooked,"raw")).
  4. LetliteralSegments be ? LengthOfArrayLike(raw).
  5. IfliteralSegments ≤ 0, return the empty String.
  6. LetstringElements be a new emptyList.
  7. LetnextIndex be 0.
  8. Repeat,
    1. LetnextKey be ! ToString(𝔽(nextIndex)).
    2. LetnextSeg be ? ToString(?Get(raw,nextKey)).
    3. Append the code unit elements ofnextSeg to the end ofstringElements.
    4. IfnextIndex + 1 =literalSegments, then
      1. Return the String value whose code units are the elements in theListstringElements. IfstringElements has no elements, the empty String is returned.
    5. IfnextIndex <numberOfSubstitutions, letnext besubstitutions[nextIndex].
    6. Else, letnext be the empty String.
    7. LetnextSub be ? ToString(next).
    8. Append the code unit elements ofnextSub to the end ofstringElements.
    9. SetnextIndex tonextIndex + 1.
Note

Theraw function is intended for use as a tag function of a Tagged Template (13.3.11). When called as such, the first argument will be a well formed template object and the rest parameter will contain the substitution values.

22.1.3 Properties of the String Prototype Object

TheString prototype object:

  • is%String.prototype%.
  • is aString exotic object and has the internal methods specified for such objects.
  • has a [[StringData]] internal slot whose value is the empty String.
  • has a"length" property whose initial value is+0𝔽 and whose attributes are { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly stated otherwise, the methods of the String prototype object defined below are not generic and thethis value passed to them must be either a String value or an object that has a [[StringData]] internal slot that has been initialized to a String value.

The abstract operationthisStringValue takes argumentvalue. It performs the following steps when called:

  1. IfType(value) is String, returnvalue.
  2. IfType(value) is Object andvalue has a [[StringData]] internal slot, then
    1. Lets bevalue.[[StringData]].
    2. Assert:Type(s) is String.
    3. Returns.
  3. Throw aTypeError exception.

22.1.3.1 String.prototype.charAt (pos )

Note 1

Returns a single element String containing the code unit at indexpos within the String value resulting from converting this object to a String. If there is no element at that index, the result is the empty String. The result is a String value, not a String object.

Ifpos is anintegral Number, then the result ofx.charAt(pos) is equivalent to the result ofx.substring(pos, pos + 1).

When thecharAt method is called with one argumentpos, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, return the empty String.
  6. Return the String value of length 1, containing one code unit fromS, namely the code unit at indexposition.
Note 2

ThecharAt function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.2 String.prototype.charCodeAt (pos )

Note 1

Returns a Number (a non-negativeintegral Number less than 216) that is the numeric value of the code unit at indexpos within the String resulting from converting this object to a String. If there is no element at that index, the result isNaN.

When thecharCodeAt method is called with one argumentpos, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, returnNaN.
  6. Return theNumber value for the numeric value of the code unit at indexposition within the StringS.
Note 2

ThecharCodeAt function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.3 String.prototype.codePointAt (pos )

Note 1

Returns a non-negativeintegral Number less than or equal to0x10FFFF𝔽 that is the code point value of the UTF-16 encoded code point (6.1.4) starting at the string element at indexpos within the String resulting from converting this object to a String. If there is no element at that index, the result isundefined. If a valid UTF-16surrogate pair does not begin atpos, the result is the code unit atpos.

When thecodePointAt method is called with one argumentpos, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, returnundefined.
  6. Letcp be ! CodePointAt(S,position).
  7. Return𝔽(cp.[[CodePoint]]).
Note 2

ThecodePointAt function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.4 String.prototype.concat ( ...args )

Note 1

When theconcat method is called it returns the String value consisting of the code units of thethis value (converted to a String) followed by the code units of each of the arguments converted to a String. The result is a String value, not a String object.

When theconcat method is called with zero or more arguments, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetR beS.
  4. For each elementnext ofargs, do
    1. LetnextString be ? ToString(next).
    2. SetR to thestring-concatenation ofR andnextString.
  5. ReturnR.

The"length" property of theconcat method is1𝔽.

Note 2

Theconcat function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.5 String.prototype.constructor

The initial value ofString.prototype.constructor is%String%.

22.1.3.6 String.prototype.endsWith (searchString [ ,endPosition ] )

The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letlen be the length ofS.
  7. IfendPosition isundefined, letpos belen; else letpos be ? ToIntegerOrInfinity(endPosition).
  8. Letend be the result ofclampingpos between 0 andlen.
  9. LetsearchLength be the length ofsearchStr.
  10. IfsearchLength = 0, returntrue.
  11. Letstart beend -searchLength.
  12. Ifstart < 0, returnfalse.
  13. Letsubstring be thesubstring ofS fromstart toend.
  14. Return ! SameValueNonNumeric(substring,searchStr).
Note 1

Returnstrue if the sequence of code units ofsearchString converted to a String is the same as the corresponding code units of this object (converted to a String) starting atendPosition - length(this). Otherwise returnsfalse.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

TheendsWith function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.7 String.prototype.includes (searchString [ ,position ] )

Theincludes method takes two arguments,searchString andposition, and performs the following steps:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letpos be ? ToIntegerOrInfinity(position).
  7. Assert: Ifposition isundefined, thenpos is 0.
  8. Letlen be the length ofS.
  9. Letstart be the result ofclampingpos between 0 andlen.
  10. Letindex be ! StringIndexOf(S,searchStr,start).
  11. Ifindex is not -1, returntrue.
  12. Returnfalse.
Note 1

IfsearchString appears as asubstring of the result of converting this object to a String, at one or more indices that are greater than or equal toposition, returntrue; otherwise, returnsfalse. Ifposition isundefined, 0 is assumed, so as to search all of the String.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

Theincludes function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.8 String.prototype.indexOf (searchString [ ,position ] )

Note 1

IfsearchString appears as asubstring of the result of converting this object to a String, at one or more indices that are greater than or equal toposition, then the smallest such index is returned; otherwise,-1𝔽 is returned. Ifposition isundefined,+0𝔽 is assumed, so as to search all of the String.

TheindexOf method takes two arguments,searchString andposition, and performs the following steps:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsearchStr be ? ToString(searchString).
  4. Letpos be ? ToIntegerOrInfinity(position).
  5. Assert: Ifposition isundefined, thenpos is 0.
  6. Letlen be the length ofS.
  7. Letstart be the result ofclampingpos between 0 andlen.
  8. Return𝔽(!StringIndexOf(S,searchStr,start)).
Note 2

TheindexOf function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.9 String.prototype.lastIndexOf (searchString [ ,position ] )

Note 1

IfsearchString appears as asubstring of the result of converting this object to a String at one or more indices that are smaller than or equal toposition, then the greatest such index is returned; otherwise,-1𝔽 is returned. Ifposition isundefined, the length of the String value is assumed, so as to search all of the String.

ThelastIndexOf method takes two arguments,searchString andposition, and performs the following steps:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsearchStr be ? ToString(searchString).
  4. LetnumPos be ? ToNumber(position).
  5. Assert: Ifposition isundefined, thennumPos isNaN.
  6. IfnumPos isNaN, letpos be +∞; otherwise, letpos be ! ToIntegerOrInfinity(numPos).
  7. Letlen be the length ofS.
  8. Letstart be the result ofclampingpos between 0 andlen.
  9. LetsearchLen be the length ofsearchStr.
  10. Letk be the largest possible non-negativeinteger not larger thanstart such thatk +searchLenlen, and for all non-negative integersj such thatj <searchLen, the code unit at indexk +j withinS is the same as the code unit at indexj withinsearchStr; but if there is no suchinteger, letk be -1.
  11. Return𝔽(k).
Note 2

ThelastIndexOf function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.10 String.prototype.localeCompare (that [ ,reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement thelocaleCompare method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thelocaleCompare method is used.

When thelocaleCompare method is called with argumentthat, it returns a Number other thanNaN that represents the result of a locale-sensitive String comparison of thethis value (converted to a String) withthat (converted to a String). The two Strings areS andThat. The two Strings are compared in animplementation-defined fashion. The result is intended to order String values in the sort order specified by ahost default locale, and will be negative, zero, or positive, depending on whetherS comes beforeThat in the sort order, the Strings are equal, orS comes afterThat in the sort order, respectively.

Before performing the comparisons, the following steps are performed to prepare the Strings:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetThat be ? ToString(that).

The meaning of the optional second and third parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not assign any other interpretation to those parameter positions.

ThelocaleCompare method, if considered as a function of two argumentsthis andthat, is a consistent comparison function (as defined in23.1.3.27) on the set of all Strings.

The actual return values areimplementation-defined to permit implementers to encode additional information in the value, but the function is required to define a total ordering on all Strings. This function must treat Strings that are canonically equivalent according to the Unicode standard as identical and must return0 when comparing Strings that are considered canonically equivalent.

Note 1

ThelocaleCompare method itself is not directly suitable as an argument toArray.prototype.sort because the latter requires a function of two arguments.

Note 2

This function is intended to rely on whatever language-sensitive comparison functionality is available to the ECMAScript environment from thehost environment, and to compare according to the rules of thehost environment's current locale. However, regardless of thehost provided comparison capabilities, this function must treat Strings that are canonically equivalent according to the Unicode standard as identical. It is recommended that this function should not honour Unicode compatibility equivalences or decompositions. For a definition and discussion of canonical equivalence see the Unicode Standard, chapters 2 and 3, as well as Unicode Standard Annex #15, Unicode Normalization Forms (https://unicode.org/reports/tr15/) and Unicode Technical Note #5, Canonical Equivalence in Applications (https://www.unicode.org/notes/tn5/). Also see Unicode Technical Standard #10, Unicode Collation Algorithm (https://unicode.org/reports/tr10/).

Note 3

ThelocaleCompare function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.11 String.prototype.match (regexp )

When thematch method is called with argumentregexp, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. Letmatcher be ? GetMethod(regexp,@@match).
    2. Ifmatcher is notundefined, then
      1. Return ? Call(matcher,regexp, «O »).
  3. LetS be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,undefined).
  5. Return ? Invoke(rx,@@match, «S »).
Note

Thematch function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.12 String.prototype.matchAll (regexp )

Performs a regular expression match of the String representing thethis value againstregexp and returns an iterator. Each iteration result's value is an Array object containing the results of the match, ornull if the String did not match.

When thematchAll method is called, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. LetisRegExp be ? IsRegExp(regexp).
    2. IfisRegExp istrue, then
      1. Letflags be ? Get(regexp,"flags").
      2. Perform ? RequireObjectCoercible(flags).
      3. If ? ToString(flags) does not contain"g", throw aTypeError exception.
    3. Letmatcher be ? GetMethod(regexp,@@matchAll).
    4. Ifmatcher is notundefined, then
      1. Return ? Call(matcher,regexp, «O »).
  3. LetS be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,"g").
  5. Return ? Invoke(rx,@@matchAll, «S »).
Note 1
ThematchAll function is intentionally generic, it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.
Note 2
Similarly toString.prototype.split,String.prototype.matchAll is designed to typically act without mutating its inputs.

22.1.3.13 String.prototype.normalize ( [form ] )

When thenormalize method is called with one argumentform, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Ifform isundefined, letf be"NFC".
  4. Else, letf be ? ToString(form).
  5. Iff is not one of"NFC","NFD","NFKC", or"NFKD", throw aRangeError exception.
  6. Letns be the String value that is the result of normalizingS into the normalization form named byf as specified inhttps://unicode.org/reports/tr15/.
  7. Returnns.
Note

Thenormalize function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.14 String.prototype.padEnd (maxLength [ ,fillString ] )

When thepadEnd method is called, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Return ? StringPad(O,maxLength,fillString,end).

22.1.3.15 String.prototype.padStart (maxLength [ ,fillString ] )

When thepadStart method is called, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Return ? StringPad(O,maxLength,fillString,start).

22.1.3.15.1 StringPad (O,maxLength,fillString,placement )

The abstract operation StringPad takes argumentsO,maxLength,fillString, andplacement. It performs the following steps when called:

  1. Assert:placement isstart orend.
  2. LetS be ? ToString(O).
  3. LetintMaxLength be(?ToLength(maxLength)).
  4. LetstringLength be the length ofS.
  5. IfintMaxLengthstringLength, returnS.
  6. IffillString isundefined, letfiller be the String value consisting solely of the code unit 0x0020 (SPACE).
  7. Else, letfiller be ? ToString(fillString).
  8. Iffiller is the empty String, returnS.
  9. LetfillLen beintMaxLength -stringLength.
  10. LettruncatedStringFiller be the String value consisting of repeated concatenations offiller truncated to lengthfillLen.
  11. Ifplacement isstart, return thestring-concatenation oftruncatedStringFiller andS.
  12. Else, return thestring-concatenation ofS andtruncatedStringFiller.
Note 1

The argumentmaxLength will be clamped such that it can be no smaller than the length ofS.

Note 2

The argumentfillString defaults to" " (the String value consisting of the code unit 0x0020 SPACE).

22.1.3.16 String.prototype.repeat (count )

The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letn be ? ToIntegerOrInfinity(count).
  4. Ifn < 0 orn is +∞, throw aRangeError exception.
  5. Ifn is 0, return the empty String.
  6. Return the String value that is made fromn copies ofS appended together.
Note 1

This method creates the String value consisting of the code units of thethis value (converted to String) repeatedcount times.

Note 2

Therepeat function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.17 String.prototype.replace (searchValue,replaceValue )

When thereplace method is called with argumentssearchValue andreplaceValue, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. IfsearchValue is neitherundefined nornull, then
    1. Letreplacer be ? GetMethod(searchValue,@@replace).
    2. Ifreplacer is notundefined, then
      1. Return ? Call(replacer,searchValue, «O,replaceValue »).
  3. Letstring be ? ToString(O).
  4. LetsearchString be ? ToString(searchValue).
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. LetsearchLength be the length ofsearchString.
  8. Letposition be ! StringIndexOf(string,searchString, 0).
  9. Ifposition is -1, returnstring.
  10. Letpreserved be thesubstring ofstring from 0 toposition.
  11. IffunctionalReplace istrue, then
    1. Letreplacement be ? ToString(?Call(replaceValue,undefined, «searchString,𝔽(position),string »)).
  12. Else,
    1. Assert:Type(replaceValue) is String.
    2. Letcaptures be a new emptyList.
    3. Letreplacement be ! GetSubstitution(searchString,string,position,captures,undefined,replaceValue).
  13. Return thestring-concatenation ofpreserved,replacement, and thesubstring ofstring fromposition +searchLength.
Note

Thereplace function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.17.1 GetSubstitution (matched,str,position,captures,namedCaptures,replacement )

The abstract operation GetSubstitution takes argumentsmatched,str,position (a non-negativeinteger),captures,namedCaptures, andreplacement. It performs the following steps when called:

  1. Assert:Type(matched) is String.
  2. LetmatchLength be the number of code units inmatched.
  3. Assert:Type(str) is String.
  4. LetstringLength be the number of code units instr.
  5. Assert:positionstringLength.
  6. Assert:captures is a possibly emptyList of Strings.
  7. Assert:Type(replacement) is String.
  8. LettailPos beposition +matchLength.
  9. Letm be the number of elements incaptures.
  10. Letresult be the String value derived fromreplacement by copying code unit elements fromreplacement toresult while performing replacements as specified inTable 54. These$ replacements are done left-to-right, and, once such a replacement is performed, the new replacement text is not subject to further replacements.
  11. Returnresult.
Table 54: Replacement Text Symbol Substitutions
Code units Unicode Characters Replacement text
0x0024, 0x0024$$$
0x0024, 0x0026$&matched
0x0024, 0x0060$` The replacement is thesubstring ofstr from 0 toposition.
0x0024, 0x0027$' IftailPosstringLength, the replacement is the empty String. Otherwise the replacement is thesubstring ofstr fromtailPos.
0x0024, N
Where
0x0031 ≤ N ≤ 0x0039
$n where
n is one of1 2 3 4 5 6 7 8 9 and$n is not followed by a decimal digit
Thenth element ofcaptures, wheren is a single digit in the range 1 to 9. Ifnm and thenth element ofcaptures isundefined, use the empty String instead. Ifn >m, no replacement is done.
0x0024, N, N
Where
0x0030 ≤ N ≤ 0x0039
$nn where
n is one of0 1 2 3 4 5 6 7 8 9
Thennth element ofcaptures, wherenn is a two-digit decimal number in the range 01 to 99. Ifnnm and thennth element ofcaptures isundefined, use the empty String instead. Ifnn is 00 ornn >m, no replacement is done.
0x0024, 0x003C$<
  1. IfnamedCaptures isundefined, the replacement text is the String"$<".
  2. Else,
    1. Assert:Type(namedCaptures) is Object.
    2. Scan until the next> U+003E (GREATER-THAN SIGN).
    3. If none is found, the replacement text is the String"$<".
    4. Else,
      1. LetgroupName be the enclosedsubstring.
      2. Letcapture be ? Get(namedCaptures,groupName).
      3. Ifcapture isundefined, replace the text through> with the empty String.
      4. Otherwise, replace the text through> with ? ToString(capture).
0x0024$ in any context that does not match any of the above.$

22.1.3.18 String.prototype.replaceAll (searchValue,replaceValue )

When thereplaceAll method is called with argumentssearchValue andreplaceValue, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. IfsearchValue is neitherundefined nornull, then
    1. LetisRegExp be ? IsRegExp(searchValue).
    2. IfisRegExp istrue, then
      1. Letflags be ? Get(searchValue,"flags").
      2. Perform ? RequireObjectCoercible(flags).
      3. If ? ToString(flags) does not contain"g", throw aTypeError exception.
    3. Letreplacer be ? GetMethod(searchValue,@@replace).
    4. Ifreplacer is notundefined, then
      1. Return ? Call(replacer,searchValue, «O,replaceValue »).
  3. Letstring be ? ToString(O).
  4. LetsearchString be ? ToString(searchValue).
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. LetsearchLength be the length ofsearchString.
  8. LetadvanceBy bemax(1,searchLength).
  9. LetmatchPositions be a new emptyList.
  10. Letposition be ! StringIndexOf(string,searchString, 0).
  11. Repeat, whileposition is not -1,
    1. Appendposition to the end ofmatchPositions.
    2. Setposition to ! StringIndexOf(string,searchString,position +advanceBy).
  12. LetendOfLastMatch be 0.
  13. Letresult be the empty String.
  14. For each elementp ofmatchPositions, do
    1. Letpreserved be thesubstring ofstring fromendOfLastMatch top.
    2. IffunctionalReplace istrue, then
      1. Letreplacement be ? ToString(?Call(replaceValue,undefined, «searchString,𝔽(p),string »)).
    3. Else,
      1. Assert:Type(replaceValue) is String.
      2. Letcaptures be a new emptyList.
      3. Letreplacement be ! GetSubstitution(searchString,string,p,captures,undefined,replaceValue).
    4. Setresult to thestring-concatenation ofresult,preserved, andreplacement.
    5. SetendOfLastMatch top +searchLength.
  15. IfendOfLastMatch < the length ofstring, then
    1. Setresult to thestring-concatenation ofresult and thesubstring ofstring fromendOfLastMatch.
  16. Returnresult.

22.1.3.19 String.prototype.search (regexp )

When thesearch method is called with argumentregexp, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. Letsearcher be ? GetMethod(regexp,@@search).
    2. Ifsearcher is notundefined, then
      1. Return ? Call(searcher,regexp, «O »).
  3. Letstring be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,undefined).
  5. Return ? Invoke(rx,@@search, «string »).
Note

Thesearch function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.20 String.prototype.slice (start,end )

Theslice method takes two arguments,start andend, and returns asubstring of the result of converting this object to a String, starting from indexstart and running to, but not including, indexend (or through the end of the String ifend isundefined). Ifstart is negative, it is treated assourceLength +start wheresourceLength is the length of the String. Ifend is negative, it is treated assourceLength +end wheresourceLength is the length of the String. The result is a String value, not a String object. The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letlen be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. IfintStart is -∞, letfrom be 0.
  6. Else ifintStart < 0, letfrom bemax(len +intStart, 0).
  7. Else, letfrom bemin(intStart,len).
  8. Ifend isundefined, letintEnd belen; else letintEnd be ? ToIntegerOrInfinity(end).
  9. IfintEnd is -∞, letto be 0.
  10. Else ifintEnd < 0, letto bemax(len +intEnd, 0).
  11. Else, letto bemin(intEnd,len).
  12. Iffromto, return the empty String.
  13. Return thesubstring ofS fromfrom toto.
Note

Theslice function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.21 String.prototype.split (separator,limit )

Returns an Array object into which substrings of the result of converting this object to a String have been stored. The substrings are determined by searching from left to right for occurrences ofseparator; these occurrences are not part of any String in the returned array, but serve to divide up the String value. The value ofseparator may be a String of any length or it may be an object, such as a RegExp, that has a@@split method.

When thesplit method is called, the following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifseparator is neitherundefined nornull, then
    1. Letsplitter be ? GetMethod(separator,@@split).
    2. Ifsplitter is notundefined, then
      1. Return ? Call(splitter,separator, «O,limit »).
  3. LetS be ? ToString(O).
  4. LetA be ! ArrayCreate(0).
  5. LetlengthA be 0.
  6. Iflimit isundefined, letlim be 232 - 1; else letlim be(?ToUint32(limit)).
  7. LetR be ? ToString(separator).
  8. Iflim = 0, returnA.
  9. Ifseparator isundefined, then
    1. Perform ! CreateDataPropertyOrThrow(A,"0",S).
    2. ReturnA.
  10. Lets be the length ofS.
  11. Ifs = 0, then
    1. IfR is not the empty String, then
      1. Perform ! CreateDataPropertyOrThrow(A,"0",S).
    2. ReturnA.
  12. Letp be 0.
  13. Letq bep.
  14. Repeat, whileqs,
    1. Lete beSplitMatch(S,q,R).
    2. Ife isnot-matched, setq toq + 1.
    3. Else,
      1. Assert:e is a non-negativeintegers.
      2. Ife =p, setq toq + 1.
      3. Else,
        1. LetT be thesubstring ofS fromp toq.
        2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
        3. SetlengthA tolengthA + 1.
        4. IflengthA =lim, returnA.
        5. Setp toe.
        6. Setq top.
  15. LetT be thesubstring ofS fromp tos.
  16. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
  17. ReturnA.
Note 1

The value ofseparator may be an empty String. In this case,separator does not match the emptysubstring at the beginning or end of the input String, nor does it match the emptysubstring at the end of the previous separator match. Ifseparator is the empty String, the String is split up into individual code unit elements; the length of the result array equals the length of the String, and eachsubstring contains one code unit.

If thethis value is (or converts to) the empty String, the result depends on whetherseparator can match the empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the empty String.

Ifseparator isundefined, then the result array contains just one String, which is thethis value (converted to a String). Iflimit is notundefined, then the output array is truncated so that it contains no more thanlimit elements.

Note 2

Thesplit function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.21.1 SplitMatch (S,q,R )

The abstract operation SplitMatch takes argumentsS (a String),q (a non-negativeinteger), andR (a String). It returns eithernot-matched or the end index of a match. It performs the following steps when called:

  1. Letr be the number of code units inR.
  2. Lets be the number of code units inS.
  3. Ifq +r >s, returnnot-matched.
  4. If there exists anintegeri between 0 (inclusive) andr (exclusive) such that the code unit at indexq +i withinS is different from the code unit at indexi withinR, returnnot-matched.
  5. Returnq +r.

22.1.3.22 String.prototype.startsWith (searchString [ ,position ] )

The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letlen be the length ofS.
  7. Ifposition isundefined, letpos be 0; else letpos be ? ToIntegerOrInfinity(position).
  8. Letstart be the result ofclampingpos between 0 andlen.
  9. LetsearchLength be the length ofsearchStr.
  10. IfsearchLength = 0, returntrue.
  11. Letend bestart +searchLength.
  12. Ifend >len, returnfalse.
  13. Letsubstring be thesubstring ofS fromstart toend.
  14. Return ! SameValueNonNumeric(substring,searchStr).
Note 1

This method returnstrue if the sequence of code units ofsearchString converted to a String is the same as the corresponding code units of this object (converted to a String) starting at indexposition. Otherwise returnsfalse.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

ThestartsWith function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.23 String.prototype.substring (start,end )

Thesubstring method takes two arguments,start andend, and returns asubstring of the result of converting this object to a String, starting from indexstart and running to, but not including, indexend of the String (or through the end of the String ifend isundefined). The result is a String value, not a String object.

If either argument isNaN or negative, it is replaced with zero; if either argument is larger than the length of the String, it is replaced with the length of the String.

Ifstart is larger thanend, they are swapped.

The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letlen be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. Ifend isundefined, letintEnd belen; else letintEnd be ? ToIntegerOrInfinity(end).
  6. LetfinalStart be the result ofclampingintStart between 0 andlen.
  7. LetfinalEnd be the result ofclampingintEnd between 0 andlen.
  8. Letfrom bemin(finalStart,finalEnd).
  9. Letto bemax(finalStart,finalEnd).
  10. Return thesubstring ofS fromfrom toto.
Note

Thesubstring function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.24 String.prototype.toLocaleLowerCase ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement thetoLocaleLowerCase method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleLowerCase method is used.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

This function works exactly the same astoLowerCase except that its result is intended to yield the correct result for thehost environment's current locale, rather than a locale-independent result. There will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

Note

ThetoLocaleLowerCase function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.25 String.prototype.toLocaleUpperCase ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement thetoLocaleUpperCase method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleUpperCase method is used.

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

This function works exactly the same astoUpperCase except that its result is intended to yield the correct result for thehost environment's current locale, rather than a locale-independent result. There will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

Note

ThetoLocaleUpperCase function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.26 String.prototype.toLowerCase ( )

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4. The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsText be ! StringToCodePoints(S).
  4. LetlowerText be the result of toLowercase(sText), according to the Unicode Default Case Conversion algorithm.
  5. LetL be ! CodePointsToString(lowerText).
  6. ReturnL.

The result must be derived according to the locale-insensitive case mappings in the Unicode Character Database (this explicitly includes not only the UnicodeData.txt file, but also all locale-insensitive mappings in the SpecialCasings.txt file that accompanies it).

Note 1

The case mapping of some code points may produce multiple code points. In this case the result String may not be the same length as the source String. Because bothtoUpperCase andtoLowerCase have context-sensitive behaviour, the functions are not symmetrical. In other words,s.toUpperCase().toLowerCase() is not necessarily equal tos.toLowerCase().

Note 2

ThetoLowerCase function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.27 String.prototype.toString ( )

When thetoString method is called, the following steps are taken:

  1. Return ? thisStringValue(this value).
Note

For a String object, thetoString method happens to return the same thing as thevalueOf method.

22.1.3.28 String.prototype.toUpperCase ( )

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

This function behaves in exactly the same way asString.prototype.toLowerCase, except that the String is mapped using the toUppercase algorithm of the Unicode Default Case Conversion.

Note

ThetoUpperCase function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.29 String.prototype.trim ( )

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

The following steps are taken:

  1. LetS be thethis value.
  2. Return ? TrimString(S,start+end).
Note

Thetrim function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.29.1 TrimString (string,where )

The abstract operation TrimString takes argumentsstring andwhere. It interpretsstring as a sequence of UTF-16 encoded code points, as described in6.1.4. It performs the following steps when called:

  1. Letstr be ? RequireObjectCoercible(string).
  2. LetS be ? ToString(str).
  3. Ifwhere isstart, letT be the String value that is a copy ofS with leading white space removed.
  4. Else ifwhere isend, letT be the String value that is a copy ofS with trailing white space removed.
  5. Else,
    1. Assert:where isstart+end.
    2. LetT be the String value that is a copy ofS with both leading and trailing white space removed.
  6. ReturnT.

The definition of white space is the union ofWhiteSpace andLineTerminator. When determining whether a Unicode code point is in Unicode general category “Space_Separator” (“Zs”), code unit sequences are interpreted as UTF-16 encoded code point sequences as specified in6.1.4.

22.1.3.30 String.prototype.trimEnd ( )

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

The following steps are taken:

  1. LetS be thethis value.
  2. Return ? TrimString(S,end).
Note

ThetrimEnd function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.31 String.prototype.trimStart ( )

This function interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

The following steps are taken:

  1. LetS be thethis value.
  2. Return ? TrimString(S,start).
Note

ThetrimStart function is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.32 String.prototype.valueOf ( )

When thevalueOf method is called, the following steps are taken:

  1. Return ? thisStringValue(this value).

22.1.3.33 String.prototype [ @@iterator ] ( )

When the@@iterator method is called it returns an Iterator object (27.1.1.2) that iterates over the code points of a String value, returning each code point as a String value. The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Lets be ? ToString(O).
  3. Letclosure be a newAbstract Closure with no parameters that capturess and performs the following steps when called:
    1. Letposition be 0.
    2. Letlen be the length ofs.
    3. Repeat, whileposition <len,
      1. Letcp be ! CodePointAt(s,position).
      2. LetnextIndex beposition +cp.[[CodeUnitCount]].
      3. LetresultString be thesubstring ofs fromposition tonextIndex.
      4. Setposition tonextIndex.
      5. Perform ? Yield(resultString).
    4. Returnundefined.
  4. Return ! CreateIteratorFromClosure(closure,"%StringIteratorPrototype%",%StringIteratorPrototype%).

The value of the"name" property of this function is"[Symbol.iterator]".

22.1.4 Properties of String Instances

String instances are String exotic objects and have the internal methods specified for such objects. String instances inherit properties from theString prototype object. String instances also have a [[StringData]] internal slot.

String instances have a"length" property, and a set of enumerable properties withinteger-indexed names.

22.1.4.1 length

The number of elements in the String value represented by this String object.

Once a String object is initialized, this property is unchanging. It has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

22.1.5 String Iterator Objects

A String Iterator is an object, that represents a specific iteration over some specific String instance object. There is not a namedconstructor for String Iterator objects. Instead, String iterator objects are created by calling certain methods of String instance objects.

22.1.5.1 The %StringIteratorPrototype% Object

The%StringIteratorPrototype% object:

  • has properties that are inherited by all String Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

22.1.5.1.1 %StringIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%StringIteratorPrototype%").

22.1.5.1.2 %StringIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"String Iterator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

22.2 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags.

Note

The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5 programming language.

22.2.1 Patterns

The RegExpconstructor applies the following grammar to the input pattern String. An error occurs if the grammar cannot interpret the String as an expansion ofPattern.

Syntax

Pattern[U, N]::Disjunction[?U, ?N]Disjunction[U, N]::Alternative[?U, ?N]Alternative[?U, ?N]|Disjunction[?U, ?N]Alternative[U, N]::[empty]Alternative[?U, ?N]Term[?U, ?N]Term[U, N]::Assertion[?U, ?N]Atom[?U, ?N]Atom[?U, ?N]QuantifierAssertion[U, N]::^$\b\B(?=Disjunction[?U, ?N])(?!Disjunction[?U, ?N])(?<=Disjunction[?U, ?N])(?<!Disjunction[?U, ?N])Quantifier::QuantifierPrefixQuantifierPrefix?QuantifierPrefix::*+?{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}Atom[U, N]::PatternCharacter.\AtomEscape[?U, ?N]CharacterClass[?U](GroupSpecifier[?U]Disjunction[?U, ?N])(?:Disjunction[?U, ?N])SyntaxCharacter::one of^$\.*+?()[]{}|PatternCharacter::SourceCharacterbut notSyntaxCharacterAtomEscape[U, N]::DecimalEscapeCharacterClassEscape[?U]CharacterEscape[?U][+N]kGroupName[?U]CharacterEscape[U]::ControlEscapecControlLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?U]IdentityEscape[?U]ControlEscape::one offnrtvControlLetter::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZGroupSpecifier[U]::[empty]?GroupName[?U]GroupName[U]::<RegExpIdentifierName[?U]>RegExpIdentifierName[U]::RegExpIdentifierStart[?U]RegExpIdentifierName[?U]RegExpIdentifierPart[?U]RegExpIdentifierStart[U]::UnicodeIDStart$_\RegExpUnicodeEscapeSequence[+U][~U]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart[U]::UnicodeIDContinue$\RegExpUnicodeEscapeSequence[+U][~U]UnicodeLeadSurrogateUnicodeTrailSurrogate<ZWNJ><ZWJ>RegExpUnicodeEscapeSequence[U]::[+U]uHexLeadSurrogate\uHexTrailSurrogate[+U]uHexLeadSurrogate[+U]uHexTrailSurrogate[+U]uHexNonSurrogate[~U]uHex4Digits[+U]u{CodePoint}UnicodeLeadSurrogate::any Unicode code point in the inclusive range 0xD800 to 0xDBFFUnicodeTrailSurrogate::any Unicode code point in the inclusive range 0xDC00 to 0xDFFF

Each\uHexTrailSurrogate for which the choice of associateduHexLeadSurrogate is ambiguous shall be associated with the nearest possibleuHexLeadSurrogate that would otherwise have no corresponding\uHexTrailSurrogate.

HexLeadSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in the inclusive range 0xD800 to 0xDBFFHexTrailSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in the inclusive range 0xDC00 to 0xDFFFHexNonSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is not in the inclusive range 0xD800 to 0xDFFFIdentityEscape[U]::[+U]SyntaxCharacter[+U]/[~U]SourceCharacterbut notUnicodeIDContinueDecimalEscape::NonZeroDigitDecimalDigits[~Sep]opt[lookahead ∉DecimalDigit]CharacterClassEscape[U]::dDsSwW[+U]p{UnicodePropertyValueExpression}[+U]P{UnicodePropertyValueExpression}UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueLoneUnicodePropertyNameOrValueUnicodePropertyName::UnicodePropertyNameCharactersUnicodePropertyNameCharacters::UnicodePropertyNameCharacterUnicodePropertyNameCharactersoptUnicodePropertyValue::UnicodePropertyValueCharactersLoneUnicodePropertyNameOrValue::UnicodePropertyValueCharactersUnicodePropertyValueCharacters::UnicodePropertyValueCharacterUnicodePropertyValueCharactersoptUnicodePropertyValueCharacter::UnicodePropertyNameCharacterDecimalDigitUnicodePropertyNameCharacter::ControlLetter_CharacterClass[U]::[[lookahead ≠^]ClassRanges[?U]][^ClassRanges[?U]]ClassRanges[U]::[empty]NonemptyClassRanges[?U]NonemptyClassRanges[U]::ClassAtom[?U]ClassAtom[?U]NonemptyClassRangesNoDash[?U]ClassAtom[?U]-ClassAtom[?U]ClassRanges[?U]NonemptyClassRangesNoDash[U]::ClassAtom[?U]ClassAtomNoDash[?U]NonemptyClassRangesNoDash[?U]ClassAtomNoDash[?U]-ClassAtom[?U]ClassRanges[?U]ClassAtom[U]::-ClassAtomNoDash[?U]ClassAtomNoDash[U]::SourceCharacterbut not one of\ or] or-\ClassEscape[?U]ClassEscape[U]::b[+U]-CharacterClassEscape[?U]CharacterEscape[?U]Note

A number of productions in this section are given alternative definitions in sectionB.1.4.

22.2.1.1 Static Semantics: Early Errors

Note

This section is amended inB.1.4.1.

Pattern::DisjunctionQuantifierPrefix::{DecimalDigits,DecimalDigits}AtomEscape::kGroupNameAtomEscape::DecimalEscapeNonemptyClassRanges::ClassAtom-ClassAtomClassRangesNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassRangesRegExpIdentifierStart[U]::\RegExpUnicodeEscapeSequence[+U]RegExpIdentifierStart[U]::UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart[U]::\RegExpUnicodeEscapeSequence[+U]RegExpIdentifierPart[U]::UnicodeLeadSurrogateUnicodeTrailSurrogateUnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueUnicodePropertyValueExpression::LoneUnicodePropertyNameOrValue
  • It is a Syntax Error if theList of Unicode code points that isSourceText ofLoneUnicodePropertyNameOrValue is not identical to aList of Unicode code points that is a Unicode general category or general category alias listed in the “Property value and aliases” column ofTable 58, nor a binary property or binary property alias listed in the “Property name and aliases” column ofTable 57.

22.2.1.2 Static Semantics: CapturingGroupNumber

Note

This section is amended inB.1.4.1.

DecimalEscape::NonZeroDigit
  1. Return the MV ofNonZeroDigit.
DecimalEscape::NonZeroDigitDecimalDigits
  1. Letn be the number of code points inDecimalDigits.
  2. Return (the MV ofNonZeroDigit × 10n plus the MV ofDecimalDigits).

The definitions of “the MV ofNonZeroDigit” and “the MV ofDecimalDigits” are in12.8.3.

22.2.1.3 Static Semantics: IsCharacterClass

Note

This section is amended inB.1.4.2.

ClassAtom::-ClassAtomNoDash::SourceCharacterbut not one of\ or] or-ClassEscape::bClassEscape::-ClassEscape::CharacterEscape
  1. Returnfalse.
ClassEscape::CharacterClassEscape
  1. Returntrue.

22.2.1.4 Static Semantics: CharacterValue

Note 1

This section is amended inB.1.4.3.

ClassAtom::-
  1. Return the code point value of U+002D (HYPHEN-MINUS).
ClassAtomNoDash::SourceCharacterbut not one of\ or] or-
  1. Letch be the code point matched bySourceCharacter.
  2. Return the code point value ofch.
ClassEscape::b
  1. Return the code point value of U+0008 (BACKSPACE).
ClassEscape::-
  1. Return the code point value of U+002D (HYPHEN-MINUS).
CharacterEscape::ControlEscape
  1. Return the code point value according toTable 55.
Table 55: ControlEscape Code Point Values
ControlEscape Code Point Value Code Point Unicode Name Symbol
t 9U+0009 CHARACTER TABULATION <HT>
n 10U+000A LINE FEED (LF) <LF>
v 11U+000B LINE TABULATION <VT>
f 12U+000C FORM FEED (FF) <FF>
r 13U+000D CARRIAGE RETURN (CR) <CR>
CharacterEscape::cControlLetter
  1. Letch be the code point matched byControlLetter.
  2. Leti bech's code point value.
  3. Return the remainder of dividingi by 32.
CharacterEscape::0[lookahead ∉DecimalDigit]
  1. Return the code point value of U+0000 (NULL).
Note 2

\0 represents the <NUL> character and cannot be followed by a decimal digit.

CharacterEscape::HexEscapeSequence
  1. Return the MV ofHexEscapeSequence.
RegExpUnicodeEscapeSequence::uHexLeadSurrogate\uHexTrailSurrogate
  1. Letlead be theCharacterValue ofHexLeadSurrogate.
  2. Lettrail be theCharacterValue ofHexTrailSurrogate.
  3. Letcp beUTF16SurrogatePairToCodePoint(lead,trail).
  4. Return the code point value ofcp.
RegExpUnicodeEscapeSequence::uHex4Digits
  1. Return the MV ofHex4Digits.
RegExpUnicodeEscapeSequence::u{CodePoint}
  1. Return the MV ofCodePoint.
HexLeadSurrogate::Hex4DigitsHexTrailSurrogate::Hex4DigitsHexNonSurrogate::Hex4Digits
  1. Return the MV ofHexDigits.
CharacterEscape::IdentityEscape
  1. Letch be the code point matched byIdentityEscape.
  2. Return the code point value ofch.

22.2.1.5 Static Semantics: SourceText

UnicodePropertyNameCharacters::UnicodePropertyNameCharacterUnicodePropertyNameCharactersoptUnicodePropertyValueCharacters::UnicodePropertyValueCharacterUnicodePropertyValueCharactersopt
  1. Return theList, in source text order, of Unicode code points in thesource text matched by this production.

22.2.1.6 Static Semantics: CapturingGroupName

RegExpIdentifierName[U]::RegExpIdentifierStart[?U]RegExpIdentifierName[?U]RegExpIdentifierPart[?U]
  1. LetidText be thesource text matched byRegExpIdentifierName.
  2. LetidTextUnescaped be the result of replacing any occurrences of\RegExpUnicodeEscapeSequence inidText with the code point represented by theRegExpUnicodeEscapeSequence.
  3. Return ! CodePointsToString(idTextUnescaped).

22.2.2 Pattern Semantics

Note 1

This section is amended inB.1.4.4.

A regular expression pattern is converted into anAbstract Closure using the process described below. An implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the results are the same. TheAbstract Closure is used as the value of a RegExp object's [[RegExpMatcher]] internal slot.

APattern is either a BMP pattern or a Unicode pattern depending upon whether or not its associated flags contain au. A BMP pattern matches against a String interpreted as consisting of a sequence of 16-bit values that are Unicode code points in the range of the Basic Multilingual Plane. A Unicode pattern matches against a String interpreted as consisting of Unicode code points encoded using UTF-16. In the context of describing the behaviour of a BMP pattern “character” means a single 16-bit Unicode BMP code point. In the context of describing the behaviour of a Unicode pattern “character” means a UTF-16 encoded code point (6.1.4). In either context, “character value” means the numeric value of the corresponding non-encoded code point.

The syntax and semantics ofPattern is defined as if the source code for thePattern was aList ofSourceCharacter values where eachSourceCharacter corresponds to a Unicode code point. If a BMP pattern contains a non-BMPSourceCharacter the entire pattern is encoded using UTF-16 and the individual code units of that encoding are used as the elements of theList.

Note 2

For example, consider a pattern expressed in source text as the single non-BMP character U+1D11E (MUSICAL SYMBOL G CLEF). Interpreted as a Unicode pattern, it would be a single element (character)List consisting of the single code point 0x1D11E. However, interpreted as a BMP pattern, it is first UTF-16 encoded to produce a two elementList consisting of the code units 0xD834 and 0xDD1E.

Patterns are passed to the RegExpconstructor as ECMAScript String values in which non-BMP characters are UTF-16 encoded. For example, the single character MUSICAL SYMBOL G CLEF pattern, expressed as a String value, is a String of length 2 whose elements were the code units 0xD834 and 0xDD1E. So no further translation of the string would be necessary to process it as a BMP pattern consisting of two pattern characters. However, to process it as a Unicode patternUTF16SurrogatePairToCodePoint must be used in producing aList whose sole element is a single pattern character, the code point U+1D11E.

An implementation may not actually perform such translations to or from UTF-16, but the semantics of this specification requires that the result of pattern matching be as if such translations were performed.

22.2.2.1 Notation

The descriptions below use the following aliases:

  • Input is aList whose elements are the characters of the String being matched by the regular expression pattern. Each character is either a code unit or a code point, depending upon the kind of pattern involved. The notationInput[n] means thenth character ofInput, wheren can range between 0 (inclusive) andInputLength (exclusive).
  • InputLength is the number of characters inInput.
  • NcapturingParens is the total number of left-capturing parentheses (i.e. the total number ofAtom::(GroupSpecifierDisjunction) Parse Nodes) in the pattern. A left-capturing parenthesis is any( pattern character that is matched by the( terminal of theAtom::(GroupSpecifierDisjunction) production.
  • DotAll istrue if the RegExp object's [[OriginalFlags]] internal slot contains"s" and otherwise isfalse.
  • IgnoreCase istrue if the RegExp object's [[OriginalFlags]] internal slot contains"i" and otherwise isfalse.
  • Multiline istrue if the RegExp object's [[OriginalFlags]] internal slot contains"m" and otherwise isfalse.
  • Unicode istrue if the RegExp object's [[OriginalFlags]] internal slot contains"u" and otherwise isfalse.
  • WordCharacters is the mathematical set that is the union of all sixty-three characters in"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_" (letters, numbers, and U+005F (LOW LINE) in the Unicode Basic Latin block) and all charactersc for whichc is not in that set butCanonicalize(c) is.WordCharacters cannot contain more than sixty-three characters unlessUnicode andIgnoreCase are bothtrue.

Furthermore, the descriptions below use the following internal data structures:

  • ACharSet is a mathematical set of characters. When theUnicode flag istrue, “all characters” means the CharSet containing all code point values; otherwise “all characters” means the CharSet containing all code unit values.
  • AState is an ordered pair (endIndex,captures) whereendIndex is aninteger andcaptures is aList ofNcapturingParens values. States are used to represent partial match states in the regular expression matching algorithms. TheendIndex is one plus the index of the last input character matched so far by the pattern, whilecaptures holds the results of capturing parentheses. Thenth element ofcaptures is either aList of characters that represents the value obtained by thenth set of capturing parentheses orundefined if thenth set of capturing parentheses hasn't been reached yet. Due to backtracking, many States may be in use at any time during the matching process.
  • AMatchResult is either a State or the special tokenfailure that indicates that the match failed.
  • AContinuation is anAbstract Closure that takes one State argument and returns a MatchResult result. The Continuation attempts to match the remaining portion (specified by the closure's captured values) of the pattern againstInput, starting at the intermediate state given by its State argument. If the match succeeds, the Continuation returns the final State that it reached; if the match fails, the Continuation returnsfailure.
  • AMatcher is anAbstract Closure that takes two arguments—a State and a Continuation—and returns a MatchResult result. A Matcher attempts to match a middle subpattern (specified by the closure's captured values) of the pattern againstInput, starting at the intermediate state given by its State argument. The Continuation argument should be a closure that matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new State, the Matcher then calls Continuation on that new State to test if the rest of the pattern can match as well. If it can, the Matcher returns the State returned by Continuation; if not, the Matcher may try different choices at its choice points, repeatedly calling Continuation until it either succeeds or all possibilities have been exhausted.

22.2.2.2 Pattern

The productionPattern::Disjunction evaluates as follows:

  1. EvaluateDisjunction with 1 as itsdirection argument to obtain a Matcherm.
  2. Return a newAbstract Closure with parameters (str,index) that capturesm and performs the following steps when called:
    1. Assert:Type(str) is String.
    2. Assert:index is a non-negativeinteger which is ≤ the length ofstr.
    3. IfUnicode istrue, letInput be ! StringToCodePoints(str). Otherwise, letInput be aList whose elements are the code units that are the elements ofstr.Input will be used throughout the algorithms in22.2.2. Each element ofInput is considered to be a character.
    4. LetInputLength be the number of characters contained inInput. This alias will be used throughout the algorithms in22.2.2.
    5. LetlistIndex be the index intoInput of the character that was obtained from elementindex ofstr.
    6. Letc be a new Continuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is a State.
      2. Returny.
    7. Letcap be aList ofNcapturingParensundefined values, indexed 1 throughNcapturingParens.
    8. Letx be the State (listIndex,cap).
    9. Returnm(x,c).
Note

A Pattern evaluates (“compiles”) to anAbstract Closure value.RegExpBuiltinExec can then apply this procedure to a String and an offset within the String to determine whether the pattern would match starting at exactly that offset within the String, and, if it does match, what the values of the capturing parentheses would be. The algorithms in22.2.2 are designed so that compiling a pattern may throw aSyntaxError exception; on the other hand, once the pattern is successfully compiled, applying the resultingAbstract Closure to find a match in a String cannot throw an exception (except for anyimplementation-defined exceptions that can occur anywhere such as out-of-memory).

22.2.2.3 Disjunction

With parameterdirection.

The productionDisjunction::Alternative evaluates as follows:

  1. EvaluateAlternative with argumentdirection to obtain a Matcherm.
  2. Returnm.

The productionDisjunction::Alternative|Disjunction evaluates as follows:

  1. EvaluateAlternative with argumentdirection to obtain a Matcherm1.
  2. EvaluateDisjunction with argumentdirection to obtain a Matcherm2.
  3. Return a new Matcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letr bem1(x,c).
    4. Ifr is notfailure, returnr.
    5. Returnm2(x,c).
Note

The| regular expression operator separates two alternatives. The pattern first tries to match the leftAlternative (followed by the sequel of the regular expression); if it fails, it tries to match the rightDisjunction (followed by the sequel of the regular expression). If the leftAlternative, the rightDisjunction, and the sequel all have choice points, all choices in the sequel are tried before moving on to the next choice in the leftAlternative. If choices in the leftAlternative are exhausted, the rightDisjunction is tried instead of the leftAlternative. Any capturing parentheses inside a portion of the pattern skipped by| produceundefined values instead of Strings. Thus, for example,

/a|ab/.exec("abc")

returns the result"a" and not"ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc","a","a",undefined,"bc",undefined,"bc"]

and not

["abc","ab",undefined,"ab","c","c",undefined]

The order in which the two alternatives are tried is independent of the value ofdirection.

22.2.2.4 Alternative

With parameterdirection.

The productionAlternative::[empty] evaluates as follows:

  1. Return a new Matcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Returnc(x).

The productionAlternative::AlternativeTerm evaluates as follows:

  1. EvaluateAlternative with argumentdirection to obtain a Matcherm1.
  2. EvaluateTerm with argumentdirection to obtain a Matcherm2.
  3. Ifdirection = 1, then
    1. Return a new Matcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
      1. Assert:x is a State.
      2. Assert:c is a Continuation.
      3. Letd be a new Continuation with parameters (y) that capturesc andm2 and performs the following steps when called:
        1. Assert:y is a State.
        2. Returnm2(y,c).
      4. Returnm1(x,d).
  4. Else,
    1. Assert:direction is -1.
    2. Return a new Matcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
      1. Assert:x is a State.
      2. Assert:c is a Continuation.
      3. Letd be a new Continuation with parameters (y) that capturesc andm1 and performs the following steps when called:
        1. Assert:y is a State.
        2. Returnm1(y,c).
      4. Returnm2(x,d).
Note

ConsecutiveTerms try to simultaneously match consecutive portions ofInput. Whendirection = 1, if the leftAlternative, the rightTerm, and the sequel of the regular expression all have choice points, all choices in the sequel are tried before moving on to the next choice in the rightTerm, and all choices in the rightTerm are tried before moving on to the next choice in the leftAlternative. Whendirection = -1, the evaluation order ofAlternative andTerm are reversed.

22.2.2.5 Term

With parameterdirection.

The productionTerm::Assertion evaluates as follows:

  1. Return the Matcher that is the result of evaluatingAssertion.
Note

The resulting Matcher is independent ofdirection.

The productionTerm::Atom evaluates as follows:

  1. Return the Matcher that is the result of evaluatingAtom with argumentdirection.

The productionTerm::AtomQuantifier evaluates as follows:

  1. EvaluateAtom with argumentdirection to obtain a Matcherm.
  2. EvaluateQuantifier to obtain the three results: a non-negativeintegermin, a non-negativeinteger (or +∞)max, and Booleangreedy.
  3. Assert:minmax.
  4. LetparenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of thisTerm. This is the total number ofAtom::(GroupSpecifierDisjunction) Parse Nodes prior to or enclosing thisTerm.
  5. LetparenCount be the number of left-capturing parentheses inAtom. This is the total number ofAtom::(GroupSpecifierDisjunction) Parse Nodes enclosed byAtom.
  6. Return a new Matcher with parameters (x,c) that capturesm,min,max,greedy,parenIndex, andparenCount and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Return ! RepeatMatcher(m,min,max,greedy,x,c,parenIndex,parenCount).

22.2.2.5.1 RepeatMatcher (m,min,max,greedy,x,c,parenIndex,parenCount )

The abstract operation RepeatMatcher takes argumentsm (a Matcher),min (a non-negativeinteger),max (a non-negativeinteger or +∞),greedy (a Boolean),x (a State),c (a Continuation),parenIndex (a non-negativeinteger), andparenCount (a non-negativeinteger). It performs the following steps when called:

  1. Ifmax = 0, returnc(x).
  2. Letd be a new Continuation with parameters (y) that capturesm,min,max,greedy,x,c,parenIndex, andparenCount and performs the following steps when called:
    1. Assert:y is a State.
    2. Ifmin = 0 andy'sendIndex =x'sendIndex, returnfailure.
    3. Ifmin = 0, letmin2 be 0; otherwise letmin2 bemin - 1.
    4. Ifmax is +∞, letmax2 be +∞; otherwise letmax2 bemax - 1.
    5. Return ! RepeatMatcher(m,min2,max2,greedy,y,c,parenIndex,parenCount).
  3. Letcap be a copy ofx'scapturesList.
  4. For eachintegerk such thatparenIndex <k andkparenIndex +parenCount, setcap[k] toundefined.
  5. Lete bex'sendIndex.
  6. Letxr be the State (e,cap).
  7. Ifmin ≠ 0, returnm(xr,d).
  8. Ifgreedy isfalse, then
    1. Letz bec(x).
    2. Ifz is notfailure, returnz.
    3. Returnm(xr,d).
  9. Letz bem(xr,d).
  10. Ifz is notfailure, returnz.
  11. Returnc(x).
Note 1

AnAtom followed by aQuantifier is repeated the number of times specified by theQuantifier. AQuantifier can be non-greedy, in which case theAtom pattern is repeated as few times as possible while still matching the sequel, or it can be greedy, in which case theAtom pattern is repeated as many times as possible while still matching the sequel. TheAtom pattern is repeated rather than the input character sequence that it matches, so different repetitions of theAtom can match different input substrings.

Note 2

If theAtom and the sequel of the regular expression all have choice points, theAtom is first matched as many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the last repetition ofAtom. All choices in the last (nth) repetition ofAtom are tried before moving on to the next choice in the next-to-last (n - 1)st repetition ofAtom; at which point it may turn out that more or fewer repetitions ofAtom are now possible; these are exhausted (again, starting with either as few or as many as possible) before moving on to the next choice in the (n - 1)st repetition ofAtom and so on.

Compare

/a[a-z]{2,4}/.exec("abcdefghi")

which returns"abcde" with

/a[a-z]{2,4}?/.exec("abcdefghi")

which returns"abc".

Consider also

/(aa|aabaac|ba|b|c)*/.exec("aabaac")

which, by the choice point ordering above, returns the array

["aaba","ba"]

and not any of:

["aabaac","aabaac"]["aabaac","c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation"aaaaa".

Note 3

Step4 of the RepeatMatcher clearsAtom's captures each timeAtom is repeated. We can see its behaviour in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac","z","ac","a",undefined,"c"]

and not

["zaacbbbcac","z","ac","a","bbb","c"]

because each iteration of the outermost* clears all captured Strings contained in the quantifiedAtom, which in this case includes capture Strings numbered 2, 3, 4, and 5.

Note 4

Step2.b of the RepeatMatcher states that once the minimum number of repetitions has been satisfied, any more expansions ofAtom that match the empty character sequence are not considered for further repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns such as:

/(a*)*/.exec("b")

or the slightly more complicated:

/(a*)b\1+/.exec("baaaac")

which returns the array

["b",""]

22.2.2.6 Assertion

The productionAssertion::^ evaluates as follows:

  1. Return a new Matcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Lete bex'sendIndex.
    4. Ife = 0, or ifMultiline istrue and the characterInput[e - 1] is one ofLineTerminator, then
      1. Returnc(x).
    5. Returnfailure.
Note

Even when they flag is used with a pattern,^ always matches only at the beginning ofInput, or (ifMultiline istrue) at the beginning of a line.

The productionAssertion::$ evaluates as follows:

  1. Return a new Matcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Lete bex'sendIndex.
    4. Ife =InputLength, or ifMultiline istrue and the characterInput[e] is one ofLineTerminator, then
      1. Returnc(x).
    5. Returnfailure.

The productionAssertion::\b evaluates as follows:

  1. Return a new Matcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Lete bex'sendIndex.
    4. Leta be ! IsWordChar(e - 1).
    5. Letb be ! IsWordChar(e).
    6. Ifa istrue andb isfalse, or ifa isfalse andb istrue, returnc(x).
    7. Returnfailure.

The productionAssertion::\B evaluates as follows:

  1. Return a new Matcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Lete bex'sendIndex.
    4. Leta be ! IsWordChar(e - 1).
    5. Letb be ! IsWordChar(e).
    6. Ifa istrue andb istrue, or ifa isfalse andb isfalse, returnc(x).
    7. Returnfailure.

The productionAssertion::(?=Disjunction) evaluates as follows:

  1. EvaluateDisjunction with 1 as itsdirection argument to obtain a Matcherm.
  2. Return a new Matcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letd be a new Continuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is a State.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr isfailure, returnfailure.
    6. Lety ber's State.
    7. Letcap bey'scapturesList.
    8. Letxe bex'sendIndex.
    9. Letz be the State (xe,cap).
    10. Returnc(z).

The productionAssertion::(?!Disjunction) evaluates as follows:

  1. EvaluateDisjunction with 1 as itsdirection argument to obtain a Matcherm.
  2. Return a new Matcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letd be a new Continuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is a State.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr is notfailure, returnfailure.
    6. Returnc(x).

The productionAssertion::(?<=Disjunction) evaluates as follows:

  1. EvaluateDisjunction with -1 as itsdirection argument to obtain a Matcherm.
  2. Return a new Matcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letd be a new Continuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is a State.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr isfailure, returnfailure.
    6. Lety ber's State.
    7. Letcap bey'scapturesList.
    8. Letxe bex'sendIndex.
    9. Letz be the State (xe,cap).
    10. Returnc(z).

The productionAssertion::(?<!Disjunction) evaluates as follows:

  1. EvaluateDisjunction with -1 as itsdirection argument to obtain a Matcherm.
  2. Return a new Matcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letd be a new Continuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is a State.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr is notfailure, returnfailure.
    6. Returnc(x).

22.2.2.6.1 IsWordChar (e )

The abstract operation IsWordChar takes argumente (aninteger). It performs the following steps when called:

  1. Ife = -1 ore isInputLength, returnfalse.
  2. Letc be the characterInput[e].
  3. Ifc is inWordCharacters, returntrue.
  4. Returnfalse.

22.2.2.7 Quantifier

The productionQuantifier::QuantifierPrefix evaluates as follows:

  1. EvaluateQuantifierPrefix to obtain the two results: anintegermin and aninteger (or +∞)max.
  2. Return the three resultsmin,max, andtrue.

The productionQuantifier::QuantifierPrefix? evaluates as follows:

  1. EvaluateQuantifierPrefix to obtain the two results: anintegermin and aninteger (or +∞)max.
  2. Return the three resultsmin,max, andfalse.

The productionQuantifierPrefix::* evaluates as follows:

  1. Return the two results 0 and +∞.

The productionQuantifierPrefix::+ evaluates as follows:

  1. Return the two results 1 and +∞.

The productionQuantifierPrefix::? evaluates as follows:

  1. Return the two results 0 and 1.

The productionQuantifierPrefix::{DecimalDigits} evaluates as follows:

  1. Leti be the MV ofDecimalDigits (see12.8.3).
  2. Return the two resultsi andi.

The productionQuantifierPrefix::{DecimalDigits,} evaluates as follows:

  1. Leti be the MV ofDecimalDigits.
  2. Return the two resultsi and +∞.

The productionQuantifierPrefix::{DecimalDigits,DecimalDigits} evaluates as follows:

  1. Leti be the MV of the firstDecimalDigits.
  2. Letj be the MV of the secondDecimalDigits.
  3. Return the two resultsi andj.

22.2.2.8 Atom

With parameterdirection.

The productionAtom::PatternCharacter evaluates as follows:

  1. Letch be the character matched byPatternCharacter.
  2. LetA be a one-element CharSet containing the characterch.
  3. Return ! CharacterSetMatcher(A,false,direction).

The productionAtom::. evaluates as follows:

  1. LetA be the CharSet of all characters.
  2. IfDotAll is nottrue, then
    1. Remove fromA all characters corresponding to a code point on the right-hand side of theLineTerminator production.
  3. Return ! CharacterSetMatcher(A,false,direction).

The productionAtom::\AtomEscape evaluates as follows:

  1. Return the Matcher that is the result of evaluatingAtomEscape with argumentdirection.

The productionAtom::CharacterClass evaluates as follows:

  1. EvaluateCharacterClass to obtain a CharSetA and a Booleaninvert.
  2. Return ! CharacterSetMatcher(A,invert,direction).

The productionAtom::(GroupSpecifierDisjunction) evaluates as follows:

  1. EvaluateDisjunction with argumentdirection to obtain a Matcherm.
  2. LetparenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of thisAtom. This is the total number ofAtom::(GroupSpecifierDisjunction) Parse Nodes prior to or enclosing thisAtom.
  3. Return a new Matcher with parameters (x,c) that capturesdirection,m, andparenIndex and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letd be a new Continuation with parameters (y) that capturesx,c,direction, andparenIndex and performs the following steps when called:
      1. Assert:y is a State.
      2. Letcap be a copy ofy'scapturesList.
      3. Letxe bex'sendIndex.
      4. Letye bey'sendIndex.
      5. Ifdirection = 1, then
        1. Assert:xeye.
        2. Lets be aList whose elements are the characters ofInput at indicesxe (inclusive) throughye (exclusive).
      6. Else,
        1. Assert:direction is -1.
        2. Assert:yexe.
        3. Lets be aList whose elements are the characters ofInput at indicesye (inclusive) throughxe (exclusive).
      7. Setcap[parenIndex + 1] tos.
      8. Letz be the State (ye,cap).
      9. Returnc(z).
    4. Returnm(x,d).

The productionAtom::(?:Disjunction) evaluates as follows:

  1. Return the Matcher that is the result of evaluatingDisjunction with argumentdirection.

22.2.2.8.1 CharacterSetMatcher (A,invert,direction )

The abstract operation CharacterSetMatcher takes argumentsA (a CharSet),invert (a Boolean), anddirection (1 or -1). It performs the following steps when called:

  1. Return a new Matcher with parameters (x,c) that capturesA,invert, anddirection and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Lete bex'sendIndex.
    4. Letf bee +direction.
    5. Iff < 0 orf >InputLength, returnfailure.
    6. Letindex bemin(e,f).
    7. Letch be the characterInput[index].
    8. Letcc beCanonicalize(ch).
    9. If there exists a membera ofA such thatCanonicalize(a) iscc, letfound betrue. Otherwise, letfound befalse.
    10. Ifinvert isfalse andfound isfalse, returnfailure.
    11. Ifinvert istrue andfound istrue, returnfailure.
    12. Letcap bex'scapturesList.
    13. Lety be the State (f,cap).
    14. Returnc(y).

22.2.2.8.2 Canonicalize (ch )

The abstract operation Canonicalize takes argumentch (a character). It performs the following steps when called:

  1. IfUnicode istrue andIgnoreCase istrue, then
    1. If the file CaseFolding.txt of the Unicode Character Database provides a simple or common case folding mapping forch, return the result of applying that mapping toch.
    2. Returnch.
  2. IfIgnoreCase isfalse, returnch.
  3. Assert:ch is a UTF-16 code unit.
  4. Letcp be the code point whose numeric value is that ofch.
  5. Letu be the result of toUppercase(«cp »), according to the Unicode Default Case Conversion algorithm.
  6. LetuStr be ! CodePointsToString(u).
  7. IfuStr does not consist of a single code unit, returnch.
  8. Letcu beuStr's single code unit element.
  9. If the numeric value ofch ≥ 128 and the numeric value ofcu < 128, returnch.
  10. Returncu.
Note 1

Parentheses of the form(Disjunction) serve both to group the components of theDisjunction pattern together and to save the result of the match. The result can be used either in a backreference (\ followed by a non-zero decimal number), referenced in a replace String, or returned as part of an array from the regular expression matchingAbstract Closure. To inhibit the capturing behaviour of parentheses, use the form(?:Disjunction) instead.

Note 2

The form(?=Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern insideDisjunction must match at the current position, but the current position is not advanced before matching the sequel. IfDisjunction can match at the current position in several ways, only the first one is tried. Unlike other regular expression operators, there is no backtracking into a(?= form (this unusual behaviour is inherited from Perl). This only matters when theDisjunction contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,

/(?=(a+))/.exec("baaabac")

matches the empty String immediately after the firstb and therefore returns the array:

["","aaa"]

To illustrate the lack of backtracking into the lookahead, consider:

/(?=(a+))a*b\1/.exec("baaabac")

This expression returns

["aba","a"]

and not:

["aaaba","a"]
Note 3

The form(?!Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern insideDisjunction must fail to match at the current position. The current position is not advanced before matching the sequel.Disjunction can contain capturing parentheses, but backreferences to them only make sense from withinDisjunction itself. Backreferences to these capturing parentheses from elsewhere in the pattern always returnundefined because the negative lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for ana not immediately followed by some positive number n ofa's, ab, another na's (specified by the first\2) and ac. The second\2 is outside the negative lookahead, so it matches againstundefined and therefore always succeeds. The whole expression returns the array:

["baaabaac","ba",undefined,"abaac"]
Note 4

In case-insignificant matches whenUnicode istrue, all characters are implicitly case-folded using the simple mapping provided by the Unicode standard immediately before they are compared. The simple mapping always maps to a single code point, so it does not map, for example,ß (U+00DF) toSS. It may however map a code point outside the Basic Latin range to a character within, for example,ſ (U+017F) tos. Such characters are not mapped ifUnicode isfalse. This prevents Unicode code points such as U+017F and U+212A from matching regular expressions such as/[a-z]/i, but they will match/[a-z]/ui.

22.2.2.8.3 UnicodeMatchProperty (p )

The abstract operation UnicodeMatchProperty takes argumentp (aList of Unicode code points). It performs the following steps when called:

  1. Assert:p is aList of Unicode code points that is identical to aList of Unicode code points that is a Unicodeproperty name or property alias listed in the “Property name and aliases” column ofTable 56 orTable 57.
  2. Letc be the canonicalproperty name ofp as given in the “Canonicalproperty name” column of the corresponding row.
  3. Return theList of Unicode code points ofc.

Implementations must support the Unicode property names and aliases listed inTable 56 andTable 57. To ensure interoperability, implementations must not support any other property names or aliases.

Note 1

For example,Script_Extensions (property name) andscx (property alias) are valid, butscript_extensions orScx aren't.

Note 2

The listed properties form a superset of whatUTS18 RL1.2 requires.

Table 56: Non-binary Unicode property aliases and their canonical property names
Property name and aliasesCanonicalproperty name
General_CategoryGeneral_Category
gc
ScriptScript
sc
Script_ExtensionsScript_Extensions
scx
Table 57: Binary Unicode property aliases and their canonical property names
Property name and aliasesCanonicalproperty name
ASCIIASCII
ASCII_Hex_DigitASCII_Hex_Digit
AHex
AlphabeticAlphabetic
Alpha
AnyAny
AssignedAssigned
Bidi_ControlBidi_Control
Bidi_C
Bidi_MirroredBidi_Mirrored
Bidi_M
Case_IgnorableCase_Ignorable
CI
CasedCased
Changes_When_CasefoldedChanges_When_Casefolded
CWCF
Changes_When_CasemappedChanges_When_Casemapped
CWCM
Changes_When_LowercasedChanges_When_Lowercased
CWL
Changes_When_NFKC_CasefoldedChanges_When_NFKC_Casefolded
CWKCF
Changes_When_TitlecasedChanges_When_Titlecased
CWT
Changes_When_UppercasedChanges_When_Uppercased
CWU
DashDash
Default_Ignorable_Code_PointDefault_Ignorable_Code_Point
DI
DeprecatedDeprecated
Dep
DiacriticDiacritic
Dia
EmojiEmoji
Emoji_ComponentEmoji_Component
EComp
Emoji_ModifierEmoji_Modifier
EMod
Emoji_Modifier_BaseEmoji_Modifier_Base
EBase
Emoji_PresentationEmoji_Presentation
EPres
Extended_PictographicExtended_Pictographic
ExtPict
ExtenderExtender
Ext
Grapheme_BaseGrapheme_Base
Gr_Base
Grapheme_ExtendGrapheme_Extend
Gr_Ext
Hex_DigitHex_Digit
Hex
IDS_Binary_OperatorIDS_Binary_Operator
IDSB
IDS_Trinary_OperatorIDS_Trinary_Operator
IDST
ID_ContinueID_Continue
IDC
ID_StartID_Start
IDS
IdeographicIdeographic
Ideo
Join_ControlJoin_Control
Join_C
Logical_Order_ExceptionLogical_Order_Exception
LOE
LowercaseLowercase
Lower
MathMath
Noncharacter_Code_PointNoncharacter_Code_Point
NChar
Pattern_SyntaxPattern_Syntax
Pat_Syn
Pattern_White_SpacePattern_White_Space
Pat_WS
Quotation_MarkQuotation_Mark
QMark
RadicalRadical
Regional_IndicatorRegional_Indicator
RI
Sentence_TerminalSentence_Terminal
STerm
Soft_DottedSoft_Dotted
SD
Terminal_PunctuationTerminal_Punctuation
Term
Unified_IdeographUnified_Ideograph
UIdeo
UppercaseUppercase
Upper
Variation_SelectorVariation_Selector
VS
White_SpaceWhite_Space
space
XID_ContinueXID_Continue
XIDC
XID_StartXID_Start
XIDS

22.2.2.8.4 UnicodeMatchPropertyValue (p,v )

The abstract operation UnicodeMatchPropertyValue takes argumentsp (aList of Unicode code points) andv (aList of Unicode code points). It performs the following steps when called:

  1. Assert:p is aList of Unicode code points that is identical to aList of Unicode code points that is a canonical, unaliased Unicodeproperty name listed in the “Canonicalproperty name” column ofTable 56.
  2. Assert:v is aList of Unicode code points that is identical to aList of Unicode code points that is a property value or property value alias for Unicode propertyp listed in the “Property value and aliases” column ofTable 58 orTable 59.
  3. Letvalue be the canonical property value ofv as given in the “Canonical property value” column of the corresponding row.
  4. Return theList of Unicode code points ofvalue.

Implementations must support the Unicode property value names and aliases listed inTable 58 andTable 59. To ensure interoperability, implementations must not support any other property value names or aliases.

Note 1

For example,Xpeo andOld_Persian are validScript_Extensions values, butxpeo andOld Persian aren't.

Note 2

This algorithm differs fromthe matching rules for symbolic values listed in UAX44: case,white space, U+002D (HYPHEN-MINUS), and U+005F (LOW LINE) are not ignored, and theIs prefix is not supported.

Table 58: Value aliases and canonical values for the Unicode propertyGeneral_Category
Property value and aliasesCanonical property value
Cased_LetterCased_Letter
LC
Close_PunctuationClose_Punctuation
Pe
Connector_PunctuationConnector_Punctuation
Pc
ControlControl
Cc
cntrl
Currency_SymbolCurrency_Symbol
Sc
Dash_PunctuationDash_Punctuation
Pd
Decimal_NumberDecimal_Number
Nd
digit
Enclosing_MarkEnclosing_Mark
Me
Final_PunctuationFinal_Punctuation
Pf
FormatFormat
Cf
Initial_PunctuationInitial_Punctuation
Pi
LetterLetter
L
Letter_NumberLetter_Number
Nl
Line_SeparatorLine_Separator
Zl
Lowercase_LetterLowercase_Letter
Ll
MarkMark
M
Combining_Mark
Math_SymbolMath_Symbol
Sm
Modifier_LetterModifier_Letter
Lm
Modifier_SymbolModifier_Symbol
Sk
Nonspacing_MarkNonspacing_Mark
Mn
NumberNumber
N
Open_PunctuationOpen_Punctuation
Ps
OtherOther
C
Other_LetterOther_Letter
Lo
Other_NumberOther_Number
No
Other_PunctuationOther_Punctuation
Po
Other_SymbolOther_Symbol
So
Paragraph_SeparatorParagraph_Separator
Zp
Private_UsePrivate_Use
Co
PunctuationPunctuation
P
punct
SeparatorSeparator
Z
Space_SeparatorSpace_Separator
Zs
Spacing_MarkSpacing_Mark
Mc
SurrogateSurrogate
Cs
SymbolSymbol
S
Titlecase_LetterTitlecase_Letter
Lt
UnassignedUnassigned
Cn
Uppercase_LetterUppercase_Letter
Lu
Table 59: Value aliases and canonical values for the Unicode propertiesScript andScript_Extensions
Property value and aliasesCanonical property value
AdlamAdlam
Adlm
AhomAhom
Anatolian_HieroglyphsAnatolian_Hieroglyphs
Hluw
ArabicArabic
Arab
ArmenianArmenian
Armn
AvestanAvestan
Avst
BalineseBalinese
Bali
BamumBamum
Bamu
Bassa_VahBassa_Vah
Bass
BatakBatak
Batk
BengaliBengali
Beng
BhaiksukiBhaiksuki
Bhks
BopomofoBopomofo
Bopo
BrahmiBrahmi
Brah
BrailleBraille
Brai
BugineseBuginese
Bugi
BuhidBuhid
Buhd
Canadian_AboriginalCanadian_Aboriginal
Cans
CarianCarian
Cari
Caucasian_AlbanianCaucasian_Albanian
Aghb
ChakmaChakma
Cakm
ChamCham
ChorasmianChorasmian
Chrs
CherokeeCherokee
Cher
CommonCommon
Zyyy
CopticCoptic
Copt
Qaac
CuneiformCuneiform
Xsux
CypriotCypriot
Cprt
CyrillicCyrillic
Cyrl
DeseretDeseret
Dsrt
DevanagariDevanagari
Deva
Dives_AkuruDives_Akuru
Diak
DograDogra
Dogr
DuployanDuployan
Dupl
Egyptian_HieroglyphsEgyptian_Hieroglyphs
Egyp
ElbasanElbasan
Elba
ElymaicElymaic
Elym
EthiopicEthiopic
Ethi
GeorgianGeorgian
Geor
GlagoliticGlagolitic
Glag
GothicGothic
Goth
GranthaGrantha
Gran
GreekGreek
Grek
GujaratiGujarati
Gujr
Gunjala_GondiGunjala_Gondi
Gong
GurmukhiGurmukhi
Guru
HanHan
Hani
HangulHangul
Hang
Hanifi_RohingyaHanifi_Rohingya
Rohg
HanunooHanunoo
Hano
HatranHatran
Hatr
HebrewHebrew
Hebr
HiraganaHiragana
Hira
Imperial_AramaicImperial_Aramaic
Armi
InheritedInherited
Zinh
Qaai
Inscriptional_PahlaviInscriptional_Pahlavi
Phli
Inscriptional_ParthianInscriptional_Parthian
Prti
JavaneseJavanese
Java
KaithiKaithi
Kthi
KannadaKannada
Knda
KatakanaKatakana
Kana
Kayah_LiKayah_Li
Kali
KharoshthiKharoshthi
Khar
Khitan_Small_ScriptKhitan_Small_Script
Kits
KhmerKhmer
Khmr
KhojkiKhojki
Khoj
KhudawadiKhudawadi
Sind
LaoLao
Laoo
LatinLatin
Latn
LepchaLepcha
Lepc
LimbuLimbu
Limb
Linear_ALinear_A
Lina
Linear_BLinear_B
Linb
LisuLisu
LycianLycian
Lyci
LydianLydian
Lydi
MahajaniMahajani
Mahj
MakasarMakasar
Maka
MalayalamMalayalam
Mlym
MandaicMandaic
Mand
ManichaeanManichaean
Mani
MarchenMarchen
Marc
MedefaidrinMedefaidrin
Medf
Masaram_GondiMasaram_Gondi
Gonm
Meetei_MayekMeetei_Mayek
Mtei
Mende_KikakuiMende_Kikakui
Mend
Meroitic_CursiveMeroitic_Cursive
Merc
Meroitic_HieroglyphsMeroitic_Hieroglyphs
Mero
MiaoMiao
Plrd
ModiModi
MongolianMongolian
Mong
MroMro
Mroo
MultaniMultani
Mult
MyanmarMyanmar
Mymr
NabataeanNabataean
Nbat
NandinagariNandinagari
Nand
New_Tai_LueNew_Tai_Lue
Talu
NewaNewa
NkoNko
Nkoo
NushuNushu
Nshu
Nyiakeng_Puachue_HmongNyiakeng_Puachue_Hmong
Hmnp
OghamOgham
Ogam
Ol_ChikiOl_Chiki
Olck
Old_HungarianOld_Hungarian
Hung
Old_ItalicOld_Italic
Ital
Old_North_ArabianOld_North_Arabian
Narb
Old_PermicOld_Permic
Perm
Old_PersianOld_Persian
Xpeo
Old_SogdianOld_Sogdian
Sogo
Old_South_ArabianOld_South_Arabian
Sarb
Old_TurkicOld_Turkic
Orkh
OriyaOriya
Orya
OsageOsage
Osge
OsmanyaOsmanya
Osma
Pahawh_HmongPahawh_Hmong
Hmng
PalmyrenePalmyrene
Palm
Pau_Cin_HauPau_Cin_Hau
Pauc
Phags_PaPhags_Pa
Phag
PhoenicianPhoenician
Phnx
Psalter_PahlaviPsalter_Pahlavi
Phlp
RejangRejang
Rjng
RunicRunic
Runr
SamaritanSamaritan
Samr
SaurashtraSaurashtra
Saur
SharadaSharada
Shrd
ShavianShavian
Shaw
SiddhamSiddham
Sidd
SignWritingSignWriting
Sgnw
SinhalaSinhala
Sinh
SogdianSogdian
Sogd
Sora_SompengSora_Sompeng
Sora
SoyomboSoyombo
Soyo
SundaneseSundanese
Sund
Syloti_NagriSyloti_Nagri
Sylo
SyriacSyriac
Syrc
TagalogTagalog
Tglg
TagbanwaTagbanwa
Tagb
Tai_LeTai_Le
Tale
Tai_ThamTai_Tham
Lana
Tai_VietTai_Viet
Tavt
TakriTakri
Takr
TamilTamil
Taml
TangutTangut
Tang
TeluguTelugu
Telu
ThaanaThaana
Thaa
ThaiThai
TibetanTibetan
Tibt
TifinaghTifinagh
Tfng
TirhutaTirhuta
Tirh
UgariticUgaritic
Ugar
VaiVai
Vaii
WanchoWancho
Wcho
Warang_CitiWarang_Citi
Wara
YezidiYezidi
Yezi
YiYi
Yiii
Zanabazar_SquareZanabazar_Square
Zanb

22.2.2.9 AtomEscape

With parameterdirection.

The productionAtomEscape::DecimalEscape evaluates as follows:

  1. EvaluateDecimalEscape to obtain anintegern.
  2. Assert:nNcapturingParens.
  3. Return ! BackreferenceMatcher(n,direction).

The productionAtomEscape::CharacterEscape evaluates as follows:

  1. EvaluateCharacterEscape to obtain a characterch.
  2. LetA be a one-element CharSet containing the characterch.
  3. Return ! CharacterSetMatcher(A,false,direction).

The productionAtomEscape::CharacterClassEscape evaluates as follows:

  1. EvaluateCharacterClassEscape to obtain a CharSetA.
  2. Return ! CharacterSetMatcher(A,false,direction).
Note

An escape sequence of the form\ followed by a non-zero decimal numbern matches the result of thenth set of capturing parentheses (22.2.2.1). It is an error if the regular expression has fewer thann capturing parentheses. If the regular expression hasn or more capturing parentheses but thenth one isundefined because it has not captured anything, then the backreference always succeeds.

The productionAtomEscape::kGroupName evaluates as follows:

  1. Search the enclosingPattern for an instance of aGroupSpecifier containing aRegExpIdentifierName which has aCapturingGroupName equal to theCapturingGroupName of theRegExpIdentifierName contained inGroupName.
  2. Assert: A unique suchGroupSpecifier is found.
  3. LetparenIndex be the number of left-capturing parentheses in the entire regular expression that occur to the left of the locatedGroupSpecifier. This is the total number ofAtom::(GroupSpecifierDisjunction) Parse Nodes prior to or enclosing the locatedGroupSpecifier, including its immediately enclosingAtom.
  4. Return ! BackreferenceMatcher(parenIndex,direction).

22.2.2.9.1 BackreferenceMatcher (n,direction )

The abstract operation BackreferenceMatcher takes argumentsn (a positiveinteger) anddirection (1 or -1). It performs the following steps when called:

  1. Assert:n ≥ 1.
  2. Return a new Matcher with parameters (x,c) that capturesn anddirection and performs the following steps when called:
    1. Assert:x is a State.
    2. Assert:c is a Continuation.
    3. Letcap bex'scapturesList.
    4. Lets becap[n].
    5. Ifs isundefined, returnc(x).
    6. Lete bex'sendIndex.
    7. Letlen be the number of elements ins.
    8. Letf bee +direction ×len.
    9. Iff < 0 orf >InputLength, returnfailure.
    10. Letg bemin(e,f).
    11. If there exists anintegeri between 0 (inclusive) andlen (exclusive) such thatCanonicalize(s[i]) is not the same character value asCanonicalize(Input[g +i]), returnfailure.
    12. Lety be the State (f,cap).
    13. Returnc(y).

22.2.2.10 CharacterEscape

TheCharacterEscape productions evaluate as follows:

CharacterEscape::ControlEscapecControlLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequenceIdentityEscape
  1. Letcv be theCharacterValue of thisCharacterEscape.
  2. Return the character whose character value iscv.

22.2.2.11 DecimalEscape

TheDecimalEscape productions evaluate as follows:

DecimalEscape::NonZeroDigitDecimalDigitsopt
  1. Return theCapturingGroupNumber of thisDecimalEscape.
Note

If\ is followed by a decimal numbern whose first digit is not0, then the escape sequence is considered to be a backreference. It is an error ifn is greater than the total number of left-capturing parentheses in the entire regular expression.

22.2.2.12 CharacterClassEscape

The productionCharacterClassEscape::d evaluates as follows:

  1. Return the ten-element CharSet containing the characters0 through9 inclusive.

The productionCharacterClassEscape::D evaluates as follows:

  1. Return the CharSet containing all characters not in the CharSet returned byCharacterClassEscape::d .

The productionCharacterClassEscape::s evaluates as follows:

  1. Return the CharSet containing all characters corresponding to a code point on the right-hand side of theWhiteSpace orLineTerminator productions.

The productionCharacterClassEscape::S evaluates as follows:

  1. Return the CharSet containing all characters not in the CharSet returned byCharacterClassEscape::s .

The productionCharacterClassEscape::w evaluates as follows:

  1. ReturnWordCharacters.

The productionCharacterClassEscape::W evaluates as follows:

  1. Return the CharSet containing all characters not in the CharSet returned byCharacterClassEscape::w .

The productionCharacterClassEscape::p{UnicodePropertyValueExpression} evaluates as follows:

  1. Return the CharSet containing all Unicode code points included in the CharSet returned byUnicodePropertyValueExpression.

The productionCharacterClassEscape::P{UnicodePropertyValueExpression} evaluates as follows:

  1. Return the CharSet containing all Unicode code points not included in the CharSet returned byUnicodePropertyValueExpression.

The productionUnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValue evaluates as follows:

  1. Letps beSourceText ofUnicodePropertyName.
  2. Letp be ! UnicodeMatchProperty(ps).
  3. Assert:p is a Unicodeproperty name or property alias listed in the “Property name and aliases” column ofTable 56.
  4. Letvs beSourceText ofUnicodePropertyValue.
  5. Letv be ! UnicodeMatchPropertyValue(p,vs).
  6. Return the CharSet containing all Unicode code points whose character database definition includes the propertyp with valuev.

The productionUnicodePropertyValueExpression::LoneUnicodePropertyNameOrValue evaluates as follows:

  1. Lets beSourceText ofLoneUnicodePropertyNameOrValue.
  2. If ! UnicodeMatchPropertyValue(General_Category,s) is identical to aList of Unicode code points that is the name of a Unicode general category or general category alias listed in the “Property value and aliases” column ofTable 58, then
    1. Return the CharSet containing all Unicode code points whose character database definition includes the property “General_Category” with values.
  3. Letp be ! UnicodeMatchProperty(s).
  4. Assert:p is a binary Unicode property or binary property alias listed in the “Property name and aliases” column ofTable 57.
  5. Return the CharSet containing all Unicode code points whose character database definition includes the propertyp with value “True”.

22.2.2.13 CharacterClass

The productionCharacterClass::[ClassRanges] evaluates as follows:

  1. EvaluateClassRanges to obtain a CharSetA.
  2. Return the two resultsA andfalse.

The productionCharacterClass::[^ClassRanges] evaluates as follows:

  1. EvaluateClassRanges to obtain a CharSetA.
  2. Return the two resultsA andtrue.

22.2.2.14 ClassRanges

The productionClassRanges::[empty] evaluates as follows:

  1. Return the empty CharSet.

The productionClassRanges::NonemptyClassRanges evaluates as follows:

  1. Return the CharSet that is the result of evaluatingNonemptyClassRanges.

22.2.2.15 NonemptyClassRanges

The productionNonemptyClassRanges::ClassAtom evaluates as follows:

  1. Return the CharSet that is the result of evaluatingClassAtom.

The productionNonemptyClassRanges::ClassAtomNonemptyClassRangesNoDash evaluates as follows:

  1. EvaluateClassAtom to obtain a CharSetA.
  2. EvaluateNonemptyClassRangesNoDash to obtain a CharSetB.
  3. Return the union of CharSetsA andB.

The productionNonemptyClassRanges::ClassAtom-ClassAtomClassRanges evaluates as follows:

  1. Evaluate the firstClassAtom to obtain a CharSetA.
  2. Evaluate the secondClassAtom to obtain a CharSetB.
  3. EvaluateClassRanges to obtain a CharSetC.
  4. LetD be ! CharacterRange(A,B).
  5. Return the union ofD andC.

22.2.2.15.1 CharacterRange (A,B )

The abstract operation CharacterRange takes argumentsA (a CharSet) andB (a CharSet). It performs the following steps when called:

  1. Assert:A andB each contain exactly one character.
  2. Leta be the one character in CharSetA.
  3. Letb be the one character in CharSetB.
  4. Leti be the character value of charactera.
  5. Letj be the character value of characterb.
  6. Assert:ij.
  7. Return the CharSet containing all characters with a character value greater than or equal toi and less than or equal toj.

22.2.2.16 NonemptyClassRangesNoDash

The productionNonemptyClassRangesNoDash::ClassAtom evaluates as follows:

  1. Return the CharSet that is the result of evaluatingClassAtom.

The productionNonemptyClassRangesNoDash::ClassAtomNoDashNonemptyClassRangesNoDash evaluates as follows:

  1. EvaluateClassAtomNoDash to obtain a CharSetA.
  2. EvaluateNonemptyClassRangesNoDash to obtain a CharSetB.
  3. Return the union of CharSetsA andB.

The productionNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassRanges evaluates as follows:

  1. EvaluateClassAtomNoDash to obtain a CharSetA.
  2. EvaluateClassAtom to obtain a CharSetB.
  3. EvaluateClassRanges to obtain a CharSetC.
  4. LetD be ! CharacterRange(A,B).
  5. Return the union ofD andC.
Note 1

ClassRanges can expand into a singleClassAtom and/or ranges of twoClassAtom separated by dashes. In the latter case theClassRanges includes all characters between the firstClassAtom and the secondClassAtom, inclusive; an error occurs if eitherClassAtom does not represent a single character (for example, if one is \w) or if the firstClassAtom's character value is greater than the secondClassAtom's character value.

Note 2

Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters belong to the range. Thus, for example, the pattern/[E-F]/i matches only the lettersE,F,e, andf, while the pattern/[E-f]/i matches all upper and lower-case letters in the Unicode Basic Latin block as well as the symbols[,\,],^,_, and`.

Note 3

A- character can be treated literally or it can denote a range. It is treated literally if it is the first or last character ofClassRanges, the beginning or end limit of a range specification, or immediately follows a range specification.

22.2.2.17 ClassAtom

The productionClassAtom::- evaluates as follows:

  1. Return the CharSet containing the single character- U+002D (HYPHEN-MINUS).

The productionClassAtom::ClassAtomNoDash evaluates as follows:

  1. Return the CharSet that is the result of evaluatingClassAtomNoDash.

22.2.2.18 ClassAtomNoDash

The productionClassAtomNoDash::SourceCharacterbut not one of\ or] or- evaluates as follows:

  1. Return the CharSet containing the character matched bySourceCharacter.

The productionClassAtomNoDash::\ClassEscape evaluates as follows:

  1. Return the CharSet that is the result of evaluatingClassEscape.

22.2.2.19 ClassEscape

TheClassEscape productions evaluate as follows:

ClassEscape::bClassEscape::-ClassEscape::CharacterEscape
  1. Letcv be theCharacterValue of thisClassEscape.
  2. Letc be the character whose character value iscv.
  3. Return the CharSet containing the single characterc.
ClassEscape::CharacterClassEscape
  1. Return the CharSet that is the result of evaluatingCharacterClassEscape.
Note

AClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression except for\b,\B, and backreferences. Inside aCharacterClass,\b means the backspace character, while\B and backreferences raise errors. Using a backreference inside aClassAtom causes an error.

22.2.3 The RegExp Constructor

The RegExpconstructor:

  • is%RegExp%.
  • is the initial value of the"RegExp" property of theglobal object.
  • creates and initializes a new RegExp object when called as a function rather than as aconstructor. Thus the function callRegExp(…) is equivalent to the object creation expressionnew RegExp(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified RegExp behaviour must include asuper call to the RegExpconstructor to create and initialize subclass instances with the necessary internal slots.

22.2.3.1 RegExp (pattern,flags )

The following steps are taken:

  1. LetpatternIsRegExp be ? IsRegExp(pattern).
  2. If NewTarget isundefined, then
    1. LetnewTarget be theactive function object.
    2. IfpatternIsRegExp istrue andflags isundefined, then
      1. LetpatternConstructor be ? Get(pattern,"constructor").
      2. IfSameValue(newTarget,patternConstructor) istrue, returnpattern.
  3. Else, letnewTarget be NewTarget.
  4. IfType(pattern) is Object andpattern has a [[RegExpMatcher]] internal slot, then
    1. LetP bepattern.[[OriginalSource]].
    2. Ifflags isundefined, letF bepattern.[[OriginalFlags]].
    3. Else, letF beflags.
  5. Else ifpatternIsRegExp istrue, then
    1. LetP be ? Get(pattern,"source").
    2. Ifflags isundefined, then
      1. LetF be ? Get(pattern,"flags").
    3. Else, letF beflags.
  6. Else,
    1. LetP bepattern.
    2. LetF beflags.
  7. LetO be ? RegExpAlloc(newTarget).
  8. Return ? RegExpInitialize(O,P,F).
Note

If pattern is supplied using aStringLiteral, the usual escape sequence substitutions are performed before the String is processed by RegExp. If pattern must contain an escape sequence to be recognized by RegExp, any U+005C (REVERSE SOLIDUS) code points must be escaped within theStringLiteral to prevent them being removed when the contents of theStringLiteral are formed.

22.2.3.2 Abstract Operations for the RegExp Constructor

22.2.3.2.1 RegExpAlloc (newTarget )

The abstract operation RegExpAlloc takes argumentnewTarget. It performs the following steps when called:

  1. Letobj be ? OrdinaryCreateFromConstructor(newTarget,"%RegExp.prototype%", « [[RegExpMatcher]], [[OriginalSource]], [[OriginalFlags]] »).
  2. Perform ! DefinePropertyOrThrow(obj,"lastIndex", PropertyDescriptor { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }).
  3. Returnobj.

22.2.3.2.2 RegExpInitialize (obj,pattern,flags )

The abstract operation RegExpInitialize takes argumentsobj,pattern, andflags. It performs the following steps when called:

  1. Ifpattern isundefined, letP be the empty String.
  2. Else, letP be ? ToString(pattern).
  3. Ifflags isundefined, letF be the empty String.
  4. Else, letF be ? ToString(flags).
  5. IfF contains any code unit other than"g","i","m","s","u", or"y" or if it contains the same code unit more than once, throw aSyntaxError exception.
  6. IfF contains"u", letu betrue; else letu befalse.
  7. Ifu istrue, then
    1. LetpatternText be ! StringToCodePoints(P).
    2. LetpatternCharacters be aList whose elements are the code points ofpatternText.
  8. Else,
    1. LetpatternText be the result of interpreting each ofP's 16-bit elements as a Unicode BMP code point. UTF-16 decoding is not applied to the elements.
    2. LetpatternCharacters be aList whose elements are the code unit elements ofP.
  9. LetparseResult beParsePattern(patternText,u).
  10. IfparseResult is a non-emptyList ofSyntaxError objects, throw aSyntaxError exception.
  11. Assert:parseResult is aParse Node forPattern.
  12. Setobj.[[OriginalSource]] toP.
  13. Setobj.[[OriginalFlags]] toF.
  14. Setobj.[[RegExpMatcher]] to theAbstract Closure that evaluatesparseResult by applying the semantics provided in22.2.2 usingpatternCharacters as the pattern'sList ofSourceCharacter values andF as the flag parameters.
  15. Perform ? Set(obj,"lastIndex",+0𝔽,true).
  16. Returnobj.

22.2.3.2.3 Static Semantics: ParsePattern (patternText,u )

The abstract operation ParsePattern takes argumentspatternText (a sequence of Unicode code points) andu (a Boolean). It performs the following steps when called:

  1. Ifu istrue, then
    1. LetparseResult beParseText(patternText,Pattern[+U, +N]).
  2. Else,
    1. LetparseResult beParseText(patternText,Pattern[~U, ~N]).
    2. IfparseResult is aParse Node andparseResult contains aGroupName, then
      1. SetparseResult toParseText(patternText,Pattern[~U, +N]).
  3. ReturnparseResult.

22.2.3.2.4 RegExpCreate (P,F )

The abstract operation RegExpCreate takes argumentsP andF. It performs the following steps when called:

  1. Letobj be ? RegExpAlloc(%RegExp%).
  2. Return ? RegExpInitialize(obj,P,F).

22.2.3.2.5 EscapeRegExpPattern (P,F )

The abstract operation EscapeRegExpPattern takes argumentsP andF. It performs the following steps when called:

  1. LetS be a String in the form of aPattern[~U] (Pattern[+U] ifF contains"u") equivalent toP interpreted as UTF-16 encoded Unicode code points (6.1.4), in which certain code points are escaped as described below.S may or may not be identical toP; however, theAbstract Closure that would result from evaluatingS as aPattern[~U] (Pattern[+U] ifF contains"u") must behave identically to theAbstract Closure given by the constructed object's [[RegExpMatcher]] internal slot. Multiple calls to this abstract operation using the same values forP andF must produce identical results.
  2. The code points/ or anyLineTerminator occurring in the pattern shall be escaped inS as necessary to ensure that thestring-concatenation of"/",S,"/", andF can be parsed (in an appropriate lexical context) as aRegularExpressionLiteral that behaves identically to the constructed regular expression. For example, ifP is"/", thenS could be"\/" or"\u002F", among other possibilities, but not"/", because/// followed byF would be parsed as aSingleLineComment rather than aRegularExpressionLiteral. IfP is the empty String, this specification can be met by lettingS be"(?:)".
  3. ReturnS.

22.2.4 Properties of the RegExp Constructor

The RegExpconstructor:

22.2.4.1 RegExp.prototype

The initial value ofRegExp.prototype is theRegExp prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

22.2.4.2 get RegExp [ @@species ]

RegExp[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

RegExp prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

22.2.5 Properties of the RegExp Prototype Object

TheRegExp prototype object:

  • is%RegExp.prototype%.
  • is anordinary object.
  • is not a RegExp instance and does not have a [[RegExpMatcher]] internal slot or any of the other internal slots of RegExp instance objects.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
Note

The RegExp prototype object does not have a"valueOf" property of its own; however, it inherits the"valueOf" property from theObject prototype object.

22.2.5.1 RegExp.prototype.constructor

The initial value ofRegExp.prototype.constructor is%RegExp%.

22.2.5.2 RegExp.prototype.exec (string )

Performs a regular expression match ofstring against the regular expression and returns an Array object containing the results of the match, ornull ifstring did not match.

The StringToString(string) is searched for an occurrence of the regular expression pattern as follows:

  1. LetR be thethis value.
  2. Perform ? RequireInternalSlot(R, [[RegExpMatcher]]).
  3. LetS be ? ToString(string).
  4. Return ? RegExpBuiltinExec(R,S).

22.2.5.2.1 RegExpExec (R,S )

The abstract operation RegExpExec takes argumentsR andS. It performs the following steps when called:

  1. Assert:Type(R) is Object.
  2. Assert:Type(S) is String.
  3. Letexec be ? Get(R,"exec").
  4. IfIsCallable(exec) istrue, then
    1. Letresult be ? Call(exec,R, «S »).
    2. IfType(result) is neither Object nor Null, throw aTypeError exception.
    3. Returnresult.
  5. Perform ? RequireInternalSlot(R, [[RegExpMatcher]]).
  6. Return ? RegExpBuiltinExec(R,S).
Note

If a callable"exec" property is not found this algorithm falls back to attempting to use the built-in RegExp matching algorithm. This provides compatible behaviour for code written for prior editions where most built-in algorithms that use regular expressions did not perform a dynamic property lookup of"exec".

22.2.5.2.2 RegExpBuiltinExec (R,S )

The abstract operation RegExpBuiltinExec takes argumentsR andS. It performs the following steps when called:

  1. Assert:R is an initialized RegExp instance.
  2. Assert:Type(S) is String.
  3. Letlength be the number of code units inS.
  4. LetlastIndex be(?ToLength(?Get(R,"lastIndex"))).
  5. Letflags beR.[[OriginalFlags]].
  6. Ifflags contains"g", letglobal betrue; else letglobal befalse.
  7. Ifflags contains"y", letsticky betrue; else letsticky befalse.
  8. Ifglobal isfalse andsticky isfalse, setlastIndex to 0.
  9. Letmatcher beR.[[RegExpMatcher]].
  10. Ifflags contains"u", letfullUnicode betrue; else letfullUnicode befalse.
  11. LetmatchSucceeded befalse.
  12. Repeat, whilematchSucceeded isfalse,
    1. IflastIndex >length, then
      1. Ifglobal istrue orsticky istrue, then
        1. Perform ? Set(R,"lastIndex",+0𝔽,true).
      2. Returnnull.
    2. Letr bematcher(S,lastIndex).
    3. Ifr isfailure, then
      1. Ifsticky istrue, then
        1. Perform ? Set(R,"lastIndex",+0𝔽,true).
        2. Returnnull.
      2. SetlastIndex toAdvanceStringIndex(S,lastIndex,fullUnicode).
    4. Else,
      1. Assert:r is a State.
      2. SetmatchSucceeded totrue.
  13. Lete ber'sendIndex value.
  14. IffullUnicode istrue, then
    1. e is an index into theInput character list, derived fromS, matched bymatcher. LeteUTF be the smallest index intoS that corresponds to the character at elemente ofInput. Ife is greater than or equal to the number of elements inInput, theneUTF is the number of code units inS.
    2. Sete toeUTF.
  15. Ifglobal istrue orsticky istrue, then
    1. Perform ? Set(R,"lastIndex",𝔽(e),true).
  16. Letn be the number of elements inr'scapturesList. (This is the same value as22.2.2.1'sNcapturingParens.)
  17. Assert:n < 232 - 1.
  18. LetA be ! ArrayCreate(n + 1).
  19. Assert: Themathematical value ofA's"length" property isn + 1.
  20. Perform ! CreateDataPropertyOrThrow(A,"index",𝔽(lastIndex)).
  21. Perform ! CreateDataPropertyOrThrow(A,"input",S).
  22. LetmatchedSubstr be thesubstring ofS fromlastIndex toe.
  23. Perform ! CreateDataPropertyOrThrow(A,"0",matchedSubstr).
  24. IfR contains anyGroupName, then
    1. Letgroups be ! OrdinaryObjectCreate(null).
  25. Else,
    1. Letgroups beundefined.
  26. Perform ! CreateDataPropertyOrThrow(A,"groups",groups).
  27. For eachintegeri such thati ≥ 1 andin, do
    1. LetcaptureI beith element ofr'scapturesList.
    2. IfcaptureI isundefined, letcapturedValue beundefined.
    3. Else iffullUnicode istrue, then
      1. Assert:captureI is aList of code points.
      2. LetcapturedValue be ! CodePointsToString(captureI).
    4. Else,
      1. Assert:fullUnicode isfalse.
      2. Assert:captureI is aList of code units.
      3. LetcapturedValue be the String value consisting of the code units ofcaptureI.
    5. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(i)),capturedValue).
    6. If theith capture ofR was defined with aGroupName, then
      1. Lets be theCapturingGroupName of the correspondingRegExpIdentifierName.
      2. Perform ! CreateDataPropertyOrThrow(groups,s,capturedValue).
  28. ReturnA.

22.2.5.2.3 AdvanceStringIndex (S,index,unicode )

The abstract operation AdvanceStringIndex takes argumentsS (a String),index (a non-negativeinteger), andunicode (a Boolean). It performs the following steps when called:

  1. Assert:index ≤ 253 - 1.
  2. Ifunicode isfalse, returnindex + 1.
  3. Letlength be the number of code units inS.
  4. Ifindex + 1 ≥length, returnindex + 1.
  5. Letcp be ! CodePointAt(S,index).
  6. Returnindex +cp.[[CodeUnitCount]].

22.2.5.3 get RegExp.prototype.dotAll

RegExp.prototype.dotAll is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x0073 (LATIN SMALL LETTER S), returntrue.
  6. Returnfalse.

22.2.5.4 get RegExp.prototype.flags

RegExp.prototype.flags is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. Letresult be the empty String.
  4. Letglobal be ! ToBoolean(?Get(R,"global")).
  5. Ifglobal istrue, append the code unit 0x0067 (LATIN SMALL LETTER G) as the last code unit ofresult.
  6. LetignoreCase be ! ToBoolean(?Get(R,"ignoreCase")).
  7. IfignoreCase istrue, append the code unit 0x0069 (LATIN SMALL LETTER I) as the last code unit ofresult.
  8. Letmultiline be ! ToBoolean(?Get(R,"multiline")).
  9. Ifmultiline istrue, append the code unit 0x006D (LATIN SMALL LETTER M) as the last code unit ofresult.
  10. LetdotAll be ! ToBoolean(?Get(R,"dotAll")).
  11. IfdotAll istrue, append the code unit 0x0073 (LATIN SMALL LETTER S) as the last code unit ofresult.
  12. Letunicode be ! ToBoolean(?Get(R,"unicode")).
  13. Ifunicode istrue, append the code unit 0x0075 (LATIN SMALL LETTER U) as the last code unit ofresult.
  14. Letsticky be ! ToBoolean(?Get(R,"sticky")).
  15. Ifsticky istrue, append the code unit 0x0079 (LATIN SMALL LETTER Y) as the last code unit ofresult.
  16. Returnresult.

22.2.5.5 get RegExp.prototype.global

RegExp.prototype.global is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x0067 (LATIN SMALL LETTER G), returntrue.
  6. Returnfalse.

22.2.5.6 get RegExp.prototype.ignoreCase

RegExp.prototype.ignoreCase is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x0069 (LATIN SMALL LETTER I), returntrue.
  6. Returnfalse.

22.2.5.7 RegExp.prototype [ @@match ] (string )

When the@@match method is called with argumentstring, the following steps are taken:

  1. Letrx be thethis value.
  2. IfType(rx) is not Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. Letglobal be ! ToBoolean(?Get(rx,"global")).
  5. Ifglobal isfalse, then
    1. Return ? RegExpExec(rx,S).
  6. Else,
    1. Assert:global istrue.
    2. LetfullUnicode be ! ToBoolean(?Get(rx,"unicode")).
    3. Perform ? Set(rx,"lastIndex",+0𝔽,true).
    4. LetA be ! ArrayCreate(0).
    5. Letn be 0.
    6. Repeat,
      1. Letresult be ? RegExpExec(rx,S).
      2. Ifresult isnull, then
        1. Ifn = 0, returnnull.
        2. ReturnA.
      3. Else,
        1. LetmatchStr be ? ToString(?Get(result,"0")).
        2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),matchStr).
        3. IfmatchStr is the empty String, then
          1. LetthisIndex be(?ToLength(?Get(rx,"lastIndex"))).
          2. LetnextIndex beAdvanceStringIndex(S,thisIndex,fullUnicode).
          3. Perform ? Set(rx,"lastIndex",𝔽(nextIndex),true).
        4. Setn ton + 1.

The value of the"name" property of this function is"[Symbol.match]".

Note

The@@match property is used by theIsRegExp abstract operation to identify objects that have the basic behaviour of regular expressions. The absence of a@@match property or the existence of such a property whose value does not Boolean coerce totrue indicates that the object is not intended to be used as a regular expression object.

22.2.5.8 RegExp.prototype [ @@matchAll ] (string )

When the@@matchAll method is called with argumentstring, the following steps are taken:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetC be ? SpeciesConstructor(R,%RegExp%).
  5. Letflags be ? ToString(?Get(R,"flags")).
  6. Letmatcher be ? Construct(C, «R,flags »).
  7. LetlastIndex be ? ToLength(?Get(R,"lastIndex")).
  8. Perform ? Set(matcher,"lastIndex",lastIndex,true).
  9. Ifflags contains"g", letglobal betrue.
  10. Else, letglobal befalse.
  11. Ifflags contains"u", letfullUnicode betrue.
  12. Else, letfullUnicode befalse.
  13. Return ! CreateRegExpStringIterator(matcher,S,global,fullUnicode).

The value of the"name" property of this function is"[Symbol.matchAll]".

22.2.5.9 get RegExp.prototype.multiline

RegExp.prototype.multiline is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x006D (LATIN SMALL LETTER M), returntrue.
  6. Returnfalse.

22.2.5.10 RegExp.prototype [ @@replace ] (string,replaceValue )

When the@@replace method is called with argumentsstring andreplaceValue, the following steps are taken:

  1. Letrx be thethis value.
  2. IfType(rx) is not Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetlengthS be the number of code unit elements inS.
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. Letglobal be ! ToBoolean(?Get(rx,"global")).
  8. Ifglobal istrue, then
    1. LetfullUnicode be ! ToBoolean(?Get(rx,"unicode")).
    2. Perform ? Set(rx,"lastIndex",+0𝔽,true).
  9. Letresults be a new emptyList.
  10. Letdone befalse.
  11. Repeat, whiledone isfalse,
    1. Letresult be ? RegExpExec(rx,S).
    2. Ifresult isnull, setdone totrue.
    3. Else,
      1. Appendresult to the end ofresults.
      2. Ifglobal isfalse, setdone totrue.
      3. Else,
        1. LetmatchStr be ? ToString(?Get(result,"0")).
        2. IfmatchStr is the empty String, then
          1. LetthisIndex be(?ToLength(?Get(rx,"lastIndex"))).
          2. LetnextIndex beAdvanceStringIndex(S,thisIndex,fullUnicode).
          3. Perform ? Set(rx,"lastIndex",𝔽(nextIndex),true).
  12. LetaccumulatedResult be the empty String.
  13. LetnextSourcePosition be 0.
  14. For each elementresult ofresults, do
    1. LetresultLength be ? LengthOfArrayLike(result).
    2. LetnCaptures bemax(resultLength - 1, 0).
    3. Letmatched be ? ToString(?Get(result,"0")).
    4. LetmatchLength be the number of code units inmatched.
    5. Letposition be ? ToIntegerOrInfinity(?Get(result,"index")).
    6. Setposition to the result ofclampingposition between 0 andlengthS.
    7. Letn be 1.
    8. Letcaptures be a new emptyList.
    9. Repeat, whilennCaptures,
      1. LetcapN be ? Get(result, ! ToString(𝔽(n))).
      2. IfcapN is notundefined, then
        1. SetcapN to ? ToString(capN).
      3. AppendcapN as the last element ofcaptures.
      4. Setn ton + 1.
    10. LetnamedCaptures be ? Get(result,"groups").
    11. IffunctionalReplace istrue, then
      1. LetreplacerArgs be «matched ».
      2. Append inList order the elements ofcaptures to the end of theListreplacerArgs.
      3. Append𝔽(position) andS toreplacerArgs.
      4. IfnamedCaptures is notundefined, then
        1. AppendnamedCaptures as the last element ofreplacerArgs.
      5. LetreplValue be ? Call(replaceValue,undefined,replacerArgs).
      6. Letreplacement be ? ToString(replValue).
    12. Else,
      1. IfnamedCaptures is notundefined, then
        1. SetnamedCaptures to ? ToObject(namedCaptures).
      2. Letreplacement be ? GetSubstitution(matched,S,position,captures,namedCaptures,replaceValue).
    13. IfpositionnextSourcePosition, then
      1. NOTE:position should not normally move backwards. If it does, it is an indication of an ill-behaving RegExp subclass or use of an access triggered side-effect to change the global flag or other characteristics ofrx. In such cases, the corresponding substitution is ignored.
      2. SetaccumulatedResult to thestring-concatenation ofaccumulatedResult, thesubstring ofS fromnextSourcePosition toposition, andreplacement.
      3. SetnextSourcePosition toposition +matchLength.
  15. IfnextSourcePositionlengthS, returnaccumulatedResult.
  16. Return thestring-concatenation ofaccumulatedResult and thesubstring ofS fromnextSourcePosition.

The value of the"name" property of this function is"[Symbol.replace]".

22.2.5.11 RegExp.prototype [ @@search ] (string )

When the@@search method is called with argumentstring, the following steps are taken:

  1. Letrx be thethis value.
  2. IfType(rx) is not Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetpreviousLastIndex be ? Get(rx,"lastIndex").
  5. IfSameValue(previousLastIndex,+0𝔽) isfalse, then
    1. Perform ? Set(rx,"lastIndex",+0𝔽,true).
  6. Letresult be ? RegExpExec(rx,S).
  7. LetcurrentLastIndex be ? Get(rx,"lastIndex").
  8. IfSameValue(currentLastIndex,previousLastIndex) isfalse, then
    1. Perform ? Set(rx,"lastIndex",previousLastIndex,true).
  9. Ifresult isnull, return-1𝔽.
  10. Return ? Get(result,"index").

The value of the"name" property of this function is"[Symbol.search]".

Note

The"lastIndex" and"global" properties of this RegExp object are ignored when performing the search. The"lastIndex" property is left unchanged.

22.2.5.12 get RegExp.prototype.source

RegExp.prototype.source is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalSource]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, return"(?:)".
    2. Otherwise, throw aTypeError exception.
  4. Assert:R has an [[OriginalFlags]] internal slot.
  5. Letsrc beR.[[OriginalSource]].
  6. Letflags beR.[[OriginalFlags]].
  7. ReturnEscapeRegExpPattern(src,flags).

22.2.5.13 RegExp.prototype [ @@split ] (string,limit )

Note 1

Returns an Array object into which substrings of the result of convertingstring to a String have been stored. The substrings are determined by searching from left to right for matches of thethis value regular expression; these occurrences are not part of any String in the returned array, but serve to divide up the String value.

Thethis value may be an empty regular expression or a regular expression that can match an empty String. In this case, the regular expression does not match the emptysubstring at the beginning or end of the input String, nor does it match the emptysubstring at the end of the previous separator match. (For example, if the regular expression matches the empty String, the String is split up into individual code unit elements; the length of the result array equals the length of the String, and eachsubstring contains one code unit.) Only the first match at a given index of the String is considered, even if backtracking could yield a non-emptysubstring match at that index. (For example,/a*?/[Symbol.split]("ab") evaluates to the array["a", "b"], while/a*/[Symbol.split]("ab") evaluates to the array["","b"].)

Ifstring is (or converts to) the empty String, the result depends on whether the regular expression can match the empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the empty String.

If the regular expression contains capturing parentheses, then each timeseparator is matched the results (including anyundefined results) of the capturing parentheses are spliced into the output array. For example,

/<(\/)?([^<>]+)>/[Symbol.split]("A<B>bold</B>and<CODE>coded</CODE>")

evaluates to the array

["A",undefined,"B","bold","/","B","and",undefined,"CODE","coded","/","CODE",""]

Iflimit is notundefined, then the output array is truncated so that it contains no more thanlimit elements.

When the@@split method is called, the following steps are taken:

  1. Letrx be thethis value.
  2. IfType(rx) is not Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetC be ? SpeciesConstructor(rx,%RegExp%).
  5. Letflags be ? ToString(?Get(rx,"flags")).
  6. Ifflags contains"u", letunicodeMatching betrue.
  7. Else, letunicodeMatching befalse.
  8. Ifflags contains"y", letnewFlags beflags.
  9. Else, letnewFlags be thestring-concatenation offlags and"y".
  10. Letsplitter be ? Construct(C, «rx,newFlags »).
  11. LetA be ! ArrayCreate(0).
  12. LetlengthA be 0.
  13. Iflimit isundefined, letlim be 232 - 1; else letlim be(?ToUint32(limit)).
  14. Iflim is 0, returnA.
  15. Letsize be the length ofS.
  16. Ifsize is 0, then
    1. Letz be ? RegExpExec(splitter,S).
    2. Ifz is notnull, returnA.
    3. Perform ! CreateDataPropertyOrThrow(A,"0",S).
    4. ReturnA.
  17. Letp be 0.
  18. Letq bep.
  19. Repeat, whileq <size,
    1. Perform ? Set(splitter,"lastIndex",𝔽(q),true).
    2. Letz be ? RegExpExec(splitter,S).
    3. Ifz isnull, setq toAdvanceStringIndex(S,q,unicodeMatching).
    4. Else,
      1. Lete be(?ToLength(?Get(splitter,"lastIndex"))).
      2. Sete tomin(e,size).
      3. Ife =p, setq toAdvanceStringIndex(S,q,unicodeMatching).
      4. Else,
        1. LetT be thesubstring ofS fromp toq.
        2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
        3. SetlengthA tolengthA + 1.
        4. IflengthA =lim, returnA.
        5. Setp toe.
        6. LetnumberOfCaptures be ? LengthOfArrayLike(z).
        7. SetnumberOfCaptures tomax(numberOfCaptures - 1, 0).
        8. Leti be 1.
        9. Repeat, whileinumberOfCaptures,
          1. LetnextCapture be ? Get(z, ! ToString(𝔽(i))).
          2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),nextCapture).
          3. Seti toi + 1.
          4. SetlengthA tolengthA + 1.
          5. IflengthA =lim, returnA.
        10. Setq top.
  20. LetT be thesubstring ofS fromp tosize.
  21. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
  22. ReturnA.

The value of the"name" property of this function is"[Symbol.split]".

Note 2

The@@split method ignores the value of the"global" and"sticky" properties of this RegExp object.

22.2.5.14 get RegExp.prototype.sticky

RegExp.prototype.sticky is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x0079 (LATIN SMALL LETTER Y), returntrue.
  6. Returnfalse.

22.2.5.15 RegExp.prototype.test (S )

The following steps are taken:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. Letstring be ? ToString(S).
  4. Letmatch be ? RegExpExec(R,string).
  5. Ifmatch is notnull, returntrue; else returnfalse.

22.2.5.16 RegExp.prototype.toString ( )

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. Letpattern be ? ToString(?Get(R,"source")).
  4. Letflags be ? ToString(?Get(R,"flags")).
  5. Letresult be thestring-concatenation of"/",pattern,"/", andflags.
  6. Returnresult.
Note

The returned String has the form of aRegularExpressionLiteral that evaluates to another RegExp object with the same behaviour as this object.

22.2.5.17 get RegExp.prototype.unicode

RegExp.prototype.unicode is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetR be thethis value.
  2. IfType(R) is not Object, throw aTypeError exception.
  3. IfR does not have an [[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  4. Letflags beR.[[OriginalFlags]].
  5. Ifflags contains the code unit 0x0075 (LATIN SMALL LETTER U), returntrue.
  6. Returnfalse.

22.2.6 Properties of RegExp Instances

RegExp instances are ordinary objects that inherit properties from theRegExp prototype object. RegExp instances have internal slots [[RegExpMatcher]], [[OriginalSource]], and [[OriginalFlags]]. The value of the [[RegExpMatcher]] internal slot is anAbstract Closure representation of thePattern of the RegExp object.

Note

Prior to ECMAScript 2015, RegExp instances were specified as having the own data properties"source","global","ignoreCase", and"multiline". Those properties are now specified as accessor properties ofRegExp.prototype.

RegExp instances also have the following property:

22.2.6.1 lastIndex

The value of the"lastIndex" property specifies the String index at which to start the next match. It is coerced to anintegral Number when used (see22.2.5.2.2). This property shall have the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.

22.2.7 RegExp String Iterator Objects

A RegExp String Iterator is an object, that represents a specific iteration over some specific String instance object, matching against some specific RegExp instance object. There is not a namedconstructor for RegExp String Iterator objects. Instead, RegExp String Iterator objects are created by calling certain methods of RegExp instance objects.

22.2.7.1 CreateRegExpStringIterator (R,S,global,fullUnicode )

The abstract operation CreateRegExpStringIterator takes argumentsR,S,global, andfullUnicode. It performs the following steps when called:

  1. Assert:Type(S) is String.
  2. Assert:Type(global) is Boolean.
  3. Assert:Type(fullUnicode) is Boolean.
  4. Letclosure be a newAbstract Closure with no parameters that capturesR,S,global, andfullUnicode and performs the following steps when called:
    1. Repeat,
      1. Letmatch be ? RegExpExec(R,S).
      2. Ifmatch isnull, returnundefined.
      3. Ifglobal isfalse, then
        1. Perform ? Yield(match).
        2. Returnundefined.
      4. LetmatchStr be ? ToString(?Get(match,"0")).
      5. IfmatchStr is the empty String, then
        1. LetthisIndex be(?ToLength(?Get(R,"lastIndex"))).
        2. LetnextIndex be ! AdvanceStringIndex(S,thisIndex,fullUnicode).
        3. Perform ? Set(R,"lastIndex",𝔽(nextIndex),true).
      6. Perform ? Yield(match).
  5. Return ! CreateIteratorFromClosure(closure,"%RegExpStringIteratorPrototype%",%RegExpStringIteratorPrototype%).

22.2.7.2 The %RegExpStringIteratorPrototype% Object

The%RegExpStringIteratorPrototype% object:

  • has properties that are inherited by all RegExp String Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

22.2.7.2.1 %RegExpStringIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%RegExpStringIteratorPrototype%").

22.2.7.2.2 %RegExpStringIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"RegExp String Iterator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

23 Indexed Collections

23.1 Array Objects

Array objects are exotic objects that give special treatment to a certain class of property names. See10.4.2 for a definition of this special treatment.

23.1.1 The Array Constructor

The Arrayconstructor:

  • is%Array%.
  • is the initial value of the"Array" property of theglobal object.
  • creates and initializes a newArray exotic object when called as aconstructor.
  • also creates and initializes a new Array object when called as a function rather than as aconstructor. Thus the function callArray(…) is equivalent to the object creation expressionnew Array(…) with the same arguments.
  • is a function whose behaviour differs based upon the number and types of its arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the exotic Array behaviour must include asuper call to the Arrayconstructor to initialize subclass instances that are Array exotic objects. However, most of theArray.prototype methods are generic methods that are not dependent upon theirthis value being anArray exotic object.
  • has a"length" property whose value is1𝔽.

23.1.1.1 Array ( ...values )

When theArray function is called, the following steps are taken:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. Letproto be ? GetPrototypeFromConstructor(newTarget,"%Array.prototype%").
  3. LetnumberOfArgs be the number of elements invalues.
  4. IfnumberOfArgs = 0, then
    1. Return ! ArrayCreate(0,proto).
  5. Else ifnumberOfArgs = 1, then
    1. Letlen bevalues[0].
    2. Letarray be ! ArrayCreate(0,proto).
    3. IfType(len) is not Number, then
      1. Perform ! CreateDataPropertyOrThrow(array,"0",len).
      2. LetintLen be1𝔽.
    4. Else,
      1. LetintLen be ! ToUint32(len).
      2. IfintLen is not the same value aslen, throw aRangeError exception.
    5. Perform ! Set(array,"length",intLen,true).
    6. Returnarray.
  6. Else,
    1. Assert:numberOfArgs ≥ 2.
    2. Letarray be ? ArrayCreate(numberOfArgs,proto).
    3. Letk be 0.
    4. Repeat, whilek <numberOfArgs,
      1. LetPk be ! ToString(𝔽(k)).
      2. LetitemK bevalues[k].
      3. Perform ! CreateDataPropertyOrThrow(array,Pk,itemK).
      4. Setk tok + 1.
    5. Assert: Themathematical value ofarray's"length" property isnumberOfArgs.
    6. Returnarray.

23.1.2 Properties of the Array Constructor

The Arrayconstructor:

23.1.2.1 Array.from (items [ ,mapfn [ ,thisArg ] ] )

When thefrom method is called with argumentitems and optional argumentsmapfn andthisArg, the following steps are taken:

  1. LetC be thethis value.
  2. Ifmapfn isundefined, letmapping befalse.
  3. Else,
    1. IfIsCallable(mapfn) isfalse, throw aTypeError exception.
    2. Letmapping betrue.
  4. LetusingIterator be ? GetMethod(items,@@iterator).
  5. IfusingIterator is notundefined, then
    1. IfIsConstructor(C) istrue, then
      1. LetA be ? Construct(C).
    2. Else,
      1. LetA be ! ArrayCreate(0).
    3. LetiteratorRecord be ? GetIterator(items,sync,usingIterator).
    4. Letk be 0.
    5. Repeat,
      1. Ifk ≥ 253 - 1, then
        1. Leterror beThrowCompletion(a newly createdTypeError object).
        2. Return ? IteratorClose(iteratorRecord,error).
      2. LetPk be ! ToString(𝔽(k)).
      3. Letnext be ? IteratorStep(iteratorRecord).
      4. Ifnext isfalse, then
        1. Perform ? Set(A,"length",𝔽(k),true).
        2. ReturnA.
      5. LetnextValue be ? IteratorValue(next).
      6. Ifmapping istrue, then
        1. LetmappedValue beCall(mapfn,thisArg, «nextValue,𝔽(k) »).
        2. IfmappedValue is anabrupt completion, return ? IteratorClose(iteratorRecord,mappedValue).
        3. SetmappedValue tomappedValue.[[Value]].
      7. Else, letmappedValue benextValue.
      8. LetdefineStatus beCreateDataPropertyOrThrow(A,Pk,mappedValue).
      9. IfdefineStatus is anabrupt completion, return ? IteratorClose(iteratorRecord,defineStatus).
      10. Setk tok + 1.
  6. NOTE:items is not an Iterable so assume it is anarray-like object.
  7. LetarrayLike be ! ToObject(items).
  8. Letlen be ? LengthOfArrayLike(arrayLike).
  9. IfIsConstructor(C) istrue, then
    1. LetA be ? Construct(C, «𝔽(len) »).
  10. Else,
    1. LetA be ? ArrayCreate(len).
  11. Letk be 0.
  12. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Ifmapping istrue, then
      1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
    4. Else, letmappedValue bekValue.
    5. Perform ? CreateDataPropertyOrThrow(A,Pk,mappedValue).
    6. Setk tok + 1.
  13. Perform ? Set(A,"length",𝔽(len),true).
  14. ReturnA.
Note

Thefrom function is an intentionally generic factory method; it does not require that itsthis value be the Arrayconstructor. Therefore it can be transferred to or inherited by any other constructors that may be called with a single numeric argument.

23.1.2.2 Array.isArray (arg )

TheisArray function takes one argumentarg, and performs the following steps:

  1. Return ? IsArray(arg).

23.1.2.3 Array.of ( ...items )

When theof method is called with any number of arguments, the following steps are taken:

  1. Letlen be the number of elements initems.
  2. LetlenNumber be𝔽(len).
  3. LetC be thethis value.
  4. IfIsConstructor(C) istrue, then
    1. LetA be ? Construct(C, «lenNumber »).
  5. Else,
    1. LetA be ? ArrayCreate(len).
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. LetkValue beitems[k].
    2. LetPk be ! ToString(𝔽(k)).
    3. Perform ? CreateDataPropertyOrThrow(A,Pk,kValue).
    4. Setk tok + 1.
  8. Perform ? Set(A,"length",lenNumber,true).
  9. ReturnA.
Note

Theof function is an intentionally generic factory method; it does not require that itsthis value be the Arrayconstructor. Therefore it can be transferred to or inherited by other constructors that may be called with a single numeric argument.

23.1.2.4 Array.prototype

The value ofArray.prototype is theArray prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

23.1.2.5 get Array [ @@species ]

Array[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Array prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

23.1.3 Properties of the Array Prototype Object

TheArray prototype object:

  • is%Array.prototype%.
  • is anArray exotic object and has the internal methods specified for such objects.
  • has a"length" property whose initial value is+0𝔽 and whose attributes are { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
Note

The Array prototype object is specified to be anArray exotic object to ensure compatibility with ECMAScript code that was created prior to the ECMAScript 2015 specification.

23.1.3.1 Array.prototype.concat ( ...items )

When theconcat method is called with zero or more arguments, it returns an array containing the array elements of the object followed by the array elements of each argument.

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. LetA be ? ArraySpeciesCreate(O, 0).
  3. Letn be 0.
  4. PrependO toitems.
  5. For each elementE ofitems, do
    1. Letspreadable be ? IsConcatSpreadable(E).
    2. Ifspreadable istrue, then
      1. Letk be 0.
      2. Letlen be ? LengthOfArrayLike(E).
      3. Ifn +len > 253 - 1, throw aTypeError exception.
      4. Repeat, whilek <len,
        1. LetP be ! ToString(𝔽(k)).
        2. Letexists be ? HasProperty(E,P).
        3. Ifexists istrue, then
          1. LetsubElement be ? Get(E,P).
          2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),subElement).
        4. Setn ton + 1.
        5. Setk tok + 1.
    3. Else,
      1. NOTE:E is added as a single item rather than spread.
      2. Ifn ≥ 253 - 1, throw aTypeError exception.
      3. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),E).
      4. Setn ton + 1.
  6. Perform ? Set(A,"length",𝔽(n),true).
  7. ReturnA.

The"length" property of theconcat method is1𝔽.

Note 1

The explicit setting of the"length" property in step6 is necessary to ensure that its value is correct in situations where the trailing elements of the result Array are not present.

Note 2

Theconcat function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.1.1 IsConcatSpreadable (O )

The abstract operation IsConcatSpreadable takes argumentO. It performs the following steps when called:

  1. IfType(O) is not Object, returnfalse.
  2. Letspreadable be ? Get(O,@@isConcatSpreadable).
  3. Ifspreadable is notundefined, return ! ToBoolean(spreadable).
  4. Return ? IsArray(O).

23.1.3.2 Array.prototype.constructor

The initial value ofArray.prototype.constructor is%Array%.

23.1.3.3 Array.prototype.copyWithin (target,start [ ,end ] )

ThecopyWithin method takes up to three argumentstarget,start andend.

Note 1

Theend argument is optional with the length of thethis value as its default value. Iftarget is negative, it is treated aslength +target wherelength is the length of the array. Ifstart is negative, it is treated aslength +start. Ifend is negative, it is treated aslength +end.

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeTarget be ? ToIntegerOrInfinity(target).
  4. IfrelativeTarget is -∞, letto be 0.
  5. Else ifrelativeTarget < 0, letto bemax(len +relativeTarget, 0).
  6. Else, letto bemin(relativeTarget,len).
  7. LetrelativeStart be ? ToIntegerOrInfinity(start).
  8. IfrelativeStart is -∞, letfrom be 0.
  9. Else ifrelativeStart < 0, letfrom bemax(len +relativeStart, 0).
  10. Else, letfrom bemin(relativeStart,len).
  11. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  12. IfrelativeEnd is -∞, letfinal be 0.
  13. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  14. Else, letfinal bemin(relativeEnd,len).
  15. Letcount bemin(final -from,len -to).
  16. Iffrom <to andto <from +count, then
    1. Letdirection be -1.
    2. Setfrom tofrom +count - 1.
    3. Setto toto +count - 1.
  17. Else,
    1. Letdirection be 1.
  18. Repeat, whilecount > 0,
    1. LetfromKey be ! ToString(𝔽(from)).
    2. LettoKey be ! ToString(𝔽(to)).
    3. LetfromPresent be ? HasProperty(O,fromKey).
    4. IffromPresent istrue, then
      1. LetfromVal be ? Get(O,fromKey).
      2. Perform ? Set(O,toKey,fromVal,true).
    5. Else,
      1. Assert:fromPresent isfalse.
      2. Perform ? DeletePropertyOrThrow(O,toKey).
    6. Setfrom tofrom +direction.
    7. Setto toto +direction.
    8. Setcount tocount - 1.
  19. ReturnO.
Note 2

ThecopyWithin function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.4 Array.prototype.entries ( )

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,key+value).

23.1.3.5 Array.prototype.every (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.every callscallbackfn once for each element present in the array, in ascending order, until it finds one wherecallbackfn returnsfalse. If such an element is found,every immediately returnsfalse. Otherwise, ifcallbackfn returnedtrue for all elements,every will returntrue.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byevery is set before the first call tocallbackfn. Elements which are appended to the array after the call toevery begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timeevery visits them; elements that are deleted after the call toevery begins and before being visited are not visited.every acts like the "for all" quantifier in mathematics. In particular, for an empty array, it returnstrue.

When theevery method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LettestResult be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. IftestResult isfalse, returnfalse.
    4. Setk tok + 1.
  6. Returntrue.
Note 2

Theevery function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.6 Array.prototype.fill (value [ ,start [ ,end ] ] )

Thefill method takes up to three argumentsvalue,start andend.

Note 1

Thestart andend arguments are optional with default values of 0 and the length of thethis value. Ifstart is negative, it is treated aslength +start wherelength is the length of the array. Ifend is negative, it is treated aslength +end.

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart is -∞, letk be 0.
  5. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  6. Else, letk bemin(relativeStart,len).
  7. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  8. IfrelativeEnd is -∞, letfinal be 0.
  9. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  10. Else, letfinal bemin(relativeEnd,len).
  11. Repeat, whilek <final,
    1. LetPk be ! ToString(𝔽(k)).
    2. Perform ? Set(O,Pk,value,true).
    3. Setk tok + 1.
  12. ReturnO.
Note 2

Thefill function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.7 Array.prototype.filter (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.filter callscallbackfn once for each element in the array, in ascending order, and constructs a new array of all the values for whichcallbackfn returnstrue.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byfilter is set before the first call tocallbackfn. Elements which are appended to the array after the call tofilter begins will not be visited bycallbackfn. If existing elements of the array are changed their value as passed tocallbackfn will be the value at the timefilter visits them; elements that are deleted after the call tofilter begins and before being visited are not visited.

When thefilter method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O, 0).
  5. Letk be 0.
  6. Letto be 0.
  7. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Letselected be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. Ifselected istrue, then
        1. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(to)),kValue).
        2. Setto toto + 1.
    4. Setk tok + 1.
  8. ReturnA.
Note 2

Thefilter function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.8 Array.prototype.find (predicate [ ,thisArg ] )

Thefind method is called with one or two arguments,predicate andthisArg.

Note 1

predicate should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.find callspredicate once for each element of the array, in ascending order, until it finds one wherepredicate returnstrue. If such an element is found,find immediately returns that element value. Otherwise,find returnsundefined.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofpredicate. If it is not provided,undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object being traversed.

find does not directly mutate the object on which it is called but the object may be mutated by the calls topredicate.

The range of elements processed byfind is set before the first call topredicate. Elements that are appended to the array after the call tofind begins will not be visited bypredicate. If existing elements of the array are changed, their value as passed topredicate will be the value at the time thatfind visits them; elements that are deleted after the call tofind begins and before being visited are not visited.

When thefind method is called, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(predicate) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(predicate,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, returnkValue.
    5. Setk tok + 1.
  6. Returnundefined.
Note 2

Thefind function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.9 Array.prototype.findIndex (predicate [ ,thisArg ] )

Note 1

predicate should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.findIndex callspredicate once for each element of the array, in ascending order, until it finds one wherepredicate returnstrue. If such an element is found,findIndex immediately returns the index of that element value. Otherwise,findIndex returns -1.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofpredicate. If it is not provided,undefined is used instead.

predicate is called with three arguments: the value of the element, the index of the element, and the object being traversed.

findIndex does not directly mutate the object on which it is called but the object may be mutated by the calls topredicate.

The range of elements processed byfindIndex is set before the first call topredicate. Elements that are appended to the array after the call tofindIndex begins will not be visited bypredicate. If existing elements of the array are changed, their value as passed topredicate will be the value at the time thatfindIndex visits them; elements that are deleted after the call tofindIndex begins and before being visited are not visited.

When thefindIndex method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(predicate) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(predicate,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, return𝔽(k).
    5. Setk tok + 1.
  6. Return-1𝔽.
Note 2

ThefindIndex function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.10 Array.prototype.flat ( [depth ] )

When theflat method is called with zero or one arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. LetsourceLen be ? LengthOfArrayLike(O).
  3. LetdepthNum be 1.
  4. Ifdepth is notundefined, then
    1. SetdepthNum to ? ToIntegerOrInfinity(depth).
    2. IfdepthNum < 0, setdepthNum to 0.
  5. LetA be ? ArraySpeciesCreate(O, 0).
  6. Perform ? FlattenIntoArray(A,O,sourceLen, 0,depthNum).
  7. ReturnA.

23.1.3.10.1 FlattenIntoArray (target,source,sourceLen,start,depth [ ,mapperFunction,thisArg ] )

The abstract operation FlattenIntoArray takes argumentstarget,source,sourceLen (a non-negativeinteger),start (a non-negativeinteger), anddepth (a non-negativeinteger or +∞) and optional argumentsmapperFunction andthisArg. It performs the following steps when called:

  1. Assert:Type(target) is Object.
  2. Assert:Type(source) is Object.
  3. Assert: IfmapperFunction is present, then ! IsCallable(mapperFunction) istrue,thisArg is present, anddepth is 1.
  4. LettargetIndex bestart.
  5. LetsourceIndex be+0𝔽.
  6. Repeat, while(sourceIndex) <sourceLen,
    1. LetP be ! ToString(sourceIndex).
    2. Letexists be ? HasProperty(source,P).
    3. Ifexists istrue, then
      1. Letelement be ? Get(source,P).
      2. IfmapperFunction is present, then
        1. Setelement to ? Call(mapperFunction,thisArg, «element,sourceIndex,source »).
      3. LetshouldFlatten befalse.
      4. Ifdepth > 0, then
        1. SetshouldFlatten to ? IsArray(element).
      5. IfshouldFlatten istrue, then
        1. Ifdepth is +∞, letnewDepth be +∞.
        2. Else, letnewDepth bedepth - 1.
        3. LetelementLen be ? LengthOfArrayLike(element).
        4. SettargetIndex to ? FlattenIntoArray(target,element,elementLen,targetIndex,newDepth).
      6. Else,
        1. IftargetIndex ≥ 253 - 1, throw aTypeError exception.
        2. Perform ? CreateDataPropertyOrThrow(target, ! ToString(𝔽(targetIndex)),element).
        3. SettargetIndex totargetIndex + 1.
    4. SetsourceIndex tosourceIndex +1𝔽.
  7. ReturntargetIndex.

23.1.3.11 Array.prototype.flatMap (mapperFunction [ ,thisArg ] )

When theflatMap method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. LetsourceLen be ? LengthOfArrayLike(O).
  3. If ! IsCallable(mapperFunction) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O, 0).
  5. Perform ? FlattenIntoArray(A,O,sourceLen, 0, 1,mapperFunction,thisArg).
  6. ReturnA.

23.1.3.12 Array.prototype.forEach (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each element present in the array, in ascending order.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byforEach is set before the first call tocallbackfn. Elements which are appended to the array after the call toforEach begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timeforEach visits them; elements that are deleted after the call toforEach begins and before being visited are not visited.

When theforEach method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Perform ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Setk tok + 1.
  6. Returnundefined.
Note 2

TheforEach function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.13 Array.prototype.includes (searchElement [ ,fromIndex ] )

Note 1

includes comparessearchElement to the elements of the array, in ascending order, using theSameValueZero algorithm, and if found at any position, returnstrue; otherwise,false is returned.

The optional second argumentfromIndex defaults to+0𝔽 (i.e. the whole array is searched). If it is greater than or equal to the length of the array,false is returned, i.e. the array will not be searched. If it is less than+0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than+0𝔽, the whole array will be searched.

When theincludes method is called, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen is 0, returnfalse.
  4. Letn be ? ToIntegerOrInfinity(fromIndex).
  5. Assert: IffromIndex isundefined, thenn is 0.
  6. Ifn is +∞, returnfalse.
  7. Else ifn is -∞, setn to 0.
  8. Ifn ≥ 0, then
    1. Letk ben.
  9. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  10. Repeat, whilek <len,
    1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
    2. IfSameValueZero(searchElement,elementK) istrue, returntrue.
    3. Setk tok + 1.
  11. Returnfalse.
Note 2

Theincludes function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

Note 3

Theincludes method intentionally differs from the similarindexOf method in two ways. First, it uses theSameValueZero algorithm, instead ofStrict Equality Comparison, allowing it to detectNaN array elements. Second, it does not skip missing array elements, instead treating them asundefined.

23.1.3.14 Array.prototype.indexOf (searchElement [ ,fromIndex ] )

Note 1

indexOf comparessearchElement to the elements of the array, in ascending order, using theStrict Equality Comparison algorithm, and if found at one or more indices, returns the smallest such index; otherwise,-1𝔽 is returned.

The optional second argumentfromIndex defaults to+0𝔽 (i.e. the whole array is searched). If it is greater than or equal to the length of the array,-1𝔽 is returned, i.e. the array will not be searched. If it is less than+0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than+0𝔽, the whole array will be searched.

When theindexOf method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen is 0, return-1𝔽.
  4. Letn be ? ToIntegerOrInfinity(fromIndex).
  5. Assert: IffromIndex isundefined, thenn is 0.
  6. Ifn is +∞, return-1𝔽.
  7. Else ifn is -∞, setn to 0.
  8. Ifn ≥ 0, then
    1. Letk ben.
  9. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  10. Repeat, whilek <len,
    1. LetkPresent be ? HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
      2. Letsame be the result of performingStrict Equality ComparisonsearchElement ===elementK.
      3. Ifsame istrue, return𝔽(k).
    3. Setk tok + 1.
  11. Return-1𝔽.
Note 2

TheindexOf function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.15 Array.prototype.join (separator )

Note 1

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by occurrences of theseparator. If no separator is provided, a single comma is used as the separator.

Thejoin method takes one argument,separator, and performs the following steps:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Ifseparator isundefined, letsep be the single-element String",".
  4. Else, letsep be ? ToString(separator).
  5. LetR be the empty String.
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. Ifk > 0, setR to thestring-concatenation ofR andsep.
    2. Letelement be ? Get(O, ! ToString(𝔽(k))).
    3. Ifelement isundefined ornull, letnext be the empty String; otherwise, letnext be ? ToString(element).
    4. SetR to thestring-concatenation ofR andnext.
    5. Setk tok + 1.
  8. ReturnR.
Note 2

Thejoin function is intentionally generic; it does not require that itsthis value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.16 Array.prototype.keys ( )

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,key).

23.1.3.17 Array.prototype.lastIndexOf (searchElement [ ,fromIndex ] )

Note 1

lastIndexOf comparessearchElement to the elements of the array in descending order using theStrict Equality Comparison algorithm, and if found at one or more indices, returns the largest such index; otherwise,-1𝔽 is returned.

The optional second argumentfromIndex defaults to the array's length minus one (i.e. the whole array is searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is less than+0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than+0𝔽,-1𝔽 is returned.

When thelastIndexOf method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen is 0, return-1𝔽.
  4. IffromIndex is present, letn be ? ToIntegerOrInfinity(fromIndex); else letn belen - 1.
  5. Ifn is -∞, return-1𝔽.
  6. Ifn ≥ 0, then
    1. Letk bemin(n,len - 1).
  7. Else,
    1. Letk belen +n.
  8. Repeat, whilek ≥ 0,
    1. LetkPresent be ? HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
      2. Letsame be the result of performingStrict Equality ComparisonsearchElement ===elementK.
      3. Ifsame istrue, return𝔽(k).
    3. Setk tok - 1.
  9. Return-1𝔽.
Note 2

ThelastIndexOf function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.18 Array.prototype.map (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments.map callscallbackfn once for each element in the array, in ascending order, and constructs a new Array from the results.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed bymap is set before the first call tocallbackfn. Elements which are appended to the array after the call tomap begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timemap visits them; elements that are deleted after the call tomap begins and before being visited are not visited.

When themap method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O,len).
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LetmappedValue be ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
      3. Perform ? CreateDataPropertyOrThrow(A,Pk,mappedValue).
    4. Setk tok + 1.
  7. ReturnA.
Note 2

Themap function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.19 Array.prototype.pop ( )

Note 1

The last element of the array is removed from the array and returned.

When thepop method is called, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, then
    1. Perform ? Set(O,"length",+0𝔽,true).
    2. Returnundefined.
  4. Else,
    1. Assert:len > 0.
    2. LetnewLen be𝔽(len - 1).
    3. Letindex be ! ToString(newLen).
    4. Letelement be ? Get(O,index).
    5. Perform ? DeletePropertyOrThrow(O,index).
    6. Perform ? Set(O,"length",newLen,true).
    7. Returnelement.
Note 2

Thepop function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.20 Array.prototype.push ( ...items )

Note 1

The arguments are appended to the end of the array, in the order in which they appear. The new length of the array is returned as the result of the call.

When thepush method is called with zero or more arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetargCount be the number of elements initems.
  4. Iflen +argCount > 253 - 1, throw aTypeError exception.
  5. For each elementE ofitems, do
    1. Perform ? Set(O, ! ToString(𝔽(len)),E,true).
    2. Setlen tolen + 1.
  6. Perform ? Set(O,"length",𝔽(len),true).
  7. Return𝔽(len).

The"length" property of thepush method is1𝔽.

Note 2

Thepush function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.21 Array.prototype.reduce (callbackfn [ ,initialValue ] )

Note 1

callbackfn should be a function that takes four arguments.reduce calls the callback, as a function, once for each element after the first element present in the array, in ascending order.

callbackfn is called with four arguments: thepreviousValue (value from the previous call tocallbackfn), thecurrentValue (value of the current element), thecurrentIndex, and the object being traversed. The first time that callback is called, thepreviousValue andcurrentValue can be one of two values. If aninitialValue was supplied in the call toreduce, thenpreviousValue will be equal toinitialValue andcurrentValue will be equal to the first value in the array. If noinitialValue was supplied, thenpreviousValue will be equal to the first value in the array andcurrentValue will be equal to the second. It is aTypeError if the array contains no elements andinitialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byreduce is set before the first call tocallbackfn. Elements that are appended to the array after the call toreduce begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timereduce visits them; elements that are deleted after the call toreduce begins and before being visited are not visited.

When thereduce method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  5. Letk be 0.
  6. Letaccumulator beundefined.
  7. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  8. Else,
    1. LetkPresent befalse.
    2. Repeat, whilekPresent isfalse andk <len,
      1. LetPk be ! ToString(𝔽(k)).
      2. SetkPresent to ? HasProperty(O,Pk).
      3. IfkPresent istrue, then
        1. Setaccumulator to ? Get(O,Pk).
      4. Setk tok + 1.
    3. IfkPresent isfalse, throw aTypeError exception.
  9. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok + 1.
  10. Returnaccumulator.
Note 2

Thereduce function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.22 Array.prototype.reduceRight (callbackfn [ ,initialValue ] )

Note 1

callbackfn should be a function that takes four arguments.reduceRight calls the callback, as a function, once for each element after the first element present in the array, in descending order.

callbackfn is called with four arguments: thepreviousValue (value from the previous call tocallbackfn), thecurrentValue (value of the current element), thecurrentIndex, and the object being traversed. The first time the function is called, thepreviousValue andcurrentValue can be one of two values. If aninitialValue was supplied in the call toreduceRight, thenpreviousValue will be equal toinitialValue andcurrentValue will be equal to the last value in the array. If noinitialValue was supplied, thenpreviousValue will be equal to the last value in the array andcurrentValue will be equal to the second-to-last value. It is aTypeError if the array contains no elements andinitialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byreduceRight is set before the first call tocallbackfn. Elements that are appended to the array after the call toreduceRight begins will not be visited bycallbackfn. If existing elements of the array are changed bycallbackfn, their value as passed tocallbackfn will be the value at the timereduceRight visits them; elements that are deleted after the call toreduceRight begins and before being visited are not visited.

When thereduceRight method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Iflen is 0 andinitialValue is not present, throw aTypeError exception.
  5. Letk belen - 1.
  6. Letaccumulator beundefined.
  7. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  8. Else,
    1. LetkPresent befalse.
    2. Repeat, whilekPresent isfalse andk ≥ 0,
      1. LetPk be ! ToString(𝔽(k)).
      2. SetkPresent to ? HasProperty(O,Pk).
      3. IfkPresent istrue, then
        1. Setaccumulator to ? Get(O,Pk).
      4. Setk tok - 1.
    3. IfkPresent isfalse, throw aTypeError exception.
  9. Repeat, whilek ≥ 0,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok - 1.
  10. Returnaccumulator.
Note 2

ThereduceRight function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.23 Array.prototype.reverse ( )

Note 1

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of the call.

When thereverse method is called, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Letmiddle befloor(len / 2).
  4. Letlower be 0.
  5. Repeat, whilelowermiddle,
    1. Letupper belen -lower - 1.
    2. LetupperP be ! ToString(𝔽(upper)).
    3. LetlowerP be ! ToString(𝔽(lower)).
    4. LetlowerExists be ? HasProperty(O,lowerP).
    5. IflowerExists istrue, then
      1. LetlowerValue be ? Get(O,lowerP).
    6. LetupperExists be ? HasProperty(O,upperP).
    7. IfupperExists istrue, then
      1. LetupperValue be ? Get(O,upperP).
    8. IflowerExists istrue andupperExists istrue, then
      1. Perform ? Set(O,lowerP,upperValue,true).
      2. Perform ? Set(O,upperP,lowerValue,true).
    9. Else iflowerExists isfalse andupperExists istrue, then
      1. Perform ? Set(O,lowerP,upperValue,true).
      2. Perform ? DeletePropertyOrThrow(O,upperP).
    10. Else iflowerExists istrue andupperExists isfalse, then
      1. Perform ? DeletePropertyOrThrow(O,lowerP).
      2. Perform ? Set(O,upperP,lowerValue,true).
    11. Else,
      1. Assert:lowerExists andupperExists are bothfalse.
      2. No action is required.
    12. Setlower tolower + 1.
  6. ReturnO.
Note 2

Thereverse function is intentionally generic; it does not require that itsthis value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.24 Array.prototype.shift ( )

Note 1

The first element of the array is removed from the array and returned.

When theshift method is called, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, then
    1. Perform ? Set(O,"length",+0𝔽,true).
    2. Returnundefined.
  4. Letfirst be ? Get(O,"0").
  5. Letk be 1.
  6. Repeat, whilek <len,
    1. Letfrom be ! ToString(𝔽(k)).
    2. Letto be ! ToString(𝔽(k - 1)).
    3. LetfromPresent be ? HasProperty(O,from).
    4. IffromPresent istrue, then
      1. LetfromVal be ? Get(O,from).
      2. Perform ? Set(O,to,fromVal,true).
    5. Else,
      1. Assert:fromPresent isfalse.
      2. Perform ? DeletePropertyOrThrow(O,to).
    6. Setk tok + 1.
  7. Perform ? DeletePropertyOrThrow(O, ! ToString(𝔽(len - 1))).
  8. Perform ? Set(O,"length",𝔽(len - 1),true).
  9. Returnfirst.
Note 2

Theshift function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.25 Array.prototype.slice (start,end )

Note 1

Theslice method takes two arguments,start andend, and returns an array containing the elements of the array from elementstart up to, but not including, elementend (or through the end of the array ifend isundefined). Ifstart is negative, it is treated aslength +start wherelength is the length of the array. Ifend is negative, it is treated aslength +end wherelength is the length of the array.

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart is -∞, letk be 0.
  5. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  6. Else, letk bemin(relativeStart,len).
  7. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  8. IfrelativeEnd is -∞, letfinal be 0.
  9. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  10. Else, letfinal bemin(relativeEnd,len).
  11. Letcount bemax(final -k, 0).
  12. LetA be ? ArraySpeciesCreate(O,count).
  13. Letn be 0.
  14. Repeat, whilek <final,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),kValue).
    4. Setk tok + 1.
    5. Setn ton + 1.
  15. Perform ? Set(A,"length",𝔽(n),true).
  16. ReturnA.
Note 2

The explicit setting of the"length" property of the result Array in step15 was necessary in previous editions of ECMAScript to ensure that its length was correct in situations where the trailing elements of the result Array were not present. Setting"length" became unnecessary starting in ES2015 when the result Array was initialized to its proper length rather than an empty Array but is carried forward to preserve backward compatibility.

Note 3

Theslice function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.26 Array.prototype.some (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.some callscallbackfn once for each element present in the array, in ascending order, until it finds one wherecallbackfn returnstrue. If such an element is found,some immediately returnstrue. Otherwise,some returnsfalse.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed bysome is set before the first call tocallbackfn. Elements that are appended to the array after the call tosome begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the time thatsome visits them; elements that are deleted after the call tosome begins and before being visited are not visited.some acts like the "exists" quantifier in mathematics. In particular, for an empty array, it returnsfalse.

When thesome method is called with one or two arguments, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LettestResult be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. IftestResult istrue, returntrue.
    4. Setk tok + 1.
  6. Returnfalse.
Note 2

Thesome function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.27 Array.prototype.sort (comparefn )

The elements of this array are sorted. The sort must be stable (that is, elements that compare equal must remain in their original order). Ifcomparefn is notundefined, it should be a function that accepts two argumentsx andy and returns a negative value ifx <y, zero ifx =y, or a positive value ifx >y.

The following steps are taken:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. Letobj be ? ToObject(this value).
  3. Letlen be ? LengthOfArrayLike(obj).
  4. Letitems be a new emptyList.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(obj,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(obj,Pk).
      2. AppendkValue toitems.
    4. Setk tok + 1.
  7. LetitemCount be the number of elements initems.
  8. Sortitems using animplementation-defined sequence of calls toSortCompare. If any such call returns anabrupt completion, stop before performing any further calls toSortCompare or steps in this algorithm and return that completion.
  9. Letj be 0.
  10. Repeat, whilej <itemCount,
    1. Perform ? Set(obj, ! ToString(𝔽(j)),items[j],true).
    2. Setj toj + 1.
  11. Repeat, whilej <len,
    1. Perform ? DeletePropertyOrThrow(obj, ! ToString(𝔽(j))).
    2. Setj toj + 1.
  12. Returnobj.

Thesort order is the ordering, after completion of this function, of theinteger-indexed property values ofobj whoseinteger indexes are less thanlen. The result of thesort function is then determined as follows:

The sort order isimplementation-defined if any of the following conditions is true:

  • Ifcomparefn is notundefined and is not a consistent comparison function for the elements ofitems (see below).
  • Ifcomparefn isundefined andSortCompare does not act as a consistent comparison function.
  • Ifcomparefn isundefined and all applications ofToString, to any specific value passed as an argument toSortCompare, do not produce the same result.

Unless the sort order is specified above to beimplementation-defined,items must satisfy all of the following conditions after executing step8 of the algorithm above:

  • There must be some mathematical permutation π of the non-negative integers less thanitemCount, such that for every non-negativeintegerj less thanitemCount, the elementold[j] is exactly the same asnew[π(j)].
  • Then for all non-negative integersj andk, each less thanitemCount, ifSortCompare(old[j], old[k]) < 0 (seeSortCompare below), thenπ(j) < π(k).

Here the notationold[j] is used to refer toitems[j] before step8 is executed, and the notationnew[j] to refer toitems[j] after step8 has been executed.

A functioncomparefn is a consistent comparison function for a set of valuesS if all of the requirements below are met for all valuesa,b, andc (possibly the same value) in the setS: The notationa <CFb meanscomparefn(a,b) < 0;a =CFb meanscomparefn(a,b) = 0 (of either sign); anda >CFb meanscomparefn(a,b) > 0.

  • Callingcomparefn(a,b) always returns the same valuev when given a specific pair of valuesa andb as its two arguments. Furthermore,Type(v) is Number, andv is notNaN. Note that this implies that exactly one ofa <CFb,a =CFb, anda >CFb will be true for a given pair ofa andb.
  • Callingcomparefn(a,b) does not modifyobj or any object onobj's prototype chain.
  • a =CFa (reflexivity)
  • Ifa =CFb, thenb =CFa (symmetry)
  • Ifa =CFb andb =CFc, thena =CFc (transitivity of =CF)
  • Ifa <CFb andb <CFc, thena <CFc (transitivity of <CF)
  • Ifa >CFb andb >CFc, thena >CFc (transitivity of >CF)
Note 1

The above conditions are necessary and sufficient to ensure thatcomparefn divides the setS into equivalence classes and that these equivalence classes are totally ordered.

Note 2

Thesort function is intentionally generic; it does not require that itsthis value be an Array object. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.27.1 SortCompare (x,y )

The abstract operation SortCompare takes argumentsx andy. It also has access to thecomparefn argument passed to the current invocation of thesort method. It performs the following steps when called:

  1. Ifx andy are bothundefined, return+0𝔽.
  2. Ifx isundefined, return1𝔽.
  3. Ify isundefined, return-1𝔽.
  4. Ifcomparefn is notundefined, then
    1. Letv be ? ToNumber(?Call(comparefn,undefined, «x,y »)).
    2. Ifv isNaN, return+0𝔽.
    3. Returnv.
  5. LetxString be ? ToString(x).
  6. LetyString be ? ToString(y).
  7. LetxSmaller be the result of performingAbstract Relational ComparisonxString <yString.
  8. IfxSmaller istrue, return-1𝔽.
  9. LetySmaller be the result of performingAbstract Relational ComparisonyString <xString.
  10. IfySmaller istrue, return1𝔽.
  11. Return+0𝔽.
Note 1

Because non-existent property values always compare greater thanundefined property values, andundefined always compares greater than any other value,undefined property values always sort to the end of the result, followed by non-existent property values.

Note 2

Method calls performed by theToStringabstract operations in steps5 and6 have the potential to cause SortCompare to not behave as a consistent comparison function.

23.1.3.28 Array.prototype.splice (start,deleteCount, ...items )

Note 1

When thesplice method is called with two or more argumentsstart,deleteCount and zero or moreitems, thedeleteCount elements of the array starting atinteger indexstart are replaced by the elements ofitems. An Array object containing the deleted elements (if any) is returned.

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart is -∞, letactualStart be 0.
  5. Else ifrelativeStart < 0, letactualStart bemax(len +relativeStart, 0).
  6. Else, letactualStart bemin(relativeStart,len).
  7. Ifstart is not present, then
    1. LetinsertCount be 0.
    2. LetactualDeleteCount be 0.
  8. Else ifdeleteCount is not present, then
    1. LetinsertCount be 0.
    2. LetactualDeleteCount belen -actualStart.
  9. Else,
    1. LetinsertCount be the number of elements initems.
    2. Letdc be ? ToIntegerOrInfinity(deleteCount).
    3. LetactualDeleteCount be the result ofclampingdc between 0 andlen -actualStart.
  10. Iflen +insertCount -actualDeleteCount > 253 - 1, throw aTypeError exception.
  11. LetA be ? ArraySpeciesCreate(O,actualDeleteCount).
  12. Letk be 0.
  13. Repeat, whilek <actualDeleteCount,
    1. Letfrom be ! ToString(𝔽(actualStart +k)).
    2. LetfromPresent be ? HasProperty(O,from).
    3. IffromPresent istrue, then
      1. LetfromValue be ? Get(O,from).
      2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(k)),fromValue).
    4. Setk tok + 1.
  14. Perform ? Set(A,"length",𝔽(actualDeleteCount),true).
  15. LetitemCount be the number of elements initems.
  16. IfitemCount <actualDeleteCount, then
    1. Setk toactualStart.
    2. Repeat, whilek < (len -actualDeleteCount),
      1. Letfrom be ! ToString(𝔽(k +actualDeleteCount)).
      2. Letto be ! ToString(𝔽(k +itemCount)).
      3. LetfromPresent be ? HasProperty(O,from).
      4. IffromPresent istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      5. Else,
        1. Assert:fromPresent isfalse.
        2. Perform ? DeletePropertyOrThrow(O,to).
      6. Setk tok + 1.
    3. Setk tolen.
    4. Repeat, whilek > (len -actualDeleteCount +itemCount),
      1. Perform ? DeletePropertyOrThrow(O, ! ToString(𝔽(k - 1))).
      2. Setk tok - 1.
  17. Else ifitemCount >actualDeleteCount, then
    1. Setk to (len -actualDeleteCount).
    2. Repeat, whilek >actualStart,
      1. Letfrom be ! ToString(𝔽(k +actualDeleteCount - 1)).
      2. Letto be ! ToString(𝔽(k +itemCount - 1)).
      3. LetfromPresent be ? HasProperty(O,from).
      4. IffromPresent istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      5. Else,
        1. Assert:fromPresent isfalse.
        2. Perform ? DeletePropertyOrThrow(O,to).
      6. Setk tok - 1.
  18. Setk toactualStart.
  19. For each elementE ofitems, do
    1. Perform ? Set(O, ! ToString(𝔽(k)),E,true).
    2. Setk tok + 1.
  20. Perform ? Set(O,"length",𝔽(len -actualDeleteCount +itemCount),true).
  21. ReturnA.
Note 2

The explicit setting of the"length" property of the result Array in step20 was necessary in previous editions of ECMAScript to ensure that its length was correct in situations where the trailing elements of the result Array were not present. Setting"length" became unnecessary starting in ES2015 when the result Array was initialized to its proper length rather than an empty Array but is carried forward to preserve backward compatibility.

Note 3

Thesplice function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.29 Array.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement theArray.prototype.toLocaleString method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of thetoLocaleString method is used.

Note 1

The first edition of ECMA-402 did not include a replacement specification for theArray.prototype.toLocaleString method.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

The following steps are taken:

  1. Letarray be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(array).
  3. Letseparator be the String value for the list-separator String appropriate for thehost environment's current locale (this is derived in animplementation-defined way).
  4. LetR be the empty String.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. Ifk > 0, then
      1. SetR to thestring-concatenation ofR andseparator.
    2. LetnextElement be ? Get(array, ! ToString(𝔽(k))).
    3. IfnextElement is notundefined ornull, then
      1. LetS be ? ToString(?Invoke(nextElement,"toLocaleString")).
      2. SetR to thestring-concatenation ofR andS.
    4. Setk tok + 1.
  7. ReturnR.
Note 2

The elements of the array are converted to Strings using theirtoLocaleString methods, and these Strings are then concatenated, separated by occurrences of a separator String that has been derived in animplementation-defined locale-specific way. The result of calling this function is intended to be analogous to the result oftoString, except that the result of this function is intended to be locale-specific.

Note 3

ThetoLocaleString function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.30 Array.prototype.toString ( )

When thetoString method is called, the following steps are taken:

  1. Letarray be ? ToObject(this value).
  2. Letfunc be ? Get(array,"join").
  3. IfIsCallable(func) isfalse, setfunc to the intrinsic function %Object.prototype.toString%.
  4. Return ? Call(func,array).
Note

ThetoString function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.31 Array.prototype.unshift ( ...items )

Note 1

The arguments are prepended to the start of the array, such that their order within the array is the same as the order in which they appear in the argument list.

When theunshift method is called with zero or more argumentsitem1,item2, etc., the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetargCount be the number of elements initems.
  4. IfargCount > 0, then
    1. Iflen +argCount > 253 - 1, throw aTypeError exception.
    2. Letk belen.
    3. Repeat, whilek > 0,
      1. Letfrom be ! ToString(𝔽(k - 1)).
      2. Letto be ! ToString(𝔽(k +argCount - 1)).
      3. LetfromPresent be ? HasProperty(O,from).
      4. IffromPresent istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      5. Else,
        1. Assert:fromPresent isfalse.
        2. Perform ? DeletePropertyOrThrow(O,to).
      6. Setk tok - 1.
    4. Letj be+0𝔽.
    5. For each elementE ofitems, do
      1. Perform ? Set(O, ! ToString(j),E,true).
      2. Setj toj +1𝔽.
  5. Perform ? Set(O,"length",𝔽(len +argCount),true).
  6. Return𝔽(len +argCount).

The"length" property of theunshift method is1𝔽.

Note 2

Theunshift function is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.32 Array.prototype.values ( )

The following steps are taken:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,value).

23.1.3.33 Array.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is the samefunction object as the initial value of theArray.prototype.values property.

23.1.3.34 Array.prototype [ @@unscopables ]

The initial value of the@@unscopablesdata property is an object created by the following steps:

  1. LetunscopableList be ! OrdinaryObjectCreate(null).
  2. Perform ! CreateDataPropertyOrThrow(unscopableList,"copyWithin",true).
  3. Perform ! CreateDataPropertyOrThrow(unscopableList,"entries",true).
  4. Perform ! CreateDataPropertyOrThrow(unscopableList,"fill",true).
  5. Perform ! CreateDataPropertyOrThrow(unscopableList,"find",true).
  6. Perform ! CreateDataPropertyOrThrow(unscopableList,"findIndex",true).
  7. Perform ! CreateDataPropertyOrThrow(unscopableList,"flat",true).
  8. Perform ! CreateDataPropertyOrThrow(unscopableList,"flatMap",true).
  9. Perform ! CreateDataPropertyOrThrow(unscopableList,"includes",true).
  10. Perform ! CreateDataPropertyOrThrow(unscopableList,"keys",true).
  11. Perform ! CreateDataPropertyOrThrow(unscopableList,"values",true).
  12. ReturnunscopableList.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

Note

The own property names of this object are property names that were not included as standard properties ofArray.prototype prior to the ECMAScript 2015 specification. These names are ignored forwith statement binding purposes in order to preserve the behaviour of existing code that might use one of these names as a binding in an outer scope that is shadowed by awith statement whose binding object is an Array object.

23.1.4 Properties of Array Instances

Array instances are Array exotic objects and have the internal methods specified for such objects. Array instances inherit properties from theArray prototype object.

Array instances have a"length" property, and a set of enumerable properties witharray index names.

23.1.4.1 length

The"length" property of an Array instance is adata property whose value is always numerically greater than the name of every configurable own property whose name is anarray index.

The"length" property initially has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.

Note

Reducing the value of the"length" property has the side-effect of deleting own array elements whosearray index is between the old and new length values. However, non-configurable properties can not be deleted. Attempting to set the"length" property of an Array object to a value that is numerically less than or equal to the largest numeric ownproperty name of an existing non-configurablearray-indexed property of the array will result in the length being set to a numeric value that is one greater than that non-configurable numeric ownproperty name. See10.4.2.1.

23.1.5 Array Iterator Objects

An Array Iterator is an object, that represents a specific iteration over some specific Array instance object. There is not a namedconstructor for Array Iterator objects. Instead, Array iterator objects are created by calling certain methods of Array instance objects.

23.1.5.1 CreateArrayIterator (array,kind )

The abstract operation CreateArrayIterator takes argumentsarray andkind. This operation is used to create iterator objects for Array methods that return such iterators. It performs the following steps when called:

  1. Assert:Type(array) is Object.
  2. Assert:kind iskey+value,key, orvalue.
  3. Letclosure be a newAbstract Closure with no parameters that captureskind andarray and performs the following steps when called:
    1. Letindex be 0.
    2. Repeat,
      1. Ifarray has a [[TypedArrayName]] internal slot, then
        1. IfIsDetachedBuffer(array.[[ViewedArrayBuffer]]) istrue, throw aTypeError exception.
        2. Letlen bearray.[[ArrayLength]].
      2. Else,
        1. Letlen be ? LengthOfArrayLike(array).
      3. Ifindexlen, returnundefined.
      4. Ifkind iskey, perform ? Yield(𝔽(index)).
      5. Else,
        1. LetelementKey be ! ToString(𝔽(index)).
        2. LetelementValue be ? Get(array,elementKey).
        3. Ifkind isvalue, perform ? Yield(elementValue).
        4. Else,
          1. Assert:kind iskey+value.
          2. Perform ? Yield(!CreateArrayFromList𝔽(index),elementValue »)).
      6. Setindex toindex + 1.
  4. Return ! CreateIteratorFromClosure(closure,"%ArrayIteratorPrototype%",%ArrayIteratorPrototype%).

23.1.5.2 The %ArrayIteratorPrototype% Object

The%ArrayIteratorPrototype% object:

  • has properties that are inherited by all Array Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

23.1.5.2.1 %ArrayIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%ArrayIteratorPrototype%").

23.1.5.2.2 %ArrayIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Array Iterator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

23.2 TypedArray Objects

TypedArray objects present an array-like view of an underlying binary data buffer (25.1). ATypedArray element type is the underlying binary scalar data type that all elements of aTypedArray instance have. There is a distinctTypedArrayconstructor, listed inTable 60, for each of the supported element types. Eachconstructor inTable 60 has a corresponding distinct prototype object.

Table 60: The TypedArray Constructors
Constructor Name and Intrinsic Element Type Element Size Conversion Operation Description
Int8Array
%Int8Array%
Int8 1ToInt8 8-bit two's complement signedinteger
Uint8Array
%Uint8Array%
Uint8 1ToUint8 8-bit unsignedinteger
Uint8ClampedArray
%Uint8ClampedArray%
Uint8C 1ToUint8Clamp 8-bit unsignedinteger (clamped conversion)
Int16Array
%Int16Array%
Int16 2ToInt16 16-bit two's complement signedinteger
Uint16Array
%Uint16Array%
Uint16 2ToUint16 16-bit unsignedinteger
Int32Array
%Int32Array%
Int32 4ToInt32 32-bit two's complement signedinteger
Uint32Array
%Uint32Array%
Uint32 4ToUint32 32-bit unsignedinteger
BigInt64Array
%BigInt64Array%
BigInt64 8ToBigInt64 64-bit two's complement signedinteger
BigUint64Array
%BigUint64Array%
BigUint64 8ToBigUint64 64-bit unsignedinteger
Float32Array
%Float32Array%
Float32 4 32-bit IEEE floating point
Float64Array
%Float64Array%
Float64 8 64-bit IEEE floating point

In the definitions below, references toTypedArray should be replaced with the appropriateconstructor name from the above table.

23.2.1 The %TypedArray% Intrinsic Object

The%TypedArray% intrinsic object:

  • is aconstructorfunction object that all of theTypedArrayconstructor objects inherit from.
  • along with its corresponding prototype object, provides common properties that are inherited by allTypedArray constructors and their instances.
  • does not have a global name or appear as a property of theglobal object.
  • acts as the abstract superclass of the variousTypedArray constructors.
  • will throw an error when invoked, because it is an abstract classconstructor. TheTypedArray constructors do not perform asuper call to it.

23.2.1.1 %TypedArray% ( )

The%TypedArray%constructor performs the following steps:

  1. Throw aTypeError exception.

The"length" property of the%TypedArray%constructor function is+0𝔽.

23.2.2 Properties of the %TypedArray% Intrinsic Object

The%TypedArray% intrinsic object:

  • has a [[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"name" property whose value is"TypedArray".
  • has the following properties:

23.2.2.1 %TypedArray%.from (source [ ,mapfn [ ,thisArg ] ] )

When thefrom method is called with argumentsource, and optional argumentsmapfn andthisArg, the following steps are taken:

  1. LetC be thethis value.
  2. IfIsConstructor(C) isfalse, throw aTypeError exception.
  3. Ifmapfn isundefined, letmapping befalse.
  4. Else,
    1. IfIsCallable(mapfn) isfalse, throw aTypeError exception.
    2. Letmapping betrue.
  5. LetusingIterator be ? GetMethod(source,@@iterator).
  6. IfusingIterator is notundefined, then
    1. Letvalues be ? IterableToList(source,usingIterator).
    2. Letlen be the number of elements invalues.
    3. LettargetObj be ? TypedArrayCreate(C, «𝔽(len) »).
    4. Letk be 0.
    5. Repeat, whilek <len,
      1. LetPk be ! ToString(𝔽(k)).
      2. LetkValue be the first element ofvalues and remove that element fromvalues.
      3. Ifmapping istrue, then
        1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
      4. Else, letmappedValue bekValue.
      5. Perform ? Set(targetObj,Pk,mappedValue,true).
      6. Setk tok + 1.
    6. Assert:values is now an emptyList.
    7. ReturntargetObj.
  7. NOTE:source is not an Iterable so assume it is already anarray-like object.
  8. LetarrayLike be ! ToObject(source).
  9. Letlen be ? LengthOfArrayLike(arrayLike).
  10. LettargetObj be ? TypedArrayCreate(C, «𝔽(len) »).
  11. Letk be 0.
  12. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Ifmapping istrue, then
      1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
    4. Else, letmappedValue bekValue.
    5. Perform ? Set(targetObj,Pk,mappedValue,true).
    6. Setk tok + 1.
  13. ReturntargetObj.

23.2.2.2 %TypedArray%.of ( ...items )

When theof method is called with any number of arguments, the following steps are taken:

  1. Letlen be the number of elements initems.
  2. LetC be thethis value.
  3. IfIsConstructor(C) isfalse, throw aTypeError exception.
  4. LetnewObj be ? TypedArrayCreate(C, «𝔽(len) »).
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetkValue beitems[k].
    2. LetPk be ! ToString(𝔽(k)).
    3. Perform ? Set(newObj,Pk,kValue,true).
    4. Setk tok + 1.
  7. ReturnnewObj.

23.2.2.3 %TypedArray%.prototype

The initial value of%TypedArray%.prototype is the%TypedArray% prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

23.2.2.4 get %TypedArray% [ @@species ]

%TypedArray%[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

%TypedArray.prototype% methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

23.2.3 Properties of the %TypedArray% Prototype Object

The%TypedArray% prototype object:

  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is%TypedArray.prototype%.
  • is anordinary object.
  • does not have a [[ViewedArrayBuffer]] or any other of the internal slots that are specific toTypedArray instance objects.

23.2.3.1 get %TypedArray%.prototype.buffer

%TypedArray%.prototype.buffer is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. Returnbuffer.

23.2.3.2 get %TypedArray%.prototype.byteLength

%TypedArray%.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. IfIsDetachedBuffer(buffer) istrue, return+0𝔽.
  6. Letsize beO.[[ByteLength]].
  7. Return𝔽(size).

23.2.3.3 get %TypedArray%.prototype.byteOffset

%TypedArray%.prototype.byteOffset is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. IfIsDetachedBuffer(buffer) istrue, return+0𝔽.
  6. Letoffset beO.[[ByteOffset]].
  7. Return𝔽(offset).

23.2.3.4 %TypedArray%.prototype.constructor

The initial value of%TypedArray%.prototype.constructor is the%TypedArray% intrinsic object.

23.2.3.5 %TypedArray%.prototype.copyWithin (target,start [ ,end ] )

The interpretation and use of the arguments of%TypedArray%.prototype.copyWithin are the same as forArray.prototype.copyWithin as defined in23.1.3.3.

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. LetrelativeTarget be ? ToIntegerOrInfinity(target).
  5. IfrelativeTarget is -∞, letto be 0.
  6. Else ifrelativeTarget < 0, letto bemax(len +relativeTarget, 0).
  7. Else, letto bemin(relativeTarget,len).
  8. LetrelativeStart be ? ToIntegerOrInfinity(start).
  9. IfrelativeStart is -∞, letfrom be 0.
  10. Else ifrelativeStart < 0, letfrom bemax(len +relativeStart, 0).
  11. Else, letfrom bemin(relativeStart,len).
  12. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  13. IfrelativeEnd is -∞, letfinal be 0.
  14. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  15. Else, letfinal bemin(relativeEnd,len).
  16. Letcount bemin(final -from,len -to).
  17. Ifcount > 0, then
    1. NOTE: The copying must be performed in a manner that preserves the bit-level encoding of the source data.
    2. Letbuffer beO.[[ViewedArrayBuffer]].
    3. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
    4. LettypedArrayName be the String value ofO.[[TypedArrayName]].
    5. LetelementSize be the Element Size value specified inTable 60 fortypedArrayName.
    6. LetbyteOffset beO.[[ByteOffset]].
    7. LettoByteIndex beto ×elementSize +byteOffset.
    8. LetfromByteIndex befrom ×elementSize +byteOffset.
    9. LetcountBytes becount ×elementSize.
    10. IffromByteIndex <toByteIndex andtoByteIndex <fromByteIndex +countBytes, then
      1. Letdirection be -1.
      2. SetfromByteIndex tofromByteIndex +countBytes - 1.
      3. SettoByteIndex totoByteIndex +countBytes - 1.
    11. Else,
      1. Letdirection be 1.
    12. Repeat, whilecountBytes > 0,
      1. Letvalue beGetValueFromBuffer(buffer,fromByteIndex,Uint8,true,Unordered).
      2. PerformSetValueInBuffer(buffer,toByteIndex,Uint8,value,true,Unordered).
      3. SetfromByteIndex tofromByteIndex +direction.
      4. SettoByteIndex totoByteIndex +direction.
      5. SetcountBytes tocountBytes - 1.
  18. ReturnO.

23.2.3.6 %TypedArray%.prototype.entries ( )

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. ReturnCreateArrayIterator(O,key+value).

23.2.3.7 %TypedArray%.prototype.every (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.every are the same as forArray.prototype.every as defined in23.1.3.5.

When theevery method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult isfalse, returnfalse.
    5. Setk tok + 1.
  7. Returntrue.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.8 %TypedArray%.prototype.fill (value [ ,start [ ,end ] ] )

The interpretation and use of the arguments of%TypedArray%.prototype.fill are the same as forArray.prototype.fill as defined in23.1.3.6.

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfO.[[ContentType]] isBigInt, setvalue to ? ToBigInt(value).
  5. Otherwise, setvalue to ? ToNumber(value).
  6. LetrelativeStart be ? ToIntegerOrInfinity(start).
  7. IfrelativeStart is -∞, letk be 0.
  8. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  9. Else, letk bemin(relativeStart,len).
  10. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  11. IfrelativeEnd is -∞, letfinal be 0.
  12. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  13. Else, letfinal bemin(relativeEnd,len).
  14. IfIsDetachedBuffer(O.[[ViewedArrayBuffer]]) istrue, throw aTypeError exception.
  15. Repeat, whilek <final,
    1. LetPk be ! ToString(𝔽(k)).
    2. Perform ! Set(O,Pk,value,true).
    3. Setk tok + 1.
  16. ReturnO.

23.2.3.9 %TypedArray%.prototype.filter (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.filter are the same as forArray.prototype.filter as defined in23.1.3.7.

When thefilter method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letkept be a new emptyList.
  6. Letk be 0.
  7. Letcaptured be 0.
  8. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Letselected be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. Ifselected istrue, then
      1. AppendkValue to the end ofkept.
      2. Setcaptured tocaptured + 1.
    5. Setk tok + 1.
  9. LetA be ? TypedArraySpeciesCreate(O, «𝔽(captured) »).
  10. Letn be 0.
  11. For each elemente ofkept, do
    1. Perform ! Set(A, ! ToString(𝔽(n)),e,true).
    2. Setn ton + 1.
  12. ReturnA.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.10 %TypedArray%.prototype.find (predicate [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.find are the same as forArray.prototype.find as defined in23.1.3.8.

When thefind method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(predicate) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(predicate,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, returnkValue.
    5. Setk tok + 1.
  7. Returnundefined.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.11 %TypedArray%.prototype.findIndex (predicate [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.findIndex are the same as forArray.prototype.findIndex as defined in23.1.3.9.

When thefindIndex method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(predicate) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(predicate,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, return𝔽(k).
    5. Setk tok + 1.
  7. Return-1𝔽.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.12 %TypedArray%.prototype.forEach (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.forEach are the same as forArray.prototype.forEach as defined in23.1.3.12.

When theforEach method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Perform ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Setk tok + 1.
  7. Returnundefined.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.13 %TypedArray%.prototype.includes (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of%TypedArray%.prototype.includes are the same as forArray.prototype.includes as defined in23.1.3.13.

When theincludes method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. Iflen is 0, returnfalse.
  5. Letn be ? ToIntegerOrInfinity(fromIndex).
  6. Assert: IffromIndex isundefined, thenn is 0.
  7. Ifn is +∞, returnfalse.
  8. Else ifn is -∞, setn to 0.
  9. Ifn ≥ 0, then
    1. Letk ben.
  10. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  11. Repeat, whilek <len,
    1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
    2. IfSameValueZero(searchElement,elementK) istrue, returntrue.
    3. Setk tok + 1.
  12. Returnfalse.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.14 %TypedArray%.prototype.indexOf (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of%TypedArray%.prototype.indexOf are the same as forArray.prototype.indexOf as defined in23.1.3.14.

When theindexOf method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. Iflen is 0, return-1𝔽.
  5. Letn be ? ToIntegerOrInfinity(fromIndex).
  6. Assert: IffromIndex isundefined, thenn is 0.
  7. Ifn is +∞, return-1𝔽.
  8. Else ifn is -∞, setn to 0.
  9. Ifn ≥ 0, then
    1. Letk ben.
  10. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  11. Repeat, whilek <len,
    1. LetkPresent be ! HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
      2. Letsame be the result of performingStrict Equality ComparisonsearchElement ===elementK.
      3. Ifsame istrue, return𝔽(k).
    3. Setk tok + 1.
  12. Return-1𝔽.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.15 %TypedArray%.prototype.join (separator )

The interpretation and use of the arguments of%TypedArray%.prototype.join are the same as forArray.prototype.join as defined in23.1.3.15.

When thejoin method is called with one argumentseparator, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. Ifseparator isundefined, letsep be the single-element String",".
  5. Else, letsep be ? ToString(separator).
  6. LetR be the empty String.
  7. Letk be 0.
  8. Repeat, whilek <len,
    1. Ifk > 0, setR to thestring-concatenation ofR andsep.
    2. Letelement be ! Get(O, ! ToString(𝔽(k))).
    3. Ifelement isundefined, letnext be the empty String; otherwise, letnext be ! ToString(element).
    4. SetR to thestring-concatenation ofR andnext.
    5. Setk tok + 1.
  9. ReturnR.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.16 %TypedArray%.prototype.keys ( )

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. ReturnCreateArrayIterator(O,key).

23.2.3.17 %TypedArray%.prototype.lastIndexOf (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of%TypedArray%.prototype.lastIndexOf are the same as forArray.prototype.lastIndexOf as defined in23.1.3.17.

When thelastIndexOf method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. Iflen is 0, return-1𝔽.
  5. IffromIndex is present, letn be ? ToIntegerOrInfinity(fromIndex); else letn belen - 1.
  6. Ifn is -∞, return-1𝔽.
  7. Ifn ≥ 0, then
    1. Letk bemin(n,len - 1).
  8. Else,
    1. Letk belen +n.
  9. Repeat, whilek ≥ 0,
    1. LetkPresent be ! HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
      2. Letsame be the result of performingStrict Equality ComparisonsearchElement ===elementK.
      3. Ifsame istrue, return𝔽(k).
    3. Setk tok - 1.
  10. Return-1𝔽.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.18 get %TypedArray%.prototype.length

%TypedArray%.prototype.length is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  3. Assert:O has [[ViewedArrayBuffer]] and [[ArrayLength]] internal slots.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. IfIsDetachedBuffer(buffer) istrue, return+0𝔽.
  6. Letlength beO.[[ArrayLength]].
  7. Return𝔽(length).

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.19 %TypedArray%.prototype.map (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.map are the same as forArray.prototype.map as defined in23.1.3.18.

When themap method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. LetA be ? TypedArraySpeciesCreate(O, «𝔽(len) »).
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LetmappedValue be ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Perform ? Set(A,Pk,mappedValue,true).
    5. Setk tok + 1.
  8. ReturnA.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.20 %TypedArray%.prototype.reduce (callbackfn [ ,initialValue ] )

The interpretation and use of the arguments of%TypedArray%.prototype.reduce are the same as forArray.prototype.reduce as defined in23.1.3.21.

When thereduce method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  6. Letk be 0.
  7. Letaccumulator beundefined.
  8. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  9. Else,
    1. LetPk be ! ToString(𝔽(k)).
    2. Setaccumulator to ! Get(O,Pk).
    3. Setk tok + 1.
  10. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok + 1.
  11. Returnaccumulator.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.21 %TypedArray%.prototype.reduceRight (callbackfn [ ,initialValue ] )

The interpretation and use of the arguments of%TypedArray%.prototype.reduceRight are the same as forArray.prototype.reduceRight as defined in23.1.3.22.

When thereduceRight method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Iflen is 0 andinitialValue is not present, throw aTypeError exception.
  6. Letk belen - 1.
  7. Letaccumulator beundefined.
  8. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  9. Else,
    1. LetPk be ! ToString(𝔽(k)).
    2. Setaccumulator to ! Get(O,Pk).
    3. Setk tok - 1.
  10. Repeat, whilek ≥ 0,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok - 1.
  11. Returnaccumulator.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.22 %TypedArray%.prototype.reverse ( )

The interpretation and use of the arguments of%TypedArray%.prototype.reverse are the same as forArray.prototype.reverse as defined in23.1.3.23.

When thereverse method is called, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. Letmiddle befloor(len / 2).
  5. Letlower be 0.
  6. Repeat, whilelowermiddle,
    1. Letupper belen -lower - 1.
    2. LetupperP be ! ToString(𝔽(upper)).
    3. LetlowerP be ! ToString(𝔽(lower)).
    4. LetlowerValue be ! Get(O,lowerP).
    5. LetupperValue be ! Get(O,upperP).
    6. Perform ! Set(O,lowerP,upperValue,true).
    7. Perform ! Set(O,upperP,lowerValue,true).
    8. Setlower tolower + 1.
  7. ReturnO.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.23 %TypedArray%.prototype.set (source [ ,offset ] )

%TypedArray%.prototype.set is a function whose behaviour differs based upon the type of its first argument.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

Sets multiple values in thisTypedArray, reading the values fromsource. The optionaloffset value indicates the first element index in thisTypedArray where values are written. If omitted, it is assumed to be 0.

  1. Lettarget be thethis value.
  2. Perform ? RequireInternalSlot(target, [[TypedArrayName]]).
  3. Assert:target has a [[ViewedArrayBuffer]] internal slot.
  4. LettargetOffset be ? ToIntegerOrInfinity(offset).
  5. IftargetOffset < 0, throw aRangeError exception.
  6. Ifsource is an Object that has a [[TypedArrayName]] internal slot, then
    1. Perform ? SetTypedArrayFromTypedArray(target,targetOffset,source).
  7. Else,
    1. Perform ? SetTypedArrayFromArrayLike(target,targetOffset,source).
  8. Returnundefined.

23.2.3.23.1 SetTypedArrayFromTypedArray (target,targetOffset,source )

The abstract operation SetTypedArrayFromTypedArray takes argumentstarget (a TypedArray object),targetOffset (a non-negativeinteger or +∞), andsource (a TypedArray object). It sets multiple values intarget, starting at indextargetOffset, reading the values fromsource. It performs the following steps when called:

  1. Assert:source is an Object that has a [[TypedArrayName]] internal slot.
  2. LettargetBuffer betarget.[[ViewedArrayBuffer]].
  3. IfIsDetachedBuffer(targetBuffer) istrue, throw aTypeError exception.
  4. LettargetLength betarget.[[ArrayLength]].
  5. LetsrcBuffer besource.[[ViewedArrayBuffer]].
  6. IfIsDetachedBuffer(srcBuffer) istrue, throw aTypeError exception.
  7. LettargetName be the String value oftarget.[[TypedArrayName]].
  8. LettargetType be the Element Type value inTable 60 fortargetName.
  9. LettargetElementSize be the Element Size value specified inTable 60 fortargetName.
  10. LettargetByteOffset betarget.[[ByteOffset]].
  11. LetsrcName be the String value ofsource.[[TypedArrayName]].
  12. LetsrcType be the Element Type value inTable 60 forsrcName.
  13. LetsrcElementSize be the Element Size value specified inTable 60 forsrcName.
  14. LetsrcLength besource.[[ArrayLength]].
  15. LetsrcByteOffset besource.[[ByteOffset]].
  16. IftargetOffset is +∞, throw aRangeError exception.
  17. IfsrcLength +targetOffset >targetLength, throw aRangeError exception.
  18. Iftarget.[[ContentType]] ≠source.[[ContentType]], throw aTypeError exception.
  19. If bothIsSharedArrayBuffer(srcBuffer) andIsSharedArrayBuffer(targetBuffer) aretrue, then
    1. IfsrcBuffer.[[ArrayBufferData]] andtargetBuffer.[[ArrayBufferData]] are the sameShared Data Block values, letsame betrue; else letsame befalse.
  20. Else, letsame beSameValue(srcBuffer,targetBuffer).
  21. Ifsame istrue, then
    1. LetsrcByteLength besource.[[ByteLength]].
    2. SetsrcBuffer to ? CloneArrayBuffer(srcBuffer,srcByteOffset,srcByteLength,%ArrayBuffer%).
    3. NOTE:%ArrayBuffer% is used to clonesrcBuffer because is it known to not have any observable side-effects.
    4. LetsrcByteIndex be 0.
  22. Else, letsrcByteIndex besrcByteOffset.
  23. LettargetByteIndex betargetOffset ×targetElementSize +targetByteOffset.
  24. Letlimit betargetByteIndex +targetElementSize ×srcLength.
  25. IfsrcType is the same astargetType, then
    1. NOTE: IfsrcType andtargetType are the same, the transfer must be performed in a manner that preserves the bit-level encoding of the source data.
    2. Repeat, whiletargetByteIndex <limit,
      1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,Uint8,true,Unordered).
      2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,Uint8,value,true,Unordered).
      3. SetsrcByteIndex tosrcByteIndex + 1.
      4. SettargetByteIndex totargetByteIndex + 1.
  26. Else,
    1. Repeat, whiletargetByteIndex <limit,
      1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,srcType,true,Unordered).
      2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,targetType,value,true,Unordered).
      3. SetsrcByteIndex tosrcByteIndex +srcElementSize.
      4. SettargetByteIndex totargetByteIndex +targetElementSize.

23.2.3.23.2 SetTypedArrayFromArrayLike (target,targetOffset,source )

The abstract operation SetTypedArrayFromArrayLike takes argumentstarget (a TypedArray object),targetOffset (a non-negativeinteger or +∞), andsource (an ECMAScript value other than a TypedArray object). It sets multiple values intarget, starting at indextargetOffset, reading the values fromsource. It performs the following steps when called:

  1. Assert:source is anyECMAScript language value other than an Object with a [[TypedArrayName]] internal slot.
  2. LettargetBuffer betarget.[[ViewedArrayBuffer]].
  3. IfIsDetachedBuffer(targetBuffer) istrue, throw aTypeError exception.
  4. LettargetLength betarget.[[ArrayLength]].
  5. LettargetName be the String value oftarget.[[TypedArrayName]].
  6. LettargetElementSize be the Element Size value specified inTable 60 fortargetName.
  7. LettargetType be the Element Type value inTable 60 fortargetName.
  8. LettargetByteOffset betarget.[[ByteOffset]].
  9. Letsrc be ? ToObject(source).
  10. LetsrcLength be ? LengthOfArrayLike(src).
  11. IftargetOffset is +∞, throw aRangeError exception.
  12. IfsrcLength +targetOffset >targetLength, throw aRangeError exception.
  13. LettargetByteIndex betargetOffset ×targetElementSize +targetByteOffset.
  14. Letk be 0.
  15. Letlimit betargetByteIndex +targetElementSize ×srcLength.
  16. Repeat, whiletargetByteIndex <limit,
    1. LetPk be ! ToString(𝔽(k)).
    2. Letvalue be ? Get(src,Pk).
    3. Iftarget.[[ContentType]] isBigInt, setvalue to ? ToBigInt(value).
    4. Otherwise, setvalue to ? ToNumber(value).
    5. IfIsDetachedBuffer(targetBuffer) istrue, throw aTypeError exception.
    6. PerformSetValueInBuffer(targetBuffer,targetByteIndex,targetType,value,true,Unordered).
    7. Setk tok + 1.
    8. SettargetByteIndex totargetByteIndex +targetElementSize.

23.2.3.24 %TypedArray%.prototype.slice (start,end )

The interpretation and use of the arguments of%TypedArray%.prototype.slice are the same as forArray.prototype.slice as defined in23.1.3.25. The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. LetrelativeStart be ? ToIntegerOrInfinity(start).
  5. IfrelativeStart is -∞, letk be 0.
  6. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  7. Else, letk bemin(relativeStart,len).
  8. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  9. IfrelativeEnd is -∞, letfinal be 0.
  10. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  11. Else, letfinal bemin(relativeEnd,len).
  12. Letcount bemax(final -k, 0).
  13. LetA be ? TypedArraySpeciesCreate(O, «𝔽(count) »).
  14. Ifcount > 0, then
    1. IfIsDetachedBuffer(O.[[ViewedArrayBuffer]]) istrue, throw aTypeError exception.
    2. LetsrcName be the String value ofO.[[TypedArrayName]].
    3. LetsrcType be the Element Type value inTable 60 forsrcName.
    4. LettargetName be the String value ofA.[[TypedArrayName]].
    5. LettargetType be the Element Type value inTable 60 fortargetName.
    6. IfsrcType is different fromtargetType, then
      1. Letn be 0.
      2. Repeat, whilek <final,
        1. LetPk be ! ToString(𝔽(k)).
        2. LetkValue be ! Get(O,Pk).
        3. Perform ! Set(A, ! ToString(𝔽(n)),kValue,true).
        4. Setk tok + 1.
        5. Setn ton + 1.
    7. Else,
      1. LetsrcBuffer beO.[[ViewedArrayBuffer]].
      2. LettargetBuffer beA.[[ViewedArrayBuffer]].
      3. LetelementSize be the Element Size value specified inTable 60 for Element TypesrcType.
      4. NOTE: IfsrcType andtargetType are the same, the transfer must be performed in a manner that preserves the bit-level encoding of the source data.
      5. LetsrcByteOffset beO.[[ByteOffset]].
      6. LettargetByteIndex beA.[[ByteOffset]].
      7. LetsrcByteIndex be (k ×elementSize) +srcByteOffset.
      8. Letlimit betargetByteIndex +count ×elementSize.
      9. Repeat, whiletargetByteIndex <limit,
        1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,Uint8,true,Unordered).
        2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,Uint8,value,true,Unordered).
        3. SetsrcByteIndex tosrcByteIndex + 1.
        4. SettargetByteIndex totargetByteIndex + 1.
  15. ReturnA.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.25 %TypedArray%.prototype.some (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of%TypedArray%.prototype.some are the same as forArray.prototype.some as defined in23.1.3.26.

When thesome method is called with one or two arguments, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. Letlen beO.[[ArrayLength]].
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult be ! ToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, returntrue.
    5. Setk tok + 1.
  7. Returnfalse.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.26 %TypedArray%.prototype.sort (comparefn )

%TypedArray%.prototype.sort is a distinct function that, except as described below, implements the same requirements as those ofArray.prototype.sort as defined in23.1.3.27. The implementation of the%TypedArray%.prototype.sort specification may be optimized with the knowledge that thethis value is an object that has a fixed length and whoseinteger-indexed properties are not sparse.

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

Upon entry, the following steps are performed to initialize evaluation of thesort function. These steps are used instead of steps13 in23.1.3.27:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. Letobj be thethis value.
  3. Letbuffer be ? ValidateTypedArray(obj).
  4. Letlen beobj.[[ArrayLength]].

The following version ofSortCompare is used by%TypedArray%.prototype.sort. It performs a numeric comparison rather than the string comparison used in23.1.3.27.

The abstract operation TypedArraySortCompare takes argumentsx andy. It also has access to thecomparefn andbuffer values of the current invocation of thesort method. It performs the following steps when called:

  1. Assert: BothType(x) andType(y) are Number or both are BigInt.
  2. Ifcomparefn is notundefined, then
    1. Letv be ? ToNumber(?Call(comparefn,undefined, «x,y »)).
    2. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
    3. Ifv isNaN, return+0𝔽.
    4. Returnv.
  3. Ifx andy are bothNaN, return+0𝔽.
  4. Ifx isNaN, return1𝔽.
  5. Ify isNaN, return-1𝔽.
  6. Ifx <y, return-1𝔽.
  7. Ifx >y, return1𝔽.
  8. Ifx is-0𝔽 andy is+0𝔽, return-1𝔽.
  9. Ifx is+0𝔽 andy is-0𝔽, return1𝔽.
  10. Return+0𝔽.
Note

BecauseNaN always compares greater than any other value,NaN property values always sort to the end of the result whencomparefn is not provided.

23.2.3.27 %TypedArray%.prototype.subarray (begin,end )

Returns a newTypedArray object whose element type is the same as thisTypedArray and whose ArrayBuffer is the same as the ArrayBuffer of thisTypedArray, referencing the elements atbegin, inclusive, up toend, exclusive. If eitherbegin orend is negative, it refers to an index from the end of the array, as opposed to from the beginning.

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. LetsrcLength beO.[[ArrayLength]].
  6. LetrelativeBegin be ? ToIntegerOrInfinity(begin).
  7. IfrelativeBegin is -∞, letbeginIndex be 0.
  8. Else ifrelativeBegin < 0, letbeginIndex bemax(srcLength +relativeBegin, 0).
  9. Else, letbeginIndex bemin(relativeBegin,srcLength).
  10. Ifend isundefined, letrelativeEnd besrcLength; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  11. IfrelativeEnd is -∞, letendIndex be 0.
  12. Else ifrelativeEnd < 0, letendIndex bemax(srcLength +relativeEnd, 0).
  13. Else, letendIndex bemin(relativeEnd,srcLength).
  14. LetnewLength bemax(endIndex -beginIndex, 0).
  15. LetconstructorName be the String value ofO.[[TypedArrayName]].
  16. LetelementSize be the Element Size value specified inTable 60 forconstructorName.
  17. LetsrcByteOffset beO.[[ByteOffset]].
  18. LetbeginByteOffset besrcByteOffset +beginIndex ×elementSize.
  19. LetargumentsList be «buffer,𝔽(beginByteOffset),𝔽(newLength) ».
  20. Return ? TypedArraySpeciesCreate(O,argumentsList).

This function is not generic. Thethis value must be an object with a [[TypedArrayName]] internal slot.

23.2.3.28 %TypedArray%.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

%TypedArray%.prototype.toLocaleString is a distinct function that implements the same algorithm asArray.prototype.toLocaleString as defined in23.1.3.29 except that thethis value's [[ArrayLength]] internal slot is accessed in place of performing a [[Get]] of"length". The implementation of the algorithm may be optimized with the knowledge that thethis value is an object that has a fixed length and whoseinteger-indexed properties are not sparse. However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This function is not generic.ValidateTypedArray is applied to thethis value prior to evaluating the algorithm. If its result is anabrupt completion that exception is thrown instead of evaluating the algorithm.

Note

If the ECMAScript implementation includes the ECMA-402 Internationalization API this function is based upon the algorithm forArray.prototype.toLocaleString that is in the ECMA-402 specification.

23.2.3.29 %TypedArray%.prototype.toString ( )

The initial value of the%TypedArray%.prototype.toStringdata property is the same built-infunction object as theArray.prototype.toString method defined in23.1.3.30.

23.2.3.30 %TypedArray%.prototype.values ( )

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O).
  3. ReturnCreateArrayIterator(O,value).

23.2.3.31 %TypedArray%.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is the samefunction object as the initial value of the%TypedArray%.prototype.values property.

23.2.3.32 get %TypedArray%.prototype [ @@toStringTag ]

%TypedArray%.prototype[@@toStringTag] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. IfType(O) is not Object, returnundefined.
  3. IfO does not have a [[TypedArrayName]] internal slot, returnundefined.
  4. Letname beO.[[TypedArrayName]].
  5. Assert:Type(name) is String.
  6. Returnname.

This property has the attributes { [[Enumerable]]:false, [[Configurable]]:true }.

The initial value of the"name" property of this function is"get [Symbol.toStringTag]".

23.2.4 Abstract Operations for TypedArray Objects

23.2.4.1 TypedArraySpeciesCreate (exemplar,argumentList )

The abstract operation TypedArraySpeciesCreate takes argumentsexemplar andargumentList. It is used to specify the creation of a new TypedArray object using aconstructor function that is derived fromexemplar. It performs the following steps when called:

  1. Assert:exemplar is an Object that has [[TypedArrayName]] and [[ContentType]] internal slots.
  2. LetdefaultConstructor be the intrinsic object listed in column one ofTable 60 forexemplar.[[TypedArrayName]].
  3. Letconstructor be ? SpeciesConstructor(exemplar,defaultConstructor).
  4. Letresult be ? TypedArrayCreate(constructor,argumentList).
  5. Assert:result has [[TypedArrayName]] and [[ContentType]] internal slots.
  6. Ifresult.[[ContentType]] ≠exemplar.[[ContentType]], throw aTypeError exception.
  7. Returnresult.

23.2.4.2 TypedArrayCreate (constructor,argumentList )

The abstract operation TypedArrayCreate takes argumentsconstructor andargumentList. It is used to specify the creation of a new TypedArray object using aconstructor function. It performs the following steps when called:

  1. LetnewTypedArray be ? Construct(constructor,argumentList).
  2. Perform ? ValidateTypedArray(newTypedArray).
  3. IfargumentList is aList of a single Number, then
    1. IfnewTypedArray.[[ArrayLength]] <(argumentList[0]), throw aTypeError exception.
  4. ReturnnewTypedArray.

23.2.4.3 ValidateTypedArray (O )

The abstract operation ValidateTypedArray takes argumentO. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(O, [[TypedArrayName]]).
  2. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  3. Letbuffer beO.[[ViewedArrayBuffer]].
  4. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  5. Returnbuffer.

23.2.5 TheTypedArray Constructors

EachTypedArrayconstructor:

  • is an intrinsic object that has the structure described below, differing only in the name used as theconstructor name instead ofTypedArray, inTable 60.
  • is a function whose behaviour differs based upon the number and types of its arguments. The actual behaviour of a call ofTypedArray depends upon the number and kind of arguments that are passed to it.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specifiedTypedArray behaviour must include asuper call to theTypedArrayconstructor to create and initialize the subclass instance with the internal state necessary to support the%TypedArray%.prototype built-in methods.
  • has a"length" property whose value is3𝔽.

23.2.5.1TypedArray ( ...args )

EachTypedArrayconstructor performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetconstructorName be the String value of theConstructor Name value specified inTable 60 for thisTypedArrayconstructor.
  3. Letproto be"%TypedArray.prototype%".
  4. LetnumberOfArgs be the number of elements inargs.
  5. IfnumberOfArgs = 0, then
    1. Return ? AllocateTypedArray(constructorName, NewTarget,proto, 0).
  6. Else,
    1. LetfirstArgument beargs[0].
    2. IfType(firstArgument) is Object, then
      1. LetO be ? AllocateTypedArray(constructorName, NewTarget,proto).
      2. IffirstArgument has a [[TypedArrayName]] internal slot, then
        1. Perform ? InitializeTypedArrayFromTypedArray(O,firstArgument).
      3. Else iffirstArgument has an [[ArrayBufferData]] internal slot, then
        1. IfnumberOfArgs > 1, letbyteOffset beargs[1]; else letbyteOffset beundefined.
        2. IfnumberOfArgs > 2, letlength beargs[2]; else letlength beundefined.
        3. Perform ? InitializeTypedArrayFromArrayBuffer(O,firstArgument,byteOffset,length).
      4. Else,
        1. Assert:Type(firstArgument) is Object andfirstArgument does not have either a [[TypedArrayName]] or an [[ArrayBufferData]] internal slot.
        2. LetusingIterator be ? GetMethod(firstArgument,@@iterator).
        3. IfusingIterator is notundefined, then
          1. Letvalues be ? IterableToList(firstArgument,usingIterator).
          2. Perform ? InitializeTypedArrayFromList(O,values).
        4. Else,
          1. NOTE:firstArgument is not an Iterable so assume it is already anarray-like object.
          2. Perform ? InitializeTypedArrayFromArrayLike(O,firstArgument).
      5. ReturnO.
    3. Else,
      1. Assert:firstArgument is not an Object.
      2. LetelementLength be ? ToIndex(firstArgument).
      3. Return ? AllocateTypedArray(constructorName, NewTarget,proto,elementLength).

23.2.5.1.1 AllocateTypedArray (constructorName,newTarget,defaultProto [ ,length ] )

The abstract operation AllocateTypedArray takes argumentsconstructorName (a String which is the name of a TypedArrayconstructor inTable 60),newTarget, anddefaultProto and optional argumentlength (a non-negativeinteger). It is used to validate and create an instance of a TypedArrayconstructor. If thelength argument is passed, an ArrayBuffer of that length is also allocated and associated with the new TypedArray instance. AllocateTypedArray provides common semantics that is used byTypedArray. It performs the following steps when called:

  1. Letproto be ? GetPrototypeFromConstructor(newTarget,defaultProto).
  2. Letobj be ! IntegerIndexedObjectCreate(proto).
  3. Assert:obj.[[ViewedArrayBuffer]] isundefined.
  4. Setobj.[[TypedArrayName]] toconstructorName.
  5. IfconstructorName is"BigInt64Array" or"BigUint64Array", setobj.[[ContentType]] toBigInt.
  6. Otherwise, setobj.[[ContentType]] toNumber.
  7. Iflength is not present, then
    1. Setobj.[[ByteLength]] to 0.
    2. Setobj.[[ByteOffset]] to 0.
    3. Setobj.[[ArrayLength]] to 0.
  8. Else,
    1. Perform ? AllocateTypedArrayBuffer(obj,length).
  9. Returnobj.

23.2.5.1.2 InitializeTypedArrayFromTypedArray (O,srcArray )

The abstract operation InitializeTypedArrayFromTypedArray takes argumentsO (a TypedArray object) andsrcArray (a TypedArray object). It performs the following steps when called:

  1. Assert:O is an Object that has a [[TypedArrayName]] internal slot.
  2. Assert:srcArray is an Object that has a [[TypedArrayName]] internal slot.
  3. LetsrcData besrcArray.[[ViewedArrayBuffer]].
  4. IfIsDetachedBuffer(srcData) istrue, throw aTypeError exception.
  5. LetconstructorName be the String value ofO.[[TypedArrayName]].
  6. LetelementType be the Element Type value inTable 60 forconstructorName.
  7. LetelementLength besrcArray.[[ArrayLength]].
  8. LetsrcName be the String value ofsrcArray.[[TypedArrayName]].
  9. LetsrcType be the Element Type value inTable 60 forsrcName.
  10. LetsrcElementSize be the Element Size value specified inTable 60 forsrcName.
  11. LetsrcByteOffset besrcArray.[[ByteOffset]].
  12. LetelementSize be the Element Size value specified inTable 60 forconstructorName.
  13. LetbyteLength beelementSize ×elementLength.
  14. IfIsSharedArrayBuffer(srcData) isfalse, then
    1. LetbufferConstructor be ? SpeciesConstructor(srcData,%ArrayBuffer%).
  15. Else,
    1. LetbufferConstructor be%ArrayBuffer%.
  16. IfelementType is the same assrcType, then
    1. Letdata be ? CloneArrayBuffer(srcData,srcByteOffset,byteLength,bufferConstructor).
  17. Else,
    1. Letdata be ? AllocateArrayBuffer(bufferConstructor,byteLength).
    2. IfIsDetachedBuffer(srcData) istrue, throw aTypeError exception.
    3. IfsrcArray.[[ContentType]] ≠O.[[ContentType]], throw aTypeError exception.
    4. LetsrcByteIndex besrcByteOffset.
    5. LettargetByteIndex be 0.
    6. Letcount beelementLength.
    7. Repeat, whilecount > 0,
      1. Letvalue beGetValueFromBuffer(srcData,srcByteIndex,srcType,true,Unordered).
      2. PerformSetValueInBuffer(data,targetByteIndex,elementType,value,true,Unordered).
      3. SetsrcByteIndex tosrcByteIndex +srcElementSize.
      4. SettargetByteIndex totargetByteIndex +elementSize.
      5. Setcount tocount - 1.
  18. SetO.[[ViewedArrayBuffer]] todata.
  19. SetO.[[ByteLength]] tobyteLength.
  20. SetO.[[ByteOffset]] to 0.
  21. SetO.[[ArrayLength]] toelementLength.

23.2.5.1.3 InitializeTypedArrayFromArrayBuffer (O,buffer,byteOffset,length )

The abstract operation InitializeTypedArrayFromArrayBuffer takes argumentsO (a TypedArray object),buffer (an ArrayBuffer object),byteOffset (anECMAScript language value), andlength (anECMAScript language value). It performs the following steps when called:

  1. Assert:O is an Object that has a [[TypedArrayName]] internal slot.
  2. Assert:buffer is an Object that has an [[ArrayBufferData]] internal slot.
  3. LetconstructorName be the String value ofO.[[TypedArrayName]].
  4. LetelementSize be the Element Size value specified inTable 60 forconstructorName.
  5. Letoffset be ? ToIndex(byteOffset).
  6. IfoffsetmoduloelementSize ≠ 0, throw aRangeError exception.
  7. Iflength is notundefined, then
    1. LetnewLength be ? ToIndex(length).
  8. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  9. LetbufferByteLength bebuffer.[[ArrayBufferByteLength]].
  10. Iflength isundefined, then
    1. IfbufferByteLengthmoduloelementSize ≠ 0, throw aRangeError exception.
    2. LetnewByteLength bebufferByteLength -offset.
    3. IfnewByteLength < 0, throw aRangeError exception.
  11. Else,
    1. LetnewByteLength benewLength ×elementSize.
    2. Ifoffset +newByteLength >bufferByteLength, throw aRangeError exception.
  12. SetO.[[ViewedArrayBuffer]] tobuffer.
  13. SetO.[[ByteLength]] tonewByteLength.
  14. SetO.[[ByteOffset]] tooffset.
  15. SetO.[[ArrayLength]] tonewByteLength /elementSize.

23.2.5.1.4 InitializeTypedArrayFromList (O,values )

The abstract operation InitializeTypedArrayFromList takes argumentsO (a TypedArray object) andvalues (aList of ECMAScript language values). It performs the following steps when called:

  1. Assert:O is an Object that has a [[TypedArrayName]] internal slot.
  2. Letlen be the number of elements invalues.
  3. Perform ? AllocateTypedArrayBuffer(O,len).
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be the first element ofvalues and remove that element fromvalues.
    3. Perform ? Set(O,Pk,kValue,true).
    4. Setk tok + 1.
  6. Assert:values is now an emptyList.

23.2.5.1.5 InitializeTypedArrayFromArrayLike (O,arrayLike )

The abstract operation InitializeTypedArrayFromArrayLike takes argumentsO (a TypedArray object) andarrayLike (an Object that is neither a TypedArray object nor an ArrayBuffer object). It performs the following steps when called:

  1. Assert:O is an Object that has a [[TypedArrayName]] internal slot.
  2. Letlen be ? LengthOfArrayLike(arrayLike).
  3. Perform ? AllocateTypedArrayBuffer(O,len).
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Perform ? Set(O,Pk,kValue,true).
    4. Setk tok + 1.

23.2.5.1.6 AllocateTypedArrayBuffer (O,length )

The abstract operation AllocateTypedArrayBuffer takes argumentsO (a TypedArray object) andlength (a non-negativeinteger). It allocates and associates an ArrayBuffer withO. It performs the following steps when called:

  1. Assert:O is an Object that has a [[ViewedArrayBuffer]] internal slot.
  2. Assert:O.[[ViewedArrayBuffer]] isundefined.
  3. LetconstructorName be the String value ofO.[[TypedArrayName]].
  4. LetelementSize be the Element Size value specified inTable 60 forconstructorName.
  5. LetbyteLength beelementSize ×length.
  6. Letdata be ? AllocateArrayBuffer(%ArrayBuffer%,byteLength).
  7. SetO.[[ViewedArrayBuffer]] todata.
  8. SetO.[[ByteLength]] tobyteLength.
  9. SetO.[[ByteOffset]] to 0.
  10. SetO.[[ArrayLength]] tolength.
  11. ReturnO.

23.2.6 Properties of theTypedArray Constructors

EachTypedArrayconstructor:

  • has a [[Prototype]] internal slot whose value is%TypedArray%.
  • has a"name" property whose value is the String value of theconstructor name specified for it inTable 60.
  • has the following properties:

23.2.6.1TypedArray.BYTES_PER_ELEMENT

The value ofTypedArray.BYTES_PER_ELEMENT is the Element Size value specified inTable 60 forTypedArray.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

23.2.6.2TypedArray.prototype

The initial value ofTypedArray.prototype is the correspondingTypedArray prototype intrinsic object (23.2.7).

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

23.2.7 Properties of theTypedArray Prototype Objects

EachTypedArray prototype object:

  • has a [[Prototype]] internal slot whose value is%TypedArray.prototype%.
  • is anordinary object.
  • does not have a [[ViewedArrayBuffer]] or any other of the internal slots that are specific toTypedArray instance objects.

23.2.7.1TypedArray.prototype.BYTES_PER_ELEMENT

The value ofTypedArray.prototype.BYTES_PER_ELEMENT is the Element Size value specified inTable 60 forTypedArray.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

23.2.7.2TypedArray.prototype.constructor

The initial value of aTypedArray.prototype.constructor is the corresponding%TypedArray% intrinsic object.

23.2.8 Properties ofTypedArray Instances

TypedArray instances areInteger-Indexed exotic objects. EachTypedArray instance inherits properties from the correspondingTypedArray prototype object. EachTypedArray instance has the following internal slots: [[TypedArrayName]], [[ViewedArrayBuffer]], [[ByteLength]], [[ByteOffset]], and [[ArrayLength]].

24 Keyed Collections

24.1 Map Objects

Map objects are collections of key/value pairs where both the keys and values may be arbitrary ECMAScript language values. A distinct key value may only occur in one key/value pair within the Map's collection. Distinct key values are discriminated using theSameValueZero comparison algorithm.

Map object must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structures used in this Map objects specification is only intended to describe the required observable semantics of Map objects. It is not intended to be a viable implementation model.

24.1.1 The Map Constructor

The Mapconstructor:

  • is%Map%.
  • is the initial value of the"Map" property of theglobal object.
  • creates and initializes a new Map object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specified Map behaviour must include asuper call to the Mapconstructor to create and initialize the subclass instance with the internal state necessary to support theMap.prototype built-in methods.

24.1.1.1 Map ( [iterable ] )

When theMap function is called with optional argumentiterable, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letmap be ? OrdinaryCreateFromConstructor(NewTarget,"%Map.prototype%", « [[MapData]] »).
  3. Setmap.[[MapData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnmap.
  5. Letadder be ? Get(map,"set").
  6. Return ? AddEntriesFromIterable(map,iterable,adder).
Note

If the parameteriterable is present, it is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a Map key and whose second element is the value to associate with that key.

24.1.1.2 AddEntriesFromIterable (target,iterable,adder )

The abstract operation AddEntriesFromIterable takes argumentstarget,iterable, andadder (afunction object).adder will be invoked, withtarget as the receiver. It performs the following steps when called:

  1. IfIsCallable(adder) isfalse, throw aTypeError exception.
  2. Assert:iterable is present, and is neitherundefined nornull.
  3. LetiteratorRecord be ? GetIterator(iterable).
  4. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returntarget.
    3. LetnextItem be ? IteratorValue(next).
    4. IfType(nextItem) is not Object, then
      1. Leterror beThrowCompletion(a newly createdTypeError object).
      2. Return ? IteratorClose(iteratorRecord,error).
    5. Letk beGet(nextItem,"0").
    6. Ifk is anabrupt completion, return ? IteratorClose(iteratorRecord,k).
    7. Letv beGet(nextItem,"1").
    8. Ifv is anabrupt completion, return ? IteratorClose(iteratorRecord,v).
    9. Letstatus beCall(adder,target, «k.[[Value]],v.[[Value]] »).
    10. Ifstatus is anabrupt completion, return ? IteratorClose(iteratorRecord,status).
Note

The parameteriterable is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a Map key and whose second element is the value to associate with that key.

24.1.2 Properties of the Map Constructor

The Mapconstructor:

24.1.2.1 Map.prototype

The initial value ofMap.prototype is theMap prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

24.1.2.2 get Map [ @@species ]

Map[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Methods that create derived collection objects should call@@species to determine theconstructor to use to create the derived objects. Subclassconstructor may over-ride@@species to change the defaultconstructor assignment.

24.1.3 Properties of the Map Prototype Object

TheMap prototype object:

24.1.3.1 Map.prototype.clear ( )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Setp.[[Key]] toempty.
    2. Setp.[[Value]] toempty.
  5. Returnundefined.
Note

The existing [[MapData]]List is preserved because there may be existing Map Iterator objects that are suspended midway through iterating over thatList.

24.1.3.2 Map.prototype.constructor

The initial value ofMap.prototype.constructor is%Map%.

24.1.3.3 Map.prototype.delete (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, then
      1. Setp.[[Key]] toempty.
      2. Setp.[[Value]] toempty.
      3. Returntrue.
  5. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.1.3.4 Map.prototype.entries ( )

The following steps are taken:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,key+value).

24.1.3.5 Map.prototype.forEach (callbackfn [ ,thisArg ] )

When theforEach method is called with one or two arguments, the following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letentries be theList that isM.[[MapData]].
  5. For eachRecord { [[Key]], [[Value]] }e ofentries, do
    1. Ife.[[Key]] is notempty, then
      1. Perform ? Call(callbackfn,thisArg, «e.[[Value]],e.[[Key]],M »).
  6. Returnundefined.
Note

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each key/value pair present in the map object, in key insertion order.callbackfn is called only for keys of the map which actually exist; it is not called for keys that have been deleted from the map.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the item, the key of the item, and the Map object being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn. Each entry of a map's [[MapData]] is only visited once. New keys added after the call toforEach begins are visited. A key will be revisited if it is deleted after it has been visited and then re-added before theforEach call completes. Keys that are deleted after the call toforEach begins and before being visited are not visited unless the key is added again before theforEach call completes.

24.1.3.6 Map.prototype.get (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, returnp.[[Value]].
  5. Returnundefined.

24.1.3.7 Map.prototype.has (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, returntrue.
  5. Returnfalse.

24.1.3.8 Map.prototype.keys ( )

The following steps are taken:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,key).

24.1.3.9 Map.prototype.set (key,value )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, then
      1. Setp.[[Value]] tovalue.
      2. ReturnM.
  5. Ifkey is-0𝔽, setkey to+0𝔽.
  6. Letp be theRecord { [[Key]]:key, [[Value]]:value }.
  7. Appendp as the last element ofentries.
  8. ReturnM.

24.1.3.10 get Map.prototype.size

Map.prototype.size is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[MapData]]).
  3. Letentries be theList that isM.[[MapData]].
  4. Letcount be 0.
  5. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty, setcount tocount + 1.
  6. Return𝔽(count).

24.1.3.11 Map.prototype.values ( )

The following steps are taken:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,value).

24.1.3.12 Map.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is the samefunction object as the initial value of the"entries" property.

24.1.3.13 Map.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Map".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.1.4 Properties of Map Instances

Map instances are ordinary objects that inherit properties from the Map prototype. Map instances also have a [[MapData]] internal slot.

24.1.5 Map Iterator Objects

A Map Iterator is an object, that represents a specific iteration over some specific Map instance object. There is not a namedconstructor for Map Iterator objects. Instead, map iterator objects are created by calling certain methods of Map instance objects.

24.1.5.1 CreateMapIterator (map,kind )

The abstract operation CreateMapIterator takes argumentsmap andkind. This operation is used to create iterator objects for Map methods that return such iterators. It performs the following steps when called:

  1. Assert:kind iskey+value,key, orvalue.
  2. Perform ? RequireInternalSlot(map, [[MapData]]).
  3. Letclosure be a newAbstract Closure with no parameters that capturesmap andkind and performs the following steps when called:
    1. Letentries be theList that ismap.[[MapData]].
    2. Letindex be 0.
    3. LetnumEntries be the number of elements ofentries.
    4. Repeat, whileindex <numEntries,
      1. Lete be theRecord { [[Key]], [[Value]] } that is the value ofentries[index].
      2. Setindex toindex + 1.
      3. Ife.[[Key]] is notempty, then
        1. Ifkind iskey, letresult bee.[[Key]].
        2. Else ifkind isvalue, letresult bee.[[Value]].
        3. Else,
          1. Assert:kind iskey+value.
          2. Letresult be ! CreateArrayFromListe.[[Key]],e.[[Value]] »).
        4. Perform ? Yield(result).
        5. NOTE: the number of elements inentries may have changed while execution of this abstract operation was paused byYield.
        6. SetnumEntries to the number of elements ofentries.
    5. Returnundefined.
  4. Return ! CreateIteratorFromClosure(closure,"%MapIteratorPrototype%",%MapIteratorPrototype%).

24.1.5.2 The %MapIteratorPrototype% Object

The%MapIteratorPrototype% object:

  • has properties that are inherited by all Map Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

24.1.5.2.1 %MapIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%MapIteratorPrototype%").

24.1.5.2.2 %MapIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Map Iterator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.2 Set Objects

Set objects are collections of ECMAScript language values. A distinct value may only occur once as an element of a Set's collection. Distinct values are discriminated using theSameValueZero comparison algorithm.

Set objects must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structures used in this Set objects specification is only intended to describe the required observable semantics of Set objects. It is not intended to be a viable implementation model.

24.2.1 The Set Constructor

The Setconstructor:

  • is%Set%.
  • is the initial value of the"Set" property of theglobal object.
  • creates and initializes a new Set object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specified Set behaviour must include asuper call to the Setconstructor to create and initialize the subclass instance with the internal state necessary to support theSet.prototype built-in methods.

24.2.1.1 Set ( [iterable ] )

When theSet function is called with optional argumentiterable, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letset be ? OrdinaryCreateFromConstructor(NewTarget,"%Set.prototype%", « [[SetData]] »).
  3. Setset.[[SetData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnset.
  5. Letadder be ? Get(set,"add").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. LetiteratorRecord be ? GetIterator(iterable).
  8. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returnset.
    3. LetnextValue be ? IteratorValue(next).
    4. Letstatus beCall(adder,set, «nextValue »).
    5. Ifstatus is anabrupt completion, return ? IteratorClose(iteratorRecord,status).

24.2.2 Properties of the Set Constructor

The Setconstructor:

24.2.2.1 Set.prototype

The initial value ofSet.prototype is theSet prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

24.2.2.2 get Set [ @@species ]

Set[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Methods that create derived collection objects should call@@species to determine theconstructor to use to create the derived objects. Subclassconstructor may over-ride@@species to change the defaultconstructor assignment.

24.2.3 Properties of the Set Prototype Object

TheSet prototype object:

24.2.3.1 Set.prototype.add (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. Letentries be theList that isS.[[SetData]].
  4. For each elemente ofentries, do
    1. Ife is notempty andSameValueZero(e,value) istrue, then
      1. ReturnS.
  5. Ifvalue is-0𝔽, setvalue to+0𝔽.
  6. Appendvalue as the last element ofentries.
  7. ReturnS.

24.2.3.2 Set.prototype.clear ( )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. Letentries be theList that isS.[[SetData]].
  4. For each elemente ofentries, do
    1. Replace the element ofentries whose value ise with an element whose value isempty.
  5. Returnundefined.
Note

The existing [[SetData]]List is preserved because there may be existing Set Iterator objects that are suspended midway through iterating over thatList.

24.2.3.3 Set.prototype.constructor

The initial value ofSet.prototype.constructor is%Set%.

24.2.3.4 Set.prototype.delete (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. Letentries be theList that isS.[[SetData]].
  4. For each elemente ofentries, do
    1. Ife is notempty andSameValueZero(e,value) istrue, then
      1. Replace the element ofentries whose value ise with an element whose value isempty.
      2. Returntrue.
  5. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.2.3.5 Set.prototype.entries ( )

The following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateSetIterator(S,key+value).
Note

For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

24.2.3.6 Set.prototype.forEach (callbackfn [ ,thisArg ] )

When theforEach method is called with one or two arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letentries be theList that isS.[[SetData]].
  5. For each elemente ofentries, do
    1. Ife is notempty, then
      1. Perform ? Call(callbackfn,thisArg, «e,e,S »).
  6. Returnundefined.
Note

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each value present in the set object, in value insertion order.callbackfn is called only for values of the Set which actually exist; it is not called for keys that have been deleted from the set.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the first two arguments are a value contained in the Set. The same value is passed for both arguments. The Set object being traversed is passed as the third argument.

Thecallbackfn is called with three arguments to be consistent with the call back functions used byforEach methods for Map and Array. For Sets, each item value is considered to be both the key and the value.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

Each value is normally visited only once. However, a value will be revisited if it is deleted after it has been visited and then re-added before theforEach call completes. Values that are deleted after the call toforEach begins and before being visited are not visited unless the value is added again before theforEach call completes. New values added after the call toforEach begins are visited.

24.2.3.7 Set.prototype.has (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. Letentries be theList that isS.[[SetData]].
  4. For each elemente ofentries, do
    1. Ife is notempty andSameValueZero(e,value) istrue, returntrue.
  5. Returnfalse.

24.2.3.8 Set.prototype.keys ( )

The initial value of the"keys" property is the samefunction object as the initial value of the"values" property.

Note

For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

24.2.3.9 get Set.prototype.size

Set.prototype.size is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[SetData]]).
  3. Letentries be theList that isS.[[SetData]].
  4. Letcount be 0.
  5. For each elemente ofentries, do
    1. Ife is notempty, setcount tocount + 1.
  6. Return𝔽(count).

24.2.3.10 Set.prototype.values ( )

The following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateSetIterator(S,value).

24.2.3.11 Set.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is the samefunction object as the initial value of the"values" property.

24.2.3.12 Set.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Set".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.2.4 Properties of Set Instances

Set instances are ordinary objects that inherit properties from the Set prototype. Set instances also have a [[SetData]] internal slot.

24.2.5 Set Iterator Objects

A Set Iterator is anordinary object, with the structure defined below, that represents a specific iteration over some specific Set instance object. There is not a namedconstructor for Set Iterator objects. Instead, set iterator objects are created by calling certain methods of Set instance objects.

24.2.5.1 CreateSetIterator (set,kind )

The abstract operation CreateSetIterator takes argumentsset andkind. This operation is used to create iterator objects for Set methods that return such iterators. It performs the following steps when called:

  1. Assert:kind iskey+value orvalue.
  2. Perform ? RequireInternalSlot(set, [[SetData]]).
  3. Letclosure be a newAbstract Closure with no parameters that capturesset andkind and performs the following steps when called:
    1. Letindex be 0.
    2. Letentries be theList that isset.[[SetData]].
    3. LetnumEntries be the number of elements ofentries.
    4. Repeat, whileindex <numEntries,
      1. Lete beentries[index].
      2. Setindex toindex + 1.
      3. Ife is notempty, then
        1. Ifkind iskey+value, then
          1. Perform ? Yield(!CreateArrayFromListe,e »)).
        2. Else,
          1. Assert:kind isvalue.
          2. Perform ? Yield(e).
        3. NOTE: the number of elements inentries may have changed while execution of this abstract operation was paused byYield.
        4. SetnumEntries to the number of elements ofentries.
    5. Returnundefined.
  4. Return ! CreateIteratorFromClosure(closure,"%SetIteratorPrototype%",%SetIteratorPrototype%).

24.2.5.2 The %SetIteratorPrototype% Object

The%SetIteratorPrototype% object:

  • has properties that are inherited by all Set Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

24.2.5.2.1 %SetIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%SetIteratorPrototype%").

24.2.5.2.2 %SetIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Set Iterator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.3 WeakMap Objects

WeakMap objects are collections of key/value pairs where the keys are objects and values may be arbitrary ECMAScript language values. A WeakMap may be queried to see if it contains a key/value pair with a specific key, but no mechanism is provided for enumerating the objects it holds as keys. In certain conditions, objects which are notlive are removed as WeakMap keys, as described in9.9.3.

An implementation may impose an arbitrarily determined latency between the time a key/value pair of a WeakMap becomes inaccessible and the time when the key/value pair is removed from the WeakMap. If this latency was observable to ECMAScript program, it would be a source of indeterminacy that could impact program execution. For that reason, an ECMAScript implementation must not provide any means to observe a key of a WeakMap that does not require the observer to present the observed key.

WeakMap objects must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of key/value pairs in the collection. The data structure used in this WeakMap objects specification are only intended to describe the required observable semantics of WeakMap objects. It is not intended to be a viable implementation model.

Note

WeakMap and WeakSets are intended to provide mechanisms for dynamically associating state with an object in a manner that does not “leak” memory resources if, in the absence of the WeakMap or WeakSet, the object otherwise became inaccessible and subject to resource reclamation by the implementation's garbage collection mechanisms. This characteristic can be achieved by using an inverted per-object mapping of weak map instances to keys. Alternatively each weak map may internally store its key to value mappings but this approach requires coordination between the WeakMap or WeakSet implementation and the garbage collector. The following references describe mechanism that may be useful to implementations of WeakMap and WeakSets:

Barry Hayes. 1997. Ephemerons: a new finalization mechanism. InProceedings of the 12th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (OOPSLA '97), A. Michael Berman (Ed.). ACM, New York, NY, USA, 176-183,http://doi.acm.org/10.1145/263698.263733.

Alexandra Barros, Roberto Ierusalimschy, Eliminating Cycles in Weak Tables. Journal of Universal Computer Science - J.UCS, vol. 14, no. 21, pp. 3481-3497, 2008,http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak

24.3.1 The WeakMap Constructor

The WeakMapconstructor:

  • is%WeakMap%.
  • is the initial value of the"WeakMap" property of theglobal object.
  • creates and initializes a new WeakMap object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specified WeakMap behaviour must include asuper call to the WeakMapconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakMap.prototype built-in methods.

24.3.1.1 WeakMap ( [iterable ] )

When theWeakMap function is called with optional argumentiterable, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letmap be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakMap.prototype%", « [[WeakMapData]] »).
  3. Setmap.[[WeakMapData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnmap.
  5. Letadder be ? Get(map,"set").
  6. Return ? AddEntriesFromIterable(map,iterable,adder).
Note

If the parameteriterable is present, it is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a WeakMap key and whose second element is the value to associate with that key.

24.3.2 Properties of the WeakMap Constructor

The WeakMapconstructor:

24.3.2.1 WeakMap.prototype

The initial value ofWeakMap.prototype is theWeakMap prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

24.3.3 Properties of the WeakMap Prototype Object

TheWeakMap prototype object:

24.3.3.1 WeakMap.prototype.constructor

The initial value ofWeakMap.prototype.constructor is%WeakMap%.

24.3.3.2 WeakMap.prototype.delete (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[WeakMapData]]).
  3. Letentries be theList that isM.[[WeakMapData]].
  4. IfType(key) is not Object, returnfalse.
  5. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, then
      1. Setp.[[Key]] toempty.
      2. Setp.[[Value]] toempty.
      3. Returntrue.
  6. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.3.3.3 WeakMap.prototype.get (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[WeakMapData]]).
  3. Letentries be theList that isM.[[WeakMapData]].
  4. IfType(key) is not Object, returnundefined.
  5. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, returnp.[[Value]].
  6. Returnundefined.

24.3.3.4 WeakMap.prototype.has (key )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[WeakMapData]]).
  3. Letentries be theList that isM.[[WeakMapData]].
  4. IfType(key) is not Object, returnfalse.
  5. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, returntrue.
  6. Returnfalse.

24.3.3.5 WeakMap.prototype.set (key,value )

The following steps are taken:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M, [[WeakMapData]]).
  3. Letentries be theList that isM.[[WeakMapData]].
  4. IfType(key) is not Object, throw aTypeError exception.
  5. For eachRecord { [[Key]], [[Value]] }p ofentries, do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, then
      1. Setp.[[Value]] tovalue.
      2. ReturnM.
  6. Letp be theRecord { [[Key]]:key, [[Value]]:value }.
  7. Appendp as the last element ofentries.
  8. ReturnM.

24.3.3.6 WeakMap.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakMap".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.3.4 Properties of WeakMap Instances

WeakMap instances are ordinary objects that inherit properties from the WeakMap prototype. WeakMap instances also have a [[WeakMapData]] internal slot.

24.4 WeakSet Objects

WeakSet objects are collections of objects. A distinct object may only occur once as an element of a WeakSet's collection. A WeakSet may be queried to see if it contains a specific object, but no mechanism is provided for enumerating the objects it holds. In certain conditions, objects which are notlive are removed as WeakSet elements, as described in9.9.3.

An implementation may impose an arbitrarily determined latency between the time an object contained in a WeakSet becomes inaccessible and the time when the object is removed from the WeakSet. If this latency was observable to ECMAScript program, it would be a source of indeterminacy that could impact program execution. For that reason, an ECMAScript implementation must not provide any means to determine if a WeakSet contains a particular object that does not require the observer to present the observed object.

WeakSet objects must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structure used in this WeakSet objects specification is only intended to describe the required observable semantics of WeakSet objects. It is not intended to be a viable implementation model.

Note

See the NOTE in24.3.

24.4.1 The WeakSet Constructor

The WeakSetconstructor:

  • is%WeakSet%.
  • is the initial value of the"WeakSet" property of theglobal object.
  • creates and initializes a new WeakSet object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specified WeakSet behaviour must include asuper call to the WeakSetconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakSet.prototype built-in methods.

24.4.1.1 WeakSet ( [iterable ] )

When theWeakSet function is called with optional argumentiterable, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letset be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakSet.prototype%", « [[WeakSetData]] »).
  3. Setset.[[WeakSetData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnset.
  5. Letadder be ? Get(set,"add").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. LetiteratorRecord be ? GetIterator(iterable).
  8. Repeat,
    1. Letnext be ? IteratorStep(iteratorRecord).
    2. Ifnext isfalse, returnset.
    3. LetnextValue be ? IteratorValue(next).
    4. Letstatus beCall(adder,set, «nextValue »).
    5. Ifstatus is anabrupt completion, return ? IteratorClose(iteratorRecord,status).

24.4.2 Properties of the WeakSet Constructor

The WeakSetconstructor:

24.4.2.1 WeakSet.prototype

The initial value ofWeakSet.prototype is theWeakSet prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

24.4.3 Properties of the WeakSet Prototype Object

TheWeakSet prototype object:

24.4.3.1 WeakSet.prototype.add (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[WeakSetData]]).
  3. IfType(value) is not Object, throw aTypeError exception.
  4. Letentries be theList that isS.[[WeakSetData]].
  5. For each elemente ofentries, do
    1. Ife is notempty andSameValue(e,value) istrue, then
      1. ReturnS.
  6. Appendvalue as the last element ofentries.
  7. ReturnS.

24.4.3.2 WeakSet.prototype.constructor

The initial value ofWeakSet.prototype.constructor is the%WeakSet% intrinsic object.

24.4.3.3 WeakSet.prototype.delete (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[WeakSetData]]).
  3. IfType(value) is not Object, returnfalse.
  4. Letentries be theList that isS.[[WeakSetData]].
  5. For each elemente ofentries, do
    1. Ife is notempty andSameValue(e,value) istrue, then
      1. Replace the element ofentries whose value ise with an element whose value isempty.
      2. Returntrue.
  6. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.4.3.4 WeakSet.prototype.has (value )

The following steps are taken:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S, [[WeakSetData]]).
  3. Letentries be theList that isS.[[WeakSetData]].
  4. IfType(value) is not Object, returnfalse.
  5. For each elemente ofentries, do
    1. Ife is notempty andSameValue(e,value) istrue, returntrue.
  6. Returnfalse.

24.4.3.5 WeakSet.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakSet".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

24.4.4 Properties of WeakSet Instances

WeakSet instances are ordinary objects that inherit properties from the WeakSet prototype. WeakSet instances also have a [[WeakSetData]] internal slot.

25 Structured Data

25.1 ArrayBuffer Objects

25.1.1 Notation

The descriptions below in this section,25.4, and29 use the read-modify-write modification function internal data structure.

Aread-modify-write modification function is a mathematical function that is notationally represented as an abstract closure that takes two Lists of byte values as arguments and returns aList of byte values. These abstract closures satisfy all of the following properties:

  • They perform all their algorithm steps atomically.
  • Their individual algorithm steps are not observable.
Note

To aid verifying that a read-modify-write modification function's algorithm steps constitute a pure, mathematical function, the following editorial conventions are recommended:

  • They do not access, directly or transitively via invokedabstract operations and abstract closures, any language or specification values except their parameters and captured values.
  • They do not return completion values.

25.1.2 Abstract Operations For ArrayBuffer Objects

25.1.2.1 AllocateArrayBuffer (constructor,byteLength )

The abstract operation AllocateArrayBuffer takes argumentsconstructor andbyteLength (a non-negativeinteger). It is used to create an ArrayBuffer object. It performs the following steps when called:

  1. Letobj be ? OrdinaryCreateFromConstructor(constructor,"%ArrayBuffer.prototype%", « [[ArrayBufferData]], [[ArrayBufferByteLength]], [[ArrayBufferDetachKey]] »).
  2. Letblock be ? CreateByteDataBlock(byteLength).
  3. Setobj.[[ArrayBufferData]] toblock.
  4. Setobj.[[ArrayBufferByteLength]] tobyteLength.
  5. Returnobj.

25.1.2.2 IsDetachedBuffer (arrayBuffer )

The abstract operation IsDetachedBuffer takes argumentarrayBuffer. It performs the following steps when called:

  1. Assert:Type(arrayBuffer) is Object and it has an [[ArrayBufferData]] internal slot.
  2. IfarrayBuffer.[[ArrayBufferData]] isnull, returntrue.
  3. Returnfalse.

25.1.2.3 DetachArrayBuffer (arrayBuffer [ ,key ] )

The abstract operation DetachArrayBuffer takes argumentarrayBuffer and optional argumentkey. It performs the following steps when called:

  1. Assert:Type(arrayBuffer) is Object and it has [[ArrayBufferData]], [[ArrayBufferByteLength]], and [[ArrayBufferDetachKey]] internal slots.
  2. Assert:IsSharedArrayBuffer(arrayBuffer) isfalse.
  3. Ifkey is not present, setkey toundefined.
  4. IfSameValue(arrayBuffer.[[ArrayBufferDetachKey]],key) isfalse, throw aTypeError exception.
  5. SetarrayBuffer.[[ArrayBufferData]] tonull.
  6. SetarrayBuffer.[[ArrayBufferByteLength]] to 0.
  7. ReturnNormalCompletion(null).
Note

Detaching an ArrayBuffer instance disassociates theData Block used as its backing store from the instance and sets the byte length of the buffer to 0. No operations defined by this specification use the DetachArrayBuffer abstract operation. However, an ECMAScripthost or implementation may define such operations.

25.1.2.4 CloneArrayBuffer (srcBuffer,srcByteOffset,srcLength,cloneConstructor )

The abstract operation CloneArrayBuffer takes argumentssrcBuffer (an ArrayBuffer object),srcByteOffset (a non-negativeinteger),srcLength (a non-negativeinteger), andcloneConstructor (aconstructor). It creates a new ArrayBuffer whose data is a copy ofsrcBuffer's data over the range starting atsrcByteOffset and continuing forsrcLength bytes. It performs the following steps when called:

  1. Assert:Type(srcBuffer) is Object and it has an [[ArrayBufferData]] internal slot.
  2. Assert:IsConstructor(cloneConstructor) istrue.
  3. LettargetBuffer be ? AllocateArrayBuffer(cloneConstructor,srcLength).
  4. IfIsDetachedBuffer(srcBuffer) istrue, throw aTypeError exception.
  5. LetsrcBlock besrcBuffer.[[ArrayBufferData]].
  6. LettargetBlock betargetBuffer.[[ArrayBufferData]].
  7. PerformCopyDataBlockBytes(targetBlock, 0,srcBlock,srcByteOffset,srcLength).
  8. ReturntargetBuffer.

25.1.2.5 IsUnsignedElementType (type )

The abstract operation IsUnsignedElementType takes argumenttype. It verifies if the argumenttype is an unsignedTypedArray element type. It performs the following steps when called:

  1. Iftype isUint8,Uint8C,Uint16,Uint32, orBigUint64, returntrue.
  2. Returnfalse.

25.1.2.6 IsUnclampedIntegerElementType (type )

The abstract operation IsUnclampedIntegerElementType takes argumenttype. It verifies if the argumenttype is anIntegerTypedArray element type not includingUint8C. It performs the following steps when called:

  1. Iftype isInt8,Uint8,Int16,Uint16,Int32, orUint32, returntrue.
  2. Returnfalse.

25.1.2.7 IsBigIntElementType (type )

The abstract operation IsBigIntElementType takes argumenttype. It verifies if the argumenttype is a BigIntTypedArray element type. It performs the following steps when called:

  1. Iftype isBigUint64 orBigInt64, returntrue.
  2. Returnfalse.

25.1.2.8 IsNoTearConfiguration (type,order )

The abstract operation IsNoTearConfiguration takes argumentstype andorder. It performs the following steps when called:

  1. If ! IsUnclampedIntegerElementType(type) istrue, returntrue.
  2. If ! IsBigIntElementType(type) istrue andorder is notInit orUnordered, returntrue.
  3. Returnfalse.

25.1.2.9 RawBytesToNumeric (type,rawBytes,isLittleEndian )

The abstract operation RawBytesToNumeric takes argumentstype (aTypedArray element type),rawBytes (aList), andisLittleEndian (a Boolean). It performs the following steps when called:

  1. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  2. IfisLittleEndian isfalse, reverse the order of the elements ofrawBytes.
  3. Iftype isFloat32, then
    1. Letvalue be the byte elements ofrawBytes concatenated and interpreted as a little-endian bit string encoding of anIEEE 754-2019 binary32 value.
    2. Ifvalue is anIEEE 754-2019 binary32 NaN value, return theNaNNumber value.
    3. Return theNumber value that corresponds tovalue.
  4. Iftype isFloat64, then
    1. Letvalue be the byte elements ofrawBytes concatenated and interpreted as a little-endian bit string encoding of anIEEE 754-2019 binary64 value.
    2. Ifvalue is anIEEE 754-2019 binary64 NaN value, return theNaNNumber value.
    3. Return theNumber value that corresponds tovalue.
  5. If ! IsUnsignedElementType(type) istrue, then
    1. LetintValue be the byte elements ofrawBytes concatenated and interpreted as a bit string encoding of an unsigned little-endian binary number.
  6. Else,
    1. LetintValue be the byte elements ofrawBytes concatenated and interpreted as a bit string encoding of a binary little-endian two's complement number of bit lengthelementSize × 8.
  7. If ! IsBigIntElementType(type) istrue, return the BigInt value that corresponds tointValue.
  8. Otherwise, return theNumber value that corresponds tointValue.

25.1.2.10 GetValueFromBuffer (arrayBuffer,byteIndex,type,isTypedArray,order [ ,isLittleEndian ] )

The abstract operation GetValueFromBuffer takes argumentsarrayBuffer (an ArrayBuffer or SharedArrayBuffer),byteIndex (a non-negativeinteger),type (aTypedArray element type),isTypedArray (a Boolean), andorder (eitherSeqCst orUnordered) and optional argumentisLittleEndian (a Boolean). It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Letblock bearrayBuffer.[[ArrayBufferData]].
  4. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  5. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
    3. IfisTypedArray istrue andIsNoTearConfiguration(type,order) istrue, letnoTear betrue; otherwise letnoTear befalse.
    4. LetrawValue be aList of lengthelementSize whose elements are nondeterministically chosen byte values.
    5. NOTE: In implementations,rawValue is the result of a non-atomic or atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
    6. LetreadEvent beReadSharedMemory { [[Order]]:order, [[NoTear]]:noTear, [[Block]]:block, [[ByteIndex]]:byteIndex, [[ElementSize]]:elementSize }.
    7. AppendreadEvent toeventList.
    8. AppendChosen Value Record { [[Event]]:readEvent, [[ChosenValue]]:rawValue } toexecution.[[ChosenValues]].
  6. Else, letrawValue be aList whose elements are bytes fromblock at indicesbyteIndex (inclusive) throughbyteIndex +elementSize (exclusive).
  7. Assert: The number of elements inrawValue iselementSize.
  8. IfisLittleEndian is not present, setisLittleEndian to the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  9. ReturnRawBytesToNumeric(type,rawValue,isLittleEndian).

25.1.2.11 NumericToRawBytes (type,value,isLittleEndian )

The abstract operation NumericToRawBytes takes argumentstype (aTypedArray element type),value (a BigInt or a Number), andisLittleEndian (a Boolean). It performs the following steps when called:

  1. Iftype isFloat32, then
    1. LetrawBytes be aList whose elements are the 4 bytes that are the result of convertingvalue toIEEE 754-2019 binary32 format using roundTiesToEven mode. IfisLittleEndian isfalse, the bytes are arranged in big endian order. Otherwise, the bytes are arranged in little endian order. Ifvalue isNaN,rawBytes may be set to any implementation chosenIEEE 754-2019 binary32 format Not-a-Number encoding. An implementation must always choose the same encoding for each implementation distinguishableNaN value.
  2. Else iftype isFloat64, then
    1. LetrawBytes be aList whose elements are the 8 bytes that are theIEEE 754-2019 binary64 format encoding ofvalue. IfisLittleEndian isfalse, the bytes are arranged in big endian order. Otherwise, the bytes are arranged in little endian order. Ifvalue isNaN,rawBytes may be set to any implementation chosenIEEE 754-2019 binary64 format Not-a-Number encoding. An implementation must always choose the same encoding for each implementation distinguishableNaN value.
  3. Else,
    1. Letn be the Element Size value specified inTable 60 for Element Typetype.
    2. LetconvOp be the abstract operation named in the Conversion Operation column inTable 60 for Element Typetype.
    3. LetintValue be(convOp(value)).
    4. IfintValue ≥ 0, then
      1. LetrawBytes be aList whose elements are then-byte binary encoding ofintValue. IfisLittleEndian isfalse, the bytes are ordered in big endian order. Otherwise, the bytes are ordered in little endian order.
    5. Else,
      1. LetrawBytes be aList whose elements are then-byte binary two's complement encoding ofintValue. IfisLittleEndian isfalse, the bytes are ordered in big endian order. Otherwise, the bytes are ordered in little endian order.
  4. ReturnrawBytes.

25.1.2.12 SetValueInBuffer (arrayBuffer,byteIndex,type,value,isTypedArray,order [ ,isLittleEndian ] )

The abstract operation SetValueInBuffer takes argumentsarrayBuffer (an ArrayBuffer or SharedArrayBuffer),byteIndex (a non-negativeinteger),type (aTypedArray element type),value (a Number or a BigInt),isTypedArray (a Boolean), andorder (one ofSeqCst,Unordered, orInit) and optional argumentisLittleEndian (a Boolean). It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Assert:Type(value) is BigInt if ! IsBigIntElementType(type) istrue; otherwise,Type(value) is Number.
  4. Letblock bearrayBuffer.[[ArrayBufferData]].
  5. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  6. IfisLittleEndian is not present, setisLittleEndian to the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  7. LetrawBytes beNumericToRawBytes(type,value,isLittleEndian).
  8. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
    3. IfisTypedArray istrue andIsNoTearConfiguration(type,order) istrue, letnoTear betrue; otherwise letnoTear befalse.
    4. AppendWriteSharedMemory { [[Order]]:order, [[NoTear]]:noTear, [[Block]]:block, [[ByteIndex]]:byteIndex, [[ElementSize]]:elementSize, [[Payload]]:rawBytes } toeventList.
  9. Else, store the individual bytes ofrawBytes intoblock, starting atblock[byteIndex].
  10. ReturnNormalCompletion(undefined).

25.1.2.13 GetModifySetValueInBuffer (arrayBuffer,byteIndex,type,value,op [ ,isLittleEndian ] )

The abstract operation GetModifySetValueInBuffer takes argumentsarrayBuffer (an ArrayBuffer object or a SharedArrayBuffer object),byteIndex (a non-negativeinteger),type (aTypedArray element type),value (a Number or a BigInt), andop (aread-modify-write modification function) and optional argumentisLittleEndian (a Boolean). It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Assert:Type(value) is BigInt if ! IsBigIntElementType(type) istrue; otherwise,Type(value) is Number.
  4. Letblock bearrayBuffer.[[ArrayBufferData]].
  5. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  6. IfisLittleEndian is not present, setisLittleEndian to the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  7. LetrawBytes beNumericToRawBytes(type,value,isLittleEndian).
  8. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
    3. LetrawBytesRead be aList of lengthelementSize whose elements are nondeterministically chosen byte values.
    4. NOTE: In implementations,rawBytesRead is the result of a load-link, of a load-exclusive, or of an operand of a read-modify-write instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
    5. LetrmwEvent beReadModifyWriteSharedMemory { [[Order]]:SeqCst, [[NoTear]]:true, [[Block]]:block, [[ByteIndex]]:byteIndex, [[ElementSize]]:elementSize, [[Payload]]:rawBytes, [[ModifyOp]]:op }.
    6. AppendrmwEvent toeventList.
    7. AppendChosen Value Record { [[Event]]:rmwEvent, [[ChosenValue]]:rawBytesRead } toexecution.[[ChosenValues]].
  9. Else,
    1. LetrawBytesRead be aList of lengthelementSize whose elements are the sequence ofelementSize bytes starting withblock[byteIndex].
    2. LetrawBytesModified beop(rawBytesRead,rawBytes).
    3. Store the individual bytes ofrawBytesModified intoblock, starting atblock[byteIndex].
  10. ReturnRawBytesToNumeric(type,rawBytesRead,isLittleEndian).

25.1.3 The ArrayBuffer Constructor

The ArrayBufferconstructor:

  • is%ArrayBuffer%.
  • is the initial value of the"ArrayBuffer" property of theglobal object.
  • creates and initializes a new ArrayBuffer object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified ArrayBuffer behaviour must include asuper call to the ArrayBufferconstructor to create and initialize subclass instances with the internal state necessary to support theArrayBuffer.prototype built-in methods.

25.1.3.1 ArrayBuffer (length )

When theArrayBuffer function is called with argumentlength, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetbyteLength be ? ToIndex(length).
  3. Return ? AllocateArrayBuffer(NewTarget,byteLength).

25.1.4 Properties of the ArrayBuffer Constructor

The ArrayBufferconstructor:

25.1.4.1 ArrayBuffer.isView (arg )

TheisView function takes one argumentarg, and performs the following steps:

  1. IfType(arg) is not Object, returnfalse.
  2. Ifarg has a [[ViewedArrayBuffer]] internal slot, returntrue.
  3. Returnfalse.

25.1.4.2 ArrayBuffer.prototype

The initial value ofArrayBuffer.prototype is theArrayBuffer prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

25.1.4.3 get ArrayBuffer [ @@species ]

ArrayBuffer[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

ArrayBuffer prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

25.1.5 Properties of the ArrayBuffer Prototype Object

TheArrayBuffer prototype object:

  • is%ArrayBuffer.prototype%.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have an [[ArrayBufferData]] or [[ArrayBufferByteLength]] internal slot.

25.1.5.1 get ArrayBuffer.prototype.byteLength

ArrayBuffer.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsDetachedBuffer(O) istrue, return+0𝔽.
  5. Letlength beO.[[ArrayBufferByteLength]].
  6. Return𝔽(length).

25.1.5.2 ArrayBuffer.prototype.constructor

The initial value ofArrayBuffer.prototype.constructor is%ArrayBuffer%.

25.1.5.3 ArrayBuffer.prototype.slice (start,end )

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsDetachedBuffer(O) istrue, throw aTypeError exception.
  5. Letlen beO.[[ArrayBufferByteLength]].
  6. LetrelativeStart be ? ToIntegerOrInfinity(start).
  7. IfrelativeStart is -∞, letfirst be 0.
  8. Else ifrelativeStart < 0, letfirst bemax(len +relativeStart, 0).
  9. Else, letfirst bemin(relativeStart,len).
  10. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  11. IfrelativeEnd is -∞, letfinal be 0.
  12. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  13. Else, letfinal bemin(relativeEnd,len).
  14. LetnewLen bemax(final -first, 0).
  15. Letctor be ? SpeciesConstructor(O,%ArrayBuffer%).
  16. Letnew be ? Construct(ctor, «𝔽(newLen) »).
  17. Perform ? RequireInternalSlot(new, [[ArrayBufferData]]).
  18. IfIsSharedArrayBuffer(new) istrue, throw aTypeError exception.
  19. IfIsDetachedBuffer(new) istrue, throw aTypeError exception.
  20. IfSameValue(new,O) istrue, throw aTypeError exception.
  21. Ifnew.[[ArrayBufferByteLength]] <newLen, throw aTypeError exception.
  22. NOTE: Side-effects of the above steps may have detachedO.
  23. IfIsDetachedBuffer(O) istrue, throw aTypeError exception.
  24. LetfromBuf beO.[[ArrayBufferData]].
  25. LettoBuf benew.[[ArrayBufferData]].
  26. PerformCopyDataBlockBytes(toBuf, 0,fromBuf,first,newLen).
  27. Returnnew.

25.1.5.4 ArrayBuffer.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"ArrayBuffer".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

25.1.6 Properties of ArrayBuffer Instances

ArrayBuffer instances inherit properties from theArrayBuffer prototype object. ArrayBuffer instances each have an [[ArrayBufferData]] internal slot, an [[ArrayBufferByteLength]] internal slot, and an [[ArrayBufferDetachKey]] internal slot.

ArrayBuffer instances whose [[ArrayBufferData]] isnull are considered to be detached and all operators to access or modify data contained in the ArrayBuffer instance will fail.

ArrayBuffer instances whose [[ArrayBufferDetachKey]] is set to a value other thanundefined need to have allDetachArrayBuffer calls passing that same "detach key" as an argument, otherwise a TypeError will result. This internal slot is only ever set by certain embedding environments, not by algorithms in this specification.

25.2 SharedArrayBuffer Objects

25.2.1 Abstract Operations for SharedArrayBuffer Objects

25.2.1.1 AllocateSharedArrayBuffer (constructor,byteLength )

The abstract operation AllocateSharedArrayBuffer takes argumentsconstructor andbyteLength (a non-negativeinteger). It is used to create a SharedArrayBuffer object. It performs the following steps when called:

  1. Letobj be ? OrdinaryCreateFromConstructor(constructor,"%SharedArrayBuffer.prototype%", « [[ArrayBufferData]], [[ArrayBufferByteLength]] »).
  2. Letblock be ? CreateSharedByteDataBlock(byteLength).
  3. Setobj.[[ArrayBufferData]] toblock.
  4. Setobj.[[ArrayBufferByteLength]] tobyteLength.
  5. Returnobj.

25.2.1.2 IsSharedArrayBuffer (obj )

The abstract operation IsSharedArrayBuffer takes argumentobj. It tests whether an object is an ArrayBuffer, a SharedArrayBuffer, or a subtype of either. It performs the following steps when called:

  1. Assert:Type(obj) is Object and it has an [[ArrayBufferData]] internal slot.
  2. LetbufferData beobj.[[ArrayBufferData]].
  3. IfbufferData isnull, returnfalse.
  4. IfbufferData is aData Block, returnfalse.
  5. Assert:bufferData is aShared Data Block.
  6. Returntrue.

25.2.2 The SharedArrayBuffer Constructor

The SharedArrayBufferconstructor:

  • is%SharedArrayBuffer%.
  • is the initial value of the"SharedArrayBuffer" property of theglobal object, if that property is present (see below).
  • creates and initializes a new SharedArrayBuffer object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified SharedArrayBuffer behaviour must include asuper call to the SharedArrayBufferconstructor to create and initialize subclass instances with the internal state necessary to support theSharedArrayBuffer.prototype built-in methods.

Whenever ahost does not provide concurrent access to SharedArrayBuffer objects it may omit the"SharedArrayBuffer" property of theglobal object.

Note

Unlike anArrayBuffer, aSharedArrayBuffer cannot become detached, and its internal [[ArrayBufferData]] slot is nevernull.

25.2.2.1 SharedArrayBuffer ( [length ] )

When theSharedArrayBuffer function is called with optional argumentlength, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetbyteLength be ? ToIndex(length).
  3. Return ? AllocateSharedArrayBuffer(NewTarget,byteLength).

25.2.3 Properties of the SharedArrayBuffer Constructor

The SharedArrayBufferconstructor:

25.2.3.1 SharedArrayBuffer.prototype

The initial value ofSharedArrayBuffer.prototype is theSharedArrayBuffer prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

25.2.3.2 get SharedArrayBuffer [ @@species ]

SharedArrayBuffer[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

25.2.4 Properties of the SharedArrayBuffer Prototype Object

TheSharedArrayBuffer prototype object:

  • is%SharedArrayBuffer.prototype%.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have an [[ArrayBufferData]] or [[ArrayBufferByteLength]] internal slot.

25.2.4.1 get SharedArrayBuffer.prototype.byteLength

SharedArrayBuffer.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. Letlength beO.[[ArrayBufferByteLength]].
  5. Return𝔽(length).

25.2.4.2 SharedArrayBuffer.prototype.constructor

The initial value ofSharedArrayBuffer.prototype.constructor is%SharedArrayBuffer%.

25.2.4.3 SharedArrayBuffer.prototype.slice (start,end )

The following steps are taken:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. Letlen beO.[[ArrayBufferByteLength]].
  5. LetrelativeStart be ? ToIntegerOrInfinity(start).
  6. IfrelativeStart is -∞, letfirst be 0.
  7. Else ifrelativeStart < 0, letfirst bemax(len +relativeStart, 0).
  8. Else, letfirst bemin(relativeStart,len).
  9. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  10. IfrelativeEnd is -∞, letfinal be 0.
  11. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  12. Else, letfinal bemin(relativeEnd,len).
  13. LetnewLen bemax(final -first, 0).
  14. Letctor be ? SpeciesConstructor(O,%SharedArrayBuffer%).
  15. Letnew be ? Construct(ctor, «𝔽(newLen) »).
  16. Perform ? RequireInternalSlot(new, [[ArrayBufferData]]).
  17. IfIsSharedArrayBuffer(new) isfalse, throw aTypeError exception.
  18. Ifnew.[[ArrayBufferData]] andO.[[ArrayBufferData]] are the sameShared Data Block values, throw aTypeError exception.
  19. Ifnew.[[ArrayBufferByteLength]] <newLen, throw aTypeError exception.
  20. LetfromBuf beO.[[ArrayBufferData]].
  21. LettoBuf benew.[[ArrayBufferData]].
  22. PerformCopyDataBlockBytes(toBuf, 0,fromBuf,first,newLen).
  23. Returnnew.

25.2.4.4 SharedArrayBuffer.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"SharedArrayBuffer".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

25.2.5 Properties of SharedArrayBuffer Instances

SharedArrayBuffer instances inherit properties from theSharedArrayBuffer prototype object. SharedArrayBuffer instances each have an [[ArrayBufferData]] internal slot and an [[ArrayBufferByteLength]] internal slot.

Note

SharedArrayBuffer instances, unlike ArrayBuffer instances, are never detached.

25.3 DataView Objects

25.3.1 Abstract Operations For DataView Objects

25.3.1.1 GetViewValue (view,requestIndex,isLittleEndian,type )

The abstract operation GetViewValue takes argumentsview,requestIndex,isLittleEndian, andtype. It is used by functions on DataView instances to retrieve values from the view's buffer. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(view, [[DataView]]).
  2. Assert:view has a [[ViewedArrayBuffer]] internal slot.
  3. LetgetIndex be ? ToIndex(requestIndex).
  4. SetisLittleEndian to ! ToBoolean(isLittleEndian).
  5. Letbuffer beview.[[ViewedArrayBuffer]].
  6. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  7. LetviewOffset beview.[[ByteOffset]].
  8. LetviewSize beview.[[ByteLength]].
  9. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  10. IfgetIndex +elementSize >viewSize, throw aRangeError exception.
  11. LetbufferIndex begetIndex +viewOffset.
  12. ReturnGetValueFromBuffer(buffer,bufferIndex,type,false,Unordered,isLittleEndian).

25.3.1.2 SetViewValue (view,requestIndex,isLittleEndian,type,value )

The abstract operation SetViewValue takes argumentsview,requestIndex,isLittleEndian,type, andvalue. It is used by functions on DataView instances to store values into the view's buffer. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(view, [[DataView]]).
  2. Assert:view has a [[ViewedArrayBuffer]] internal slot.
  3. LetgetIndex be ? ToIndex(requestIndex).
  4. If ! IsBigIntElementType(type) istrue, letnumberValue be ? ToBigInt(value).
  5. Otherwise, letnumberValue be ? ToNumber(value).
  6. SetisLittleEndian to ! ToBoolean(isLittleEndian).
  7. Letbuffer beview.[[ViewedArrayBuffer]].
  8. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  9. LetviewOffset beview.[[ByteOffset]].
  10. LetviewSize beview.[[ByteLength]].
  11. LetelementSize be the Element Size value specified inTable 60 for Element Typetype.
  12. IfgetIndex +elementSize >viewSize, throw aRangeError exception.
  13. LetbufferIndex begetIndex +viewOffset.
  14. ReturnSetValueInBuffer(buffer,bufferIndex,type,numberValue,false,Unordered,isLittleEndian).

25.3.2 The DataView Constructor

The DataViewconstructor:

  • is%DataView%.
  • is the initial value of the"DataView" property of theglobal object.
  • creates and initializes a new DataView object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified DataView behaviour must include asuper call to the DataViewconstructor to create and initialize subclass instances with the internal state necessary to support theDataView.prototype built-in methods.

25.3.2.1 DataView (buffer [ ,byteOffset [ ,byteLength ] ] )

When theDataView function is called with at least one argumentbuffer, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Perform ? RequireInternalSlot(buffer, [[ArrayBufferData]]).
  3. Letoffset be ? ToIndex(byteOffset).
  4. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  5. LetbufferByteLength bebuffer.[[ArrayBufferByteLength]].
  6. Ifoffset >bufferByteLength, throw aRangeError exception.
  7. IfbyteLength isundefined, then
    1. LetviewByteLength bebufferByteLength -offset.
  8. Else,
    1. LetviewByteLength be ? ToIndex(byteLength).
    2. Ifoffset +viewByteLength >bufferByteLength, throw aRangeError exception.
  9. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%DataView.prototype%", « [[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], [[ByteOffset]] »).
  10. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  11. SetO.[[ViewedArrayBuffer]] tobuffer.
  12. SetO.[[ByteLength]] toviewByteLength.
  13. SetO.[[ByteOffset]] tooffset.
  14. ReturnO.

25.3.3 Properties of the DataView Constructor

The DataViewconstructor:

25.3.3.1 DataView.prototype

The initial value ofDataView.prototype is theDataView prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

25.3.4 Properties of the DataView Prototype Object

TheDataView prototype object:

  • is%DataView.prototype%.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have a [[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], or [[ByteOffset]] internal slot.

25.3.4.1 get DataView.prototype.buffer

DataView.prototype.buffer is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[DataView]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. Returnbuffer.

25.3.4.2 get DataView.prototype.byteLength

DataView.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[DataView]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  6. Letsize beO.[[ByteLength]].
  7. Return𝔽(size).

25.3.4.3 get DataView.prototype.byteOffset

DataView.prototype.byteOffset is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[DataView]]).
  3. Assert:O has a [[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  6. Letoffset beO.[[ByteOffset]].
  7. Return𝔽(offset).

25.3.4.4 DataView.prototype.constructor

The initial value ofDataView.prototype.constructor is%DataView%.

25.3.4.5 DataView.prototype.getBigInt64 (byteOffset [ ,littleEndian ] )

When thegetBigInt64 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,littleEndian,BigInt64).

25.3.4.6 DataView.prototype.getBigUint64 (byteOffset [ ,littleEndian ] )

When thegetBigUint64 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,littleEndian,BigUint64).

25.3.4.7 DataView.prototype.getFloat32 (byteOffset [ ,littleEndian ] )

When thegetFloat32 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Float32).

25.3.4.8 DataView.prototype.getFloat64 (byteOffset [ ,littleEndian ] )

When thegetFloat64 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Float64).

25.3.4.9 DataView.prototype.getInt8 (byteOffset )

When thegetInt8 method is called with argumentbyteOffset, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,true,Int8).

25.3.4.10 DataView.prototype.getInt16 (byteOffset [ ,littleEndian ] )

When thegetInt16 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Int16).

25.3.4.11 DataView.prototype.getInt32 (byteOffset [ ,littleEndian ] )

When thegetInt32 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Int32).

25.3.4.12 DataView.prototype.getUint8 (byteOffset )

When thegetUint8 method is called with argumentbyteOffset, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,true,Uint8).

25.3.4.13 DataView.prototype.getUint16 (byteOffset [ ,littleEndian ] )

When thegetUint16 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Uint16).

25.3.4.14 DataView.prototype.getUint32 (byteOffset [ ,littleEndian ] )

When thegetUint32 method is called with argumentbyteOffset and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,Uint32).

25.3.4.15 DataView.prototype.setBigInt64 (byteOffset,value [ ,littleEndian ] )

When thesetBigInt64 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,littleEndian,BigInt64,value).

25.3.4.16 DataView.prototype.setBigUint64 (byteOffset,value [ ,littleEndian ] )

When thesetBigUint64 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,littleEndian,BigUint64,value).

25.3.4.17 DataView.prototype.setFloat32 (byteOffset,value [ ,littleEndian ] )

When thesetFloat32 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Float32,value).

25.3.4.18 DataView.prototype.setFloat64 (byteOffset,value [ ,littleEndian ] )

When thesetFloat64 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Float64,value).

25.3.4.19 DataView.prototype.setInt8 (byteOffset,value )

When thesetInt8 method is called with argumentsbyteOffset andvalue, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,true,Int8,value).

25.3.4.20 DataView.prototype.setInt16 (byteOffset,value [ ,littleEndian ] )

When thesetInt16 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Int16,value).

25.3.4.21 DataView.prototype.setInt32 (byteOffset,value [ ,littleEndian ] )

When thesetInt32 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Int32,value).

25.3.4.22 DataView.prototype.setUint8 (byteOffset,value )

When thesetUint8 method is called with argumentsbyteOffset andvalue, the following steps are taken:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,true,Uint8,value).

25.3.4.23 DataView.prototype.setUint16 (byteOffset,value [ ,littleEndian ] )

When thesetUint16 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Uint16,value).

25.3.4.24 DataView.prototype.setUint32 (byteOffset,value [ ,littleEndian ] )

When thesetUint32 method is called with argumentsbyteOffset andvalue and optional argumentlittleEndian, the following steps are taken:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,Uint32,value).

25.3.4.25 DataView.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"DataView".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

25.3.5 Properties of DataView Instances

DataView instances are ordinary objects that inherit properties from theDataView prototype object. DataView instances each have [[DataView]], [[ViewedArrayBuffer]], [[ByteLength]], and [[ByteOffset]] internal slots.

Note

The value of the [[DataView]] internal slot is not used within this specification. The simple presence of that internal slot is used within the specification to identify objects created using the DataViewconstructor.

25.4 The Atomics Object

The Atomics object:

  • is%Atomics%.
  • is the initial value of the"Atomics" property of theglobal object.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a [[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a [[Call]] internal method; it cannot be invoked as a function.

The Atomics object provides functions that operate indivisibly (atomically) on shared memory array cells as well as functions that let agents wait for and dispatch primitive events. When used with discipline, the Atomics functions allow multi-agent programs that communicate through shared memory to execute in a well-understood order even on parallel CPUs. The rules that govern shared-memory communication are provided by thememory model, defined below.

Note

For informative guidelines for programming and implementing shared memory in ECMAScript, please see the notes at the end of thememory model section.

25.4.1 Abstract Operations for Atomics

25.4.1.1 ValidateIntegerTypedArray (typedArray [ ,waitable ] )

The abstract operation ValidateIntegerTypedArray takes argumenttypedArray and optional argumentwaitable (a Boolean). It performs the following steps when called:

  1. Ifwaitable is not present, setwaitable tofalse.
  2. Letbuffer be ? ValidateTypedArray(typedArray).
  3. LettypeName betypedArray.[[TypedArrayName]].
  4. Lettype be the Element Type value inTable 60 fortypeName.
  5. Ifwaitable istrue, then
    1. IftypeName is not"Int32Array" or"BigInt64Array", throw aTypeError exception.
  6. Else,
    1. If ! IsUnclampedIntegerElementType(type) isfalse and ! IsBigIntElementType(type) isfalse, throw aTypeError exception.
  7. Returnbuffer.

25.4.1.2 ValidateAtomicAccess (typedArray,requestIndex )

The abstract operation ValidateAtomicAccess takes argumentstypedArray andrequestIndex. It performs the following steps when called:

  1. Assert:typedArray is an Object that has a [[ViewedArrayBuffer]] internal slot.
  2. Letlength betypedArray.[[ArrayLength]].
  3. LetaccessIndex be ? ToIndex(requestIndex).
  4. Assert:accessIndex ≥ 0.
  5. IfaccessIndexlength, throw aRangeError exception.
  6. LetarrayTypeName betypedArray.[[TypedArrayName]].
  7. LetelementSize be the Element Size value specified inTable 60 forarrayTypeName.
  8. Letoffset betypedArray.[[ByteOffset]].
  9. Return (accessIndex ×elementSize) +offset.

25.4.1.3 GetWaiterList (block,i )

AWaiterList is a semantic object that contains an ordered list of those agents that are waiting on a location (block,i) in shared memory;block is aShared Data Block andi a byte offset into the memory ofblock. A WaiterList object also optionally contains aSynchronize event denoting the previous leaving of its critical section.

Initially a WaiterList object has an empty list and noSynchronize event.

Theagent cluster has a store of WaiterList objects; the store is indexed by (block,i). WaiterLists areagent-independent: a lookup in the store of WaiterLists by (block,i) will result in the same WaiterList object in anyagent in theagent cluster.

Each WaiterList has acritical section that controls exclusive access to that WaiterList during evaluation. Only a singleagent may enter a WaiterList's critical section at one time. Entering and leaving a WaiterList's critical section is controlled by theabstract operationsEnterCriticalSection andLeaveCriticalSection. Operations on a WaiterList—adding and removing waiting agents, traversing the list of agents, suspending and notifying agents on the list, setting and retrieving theSynchronize event—may only be performed by agents that have entered the WaiterList's critical section.

The abstract operation GetWaiterList takes argumentsblock (aShared Data Block) andi (a non-negativeinteger). It performs the following steps when called:

  1. Assert:block is aShared Data Block.
  2. Assert:i andi + 3 are valid byte offsets within the memory ofblock.
  3. Assert:i is divisible by 4.
  4. Return theWaiterList that is referenced by the pair (block,i).

25.4.1.4 EnterCriticalSection (WL )

The abstract operation EnterCriticalSection takes argumentWL (aWaiterList). It performs the following steps when called:

  1. Assert: The callingagent is not in thecritical section for anyWaiterList.
  2. Wait until noagent is in thecritical section forWL, then enter thecritical section forWL (without allowing any otheragent to enter).
  3. IfWL has aSynchronize event, then
    1. NOTE: AWL whosecritical section has been entered at least once has aSynchronize event set byLeaveCriticalSection.
    2. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    3. LeteventsRecord be theAgent Events Record inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
    4. LetentererEventList beeventsRecord.[[EventList]].
    5. LetenterEvent be a newSynchronize event.
    6. AppendenterEvent toentererEventList.
    7. LetleaveEvent be theSynchronize event inWL.
    8. Append (leaveEvent,enterEvent) toeventsRecord.[[AgentSynchronizesWith]].

EnterCriticalSection hascontention when anagent attempting to enter thecritical section must wait for anotheragent to leave it. When there is no contention, FIFO order of EnterCriticalSection calls is observable. When there is contention, an implementation may choose an arbitrary order but may not cause anagent to wait indefinitely.

25.4.1.5 LeaveCriticalSection (WL )

The abstract operation LeaveCriticalSection takes argumentWL (aWaiterList). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. Letexecution be the [[CandidateExecution]] field of the calling surrounding'sAgent Record.
  3. LeteventsRecord be theAgent Events Record inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
  4. LetleaverEventList beeventsRecord.[[EventList]].
  5. LetleaveEvent be a newSynchronize event.
  6. AppendleaveEvent toleaverEventList.
  7. Set theSynchronize event inWL toleaveEvent.
  8. Leave thecritical section forWL.

25.4.1.6 AddWaiter (WL,W )

The abstract operation AddWaiter takes argumentsWL (aWaiterList) andW (anagent signifier). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. Assert:W is not on the list of waiters in anyWaiterList.
  3. AddW to the end of the list of waiters inWL.

25.4.1.7 RemoveWaiter (WL,W )

The abstract operation RemoveWaiter takes argumentsWL (aWaiterList) andW (anagent signifier). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. Assert:W is on the list of waiters inWL.
  3. RemoveW from the list of waiters inWL.

25.4.1.8 RemoveWaiters (WL,c )

The abstract operation RemoveWaiters takes argumentsWL (aWaiterList) andc (a non-negativeinteger or +∞). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. LetL be a new emptyList.
  3. LetS be a reference to the list of waiters inWL.
  4. Repeat, whilec > 0 andS is not an emptyList,
    1. LetW be the first waiter inS.
    2. AddW to the end ofL.
    3. RemoveW fromS.
    4. Ifc is finite, setc toc - 1.
  5. ReturnL.

25.4.1.9 SuspendAgent (WL,W,timeout )

The abstract operation SuspendAgent takes argumentsWL (aWaiterList),W (anagent signifier), andtimeout (a non-negativeinteger). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. Assert:W is equivalent toAgentSignifier().
  3. Assert:W is on the list of waiters inWL.
  4. Assert:AgentCanSuspend() istrue.
  5. PerformLeaveCriticalSection(WL) and suspendW for up totimeout milliseconds, performing the combined operation in such a way that a notification that arrives after thecritical section is exited but before the suspension takes effect is not lost.W can notify either because the timeout expired or because it was notified explicitly by anotheragent callingNotifyWaiter(WL,W), and not for any other reasons at all.
  6. PerformEnterCriticalSection(WL).
  7. IfW was notified explicitly by anotheragent callingNotifyWaiter(WL,W), returntrue.
  8. Returnfalse.

25.4.1.10 NotifyWaiter (WL,W )

The abstract operation NotifyWaiter takes argumentsWL (aWaiterList) andW (anagent signifier). It performs the following steps when called:

  1. Assert: The callingagent is in thecritical section forWL.
  2. Notify theagentW.
Note

The embedding may delay notifyingW, e.g. for resource management reasons, butW must eventually be notified in order to guarantee forward progress.

25.4.1.11 AtomicReadModifyWrite (typedArray,index,value,op )

The abstract operation AtomicReadModifyWrite takes argumentstypedArray,index,value, andop (aread-modify-write modification function).op takes twoList of byte values arguments and returns aList of byte values. This operation atomically loads a value, combines it with another value, and stores the result of the combination. It returns the loaded value. It performs the following steps when called:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray).
  2. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  3. LetarrayTypeName betypedArray.[[TypedArrayName]].
  4. IftypedArray.[[ContentType]] isBigInt, letv be ? ToBigInt(value).
  5. Otherwise, letv be𝔽(?ToIntegerOrInfinity(value)).
  6. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  7. NOTE: The above check is not redundant with the check inValidateIntegerTypedArray because the call toToBigInt orToIntegerOrInfinity on the preceding lines can have arbitrary side effects, which could cause the buffer to become detached.
  8. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  9. ReturnGetModifySetValueInBuffer(buffer,indexedPosition,elementType,v,op).

25.4.1.12 ByteListBitwiseOp (op,xBytes,yBytes )

The abstract operation ByteListBitwiseOp takes argumentsop (a sequence of Unicode code points),xBytes (aList of byte values), andyBytes (aList of byte values). The operation atomically performs a bitwise operation on all byte values of the arguments and returns aList of byte values. It performs the following steps when called:

  1. Assert:op is&,^, or|.
  2. Assert:xBytes andyBytes have the same number of elements.
  3. Letresult be a new emptyList.
  4. Leti be 0.
  5. For each elementxByte ofxBytes, do
    1. LetyByte beyBytes[i].
    2. Ifop is&, letresultByte be the result of applying the bitwise AND operation toxByte andyByte.
    3. Else ifop is^, letresultByte be the result of applying the bitwise exclusive OR (XOR) operation toxByte andyByte.
    4. Else,op is|. LetresultByte be the result of applying the bitwise inclusive OR operation toxByte andyByte.
    5. Seti toi + 1.
    6. AppendresultByte to the end ofresult.
  6. Returnresult.

25.4.1.13 ByteListEqual (xBytes,yBytes )

The abstract operation ByteListEqual takes argumentsxBytes (aList of byte values) andyBytes (aList of byte values). It performs the following steps when called:

  1. IfxBytes andyBytes do not have the same number of elements, returnfalse.
  2. Leti be 0.
  3. For each elementxByte ofxBytes, do
    1. LetyByte beyBytes[i].
    2. IfxByteyByte, returnfalse.
    3. Seti toi + 1.
  4. Returntrue.

25.4.2 Atomics.add (typedArray,index,value )

The following steps are taken:

  1. Lettype be the Element Type value inTable 60 fortypedArray.[[TypedArrayName]].
  2. LetisLittleEndian be the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  3. Letadd be a newread-modify-write modification function with parameters (xBytes,yBytes) that capturestype andisLittleEndian and performs the following steps atomically when called:
    1. Letx beRawBytesToNumeric(type,xBytes,isLittleEndian).
    2. Lety beRawBytesToNumeric(type,yBytes,isLittleEndian).
    3. LetT beType(x).
    4. Letsum beT::add(x,y).
    5. LetsumBytes beNumericToRawBytes(type,sum,isLittleEndian).
    6. Assert:sumBytes,xBytes, andyBytes have the same number of elements.
    7. ReturnsumBytes.
  4. Return ? AtomicReadModifyWrite(typedArray,index,value,add).

25.4.3 Atomics.and (typedArray,index,value )

The following steps are taken:

  1. Letand be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(&,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,and).

25.4.4 Atomics.compareExchange (typedArray,index,expectedValue,replacementValue )

The following steps are taken:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray).
  2. Letblock bebuffer.[[ArrayBufferData]].
  3. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  4. LetarrayTypeName betypedArray.[[TypedArrayName]].
  5. IftypedArray.[[ContentType]] isBigInt, then
    1. Letexpected be ? ToBigInt(expectedValue).
    2. Letreplacement be ? ToBigInt(replacementValue).
  6. Else,
    1. Letexpected be𝔽(?ToIntegerOrInfinity(expectedValue)).
    2. Letreplacement be𝔽(?ToIntegerOrInfinity(replacementValue)).
  7. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  8. NOTE: The above check is not redundant with the check inValidateIntegerTypedArray because the call toToBigInt orToIntegerOrInfinity on the preceding lines can have arbitrary side effects, which could cause the buffer to become detached.
  9. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  10. LetelementSize be the Element Size value specified inTable 60 for Element TypeelementType.
  11. LetisLittleEndian be the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  12. LetexpectedBytes beNumericToRawBytes(elementType,expected,isLittleEndian).
  13. LetreplacementBytes beNumericToRawBytes(elementType,replacement,isLittleEndian).
  14. IfIsSharedArrayBuffer(buffer) istrue, then
    1. Letexecution be the [[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventList be the [[EventList]] field of the element inexecution.[[EventsRecords]] whose [[AgentSignifier]] isAgentSignifier().
    3. LetrawBytesRead be aList of lengthelementSize whose elements are nondeterministically chosen byte values.
    4. NOTE: In implementations,rawBytesRead is the result of a load-link, of a load-exclusive, or of an operand of a read-modify-write instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
    5. NOTE: The comparison of the expected value and the read value is performed outside of theread-modify-write modification function to avoid needlessly strong synchronization when the expected value is not equal to the read value.
    6. IfByteListEqual(rawBytesRead,expectedBytes) istrue, then
      1. Letsecond be a newread-modify-write modification function with parameters (oldBytes,newBytes) that captures nothing and performs the following steps atomically when called:
        1. ReturnnewBytes.
      2. Letevent beReadModifyWriteSharedMemory { [[Order]]:SeqCst, [[NoTear]]:true, [[Block]]:block, [[ByteIndex]]:indexedPosition, [[ElementSize]]:elementSize, [[Payload]]:replacementBytes, [[ModifyOp]]:second }.
    7. Else,
      1. Letevent beReadSharedMemory { [[Order]]:SeqCst, [[NoTear]]:true, [[Block]]:block, [[ByteIndex]]:indexedPosition, [[ElementSize]]:elementSize }.
    8. Appendevent toeventList.
    9. AppendChosen Value Record { [[Event]]:event, [[ChosenValue]]:rawBytesRead } toexecution.[[ChosenValues]].
  15. Else,
    1. LetrawBytesRead be aList of lengthelementSize whose elements are the sequence ofelementSize bytes starting withblock[indexedPosition].
    2. IfByteListEqual(rawBytesRead,expectedBytes) istrue, then
      1. Store the individual bytes ofreplacementBytes intoblock, starting atblock[indexedPosition].
  16. ReturnRawBytesToNumeric(elementType,rawBytesRead,isLittleEndian).

25.4.5 Atomics.exchange (typedArray,index,value )

The following steps are taken:

  1. Letsecond be a newread-modify-write modification function with parameters (oldBytes,newBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnnewBytes.
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,second).

25.4.6 Atomics.isLockFree (size )

The following steps are taken:

  1. Letn be ? ToIntegerOrInfinity(size).
  2. LetAR be theAgent Record of thesurrounding agent.
  3. Ifn = 1, returnAR.[[IsLockFree1]].
  4. Ifn = 2, returnAR.[[IsLockFree2]].
  5. Ifn = 4, returntrue.
  6. Ifn = 8, returnAR.[[IsLockFree8]].
  7. Returnfalse.
Note

Atomics.isLockFree() is an optimization primitive. The intuition is that if the atomic step of an atomic primitive (compareExchange,load,store,add,sub,and,or,xor, orexchange) on a datum of sizen bytes will be performed without the callingagent acquiring a lock outside then bytes comprising the datum, thenAtomics.isLockFree(n) will returntrue. High-performance algorithms will useAtomics.isLockFree to determine whether to use locks or atomic operations in critical sections. If an atomic primitive is not lock-free then it is often more efficient for an algorithm to provide its own locking.

Atomics.isLockFree(4) always returnstrue as that can be supported on all known relevant hardware. Being able to assume this will generally simplify programs.

Regardless of the value ofAtomics.isLockFree, all atomic operations are guaranteed to be atomic. For example, they will never have a visible operation take place in the middle of the operation (e.g., "tearing").

25.4.7 Atomics.load (typedArray,index )

The following steps are taken:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray).
  2. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  3. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  4. NOTE: The above check is not redundant with the check inValidateIntegerTypedArray because the call toValidateAtomicAccess on the preceding line can have arbitrary side effects, which could cause the buffer to become detached.
  5. LetarrayTypeName betypedArray.[[TypedArrayName]].
  6. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  7. ReturnGetValueFromBuffer(buffer,indexedPosition,elementType,true,SeqCst).

25.4.8 Atomics.or (typedArray,index,value )

The following steps are taken:

  1. Letor be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(|,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,or).

25.4.9 Atomics.store (typedArray,index,value )

The following steps are taken:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray).
  2. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  3. LetarrayTypeName betypedArray.[[TypedArrayName]].
  4. IfarrayTypeName is"BigUint64Array" or"BigInt64Array", letv be ? ToBigInt(value).
  5. Otherwise, letv be𝔽(?ToIntegerOrInfinity(value)).
  6. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  7. NOTE: The above check is not redundant with the check inValidateIntegerTypedArray because the call toToBigInt orToIntegerOrInfinity on the preceding lines can have arbitrary side effects, which could cause the buffer to become detached.
  8. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  9. PerformSetValueInBuffer(buffer,indexedPosition,elementType,v,true,SeqCst).
  10. Returnv.

25.4.10 Atomics.sub (typedArray,index,value )

The following steps are taken:

  1. Lettype be the Element Type value inTable 60 fortypedArray.[[TypedArrayName]].
  2. LetisLittleEndian be the value of the [[LittleEndian]] field of thesurrounding agent'sAgent Record.
  3. Letsubtract be a newread-modify-write modification function with parameters (xBytes,yBytes) that capturestype andisLittleEndian and performs the following steps atomically when called:
    1. Letx beRawBytesToNumeric(type,xBytes,isLittleEndian).
    2. Lety beRawBytesToNumeric(type,yBytes,isLittleEndian).
    3. LetT beType(x).
    4. Letdifference beT::subtract(x,y).
    5. LetdifferenceBytes beNumericToRawBytes(type,difference,isLittleEndian).
    6. Assert:differenceBytes,xBytes, andyBytes have the same number of elements.
    7. ReturndifferenceBytes.
  4. Return ? AtomicReadModifyWrite(typedArray,index,value,subtract).

25.4.11 Atomics.wait (typedArray,index,value,timeout )

Atomics.wait puts the callingagent in a wait queue and puts it to sleep until it is notified or the sleep times out. The following steps are taken:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray,true).
  2. IfIsSharedArrayBuffer(buffer) isfalse, throw aTypeError exception.
  3. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  4. LetarrayTypeName betypedArray.[[TypedArrayName]].
  5. IfarrayTypeName is"BigInt64Array", letv be ? ToBigInt64(value).
  6. Otherwise, letv be ? ToInt32(value).
  7. Letq be ? ToNumber(timeout).
  8. Ifq isNaN or+∞𝔽, lett be +∞; else ifq is-∞𝔽, lett be 0; else lett bemax((q), 0).
  9. LetB beAgentCanSuspend().
  10. IfB isfalse, throw aTypeError exception.
  11. Letblock bebuffer.[[ArrayBufferData]].
  12. LetWL beGetWaiterList(block,indexedPosition).
  13. PerformEnterCriticalSection(WL).
  14. LetelementType be the Element Type value inTable 60 forarrayTypeName.
  15. Letw be ! GetValueFromBuffer(buffer,indexedPosition,elementType,true,SeqCst).
  16. Ifvw, then
    1. PerformLeaveCriticalSection(WL).
    2. Return the String"not-equal".
  17. LetW beAgentSignifier().
  18. PerformAddWaiter(WL,W).
  19. Letnotified beSuspendAgent(WL,W,t).
  20. Ifnotified istrue, then
    1. Assert:W is not on the list of waiters inWL.
  21. Else,
    1. PerformRemoveWaiter(WL,W).
  22. PerformLeaveCriticalSection(WL).
  23. Ifnotified istrue, return the String"ok".
  24. Return the String"timed-out".

25.4.12 Atomics.notify (typedArray,index,count )

Atomics.notify notifies some agents that are sleeping in the wait queue. The following steps are taken:

  1. Letbuffer be ? ValidateIntegerTypedArray(typedArray,true).
  2. LetindexedPosition be ? ValidateAtomicAccess(typedArray,index).
  3. Ifcount isundefined, letc be +∞.
  4. Else,
    1. LetintCount be ? ToIntegerOrInfinity(count).
    2. Letc bemax(intCount, 0).
  5. Letblock bebuffer.[[ArrayBufferData]].
  6. LetarrayTypeName betypedArray.[[TypedArrayName]].
  7. IfIsSharedArrayBuffer(buffer) isfalse, return+0𝔽.
  8. LetWL beGetWaiterList(block,indexedPosition).
  9. Letn be 0.
  10. PerformEnterCriticalSection(WL).
  11. LetS beRemoveWaiters(WL,c).
  12. Repeat, whileS is not an emptyList,
    1. LetW be the firstagent inS.
    2. RemoveW from the front ofS.
    3. PerformNotifyWaiter(WL,W).
    4. Setn ton + 1.
  13. PerformLeaveCriticalSection(WL).
  14. Return𝔽(n).

25.4.13 Atomics.xor (typedArray,index,value )

The following steps are taken:

  1. Letxor be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(^,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,xor).

25.4.14 Atomics [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Atomics".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

25.5 The JSON Object

The JSON object:

  • is%JSON%.
  • is the initial value of the"JSON" property of theglobal object.
  • is anordinary object.
  • contains two functions,parse andstringify, that are used to parse and construct JSON texts.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a [[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a [[Call]] internal method; it cannot be invoked as a function.

The JSON Data Interchange Format is defined in ECMA-404. The JSON interchange format used in this specification is exactly that described by ECMA-404. Conforming implementations ofJSON.parse andJSON.stringify must support the exact interchange format described in the ECMA-404 specification without any deletions or extensions to the format.

25.5.1 JSON.parse (text [ ,reviver ] )

Theparse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript value. The JSON format represents literals, arrays, and objects with a syntax similar to the syntax for ECMAScript literals, Array Initializers, and Object Initializers. After parsing, JSON objects are realized as ECMAScript objects. JSON arrays are realized as ECMAScript Array instances. JSON strings, numbers, booleans, and null are realized as ECMAScript Strings, Numbers, Booleans, andnull.

The optionalreviver parameter is a function that takes two parameters,key andvalue. It can filter and transform the results. It is called with each of thekey/value pairs produced by the parse, and its return value is used instead of the original value. If it returns what it received, the structure is not modified. If it returnsundefined then the property is deleted from the result.

  1. LetjsonString be ? ToString(text).
  2. Parse ! StringToCodePoints(jsonString) as a JSON text as specified in ECMA-404. Throw aSyntaxError exception if it is not a valid JSON text as defined in that specification.
  3. LetscriptString be thestring-concatenation of"(",jsonString, and");".
  4. Letscript beParseText(!StringToCodePoints(scriptString),Script).
  5. Assert:script is aParse Node.
  6. Letcompletion be the result of evaluatingscript. The extendedPropertyDefinitionEvaluation semantics defined inB.3.1 must not be used during the evaluation.
  7. Letunfiltered becompletion.[[Value]].
  8. Assert:unfiltered is either a String, Number, Boolean, Null, or an Object that is defined by either anArrayLiteral or anObjectLiteral.
  9. IfIsCallable(reviver) istrue, then
    1. Letroot be ! OrdinaryObjectCreate(%Object.prototype%).
    2. LetrootName be the empty String.
    3. Perform ! CreateDataPropertyOrThrow(root,rootName,unfiltered).
    4. Return ? InternalizeJSONProperty(root,rootName,reviver).
  10. Else,
    1. Returnunfiltered.

The"length" property of theparse function is2𝔽.

Note

Valid JSON text is a subset of the ECMAScriptPrimaryExpression syntax. Step2 verifies thatjsonString conforms to that subset, and step8 asserts that that parsing and evaluation returns a value of an appropriate type.

However, becauseB.3.1 applies when evaluating ECMAScript source text and does not apply duringJSON.parse, the same source text can produce different results when evaluated as aPrimaryExpression rather than as JSON. Furthermore, the Early Error for duplicate"__proto__" properties in object literals, which likewise does not apply duringJSON.parse, means that not all texts accepted byJSON.parse are valid as aPrimaryExpression, despite matching the grammar.

25.5.1.1 InternalizeJSONProperty (holder,name,reviver )

The abstract operation InternalizeJSONProperty takes argumentsholder (an Object),name (a String), andreviver (afunction object). It performs the following steps when called:

Note 1

This algorithm intentionally does not throw an exception if either [[Delete]] orCreateDataProperty returnfalse.

  1. Letval be ? Get(holder,name).
  2. IfType(val) is Object, then
    1. LetisArray be ? IsArray(val).
    2. IfisArray istrue, then
      1. LetI be 0.
      2. Letlen be ? LengthOfArrayLike(val).
      3. Repeat, whileI <len,
        1. Letprop be ! ToString(𝔽(I)).
        2. LetnewElement be ? InternalizeJSONProperty(val,prop,reviver).
        3. IfnewElement isundefined, then
          1. Perform ?val.[[Delete]](prop).
        4. Else,
          1. Perform ? CreateDataProperty(val,prop,newElement).
        5. SetI toI + 1.
    3. Else,
      1. Letkeys be ? EnumerableOwnPropertyNames(val,key).
      2. For each StringP ofkeys, do
        1. LetnewElement be ? InternalizeJSONProperty(val,P,reviver).
        2. IfnewElement isundefined, then
          1. Perform ?val.[[Delete]](P).
        3. Else,
          1. Perform ? CreateDataProperty(val,P,newElement).
  3. Return ? Call(reviver,holder, «name,val »).

It is not permitted for a conforming implementation ofJSON.parse to extend the JSON grammars. If an implementation wishes to support a modified or extended JSON interchange format it must do so by defining a different parse function.

Note 2

In the case where there are duplicate name Strings within an object, lexically preceding values for the same key shall be overwritten.

25.5.2 JSON.stringify (value [ ,replacer [ ,space ] ] )

Thestringify function returns a String in UTF-16 encoded JSON format representing an ECMAScript value, orundefined. It can take three parameters. Thevalue parameter is an ECMAScript value, which is usually an object or array, although it can also be a String, Boolean, Number ornull. The optionalreplacer parameter is either a function that alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as an inclusion list for selecting the object properties that will be stringified. The optionalspace parameter is a String or Number that allows the result to have white space injected into it to improve human readability.

These are the steps in stringifying an object:

  1. Letstack be a new emptyList.
  2. Letindent be the empty String.
  3. LetPropertyList andReplacerFunction beundefined.
  4. IfType(replacer) is Object, then
    1. IfIsCallable(replacer) istrue, then
      1. SetReplacerFunction toreplacer.
    2. Else,
      1. LetisArray be ? IsArray(replacer).
      2. IfisArray istrue, then
        1. SetPropertyList to a new emptyList.
        2. Letlen be ? LengthOfArrayLike(replacer).
        3. Letk be 0.
        4. Repeat, whilek <len,
          1. Letprop be ! ToString(𝔽(k)).
          2. Letv be ? Get(replacer,prop).
          3. Letitem beundefined.
          4. IfType(v) is String, setitem tov.
          5. Else ifType(v) is Number, setitem to ! ToString(v).
          6. Else ifType(v) is Object, then
            1. Ifv has a [[StringData]] or [[NumberData]] internal slot, setitem to ? ToString(v).
          7. Ifitem is notundefined anditem is not currently an element ofPropertyList, then
            1. Appenditem to the end ofPropertyList.
          8. Setk tok + 1.
  5. IfType(space) is Object, then
    1. Ifspace has a [[NumberData]] internal slot, then
      1. Setspace to ? ToNumber(space).
    2. Else ifspace has a [[StringData]] internal slot, then
      1. Setspace to ? ToString(space).
  6. IfType(space) is Number, then
    1. LetspaceMV be ! ToIntegerOrInfinity(space).
    2. SetspaceMV tomin(10,spaceMV).
    3. IfspaceMV < 1, letgap be the empty String; otherwise letgap be the String value containingspaceMV occurrences of the code unit 0x0020 (SPACE).
  7. Else ifType(space) is String, then
    1. If the length ofspace is 10 or less, letgap bespace; otherwise letgap be thesubstring ofspace from 0 to 10.
  8. Else,
    1. Letgap be the empty String.
  9. Letwrapper be ! OrdinaryObjectCreate(%Object.prototype%).
  10. Perform ! CreateDataPropertyOrThrow(wrapper, the empty String,value).
  11. Letstate be theRecord { [[ReplacerFunction]]:ReplacerFunction, [[Stack]]:stack, [[Indent]]:indent, [[Gap]]:gap, [[PropertyList]]:PropertyList }.
  12. Return ? SerializeJSONProperty(state, the empty String,wrapper).

The"length" property of thestringify function is3𝔽.

Note 1

JSON structures are allowed to be nested to any depth, but they must be acyclic. Ifvalue is or contains a cyclic structure, then the stringify function must throw aTypeError exception. This is an example of a value that cannot be stringified:

a = [];a[0] = a;my_text =JSON.stringify(a);// This must throw a TypeError.
Note 2

Symbolic primitive values are rendered as follows:

  • Thenull value is rendered in JSON text as the String"null".
  • Theundefined value is not rendered.
  • Thetrue value is rendered in JSON text as the String"true".
  • Thefalse value is rendered in JSON text as the String"false".
Note 3

String values are wrapped in QUOTATION MARK (") code units. The code units" and\ are escaped with\ prefixes. Control characters code units are replaced with escape sequences\uHHHH, or with the shorter forms,\b (BACKSPACE),\f (FORM FEED),\n (LINE FEED),\r (CARRIAGE RETURN),\t (CHARACTER TABULATION).

Note 4

Finite numbers are stringified as if by callingToString(number).NaN andInfinity regardless of sign are represented as the String"null".

Note 5

Values that do not have a JSON representation (such asundefined and functions) do not produce a String. Instead they produce theundefined value. In arrays these values are represented as the String"null". In objects an unrepresentable value causes the property to be excluded from stringification.

Note 6

An object is rendered as U+007B (LEFT CURLY BRACKET) followed by zero or more properties, separated with a U+002C (COMMA), closed with a U+007D (RIGHT CURLY BRACKET). A property is a quoted String representing the key orproperty name, a U+003A (COLON), and then the stringified property value. An array is rendered as an opening U+005B (LEFT SQUARE BRACKET followed by zero or more values, separated with a U+002C (COMMA), closed with a U+005D (RIGHT SQUARE BRACKET).

25.5.2.1 SerializeJSONProperty (state,key,holder )

The abstract operation SerializeJSONProperty takes argumentsstate,key, andholder. It performs the following steps when called:

  1. Letvalue be ? Get(holder,key).
  2. IfType(value) is Object or BigInt, then
    1. LettoJSON be ? GetV(value,"toJSON").
    2. IfIsCallable(toJSON) istrue, then
      1. Setvalue to ? Call(toJSON,value, «key »).
  3. Ifstate.[[ReplacerFunction]] is notundefined, then
    1. Setvalue to ? Call(state.[[ReplacerFunction]],holder, «key,value »).
  4. IfType(value) is Object, then
    1. Ifvalue has a [[NumberData]] internal slot, then
      1. Setvalue to ? ToNumber(value).
    2. Else ifvalue has a [[StringData]] internal slot, then
      1. Setvalue to ? ToString(value).
    3. Else ifvalue has a [[BooleanData]] internal slot, then
      1. Setvalue tovalue.[[BooleanData]].
    4. Else ifvalue has a [[BigIntData]] internal slot, then
      1. Setvalue tovalue.[[BigIntData]].
  5. Ifvalue isnull, return"null".
  6. Ifvalue istrue, return"true".
  7. Ifvalue isfalse, return"false".
  8. IfType(value) is String, returnQuoteJSONString(value).
  9. IfType(value) is Number, then
    1. Ifvalue is finite, return ! ToString(value).
    2. Return"null".
  10. IfType(value) is BigInt, throw aTypeError exception.
  11. IfType(value) is Object andIsCallable(value) isfalse, then
    1. LetisArray be ? IsArray(value).
    2. IfisArray istrue, return ? SerializeJSONArray(state,value).
    3. Return ? SerializeJSONObject(state,value).
  12. Returnundefined.

25.5.2.2 QuoteJSONString (value )

The abstract operation QuoteJSONString takes argumentvalue. It wrapsvalue in 0x0022 (QUOTATION MARK) code units and escapes certain other code units within it. This operation interpretsvalue as a sequence of UTF-16 encoded code points, as described in6.1.4. It performs the following steps when called:

  1. Letproduct be the String value consisting solely of the code unit 0x0022 (QUOTATION MARK).
  2. For each code pointC of ! StringToCodePoints(value), do
    1. IfC is listed in the “Code Point” column ofTable 61, then
      1. Setproduct to thestring-concatenation ofproduct and the escape sequence forC as specified in the “Escape Sequence” column of the corresponding row.
    2. Else ifC has a numeric value less than 0x0020 (SPACE), or ifC has the same numeric value as aleading surrogate ortrailing surrogate, then
      1. Letunit be the code unit whose numeric value is that ofC.
      2. Setproduct to thestring-concatenation ofproduct andUnicodeEscape(unit).
    3. Else,
      1. Setproduct to thestring-concatenation ofproduct and ! UTF16EncodeCodePoint(C).
  3. Setproduct to thestring-concatenation ofproduct and the code unit 0x0022 (QUOTATION MARK).
  4. Returnproduct.
Table 61: JSON Single Character Escape Sequences
Code Point Unicode Character Name Escape Sequence
U+0008 BACKSPACE\b
U+0009 CHARACTER TABULATION\t
U+000A LINE FEED (LF)\n
U+000C FORM FEED (FF)\f
U+000D CARRIAGE RETURN (CR)\r
U+0022 QUOTATION MARK\"
U+005C REVERSE SOLIDUS\\

25.5.2.3 UnicodeEscape (C )

The abstract operation UnicodeEscape takes argumentC (a code unit). It representsC as a Unicode escape sequence. It performs the following steps when called:

  1. Letn be the numeric value ofC.
  2. Assert:n ≤ 0xFFFF.
  3. Return thestring-concatenation of:
    • the code unit 0x005C (REVERSE SOLIDUS)
    • "u"
    • the String representation ofn, formatted as a four-digit lowercase hexadecimal number, padded to the left with zeroes if necessary

25.5.2.4 SerializeJSONObject (state,value )

The abstract operation SerializeJSONObject takes argumentsstate andvalue. It serializes an object. It performs the following steps when called:

  1. Ifstate.[[Stack]] containsvalue, throw aTypeError exception because the structure is cyclical.
  2. Appendvalue tostate.[[Stack]].
  3. Letstepback bestate.[[Indent]].
  4. Setstate.[[Indent]] to thestring-concatenation ofstate.[[Indent]] andstate.[[Gap]].
  5. Ifstate.[[PropertyList]] is notundefined, then
    1. LetK bestate.[[PropertyList]].
  6. Else,
    1. LetK be ? EnumerableOwnPropertyNames(value,key).
  7. Letpartial be a new emptyList.
  8. For each elementP ofK, do
    1. LetstrP be ? SerializeJSONProperty(state,P,value).
    2. IfstrP is notundefined, then
      1. Letmember beQuoteJSONString(P).
      2. Setmember to thestring-concatenation ofmember and":".
      3. Ifstate.[[Gap]] is not the empty String, then
        1. Setmember to thestring-concatenation ofmember and the code unit 0x0020 (SPACE).
      4. Setmember to thestring-concatenation ofmember andstrP.
      5. Appendmember topartial.
  9. Ifpartial is empty, then
    1. Letfinal be"{}".
  10. Else,
    1. Ifstate.[[Gap]] is the empty String, then
      1. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either before the first String or after the last String.
      2. Letfinal be thestring-concatenation of"{",properties, and"}".
    2. Else,
      1. Letseparator be thestring-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A (LINE FEED), andstate.[[Indent]].
      2. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated withseparator. Theseparator String is not inserted either before the first String or after the last String.
      3. Letfinal be thestring-concatenation of"{", the code unit 0x000A (LINE FEED),state.[[Indent]],properties, the code unit 0x000A (LINE FEED),stepback, and"}".
  11. Remove the last element ofstate.[[Stack]].
  12. Setstate.[[Indent]] tostepback.
  13. Returnfinal.

25.5.2.5 SerializeJSONArray (state,value )

The abstract operation SerializeJSONArray takes argumentsstate andvalue. It serializes an array. It performs the following steps when called:

  1. Ifstate.[[Stack]] containsvalue, throw aTypeError exception because the structure is cyclical.
  2. Appendvalue tostate.[[Stack]].
  3. Letstepback bestate.[[Indent]].
  4. Setstate.[[Indent]] to thestring-concatenation ofstate.[[Indent]] andstate.[[Gap]].
  5. Letpartial be a new emptyList.
  6. Letlen be ? LengthOfArrayLike(value).
  7. Letindex be 0.
  8. Repeat, whileindex <len,
    1. LetstrP be ? SerializeJSONProperty(state, ! ToString(𝔽(index)),value).
    2. IfstrP isundefined, then
      1. Append"null" topartial.
    3. Else,
      1. AppendstrP topartial.
    4. Setindex toindex + 1.
  9. Ifpartial is empty, then
    1. Letfinal be"[]".
  10. Else,
    1. Ifstate.[[Gap]] is the empty String, then
      1. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either before the first String or after the last String.
      2. Letfinal be thestring-concatenation of"[",properties, and"]".
    2. Else,
      1. Letseparator be thestring-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A (LINE FEED), andstate.[[Indent]].
      2. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated withseparator. Theseparator String is not inserted either before the first String or after the last String.
      3. Letfinal be thestring-concatenation of"[", the code unit 0x000A (LINE FEED),state.[[Indent]],properties, the code unit 0x000A (LINE FEED),stepback, and"]".
  11. Remove the last element ofstate.[[Stack]].
  12. Setstate.[[Indent]] tostepback.
  13. Returnfinal.
Note

The representation of arrays includes only the elements between zero andarray.length - 1 inclusive. Properties whose keys are notarray indexes are excluded from the stringification. An array is stringified as an opening LEFT SQUARE BRACKET, elements separated by COMMA, and a closing RIGHT SQUARE BRACKET.

25.5.3 JSON [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"JSON".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

26 Managing Memory

26.1 WeakRef Objects

AWeakRef is an object that is used to refer to a target object without preserving it from garbage collection. WeakRefs can be dereferenced to allow access to the target object, if the target object hasn't been reclaimed by garbage collection.

26.1.1 The WeakRef Constructor

TheWeakRefconstructor:

  • is%WeakRef%.
  • is the initial value of the"WeakRef" property of theglobal object.
  • creates and initializes a new WeakRef object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specifiedWeakRef behaviour must include asuper call to theWeakRefconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakRef.prototype built-in methods.

26.1.1.1 WeakRef (target )

When theWeakRef function is called with argumenttarget, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfType(target) is not Object, throw aTypeError exception.
  3. LetweakRef be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakRef.prototype%", « [[WeakRefTarget]] »).
  4. Perform ! AddToKeptObjects(target).
  5. SetweakRef.[[WeakRefTarget]] totarget.
  6. ReturnweakRef.

26.1.2 Properties of the WeakRef Constructor

TheWeakRefconstructor:

26.1.2.1 WeakRef.prototype

The initial value ofWeakRef.prototype is theWeakRef prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

26.1.3 Properties of the WeakRef Prototype Object

TheWeakRef prototype object:

26.1.3.1 WeakRef.prototype.constructor

The initial value ofWeakRef.prototype.constructor is%WeakRef%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

26.1.3.2 WeakRef.prototype.deref ( )

The following steps are taken:

  1. LetweakRef be thethis value.
  2. Perform ? RequireInternalSlot(weakRef, [[WeakRefTarget]]).
  3. Return ! WeakRefDeref(weakRef).
Note

If theWeakRef returns atarget Object that is notundefined, then thistarget object should not be garbage collected until the current execution of ECMAScript code has completed. TheAddToKeptObjects operation makes sure read consistency is maintained.

target = {foo:function(){} };let weakRef =new WeakRef(target);... later ...if (weakRef.deref()) {  weakRef.deref().foo();}

In the above example, if the first deref does not evaluate toundefined then the second deref cannot either.

26.1.3.3 WeakRef.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakRef".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

26.1.4 WeakRef Abstract Operations

26.1.4.1 WeakRefDeref (weakRef )

The abstract operation WeakRefDeref takes argumentweakRef (aWeakRef). It performs the following steps when called:

  1. Lettarget beweakRef.[[WeakRefTarget]].
  2. Iftarget is notempty, then
    1. Perform ! AddToKeptObjects(target).
    2. Returntarget.
  3. Returnundefined.
Note

This abstract operation is defined separately from WeakRef.prototype.deref strictly to make it possible to succinctly define liveness.

26.1.5 Properties of WeakRef Instances

WeakRef instances are ordinary objects that inherit properties from theWeakRef prototype.WeakRef instances also have a [[WeakRefTarget]] internal slot.

26.2 FinalizationRegistry Objects

AFinalizationRegistry is an object that manages registration and unregistration of cleanup operations that are performed when target objects are garbage collected.

26.2.1 The FinalizationRegistry Constructor

TheFinalizationRegistryconstructor:

  • is%FinalizationRegistry%.
  • is the initial value of the"FinalizationRegistry" property of theglobal object.
  • creates and initializes a new FinalizationRegistry object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specifiedFinalizationRegistry behaviour must include asuper call to theFinalizationRegistryconstructor to create and initialize the subclass instance with the internal state necessary to support theFinalizationRegistry.prototype built-in methods.

26.2.1.1 FinalizationRegistry (cleanupCallback )

When theFinalizationRegistry function is called with argumentcleanupCallback, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfIsCallable(cleanupCallback) isfalse, throw aTypeError exception.
  3. LetfinalizationRegistry be ? OrdinaryCreateFromConstructor(NewTarget,"%FinalizationRegistry.prototype%", « [[Realm]], [[CleanupCallback]], [[Cells]] »).
  4. Letfn be theactive function object.
  5. SetfinalizationRegistry.[[Realm]] tofn.[[Realm]].
  6. SetfinalizationRegistry.[[CleanupCallback]] tocleanupCallback.
  7. SetfinalizationRegistry.[[Cells]] to a new emptyList.
  8. ReturnfinalizationRegistry.

26.2.2 Properties of the FinalizationRegistry Constructor

TheFinalizationRegistryconstructor:

26.2.2.1 FinalizationRegistry.prototype

The initial value ofFinalizationRegistry.prototype is theFinalizationRegistry prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

26.2.3 Properties of the FinalizationRegistry Prototype Object

TheFinalizationRegistry prototype object:

  • is%FinalizationRegistry.prototype%.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have [[Cells]] and [[CleanupCallback]] internal slots.

26.2.3.1 FinalizationRegistry.prototype.constructor

The initial value ofFinalizationRegistry.prototype.constructor is%FinalizationRegistry%.

26.2.3.2 FinalizationRegistry.prototype.register (target,heldValue [ ,unregisterToken ] )

The following steps are taken:

  1. LetfinalizationRegistry be thethis value.
  2. Perform ? RequireInternalSlot(finalizationRegistry, [[Cells]]).
  3. IfType(target) is not Object, throw aTypeError exception.
  4. IfSameValue(target,heldValue) istrue, throw aTypeError exception.
  5. IfType(unregisterToken) is not Object, then
    1. IfunregisterToken is notundefined, throw aTypeError exception.
    2. SetunregisterToken toempty.
  6. Letcell be theRecord { [[WeakRefTarget]]:target, [[HeldValue]]:heldValue, [[UnregisterToken]]:unregisterToken }.
  7. Appendcell tofinalizationRegistry.[[Cells]].
  8. Returnundefined.
Note

Based on the algorithms and definitions in this specification,cell.[[HeldValue]] islive whencell is infinalizationRegistry.[[Cells]]; however, this does not necessarily mean thatcell.[[UnregisterToken]] orcell.[[Target]] arelive. For example, registering an object with itself as its unregister token would not keep the object alive forever.

26.2.3.3 FinalizationRegistry.prototype.unregister (unregisterToken )

The following steps are taken:

  1. LetfinalizationRegistry be thethis value.
  2. Perform ? RequireInternalSlot(finalizationRegistry, [[Cells]]).
  3. IfType(unregisterToken) is not Object, throw aTypeError exception.
  4. Letremoved befalse.
  5. For eachRecord { [[WeakRefTarget]], [[HeldValue]], [[UnregisterToken]] }cell offinalizationRegistry.[[Cells]], do
    1. Ifcell.[[UnregisterToken]] is notempty andSameValue(cell.[[UnregisterToken]],unregisterToken) istrue, then
      1. Removecell fromfinalizationRegistry.[[Cells]].
      2. Setremoved totrue.
  6. Returnremoved.

26.2.3.4 FinalizationRegistry.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"FinalizationRegistry".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

26.2.4 Properties of FinalizationRegistry Instances

FinalizationRegistry instances are ordinary objects that inherit properties from theFinalizationRegistry prototype.FinalizationRegistry instances also have [[Cells]] and [[CleanupCallback]] internal slots.

27 Control Abstraction Objects

27.1 Iteration

27.1.1 Common Iteration Interfaces

An interface is a set of property keys whose associated values match a specific specification. Any object that provides all the properties as described by an interface's specificationconforms to that interface. An interface is not represented by a distinct object. There may be many separately implemented objects that conform to any interface. An individual object may conform to multiple interfaces.

27.1.1.1 TheIterable Interface

TheIterable interface includes the property described inTable 62:

Table 62:Iterable Interface Required Properties
Property Value Requirements
@@iterator A function that returns anIterator object. The returned object must conform to theIterator interface.

27.1.1.2 TheIterator Interface

An object that implements theIterator interface must include the property inTable 63. Such objects may also implement the properties inTable 64.

Table 63:Iterator Interface Required Properties
Property Value Requirements
"next" A function that returns anIteratorResult object. The returned object must conform to theIteratorResult interface. If a previous call to thenext method of anIterator has returned anIteratorResult object whose"done" property istrue, then all subsequent calls to thenext method of that object should also return anIteratorResult object whose"done" property istrue. However, this requirement is not enforced.
Note 1

Arguments may be passed to thenext function but their interpretation and validity is dependent upon the targetIterator. The for-of statement and other common users ofIterators do not pass any arguments, soIterator objects that expect to be used in such a manner must be prepared to deal with being called with no arguments.

Table 64:Iterator Interface Optional Properties
Property Value Requirements
"return" A function that returns anIteratorResult object. The returned object must conform to theIteratorResult interface. Invoking this method notifies theIterator object that the caller does not intend to make any morenext method calls to theIterator. The returnedIteratorResult object will typically have a"done" property whose value istrue, and a"value" property with the value passed as the argument of thereturn method. However, this requirement is not enforced.
"throw" A function that returns anIteratorResult object. The returned object must conform to theIteratorResult interface. Invoking this method notifies theIterator object that the caller has detected an error condition. The argument may be used to identify the error condition and typically will be an exception object. A typical response is tothrow the value passed as the argument. If the method does notthrow, the returnedIteratorResult object will typically have a"done" property whose value istrue.
Note 2

Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language features includingfor-of,yield*, and array destructuring call these methods after performing an existence check. Most ECMAScript library functions that acceptIterable objects as arguments also conditionally call them.

27.1.1.3 TheAsyncIterable Interface

TheAsyncIterable interface includes the properties described inTable 65:

Table 65:AsyncIterable Interface Required Properties
PropertyValueRequirements
@@asyncIteratorA function that returns anAsyncIterator object.The returned object must conform to theAsyncIterator interface.

27.1.1.4 TheAsyncIterator Interface

An object that implements theAsyncIterator interface must include the properties inTable 66. Such objects may also implement the properties inTable 67.

Table 66:AsyncIterator Interface Required Properties
PropertyValueRequirements
"next"A function that returns a promise for anIteratorResult object.

The returned promise, when fulfilled, must fulfill with an object which conforms to theIteratorResult interface. If a previous call to thenext method of anAsyncIterator has returned a promise for anIteratorResult object whose"done" property istrue, then all subsequent calls to thenext method of that object should also return a promise for anIteratorResult object whose"done" property istrue. However, this requirement is not enforced.

Additionally, theIteratorResult object that serves as a fulfillment value should have a"value" property whose value is not a promise (or "thenable"). However, this requirement is also not enforced.

Note 1

Arguments may be passed to thenext function but their interpretation and validity is dependent upon the targetAsyncIterator. Thefor-await-of statement and other common users ofAsyncIterators do not pass any arguments, soAsyncIterator objects that expect to be used in such a manner must be prepared to deal with being called with no arguments.

Table 67:AsyncIterator Interface Optional Properties
PropertyValueRequirements
"return"A function that returns a promise for anIteratorResult object.

The returned promise, when fulfilled, must fulfill with an object which conforms to theIteratorResult interface. Invoking this method notifies theAsyncIterator object that the caller does not intend to make any morenext method calls to theAsyncIterator. The returned promise will fulfill with anIteratorResult object which will typically have a"done" property whose value istrue, and a"value" property with the value passed as the argument of thereturn method. However, this requirement is not enforced.

Additionally, theIteratorResult object that serves as a fulfillment value should have a"value" property whose value is not a promise (or "thenable"). If the argument value is used in the typical manner, then if it is a rejected promise, a promise rejected with the same reason should be returned; if it is a fulfilled promise, then its fulfillment value should be used as the"value" property of the returned promise'sIteratorResult object fulfillment value. However, these requirements are also not enforced.

"throw"A function that returns a promise for anIteratorResult object.

The returned promise, when fulfilled, must fulfill with an object which conforms to theIteratorResult interface. Invoking this method notifies theAsyncIterator object that the caller has detected an error condition. The argument may be used to identify the error condition and typically will be an exception object. A typical response is to return a rejected promise which rejects with the value passed as the argument.

If the returned promise is fulfilled, theIteratorResult fulfillment value will typically have a"done" property whose value istrue. Additionally, it should have a"value" property whose value is not a promise (or "thenable"), but this requirement is not enforced.

Note 2

Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language features includingfor-await-of andyield* call these methods after performing an existence check.

27.1.1.5 TheIteratorResult Interface

TheIteratorResult interface includes the properties listed inTable 68:

Table 68:IteratorResult Interface Properties
Property Value Requirements
"done" Eithertrue orfalse. This is the result status of aniteratornext method call. If the end of the iterator was reached"done" istrue. If the end was not reached"done" isfalse and a value is available. If a"done" property (either own or inherited) does not exist, it is consider to have the valuefalse.
"value" AnyECMAScript language value. If done isfalse, this is the current iteration element value. If done istrue, this is the return value of the iterator, if it supplied one. If the iterator does not have a return value,"value" isundefined. In that case, the"value" property may be absent from the conforming object if it does not inherit an explicit"value" property.

27.1.2 The %IteratorPrototype% Object

The%IteratorPrototype% object:

Note

All objects defined in this specification that implement the Iterator interface also inherit from %IteratorPrototype%. ECMAScript code may also define objects that inherit from %IteratorPrototype%. The %IteratorPrototype% object provides a place where additional methods that are applicable to all iterator objects may be added.

The following expression is one way that ECMAScript code can access the %IteratorPrototype% object:

Object.getPrototypeOf(Object.getPrototypeOf([][Symbol.iterator]()))

27.1.2.1 %IteratorPrototype% [ @@iterator ] ( )

The following steps are taken:

  1. Return thethis value.

The value of the"name" property of this function is"[Symbol.iterator]".

27.1.3 The %AsyncIteratorPrototype% Object

The%AsyncIteratorPrototype% object:

Note

All objects defined in this specification that implement the AsyncIterator interface also inherit from %AsyncIteratorPrototype%. ECMAScript code may also define objects that inherit from %AsyncIteratorPrototype%. The %AsyncIteratorPrototype% object provides a place where additional methods that are applicable to all async iterator objects may be added.

27.1.3.1 %AsyncIteratorPrototype% [ @@asyncIterator ] ( )

The following steps are taken:

  1. Return thethis value.

The value of the"name" property of this function is"[Symbol.asyncIterator]".

27.1.4 Async-from-Sync Iterator Objects

An Async-from-Sync Iterator object is an async iterator that adapts a specific synchronous iterator. There is not a namedconstructor for Async-from-Sync Iterator objects. Instead, Async-from-Sync iterator objects are created by theCreateAsyncFromSyncIterator abstract operation as needed.

27.1.4.1 CreateAsyncFromSyncIterator (syncIteratorRecord )

The abstract operation CreateAsyncFromSyncIterator takes argumentsyncIteratorRecord. It is used to create an async iteratorRecord from a synchronous iteratorRecord. It performs the following steps when called:

  1. LetasyncIterator be ! OrdinaryObjectCreate(%AsyncFromSyncIteratorPrototype%, « [[SyncIteratorRecord]] »).
  2. SetasyncIterator.[[SyncIteratorRecord]] tosyncIteratorRecord.
  3. LetnextMethod be ! Get(asyncIterator,"next").
  4. LetiteratorRecord be theRecord { [[Iterator]]:asyncIterator, [[NextMethod]]:nextMethod, [[Done]]:false }.
  5. ReturniteratorRecord.

27.1.4.2 The %AsyncFromSyncIteratorPrototype% Object

The%AsyncFromSyncIteratorPrototype% object:

  • has properties that are inherited by all Async-from-Sync Iterator Objects.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%AsyncIteratorPrototype%.
  • has the following properties:

27.1.4.2.1 %AsyncFromSyncIteratorPrototype%.next ( [value ] )

  1. LetO be thethis value.
  2. Assert:Type(O) is Object andO has a [[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIteratorRecord beO.[[SyncIteratorRecord]].
  5. Ifvalue is present, then
    1. Letresult beIteratorNext(syncIteratorRecord,value).
  6. Else,
    1. Letresult beIteratorNext(syncIteratorRecord).
  7. IfAbruptRejectPromise(result,promiseCapability).
  8. Return ! AsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.2.2 %AsyncFromSyncIteratorPrototype%.return ( [value ] )

  1. LetO be thethis value.
  2. Assert:Type(O) is Object andO has a [[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIterator beO.[[SyncIteratorRecord]].[[Iterator]].
  5. Letreturn beGetMethod(syncIterator,"return").
  6. IfAbruptRejectPromise(return,promiseCapability).
  7. Ifreturn isundefined, then
    1. LetiterResult be ! CreateIterResultObject(value,true).
    2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «iterResult »).
    3. ReturnpromiseCapability.[[Promise]].
  8. Ifvalue is present, then
    1. Letresult beCall(return,syncIterator, «value »).
  9. Else,
    1. Letresult beCall(return,syncIterator).
  10. IfAbruptRejectPromise(result,promiseCapability).
  11. IfType(result) is not Object, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, « a newly createdTypeError object »).
    2. ReturnpromiseCapability.[[Promise]].
  12. Return ! AsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.2.3 %AsyncFromSyncIteratorPrototype%.throw ( [value ] )

Note
In this specification,value is always provided, but is left optional for consistency with%AsyncFromSyncIteratorPrototype%.return ( [value ] ).
  1. LetO be thethis value.
  2. Assert:Type(O) is Object andO has a [[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIterator beO.[[SyncIteratorRecord]].[[Iterator]].
  5. Letthrow beGetMethod(syncIterator,"throw").
  6. IfAbruptRejectPromise(throw,promiseCapability).
  7. Ifthrow isundefined, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «value »).
    2. ReturnpromiseCapability.[[Promise]].
  8. Ifvalue is present, then
    1. Letresult beCall(throw,syncIterator, «value »).
  9. Else,
    1. Letresult beCall(throw,syncIterator).
  10. IfAbruptRejectPromise(result,promiseCapability).
  11. IfType(result) is not Object, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, « a newly createdTypeError object »).
    2. ReturnpromiseCapability.[[Promise]].
  12. Return ! AsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.2.4 Async-from-Sync Iterator Value Unwrap Functions

An async-from-sync iterator value unwrap function is an anonymous built-in function that is used byAsyncFromSyncIteratorContinuation when processing the"value" property of anIteratorResult object, in order to wait for its value if it is a promise and re-package the result in a new "unwrapped"IteratorResult object. Each async-from-sync iterator value unwrap function has a [[Done]] internal slot.

When an async-from-sync iterator value unwrap function is called with argumentvalue, the following steps are taken:

  1. LetF be theactive function object.
  2. Return ! CreateIterResultObject(value,F.[[Done]]).

27.1.4.3 Properties of Async-from-Sync Iterator Instances

Async-from-Sync Iterator instances are ordinary objects that inherit properties from the%AsyncFromSyncIteratorPrototype% intrinsic object. Async-from-Sync Iterator instances are initially created with the internal slots listed inTable 69. Async-from-Sync Iterator instances are not directly observable from ECMAScript code.

Table 69: Internal Slots of Async-from-Sync Iterator Instances
Internal Slot Description
[[SyncIteratorRecord]] ARecord, of the type returned byGetIterator, representing the original synchronous iterator which is being adapted.

27.1.4.4 AsyncFromSyncIteratorContinuation (result,promiseCapability )

The abstract operation AsyncFromSyncIteratorContinuation takes argumentsresult andpromiseCapability (aPromiseCapability Record). It performs the following steps when called:

  1. Letdone beIteratorComplete(result).
  2. IfAbruptRejectPromise(done,promiseCapability).
  3. Letvalue beIteratorValue(result).
  4. IfAbruptRejectPromise(value,promiseCapability).
  5. LetvalueWrapper bePromiseResolve(%Promise%,value).
  6. IfAbruptRejectPromise(valueWrapper,promiseCapability).
  7. Letsteps be the algorithm steps defined inAsync-from-Sync Iterator Value Unwrap Functions.
  8. Letlength be the number of non-optional parameters of the function definition inAsync-from-Sync Iterator Value Unwrap Functions.
  9. LetonFulfilled be ! CreateBuiltinFunction(steps,length,"", « [[Done]] »).
  10. SetonFulfilled.[[Done]] todone.
  11. Perform ! PerformPromiseThen(valueWrapper,onFulfilled,undefined,promiseCapability).
  12. ReturnpromiseCapability.[[Promise]].

27.2 Promise Objects

A Promise is an object that is used as a placeholder for the eventual results of a deferred (and possibly asynchronous) computation.

Any Promise object is in one of three mutually exclusive states:fulfilled,rejected, andpending:

  • A promisep is fulfilled ifp.then(f, r) will immediately enqueue aJob to call the functionf.
  • A promisep is rejected ifp.then(f, r) will immediately enqueue aJob to call the functionr.
  • A promise is pending if it is neither fulfilled nor rejected.

A promise is said to besettled if it is not pending, i.e. if it is either fulfilled or rejected.

A promise isresolved if it is settled or if it has been “locked in” to match the state of another promise. Attempting to resolve or reject a resolved promise has no effect. A promise isunresolved if it is not resolved. An unresolved promise is always in the pending state. A resolved promise may be pending, fulfilled or rejected.

27.2.1 Promise Abstract Operations

27.2.1.1 PromiseCapability Records

APromiseCapability Record is aRecord value used to encapsulate a promise object along with the functions that are capable of resolving or rejecting that promise object. PromiseCapability Records are produced by theNewPromiseCapability abstract operation.

PromiseCapability Records have the fields listed inTable 70.

Table 70:PromiseCapability Record Fields
Field Name Value Meaning
[[Promise]] An object An object that is usable as a promise.
[[Resolve]] Afunction object The function that is used to resolve the given promise object.
[[Reject]] Afunction object The function that is used to reject the given promise object.

27.2.1.1.1 IfAbruptRejectPromise (value,capability )

IfAbruptRejectPromise is a shorthand for a sequence of algorithm steps that use aPromiseCapability Record. An algorithm step of the form:

  1. IfAbruptRejectPromise(value,capability).

means the same thing as:

  1. Ifvalue is anabrupt completion, then
    1. Perform ? Call(capability.[[Reject]],undefined, «value.[[Value]] »).
    2. Returncapability.[[Promise]].
  2. Else ifvalue is aCompletion Record, setvalue tovalue.[[Value]].

27.2.1.2 PromiseReaction Records

The PromiseReaction is aRecord value used to store information about how a promise should react when it becomes resolved or rejected with a given value. PromiseReaction records are created by thePerformPromiseThen abstract operation, and are used by theAbstract Closure returned byNewPromiseReactionJob.

PromiseReaction records have the fields listed inTable 71.

Table 71: PromiseReactionRecord Fields
Field Name Value Meaning
[[Capability]] APromiseCapability Record, orundefined The capabilities of the promise for which this record provides a reaction handler.
[[Type]]Fulfill |Reject The [[Type]] is used when [[Handler]] isempty to allow for behaviour specific to the settlement type.
[[Handler]] AJobCallback Record |empty. The function that should be applied to the incoming value, and whose return value will govern what happens to the derived promise. If [[Handler]] isempty, a function that depends on the value of [[Type]] will be used instead.

27.2.1.3 CreateResolvingFunctions (promise )

The abstract operation CreateResolvingFunctions takes argumentpromise. It performs the following steps when called:

  1. LetalreadyResolved be theRecord { [[Value]]:false }.
  2. LetstepsResolve be the algorithm steps defined inPromise Resolve Functions.
  3. LetlengthResolve be the number of non-optional parameters of the function definition inPromise Resolve Functions.
  4. Letresolve be ! CreateBuiltinFunction(stepsResolve,lengthResolve,"", « [[Promise]], [[AlreadyResolved]] »).
  5. Setresolve.[[Promise]] topromise.
  6. Setresolve.[[AlreadyResolved]] toalreadyResolved.
  7. LetstepsReject be the algorithm steps defined inPromise Reject Functions.
  8. LetlengthReject be the number of non-optional parameters of the function definition inPromise Reject Functions.
  9. Letreject be ! CreateBuiltinFunction(stepsReject,lengthReject,"", « [[Promise]], [[AlreadyResolved]] »).
  10. Setreject.[[Promise]] topromise.
  11. Setreject.[[AlreadyResolved]] toalreadyResolved.
  12. Return theRecord { [[Resolve]]:resolve, [[Reject]]:reject }.

27.2.1.3.1 Promise Reject Functions

A promise reject function is an anonymous built-in function that has [[Promise]] and [[AlreadyResolved]] internal slots.

When a promise reject function is called with argumentreason, the following steps are taken:

  1. LetF be theactive function object.
  2. Assert:F has a [[Promise]] internal slot whose value is an Object.
  3. Letpromise beF.[[Promise]].
  4. LetalreadyResolved beF.[[AlreadyResolved]].
  5. IfalreadyResolved.[[Value]] istrue, returnundefined.
  6. SetalreadyResolved.[[Value]] totrue.
  7. ReturnRejectPromise(promise,reason).

The"length" property of a promise reject function is1𝔽.

27.2.1.3.2 Promise Resolve Functions

A promise resolve function is an anonymous built-in function that has [[Promise]] and [[AlreadyResolved]] internal slots.

When a promise resolve function is called with argumentresolution, the following steps are taken:

  1. LetF be theactive function object.
  2. Assert:F has a [[Promise]] internal slot whose value is an Object.
  3. Letpromise beF.[[Promise]].
  4. LetalreadyResolved beF.[[AlreadyResolved]].
  5. IfalreadyResolved.[[Value]] istrue, returnundefined.
  6. SetalreadyResolved.[[Value]] totrue.
  7. IfSameValue(resolution,promise) istrue, then
    1. LetselfResolutionError be a newly createdTypeError object.
    2. ReturnRejectPromise(promise,selfResolutionError).
  8. IfType(resolution) is not Object, then
    1. ReturnFulfillPromise(promise,resolution).
  9. Letthen beGet(resolution,"then").
  10. Ifthen is anabrupt completion, then
    1. ReturnRejectPromise(promise,then.[[Value]]).
  11. LetthenAction bethen.[[Value]].
  12. IfIsCallable(thenAction) isfalse, then
    1. ReturnFulfillPromise(promise,resolution).
  13. LetthenJobCallback beHostMakeJobCallback(thenAction).
  14. Letjob beNewPromiseResolveThenableJob(promise,resolution,thenJobCallback).
  15. PerformHostEnqueuePromiseJob(job.[[Job]],job.[[Realm]]).
  16. Returnundefined.

The"length" property of a promise resolve function is1𝔽.

27.2.1.4 FulfillPromise (promise,value )

The abstract operation FulfillPromise takes argumentspromise andvalue. It performs the following steps when called:

  1. Assert: The value ofpromise.[[PromiseState]] ispending.
  2. Letreactions bepromise.[[PromiseFulfillReactions]].
  3. Setpromise.[[PromiseResult]] tovalue.
  4. Setpromise.[[PromiseFulfillReactions]] toundefined.
  5. Setpromise.[[PromiseRejectReactions]] toundefined.
  6. Setpromise.[[PromiseState]] tofulfilled.
  7. ReturnTriggerPromiseReactions(reactions,value).

27.2.1.5 NewPromiseCapability (C )

The abstract operation NewPromiseCapability takes argumentC. It attempts to useC as aconstructor in the fashion of the built-in Promiseconstructor to create a Promise object and extract itsresolve andreject functions. The Promise object plus theresolve andreject functions are used to initialize a newPromiseCapability Record. It performs the following steps when called:

  1. IfIsConstructor(C) isfalse, throw aTypeError exception.
  2. NOTE:C is assumed to be aconstructor function that supports the parameter conventions of the Promiseconstructor (see27.2.3.1).
  3. LetpromiseCapability be thePromiseCapability Record { [[Promise]]:undefined, [[Resolve]]:undefined, [[Reject]]:undefined }.
  4. Letsteps be the algorithm steps defined inGetCapabilitiesExecutor Functions.
  5. Letlength be the number of non-optional parameters of the function definition inGetCapabilitiesExecutor Functions.
  6. Letexecutor be ! CreateBuiltinFunction(steps,length,"", « [[Capability]] »).
  7. Setexecutor.[[Capability]] topromiseCapability.
  8. Letpromise be ? Construct(C, «executor »).
  9. IfIsCallable(promiseCapability.[[Resolve]]) isfalse, throw aTypeError exception.
  10. IfIsCallable(promiseCapability.[[Reject]]) isfalse, throw aTypeError exception.
  11. SetpromiseCapability.[[Promise]] topromise.
  12. ReturnpromiseCapability.
Note

This abstract operation supports Promise subclassing, as it is generic on anyconstructor that calls a passed executor function argument in the same way as the Promiseconstructor. It is used to generalize static methods of the Promiseconstructor to any subclass.

27.2.1.5.1 GetCapabilitiesExecutor Functions

A GetCapabilitiesExecutor function is an anonymous built-in function that has a [[Capability]] internal slot.

When a GetCapabilitiesExecutor function is called with argumentsresolve andreject, the following steps are taken:

  1. LetF be theactive function object.
  2. Assert:F has a [[Capability]] internal slot whose value is aPromiseCapability Record.
  3. LetpromiseCapability beF.[[Capability]].
  4. IfpromiseCapability.[[Resolve]] is notundefined, throw aTypeError exception.
  5. IfpromiseCapability.[[Reject]] is notundefined, throw aTypeError exception.
  6. SetpromiseCapability.[[Resolve]] toresolve.
  7. SetpromiseCapability.[[Reject]] toreject.
  8. Returnundefined.

The"length" property of a GetCapabilitiesExecutor function is2𝔽.

27.2.1.6 IsPromise (x )

The abstract operation IsPromise takes argumentx. It checks for the promise brand on an object. It performs the following steps when called:

  1. IfType(x) is not Object, returnfalse.
  2. Ifx does not have a [[PromiseState]] internal slot, returnfalse.
  3. Returntrue.

27.2.1.7 RejectPromise (promise,reason )

The abstract operation RejectPromise takes argumentspromise andreason. It performs the following steps when called:

  1. Assert: The value ofpromise.[[PromiseState]] ispending.
  2. Letreactions bepromise.[[PromiseRejectReactions]].
  3. Setpromise.[[PromiseResult]] toreason.
  4. Setpromise.[[PromiseFulfillReactions]] toundefined.
  5. Setpromise.[[PromiseRejectReactions]] toundefined.
  6. Setpromise.[[PromiseState]] torejected.
  7. Ifpromise.[[PromiseIsHandled]] isfalse, performHostPromiseRejectionTracker(promise,"reject").
  8. ReturnTriggerPromiseReactions(reactions,reason).

27.2.1.8 TriggerPromiseReactions (reactions,argument )

The abstract operation TriggerPromiseReactions takes argumentsreactions (aList of PromiseReaction Records) andargument. It enqueues a newJob for each record inreactions. Each suchJob processes the [[Type]] and [[Handler]] of the PromiseReactionRecord, and if the [[Handler]] is notempty, calls it passing the given argument. If the [[Handler]] isempty, the behaviour is determined by the [[Type]]. It performs the following steps when called:

  1. For each elementreaction ofreactions, do
    1. Letjob beNewPromiseReactionJob(reaction,argument).
    2. PerformHostEnqueuePromiseJob(job.[[Job]],job.[[Realm]]).
  2. Returnundefined.

27.2.1.9 HostPromiseRejectionTracker (promise,operation )

Thehost-defined abstract operation HostPromiseRejectionTracker takes argumentspromise (a Promise) andoperation ("reject" or"handle"). It allowshost environments to track promise rejections.

An implementation of HostPromiseRejectionTracker must complete normally in all cases. The default implementation of HostPromiseRejectionTracker is to unconditionally return an empty normal completion.

Note 1

HostPromiseRejectionTracker is called in two scenarios:

  • When a promise is rejected without any handlers, it is called with itsoperation argument set to"reject".
  • When a handler is added to a rejected promise for the first time, it is called with itsoperation argument set to"handle".

A typical implementation of HostPromiseRejectionTracker might try to notify developers of unhandled rejections, while also being careful to notify them if such previous notifications are later invalidated by new handlers being attached.

Note 2

Ifoperation is"handle", an implementation should not hold a reference topromise in a way that would interfere with garbage collection. An implementation may hold a reference topromise ifoperation is"reject", since it is expected that rejections will be rare and not on hot code paths.

27.2.2 Promise Jobs

27.2.2.1 NewPromiseReactionJob (reaction,argument )

The abstract operation NewPromiseReactionJob takes argumentsreaction andargument. It returns a newJobAbstract Closure that applies the appropriate handler to the incoming value, and uses the handler's return value to resolve or reject the derived promise associated with that handler. It performs the following steps when called:

  1. Letjob be a newJobAbstract Closure with no parameters that capturesreaction andargument and performs the following steps when called:
    1. Assert:reaction is a PromiseReactionRecord.
    2. LetpromiseCapability bereaction.[[Capability]].
    3. Lettype bereaction.[[Type]].
    4. Lethandler bereaction.[[Handler]].
    5. Ifhandler isempty, then
      1. Iftype isFulfill, lethandlerResult beNormalCompletion(argument).
      2. Else,
        1. Assert:type isReject.
        2. LethandlerResult beThrowCompletion(argument).
    6. Else, lethandlerResult beHostCallJobCallback(handler,undefined, «argument »).
    7. IfpromiseCapability isundefined, then
      1. Assert:handlerResult is not anabrupt completion.
      2. ReturnNormalCompletion(empty).
    8. Assert:promiseCapability is aPromiseCapability Record.
    9. IfhandlerResult is anabrupt completion, then
      1. Letstatus beCall(promiseCapability.[[Reject]],undefined, «handlerResult.[[Value]] »).
    10. Else,
      1. Letstatus beCall(promiseCapability.[[Resolve]],undefined, «handlerResult.[[Value]] »).
    11. ReturnCompletion(status).
  2. LethandlerRealm benull.
  3. Ifreaction.[[Handler]] is notempty, then
    1. LetgetHandlerRealmResult beGetFunctionRealm(reaction.[[Handler]].[[Callback]]).
    2. IfgetHandlerRealmResult is a normal completion, sethandlerRealm togetHandlerRealmResult.[[Value]].
    3. Else, sethandlerRealm tothe current Realm Record.
    4. NOTE:handlerRealm is nevernull unless the handler isundefined. When the handler is a revoked Proxy and no ECMAScript code runs,handlerRealm is used to create error objects.
  4. Return theRecord { [[Job]]:job, [[Realm]]:handlerRealm }.

27.2.2.2 NewPromiseResolveThenableJob (promiseToResolve,thenable,then )

The abstract operation NewPromiseResolveThenableJob takes argumentspromiseToResolve,thenable, andthen. It performs the following steps when called:

  1. Letjob be a newJobAbstract Closure with no parameters that capturespromiseToResolve,thenable, andthen and performs the following steps when called:
    1. LetresolvingFunctions beCreateResolvingFunctions(promiseToResolve).
    2. LetthenCallResult beHostCallJobCallback(then,thenable, «resolvingFunctions.[[Resolve]],resolvingFunctions.[[Reject]] »).
    3. IfthenCallResult is anabrupt completion, then
      1. Letstatus beCall(resolvingFunctions.[[Reject]],undefined, «thenCallResult.[[Value]] »).
      2. ReturnCompletion(status).
    4. ReturnCompletion(thenCallResult).
  2. LetgetThenRealmResult beGetFunctionRealm(then.[[Callback]]).
  3. IfgetThenRealmResult is a normal completion, letthenRealm begetThenRealmResult.[[Value]].
  4. Else, letthenRealm bethe current Realm Record.
  5. NOTE:thenRealm is nevernull. Whenthen.[[Callback]] is a revoked Proxy and no code runs,thenRealm is used to create error objects.
  6. Return theRecord { [[Job]]:job, [[Realm]]:thenRealm }.
Note

ThisJob uses the supplied thenable and itsthen method to resolve the given promise. This process must take place as aJob to ensure that the evaluation of thethen method occurs after evaluation of any surrounding code has completed.

27.2.3 The Promise Constructor

The Promiseconstructor:

  • is%Promise%.
  • is the initial value of the"Promise" property of theglobal object.
  • creates and initializes a new Promise object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • is designed to be subclassable. It may be used as the value in anextends clause of a class definition. Subclass constructors that intend to inherit the specified Promise behaviour must include asuper call to the Promiseconstructor to create and initialize the subclass instance with the internal state necessary to support thePromise andPromise.prototype built-in methods.

27.2.3.1 Promise (executor )

When thePromise function is called with argumentexecutor, the following steps are taken:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfIsCallable(executor) isfalse, throw aTypeError exception.
  3. Letpromise be ? OrdinaryCreateFromConstructor(NewTarget,"%Promise.prototype%", « [[PromiseState]], [[PromiseResult]], [[PromiseFulfillReactions]], [[PromiseRejectReactions]], [[PromiseIsHandled]] »).
  4. Setpromise.[[PromiseState]] topending.
  5. Setpromise.[[PromiseFulfillReactions]] to a new emptyList.
  6. Setpromise.[[PromiseRejectReactions]] to a new emptyList.
  7. Setpromise.[[PromiseIsHandled]] tofalse.
  8. LetresolvingFunctions beCreateResolvingFunctions(promise).
  9. Letcompletion beCall(executor,undefined, «resolvingFunctions.[[Resolve]],resolvingFunctions.[[Reject]] »).
  10. Ifcompletion is anabrupt completion, then
    1. Perform ? Call(resolvingFunctions.[[Reject]],undefined, «completion.[[Value]] »).
  11. Returnpromise.
Note

Theexecutor argument must be afunction object. It is called for initiating and reporting completion of the possibly deferred action represented by this Promise object. The executor is called with two arguments:resolve andreject. These are functions that may be used by theexecutor function to report eventual completion or failure of the deferred computation. Returning from the executor function does not mean that the deferred action has been completed but only that the request to eventually perform the deferred action has been accepted.

Theresolve function that is passed to anexecutor function accepts a single argument. Theexecutor code may eventually call theresolve function to indicate that it wishes to resolve the associated Promise object. The argument passed to theresolve function represents the eventual value of the deferred action and can be either the actual fulfillment value or another Promise object which will provide the value if it is fulfilled.

Thereject function that is passed to anexecutor function accepts a single argument. Theexecutor code may eventually call thereject function to indicate that the associated Promise is rejected and will never be fulfilled. The argument passed to thereject function is used as the rejection value of the promise. Typically it will be an Error object.

The resolve and reject functions passed to anexecutor function by the Promiseconstructor have the capability to actually resolve and reject the associated promise. Subclasses may have differentconstructor behaviour that passes in customized values for resolve and reject.

27.2.4 Properties of the Promise Constructor

The Promiseconstructor:

27.2.4.1 Promise.all (iterable )

Theall function returns a new promise which is fulfilled with an array of fulfillment values for the passed promises, or rejects with the reason of the first passed promise that rejects. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beGetPromiseResolve(C).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beGetIterator(iterable).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult bePerformPromiseAll(iteratorRecord,C,promiseCapability,promiseResolve).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toIteratorClose(iteratorRecord,result).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. ReturnCompletion(result).
Note

Theall function requires itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.1.1 GetPromiseResolve (promiseConstructor )

The abstract operation GetPromiseResolve takes argumentpromiseConstructor. It performs the following steps when called:

  1. Assert:IsConstructor(promiseConstructor) istrue.
  2. LetpromiseResolve be ? Get(promiseConstructor,"resolve").
  3. IfIsCallable(promiseResolve) isfalse, throw aTypeError exception.
  4. ReturnpromiseResolve.

27.2.4.1.2 PerformPromiseAll (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAll takes argumentsiteratorRecord,constructor,resultCapability (aPromiseCapability Record), andpromiseResolve. It performs the following steps when called:

  1. Assert:IsConstructor(constructor) istrue.
  2. Assert:IsCallable(promiseResolve) istrue.
  3. Letvalues be a new emptyList.
  4. LetremainingElementsCount be theRecord { [[Value]]: 1 }.
  5. Letindex be 0.
  6. Repeat,
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, then
      1. SetiteratorRecord.[[Done]] totrue.
      2. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      3. IfremainingElementsCount.[[Value]] is 0, then
        1. LetvaluesArray be ! CreateArrayFromList(values).
        2. Perform ? Call(resultCapability.[[Resolve]],undefined, «valuesArray »).
      4. ReturnresultCapability.[[Promise]].
    5. LetnextValue beIteratorValue(next).
    6. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    7. ReturnIfAbrupt(nextValue).
    8. Appendundefined tovalues.
    9. LetnextPromise be ? Call(promiseResolve,constructor, «nextValue »).
    10. Letsteps be the algorithm steps defined inPromise.all Resolve Element Functions.
    11. Letlength be the number of non-optional parameters of the function definition inPromise.all Resolve Element Functions.
    12. LetonFulfilled be ! CreateBuiltinFunction(steps,length,"", « [[AlreadyCalled]], [[Index]], [[Values]], [[Capability]], [[RemainingElements]] »).
    13. SetonFulfilled.[[AlreadyCalled]] tofalse.
    14. SetonFulfilled.[[Index]] toindex.
    15. SetonFulfilled.[[Values]] tovalues.
    16. SetonFulfilled.[[Capability]] toresultCapability.
    17. SetonFulfilled.[[RemainingElements]] toremainingElementsCount.
    18. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    19. Perform ? Invoke(nextPromise,"then", «onFulfilled,resultCapability.[[Reject]] »).
    20. Setindex toindex + 1.

27.2.4.1.3Promise.all Resolve Element Functions

APromise.all resolve element function is an anonymous built-in function that is used to resolve a specificPromise.all element. EachPromise.all resolve element function has [[Index]], [[Values]], [[Capability]], [[RemainingElements]], and [[AlreadyCalled]] internal slots.

When aPromise.all resolve element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. IfF.[[AlreadyCalled]] istrue, returnundefined.
  3. SetF.[[AlreadyCalled]] totrue.
  4. Letindex beF.[[Index]].
  5. Letvalues beF.[[Values]].
  6. LetpromiseCapability beF.[[Capability]].
  7. LetremainingElementsCount beF.[[RemainingElements]].
  8. Setvalues[index] tox.
  9. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  10. IfremainingElementsCount.[[Value]] is 0, then
    1. LetvaluesArray be ! CreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  11. Returnundefined.

The"length" property of aPromise.all resolve element function is1𝔽.

27.2.4.2 Promise.allSettled (iterable )

TheallSettled function returns a promise that is fulfilled with an array of promise state snapshots, but only after all the original promises have settled, i.e. become either fulfilled or rejected. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beGetPromiseResolve(C).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beGetIterator(iterable).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult bePerformPromiseAllSettled(iteratorRecord,C,promiseCapability,promiseResolve).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toIteratorClose(iteratorRecord,result).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. ReturnCompletion(result).
Note

TheallSettled function requires itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.2.1 PerformPromiseAllSettled (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAllSettled takes argumentsiteratorRecord,constructor,resultCapability (aPromiseCapability Record), andpromiseResolve. It performs the following steps when called:

  1. Assert: ! IsConstructor(constructor) istrue.
  2. Assert:IsCallable(promiseResolve) istrue.
  3. Letvalues be a new emptyList.
  4. LetremainingElementsCount be theRecord { [[Value]]: 1 }.
  5. Letindex be 0.
  6. Repeat,
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, then
      1. SetiteratorRecord.[[Done]] totrue.
      2. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      3. IfremainingElementsCount.[[Value]] is 0, then
        1. LetvaluesArray be ! CreateArrayFromList(values).
        2. Perform ? Call(resultCapability.[[Resolve]],undefined, «valuesArray »).
      4. ReturnresultCapability.[[Promise]].
    5. LetnextValue beIteratorValue(next).
    6. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    7. ReturnIfAbrupt(nextValue).
    8. Appendundefined tovalues.
    9. LetnextPromise be ? Call(promiseResolve,constructor, «nextValue »).
    10. LetstepsFulfilled be the algorithm steps defined inPromise.allSettled Resolve Element Functions.
    11. LetlengthFulfilled be the number of non-optional parameters of the function definition inPromise.allSettled Resolve Element Functions.
    12. LetonFulfilled be ! CreateBuiltinFunction(stepsFulfilled,lengthFulfilled,"", « [[AlreadyCalled]], [[Index]], [[Values]], [[Capability]], [[RemainingElements]] »).
    13. LetalreadyCalled be theRecord { [[Value]]:false }.
    14. SetonFulfilled.[[AlreadyCalled]] toalreadyCalled.
    15. SetonFulfilled.[[Index]] toindex.
    16. SetonFulfilled.[[Values]] tovalues.
    17. SetonFulfilled.[[Capability]] toresultCapability.
    18. SetonFulfilled.[[RemainingElements]] toremainingElementsCount.
    19. LetstepsRejected be the algorithm steps defined inPromise.allSettled Reject Element Functions.
    20. LetlengthRejected be the number of non-optional parameters of the function definition inPromise.allSettled Reject Element Functions.
    21. LetonRejected be ! CreateBuiltinFunction(stepsRejected,lengthRejected,"", « [[AlreadyCalled]], [[Index]], [[Values]], [[Capability]], [[RemainingElements]] »).
    22. SetonRejected.[[AlreadyCalled]] toalreadyCalled.
    23. SetonRejected.[[Index]] toindex.
    24. SetonRejected.[[Values]] tovalues.
    25. SetonRejected.[[Capability]] toresultCapability.
    26. SetonRejected.[[RemainingElements]] toremainingElementsCount.
    27. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    28. Perform ? Invoke(nextPromise,"then", «onFulfilled,onRejected »).
    29. Setindex toindex + 1.

27.2.4.2.2Promise.allSettled Resolve Element Functions

APromise.allSettled resolve element function is an anonymous built-in function that is used to resolve a specificPromise.allSettled element. EachPromise.allSettled resolve element function has [[Index]], [[Values]], [[Capability]], [[RemainingElements]], and [[AlreadyCalled]] internal slots.

When aPromise.allSettled resolve element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. LetalreadyCalled beF.[[AlreadyCalled]].
  3. IfalreadyCalled.[[Value]] istrue, returnundefined.
  4. SetalreadyCalled.[[Value]] totrue.
  5. Letindex beF.[[Index]].
  6. Letvalues beF.[[Values]].
  7. LetpromiseCapability beF.[[Capability]].
  8. LetremainingElementsCount beF.[[RemainingElements]].
  9. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  10. Perform ! CreateDataPropertyOrThrow(obj,"status","fulfilled").
  11. Perform ! CreateDataPropertyOrThrow(obj,"value",x).
  12. Setvalues[index] toobj.
  13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  14. IfremainingElementsCount.[[Value]] is 0, then
    1. LetvaluesArray be ! CreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  15. Returnundefined.

The"length" property of aPromise.allSettled resolve element function is1𝔽.

27.2.4.2.3Promise.allSettled Reject Element Functions

APromise.allSettled reject element function is an anonymous built-in function that is used to reject a specificPromise.allSettled element. EachPromise.allSettled reject element function has [[Index]], [[Values]], [[Capability]], [[RemainingElements]], and [[AlreadyCalled]] internal slots.

When aPromise.allSettled reject element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. LetalreadyCalled beF.[[AlreadyCalled]].
  3. IfalreadyCalled.[[Value]] istrue, returnundefined.
  4. SetalreadyCalled.[[Value]] totrue.
  5. Letindex beF.[[Index]].
  6. Letvalues beF.[[Values]].
  7. LetpromiseCapability beF.[[Capability]].
  8. LetremainingElementsCount beF.[[RemainingElements]].
  9. Letobj be ! OrdinaryObjectCreate(%Object.prototype%).
  10. Perform ! CreateDataPropertyOrThrow(obj,"status","rejected").
  11. Perform ! CreateDataPropertyOrThrow(obj,"reason",x).
  12. Setvalues[index] toobj.
  13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  14. IfremainingElementsCount.[[Value]] is 0, then
    1. LetvaluesArray be ! CreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  15. Returnundefined.

The"length" property of aPromise.allSettled reject element function is1𝔽.

27.2.4.3 Promise.any (iterable )

Theany function returns a promise that is fulfilled by the first given promise to be fulfilled, or rejected with anAggregateError holding the rejection reasons if all of the given promises are rejected. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beGetPromiseResolve(C).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beGetIterator(iterable).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult bePerformPromiseAny(iteratorRecord,C,promiseCapability,promiseResolve).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toIteratorClose(iteratorRecord,result).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. ReturnCompletion(result).
Note

Theany function requires itsthis value to be aconstructor function that supports the parameter conventions of thePromiseconstructor.

27.2.4.3.1 PerformPromiseAny (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAny takes argumentsiteratorRecord,constructor,resultCapability (aPromiseCapability Record), andpromiseResolve. It performs the following steps when called:

  1. Assert: ! IsConstructor(constructor) istrue.
  2. Assert: ! IsCallable(promiseResolve) istrue.
  3. Leterrors be a new emptyList.
  4. LetremainingElementsCount be theRecord { [[Value]]: 1 }.
  5. Letindex be 0.
  6. Repeat,
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, then
      1. SetiteratorRecord.[[Done]] totrue.
      2. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      3. IfremainingElementsCount.[[Value]] is 0, then
        1. Leterror be a newly createdAggregateError object.
        2. Perform ! DefinePropertyOrThrow(error,"errors", PropertyDescriptor { [[Configurable]]:true, [[Enumerable]]:false, [[Writable]]:true, [[Value]]: ! CreateArrayFromList(errors) }).
        3. ReturnThrowCompletion(error).
      4. ReturnresultCapability.[[Promise]].
    5. LetnextValue beIteratorValue(next).
    6. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    7. ReturnIfAbrupt(nextValue).
    8. Appendundefined toerrors.
    9. LetnextPromise be ? Call(promiseResolve,constructor, «nextValue »).
    10. LetstepsRejected be the algorithm steps defined inPromise.any Reject Element Functions.
    11. LetlengthRejected be the number of non-optional parameters of the function definition inPromise.any Reject Element Functions.
    12. LetonRejected be ! CreateBuiltinFunction(stepsRejected,lengthRejected,"", « [[AlreadyCalled]], [[Index]], [[Errors]], [[Capability]], [[RemainingElements]] »).
    13. SetonRejected.[[AlreadyCalled]] tofalse.
    14. SetonRejected.[[Index]] toindex.
    15. SetonRejected.[[Errors]] toerrors.
    16. SetonRejected.[[Capability]] toresultCapability.
    17. SetonRejected.[[RemainingElements]] toremainingElementsCount.
    18. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    19. Perform ? Invoke(nextPromise,"then", «resultCapability.[[Resolve]],onRejected »).
    20. Setindex toindex + 1.

27.2.4.3.2Promise.any Reject Element Functions

APromise.any reject element function is an anonymous built-in function that is used to reject a specificPromise.any element. EachPromise.any reject element function has [[Index]], [[Errors]], [[Capability]], [[RemainingElements]], and [[AlreadyCalled]] internal slots.

When aPromise.any reject element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. IfF.[[AlreadyCalled]] istrue, returnundefined.
  3. SetF.[[AlreadyCalled]] totrue.
  4. Letindex beF.[[Index]].
  5. Leterrors beF.[[Errors]].
  6. LetpromiseCapability beF.[[Capability]].
  7. LetremainingElementsCount beF.[[RemainingElements]].
  8. Seterrors[index] tox.
  9. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  10. IfremainingElementsCount.[[Value]] is 0, then
    1. Leterror be a newly createdAggregateError object.
    2. Perform ! DefinePropertyOrThrow(error,"errors", PropertyDescriptor { [[Configurable]]:true, [[Enumerable]]:false, [[Writable]]:true, [[Value]]: ! CreateArrayFromList(errors) }).
    3. Return ? Call(promiseCapability.[[Reject]],undefined, «error »).
  11. Returnundefined.

The"length" property of aPromise.any reject element function is1𝔽.

27.2.4.4 Promise.prototype

The initial value ofPromise.prototype is thePromise prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

27.2.4.5 Promise.race (iterable )

Therace function returns a new promise which is settled in the same way as the first passed promise to settle. It resolves all elements of the passediterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beGetPromiseResolve(C).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beGetIterator(iterable).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult bePerformPromiseRace(iteratorRecord,C,promiseCapability,promiseResolve).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toIteratorClose(iteratorRecord,result).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. ReturnCompletion(result).
Note 1

If theiterable argument is empty or if none of the promises initerable ever settle then the pending promise returned by this method will never be settled.

Note 2

Therace function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor. It also expects that itsthis value provides aresolve method.

27.2.4.5.1 PerformPromiseRace (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseRace takes argumentsiteratorRecord,constructor,resultCapability (aPromiseCapability Record), andpromiseResolve. It performs the following steps when called:

  1. Assert:IsConstructor(constructor) istrue.
  2. Assert:IsCallable(promiseResolve) istrue.
  3. Repeat,
    1. Letnext beIteratorStep(iteratorRecord).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, then
      1. SetiteratorRecord.[[Done]] totrue.
      2. ReturnresultCapability.[[Promise]].
    5. LetnextValue beIteratorValue(next).
    6. IfnextValue is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    7. ReturnIfAbrupt(nextValue).
    8. LetnextPromise be ? Call(promiseResolve,constructor, «nextValue »).
    9. Perform ? Invoke(nextPromise,"then", «resultCapability.[[Resolve]],resultCapability.[[Reject]] »).

27.2.4.6 Promise.reject (r )

Thereject function returns a new promise rejected with the passed argument.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. Perform ? Call(promiseCapability.[[Reject]],undefined, «r »).
  4. ReturnpromiseCapability.[[Promise]].
Note

Thereject function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.7 Promise.resolve (x )

Theresolve function returns either a new promise resolved with the passed argument, or the argument itself if the argument is a promise produced by thisconstructor.

  1. LetC be thethis value.
  2. IfType(C) is not Object, throw aTypeError exception.
  3. Return ? PromiseResolve(C,x).
Note

Theresolve function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.7.1 PromiseResolve (C,x )

The abstract operation PromiseResolve takes argumentsC (aconstructor) andx (anECMAScript language value). It returns a new promise resolved withx. It performs the following steps when called:

  1. Assert:Type(C) is Object.
  2. IfIsPromise(x) istrue, then
    1. LetxConstructor be ? Get(x,"constructor").
    2. IfSameValue(xConstructor,C) istrue, returnx.
  3. LetpromiseCapability be ? NewPromiseCapability(C).
  4. Perform ? Call(promiseCapability.[[Resolve]],undefined, «x »).
  5. ReturnpromiseCapability.[[Promise]].

27.2.4.8 get Promise [ @@species ]

Promise[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Promise prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

27.2.5 Properties of the Promise Prototype Object

ThePromise prototype object:

  • is%Promise.prototype%.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have a [[PromiseState]] internal slot or any of the other internal slots of Promise instances.

27.2.5.1 Promise.prototype.catch (onRejected )

When thecatch method is called with argumentonRejected, the following steps are taken:

  1. Letpromise be thethis value.
  2. Return ? Invoke(promise,"then", «undefined,onRejected »).

27.2.5.2 Promise.prototype.constructor

The initial value ofPromise.prototype.constructor is%Promise%.

27.2.5.3 Promise.prototype.finally (onFinally )

When thefinally method is called with argumentonFinally, the following steps are taken:

  1. Letpromise be thethis value.
  2. IfType(promise) is not Object, throw aTypeError exception.
  3. LetC be ? SpeciesConstructor(promise,%Promise%).
  4. Assert:IsConstructor(C) istrue.
  5. IfIsCallable(onFinally) isfalse, then
    1. LetthenFinally beonFinally.
    2. LetcatchFinally beonFinally.
  6. Else,
    1. LetstepsThenFinally be the algorithm steps defined inThen Finally Functions.
    2. LetlengthThenFinally be the number of non-optional parameters of the function definition inThen Finally Functions.
    3. LetthenFinally be ! CreateBuiltinFunction(stepsThenFinally,lengthThenFinally,"", « [[Constructor]], [[OnFinally]] »).
    4. SetthenFinally.[[Constructor]] toC.
    5. SetthenFinally.[[OnFinally]] toonFinally.
    6. LetstepsCatchFinally be the algorithm steps defined inCatch Finally Functions.
    7. LetlengthCatchFinally be the number of non-optional parameters of the function definition inCatch Finally Functions.
    8. LetcatchFinally be ! CreateBuiltinFunction(stepsCatchFinally,lengthCatchFinally,"", « [[Constructor]], [[OnFinally]] »).
    9. SetcatchFinally.[[Constructor]] toC.
    10. SetcatchFinally.[[OnFinally]] toonFinally.
  7. Return ? Invoke(promise,"then", «thenFinally,catchFinally »).

27.2.5.3.1 Then Finally Functions

A Then Finally function is an anonymous built-in function that has a [[Constructor]] and an [[OnFinally]] internal slot. The value of the [[Constructor]] internal slot is aPromise-likeconstructorfunction object, and the value of the [[OnFinally]] internal slot is afunction object.

When a Then Finally function is called with argumentvalue, the following steps are taken:

  1. LetF be theactive function object.
  2. LetonFinally beF.[[OnFinally]].
  3. Assert:IsCallable(onFinally) istrue.
  4. Letresult be ? Call(onFinally,undefined).
  5. LetC beF.[[Constructor]].
  6. Assert:IsConstructor(C) istrue.
  7. Letpromise be ? PromiseResolve(C,result).
  8. LetvalueThunk be equivalent to a function that returnsvalue.
  9. Return ? Invoke(promise,"then", «valueThunk »).

The"length" property of a Then Finally function is1𝔽.

27.2.5.3.2 Catch Finally Functions

A Catch Finally function is an anonymous built-in function that has a [[Constructor]] and an [[OnFinally]] internal slot. The value of the [[Constructor]] internal slot is aPromise-likeconstructorfunction object, and the value of the [[OnFinally]] internal slot is afunction object.

When a Catch Finally function is called with argumentreason, the following steps are taken:

  1. LetF be theactive function object.
  2. LetonFinally beF.[[OnFinally]].
  3. Assert:IsCallable(onFinally) istrue.
  4. Letresult be ? Call(onFinally,undefined).
  5. LetC beF.[[Constructor]].
  6. Assert:IsConstructor(C) istrue.
  7. Letpromise be ? PromiseResolve(C,result).
  8. Letthrower be equivalent to a function that throwsreason.
  9. Return ? Invoke(promise,"then", «thrower »).

The"length" property of a Catch Finally function is1𝔽.

27.2.5.4 Promise.prototype.then (onFulfilled,onRejected )

When thethen method is called with argumentsonFulfilled andonRejected, the following steps are taken:

  1. Letpromise be thethis value.
  2. IfIsPromise(promise) isfalse, throw aTypeError exception.
  3. LetC be ? SpeciesConstructor(promise,%Promise%).
  4. LetresultCapability be ? NewPromiseCapability(C).
  5. ReturnPerformPromiseThen(promise,onFulfilled,onRejected,resultCapability).

27.2.5.4.1 PerformPromiseThen (promise,onFulfilled,onRejected [ ,resultCapability ] )

The abstract operation PerformPromiseThen takes argumentspromise,onFulfilled, andonRejected and optional argumentresultCapability (aPromiseCapability Record). It performs the “then” operation onpromise usingonFulfilled andonRejected as its settlement actions. IfresultCapability is passed, the result is stored by updatingresultCapability's promise. If it is not passed, then PerformPromiseThen is being called by a specification-internal operation where the result does not matter. It performs the following steps when called:

  1. Assert:IsPromise(promise) istrue.
  2. IfresultCapability is not present, then
    1. SetresultCapability toundefined.
  3. IfIsCallable(onFulfilled) isfalse, then
    1. LetonFulfilledJobCallback beempty.
  4. Else,
    1. LetonFulfilledJobCallback beHostMakeJobCallback(onFulfilled).
  5. IfIsCallable(onRejected) isfalse, then
    1. LetonRejectedJobCallback beempty.
  6. Else,
    1. LetonRejectedJobCallback beHostMakeJobCallback(onRejected).
  7. LetfulfillReaction be the PromiseReaction { [[Capability]]:resultCapability, [[Type]]:Fulfill, [[Handler]]:onFulfilledJobCallback }.
  8. LetrejectReaction be the PromiseReaction { [[Capability]]:resultCapability, [[Type]]:Reject, [[Handler]]:onRejectedJobCallback }.
  9. Ifpromise.[[PromiseState]] ispending, then
    1. AppendfulfillReaction as the last element of theList that ispromise.[[PromiseFulfillReactions]].
    2. AppendrejectReaction as the last element of theList that ispromise.[[PromiseRejectReactions]].
  10. Else ifpromise.[[PromiseState]] isfulfilled, then
    1. Letvalue bepromise.[[PromiseResult]].
    2. LetfulfillJob beNewPromiseReactionJob(fulfillReaction,value).
    3. PerformHostEnqueuePromiseJob(fulfillJob.[[Job]],fulfillJob.[[Realm]]).
  11. Else,
    1. Assert: The value ofpromise.[[PromiseState]] isrejected.
    2. Letreason bepromise.[[PromiseResult]].
    3. Ifpromise.[[PromiseIsHandled]] isfalse, performHostPromiseRejectionTracker(promise,"handle").
    4. LetrejectJob beNewPromiseReactionJob(rejectReaction,reason).
    5. PerformHostEnqueuePromiseJob(rejectJob.[[Job]],rejectJob.[[Realm]]).
  12. Setpromise.[[PromiseIsHandled]] totrue.
  13. IfresultCapability isundefined, then
    1. Returnundefined.
  14. Else,
    1. ReturnresultCapability.[[Promise]].

27.2.5.5 Promise.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Promise".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.2.6 Properties of Promise Instances

Promise instances are ordinary objects that inherit properties from thePromise prototype object (the intrinsic,%Promise.prototype%). Promise instances are initially created with the internal slots described inTable 72.

Table 72: Internal Slots of Promise Instances
Internal Slot Description
[[PromiseState]] One ofpending,fulfilled, orrejected. Governs how a promise will react to incoming calls to itsthen method.
[[PromiseResult]] The value with which the promise has been fulfilled or rejected, if any. Only meaningful if [[PromiseState]] is notpending.
[[PromiseFulfillReactions]] AList of PromiseReaction records to be processed when/if the promise transitions from thepending state to thefulfilled state.
[[PromiseRejectReactions]] AList of PromiseReaction records to be processed when/if the promise transitions from thepending state to therejected state.
[[PromiseIsHandled]] A boolean indicating whether the promise has ever had a fulfillment or rejection handler; used in unhandled rejection tracking.

27.3 GeneratorFunction Objects

GeneratorFunction objects are functions that are usually created by evaluatingGeneratorDeclarations,GeneratorExpressions, andGeneratorMethods. They may also be created by calling the%GeneratorFunction% intrinsic.

Figure 5 (Informative): Generator Objects Relationships
A staggering variety of boxes and arrows.

27.3.1 The GeneratorFunction Constructor

The GeneratorFunctionconstructor:

  • is%GeneratorFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new GeneratorFunction object when called as a function rather than as aconstructor. Thus the function callGeneratorFunction (…) is equivalent to the object creation expressionnew GeneratorFunction (…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified GeneratorFunction behaviour must include asuper call to the GeneratorFunctionconstructor to create and initialize subclass instances with the internal slots necessary for built-in GeneratorFunction behaviour. All ECMAScript syntactic forms for defining generator function objects create direct instances of GeneratorFunction. There is no syntactic means to create instances of GeneratorFunction subclasses.

27.3.1.1 GeneratorFunction (p1,p2, … ,pn,body )

The last argument specifies the body (executable code) of a generator function; any preceding arguments specify formal parameters.

When theGeneratorFunction function is called with some argumentsp1,p2, … ,pn,body (wheren might be 0, that is, there are no “p” arguments, and wherebody might also not be provided), the following steps are taken:

  1. LetC be theactive function object.
  2. Letargs be theargumentsList that was passed to this function by [[Call]] or [[Construct]].
  3. Return ? CreateDynamicFunction(C, NewTarget,generator,args).
Note

See NOTE for20.2.1.1.

27.3.2 Properties of the GeneratorFunction Constructor

The GeneratorFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a [[Prototype]] internal slot whose value is%Function%.
  • has a"name" property whose value is"GeneratorFunction".
  • has the following properties:

27.3.2.1 GeneratorFunction.length

This is adata property with a value of 1. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.3.2.2 GeneratorFunction.prototype

The initial value ofGeneratorFunction.prototype is theGeneratorFunction prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

27.3.3 Properties of the GeneratorFunction Prototype Object

TheGeneratorFunction prototype object:

27.3.3.1 GeneratorFunction.prototype.constructor

The initial value ofGeneratorFunction.prototype.constructor is%GeneratorFunction%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.3.3.2 GeneratorFunction.prototype.prototype

The initial value ofGeneratorFunction.prototype.prototype is theGenerator prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.3.3.3 GeneratorFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"GeneratorFunction".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.3.4 GeneratorFunction Instances

Every GeneratorFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 29. The value of the [[IsClassConstructor]] internal slot for all such instances isfalse.

Each GeneratorFunction instance has the following own properties:

27.3.4.1 length

The specification for the"length" property of Function instances given in20.2.4.1 also applies to GeneratorFunction instances.

27.3.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to GeneratorFunction instances.

27.3.4.3 prototype

Whenever a GeneratorFunction instance is created anotherordinary object is also created and is the initial value of the generator function's"prototype" property. The value of the prototype property is used to initialize the [[Prototype]] internal slot of a newly created Generator object when the generatorfunction object is invoked using [[Call]].

This property has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.

Note

Unlike Function instances, the object that is the value of the a GeneratorFunction's"prototype" property does not have a"constructor" property whose value is the GeneratorFunction instance.

27.4 AsyncGeneratorFunction Objects

AsyncGeneratorFunction objects are functions that are usually created by evaluatingAsyncGeneratorDeclaration,AsyncGeneratorExpression, andAsyncGeneratorMethod syntactic productions. They may also be created by calling the%AsyncGeneratorFunction% intrinsic.

27.4.1 The AsyncGeneratorFunction Constructor

The AsyncGeneratorFunctionconstructor:

  • is%AsyncGeneratorFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new AsyncGeneratorFunction object when called as a function rather than as aconstructor. Thus the function callAsyncGeneratorFunction (...) is equivalent to the object creation expressionnew AsyncGeneratorFunction (...) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified AsyncGeneratorFunction behaviour must include asuper call to the AsyncGeneratorFunctionconstructor to create and initialize subclass instances with the internal slots necessary for built-in AsyncGeneratorFunction behaviour. All ECMAScript syntactic forms for defining async generator function objects create direct instances of AsyncGeneratorFunction. There is no syntactic means to create instances of AsyncGeneratorFunction subclasses.

27.4.1.1 AsyncGeneratorFunction (p1,p2, … ,pn,body )

The last argument specifies the body (executable code) of an async generator function; any preceding arguments specify formal parameters.

When theAsyncGeneratorFunction function is called with some argumentsp1,p2, … ,pn,body (wheren might be 0, that is, there are no "p" arguments, and wherebody might also not be provided), the following steps are taken:

  1. LetC be theactive function object.
  2. Letargs be theargumentsList that was passed to this function by [[Call]] or [[Construct]].
  3. Return ? CreateDynamicFunction(C, NewTarget,asyncGenerator,args).
Note

See NOTE for20.2.1.1.

27.4.2 Properties of the AsyncGeneratorFunction Constructor

The AsyncGeneratorFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a [[Prototype]] internal slot whose value is%Function%.
  • has a"name" property whose value is"AsyncGeneratorFunction".
  • has the following properties:

27.4.2.1 AsyncGeneratorFunction.length

This is adata property with a value of 1. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.4.2.2 AsyncGeneratorFunction.prototype

The initial value ofAsyncGeneratorFunction.prototype is theAsyncGeneratorFunction prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

27.4.3 Properties of the AsyncGeneratorFunction Prototype Object

TheAsyncGeneratorFunction prototype object:

27.4.3.1 AsyncGeneratorFunction.prototype.constructor

The initial value ofAsyncGeneratorFunction.prototype.constructor is%AsyncGeneratorFunction%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.4.3.2 AsyncGeneratorFunction.prototype.prototype

The initial value ofAsyncGeneratorFunction.prototype.prototype is theAsyncGenerator prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.4.3.3 AsyncGeneratorFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncGeneratorFunction".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.4.4 AsyncGeneratorFunction Instances

Every AsyncGeneratorFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 29. The value of the [[IsClassConstructor]] internal slot for all such instances isfalse.

Each AsyncGeneratorFunction instance has the following own properties:

27.4.4.1 length

The value of the"length" property is anintegral Number that indicates the typical number of arguments expected by the AsyncGeneratorFunction. However, the language permits the function to be invoked with some other number of arguments. The behaviour of an AsyncGeneratorFunction when invoked on a number of arguments other than the number specified by its"length" property depends on the function.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.4.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to AsyncGeneratorFunction instances.

27.4.4.3 prototype

Whenever an AsyncGeneratorFunction instance is created anotherordinary object is also created and is the initial value of the async generator function's"prototype" property. The value of the prototype property is used to initialize the [[Prototype]] internal slot of a newly created AsyncGenerator object when the generatorfunction object is invoked using [[Call]].

This property has the attributes { [[Writable]]:true, [[Enumerable]]:false, [[Configurable]]:false }.

Note

Unlike function instances, the object that is the value of the an AsyncGeneratorFunction's"prototype" property does not have a"constructor" property whose value is the AsyncGeneratorFunction instance.

27.5 Generator Objects

A Generator object is an instance of a generator function and conforms to both theIterator andIterable interfaces.

Generator instances directly inherit properties from the object that is the initial value of the"prototype" property of the Generator function that created the instance. Generator instances indirectly inherit properties from the Generator Prototype intrinsic,%GeneratorFunction.prototype.prototype%.

27.5.1 Properties of the Generator Prototype Object

TheGenerator prototype object:

  • is%GeneratorFunction.prototype.prototype%.
  • is anordinary object.
  • is not a Generator instance and does not have a [[GeneratorState]] internal slot.
  • has a [[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has properties that are indirectly inherited by all Generator instances.

27.5.1.1 Generator.prototype.constructor

The initial value ofGenerator.prototype.constructor is%GeneratorFunction.prototype%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.5.1.2 Generator.prototype.next (value )

Thenext method performs the following steps:

  1. Letg be thethis value.
  2. Return ? GeneratorResume(g,value,empty).

27.5.1.3 Generator.prototype.return (value )

Thereturn method performs the following steps:

  1. Letg be thethis value.
  2. LetC beCompletion { [[Type]]:return, [[Value]]:value, [[Target]]:empty }.
  3. Return ? GeneratorResumeAbrupt(g,C,empty).

27.5.1.4 Generator.prototype.throw (exception )

Thethrow method performs the following steps:

  1. Letg be thethis value.
  2. LetC beThrowCompletion(exception).
  3. Return ? GeneratorResumeAbrupt(g,C,empty).

27.5.1.5 Generator.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Generator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.5.2 Properties of Generator Instances

Generator instances are initially created with the internal slots described inTable 73.

Table 73: Internal Slots of Generator Instances
Internal Slot Description
[[GeneratorState]] The current execution state of the generator. The possible values are:undefined,suspendedStart,suspendedYield,executing, andcompleted.
[[GeneratorContext]] Theexecution context that is used when executing the code of this generator.
[[GeneratorBrand]] A brand used to distinguish different kinds of generators. The [[GeneratorBrand]] of generators declared by ECMAScript source text is alwaysempty.

27.5.3 Generator Abstract Operations

27.5.3.1 GeneratorStart (generator,generatorBody )

The abstract operation GeneratorStart takes argumentsgenerator andgeneratorBody (aParse Node or anAbstract Closure with no parameters). It performs the following steps when called:

  1. Assert: The value ofgenerator.[[GeneratorState]] isundefined.
  2. LetgenContext be therunning execution context.
  3. Set the Generator component ofgenContext togenerator.
  4. Set the code evaluation state ofgenContext such that when evaluation is resumed for thatexecution context the following steps will be performed:
    1. IfgeneratorBody is aParse Node, then
      1. Letresult be the result of evaluatinggeneratorBody.
    2. Else,
      1. Assert:generatorBody is anAbstract Closure with no parameters.
      2. Letresult begeneratorBody().
    3. Assert: If we return here, the generator either threw an exception or performed either an implicit or explicit return.
    4. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    5. Setgenerator.[[GeneratorState]] tocompleted.
    6. Once a generator enters thecompleted state it never leaves it and its associatedexecution context is never resumed. Any execution state associated withgenerator can be discarded at this point.
    7. Ifresult.[[Type]] isnormal, letresultValue beundefined.
    8. Else ifresult.[[Type]] isreturn, letresultValue beresult.[[Value]].
    9. Else,
      1. Assert:result.[[Type]] isthrow.
      2. ReturnCompletion(result).
    10. ReturnCreateIterResultObject(resultValue,true).
  5. Setgenerator.[[GeneratorContext]] togenContext.
  6. Setgenerator.[[GeneratorState]] tosuspendedStart.
  7. ReturnNormalCompletion(undefined).

27.5.3.2 GeneratorValidate (generator,generatorBrand )

The abstract operation GeneratorValidate takes argumentsgenerator andgeneratorBrand. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(generator, [[GeneratorState]]).
  2. Perform ? RequireInternalSlot(generator, [[GeneratorBrand]]).
  3. Ifgenerator.[[GeneratorBrand]] is not the same value asgeneratorBrand, throw aTypeError exception.
  4. Assert:generator also has a [[GeneratorContext]] internal slot.
  5. Letstate begenerator.[[GeneratorState]].
  6. Ifstate isexecuting, throw aTypeError exception.
  7. Returnstate.

27.5.3.3 GeneratorResume (generator,value,generatorBrand )

The abstract operation GeneratorResume takes argumentsgenerator,value, andgeneratorBrand. It performs the following steps when called:

  1. Letstate be ? GeneratorValidate(generator,generatorBrand).
  2. Ifstate iscompleted, returnCreateIterResultObject(undefined,true).
  3. Assert:state is eithersuspendedStart orsuspendedYield.
  4. LetgenContext begenerator.[[GeneratorContext]].
  5. LetmethodContext be therunning execution context.
  6. SuspendmethodContext.
  7. Setgenerator.[[GeneratorState]] toexecuting.
  8. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  9. Resume the suspended evaluation ofgenContext usingNormalCompletion(value) as the result of the operation that suspended it. Letresult be the value returned by the resumed computation.
  10. Assert: When we return here,genContext has already been removed from theexecution context stack andmethodContext is the currentlyrunning execution context.
  11. ReturnCompletion(result).

27.5.3.4 GeneratorResumeAbrupt (generator,abruptCompletion,generatorBrand )

The abstract operation GeneratorResumeAbrupt takes argumentsgenerator,abruptCompletion (aCompletion Record whose [[Type]] isreturn orthrow), andgeneratorBrand. It performs the following steps when called:

  1. Letstate be ? GeneratorValidate(generator,generatorBrand).
  2. Ifstate issuspendedStart, then
    1. Setgenerator.[[GeneratorState]] tocompleted.
    2. Once a generator enters thecompleted state it never leaves it and its associatedexecution context is never resumed. Any execution state associated withgenerator can be discarded at this point.
    3. Setstate tocompleted.
  3. Ifstate iscompleted, then
    1. IfabruptCompletion.[[Type]] isreturn, then
      1. ReturnCreateIterResultObject(abruptCompletion.[[Value]],true).
    2. ReturnCompletion(abruptCompletion).
  4. Assert:state issuspendedYield.
  5. LetgenContext begenerator.[[GeneratorContext]].
  6. LetmethodContext be therunning execution context.
  7. SuspendmethodContext.
  8. Setgenerator.[[GeneratorState]] toexecuting.
  9. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  10. Resume the suspended evaluation ofgenContext usingabruptCompletion as the result of the operation that suspended it. Letresult be the completion record returned by the resumed computation.
  11. Assert: When we return here,genContext has already been removed from theexecution context stack andmethodContext is the currentlyrunning execution context.
  12. ReturnCompletion(result).

27.5.3.5 GetGeneratorKind ( )

The abstract operation GetGeneratorKind takes no arguments. It performs the following steps when called:

  1. LetgenContext be therunning execution context.
  2. IfgenContext does not have a Generator component, returnnon-generator.
  3. Letgenerator be the Generator component ofgenContext.
  4. Ifgenerator has an [[AsyncGeneratorState]] internal slot, returnasync.
  5. Else, returnsync.

27.5.3.6 GeneratorYield (iterNextObj )

The abstract operation GeneratorYield takes argumentiterNextObj. It performs the following steps when called:

  1. Assert:iterNextObj is an Object that implements theIteratorResult interface.
  2. LetgenContext be therunning execution context.
  3. Assert:genContext is theexecution context of a generator.
  4. Letgenerator be the value of the Generator component ofgenContext.
  5. Assert:GetGeneratorKind() issync.
  6. Setgenerator.[[GeneratorState]] tosuspendedYield.
  7. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
  8. Set the code evaluation state ofgenContext such that when evaluation is resumed with aCompletionresumptionValue the following steps will be performed:
    1. ReturnresumptionValue.
    2. NOTE: This returns to the evaluation of theYieldExpression that originally called this abstract operation.
  9. ReturnNormalCompletion(iterNextObj).
  10. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation ofgenContext.

27.5.3.7 Yield (value )

The abstract operation Yield takes argumentvalue (anECMAScript language value). It performs the following steps when called:

  1. LetgeneratorKind be ! GetGeneratorKind().
  2. IfgeneratorKind isasync, return ? AsyncGeneratorYield(value).
  3. Otherwise, return ? GeneratorYield(!CreateIterResultObject(value,false)).

27.5.3.8 CreateIteratorFromClosure (closure,generatorBrand,generatorPrototype )

The abstract operation CreateIteratorFromClosure takes argumentsclosure (anAbstract Closure with no parameters),generatorBrand, andgeneratorPrototype (an Object). It performs the following steps when called:

  1. NOTE:closure can contain uses of theYield shorthand to yield an IteratorResult object.
  2. LetinternalSlotsList be « [[GeneratorState]], [[GeneratorContext]], [[GeneratorBrand]] ».
  3. Letgenerator be ! OrdinaryObjectCreate(generatorPrototype,internalSlotsList).
  4. Setgenerator.[[GeneratorBrand]] togeneratorBrand.
  5. Setgenerator.[[GeneratorState]] toundefined.
  6. Perform ! GeneratorStart(generator,closure).
  7. Returngenerator.

27.6 AsyncGenerator Objects

An AsyncGenerator object is an instance of an async generator function and conforms to both the AsyncIterator and AsyncIterable interfaces.

AsyncGenerator instances directly inherit properties from the object that is the initial value of the"prototype" property of the AsyncGenerator function that created the instance. AsyncGenerator instances indirectly inherit properties from the AsyncGenerator Prototype intrinsic,%AsyncGeneratorFunction.prototype.prototype%.

27.6.1 Properties of the AsyncGenerator Prototype Object

TheAsyncGenerator prototype object:

  • is%AsyncGeneratorFunction.prototype.prototype%.
  • is anordinary object.
  • is not an AsyncGenerator instance and does not have an [[AsyncGeneratorState]] internal slot.
  • has a [[Prototype]] internal slot whose value is%AsyncIteratorPrototype%.
  • has properties that are indirectly inherited by all AsyncGenerator instances.

27.6.1.1 AsyncGenerator.prototype.constructor

The initial value ofAsyncGenerator.prototype.constructor is%AsyncGeneratorFunction.prototype%.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.6.1.2 AsyncGenerator.prototype.next (value )

  1. Letgenerator be thethis value.
  2. Letcompletion beNormalCompletion(value).
  3. Return ! AsyncGeneratorEnqueue(generator,completion,empty).

27.6.1.3 AsyncGenerator.prototype.return (value )

  1. Letgenerator be thethis value.
  2. Letcompletion beCompletion { [[Type]]:return, [[Value]]:value, [[Target]]:empty }.
  3. Return ! AsyncGeneratorEnqueue(generator,completion,empty).

27.6.1.4 AsyncGenerator.prototype.throw (exception )

  1. Letgenerator be thethis value.
  2. Letcompletion beThrowCompletion(exception).
  3. Return ! AsyncGeneratorEnqueue(generator,completion,empty).

27.6.1.5 AsyncGenerator.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncGenerator".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.6.2 Properties of AsyncGenerator Instances

AsyncGenerator instances are initially created with the internal slots described below:

Table 74: Internal Slots of AsyncGenerator Instances
Internal SlotDescription
[[AsyncGeneratorState]]The current execution state of the async generator. The possible values are:undefined,suspendedStart,suspendedYield,executing,awaiting-return, andcompleted.
[[AsyncGeneratorContext]]Theexecution context that is used when executing the code of this async generator.
[[AsyncGeneratorQueue]]AList of AsyncGeneratorRequest records which represent requests to resume the async generator.
[[GeneratorBrand]]A brand used to distinguish different kinds of async generators. The [[GeneratorBrand]] of async generators declared by ECMAScript source text is alwaysempty.

27.6.3 AsyncGenerator Abstract Operations

27.6.3.1 AsyncGeneratorRequest Records

The AsyncGeneratorRequest is aRecord value used to store information about how an async generator should be resumed and contains capabilities for fulfilling or rejecting the corresponding promise.

They have the following fields:

Table 75: AsyncGeneratorRequestRecord Fields
Field NameValueMeaning
[[Completion]]ACompletion recordThe completion which should be used to resume the async generator.
[[Capability]]APromiseCapability RecordThe promise capabilities associated with this request.

27.6.3.2 AsyncGeneratorStart (generator,generatorBody )

The abstract operation AsyncGeneratorStart takes argumentsgenerator andgeneratorBody (aParse Node or anAbstract Closure with no parameters). It performs the following steps when called:

  1. Assert:generator is an AsyncGenerator instance.
  2. Assert:generator.[[AsyncGeneratorState]] isundefined.
  3. LetgenContext be therunning execution context.
  4. Set the Generator component ofgenContext togenerator.
  5. Set the code evaluation state ofgenContext such that when evaluation is resumed for thatexecution context the following steps will be performed:
    1. IfgeneratorBody is aParse Node, then
      1. Letresult be the result of evaluatinggeneratorBody.
    2. Else,
      1. Assert:generatorBody is anAbstract Closure with no parameters.
      2. Letresult begeneratorBody().
    3. Assert: If we return here, the async generator either threw an exception or performed either an implicit or explicit return.
    4. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    5. Setgenerator.[[AsyncGeneratorState]] tocompleted.
    6. Ifresult is a normal completion, letresultValue beundefined.
    7. Else,
      1. LetresultValue beresult.[[Value]].
      2. Ifresult.[[Type]] is notreturn, then
        1. Return ! AsyncGeneratorReject(generator,resultValue).
    8. Return ! AsyncGeneratorResolve(generator,resultValue,true).
  6. Setgenerator.[[AsyncGeneratorContext]] togenContext.
  7. Setgenerator.[[AsyncGeneratorState]] tosuspendedStart.
  8. Setgenerator.[[AsyncGeneratorQueue]] to a new emptyList.
  9. Returnundefined.

27.6.3.3 AsyncGeneratorValidate (generator,generatorBrand )

The abstract operation AsyncGeneratorValidate takes argumentsgenerator andgeneratorBrand. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(generator, [[AsyncGeneratorContext]]).
  2. Perform ? RequireInternalSlot(generator, [[AsyncGeneratorState]]).
  3. Perform ? RequireInternalSlot(generator, [[AsyncGeneratorQueue]]).
  4. Ifgenerator.[[GeneratorBrand]] is not the same value asgeneratorBrand, throw aTypeError exception.

27.6.3.4 AsyncGeneratorResolve (generator,value,done )

The abstract operation AsyncGeneratorResolve takes argumentsgenerator,value, anddone (a Boolean). It performs the following steps when called:

  1. Assert:generator is an AsyncGenerator instance.
  2. Letqueue begenerator.[[AsyncGeneratorQueue]].
  3. Assert:queue is not an emptyList.
  4. Letnext be the first element ofqueue.
  5. Remove the first element fromqueue.
  6. LetpromiseCapability benext.[[Capability]].
  7. LetiteratorResult be ! CreateIterResultObject(value,done).
  8. Perform ! Call(promiseCapability.[[Resolve]],undefined, «iteratorResult »).
  9. Perform ! AsyncGeneratorResumeNext(generator).
  10. Returnundefined.

27.6.3.5 AsyncGeneratorReject (generator,exception )

The abstract operation AsyncGeneratorReject takes argumentsgenerator andexception. It performs the following steps when called:

  1. Assert:generator is an AsyncGenerator instance.
  2. Letqueue begenerator.[[AsyncGeneratorQueue]].
  3. Assert:queue is not an emptyList.
  4. Letnext be the first element ofqueue.
  5. Remove the first element fromqueue.
  6. LetpromiseCapability benext.[[Capability]].
  7. Perform ! Call(promiseCapability.[[Reject]],undefined, «exception »).
  8. Perform ! AsyncGeneratorResumeNext(generator).
  9. Returnundefined.

27.6.3.6 AsyncGeneratorResumeNext (generator )

The abstract operation AsyncGeneratorResumeNext takes argumentgenerator. It performs the following steps when called:

  1. Assert:generator is an AsyncGenerator instance.
  2. Letstate begenerator.[[AsyncGeneratorState]].
  3. Assert:state is notexecuting.
  4. Ifstate isawaiting-return, returnundefined.
  5. Letqueue begenerator.[[AsyncGeneratorQueue]].
  6. Ifqueue is an emptyList, returnundefined.
  7. Letnext be the value of the first element ofqueue.
  8. Assert:next is an AsyncGeneratorRequest record.
  9. Letcompletion benext.[[Completion]].
  10. Ifcompletion is anabrupt completion, then
    1. Ifstate issuspendedStart, then
      1. Setgenerator.[[AsyncGeneratorState]] tocompleted.
      2. Setstate tocompleted.
    2. Ifstate iscompleted, then
      1. Ifcompletion.[[Type]] isreturn, then
        1. Setgenerator.[[AsyncGeneratorState]] toawaiting-return.
        2. Letpromise be ? PromiseResolve(%Promise%,completion.[[Value]]).
        3. LetstepsFulfilled be the algorithm steps defined inAsyncGeneratorResumeNext Return Processor Fulfilled Functions.
        4. LetlengthFulfilled be the number of non-optional parameters of the function definition inAsyncGeneratorResumeNext Return Processor Fulfilled Functions.
        5. LetonFulfilled be ! CreateBuiltinFunction(stepsFulfilled,lengthFulfilled,"", « [[Generator]] »).
        6. SetonFulfilled.[[Generator]] togenerator.
        7. LetstepsRejected be the algorithm steps defined inAsyncGeneratorResumeNext Return Processor Rejected Functions.
        8. LetlengthRejected be the number of non-optional parameters of the function definition inAsyncGeneratorResumeNext Return Processor Rejected Functions.
        9. LetonRejected be ! CreateBuiltinFunction(stepsRejected,lengthRejected,"", « [[Generator]] »).
        10. SetonRejected.[[Generator]] togenerator.
        11. Perform ! PerformPromiseThen(promise,onFulfilled,onRejected).
        12. Returnundefined.
      2. Else,
        1. Assert:completion.[[Type]] isthrow.
        2. Perform ! AsyncGeneratorReject(generator,completion.[[Value]]).
        3. Returnundefined.
  11. Else ifstate iscompleted, return ! AsyncGeneratorResolve(generator,undefined,true).
  12. Assert:state is eithersuspendedStart orsuspendedYield.
  13. LetgenContext begenerator.[[AsyncGeneratorContext]].
  14. LetcallerContext be therunning execution context.
  15. SuspendcallerContext.
  16. Setgenerator.[[AsyncGeneratorState]] toexecuting.
  17. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  18. Resume the suspended evaluation ofgenContext usingcompletion as the result of the operation that suspended it. Letresult be the completion record returned by the resumed computation.
  19. Assert:result is never anabrupt completion.
  20. Assert: When we return here,genContext has already been removed from theexecution context stack andcallerContext is the currentlyrunning execution context.
  21. Returnundefined.

27.6.3.6.1 AsyncGeneratorResumeNext Return Processor Fulfilled Functions

AnAsyncGeneratorResumeNext return processor fulfilled function is an anonymous built-in function that is used as part of theAsyncGeneratorResumeNext specification device to unwrap promises passed in to theAsyncGenerator.prototype.return (value ) method. EachAsyncGeneratorResumeNext return processor fulfilled function has a [[Generator]] internal slot.

When anAsyncGeneratorResumeNext return processor fulfilled function is called with argumentvalue, the following steps are taken:

  1. LetF be theactive function object.
  2. SetF.[[Generator]].[[AsyncGeneratorState]] tocompleted.
  3. Return ! AsyncGeneratorResolve(F.[[Generator]],value,true).

The"length" property of anAsyncGeneratorResumeNext return processor fulfilled function is1𝔽.

27.6.3.6.2 AsyncGeneratorResumeNext Return Processor Rejected Functions

AnAsyncGeneratorResumeNext return processor rejected function is an anonymous built-in function that is used as part of theAsyncGeneratorResumeNext specification device to unwrap promises passed in to theAsyncGenerator.prototype.return (value ) method. EachAsyncGeneratorResumeNext return processor rejected function has a [[Generator]] internal slot.

When anAsyncGeneratorResumeNext return processor rejected function is called with argumentreason, the following steps are taken:

  1. LetF be theactive function object.
  2. SetF.[[Generator]].[[AsyncGeneratorState]] tocompleted.
  3. Return ! AsyncGeneratorReject(F.[[Generator]],reason).

The"length" property of anAsyncGeneratorResumeNext return processor rejected function is1𝔽.

27.6.3.7 AsyncGeneratorEnqueue (generator,completion,generatorBrand )

The abstract operation AsyncGeneratorEnqueue takes argumentsgenerator,completion (aCompletion Record), andgeneratorBrand. It performs the following steps when called:

  1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  2. Letcheck beAsyncGeneratorValidate(generator,generatorBrand).
  3. Ifcheck is anabrupt completion, then
    1. LetbadGeneratorError be a newly createdTypeError object.
    2. Perform ! Call(promiseCapability.[[Reject]],undefined, «badGeneratorError »).
    3. ReturnpromiseCapability.[[Promise]].
  4. Letqueue begenerator.[[AsyncGeneratorQueue]].
  5. Letrequest be AsyncGeneratorRequest { [[Completion]]:completion, [[Capability]]:promiseCapability }.
  6. Appendrequest to the end ofqueue.
  7. Letstate begenerator.[[AsyncGeneratorState]].
  8. Ifstate is notexecuting, then
    1. Perform ! AsyncGeneratorResumeNext(generator).
  9. ReturnpromiseCapability.[[Promise]].

27.6.3.8 AsyncGeneratorYield (value )

The abstract operation AsyncGeneratorYield takes argumentvalue. It performs the following steps when called:

  1. LetgenContext be therunning execution context.
  2. Assert:genContext is theexecution context of a generator.
  3. Letgenerator be the value of the Generator component ofgenContext.
  4. Assert:GetGeneratorKind() isasync.
  5. Setvalue to ? Await(value).
  6. Setgenerator.[[AsyncGeneratorState]] tosuspendedYield.
  7. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
  8. Set the code evaluation state ofgenContext such that when evaluation is resumed with aCompletionresumptionValue the following steps will be performed:
    1. IfresumptionValue.[[Type]] is notreturn, returnCompletion(resumptionValue).
    2. Letawaited beAwait(resumptionValue.[[Value]]).
    3. Ifawaited.[[Type]] isthrow, returnCompletion(awaited).
    4. Assert:awaited.[[Type]] isnormal.
    5. ReturnCompletion { [[Type]]:return, [[Value]]:awaited.[[Value]], [[Target]]:empty }.
    6. NOTE: When one of the above steps returns, it returns to the evaluation of theYieldExpression production that originally called this abstract operation.
  9. Return ! AsyncGeneratorResolve(generator,value,false).
  10. NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation ofgenContext.

27.6.3.9 CreateAsyncIteratorFromClosure (closure,generatorBrand,generatorPrototype )

The abstract operation CreateAsyncIteratorFromClosure takes argumentsclosure (anAbstract Closure with no parameters),generatorBrand, andgeneratorPrototype (an Object). It performs the following steps when called:

  1. NOTE:closure can contain uses of theAwait shorthand and uses of theYield shorthand to yield an IteratorResult object.
  2. LetinternalSlotsList be « [[AsyncGeneratorState]], [[AsyncGeneratorContext]], [[AsyncGeneratorQueue]], [[GeneratorBrand]] ».
  3. Letgenerator be ! OrdinaryObjectCreate(generatorPrototype,internalSlotsList).
  4. Setgenerator.[[GeneratorBrand]] togeneratorBrand.
  5. Setgenerator.[[AsyncGeneratorState]] toundefined.
  6. Perform ! AsyncGeneratorStart(generator,closure).
  7. Returngenerator.

27.7 AsyncFunction Objects

AsyncFunction objects are functions that are usually created by evaluatingAsyncFunctionDeclarations,AsyncFunctionExpressions,AsyncMethods, andAsyncArrowFunctions. They may also be created by calling the%AsyncFunction% intrinsic.

27.7.1 The AsyncFunction Constructor

The AsyncFunctionconstructor:

  • is%AsyncFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new AsyncFunction object when called as a function rather than as aconstructor. Thus the function callAsyncFunction(…) is equivalent to the object creation expressionnew AsyncFunction(…) with the same arguments.
  • is designed to be subclassable. It may be used as the value of anextends clause of a class definition. Subclass constructors that intend to inherit the specified AsyncFunction behaviour must include asuper call to the AsyncFunctionconstructor to create and initialize a subclass instance with the internal slots necessary for built-in async function behaviour. All ECMAScript syntactic forms for defining async function objects create direct instances of AsyncFunction. There is no syntactic means to create instances of AsyncFunction subclasses.

27.7.1.1 AsyncFunction (p1,p2, … ,pn,body )

The last argument specifies the body (executable code) of an async function. Any preceding arguments specify formal parameters.

When theAsyncFunction function is called with some argumentsp1,p2, … ,pn,body (wheren might be 0, that is, there are nop arguments, and wherebody might also not be provided), the following steps are taken:

  1. LetC be theactive function object.
  2. Letargs be theargumentsList that was passed to this function by [[Call]] or [[Construct]].
  3. ReturnCreateDynamicFunction(C, NewTarget,async,args).
Note
See NOTE for20.2.1.1.

27.7.2 Properties of the AsyncFunction Constructor

The AsyncFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a [[Prototype]] internal slot whose value is%Function%.
  • has a"name" property whose value is"AsyncFunction".
  • has the following properties:

27.7.2.1 AsyncFunction.length

This is adata property with a value of 1. This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.7.2.2 AsyncFunction.prototype

The initial value ofAsyncFunction.prototype is theAsyncFunction prototype object.

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

27.7.3 Properties of the AsyncFunction Prototype Object

TheAsyncFunction prototype object:

27.7.3.1 AsyncFunction.prototype.constructor

The initial value ofAsyncFunction.prototype.constructor is%AsyncFunction%

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.7.3.2 AsyncFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncFunction".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

27.7.4 AsyncFunction Instances

Every AsyncFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 29. The value of the [[IsClassConstructor]] internal slot for all such instances isfalse. AsyncFunction instances are not constructors and do not have a [[Construct]] internal method. AsyncFunction instances do not have a prototype property as they are not constructible.

Each AsyncFunction instance has the following own properties:

27.7.4.1 length

The specification for the"length" property of Function instances given in20.2.4.1 also applies to AsyncFunction instances.

27.7.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to AsyncFunction instances.

27.7.5 Async Functions Abstract Operations

27.7.5.1 AsyncFunctionStart (promiseCapability,asyncFunctionBody )

The abstract operation AsyncFunctionStart takes argumentspromiseCapability (aPromiseCapability Record) andasyncFunctionBody. It performs the following steps when called:

  1. LetrunningContext be therunning execution context.
  2. LetasyncContext be a copy ofrunningContext.
  3. NOTE: Copying the execution state is required for the step below to resume its execution. It is ill-defined to resume a currently executing context.
  4. Set the code evaluation state ofasyncContext such that when evaluation is resumed for thatexecution context the following steps will be performed:
    1. Letresult be the result of evaluatingasyncFunctionBody.
    2. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
    3. RemoveasyncContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    4. Ifresult.[[Type]] isnormal, then
      1. Perform ! Call(promiseCapability.[[Resolve]],undefined, «undefined »).
    5. Else ifresult.[[Type]] isreturn, then
      1. Perform ! Call(promiseCapability.[[Resolve]],undefined, «result.[[Value]] »).
    6. Else,
      1. Assert:result.[[Type]] isthrow.
      2. Perform ! Call(promiseCapability.[[Reject]],undefined, «result.[[Value]] »).
    7. Return.
  5. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
  6. Resume the suspended evaluation ofasyncContext. Letresult be the value returned by the resumed computation.
  7. Assert: When we return here,asyncContext has already been removed from theexecution context stack andrunningContext is the currentlyrunning execution context.
  8. Assert:result is a normal completion with a value ofundefined. The possible sources of completion values areAwait or, if the async function doesn't await anything, step4.g above.
  9. Return.

28 Reflection

28.1 The Reflect Object

The Reflect object:

  • is%Reflect%.
  • is the initial value of the"Reflect" property of theglobal object.
  • is anordinary object.
  • has a [[Prototype]] internal slot whose value is%Object.prototype%.
  • is not afunction object.
  • does not have a [[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a [[Call]] internal method; it cannot be invoked as a function.

28.1.1 Reflect.apply (target,thisArgument,argumentsList )

When theapply function is called with argumentstarget,thisArgument, andargumentsList, the following steps are taken:

  1. IfIsCallable(target) isfalse, throw aTypeError exception.
  2. Letargs be ? CreateListFromArrayLike(argumentsList).
  3. PerformPrepareForTailCall().
  4. Return ? Call(target,thisArgument,args).

28.1.2 Reflect.construct (target,argumentsList [ ,newTarget ] )

When theconstruct function is called with argumentstarget,argumentsList, andnewTarget, the following steps are taken:

  1. IfIsConstructor(target) isfalse, throw aTypeError exception.
  2. IfnewTarget is not present, setnewTarget totarget.
  3. Else ifIsConstructor(newTarget) isfalse, throw aTypeError exception.
  4. Letargs be ? CreateListFromArrayLike(argumentsList).
  5. Return ? Construct(target,args,newTarget).

28.1.3 Reflect.defineProperty (target,propertyKey,attributes )

When thedefineProperty function is called with argumentstarget,propertyKey, andattributes, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Letdesc be ? ToPropertyDescriptor(attributes).
  4. Return ?target.[[DefineOwnProperty]](key,desc).

28.1.4 Reflect.deleteProperty (target,propertyKey )

When thedeleteProperty function is called with argumentstarget andpropertyKey, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Return ?target.[[Delete]](key).

28.1.5 Reflect.get (target,propertyKey [ ,receiver ] )

When theget function is called with argumentstarget,propertyKey, andreceiver, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Ifreceiver is not present, then
    1. Setreceiver totarget.
  4. Return ?target.[[Get]](key,receiver).

28.1.6 Reflect.getOwnPropertyDescriptor (target,propertyKey )

When thegetOwnPropertyDescriptor function is called with argumentstarget andpropertyKey, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Letdesc be ?target.[[GetOwnProperty]](key).
  4. ReturnFromPropertyDescriptor(desc).

28.1.7 Reflect.getPrototypeOf (target )

When thegetPrototypeOf function is called with argumenttarget, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Return ?target.[[GetPrototypeOf]]().

28.1.8 Reflect.has (target,propertyKey )

When thehas function is called with argumentstarget andpropertyKey, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Return ?target.[[HasProperty]](key).

28.1.9 Reflect.isExtensible (target )

When theisExtensible function is called with argumenttarget, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Return ?target.[[IsExtensible]]().

28.1.10 Reflect.ownKeys (target )

When theownKeys function is called with argumenttarget, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkeys be ?target.[[OwnPropertyKeys]]().
  3. ReturnCreateArrayFromList(keys).

28.1.11 Reflect.preventExtensions (target )

When thepreventExtensions function is called with argumenttarget, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Return ?target.[[PreventExtensions]]().

28.1.12 Reflect.set (target,propertyKey,V [ ,receiver ] )

When theset function is called with argumentstarget,V,propertyKey, andreceiver, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Ifreceiver is not present, then
    1. Setreceiver totarget.
  4. Return ?target.[[Set]](key,V,receiver).

28.1.13 Reflect.setPrototypeOf (target,proto )

When thesetPrototypeOf function is called with argumentstarget andproto, the following steps are taken:

  1. IfType(target) is not Object, throw aTypeError exception.
  2. IfType(proto) is not Object andproto is notnull, throw aTypeError exception.
  3. Return ?target.[[SetPrototypeOf]](proto).

28.1.14 Reflect [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Reflect".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:true }.

28.2 Proxy Objects

28.2.1 The Proxy Constructor

The Proxyconstructor:

  • is%Proxy%.
  • is the initial value of the"Proxy" property of theglobal object.
  • creates and initializes a newProxy exotic object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.

28.2.1.1 Proxy (target,handler )

WhenProxy is called with argumentstarget andhandler, it performs the following steps:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Return ? ProxyCreate(target,handler).

28.2.2 Properties of the Proxy Constructor

The Proxyconstructor:

  • has a [[Prototype]] internal slot whose value is%Function.prototype%.
  • does not have a"prototype" property because Proxy exotic objects do not have a [[Prototype]] internal slot that requires initialization.
  • has the following properties:

28.2.2.1 Proxy.revocable (target,handler )

TheProxy.revocable function is used to create a revocable Proxy object. WhenProxy.revocable is called with argumentstarget andhandler, the following steps are taken:

  1. Letp be ? ProxyCreate(target,handler).
  2. Letsteps be the algorithm steps defined inProxy Revocation Functions.
  3. Letlength be the number of non-optional parameters of the function definition inProxy Revocation Functions.
  4. Letrevoker be ! CreateBuiltinFunction(steps,length,"", « [[RevocableProxy]] »).
  5. Setrevoker.[[RevocableProxy]] top.
  6. Letresult be ! OrdinaryObjectCreate(%Object.prototype%).
  7. Perform ! CreateDataPropertyOrThrow(result,"proxy",p).
  8. Perform ! CreateDataPropertyOrThrow(result,"revoke",revoker).
  9. Returnresult.

28.2.2.1.1 Proxy Revocation Functions

A Proxy revocation function is an anonymous built-in function that has the ability to invalidate a specific Proxy object.

Each Proxy revocation function has a [[RevocableProxy]] internal slot.

When a Proxy revocation function is called, the following steps are taken:

  1. LetF be theactive function object.
  2. Letp beF.[[RevocableProxy]].
  3. Ifp isnull, returnundefined.
  4. SetF.[[RevocableProxy]] tonull.
  5. Assert:p is a Proxy object.
  6. Setp.[[ProxyTarget]] tonull.
  7. Setp.[[ProxyHandler]] tonull.
  8. Returnundefined.

The"length" property of a Proxy revocation function is+0𝔽.

28.3 Module Namespace Objects

A Module Namespace Object is amodule namespace exotic object that provides runtime property-based access to a module's exported bindings. There is noconstructor function for Module Namespace Objects. Instead, such an object is created for each module that is imported by anImportDeclaration that includes aNameSpaceImport.

In addition to the properties specified in10.4.6 each Module Namespace Object has the following own property:

28.3.1 @@toStringTag

The initial value of the@@toStringTag property is the String value"Module".

This property has the attributes { [[Writable]]:false, [[Enumerable]]:false, [[Configurable]]:false }.

29 Memory Model

The memory consistency model, ormemory model, specifies the possible orderings ofShared Data Block events, arising via accessing TypedArray instances backed by a SharedArrayBuffer and via methods on the Atomics object. When the program has no data races (defined below), the ordering of events appears as sequentially consistent, i.e., as an interleaving of actions from eachagent. When the program has data races, shared memory operations may appear sequentially inconsistent. For example, programs may exhibit causality-violating behaviour and other astonishments. These astonishments arise from compiler transforms and the design of CPUs (e.g., out-of-order execution and speculation). The memory model defines both the precise conditions under which a program exhibits sequentially consistent behaviour as well as the possible values read from data races. To wit, there is no undefined behaviour.

The memory model is defined as relational constraints on events introduced byabstract operations on SharedArrayBuffer or by methods on the Atomics object during an evaluation.

Note

This section provides an axiomatic model on events introduced by theabstract operations on SharedArrayBuffers. It bears stressing that the model is not expressible algorithmically, unlike the rest of this specification. The nondeterministic introduction of events byabstract operations is the interface between the operational semantics of ECMAScript evaluation and the axiomatic semantics of the memory model. The semantics of these events is defined by considering graphs of all events in an evaluation. These are neither Static Semantics nor Runtime Semantics. There is no demonstrated algorithmic implementation, but instead a set of constraints that determine if a particular event graph is allowed or disallowed.

29.1 Memory Model Fundamentals

Shared memory accesses (reads and writes) are divided into two groups, atomic accesses and data accesses, defined below. Atomic accesses are sequentially consistent, i.e., there is a strict total ordering of events agreed upon by all agents in anagent cluster. Non-atomic accesses do not have a strict total ordering agreed upon by all agents, i.e., unordered.

Note 1

No orderings weaker than sequentially consistent and stronger than unordered, such as release-acquire, are supported.

AShared Data Block event is either aReadSharedMemory,WriteSharedMemory, orReadModifyWriteSharedMemoryRecord.

Table 76:ReadSharedMemory Event Fields
Field NameValueMeaning
[[Order]]SeqCst |UnorderedThe weakest ordering guaranteed by thememory model for the event.
[[NoTear]]A BooleanWhether this event is allowed to read from multiple write events on equal range as this event.
[[Block]]AShared Data BlockThe block the event operates on.
[[ByteIndex]]A non-negativeintegerThe byte address of the read in [[Block]].
[[ElementSize]]A non-negativeintegerThe size of the read.
Table 77:WriteSharedMemory Event Fields
Field NameValueMeaning
[[Order]]SeqCst |Unordered |InitThe weakest ordering guaranteed by thememory model for the event.
[[NoTear]]A BooleanWhether this event is allowed to be read from multiple read events with equal range as this event.
[[Block]]AShared Data BlockThe block the event operates on.
[[ByteIndex]]A non-negativeintegerThe byte address of the write in [[Block]].
[[ElementSize]]A non-negativeintegerThe size of the write.
[[Payload]]AListTheList of byte values to be read by other events.
Table 78:ReadModifyWriteSharedMemory Event Fields
Field NameValueMeaning
[[Order]]SeqCstRead-modify-write events are always sequentially consistent.
[[NoTear]]trueRead-modify-write events cannot tear.
[[Block]]AShared Data BlockThe block the event operates on.
[[ByteIndex]]A non-negativeintegerThe byte address of the read-modify-write in [[Block]].
[[ElementSize]]A non-negativeintegerThe size of the read-modify-write.
[[Payload]]AListTheList of byte values to be passed to [[ModifyOp]].
[[ModifyOp]]Aread-modify-write modification functionAn abstract closure that returns a modifiedList of byte values from a readList of byte values and [[Payload]].

These events are introduced byabstract operations or by methods on the Atomics object.

Some operations may also introduceSynchronize events. ASynchronize event has no fields, and exists purely to directly constrain the permitted orderings of other events.

In addition toShared Data Block and Synchronize events, there arehost-specific events.

Let the range of a ReadSharedMemory, WriteSharedMemory, or ReadModifyWriteSharedMemory event be the Set of contiguous integers from its [[ByteIndex]] to [[ByteIndex]] + [[ElementSize]] - 1. Two events' ranges are equal when the events have the same [[Block]], and the ranges are element-wise equal. Two events' ranges are overlapping when the events have the same [[Block]], the ranges are not equal and their intersection is non-empty. Two events' ranges are disjoint when the events do not have the same [[Block]] or their ranges are neither equal nor overlapping.

Note 2

Examples ofhost-specific synchronizing events that should be accounted for are: sending a SharedArrayBuffer from oneagent to another (e.g., bypostMessage in a browser), starting and stopping agents, and communicating within theagent cluster via channels other than shared memory. It is assumed those events are appended toagent-order during evaluation like the other SharedArrayBuffer events.

Events are ordered within candidate executions by the relations defined below.

29.2 Agent Events Records

AnAgent Events Record is aRecord with the following fields.

Table 79:Agent Events Record Fields
Field NameValueMeaning
[[AgentSignifier]]A value that admits equality testingTheagent whose evaluation resulted in this ordering.
[[EventList]]AList of eventsEvents are appended to the list during evaluation.
[[AgentSynchronizesWith]]AList of pairs ofSynchronize eventsSynchronize relationships introduced by the operational semantics.

29.3 Chosen Value Records

AChosen Value Record is aRecord with the following fields.

Table 80:Chosen Value Record Fields
Field NameValueMeaning
[[Event]]AShared Data Block eventTheReadSharedMemory orReadModifyWriteSharedMemory event that was introduced for this chosen value.
[[ChosenValue]]AList of byte valuesThe bytes that were nondeterministically chosen during evaluation.

29.4 Candidate Executions

Acandidate execution of the evaluation of anagent cluster is aRecord with the following fields.

Table 81: Candidate ExecutionRecord Fields
Field NameValueMeaning
[[EventsRecords]]AList ofAgent Events Records.Maps anagent to Lists of events appended during the evaluation.
[[ChosenValues]]AList of Chosen Value Records.MapsReadSharedMemory orReadModifyWriteSharedMemory events to theList of byte values chosen during the evaluation.
[[AgentOrder]]Anagent-orderRelation.Defined below.
[[ReadsBytesFrom]]Areads-bytes-from mathematical function.Defined below.
[[ReadsFrom]]Areads-fromRelation.Defined below.
[[HostSynchronizesWith]]Ahost-synchronizes-withRelation.Defined below.
[[SynchronizesWith]]Asynchronizes-withRelation.Defined below.
[[HappensBefore]]Ahappens-beforeRelation.Defined below.

Anempty candidate execution is a candidate executionRecord whose fields are empty Lists and Relations.

29.5 Abstract Operations for the Memory Model

29.5.1 EventSet (execution )

The abstract operation EventSet takes argumentexecution (acandidate execution). It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For eachAgent Events Recordaer ofexecution.[[EventsRecords]], do
    1. For each eventE ofaer.[[EventList]], do
      1. AddE toevents.
  3. Returnevents.

29.5.2 SharedDataBlockEventSet (execution )

The abstract operation SharedDataBlockEventSet takes argumentexecution (acandidate execution). It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For each eventE ofEventSet(execution), do
    1. IfE is aReadSharedMemory,WriteSharedMemory, orReadModifyWriteSharedMemory event, addE toevents.
  3. Returnevents.

29.5.3 HostEventSet (execution )

The abstract operation HostEventSet takes argumentexecution (acandidate execution). It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For each eventE ofEventSet(execution), do
    1. IfE is not inSharedDataBlockEventSet(execution), addE toevents.
  3. Returnevents.

29.5.4 ComposeWriteEventBytes (execution,byteIndex,Ws )

The abstract operation ComposeWriteEventBytes takes argumentsexecution (acandidate execution),byteIndex (a non-negativeinteger), andWs (aList ofWriteSharedMemory orReadModifyWriteSharedMemory events). It performs the following steps when called:

  1. LetbyteLocation bebyteIndex.
  2. LetbytesRead be a new emptyList.
  3. For each elementW ofWs, do
    1. Assert:W hasbyteLocation in its range.
    2. LetpayloadIndex bebyteLocation -W.[[ByteIndex]].
    3. IfW is aWriteSharedMemory event, then
      1. Letbyte beW.[[Payload]][payloadIndex].
    4. Else,
      1. Assert:W is aReadModifyWriteSharedMemory event.
      2. Letbytes beValueOfReadEvent(execution,W).
      3. LetbytesModified beW.[[ModifyOp]](bytes,W.[[Payload]]).
      4. Letbyte bebytesModified[payloadIndex].
    5. Appendbyte tobytesRead.
    6. SetbyteLocation tobyteLocation + 1.
  4. ReturnbytesRead.
Note 1

The read-modify-write modification [[ModifyOp]] is given by the function properties on the Atomics object that introduceReadModifyWriteSharedMemory events.

Note 2

This abstract operation composes aList of write events into aList of byte values. It is used in the event semantics ofReadSharedMemory andReadModifyWriteSharedMemory events.

29.5.5 ValueOfReadEvent (execution,R )

The abstract operation ValueOfReadEvent takes argumentsexecution (acandidate execution) andR (aReadSharedMemory orReadModifyWriteSharedMemory event). It performs the following steps when called:

  1. Assert:R is aReadSharedMemory orReadModifyWriteSharedMemory event.
  2. LetWs beexecution.[[ReadsBytesFrom]](R).
  3. Assert:Ws is aList ofWriteSharedMemory orReadModifyWriteSharedMemory events with length equal toR.[[ElementSize]].
  4. ReturnComposeWriteEventBytes(execution,R.[[ByteIndex]],Ws).

29.6 Relations of Candidate Executions

29.6.1 agent-order

For acandidate executionexecution,execution.[[AgentOrder]] is aRelation on events that satisfies the following.

  • For each pair (E,D) inEventSet(execution), (E,D) is inexecution.[[AgentOrder]] if there is someAgent Events Recordaer inexecution.[[EventsRecords]] such thatE andD are inaer.[[EventList]] andE is beforeD inList order ofaer.[[EventList]].
Note

Eachagent introduces events in a per-agentstrict total order during the evaluation. This is the union of those strict total orders.

29.6.2 reads-bytes-from

For acandidate executionexecution,execution.[[ReadsBytesFrom]] is a mathematical function mapping events inSharedDataBlockEventSet(execution) to Lists of events inSharedDataBlockEventSet(execution) that satisfies the following conditions.

29.6.3 reads-from

For acandidate executionexecution,execution.[[ReadsFrom]] is the leastRelation on events that satisfies the following.

  • For each pair (R,W) inSharedDataBlockEventSet(execution), (R,W) is inexecution.[[ReadsFrom]] ifW is inexecution.[[ReadsBytesFrom]](R).

29.6.4 host-synchronizes-with

For acandidate executionexecution,execution.[[HostSynchronizesWith]] is ahost-providedstrict partial order onhost-specific events that satisfies at least the following.

  • If (E,D) is inexecution.[[HostSynchronizesWith]],E andD are inHostEventSet(execution).
  • There is no cycle in the union ofexecution.[[HostSynchronizesWith]] andexecution.[[AgentOrder]].
Note 1

For twohost-specific eventsE andD,E host-synchronizes-withD impliesEhappens-beforeD.

Note 2

The host-synchronizes-with relation allows thehost to provide additional synchronization mechanisms, such aspostMessage between HTML workers.

29.6.5 synchronizes-with

For acandidate executionexecution,execution.[[SynchronizesWith]] is the leastRelation on events that satisfies the following.

  • For each pair (R,W) inexecution.[[ReadsFrom]], (W,R) is inexecution.[[SynchronizesWith]] ifR.[[Order]] isSeqCst,W.[[Order]] isSeqCst, andR andW have equal ranges.
  • For each elementeventsRecord ofexecution.[[EventsRecords]], the following is true.
    • For each pair (S,Sw) ineventsRecord.[[AgentSynchronizesWith]], (S,Sw) is inexecution.[[SynchronizesWith]].
  • For each pair (E,D) inexecution.[[HostSynchronizesWith]], (E,D) is inexecution.[[SynchronizesWith]].
Note 1

Owing to convention, write events synchronizes-with read events, instead of read events synchronizes-with write events.

Note 2

Init events do not participate in synchronizes-with, and are instead constrained directly byhappens-before.

Note 3

Not allSeqCst events related byreads-from are related by synchronizes-with. Only events that also have equal ranges are related by synchronizes-with.

Note 4

ForShared Data Block eventsR andW such thatW synchronizes-withR,R mayreads-from other writes thanW.

29.6.6 happens-before

For acandidate executionexecution,execution.[[HappensBefore]] is the leastRelation on events that satisfies the following.

  • For each pair (E,D) inexecution.[[AgentOrder]], (E,D) is inexecution.[[HappensBefore]].
  • For each pair (E,D) inexecution.[[SynchronizesWith]], (E,D) is inexecution.[[HappensBefore]].
  • For each pair (E,D) inSharedDataBlockEventSet(execution), (E,D) is inexecution.[[HappensBefore]] ifE.[[Order]] isInit andE andD have overlapping ranges.
  • For each pair (E,D) inEventSet(execution), (E,D) is inexecution.[[HappensBefore]] if there is an eventF such that the pairs (E,F) and (F,D) are inexecution.[[HappensBefore]].
Note

Because happens-before is a superset ofagent-order, candidate executions are consistent with the single-thread evaluation semantics of ECMAScript.

29.7 Properties of Valid Executions

29.7.1 Valid Chosen Reads

Acandidate executionexecution has valid chosen reads if the following abstract operation returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. LetchosenValueRecord be the element ofexecution.[[ChosenValues]] whose [[Event]] field isR.
    2. LetchosenValue bechosenValueRecord.[[ChosenValue]].
    3. LetreadValue beValueOfReadEvent(execution,R).
    4. LetchosenLen be the number of elements ofchosenValue.
    5. LetreadLen be the number of elements ofreadValue.
    6. IfchosenLenreadLen, then
      1. Returnfalse.
    7. IfchosenValue[i] ≠readValue[i] for anyinteger valuei in the range 0 throughchosenLen, exclusive, then
      1. Returnfalse.
  2. Returntrue.

29.7.2 Coherent Reads

Acandidate executionexecution has coherent reads if the following abstract operation returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. LetWs beexecution.[[ReadsBytesFrom]](R).
    2. LetbyteLocation beR.[[ByteIndex]].
    3. For each elementW ofWs, do
      1. If (R,W) is inexecution.[[HappensBefore]], then
        1. Returnfalse.
      2. If there is aWriteSharedMemory orReadModifyWriteSharedMemory eventV that hasbyteLocation in its range such that the pairs (W,V) and (V,R) are inexecution.[[HappensBefore]], then
        1. Returnfalse.
      3. SetbyteLocation tobyteLocation + 1.
  2. Returntrue.

29.7.3 Tear Free Reads

Acandidate executionexecution has tear free reads if the following abstract operation returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. IfR.[[NoTear]] istrue, then
      1. Assert: The remainder of dividingR.[[ByteIndex]] byR.[[ElementSize]] is 0.
      2. For each eventW such that (R,W) is inexecution.[[ReadsFrom]] andW.[[NoTear]] istrue, do
        1. IfR andW have equal ranges, and there is an eventV such thatV andW have equal ranges,V.[[NoTear]] istrue,W is notV, and (R,V) is inexecution.[[ReadsFrom]], then
          1. Returnfalse.
  2. Returntrue.
Note

An event's [[NoTear]] field istrue when that event was introduced via accessing aninteger TypedArray, andfalse when introduced via accessing a floating point TypedArray or DataView.

Intuitively, this requirement says when a memory range is accessed in an aligned fashion via aninteger TypedArray, a single write event on that range must "win" when in a data race with other write events with equal ranges. More precisely, this requirement says an aligned read event cannot read a value composed of bytes from multiple, different write events all with equal ranges. It is possible, however, for an aligned read event to read from multiple write events with overlapping ranges.

29.7.4 Sequentially Consistent Atomics

For acandidate executionexecution, memory-order is astrict total order of all events inEventSet(execution) that satisfies the following.

  • For each pair (E,D) inexecution.[[HappensBefore]], (E,D) is in memory-order.
  • For each pair (R,W) inexecution.[[ReadsFrom]], there is noWriteSharedMemory orReadModifyWriteSharedMemory eventV inSharedDataBlockEventSet(execution) such thatV.[[Order]] isSeqCst, the pairs (W,V) and (V,R) are in memory-order, and any of the following conditions are true.

    • The pair (W,R) is inexecution.[[SynchronizesWith]], andV andR have equal ranges.
    • The pairs (W,R) and (V,R) are inexecution.[[HappensBefore]],W.[[Order]] isSeqCst, andW andV have equal ranges.
    • The pairs (W,R) and (W,V) are inexecution.[[HappensBefore]],R.[[Order]] isSeqCst, andV andR have equal ranges.
    Note 1

    This clause additionally constrainsSeqCst events on equal ranges.

  • For eachWriteSharedMemory orReadModifyWriteSharedMemory eventW inSharedDataBlockEventSet(execution), ifW.[[Order]] isSeqCst, then it is not the case that there is an infinite number ofReadSharedMemory orReadModifyWriteSharedMemory events inSharedDataBlockEventSet(execution) with equal range that is memory-order beforeW.

    Note 2

    This clause together with the forward progress guarantee on agents ensure the liveness condition thatSeqCst writes become visible toSeqCst reads with equal range in finite time.

Acandidate execution has sequentially consistent atomics if a memory-order exists.

Note 3

While memory-order includes all events inEventSet(execution), those that are not constrained byhappens-before orsynchronizes-with are allowed to occur anywhere in the order.

29.7.5 Valid Executions

Acandidate executionexecution is a valid execution (or simply an execution) if all of the following are true.

  • Thehost provides ahost-synchronizes-withRelation forexecution.[[HostSynchronizesWith]].
  • execution.[[HappensBefore]] is astrict partial order.
  • execution has valid chosen reads.
  • execution has coherent reads.
  • execution has tear free reads.
  • execution has sequentially consistent atomics.

All programs have at least one valid execution.

29.8 Races

For an executionexecution, two eventsE andD inSharedDataBlockEventSet(execution) are in a race if the following abstract operation returnstrue.

  1. IfE is notD, then
    1. If the pairs (E,D) and (D,E) are not inexecution.[[HappensBefore]], then
      1. IfE andD are bothWriteSharedMemory orReadModifyWriteSharedMemory events andE andD do not have disjoint ranges, then
        1. Returntrue.
      2. If either (E,D) or (D,E) is inexecution.[[ReadsFrom]], then
        1. Returntrue.
  2. Returnfalse.

29.9 Data Races

For an executionexecution, two eventsE andD inSharedDataBlockEventSet(execution) are in a data race if the following abstract operation returnstrue.

  1. IfE andD are in a race inexecution, then
    1. IfE.[[Order]] is notSeqCst orD.[[Order]] is notSeqCst, then
      1. Returntrue.
    2. IfE andD have overlapping ranges, then
      1. Returntrue.
  2. Returnfalse.

29.10 Data Race Freedom

An executionexecution is data race free if there are no two events inSharedDataBlockEventSet(execution) that are in a data race.

A program is data race free if all its executions are data race free.

Thememory model guarantees sequential consistency of all events for data race free programs.

29.11 Shared Memory Guidelines

Note 1

The following are guidelines for ECMAScript programmers working with shared memory.

We recommend programs be kept data race free, i.e., make it so that it is impossible for there to be concurrent non-atomic operations on the same memory location. Data race free programs have interleaving semantics where each step in the evaluation semantics of eachagent are interleaved with each other. For data race free programs, it is not necessary to understand the details of thememory model. The details are unlikely to build intuition that will help one to better write ECMAScript.

More generally, even if a program is not data race free it may have predictable behaviour, so long as atomic operations are not involved in any data races and the operations that race all have the same access size. The simplest way to arrange for atomics not to be involved in races is to ensure that different memory cells are used by atomic and non-atomic operations and that atomic accesses of different sizes are not used to access the same cells at the same time. Effectively, the program should treat shared memory as strongly typed as much as possible. One still cannot depend on the ordering and timing of non-atomic accesses that race, but if memory is treated as strongly typed the racing accesses will not "tear" (bits of their values will not be mixed).

Note 2

The following are guidelines for ECMAScript implementers writing compiler transformations for programs using shared memory.

It is desirable to allow most program transformations that are valid in a single-agent setting in a multi-agent setting, to ensure that the performance of eachagent in a multi-agent program is as good as it would be in a single-agent setting. Frequently these transformations are hard to judge. We outline some rules about program transformations that are intended to be taken as normative (in that they are implied by thememory model or stronger than what thememory model implies) but which are likely not exhaustive. These rules are intended to apply to program transformations that precede the introductions of the events that make up theagent-order.

Let anagent-order slice be the subset of theagent-order pertaining to a singleagent.

Letpossible read values of a read event be the set of all values ofValueOfReadEvent for that event across all valid executions.

Any transformation of an agent-order slice that is valid in the absence of shared memory is valid in the presence of shared memory, with the following exceptions.

  • Atomics are carved in stone: Program transformations must not cause theSeqCst events in an agent-order slice to be reordered with itsUnordered operations, nor itsSeqCst operations to be reordered with each other, nor may a program transformation remove aSeqCst operation from theagent-order.

    (In practice, the prohibition on reorderings forces a compiler to assume that everySeqCst operation is a synchronization and included in the finalmemory-order, which it would usually have to assume anyway in the absence of inter-agent program analysis. It also forces the compiler to assume that every call where the callee's effects on thememory-order are unknown may containSeqCst operations.)

  • Reads must be stable: Any given shared memory read must only observe a single value in an execution.

    (For example, if what is semantically a single read in the program is executed multiple times then the program is subsequently allowed to observe only one of the values read. A transformation known as rematerialization can violate this rule.)

  • Writes must be stable: All observable writes to shared memory must follow from program semantics in an execution.

    (For example, a transformation may not introduce certain observable writes, such as by using read-modify-write operations on a larger location to write a smaller datum, writing a value to memory that the program could not have written, or writing a just-read value back to the location it was read from, if that location could have been overwritten by anotheragent after the read.)

  • Possible read values must be nonempty: Program transformations cannot cause the possible read values of a shared memory read to become empty.

    (Counterintuitively, this rule in effect restricts transformations on writes, because writes have force inmemory model insofar as to be read by read events. For example, writes may be moved and coalesced and sometimes reordered between twoSeqCst operations, but the transformation may not remove every write that updates a location; some write must be preserved.)

Examples of transformations that remain valid are: merging multiple non-atomic reads from the same location, reordering non-atomic reads, introducing speculative non-atomic reads, merging multiple non-atomic writes to the same location, reordering non-atomic writes to different locations, and hoisting non-atomic reads out of loops even if that affects termination. Note in general that aliased TypedArrays make it hard to prove that locations are different.

Note 3

The following are guidelines for ECMAScript implementers generating machine code for shared memory accesses.

For architectures with memory models no weaker than those of ARM or Power, non-atomic stores and loads may be compiled to bare stores and loads on the target architecture. Atomic stores and loads may be compiled down to instructions that guarantee sequential consistency. If no such instructions exist, memory barriers are to be employed, such as placing barriers on both sides of a bare store or load. Read-modify-write operations may be compiled to read-modify-write instructions on the target architecture, such asLOCK-prefixed instructions on x86, load-exclusive/store-exclusive instructions on ARM, and load-link/store-conditional instructions on Power.

Specifically, thememory model is intended to allow code generation as follows.

  • Every atomic operation in the program is assumed to be necessary.
  • Atomic operations are never rearranged with each other or with non-atomic operations.
  • Functions are always assumed to perform atomic operations.
  • Atomic operations are never implemented as read-modify-write operations on larger data, but as non-lock-free atomics if the platform does not have atomic operations of the appropriate size. (We already assume that every platform has normal memory access operations of every interesting size.)

Naive code generation uses these patterns:

  • Regular loads and stores compile to single load and store instructions.
  • Lock-free atomic loads and stores compile to a full (sequentially consistent) fence, a regular load or store, and a full fence.
  • Lock-free atomic read-modify-write accesses compile to a full fence, an atomic read-modify-write instruction sequence, and a full fence.
  • Non-lock-free atomics compile to a spinlock acquire, a full fence, a series of non-atomic load and store instructions, a full fence, and a spinlock release.

That mapping is correct so long as an atomic operation on an address range does not race with a non-atomic write or with an atomic operation of different size. However, that is all we need: thememory model effectively demotes the atomic operations involved in a race to non-atomic status. On the other hand, the naive mapping is quite strong: it allows atomic operations to be used as sequentially consistent fences, which thememory model does not actually guarantee.

A number of local improvements to those basic patterns are also intended to be legal:

  • There are obvious platform-dependent improvements that remove redundant fences. For example, on x86 the fences around lock-free atomic loads and stores can always be omitted except for the fence following a store, and no fence is needed for lock-free read-modify-write instructions, as these all use LOCK-prefixed instructions. On many platforms there are fences of several strengths, and weaker fences can be used in certain contexts without destroying sequential consistency.
  • Most modern platforms support lock-free atomics for all the data sizes required by ECMAScript atomics. Should non-lock-free atomics be needed, the fences surrounding the body of the atomic operation can usually be folded into the lock and unlock steps. The simplest solution for non-lock-free atomics is to have a single lock word per SharedArrayBuffer.
  • There are also more complicated platform-dependent local improvements, requiring some code analysis. For example, two back-to-back fences often have the same effect as a single fence, so if code is generated for two atomic operations in sequence, only a single fence need separate them. On x86, even a single fence separating atomic stores can be omitted, as the fence following a store is only needed to separate the store from a subsequent load.

A Grammar Summary

A.1 Lexical Grammar

SourceCharacter::any Unicode code pointInputElementDiv::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorRightBracePunctuatorInputElementRegExp::WhiteSpaceLineTerminatorCommentCommonTokenRightBracePunctuatorRegularExpressionLiteralInputElementRegExpOrTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenRegularExpressionLiteralTemplateSubstitutionTailInputElementTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorTemplateSubstitutionTailWhiteSpace::<TAB><VT><FF><SP><NBSP><ZWNBSP><USP>LineTerminator::<LF><CR><LS><PS>LineTerminatorSequence::<LF><CR>[lookahead ≠<LF>]<LS><PS><CR><LF>Comment::MultiLineCommentSingleLineCommentMultiLineComment::/*MultiLineCommentCharsopt*/MultiLineCommentChars::MultiLineNotAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptPostAsteriskCommentChars::MultiLineNotForwardSlashOrAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptMultiLineNotAsteriskChar::SourceCharacterbut not*MultiLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or*SingleLineComment:://SingleLineCommentCharsoptSingleLineCommentChars::SingleLineCommentCharSingleLineCommentCharsoptSingleLineCommentChar::SourceCharacterbut notLineTerminatorCommonToken::IdentifierNamePunctuatorNumericLiteralStringLiteralTemplateIdentifierName::IdentifierStartIdentifierNameIdentifierPartIdentifierStart::UnicodeIDStart$_\UnicodeEscapeSequenceIdentifierPart::UnicodeIDContinue$\UnicodeEscapeSequence<ZWNJ><ZWJ>UnicodeIDStart::any Unicode code point with the Unicode property “ID_Start”UnicodeIDContinue::any Unicode code point with the Unicode property “ID_Continue”ReservedWord::one ofawaitbreakcasecatchclassconstcontinuedebuggerdefaultdeletedoelseenumexportextendsfalsefinallyforfunctionifimportininstanceofnewnullreturnsuperswitchthisthrowtruetrytypeofvarvoidwhilewithyieldPunctuator::OptionalChainingPunctuatorOtherPunctuatorOptionalChainingPunctuator::?.[lookahead ∉DecimalDigit]OtherPunctuator::one of{()[]....;,<><=>===!====!==+-*%**++--<<>>>>>&|^!~&&||???:=+=-=*=%=**=<<=>>=>>>=&=|=^=&&=||=??==>DivPunctuator:://=RightBracePunctuator::}NullLiteral::nullBooleanLiteral::truefalseNumericLiteralSeparator::_NumericLiteral::DecimalLiteralDecimalBigIntegerLiteralNonDecimalIntegerLiteral[+Sep]NonDecimalIntegerLiteral[+Sep]BigIntLiteralSuffixDecimalBigIntegerLiteral::0BigIntLiteralSuffixNonZeroDigitDecimalDigits[+Sep]optBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigits[+Sep]BigIntLiteralSuffixNonDecimalIntegerLiteral[Sep]::BinaryIntegerLiteral[?Sep]OctalIntegerLiteral[?Sep]HexIntegerLiteral[?Sep]BigIntLiteralSuffix::nDecimalLiteral::DecimalIntegerLiteral.DecimalDigits[+Sep]optExponentPart[+Sep]opt.DecimalDigits[+Sep]ExponentPart[+Sep]optDecimalIntegerLiteralExponentPart[+Sep]optDecimalIntegerLiteral::0NonZeroDigitNonZeroDigitNumericLiteralSeparatoroptDecimalDigits[+Sep]DecimalDigits[Sep]::DecimalDigitDecimalDigits[?Sep]DecimalDigit[+Sep]DecimalDigits[+Sep]NumericLiteralSeparatorDecimalDigitDecimalDigit::one of0123456789NonZeroDigit::one of123456789ExponentPart[Sep]::ExponentIndicatorSignedInteger[?Sep]ExponentIndicator::one ofeESignedInteger[Sep]::DecimalDigits[?Sep]+DecimalDigits[?Sep]-DecimalDigits[?Sep]BinaryIntegerLiteral[Sep]::0bBinaryDigits[?Sep]0BBinaryDigits[?Sep]BinaryDigits[Sep]::BinaryDigitBinaryDigits[?Sep]BinaryDigit[+Sep]BinaryDigits[+Sep]NumericLiteralSeparatorBinaryDigitBinaryDigit::one of01OctalIntegerLiteral[Sep]::0oOctalDigits[?Sep]0OOctalDigits[?Sep]OctalDigits[Sep]::OctalDigitOctalDigits[?Sep]OctalDigit[+Sep]OctalDigits[+Sep]NumericLiteralSeparatorOctalDigitOctalDigit::one of01234567HexIntegerLiteral[Sep]::0xHexDigits[?Sep]0XHexDigits[?Sep]HexDigits[Sep]::HexDigitHexDigits[?Sep]HexDigit[+Sep]HexDigits[+Sep]NumericLiteralSeparatorHexDigitHexDigit::one of0123456789abcdefABCDEFStringLiteral::"DoubleStringCharactersopt"'SingleStringCharactersopt'DoubleStringCharacters::DoubleStringCharacterDoubleStringCharactersoptSingleStringCharacters::SingleStringCharacterSingleStringCharactersoptDoubleStringCharacter::SourceCharacterbut not one of" or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationSingleStringCharacter::SourceCharacterbut not one of' or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationLineContinuation::\LineTerminatorSequenceEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]HexEscapeSequenceUnicodeEscapeSequenceCharacterEscapeSequence::SingleEscapeCharacterNonEscapeCharacterSingleEscapeCharacter::one of'"\bfnrtvNonEscapeCharacter::SourceCharacterbut not one ofEscapeCharacter orLineTerminatorEscapeCharacter::SingleEscapeCharacterDecimalDigitxuHexEscapeSequence::xHexDigitHexDigitUnicodeEscapeSequence::uHex4Digitsu{CodePoint}Hex4Digits::HexDigitHexDigitHexDigitHexDigitRegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlagsRegularExpressionBody::RegularExpressionFirstCharRegularExpressionCharsRegularExpressionChars::[empty]RegularExpressionCharsRegularExpressionCharRegularExpressionFirstChar::RegularExpressionNonTerminatorbut not one of* or\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionChar::RegularExpressionNonTerminatorbut not one of\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionBackslashSequence::\RegularExpressionNonTerminatorRegularExpressionNonTerminator::SourceCharacterbut notLineTerminatorRegularExpressionClass::[RegularExpressionClassChars]RegularExpressionClassChars::[empty]RegularExpressionClassCharsRegularExpressionClassCharRegularExpressionClassChar::RegularExpressionNonTerminatorbut not one of] or\RegularExpressionBackslashSequenceRegularExpressionFlags::[empty]RegularExpressionFlagsIdentifierPartTemplate::NoSubstitutionTemplateTemplateHeadNoSubstitutionTemplate::`TemplateCharactersopt`TemplateHead::`TemplateCharactersopt${TemplateSubstitutionTail::TemplateMiddleTemplateTailTemplateMiddle::}TemplateCharactersopt${TemplateTail::}TemplateCharactersopt`TemplateCharacters::TemplateCharacterTemplateCharactersoptTemplateCharacter::$[lookahead ≠{]\EscapeSequence\NotEscapeSequenceLineContinuationLineTerminatorSequenceSourceCharacterbut not one of` or\ or$ orLineTerminatorNotEscapeSequence::0DecimalDigitDecimalDigitbut not0x[lookahead ∉HexDigit]xHexDigit[lookahead ∉HexDigit]u[lookahead ∉HexDigit][lookahead ≠{]uHexDigit[lookahead ∉HexDigit]uHexDigitHexDigit[lookahead ∉HexDigit]uHexDigitHexDigitHexDigit[lookahead ∉HexDigit]u{[lookahead ∉HexDigit]u{NotCodePoint[lookahead ∉HexDigit]u{CodePoint[lookahead ∉HexDigit][lookahead ≠}]NotCodePoint::HexDigits[~Sep]but only if MV ofHexDigits > 0x10FFFFCodePoint::HexDigits[~Sep]but only if MV ofHexDigits ≤ 0x10FFFF

A.2 Expressions

IdentifierReference[Yield, Await]:Identifier[~Yield]yield[~Await]awaitBindingIdentifier[Yield, Await]:IdentifieryieldawaitLabelIdentifier[Yield, Await]:Identifier[~Yield]yield[~Await]awaitIdentifier:IdentifierNamebut notReservedWordPrimaryExpression[Yield, Await]:thisIdentifierReference[?Yield, ?Await]LiteralArrayLiteral[?Yield, ?Await]ObjectLiteral[?Yield, ?Await]FunctionExpressionClassExpression[?Yield, ?Await]GeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral[?Yield, ?Await, ~Tagged]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[Yield, Await]:(Expression[+In, ?Yield, ?Await])(Expression[+In, ?Yield, ?Await],)()(...BindingIdentifier[?Yield, ?Await])(...BindingPattern[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingIdentifier[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingPattern[?Yield, ?Await])

When processing an instance of the production
PrimaryExpression[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await]:(Expression[+In, ?Yield, ?Await])

 

Literal:NullLiteralBooleanLiteralNumericLiteralStringLiteralArrayLiteral[Yield, Await]:[Elisionopt][ElementList[?Yield, ?Await]][ElementList[?Yield, ?Await],Elisionopt]ElementList[Yield, Await]:ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElisionoptSpreadElement[?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptSpreadElement[?Yield, ?Await]Elision:,Elision,SpreadElement[Yield, Await]:...AssignmentExpression[+In, ?Yield, ?Await]ObjectLiteral[Yield, Await]:{}{PropertyDefinitionList[?Yield, ?Await]}{PropertyDefinitionList[?Yield, ?Await],}PropertyDefinitionList[Yield, Await]:PropertyDefinition[?Yield, ?Await]PropertyDefinitionList[?Yield, ?Await],PropertyDefinition[?Yield, ?Await]PropertyDefinition[Yield, Await]:IdentifierReference[?Yield, ?Await]CoverInitializedName[?Yield, ?Await]PropertyName[?Yield, ?Await]:AssignmentExpression[+In, ?Yield, ?Await]MethodDefinition[?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]PropertyName[Yield, Await]:LiteralPropertyNameComputedPropertyName[?Yield, ?Await]LiteralPropertyName:IdentifierNameStringLiteralNumericLiteralComputedPropertyName[Yield, Await]:[AssignmentExpression[+In, ?Yield, ?Await]]CoverInitializedName[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]Initializer[In, Yield, Await]:=AssignmentExpression[?In, ?Yield, ?Await]TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateSubstitutionTemplate[?Yield, ?Await, ?Tagged]SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]MemberExpression[Yield, Await]:PrimaryExpression[?Yield, ?Await]MemberExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]MemberExpression[?Yield, ?Await].IdentifierNameMemberExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]SuperProperty[?Yield, ?Await]MetaPropertynewMemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]SuperProperty[Yield, Await]:super[Expression[+In, ?Yield, ?Await]]super.IdentifierNameMetaProperty:NewTargetImportMetaNewTarget:new.targetImportMeta:import.metaNewExpression[Yield, Await]:MemberExpression[?Yield, ?Await]newNewExpression[?Yield, ?Await]CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]SuperCall[?Yield, ?Await]ImportCall[?Yield, ?Await]CallExpression[?Yield, ?Await]Arguments[?Yield, ?Await]CallExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]CallExpression[?Yield, ?Await].IdentifierNameCallExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]

When processing an instance of the production
CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

 

SuperCall[Yield, Await]:superArguments[?Yield, ?Await]ImportCall[Yield, Await]:import(AssignmentExpression[+In, ?Yield, ?Await])Arguments[Yield, Await]:()(ArgumentList[?Yield, ?Await])(ArgumentList[?Yield, ?Await],)ArgumentList[Yield, Await]:AssignmentExpression[+In, ?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],...AssignmentExpression[+In, ?Yield, ?Await]OptionalExpression[Yield, Await]:MemberExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalChain[Yield, Await]:?.Arguments[?Yield, ?Await]?.[Expression[+In, ?Yield, ?Await]]?.IdentifierName?.TemplateLiteral[?Yield, ?Await, +Tagged]OptionalChain[?Yield, ?Await]Arguments[?Yield, ?Await]OptionalChain[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]OptionalChain[?Yield, ?Await].IdentifierNameOptionalChain[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]LeftHandSideExpression[Yield, Await]:NewExpression[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalExpression[?Yield, ?Await]UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--++UnaryExpression[?Yield, ?Await]--UnaryExpression[?Yield, ?Await]UnaryExpression[Yield, Await]:UpdateExpression[?Yield, ?Await]deleteUnaryExpression[?Yield, ?Await]voidUnaryExpression[?Yield, ?Await]typeofUnaryExpression[?Yield, ?Await]+UnaryExpression[?Yield, ?Await]-UnaryExpression[?Yield, ?Await]~UnaryExpression[?Yield, ?Await]!UnaryExpression[?Yield, ?Await][+Await]AwaitExpression[?Yield]ExponentiationExpression[Yield, Await]:UnaryExpression[?Yield, ?Await]UpdateExpression[?Yield, ?Await]**ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[Yield, Await]:ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[?Yield, ?Await]MultiplicativeOperatorExponentiationExpression[?Yield, ?Await]MultiplicativeOperator:one of*/%AdditiveExpression[Yield, Await]:MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]+MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]-MultiplicativeExpression[?Yield, ?Await]ShiftExpression[Yield, Await]:AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]<<AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>>AdditiveExpression[?Yield, ?Await]RelationalExpression[In, Yield, Await]:ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]instanceofShiftExpression[?Yield, ?Await][+In]RelationalExpression[+In, ?Yield, ?Await]inShiftExpression[?Yield, ?Await]EqualityExpression[In, Yield, Await]:RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]==RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!=RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]===RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!==RelationalExpression[?In, ?Yield, ?Await]BitwiseANDExpression[In, Yield, Await]:EqualityExpression[?In, ?Yield, ?Await]BitwiseANDExpression[?In, ?Yield, ?Await]&EqualityExpression[?In, ?Yield, ?Await]BitwiseXORExpression[In, Yield, Await]:BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseXORExpression[?In, ?Yield, ?Await]^BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseORExpression[In, Yield, Await]:BitwiseXORExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]|BitwiseXORExpression[?In, ?Yield, ?Await]LogicalANDExpression[In, Yield, Await]:BitwiseORExpression[?In, ?Yield, ?Await]LogicalANDExpression[?In, ?Yield, ?Await]&&BitwiseORExpression[?In, ?Yield, ?Await]LogicalORExpression[In, Yield, Await]:LogicalANDExpression[?In, ?Yield, ?Await]LogicalORExpression[?In, ?Yield, ?Await]||LogicalANDExpression[?In, ?Yield, ?Await]CoalesceExpression[In, Yield, Await]:CoalesceExpressionHead[?In, ?Yield, ?Await]??BitwiseORExpression[?In, ?Yield, ?Await]CoalesceExpressionHead[In, Yield, Await]:CoalesceExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]ShortCircuitExpression[In, Yield, Await]:LogicalORExpression[?In, ?Yield, ?Await]CoalesceExpression[?In, ?Yield, ?Await]ConditionalExpression[In, Yield, Await]:ShortCircuitExpression[?In, ?Yield, ?Await]ShortCircuitExpression[?In, ?Yield, ?Await]?AssignmentExpression[+In, ?Yield, ?Await]:AssignmentExpression[?In, ?Yield, ?Await]AssignmentExpression[In, Yield, Await]:ConditionalExpression[?In, ?Yield, ?Await][+Yield]YieldExpression[?In, ?Await]ArrowFunction[?In, ?Yield, ?Await]AsyncArrowFunction[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]AssignmentOperatorAssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]&&=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]||=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]??=AssignmentExpression[?In, ?Yield, ?Await]AssignmentOperator:one of*=/=%=+=-=<<=>>=>>>=&=^=|=**=

In certain circumstances when processing an instance of the production
AssignmentExpression[In, Yield, Await]:LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]
the interpretation ofLeftHandSideExpression is refined using the following grammar:

AssignmentPattern[Yield, Await]:ObjectAssignmentPattern[?Yield, ?Await]ArrayAssignmentPattern[?Yield, ?Await]ObjectAssignmentPattern[Yield, Await]:{}{AssignmentRestProperty[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await],AssignmentRestProperty[?Yield, ?Await]opt}ArrayAssignmentPattern[Yield, Await]:[ElisionoptAssignmentRestElement[?Yield, ?Await]opt][AssignmentElementList[?Yield, ?Await]][AssignmentElementList[?Yield, ?Await],ElisionoptAssignmentRestElement[?Yield, ?Await]opt]AssignmentRestProperty[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]AssignmentPropertyList[Yield, Await]:AssignmentProperty[?Yield, ?Await]AssignmentPropertyList[?Yield, ?Await],AssignmentProperty[?Yield, ?Await]AssignmentElementList[Yield, Await]:AssignmentElisionElement[?Yield, ?Await]AssignmentElementList[?Yield, ?Await],AssignmentElisionElement[?Yield, ?Await]AssignmentElisionElement[Yield, Await]:ElisionoptAssignmentElement[?Yield, ?Await]AssignmentProperty[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optPropertyName[?Yield, ?Await]:AssignmentElement[?Yield, ?Await]AssignmentElement[Yield, Await]:DestructuringAssignmentTarget[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optAssignmentRestElement[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]DestructuringAssignmentTarget[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]

 

Expression[In, Yield, Await]:AssignmentExpression[?In, ?Yield, ?Await]Expression[?In, ?Yield, ?Await],AssignmentExpression[?In, ?Yield, ?Await]

A.3 Statements

Statement[Yield, Await, Return]:BlockStatement[?Yield, ?Await, ?Return]VariableStatement[?Yield, ?Await]EmptyStatementExpressionStatement[?Yield, ?Await]IfStatement[?Yield, ?Await, ?Return]BreakableStatement[?Yield, ?Await, ?Return]ContinueStatement[?Yield, ?Await]BreakStatement[?Yield, ?Await][+Return]ReturnStatement[?Yield, ?Await]WithStatement[?Yield, ?Await, ?Return]LabelledStatement[?Yield, ?Await, ?Return]ThrowStatement[?Yield, ?Await]TryStatement[?Yield, ?Await, ?Return]DebuggerStatementDeclaration[Yield, Await]:HoistableDeclaration[?Yield, ?Await, ~Default]ClassDeclaration[?Yield, ?Await, ~Default]LexicalDeclaration[+In, ?Yield, ?Await]HoistableDeclaration[Yield, Await, Default]:FunctionDeclaration[?Yield, ?Await, ?Default]GeneratorDeclaration[?Yield, ?Await, ?Default]AsyncFunctionDeclaration[?Yield, ?Await, ?Default]AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]BreakableStatement[Yield, Await, Return]:IterationStatement[?Yield, ?Await, ?Return]SwitchStatement[?Yield, ?Await, ?Return]BlockStatement[Yield, Await, Return]:Block[?Yield, ?Await, ?Return]Block[Yield, Await, Return]:{StatementList[?Yield, ?Await, ?Return]opt}StatementList[Yield, Await, Return]:StatementListItem[?Yield, ?Await, ?Return]StatementList[?Yield, ?Await, ?Return]StatementListItem[?Yield, ?Await, ?Return]StatementListItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]Declaration[?Yield, ?Await]LexicalDeclaration[In, Yield, Await]:LetOrConstBindingList[?In, ?Yield, ?Await];LetOrConst:letconstBindingList[In, Yield, Await]:LexicalBinding[?In, ?Yield, ?Await]BindingList[?In, ?Yield, ?Await],LexicalBinding[?In, ?Yield, ?Await]LexicalBinding[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]VariableStatement[Yield, Await]:varVariableDeclarationList[+In, ?Yield, ?Await];VariableDeclarationList[In, Yield, Await]:VariableDeclaration[?In, ?Yield, ?Await]VariableDeclarationList[?In, ?Yield, ?Await],VariableDeclaration[?In, ?Yield, ?Await]VariableDeclaration[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]BindingPattern[Yield, Await]:ObjectBindingPattern[?Yield, ?Await]ArrayBindingPattern[?Yield, ?Await]ObjectBindingPattern[Yield, Await]:{}{BindingRestProperty[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await],BindingRestProperty[?Yield, ?Await]opt}ArrayBindingPattern[Yield, Await]:[ElisionoptBindingRestElement[?Yield, ?Await]opt][BindingElementList[?Yield, ?Await]][BindingElementList[?Yield, ?Await],ElisionoptBindingRestElement[?Yield, ?Await]opt]BindingRestProperty[Yield, Await]:...BindingIdentifier[?Yield, ?Await]BindingPropertyList[Yield, Await]:BindingProperty[?Yield, ?Await]BindingPropertyList[?Yield, ?Await],BindingProperty[?Yield, ?Await]BindingElementList[Yield, Await]:BindingElisionElement[?Yield, ?Await]BindingElementList[?Yield, ?Await],BindingElisionElement[?Yield, ?Await]BindingElisionElement[Yield, Await]:ElisionoptBindingElement[?Yield, ?Await]BindingProperty[Yield, Await]:SingleNameBinding[?Yield, ?Await]PropertyName[?Yield, ?Await]:BindingElement[?Yield, ?Await]BindingElement[Yield, Await]:SingleNameBinding[?Yield, ?Await]BindingPattern[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optSingleNameBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optBindingRestElement[Yield, Await]:...BindingIdentifier[?Yield, ?Await]...BindingPattern[?Yield, ?Await]EmptyStatement:;ExpressionStatement[Yield, Await]:[lookahead ∉ {{,function,async[noLineTerminator here]function,class,let[ }]Expression[+In, ?Yield, ?Await];IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][lookahead ≠else]IterationStatement[Yield, Await, Return]:DoWhileStatement[?Yield, ?Await, ?Return]WhileStatement[?Yield, ?Await, ?Return]ForStatement[?Yield, ?Await, ?Return]ForInOfStatement[?Yield, ?Await, ?Return]DoWhileStatement[Yield, Await, Return]:doStatement[?Yield, ?Await, ?Return]while(Expression[+In, ?Yield, ?Await]);WhileStatement[Yield, Await, Return]:while(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForStatement[Yield, Await, Return]:for([lookahead ≠let[]Expression[~In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(varVariableDeclarationList[~In, ?Yield, ?Await];Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(LexicalDeclaration[~In, ?Yield, ?Await]Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]ForInOfStatement[Yield, Await, Return]:for([lookahead ≠let[]LeftHandSideExpression[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for([lookahead ∉ {let,asyncof }]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait([lookahead ≠let]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForDeclaration[Yield, Await]:LetOrConstForBinding[?Yield, ?Await]ForBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];WithStatement[Yield, Await, Return]:with(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]SwitchStatement[Yield, Await, Return]:switch(Expression[+In, ?Yield, ?Await])CaseBlock[?Yield, ?Await, ?Return]CaseBlock[Yield, Await, Return]:{CaseClauses[?Yield, ?Await, ?Return]opt}{CaseClauses[?Yield, ?Await, ?Return]optDefaultClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]opt}CaseClauses[Yield, Await, Return]:CaseClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]CaseClause[?Yield, ?Await, ?Return]CaseClause[Yield, Await, Return]:caseExpression[+In, ?Yield, ?Await]:StatementList[?Yield, ?Await, ?Return]optDefaultClause[Yield, Await, Return]:default:StatementList[?Yield, ?Await, ?Return]optLabelledStatement[Yield, Await, Return]:LabelIdentifier[?Yield, ?Await]:LabelledItem[?Yield, ?Await, ?Return]LabelledItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]FunctionDeclaration[?Yield, ?Await, ~Default]ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];TryStatement[Yield, Await, Return]:tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]Catch[Yield, Await, Return]:catch(CatchParameter[?Yield, ?Await])Block[?Yield, ?Await, ?Return]catchBlock[?Yield, ?Await, ?Return]Finally[Yield, Await, Return]:finallyBlock[?Yield, ?Await, ?Return]CatchParameter[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]DebuggerStatement:debugger;

A.4 Functions and Classes

UniqueFormalParameters[Yield, Await]:FormalParameters[?Yield, ?Await]FormalParameters[Yield, Await]:[empty]FunctionRestParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameterList[?Yield, ?Await],FunctionRestParameter[?Yield, ?Await]FormalParameterList[Yield, Await]:FormalParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameter[?Yield, ?Await]FunctionRestParameter[Yield, Await]:BindingRestElement[?Yield, ?Await]FormalParameter[Yield, Await]:BindingElement[?Yield, ?Await]FunctionDeclaration[Yield, Await, Default]:functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}[+Default]function(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionExpression:functionBindingIdentifier[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionBody[Yield, Await]:FunctionStatementList[?Yield, ?Await]FunctionStatementList[Yield, Await]:StatementList[?Yield, ?Await, +Return]optArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]ArrowParameters[Yield, Await]:BindingIdentifier[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]ConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, ~Await]{FunctionBody[~Yield, ~Await]}ExpressionBody[In, Await]:AssignmentExpression[?In, ~Yield, ?Await]

When processing an instance of the production
ArrowParameters[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ArrowFormalParameters[Yield, Await]:(UniqueFormalParameters[?Yield, ?Await])

 

AsyncArrowFunction[In, Yield, Await]:async[noLineTerminator here]AsyncArrowBindingIdentifier[?Yield][noLineTerminator here]=>AsyncConciseBody[?In]CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]AsyncConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, +Await]{AsyncFunctionBody}AsyncArrowBindingIdentifier[Yield]:BindingIdentifier[?Yield, +Await]CoverCallExpressionAndAsyncArrowHead[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

When processing an instance of the production
AsyncArrowFunction[In, Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

AsyncArrowHead:async[noLineTerminator here]ArrowFormalParameters[~Yield, +Await]

 

MethodDefinition[Yield, Await]:PropertyName[?Yield, ?Await](UniqueFormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}GeneratorMethod[?Yield, ?Await]AsyncMethod[?Yield, ?Await]AsyncGeneratorMethod[?Yield, ?Await]getPropertyName[?Yield, ?Await](){FunctionBody[~Yield, ~Await]}setPropertyName[?Yield, ?Await](PropertySetParameterList){FunctionBody[~Yield, ~Await]}PropertySetParameterList:FormalParameter[~Yield, ~Await]GeneratorMethod[Yield, Await]:*PropertyName[?Yield, ?Await](UniqueFormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorDeclaration[Yield, Await, Default]:function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, ~Await]){GeneratorBody}[+Default]function*(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorExpression:function*BindingIdentifier[+Yield, ~Await]opt(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorBody:FunctionBody[+Yield, ~Await]YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]AsyncGeneratorMethod[Yield, Await]:async[noLineTerminator here]*PropertyName[?Yield, ?Await](UniqueFormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorDeclaration[Yield, Await, Default]:async[noLineTerminator here]function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, +Await]){AsyncGeneratorBody}[+Default]async[noLineTerminator here]function*(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorExpression:async[noLineTerminator here]function*BindingIdentifier[+Yield, +Await]opt(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorBody:FunctionBody[+Yield, +Await]AsyncFunctionDeclaration[Yield, Await, Default]:async[noLineTerminator here]functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, +Await]){AsyncFunctionBody}[+Default]async[noLineTerminator here]function(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionExpression:async[noLineTerminator here]functionBindingIdentifier[~Yield, +Await]opt(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncMethod[Yield, Await]:async[noLineTerminator here]PropertyName[?Yield, ?Await](UniqueFormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionBody:FunctionBody[~Yield, +Await]AwaitExpression[Yield]:awaitUnaryExpression[?Yield, +Await]ClassDeclaration[Yield, Await, Default]:classBindingIdentifier[?Yield, ?Await]ClassTail[?Yield, ?Await][+Default]classClassTail[?Yield, ?Await]ClassExpression[Yield, Await]:classBindingIdentifier[?Yield, ?Await]optClassTail[?Yield, ?Await]ClassTail[Yield, Await]:ClassHeritage[?Yield, ?Await]opt{ClassBody[?Yield, ?Await]opt}ClassHeritage[Yield, Await]:extendsLeftHandSideExpression[?Yield, ?Await]ClassBody[Yield, Await]:ClassElementList[?Yield, ?Await]ClassElementList[Yield, Await]:ClassElement[?Yield, ?Await]ClassElementList[?Yield, ?Await]ClassElement[?Yield, ?Await]ClassElement[Yield, Await]:MethodDefinition[?Yield, ?Await]staticMethodDefinition[?Yield, ?Await];

A.5 Scripts and Modules

Script:ScriptBodyoptScriptBody:StatementList[~Yield, ~Await, ~Return]Module:ModuleBodyoptModuleBody:ModuleItemListModuleItemList:ModuleItemModuleItemListModuleItemModuleItem:ImportDeclarationExportDeclarationStatementListItem[~Yield, ~Await, ~Return]ImportDeclaration:importImportClauseFromClause;importModuleSpecifier;ImportClause:ImportedDefaultBindingNameSpaceImportNamedImportsImportedDefaultBinding,NameSpaceImportImportedDefaultBinding,NamedImportsImportedDefaultBinding:ImportedBindingNameSpaceImport:*asImportedBindingNamedImports:{}{ImportsList}{ImportsList,}FromClause:fromModuleSpecifierImportsList:ImportSpecifierImportsList,ImportSpecifierImportSpecifier:ImportedBindingIdentifierNameasImportedBindingModuleSpecifier:StringLiteralImportedBinding:BindingIdentifier[~Yield, ~Await]ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement[~Yield, ~Await]exportDeclaration[~Yield, ~Await]exportdefaultHoistableDeclaration[~Yield, ~Await, +Default]exportdefaultClassDeclaration[~Yield, ~Await, +Default]exportdefault[lookahead ∉ {function,async[noLineTerminator here]function,class }]AssignmentExpression[+In, ~Yield, ~Await];ExportFromClause:**asIdentifierNameNamedExportsNamedExports:{}{ExportsList}{ExportsList,}ExportsList:ExportSpecifierExportsList,ExportSpecifierExportSpecifier:IdentifierNameIdentifierNameasIdentifierName

A.6 Number Conversions

StringNumericLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrNumericLiteralStrWhiteSpaceoptStrWhiteSpace:::StrWhiteSpaceCharStrWhiteSpaceoptStrWhiteSpaceChar:::WhiteSpaceLineTerminatorStrNumericLiteral:::StrDecimalLiteralNonDecimalIntegerLiteral[~Sep]StrDecimalLiteral:::StrUnsignedDecimalLiteral+StrUnsignedDecimalLiteral-StrUnsignedDecimalLiteralStrUnsignedDecimalLiteral:::InfinityDecimalDigits[~Sep].DecimalDigits[~Sep]optExponentPart[~Sep]opt.DecimalDigits[~Sep]ExponentPart[~Sep]optDecimalDigits[~Sep]ExponentPart[~Sep]opt

All grammar symbols not explicitly defined by theStringNumericLiteral grammar have the definitions used in theLexical Grammar for numeric literals.

A.7 Universal Resource Identifier Character Classes

uri:::uriCharactersopturiCharacters:::uriCharacteruriCharactersopturiCharacter:::uriReserveduriUnescapeduriEscapeduriReserved:::one of;/?:@&=+$,uriUnescaped:::uriAlphaDecimalDigituriMarkuriEscaped:::%HexDigitHexDigituriAlpha:::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZuriMark:::one of-_.!~*'()

A.8 Regular Expressions

Pattern[U, N]::Disjunction[?U, ?N]Disjunction[U, N]::Alternative[?U, ?N]Alternative[?U, ?N]|Disjunction[?U, ?N]Alternative[U, N]::[empty]Alternative[?U, ?N]Term[?U, ?N]Term[U, N]::Assertion[?U, ?N]Atom[?U, ?N]Atom[?U, ?N]QuantifierAssertion[U, N]::^$\b\B(?=Disjunction[?U, ?N])(?!Disjunction[?U, ?N])(?<=Disjunction[?U, ?N])(?<!Disjunction[?U, ?N])Quantifier::QuantifierPrefixQuantifierPrefix?QuantifierPrefix::*+?{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}Atom[U, N]::PatternCharacter.\AtomEscape[?U, ?N]CharacterClass[?U](GroupSpecifier[?U]Disjunction[?U, ?N])(?:Disjunction[?U, ?N])SyntaxCharacter::one of^$\.*+?()[]{}|PatternCharacter::SourceCharacterbut notSyntaxCharacterAtomEscape[U, N]::DecimalEscapeCharacterClassEscape[?U]CharacterEscape[?U][+N]kGroupName[?U]CharacterEscape[U]::ControlEscapecControlLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?U]IdentityEscape[?U]ControlEscape::one offnrtvControlLetter::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZGroupSpecifier[U]::[empty]?GroupName[?U]GroupName[U]::<RegExpIdentifierName[?U]>RegExpIdentifierName[U]::RegExpIdentifierStart[?U]RegExpIdentifierName[?U]RegExpIdentifierPart[?U]RegExpIdentifierStart[U]::UnicodeIDStart$_\RegExpUnicodeEscapeSequence[+U][~U]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart[U]::UnicodeIDContinue$\RegExpUnicodeEscapeSequence[+U][~U]UnicodeLeadSurrogateUnicodeTrailSurrogate<ZWNJ><ZWJ>RegExpUnicodeEscapeSequence[U]::[+U]uHexLeadSurrogate\uHexTrailSurrogate[+U]uHexLeadSurrogate[+U]uHexTrailSurrogate[+U]uHexNonSurrogate[~U]uHex4Digits[+U]u{CodePoint}UnicodeLeadSurrogate::any Unicode code point in the inclusive range 0xD800 to 0xDBFFUnicodeTrailSurrogate::any Unicode code point in the inclusive range 0xDC00 to 0xDFFF

Each\uHexTrailSurrogate for which the choice of associateduHexLeadSurrogate is ambiguous shall be associated with the nearest possibleuHexLeadSurrogate that would otherwise have no corresponding\uHexTrailSurrogate.

 

HexLeadSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in the inclusive range 0xD800 to 0xDBFFHexTrailSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in the inclusive range 0xDC00 to 0xDFFFHexNonSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is not in the inclusive range 0xD800 to 0xDFFFIdentityEscape[U]::[+U]SyntaxCharacter[+U]/[~U]SourceCharacterbut notUnicodeIDContinueDecimalEscape::NonZeroDigitDecimalDigits[~Sep]opt[lookahead ∉DecimalDigit]CharacterClassEscape[U]::dDsSwW[+U]p{UnicodePropertyValueExpression}[+U]P{UnicodePropertyValueExpression}UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueLoneUnicodePropertyNameOrValueUnicodePropertyName::UnicodePropertyNameCharactersUnicodePropertyNameCharacters::UnicodePropertyNameCharacterUnicodePropertyNameCharactersoptUnicodePropertyValue::UnicodePropertyValueCharactersLoneUnicodePropertyNameOrValue::UnicodePropertyValueCharactersUnicodePropertyValueCharacters::UnicodePropertyValueCharacterUnicodePropertyValueCharactersoptUnicodePropertyValueCharacter::UnicodePropertyNameCharacterDecimalDigitUnicodePropertyNameCharacter::ControlLetter_CharacterClass[U]::[[lookahead ≠^]ClassRanges[?U]][^ClassRanges[?U]]ClassRanges[U]::[empty]NonemptyClassRanges[?U]NonemptyClassRanges[U]::ClassAtom[?U]ClassAtom[?U]NonemptyClassRangesNoDash[?U]ClassAtom[?U]-ClassAtom[?U]ClassRanges[?U]NonemptyClassRangesNoDash[U]::ClassAtom[?U]ClassAtomNoDash[?U]NonemptyClassRangesNoDash[?U]ClassAtomNoDash[?U]-ClassAtom[?U]ClassRanges[?U]ClassAtom[U]::-ClassAtomNoDash[?U]ClassAtomNoDash[U]::SourceCharacterbut not one of\ or] or-\ClassEscape[?U]ClassEscape[U]::b[+U]-CharacterClassEscape[?U]CharacterEscape[?U]

B Additional ECMAScript Features for Web Browsers

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScripthost is a web browser. The content of this annex is normative but optional if the ECMAScripthost is not a web browser.

Note

This annex describes various legacy features and other characteristics of web browser ECMAScript hosts. All of the language features and behaviours specified in this annex have one or more undesirable characteristics and in the absence of legacy usage would be removed from this specification. However, the usage of these features by large numbers of existing web pages means that web browsers must continue to support them. The specifications in this annex define the requirements for interoperable implementations of these legacy features.

These features are not considered part of the core ECMAScript language. Programmers should not use or assume the existence of these features and behaviours when writing new ECMAScript code. ECMAScript implementations are discouraged from implementing these features unless the implementation is part of a web browser or is required to run the same legacy ECMAScript code that web browsers encounter.

B.1 Additional Syntax

B.1.1 Numeric Literals

The syntax and semantics of12.8.3 is extended as follows except that this extension is not allowed forstrict mode code:

Syntax

NumericLiteral::DecimalLiteralDecimalBigIntegerLiteralNonDecimalIntegerLiteral[+Sep]NonDecimalIntegerLiteral[+Sep]BigIntLiteralSuffixLegacyOctalIntegerLiteralLegacyOctalIntegerLiteral::0OctalDigitLegacyOctalIntegerLiteralOctalDigitDecimalIntegerLiteral::0NonZeroDigitNonZeroDigitNumericLiteralSeparatoroptDecimalDigits[+Sep]NonOctalDecimalIntegerLiteralNonOctalDecimalIntegerLiteral::0NonOctalDigitLegacyOctalLikeDecimalIntegerLiteralNonOctalDigitNonOctalDecimalIntegerLiteralDecimalDigitLegacyOctalLikeDecimalIntegerLiteral::0OctalDigitLegacyOctalLikeDecimalIntegerLiteralOctalDigitNonOctalDigit::one of89

B.1.1.1 Static Semantics

B.1.2 String Literals

The syntax and semantics of12.8.4 is extended as follows except that this extension is not allowed forstrict mode code:

Syntax

EscapeSequence::CharacterEscapeSequenceLegacyOctalEscapeSequenceNonOctalDecimalEscapeSequenceHexEscapeSequenceUnicodeEscapeSequenceLegacyOctalEscapeSequence::OctalDigit[lookahead ∉OctalDigit]ZeroToThreeOctalDigit[lookahead ∉OctalDigit]FourToSevenOctalDigitZeroToThreeOctalDigitOctalDigitZeroToThree::one of0123FourToSeven::one of4567NonOctalDecimalEscapeSequence::one of89

This definition ofEscapeSequence is not used in strict mode or when parsingTemplateCharacter.

Note

It is possible for string literals to precede aUse Strict Directive that places the enclosing code instrict mode, and implementations must take care to not use this extended definition ofEscapeSequence with such literals. For example, attempting to parse the following source text must fail:

functioninvalid(){"\7";"use strict"; }

B.1.2.1 Static Semantics

B.1.3 HTML-like Comments

The syntax and semantics of12.4 is extended as follows except that this extension is not allowed when parsing source code using thegoal symbolModule:

Syntax

Comment::MultiLineCommentSingleLineCommentSingleLineHTMLOpenCommentSingleLineHTMLCloseCommentSingleLineDelimitedCommentMultiLineComment::/*FirstCommentLineoptLineTerminatorMultiLineCommentCharsopt*/HTMLCloseCommentoptFirstCommentLine::SingleLineDelimitedCommentCharsSingleLineHTMLOpenComment::<!--SingleLineCommentCharsoptSingleLineHTMLCloseComment::LineTerminatorSequenceHTMLCloseCommentSingleLineDelimitedComment::/*SingleLineDelimitedCommentCharsopt*/HTMLCloseComment::WhiteSpaceSequenceoptSingleLineDelimitedCommentSequenceopt-->SingleLineCommentCharsoptSingleLineDelimitedCommentChars::SingleLineNotAsteriskCharSingleLineDelimitedCommentCharsopt*SingleLinePostAsteriskCommentCharsoptSingleLineNotAsteriskChar::SourceCharacterbut not one of* orLineTerminatorSingleLinePostAsteriskCommentChars::SingleLineNotForwardSlashOrAsteriskCharSingleLineDelimitedCommentCharsopt*SingleLinePostAsteriskCommentCharsoptSingleLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or* orLineTerminatorWhiteSpaceSequence::WhiteSpaceWhiteSpaceSequenceoptSingleLineDelimitedCommentSequence::SingleLineDelimitedCommentWhiteSpaceSequenceoptSingleLineDelimitedCommentSequenceopt

Similar to aMultiLineComment that contains a line terminator code point, aSingleLineHTMLCloseComment is considered to be aLineTerminator for purposes of parsing by the syntactic grammar.

B.1.4 Regular Expressions Patterns

The syntax of22.2.1 is modified and extended as follows. These changes introduce ambiguities that are broken by the ordering of grammar productions and by contextual information. When parsing using the following grammar, each alternative is considered only if previous production alternatives do not match.

This alternative pattern grammar and semantics only changes the syntax and semantics of BMP patterns. The following grammar extensions include productions parameterized with the [U] parameter. However, none of these extensions change the syntax of Unicode patterns recognized when parsing with the [U] parameter present on thegoal symbol.

Syntax

Term[U, N]::[+U]Assertion[+U, ?N][+U]Atom[+U, ?N]Quantifier[+U]Atom[+U, ?N][~U]QuantifiableAssertion[?N]Quantifier[~U]Assertion[~U, ?N][~U]ExtendedAtom[?N]Quantifier[~U]ExtendedAtom[?N]Assertion[U, N]::^$\b\B[+U](?=Disjunction[+U, ?N])[+U](?!Disjunction[+U, ?N])[~U]QuantifiableAssertion[?N](?<=Disjunction[?U, ?N])(?<!Disjunction[?U, ?N])QuantifiableAssertion[N]::(?=Disjunction[~U, ?N])(?!Disjunction[~U, ?N])ExtendedAtom[N]::.\AtomEscape[~U, ?N]\[lookahead =c]CharacterClass[~U](Disjunction[~U, ?N])(?:Disjunction[~U, ?N])InvalidBracedQuantifierExtendedPatternCharacterInvalidBracedQuantifier::{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}ExtendedPatternCharacter::SourceCharacterbut not one of^$\.*+?()[|AtomEscape[U, N]::[+U]DecimalEscape[~U]DecimalEscapebut only if theCapturingGroupNumber ofDecimalEscape is ≤NcapturingParensCharacterClassEscape[?U]CharacterEscape[?U, ?N][+N]kGroupName[?U]CharacterEscape[U, N]::ControlEscapecControlLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?U][~U]LegacyOctalEscapeSequenceIdentityEscape[?U, ?N]IdentityEscape[U, N]::[+U]SyntaxCharacter[+U]/[~U]SourceCharacterIdentityEscape[?N]SourceCharacterIdentityEscape[N]::[~N]SourceCharacterbut notc[+N]SourceCharacterbut not one ofc orkClassAtomNoDash[U, N]::SourceCharacterbut not one of\ or] or-\ClassEscape[?U, ?N]\[lookahead =c]ClassEscape[U, N]::b[+U]-[~U]cClassControlLetterCharacterClassEscape[?U]CharacterEscape[?U, ?N]ClassControlLetter::DecimalDigit_Note

When the same left hand sides occurs with both [+U] and [~U] guards it is to control the disambiguation priority.

B.1.4.1 Static Semantics: Early Errors

The semantics of22.2.1.1 is extended as follows:

ExtendedAtom::InvalidBracedQuantifier
  • It is a Syntax Error if any source text matches this rule.

Additionally, the rules for the following productions are modified with the addition of thehighlighted text:

NonemptyClassRanges::ClassAtom-ClassAtomClassRangesNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassRanges

B.1.4.2 Static Semantics: IsCharacterClass

The semantics of22.2.1.3 is extended as follows:

ClassAtomNoDash::\[lookahead =c]
  1. Returnfalse.

B.1.4.3 Static Semantics: CharacterValue

The semantics of22.2.1.4 is extended as follows:

ClassAtomNoDash::\[lookahead =c]
  1. Return the code point value of U+005C (REVERSE SOLIDUS).
ClassEscape::cClassControlLetter
  1. Letch be the code point matched byClassControlLetter.
  2. Leti bech's code point value.
  3. Return the remainder of dividingi by 32.
CharacterEscape::LegacyOctalEscapeSequence
  1. Return the MV ofLegacyOctalEscapeSequence (seeB.1.2).

B.1.4.4 Pattern Semantics

The semantics of22.2.2 is extended as follows:

Within22.2.2.5 reference to “Atom::(GroupSpecifierDisjunction) ” are to be interpreted as meaning “Atom::(GroupSpecifierDisjunction) ” or “ExtendedAtom::(Disjunction) ”.

Term (22.2.2.5) includes the following additional evaluation rules:

The productionTerm::QuantifiableAssertionQuantifier evaluates the same as the productionTerm::AtomQuantifier but withQuantifiableAssertion substituted forAtom.

The productionTerm::ExtendedAtomQuantifier evaluates the same as the productionTerm::AtomQuantifier but withExtendedAtom substituted forAtom.

The productionTerm::ExtendedAtom evaluates the same as the productionTerm::Atom but withExtendedAtom substituted forAtom.

Assertion (22.2.2.6) includes the following additional evaluation rule:

The productionAssertion::QuantifiableAssertion evaluates as follows:

  1. EvaluateQuantifiableAssertion to obtain a Matcherm.
  2. Returnm.

Assertion (22.2.2.6) evaluation rules for theAssertion::(?=Disjunction) andAssertion::(?!Disjunction) productions are also used for theQuantifiableAssertion productions, but withQuantifiableAssertion substituted forAssertion.

Atom (22.2.2.8) evaluation rules for theAtom productions except forAtom::PatternCharacter are also used for theExtendedAtom productions, but withExtendedAtom substituted forAtom. The following evaluation rules, with parameterdirection, are also added:

The productionExtendedAtom::\[lookahead =c] evaluates as follows:

  1. LetA be the CharSet containing the single character\ U+005C (REVERSE SOLIDUS).
  2. Return ! CharacterSetMatcher(A,false,direction).

The productionExtendedAtom::ExtendedPatternCharacter evaluates as follows:

  1. Letch be the character represented byExtendedPatternCharacter.
  2. LetA be a one-element CharSet containing the characterch.
  3. Return ! CharacterSetMatcher(A,false,direction).

CharacterEscape (22.2.2.10) includes the following additional evaluation rule:

The productionCharacterEscape::LegacyOctalEscapeSequence evaluates as follows:

  1. Letcv be theCharacterValue of thisCharacterEscape.
  2. Return the character whose character value iscv.

NonemptyClassRanges (22.2.2.15) modifies the following evaluation rule:

The productionNonemptyClassRanges::ClassAtom-ClassAtomClassRanges evaluates as follows:

  1. Evaluate the firstClassAtom to obtain a CharSetA.
  2. Evaluate the secondClassAtom to obtain a CharSetB.
  3. EvaluateClassRanges to obtain a CharSetC.
  4. LetD be ! CharacterRangeOrUnion(A,B).
  5. Return the union ofD andC.

NonemptyClassRangesNoDash (22.2.2.16) modifies the following evaluation rule:

The productionNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassRanges evaluates as follows:

  1. EvaluateClassAtomNoDash to obtain a CharSetA.
  2. EvaluateClassAtom to obtain a CharSetB.
  3. EvaluateClassRanges to obtain a CharSetC.
  4. LetD be ! CharacterRangeOrUnion(A,B).
  5. Return the union ofD andC.

ClassEscape (22.2.2.19) includes the following additional evaluation rule:

The productionClassEscape::cClassControlLetter evaluates as follows:

  1. Letcv be theCharacterValue of thisClassEscape.
  2. Letc be the character whose character value iscv.
  3. Return the CharSet containing the single characterc.

ClassAtomNoDash (22.2.2.18) includes the following additional evaluation rule:

The productionClassAtomNoDash::\[lookahead =c] evaluates as follows:

  1. Return the CharSet containing the single character\ U+005C (REVERSE SOLIDUS).
Note
This production can only be reached from the sequence\c within a character class where it is not followed by an acceptable control character.

B.1.4.4.1 CharacterRangeOrUnion (A,B )

The abstract operation CharacterRangeOrUnion takes argumentsA (a CharSet) andB (a CharSet). It performs the following steps when called:

  1. IfUnicode isfalse, then
    1. IfA does not contain exactly one character orB does not contain exactly one character, then
      1. LetC be the CharSet containing the single character- U+002D (HYPHEN-MINUS).
      2. Return the union of CharSetsA,B andC.
  2. Return ! CharacterRange(A,B).

B.2 Additional Built-in Properties

When the ECMAScripthost is a web browser the following additional properties of the standard built-in objects are defined.

B.2.1 Additional Properties of the Global Object

The entries inTable 82 are added toTable 8.

Table 82: Additional Well-known Intrinsic Objects
Intrinsic Name Global Name ECMAScript Language Association
%escape%escape Theescape function (B.2.1.1)
%unescape%unescape Theunescape function (B.2.1.2)

B.2.1.1 escape (string )

Theescape function is a property of theglobal object. It computes a new version of a String value in which certain code units have been replaced by a hexadecimal escape sequence.

For those code units being replaced whose value is0x00FF or less, a two-digit escape sequence of the form%xx is used. For those characters being replaced whose code unit value is greater than0x00FF, a four-digit escape sequence of the form%uxxxx is used.

Theescape function is the%escape% intrinsic object. When theescape function is called with one argumentstring, the following steps are taken:

  1. Setstring to ? ToString(string).
  2. Letlength be the number of code units instring.
  3. LetR be the empty String.
  4. Letk be 0.
  5. Repeat, whilek <length,
    1. Letchar be the code unit (represented as a 16-bit unsignedinteger) at indexk withinstring.
    2. Ifchar is one of the code units in"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./", then
      1. LetS be the String value containing the single code unitchar.
    3. Else ifchar ≥ 256, then
      1. Letn be the numeric value ofchar.
      2. LetS be thestring-concatenation of:
        • "%u"
        • the String representation ofn, formatted as a four-digit uppercase hexadecimal number, padded to the left with zeroes if necessary
    4. Else,
      1. Assert:char < 256.
      2. Letn be the numeric value ofchar.
      3. LetS be thestring-concatenation of:
        • "%"
        • the String representation ofn, formatted as a two-digit uppercase hexadecimal number, padded to the left with a zero if necessary
    5. SetR to thestring-concatenation ofR andS.
    6. Setk tok + 1.
  6. ReturnR.
Note

The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this standard is described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC 1738 made by RFC 3986.

B.2.1.2 unescape (string )

Theunescape function is a property of theglobal object. It computes a new version of a String value in which each escape sequence of the sort that might be introduced by theescape function is replaced with the code unit that it represents.

Theunescape function is the%unescape% intrinsic object. When theunescape function is called with one argumentstring, the following steps are taken:

  1. Setstring to ? ToString(string).
  2. Letlength be the number of code units instring.
  3. LetR be the empty String.
  4. Letk be 0.
  5. Repeat, whileklength,
    1. Letc be the code unit at indexk withinstring.
    2. Ifc is the code unit 0x0025 (PERCENT SIGN), then
      1. LethexEscape be the empty String.
      2. Letskip be 0.
      3. Ifklength - 6 and the code unit at indexk + 1 withinstring is the code unit 0x0075 (LATIN SMALL LETTER U), then
        1. SethexEscape to thesubstring ofstring fromk + 2 tok + 6.
        2. Setskip to 5.
      4. Else ifklength - 3, then
        1. SethexEscape to thesubstring ofstring fromk + 1 tok + 3.
        2. Setskip to 2.
      5. IfhexEscape can be interpreted as an expansion ofHexDigits[~Sep], then
        1. LethexIntegerLiteral be thestring-concatenation of"0x" andhexEscape.
        2. Letn be ! ToNumber(hexIntegerLiteral).
        3. Setc to the code unit whose value is(n).
        4. Setk tok +skip.
    3. SetR to thestring-concatenation ofR andc.
    4. Setk tok + 1.
  6. ReturnR.

B.2.2 Additional Properties of the Object.prototype Object

B.2.2.1 Object.prototype.__proto__

Object.prototype.__proto__ is anaccessor property with attributes { [[Enumerable]]:false, [[Configurable]]:true }. The [[Get]] and [[Set]] attributes are defined as follows:

B.2.2.1.1 get Object.prototype.__proto__

The value of the [[Get]] attribute is a built-in function that requires no arguments. It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Return ?O.[[GetPrototypeOf]]().

B.2.2.1.2 set Object.prototype.__proto__

The value of the [[Set]] attribute is a built-in function that takes an argumentproto. It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. IfType(proto) is neither Object nor Null, returnundefined.
  3. IfType(O) is not Object, returnundefined.
  4. Letstatus be ?O.[[SetPrototypeOf]](proto).
  5. Ifstatus isfalse, throw aTypeError exception.
  6. Returnundefined.

B.2.2.2 Object.prototype.__defineGetter__ (P,getter )

When the__defineGetter__ method is called with argumentsP andgetter, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. IfIsCallable(getter) isfalse, throw aTypeError exception.
  3. Letdesc be PropertyDescriptor { [[Get]]:getter, [[Enumerable]]:true, [[Configurable]]:true }.
  4. Letkey be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O,key,desc).
  6. Returnundefined.

B.2.2.3 Object.prototype.__defineSetter__ (P,setter )

When the__defineSetter__ method is called with argumentsP andsetter, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. IfIsCallable(setter) isfalse, throw aTypeError exception.
  3. Letdesc be PropertyDescriptor { [[Set]]:setter, [[Enumerable]]:true, [[Configurable]]:true }.
  4. Letkey be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O,key,desc).
  6. Returnundefined.

B.2.2.4 Object.prototype.__lookupGetter__ (P )

When the__lookupGetter__ method is called with argumentP, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letkey be ? ToPropertyKey(P).
  3. Repeat,
    1. Letdesc be ?O.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined, then
      1. IfIsAccessorDescriptor(desc) istrue, returndesc.[[Get]].
      2. Returnundefined.
    3. SetO to ?O.[[GetPrototypeOf]]().
    4. IfO isnull, returnundefined.

B.2.2.5 Object.prototype.__lookupSetter__ (P )

When the__lookupSetter__ method is called with argumentP, the following steps are taken:

  1. LetO be ? ToObject(this value).
  2. Letkey be ? ToPropertyKey(P).
  3. Repeat,
    1. Letdesc be ?O.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined, then
      1. IfIsAccessorDescriptor(desc) istrue, returndesc.[[Set]].
      2. Returnundefined.
    3. SetO to ?O.[[GetPrototypeOf]]().
    4. IfO isnull, returnundefined.

B.2.3 Additional Properties of the String.prototype Object

B.2.3.1 String.prototype.substr (start,length )

Thesubstr method takes two arguments,start andlength, and returns asubstring of the result of converting thethis value to a String, starting from indexstart and running forlength code units (or through the end of the String iflength isundefined). Ifstart is negative, it is treated assourceLength +start wheresourceLength is the length of the String. The result is a String value, not a String object. The following steps are taken:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letsize be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. IfintStart is -∞, setintStart to 0.
  6. Else ifintStart < 0, setintStart tomax(size +intStart, 0).
  7. Iflength isundefined, letintLength besize; otherwise letintLength be ? ToIntegerOrInfinity(length).
  8. IfintStart is +∞,intLength ≤ 0, orintLength is +∞, return the empty String.
  9. LetintEnd bemin(intStart +intLength,size).
  10. IfintStartintEnd, return the empty String.
  11. Return thesubstring ofS fromintStart tointEnd.
Note

Thesubstr function is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

B.2.3.2 String.prototype.anchor (name )

When theanchor method is called with argumentname, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"a","name",name).

B.2.3.2.1 CreateHTML (string,tag,attribute,value )

The abstract operation CreateHTML takes argumentsstring,tag (a String),attribute (a String), andvalue. It performs the following steps when called:

  1. Letstr be ? RequireObjectCoercible(string).
  2. LetS be ? ToString(str).
  3. Letp1 be thestring-concatenation of"<" andtag.
  4. Ifattribute is not the empty String, then
    1. LetV be ? ToString(value).
    2. LetescapedV be the String value that is the same asV except that each occurrence of the code unit 0x0022 (QUOTATION MARK) inV has been replaced with the six code unit sequence"&quot;".
    3. Setp1 to thestring-concatenation of:
      • p1
      • the code unit 0x0020 (SPACE)
      • attribute
      • the code unit 0x003D (EQUALS SIGN)
      • the code unit 0x0022 (QUOTATION MARK)
      • escapedV
      • the code unit 0x0022 (QUOTATION MARK)
  5. Letp2 be thestring-concatenation ofp1 and">".
  6. Letp3 be thestring-concatenation ofp2 andS.
  7. Letp4 be thestring-concatenation ofp3,"</",tag, and">".
  8. Returnp4.

B.2.3.3 String.prototype.big ( )

When thebig method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"big","","").

B.2.3.4 String.prototype.blink ( )

When theblink method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"blink","","").

B.2.3.5 String.prototype.bold ( )

When thebold method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"b","","").

B.2.3.6 String.prototype.fixed ( )

When thefixed method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"tt","","").

B.2.3.7 String.prototype.fontcolor (color )

When thefontcolor method is called with argumentcolor, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"font","color",color).

B.2.3.8 String.prototype.fontsize (size )

When thefontsize method is called with argumentsize, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"font","size",size).

B.2.3.9 String.prototype.italics ( )

When theitalics method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"i","","").

B.2.3.10 String.prototype.link (url )

When thelink method is called with argumenturl, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"a","href",url).

B.2.3.11 String.prototype.small ( )

When thesmall method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"small","","").

B.2.3.12 String.prototype.strike ( )

When thestrike method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"strike","","").

B.2.3.13 String.prototype.sub ( )

When thesub method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"sub","","").

B.2.3.14 String.prototype.sup ( )

When thesup method is called with no arguments, the following steps are taken:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"sup","","").

B.2.3.15 String.prototype.trimLeft ( )

Note

The property"trimStart" is preferred. The"trimLeft" property is provided principally for compatibility with old code. It is recommended that the"trimStart" property be used in new ECMAScript code.

The initial value of the"trimLeft" property is the samefunction object as the initial value of theString.prototype.trimStart property.

B.2.3.16 String.prototype.trimRight ( )

Note

The property"trimEnd" is preferred. The"trimRight" property is provided principally for compatibility with old code. It is recommended that the"trimEnd" property be used in new ECMAScript code.

The initial value of the"trimRight" property is the samefunction object as the initial value of theString.prototype.trimEnd property.

B.2.4 Additional Properties of the Date.prototype Object

B.2.4.1 Date.prototype.getYear ( )

Note

ThegetFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When thegetYear method is called with no arguments, the following steps are taken:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, returnNaN.
  3. ReturnYearFromTime(LocalTime(t)) -1900𝔽.

B.2.4.2 Date.prototype.setYear (year )

Note

ThesetFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

When thesetYear method is called with one argumentyear, the following steps are taken:

  1. Lett be ? thisTimeValue(this value).
  2. Ift isNaN, sett to+0𝔽; otherwise, sett toLocalTime(t).
  3. Lety be ? ToNumber(year).
  4. Ify isNaN, then
    1. Set the [[DateValue]] internal slot ofthis Date object toNaN.
    2. ReturnNaN.
  5. Letyi be ! ToIntegerOrInfinity(y).
  6. If 0 ≤yi ≤ 99, letyyyy be1900𝔽 +𝔽(yi).
  7. Else, letyyyy bey.
  8. Letd beMakeDay(yyyy,MonthFromTime(t),DateFromTime(t)).
  9. Letdate beUTC(MakeDate(d,TimeWithinDay(t))).
  10. Set the [[DateValue]] internal slot ofthis Date object toTimeClip(date).
  11. Return the value of the [[DateValue]] internal slot ofthis Date object.

B.2.4.3 Date.prototype.toGMTString ( )

Note

ThetoUTCString method is preferred. ThetoGMTString method is provided principally for compatibility with old code.

Thefunction object that is the initial value ofDate.prototype.toGMTString is the samefunction object that is the initial value ofDate.prototype.toUTCString.

B.2.5 Additional Properties of the RegExp.prototype Object

B.2.5.1 RegExp.prototype.compile (pattern,flags )

When thecompile method is called with argumentspattern andflags, the following steps are taken:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O, [[RegExpMatcher]]).
  3. IfType(pattern) is Object andpattern has a [[RegExpMatcher]] internal slot, then
    1. Ifflags is notundefined, throw aTypeError exception.
    2. LetP bepattern.[[OriginalSource]].
    3. LetF bepattern.[[OriginalFlags]].
  4. Else,
    1. LetP bepattern.
    2. LetF beflags.
  5. Return ? RegExpInitialize(O,P,F).
Note

Thecompile method completely reinitializes thethis value RegExp with a new pattern and flags. An implementation may interpret use of this method as an assertion that the resulting RegExp object will be used multiple times and hence is a candidate for extra optimization.

B.3 Other Additional Features

B.3.1 __proto__ Property Names in Object Initializers

The following Early Error rule is added to those in13.2.6.1. This rule isnot applied under any of the following circumstances:

ObjectLiteral:{PropertyDefinitionList}{PropertyDefinitionList,}Note

TheList returned byPropertyNameList does not include string literal property names defined as using aComputedPropertyName.

In13.2.6.5 thePropertyDefinitionEvaluation algorithm for the production
PropertyDefinition:PropertyName:AssignmentExpression
is replaced with the following definition:

PropertyDefinition:PropertyName:AssignmentExpression
  1. LetpropKey be the result of evaluatingPropertyName.
  2. ReturnIfAbrupt(propKey).
  3. IfpropKey is the String value"__proto__" and ifIsComputedPropertyKey(PropertyName) isfalse, then
    1. LetisProtoSetter betrue.
  4. Else,
    1. LetisProtoSetter befalse.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andisProtoSetter isfalse, then
    1. LetpropValue be ?NamedEvaluation ofAssignmentExpression with argumentpropKey.
  6. Else,
    1. LetexprValueRef be the result of evaluatingAssignmentExpression.
    2. LetpropValue be ? GetValue(exprValueRef).
  7. IfisProtoSetter istrue, then
    1. IfType(propValue) is either Object or Null, then
      1. Returnobject.[[SetPrototypeOf]](propValue).
    2. ReturnNormalCompletion(empty).
  8. Assert:enumerable istrue.
  9. Assert:object is an ordinary, extensible object with no non-configurable properties.
  10. Return ! CreateDataPropertyOrThrow(object,propKey,propValue).

B.3.2 Labelled Function Declarations

Prior to ECMAScript 2015, the specification ofLabelledStatement did not allow for the association of a statement label with aFunctionDeclaration. However, a labelledFunctionDeclaration was an allowable extension fornon-strict code and most browser-hosted ECMAScript implementations supported that extension. In ECMAScript 2015 and later, the grammar production forLabelledStatement permits use ofFunctionDeclaration as aLabelledItem but14.13.1 includes an Early Error rule that produces a Syntax Error if that occurs. That rule is modified with the addition of thehighlighted text:

LabelledItem:FunctionDeclaration
  • It is a Syntax Error if anystrict mode source code matches this rule.
Note

Theearly error rules forWithStatement,IfStatement, andIterationStatement prevent these statements from containing a labelledFunctionDeclaration innon-strict code.

B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics

Prior to ECMAScript 2015, the ECMAScript specification did not define the occurrence of aFunctionDeclaration as an element of aBlock statement'sStatementList. However, support for that form ofFunctionDeclaration was an allowable extension and most browser-hosted ECMAScript implementations permitted them. Unfortunately, the semantics of such declarations differ among those implementations. Because of these semantic differences, existing web ECMAScript code that usesBlock level function declarations is only portable among browser implementation if the usage only depends upon the semantic intersection of all of the browser implementations for such declarations. The following are the use cases that fall within that intersection semantics:

  1. A function is declared and only referenced within a single block

  2. A function is declared and possibly used within a singleBlock but also referenced by an inner function definition that is not contained within that sameBlock.

    • One or moreFunctionDeclarations whoseBindingIdentifier is the namef occur within the function code of an enclosing functiong and that declaration is nested within aBlock.
    • No other declaration off that is not avar declaration occurs within the function code ofg
    • There may be occurrences off as anIdentifierReference within theStatementList of theBlock containing the declaration off.
    • There is at least one occurrence off as anIdentifierReference within another functionh that is nested withing and no other declaration off shadows the references tof from withinh.
    • All invocations ofh occur after the declaration off has been evaluated.
  3. A function is declared and possibly used within a single block but also referenced within subsequent blocks.

    • One or moreFunctionDeclaration whoseBindingIdentifier is the namef occur within the function code of an enclosing functiong and that declaration is nested within aBlock.
    • No other declaration off that is not avar declaration occurs within the function code ofg
    • There may be occurrences off as anIdentifierReference within theStatementList of theBlock containing the declaration off.
    • There is at least one occurrence off as anIdentifierReference within the function code ofg that lexically follows theBlock containing the declaration off.

The first use case is interoperable with the semantics ofBlock level function declarations provided by ECMAScript 2015. Any pre-existing ECMAScript code that employs that use case will operate using the Block level function declarations semantics defined by clauses10,14, and15.

ECMAScript 2015 interoperability for the second and third use cases requires the following extensions to the clause10, clause15, clause19.2.1 and clause16.1.7 semantics.

If an ECMAScript implementation has a mechanism for reporting diagnostic warning messages, a warning should be produced when code contains aFunctionDeclaration for which these compatibility semantics are applied and introduce observable differences from non-compatibility semantics. For example, if a var binding is not introduced because its introduction would create anearly error, a warning message should not be produced.

B.3.3.1 Changes to FunctionDeclarationInstantiation

DuringFunctionDeclarationInstantiation the following steps are performed in place of step29:

  1. Ifstrict isfalse, then
    1. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause, do
      1. LetF beStringValue of theBindingIdentifier off.
      2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forfunc andF is not an element ofparameterNames, then
        1. NOTE: A var binding forF is only instantiated here if it is neither a VarDeclaredName, the name of a formal parameter, or anotherFunctionDeclaration.
        2. IfinitializedBindings does not containF andF is not"arguments", then
          1. Perform !varEnv.CreateMutableBinding(F,false).
          2. PerformvarEnv.InitializeBinding(F,undefined).
          3. AppendF toinstantiatedVarNames.
        3. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclaration Evaluation algorithm provided in15.2.6:
          1. Letfenv be therunning execution context's VariableEnvironment.
          2. Letbenv be therunning execution context's LexicalEnvironment.
          3. Letfobj be !benv.GetBindingValue(F,false).
          4. Perform !fenv.SetMutableBinding(F,fobj,false).
          5. ReturnNormalCompletion(empty).

B.3.3.2 Changes to GlobalDeclarationInstantiation

DuringGlobalDeclarationInstantiation the following steps are performed in place of step13:

  1. Letstrict beIsStrict ofscript.
  2. Ifstrict isfalse, then
    1. LetdeclaredFunctionOrVarNames be a new emptyList.
    2. Append todeclaredFunctionOrVarNames the elements ofdeclaredFunctionNames.
    3. Append todeclaredFunctionOrVarNames the elements ofdeclaredVarNames.
    4. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause Contained withinscript, do
      1. LetF beStringValue of theBindingIdentifier off.
      2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forscript, then
        1. Ifenv.HasLexicalDeclaration(F) isfalse, then
          1. LetfnDefinable be ?env.CanDeclareGlobalVar(F).
          2. IffnDefinable istrue, then
            1. NOTE: A var binding forF is only instantiated here if it is neither a VarDeclaredName nor the name of anotherFunctionDeclaration.
            2. IfdeclaredFunctionOrVarNames does not containF, then
              1. Perform ?env.CreateGlobalVarBinding(F,false).
              2. AppendF todeclaredFunctionOrVarNames.
            3. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclaration Evaluation algorithm provided in15.2.6:
              1. Letgenv be therunning execution context's VariableEnvironment.
              2. Letbenv be therunning execution context's LexicalEnvironment.
              3. Letfobj be !benv.GetBindingValue(F,false).
              4. Perform ?genv.SetMutableBinding(F,fobj,false).
              5. ReturnNormalCompletion(empty).

B.3.3.3 Changes to EvalDeclarationInstantiation

DuringEvalDeclarationInstantiation the following steps are performed in place of step7:

  1. Ifstrict isfalse, then
    1. LetdeclaredFunctionOrVarNames be a new emptyList.
    2. Append todeclaredFunctionOrVarNames the elements ofdeclaredFunctionNames.
    3. Append todeclaredFunctionOrVarNames the elements ofdeclaredVarNames.
    4. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause Contained withinbody, do
      1. LetF beStringValue of theBindingIdentifier off.
      2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forbody, then
        1. LetbindingExists befalse.
        2. LetthisEnv belexEnv.
        3. Assert: The following loop will terminate.
        4. Repeat, whilethisEnv is not the same asvarEnv,
          1. IfthisEnv is not anobject Environment Record, then
            1. IfthisEnv.HasBinding(F) istrue, then
              1. LetbindingExists betrue.
          2. SetthisEnv tothisEnv.[[OuterEnv]].
        5. IfbindingExists isfalse andvarEnv is aglobal Environment Record, then
          1. IfvarEnv.HasLexicalDeclaration(F) isfalse, then
            1. LetfnDefinable be ?varEnv.CanDeclareGlobalVar(F).
          2. Else,
            1. LetfnDefinable befalse.
        6. Else,
          1. LetfnDefinable betrue.
        7. IfbindingExists isfalse andfnDefinable istrue, then
          1. IfdeclaredFunctionOrVarNames does not containF, then
            1. IfvarEnv is aglobal Environment Record, then
              1. Perform ?varEnv.CreateGlobalVarBinding(F,true).
            2. Else,
              1. LetbindingExists bevarEnv.HasBinding(F).
              2. IfbindingExists isfalse, then
                1. Perform !varEnv.CreateMutableBinding(F,true).
                2. Perform !varEnv.InitializeBinding(F,undefined).
            3. AppendF todeclaredFunctionOrVarNames.
          2. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclaration Evaluation algorithm provided in15.2.6:
            1. Letgenv be therunning execution context's VariableEnvironment.
            2. Letbenv be therunning execution context's LexicalEnvironment.
            3. Letfobj be !benv.GetBindingValue(F,false).
            4. Perform ?genv.SetMutableBinding(F,fobj,false).
            5. ReturnNormalCompletion(empty).

B.3.3.4 Changes to Block Static Semantics: Early Errors

The rules for the following production in14.2.1 are modified with the addition of thehighlighted text:

Block:{StatementList}

B.3.3.5 Changes toswitch Statement Static Semantics: Early Errors

The rules for the following production in14.12.1 are modified with the addition of thehighlighted text:

SwitchStatement:switch(Expression)CaseBlock

B.3.3.6 Changes to BlockDeclarationInstantiation

DuringBlockDeclarationInstantiation the following steps are performed in place of step3.a.ii.1:

  1. Ifenv.HasBinding(dn) isfalse, then
    1. Perform !env.CreateMutableBinding(dn,false).

DuringBlockDeclarationInstantiation the following steps are performed in place of step3.b.iii:

  1. If the binding forfn inenv is an uninitialized binding, then
    1. Performenv.InitializeBinding(fn,fo).
  2. Else,
    1. Assert:d is aFunctionDeclaration.
    2. Performenv.SetMutableBinding(fn,fo,false).

B.3.4 FunctionDeclarations in IfStatement Statement Clauses

The following augments theIfStatement production in14.6:

IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseFunctionDeclaration[?Yield, ?Await, ~Default]if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default]elseFunctionDeclaration[?Yield, ?Await, ~Default]if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default][lookahead ≠else]

This production only applies when parsingnon-strict code. Code matching this production is processed as if each matching occurrence ofFunctionDeclaration[?Yield, ?Await, ~Default] was the soleStatementListItem of aBlockStatement occupying that position in the source code. The semantics of such a syntheticBlockStatement includes the web legacy compatibility semantics specified inB.3.3.

B.3.5 VariableStatements in Catch Blocks

The content of subclause14.15.1 is replaced with the following:

Catch:catch(CatchParameter)BlockNote

TheBlock of aCatch clause may containvar declarations that bind a name that is also bound by theCatchParameter. At runtime, such bindings are instantiated in the VariableDeclarationEnvironment. They do not shadow the same-named bindings introduced by theCatchParameter and hence theInitializer for suchvar declarations will assign to the corresponding catch parameter rather than thevar binding.

This modified behaviour also applies tovar andfunction declarations introduced bydirect eval calls contained within theBlock of aCatch clause. This change is accomplished by modifying the algorithm of19.2.1.3 as follows:

Step3.d.i.2.a.i is replaced by:

  1. IfthisEnv is not theEnvironment Record for aCatch clause, throw aSyntaxError exception.

Step7.d.ii.4.a.i.i is replaced by:

  1. IfthisEnv is not theEnvironment Record for aCatch clause, letbindingExists betrue.

B.3.6 Initializers in ForIn Statement Heads

The following augments theForInOfStatement production in14.7.5:

ForInOfStatement[Yield, Await, Return]:for(varBindingIdentifier[?Yield, ?Await]Initializer[~In, ?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]

This production only applies when parsingnon-strict code.

Thestatic semantics ofContainsDuplicateLabels in8.2.1 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.

Thestatic semantics ofContainsUndefinedBreakTarget in8.2.2 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.

Thestatic semantics ofContainsUndefinedContinueTarget in8.2.3 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».

Thestatic semantics ofIsDestructuring in14.7.5.2 are augmented with the following:

BindingIdentifier:Identifieryieldawait
  1. Returnfalse.

Thestatic semantics ofVarDeclaredNames in8.1.6 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. Letnames be theBoundNames ofBindingIdentifier.
  2. Append tonames the elements of theVarDeclaredNames ofStatement.
  3. Returnnames.

Thestatic semantics ofVarScopedDeclarations in8.1.7 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. Letdeclarations be aList whose sole element isBindingIdentifier.
  2. Append todeclarations the elements of theVarScopedDeclarations ofStatement.
  3. Returndeclarations.

Theruntime semantics ofForInOfLoopEvaluation in14.7.5.5 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue beNamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be the result of evaluatingInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. Perform ? PutValue(lhs,value).
  6. LetkeyResult be ?ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  7. Return ?ForIn/OfBodyEvaluation(BindingIdentifier,Statement,keyResult,enumerate,varBinding,labelSet).

B.3.7 The [[IsHTMLDDA]] Internal Slot

An[[IsHTMLDDA]] internal slot may exist onhost-defined objects. Objects with an [[IsHTMLDDA]] internal slot behave likeundefined in theToBoolean andAbstract Equality Comparisonabstract operations and when used as an operand for thetypeof operator.

Note

Objects with an [[IsHTMLDDA]] internal slot are never created by this specification. However, thedocument.all object in web browsers is ahost-definedexotic object with this slot that exists for web compatibility purposes. There are no other known examples of this type of object and implementations should not create any with the exception ofdocument.all.

B.3.7.1 Changes to ToBoolean

The result column inTable 11 for an argument type of Object is replaced with the following algorithm:

  1. Ifargument has an[[IsHTMLDDA]] internal slot, returnfalse.
  2. Returntrue.

B.3.7.2 Changes to Abstract Equality Comparison

The following steps replace step4 of theAbstract Equality Comparison algorithm:

  1. IfType(x) is Object andx has an[[IsHTMLDDA]] internal slot andy is eithernull orundefined, returntrue.
  2. Ifx is eithernull orundefined andType(y) is Object andy has an[[IsHTMLDDA]] internal slot, returntrue.

B.3.7.3 Changes to thetypeof Operator

The following table entry is inserted intoTable 37 immediately preceding the entry for "Object (implements [[Call]])":

Table 83: Additionaltypeof Operator Results
Type ofval Result
Object (has an[[IsHTMLDDA]] internal slot)"undefined"

C The Strict Mode of ECMAScript

The strict mode restriction and exceptions

D Host Layering Points

See4.2 for the definition ofhost.

D.1 Host Hooks

HostCallJobCallback(...)

HostEnqueueFinalizationRegistryCleanupJob(...)

HostEnqueuePromiseJob(...)

HostEnsureCanCompileStrings(...)

HostFinalizeImportMeta(...)

HostGetImportMetaProperties(...)

HostHasSourceTextAvailable(...)

HostImportModuleDynamically(...)

HostMakeJobCallback(...)

HostPromiseRejectionTracker(...)

HostResolveImportedModule(...)

InitializeHostDefinedRealm(...)

D.2 Host-defined Fields

[[HostDefined]] onRealm Records: SeeTable 23.

[[HostDefined]] on Script Records: SeeTable 39.

[[HostDefined]] on Module Records: SeeTable 40.

[[HostDefined]] on JobCallback Records: SeeTable 27.

[[HostSynchronizesWith]] on Candidate Executions: SeeTable 81.

[[IsHTMLDDA]]: SeeB.3.7.

D.3 Host-defined Objects

Theglobal object: See clause19.

D.4 Running Jobs

Preparation steps before, and cleanup steps after, invocation ofJob Abstract Closures. See9.4.

D.5 Internal Methods of Exotic Objects

Any of the essential internal methods inTable 6 for anyexotic object not specified within this specification.

D.6 Built-in Objects and Methods

Any built-in objects and methods not defined within this specification, except as restricted in17.1.

E Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact

9.1.1.4.15-9.1.1.4.18 Edition 5 and 5.1 used a property existence test to determine whether aglobal object property corresponding to a new global declaration already existed. ECMAScript 2015 uses an own property existence test. This corresponds to what has been most commonly implemented by web browsers.

10.4.2.1: The 5th Edition moved the capture of the current array length prior to theinteger conversion of thearray index or new length value. However, the captured length value could become invalid if the conversion process has the side-effect of changing the array length. ECMAScript 2015 specifies that the current array length must be captured after the possible occurrence of such side-effects.

21.4.1.14: Previous editions permitted theTimeClip abstract operation to return either+0𝔽 or-0𝔽 as the representation of a 0time value. ECMAScript 2015 specifies that+0𝔽 always returned. This means that for ECMAScript 2015 thetime value of a Date object is never observably-0𝔽 and methods that return time values never return-0𝔽.

21.4.1.15: If a UTC offset representation is not present, the local time zone is used. Edition 5.1 incorrectly stated that a missing time zone should be interpreted as"z".

21.4.4.36: If the year cannot be represented using the Date Time String Format specified in21.4.1.15 a RangeError exception is thrown. Previous editions did not specify the behaviour for that case.

21.4.4.41: Previous editions did not specify the value returned byDate.prototype.toString whenthis time value isNaN. ECMAScript 2015 specifies the result to be the String value"Invalid Date".

22.2.3.1,22.2.3.2.5: Any LineTerminator code points in the value of the"source" property of a RegExp instance must be expressed using an escape sequence. Edition 5.1 only required the escaping of/.

22.2.5.7,22.2.5.10: In previous editions, the specifications forString.prototype.match andString.prototype.replace was incorrect for cases where the pattern argument was a RegExp value whoseglobal flag is set. The previous specifications stated that for each attempt to match the pattern, iflastIndex did not change it should be incremented by 1. The correct behaviour is thatlastIndex should be incremented by one only if the pattern matched the empty String.

23.1.3.27,23.1.3.27.1: Previous editions did not specify how aNaN value returned by acomparefn was interpreted byArray.prototype.sort. ECMAScript 2015 specifies that such as value is treated as if+0𝔽 was returned from thecomparefn. ECMAScript 2015 also specifies thatToNumber is applied to the result returned by acomparefn. In previous editions, the effect of acomparefn result that is not aNumber value wasimplementation-defined. In practice, implementations callToNumber.

F Additions and Changes That Introduce Incompatibilities with Prior Editions

6.2.4: In ECMAScript 2015, Function calls are not allowed to return aReference Record.

7.1.4.1: In ECMAScript 2015,ToNumber applied to a String value now recognizes and convertsBinaryIntegerLiteral andOctalIntegerLiteral numeric strings. In previous editions such strings were converted toNaN.

9.2: In ECMAScript 2018, Template objects are canonicalized based onParse Node (source location), instead of across all occurrences of that template literal or tagged template in aRealm in previous editions.

12.2: In ECMAScript 2016, Unicode 8.0.0 or higher is mandated, as opposed to ECMAScript 2015 which mandated Unicode 5.1. In particular, this caused U+180E MONGOLIAN VOWEL SEPARATOR, which was in theSpace_Separator (Zs) category and thus treated as whitespace in ECMAScript 2015, to be moved to theFormat (Cf) category (as of Unicode 6.3.0). This causes whitespace-sensitive methods to behave differently. For example,"\u180E".trim().length was0 in previous editions, but1 in ECMAScript 2016 and later. Additionally, ECMAScript 2017 mandated always using the latest version of the Unicode standard.

12.6: In ECMAScript 2015, the valid code points for anIdentifierName are specified in terms of the Unicode properties “ID_Start” and “ID_Continue”. In previous editions, the validIdentifierName orIdentifier code points were specified by enumerating various Unicode code point categories.

12.9.1: In ECMAScript 2015, Automatic Semicolon Insertion adds a semicolon at the end of a do-while statement if the semicolon is missing. This change aligns the specification with the actual behaviour of most existing implementations.

13.2.6.1: In ECMAScript 2015, it is no longer anearly error to have duplicate property names in Object Initializers.

13.15.1: In ECMAScript 2015,strict mode code containing an assignment to an immutable binding such as the function name of aFunctionExpression does not produce anearly error. Instead it produces a runtime error.

14.2: In ECMAScript 2015, aStatementList beginning with the token let followed by the input elementsLineTerminator thenIdentifier is the start of aLexicalDeclaration. In previous editions, automatic semicolon insertion would always insert a semicolon before theIdentifier input element.

14.5: In ECMAScript 2015, aStatementListItem beginning with the tokenlet followed by the token[ is the start of aLexicalDeclaration. In previous editions such a sequence would be the start of anExpressionStatement.

14.6.2: In ECMAScript 2015, the normal completion value of anIfStatement is never the valueempty. If noStatement part is evaluated or if the evaluatedStatement part produces a normal completion whose value isempty, the completion value of theIfStatement isundefined.

14.7: In ECMAScript 2015, if the( token of a for statement is immediately followed by the token sequencelet [ then thelet is treated as the start of aLexicalDeclaration. In previous editions such a token sequence would be the start of anExpression.

14.7: In ECMAScript 2015, if the ( token of a for-in statement is immediately followed by the token sequencelet [ then thelet is treated as the start of aForDeclaration. In previous editions such a token sequence would be the start of anLeftHandSideExpression.

14.7: Prior to ECMAScript 2015, an initialization expression could appear as part of theVariableDeclaration that precedes theinkeyword. In ECMAScript 2015, theForBinding in that same position does not allow the occurrence of such an initializer. In ECMAScript 2017, such an initializer is permitted only innon-strict code.

14.7: In ECMAScript 2015, the completion value of anIterationStatement is never the valueempty. If theStatement part of anIterationStatement is not evaluated or if the final evaluation of theStatement part produces a completion whose value isempty, the completion value of theIterationStatement isundefined.

14.11.2: In ECMAScript 2015, the normal completion value of aWithStatement is never the valueempty. If evaluation of theStatement part of aWithStatement produces a normal completion whose value isempty, the completion value of theWithStatement isundefined.

14.12.4: In ECMAScript 2015, the completion value of aSwitchStatement is never the valueempty. If theCaseBlock part of aSwitchStatement produces a completion whose value isempty, the completion value of theSwitchStatement isundefined.

14.15: In ECMAScript 2015, it is anearly error for aCatch clause to contain avar declaration for the sameIdentifier that appears as theCatch clause parameter. In previous editions, such a variable declaration would be instantiated in the enclosing variable environment but the declaration'sInitializer value would be assigned to theCatch parameter.

14.15,19.2.1.3: In ECMAScript 2015, a runtimeSyntaxError is thrown if aCatch clause evaluates a non-strict directeval whose eval code includes avar orFunctionDeclaration declaration that binds the sameIdentifier that appears as theCatch clause parameter.

14.15.3: In ECMAScript 2015, the completion value of aTryStatement is never the valueempty. If theBlock part of aTryStatement evaluates to a normal completion whose value isempty, the completion value of theTryStatement isundefined. If theBlock part of aTryStatement evaluates to a throw completion and it has aCatch part that evaluates to a normal completion whose value isempty, the completion value of theTryStatement isundefined if there is noFinally clause or if itsFinally clause evaluates to anempty normal completion.

15.4.5 In ECMAScript 2015, the function objects that are created as the values of the [[Get]] or [[Set]] attribute of accessor properties in anObjectLiteral are notconstructor functions and they do not have a"prototype" own property. In the previous edition, they were constructors and had a"prototype" property.

20.1.2.6: In ECMAScript 2015, if the argument toObject.freeze is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.8: In ECMAScript 2015, if the argument toObject.getOwnPropertyDescriptor is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.10: In ECMAScript 2015, if the argument toObject.getOwnPropertyNames is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.12: In ECMAScript 2015, if the argument toObject.getPrototypeOf is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.14: In ECMAScript 2015, if the argument toObject.isExtensible is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.15: In ECMAScript 2015, if the argument toObject.isFrozen is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.16: In ECMAScript 2015, if the argument toObject.isSealed is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.17: In ECMAScript 2015, if the argument toObject.keys is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.18: In ECMAScript 2015, if the argument toObject.preventExtensions is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.20: In ECMAScript 2015, if the argument toObject.seal is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.2.3.2: In ECMAScript 2015, the [[Prototype]] internal slot of abound function is set to the [[GetPrototypeOf]] value of its target function. In the previous edition, [[Prototype]] was always set to%Function.prototype%.

20.2.4.1: In ECMAScript 2015, the"length" property of function instances is configurable. In previous editions it was non-configurable.

20.5.6.2: In ECMAScript 2015, the [[Prototype]] internal slot of aNativeErrorconstructor is the Errorconstructor. In previous editions it was theFunction prototype object.

21.4.4 In ECMAScript 2015, theDate prototype object is not a Date instance. In previous editions it was a Date instance whose TimeValue wasNaN.

22.1.3.10 In ECMAScript 2015, theString.prototype.localeCompare function must treat Strings that are canonically equivalent according to the Unicode standard as being identical. In previous editions implementations were permitted to ignore canonical equivalence and could instead use a bit-wise comparison.

22.1.3.26 and22.1.3.28 In ECMAScript 2015, lowercase/upper conversion processing operates on code points. In previous editions such the conversion processing was only applied to individual code units. The only affected code points are those in the Deseret block of Unicode.

22.1.3.29 In ECMAScript 2015, theString.prototype.trim method is defined to recognize white space code points that may exists outside of the Unicode BMP. However, as of Unicode 7 no such code points are defined. In previous editions such code points would not have been recognized as white space.

22.2.3.1 In ECMAScript 2015, If thepattern argument is a RegExp instance and theflags argument is notundefined, a new RegExp instance is created just likepattern except thatpattern's flags are replaced by the argumentflags. In previous editions aTypeError exception was thrown whenpattern was a RegExp instance andflags was notundefined.

22.2.5 In ECMAScript 2015, theRegExp prototype object is not a RegExp instance. In previous editions it was a RegExp instance whose pattern is the empty String.

22.2.5 In ECMAScript 2015,"source","global","ignoreCase", and"multiline" are accessor properties defined on theRegExp prototype object. In previous editions they were data properties defined on RegExp instances.

25.4.12: In ECMAScript 2019,Atomics.wake has been renamed toAtomics.notify to prevent confusion withAtomics.wait.

27.1.4.4,27.6.3.6: In ECMAScript 2019, the number of Jobs enqueued byawait was reduced, which could create an observable difference in resolution order between athen() call and anawait expression.

G Colophon

This specification is authored onGitHub in a plaintext source format calledEcmarkup. Ecmarkup is an HTML and Markdown dialect that provides a framework and toolset for authoring ECMAScript specifications in plaintext and processing the specification into a full-featured HTML rendering that follows the editorial conventions for this document. Ecmarkup builds on and integrates a number of other formats and technologies includingGrammarkdown for defining syntax andEcmarkdown for authoring algorithm steps. PDF renderings of this specification are produced by printing the HTML rendering to a PDF.

Prior editions of this specification were authored using Word—the Ecmarkup source text that formed the basis of this edition was produced by converting the ECMAScript 2015 Word document to Ecmarkup using an automated conversion tool.

H Bibliography

  1. IEEE 754-2019:IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic Engineers, New York (2019)Note

    There are no normative changes between IEEE 754-2008 and IEEE 754-2019 that affect the ECMA-262 specification.

  2. The Unicode Standard, available at <https://unicode.org/versions/latest>
  3. Unicode Technical Note #5: Canonical Equivalence in Applications, available at <https://unicode.org/notes/tn5/>
  4. Unicode Technical Standard #10: Unicode Collation Algorithm, available at <https://unicode.org/reports/tr10/>
  5. Unicode Standard Annex #15, Unicode Normalization Forms, available at <https://unicode.org/reports/tr15/>
  6. Unicode Standard Annex #18: Unicode Regular Expressions, available at <https://unicode.org/reports/tr18/>
  7. Unicode Standard Annex #24: UnicodeScript Property, available at <https://unicode.org/reports/tr24/>
  8. Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, available at <https://unicode.org/reports/tr31/>
  9. Unicode Standard Annex #44: Unicode Character Database, available at <https://unicode.org/reports/tr44/>
  10. Unicode Technical Standard #51: Unicode Emoji, available at <https://unicode.org/reports/tr51/>
  11. IANA Time Zone Database, available at <https://www.iana.org/time-zones>
  12. ISO 8601:2004(E)Data elements and interchange formats — Information interchange — Representation of dates and times
  13. RFC 1738 “Uniform Resource Locators (URL)”, available at <https://tools.ietf.org/html/rfc1738>
  14. RFC 2396 “Uniform Resource Identifiers (URI): Generic Syntax”, available at <https://tools.ietf.org/html/rfc2396>
  15. RFC 3629 “UTF-8, a transformation format of ISO 10646”, available at <https://tools.ietf.org/html/rfc3629>
  16. RFC 7231 “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, available at <https://tools.ietf.org/html/rfc7231>

I Copyright & Software License

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web:https://ecma-international.org/

Copyright Notice

© 2021 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright notice and this Copyright License and Disclaimer are included on all such copies and derivative works. The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the copyright notice or references to Ecma International, except as required to translate it into languages other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma International website. In the event of discrepancies between a translated version and the official version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Software License

All Software contained in this document ("Software") is protected by copyright and is being made available under the "BSD License", included below. This Software may be subject to third party rights (rights from parties other than Ecma International), including patent rights, and no licenses under such third party rights are granted under this license even if the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AT https://ecma-international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Syntax-Directed Operations
PermalinkPin

[8]ページ先頭

©2009-2025 Movatter.jp