Movatterモバイル変換


[0]ホーム

URL:


Menu
Pins
Table of Contents
  1. Introduction
  2. 1 Scope
  3. +2 Conformance
    1. 2.1 Example Normative Optional Clause Heading
    2. 2.2 Example Legacy Clause Heading
    3. 2.3 Example Legacy Normative Optional Clause Heading
  4. 3 Normative References
  5. +4 Overview
    1. 4.1 Web Scripting
    2. 4.2 Hosts and Implementations
    3. +4.3 ECMAScript Overview
      1. 4.3.1 Objects
      2. 4.3.2 The Strict Variant of ECMAScript
    4. +4.4 Terms and Definitions
      1. 4.4.1 implementation-approximated
      2. 4.4.2 implementation-defined
      3. 4.4.3 host-defined
      4. 4.4.4 type
      5. 4.4.5 primitive value
      6. 4.4.6 object
      7. 4.4.7 constructor
      8. 4.4.8 prototype
      9. 4.4.9 ordinary object
      10. 4.4.10 exotic object
      11. 4.4.11 standard object
      12. 4.4.12 built-in object
      13. 4.4.13 undefined value
      14. 4.4.14 Undefined type
      15. 4.4.15 null value
      16. 4.4.16 Null type
      17. 4.4.17 Boolean value
      18. 4.4.18 Boolean type
      19. 4.4.19 Boolean object
      20. 4.4.20 String value
      21. 4.4.21 String type
      22. 4.4.22 String object
      23. 4.4.23 Number value
      24. 4.4.24 Number type
      25. 4.4.25 Number object
      26. 4.4.26 Infinity
      27. 4.4.27 NaN
      28. 4.4.28 BigInt value
      29. 4.4.29 BigInt type
      30. 4.4.30 BigInt object
      31. 4.4.31 Symbol value
      32. 4.4.32 Symbol type
      33. 4.4.33 Symbol object
      34. 4.4.34 function
      35. 4.4.35 built-in function
      36. 4.4.36 built-in constructor
      37. 4.4.37 property
      38. 4.4.38 method
      39. 4.4.39 built-in method
      40. 4.4.40 attribute
      41. 4.4.41 own property
      42. 4.4.42 inherited property
    5. 4.5 Organization of This Specification
  6. +5 Notational Conventions
    1. +5.1 Syntactic and Lexical Grammars
      1. 5.1.1 Context-Free Grammars
      2. 5.1.2 The Lexical and RegExp Grammars
      3. 5.1.3 The Numeric String Grammar
      4. 5.1.4 The Syntactic Grammar
      5. +5.1.5 Grammar Notation
        1. 5.1.5.1 Terminal Symbols
        2. 5.1.5.2 Nonterminal Symbols and Productions
        3. 5.1.5.3 Optional Symbols
        4. 5.1.5.4 Grammatical Parameters
        5. 5.1.5.5 one of
        6. 5.1.5.6 [empty]
        7. 5.1.5.7 Lookahead Restrictions
        8. 5.1.5.8 [noLineTerminator here]
        9. 5.1.5.9 but not
        10. 5.1.5.10 Descriptive Phrases
    2. +5.2 Algorithm Conventions
      1. 5.2.1 Abstract Operations
      2. 5.2.2 Syntax-Directed Operations
      3. +5.2.3 Runtime Semantics
        1. 5.2.3.1 Completion (completionRecord )
        2. 5.2.3.2 Throw an Exception
        3. 5.2.3.3 ReturnIfAbrupt
        4. 5.2.3.4 ReturnIfAbrupt Shorthands
        5. 5.2.3.5 Implicit Normal Completion
      4. 5.2.4 Static Semantics
      5. 5.2.5 Mathematical Operations
      6. 5.2.6 Value Notation
      7. 5.2.7 Identity
  7. +6 ECMAScript Data Types and Values
    1. +6.1 ECMAScript Language Types
      1. 6.1.1 The Undefined Type
      2. 6.1.2 The Null Type
      3. 6.1.3 The Boolean Type
      4. +6.1.4 The String Type
        1. 6.1.4.1 StringIndexOf (string,searchValue,fromIndex )
      5. +6.1.5 The Symbol Type
        1. 6.1.5.1 Well-Known Symbols
      6. +6.1.6 Numeric Types
        1. +6.1.6.1 The Number Type
          1. 6.1.6.1.1 Number::unaryMinus (x )
          2. 6.1.6.1.2 Number::bitwiseNOT (x )
          3. 6.1.6.1.3 Number::exponentiate (base,exponent )
          4. 6.1.6.1.4 Number::multiply (x,y )
          5. 6.1.6.1.5 Number::divide (x,y )
          6. 6.1.6.1.6 Number::remainder (n,d )
          7. 6.1.6.1.7 Number::add (x,y )
          8. 6.1.6.1.8 Number::subtract (x,y )
          9. 6.1.6.1.9 Number::leftShift (x,y )
          10. 6.1.6.1.10 Number::signedRightShift (x,y )
          11. 6.1.6.1.11 Number::unsignedRightShift (x,y )
          12. 6.1.6.1.12 Number::lessThan (x,y )
          13. 6.1.6.1.13 Number::equal (x,y )
          14. 6.1.6.1.14 Number::sameValue (x,y )
          15. 6.1.6.1.15 Number::sameValueZero (x,y )
          16. 6.1.6.1.16 NumberBitwiseOp (op,x,y )
          17. 6.1.6.1.17 Number::bitwiseAND (x,y )
          18. 6.1.6.1.18 Number::bitwiseXOR (x,y )
          19. 6.1.6.1.19 Number::bitwiseOR (x,y )
          20. 6.1.6.1.20 Number::toString (x,radix )
        2. +6.1.6.2 The BigInt Type
          1. 6.1.6.2.1 BigInt::unaryMinus (x )
          2. 6.1.6.2.2 BigInt::bitwiseNOT (x )
          3. 6.1.6.2.3 BigInt::exponentiate (base,exponent )
          4. 6.1.6.2.4 BigInt::multiply (x,y )
          5. 6.1.6.2.5 BigInt::divide (x,y )
          6. 6.1.6.2.6 BigInt::remainder (n,d )
          7. 6.1.6.2.7 BigInt::add (x,y )
          8. 6.1.6.2.8 BigInt::subtract (x,y )
          9. 6.1.6.2.9 BigInt::leftShift (x,y )
          10. 6.1.6.2.10 BigInt::signedRightShift (x,y )
          11. 6.1.6.2.11 BigInt::unsignedRightShift (x,y )
          12. 6.1.6.2.12 BigInt::lessThan (x,y )
          13. 6.1.6.2.13 BigInt::equal (x,y )
          14. 6.1.6.2.14 BinaryAnd (x,y )
          15. 6.1.6.2.15 BinaryOr (x,y )
          16. 6.1.6.2.16 BinaryXor (x,y )
          17. 6.1.6.2.17 BigIntBitwiseOp (op,x,y )
          18. 6.1.6.2.18 BigInt::bitwiseAND (x,y )
          19. 6.1.6.2.19 BigInt::bitwiseXOR (x,y )
          20. 6.1.6.2.20 BigInt::bitwiseOR (x,y )
          21. 6.1.6.2.21 BigInt::toString (x,radix )
      7. +6.1.7 The Object Type
        1. 6.1.7.1 Property Attributes
        2. 6.1.7.2 Object Internal Methods and Internal Slots
        3. 6.1.7.3 Invariants of the Essential Internal Methods
        4. 6.1.7.4 Well-Known Intrinsic Objects
    2. +6.2 ECMAScript Specification Types
      1. 6.2.1 The Enum Specification Type
      2. 6.2.2 The List and Record Specification Types
      3. 6.2.3 The Set and Relation Specification Types
      4. +6.2.4 The Completion Record Specification Type
        1. 6.2.4.1 NormalCompletion (value )
        2. 6.2.4.2 ThrowCompletion (value )
        3. 6.2.4.3 UpdateEmpty (completionRecord,value )
      5. +6.2.5 The Reference Record Specification Type
        1. 6.2.5.1 IsPropertyReference (V )
        2. 6.2.5.2 IsUnresolvableReference (V )
        3. 6.2.5.3 IsSuperReference (V )
        4. 6.2.5.4 IsPrivateReference (V )
        5. 6.2.5.5 GetValue (V )
        6. 6.2.5.6 PutValue (V,W )
        7. 6.2.5.7 GetThisValue (V )
        8. 6.2.5.8 InitializeReferencedBinding (V,W )
        9. 6.2.5.9 MakePrivateReference (baseValue,privateIdentifier )
      6. +6.2.6 The Property Descriptor Specification Type
        1. 6.2.6.1 IsAccessorDescriptor (Desc )
        2. 6.2.6.2 IsDataDescriptor (Desc )
        3. 6.2.6.3 IsGenericDescriptor (Desc )
        4. 6.2.6.4 FromPropertyDescriptor (Desc )
        5. 6.2.6.5 ToPropertyDescriptor (Obj )
        6. 6.2.6.6 CompletePropertyDescriptor (Desc )
      7. 6.2.7 The Environment Record Specification Type
      8. 6.2.8 The Abstract Closure Specification Type
      9. +6.2.9 Data Blocks
        1. 6.2.9.1 CreateByteDataBlock (size )
        2. 6.2.9.2 CreateSharedByteDataBlock (size )
        3. 6.2.9.3 CopyDataBlockBytes (toBlock,toIndex,fromBlock,fromIndex,count )
      10. 6.2.10 The PrivateElement Specification Type
      11. 6.2.11 The ClassFieldDefinition Record Specification Type
      12. 6.2.12 Private Names
      13. 6.2.13 The ClassStaticBlockDefinition Record Specification Type
  8. +7 Abstract Operations
    1. +7.1 Type Conversion
      1. +7.1.1 ToPrimitive (input [ ,preferredType ] )
        1. 7.1.1.1 OrdinaryToPrimitive (O,hint )
      2. 7.1.2 ToBoolean (argument )
      3. 7.1.3 ToNumeric (value )
      4. +7.1.4 ToNumber (argument )
        1. +7.1.4.1 ToNumber Applied to the String Type
          1. 7.1.4.1.1 StringToNumber (str )
          2. 7.1.4.1.2 RS: StringNumericValue
          3. 7.1.4.1.3 RoundMVResult (n )
      5. 7.1.5 ToIntegerOrInfinity (argument )
      6. 7.1.6 ToInt32 (argument )
      7. 7.1.7 ToUint32 (argument )
      8. 7.1.8 ToInt16 (argument )
      9. 7.1.9 ToUint16 (argument )
      10. 7.1.10 ToInt8 (argument )
      11. 7.1.11 ToUint8 (argument )
      12. 7.1.12 ToUint8Clamp (argument )
      13. 7.1.13 ToBigInt (argument )
      14. +7.1.14 StringToBigInt (str )
        1. 7.1.14.1 StringIntegerLiteral Grammar
        2. 7.1.14.2 RS: MV
      15. 7.1.15 ToBigInt64 (argument )
      16. 7.1.16 ToBigUint64 (argument )
      17. 7.1.17 ToString (argument )
      18. 7.1.18 ToObject (argument )
      19. 7.1.19 ToPropertyKey (argument )
      20. 7.1.20 ToLength (argument )
      21. 7.1.21 CanonicalNumericIndexString (argument )
      22. 7.1.22 ToIndex (value )
    2. +7.2 Testing and Comparison Operations
      1. 7.2.1 RequireObjectCoercible (argument )
      2. 7.2.2 IsArray (argument )
      3. 7.2.3 IsCallable (argument )
      4. 7.2.4 IsConstructor (argument )
      5. 7.2.5 IsExtensible (O )
      6. 7.2.6 IsIntegralNumber (argument )
      7. 7.2.7 IsPropertyKey (argument )
      8. 7.2.8 IsRegExp (argument )
      9. 7.2.9 SS: IsStringWellFormedUnicode (string )
      10. 7.2.10 SameValue (x,y )
      11. 7.2.11 SameValueZero (x,y )
      12. 7.2.12 SameValueNonNumber (x,y )
      13. 7.2.13 IsLessThan (x,y,LeftFirst )
      14. 7.2.14 IsLooselyEqual (x,y )
      15. 7.2.15 IsStrictlyEqual (x,y )
    3. +7.3 Operations on Objects
      1. 7.3.1 MakeBasicObject (internalSlotsList )
      2. 7.3.2 Get (O,P )
      3. 7.3.3 GetV (V,P )
      4. 7.3.4 Set (O,P,V,Throw )
      5. 7.3.5 CreateDataProperty (O,P,V )
      6. 7.3.6 CreateDataPropertyOrThrow (O,P,V )
      7. 7.3.7 CreateNonEnumerableDataPropertyOrThrow (O,P,V )
      8. 7.3.8 DefinePropertyOrThrow (O,P,desc )
      9. 7.3.9 DeletePropertyOrThrow (O,P )
      10. 7.3.10 GetMethod (V,P )
      11. 7.3.11 HasProperty (O,P )
      12. 7.3.12 HasOwnProperty (O,P )
      13. 7.3.13 Call (F,V [ ,argumentsList ] )
      14. 7.3.14 Construct (F [ ,argumentsList [ ,newTarget ] ] )
      15. 7.3.15 SetIntegrityLevel (O,level )
      16. 7.3.16 TestIntegrityLevel (O,level )
      17. 7.3.17 CreateArrayFromList (elements )
      18. 7.3.18 LengthOfArrayLike (obj )
      19. 7.3.19 CreateListFromArrayLike (obj [ ,elementTypes ] )
      20. 7.3.20 Invoke (V,P [ ,argumentsList ] )
      21. 7.3.21 OrdinaryHasInstance (C,O )
      22. 7.3.22 SpeciesConstructor (O,defaultConstructor )
      23. 7.3.23 EnumerableOwnProperties (O,kind )
      24. 7.3.24 GetFunctionRealm (obj )
      25. 7.3.25 CopyDataProperties (target,source,excludedItems )
      26. 7.3.26 PrivateElementFind (O,P )
      27. 7.3.27 PrivateFieldAdd (O,P,value )
      28. 7.3.28 PrivateMethodOrAccessorAdd (O,method )
      29. 7.3.29 HostEnsureCanAddPrivateElement (O )
      30. 7.3.30 PrivateGet (O,P )
      31. 7.3.31 PrivateSet (O,P,value )
      32. 7.3.32 DefineField (receiver,fieldRecord )
      33. 7.3.33 InitializeInstanceElements (O,constructor )
      34. 7.3.34 AddValueToKeyedGroup (groups,key,value )
      35. 7.3.35 GroupBy (items,callbackfn,keyCoercion )
    4. +7.4 Operations on Iterator Objects
      1. 7.4.1 Iterator Records
      2. 7.4.2 GetIteratorFromMethod (obj,method )
      3. 7.4.3 GetIterator (obj,kind )
      4. 7.4.4 IteratorNext (iteratorRecord [ ,value ] )
      5. 7.4.5 IteratorComplete (iterResult )
      6. 7.4.6 IteratorValue (iterResult )
      7. 7.4.7 IteratorStep (iteratorRecord )
      8. 7.4.8 IteratorStepValue (iteratorRecord )
      9. 7.4.9 IteratorClose (iteratorRecord,completion )
      10. 7.4.10 IfAbruptCloseIterator (value,iteratorRecord )
      11. 7.4.11 AsyncIteratorClose (iteratorRecord,completion )
      12. 7.4.12 CreateIterResultObject (value,done )
      13. 7.4.13 CreateListIteratorRecord (list )
      14. 7.4.14 IteratorToList (iteratorRecord )
  9. +8 Syntax-Directed Operations
    1. 8.1 RS: Evaluation
    2. +8.2 Scope Analysis
      1. 8.2.1 SS: BoundNames
      2. 8.2.2 SS: DeclarationPart
      3. 8.2.3 SS: IsConstantDeclaration
      4. 8.2.4 SS: LexicallyDeclaredNames
      5. 8.2.5 SS: LexicallyScopedDeclarations
      6. 8.2.6 SS: VarDeclaredNames
      7. 8.2.7 SS: VarScopedDeclarations
      8. 8.2.8 SS: TopLevelLexicallyDeclaredNames
      9. 8.2.9 SS: TopLevelLexicallyScopedDeclarations
      10. 8.2.10 SS: TopLevelVarDeclaredNames
      11. 8.2.11 SS: TopLevelVarScopedDeclarations
    3. +8.3 Labels
      1. 8.3.1 SS: ContainsDuplicateLabels
      2. 8.3.2 SS: ContainsUndefinedBreakTarget
      3. 8.3.3 SS: ContainsUndefinedContinueTarget
    4. +8.4 Function Name Inference
      1. 8.4.1 SS: HasName
      2. 8.4.2 SS: IsFunctionDefinition
      3. 8.4.3 SS: IsAnonymousFunctionDefinition (expr )
      4. 8.4.4 SS: IsIdentifierRef
      5. 8.4.5 RS: NamedEvaluation
    5. +8.5 Contains
      1. 8.5.1 SS: Contains
      2. 8.5.2 SS: ComputedPropertyContains
    6. +8.6 Miscellaneous
      1. 8.6.1 RS: InstantiateFunctionObject
      2. +8.6.2 RS: BindingInitialization
        1. 8.6.2.1 InitializeBoundName (name,value,environment )
      3. 8.6.3 RS: IteratorBindingInitialization
      4. 8.6.4 SS: AssignmentTargetType
      5. 8.6.5 SS: PropName
  10. +9 Executable Code and Execution Contexts
    1. +9.1 Environment Records
      1. +9.1.1 The Environment Record Type Hierarchy
        1. +9.1.1.1 Declarative Environment Records
          1. 9.1.1.1.1 HasBinding (N )
          2. 9.1.1.1.2 CreateMutableBinding (N,D )
          3. 9.1.1.1.3 CreateImmutableBinding (N,S )
          4. 9.1.1.1.4 InitializeBinding (N,V )
          5. 9.1.1.1.5 SetMutableBinding (N,V,S )
          6. 9.1.1.1.6 GetBindingValue (N,S )
          7. 9.1.1.1.7 DeleteBinding (N )
          8. 9.1.1.1.8 HasThisBinding ( )
          9. 9.1.1.1.9 HasSuperBinding ( )
          10. 9.1.1.1.10 WithBaseObject ( )
        2. +9.1.1.2 Object Environment Records
          1. 9.1.1.2.1 HasBinding (N )
          2. 9.1.1.2.2 CreateMutableBinding (N,D )
          3. 9.1.1.2.3 CreateImmutableBinding (N,S )
          4. 9.1.1.2.4 InitializeBinding (N,V )
          5. 9.1.1.2.5 SetMutableBinding (N,V,S )
          6. 9.1.1.2.6 GetBindingValue (N,S )
          7. 9.1.1.2.7 DeleteBinding (N )
          8. 9.1.1.2.8 HasThisBinding ( )
          9. 9.1.1.2.9 HasSuperBinding ( )
          10. 9.1.1.2.10 WithBaseObject ( )
        3. +9.1.1.3 Function Environment Records
          1. 9.1.1.3.1 BindThisValue (V )
          2. 9.1.1.3.2 HasThisBinding ( )
          3. 9.1.1.3.3 HasSuperBinding ( )
          4. 9.1.1.3.4 GetThisBinding ( )
          5. 9.1.1.3.5 GetSuperBase ( )
        4. +9.1.1.4 Global Environment Records
          1. 9.1.1.4.1 HasBinding (N )
          2. 9.1.1.4.2 CreateMutableBinding (N,D )
          3. 9.1.1.4.3 CreateImmutableBinding (N,S )
          4. 9.1.1.4.4 InitializeBinding (N,V )
          5. 9.1.1.4.5 SetMutableBinding (N,V,S )
          6. 9.1.1.4.6 GetBindingValue (N,S )
          7. 9.1.1.4.7 DeleteBinding (N )
          8. 9.1.1.4.8 HasThisBinding ( )
          9. 9.1.1.4.9 HasSuperBinding ( )
          10. 9.1.1.4.10 WithBaseObject ( )
          11. 9.1.1.4.11 GetThisBinding ( )
          12. 9.1.1.4.12 HasVarDeclaration (N )
          13. 9.1.1.4.13 HasLexicalDeclaration (N )
          14. 9.1.1.4.14 HasRestrictedGlobalProperty (N )
          15. 9.1.1.4.15 CanDeclareGlobalVar (N )
          16. 9.1.1.4.16 CanDeclareGlobalFunction (N )
          17. 9.1.1.4.17 CreateGlobalVarBinding (N,D )
          18. 9.1.1.4.18 CreateGlobalFunctionBinding (N,V,D )
        5. +9.1.1.5 Module Environment Records
          1. 9.1.1.5.1 GetBindingValue (N,S )
          2. 9.1.1.5.2 DeleteBinding (N )
          3. 9.1.1.5.3 HasThisBinding ( )
          4. 9.1.1.5.4 GetThisBinding ( )
          5. 9.1.1.5.5 CreateImportBinding (N,M,N2 )
      2. +9.1.2 Environment Record Operations
        1. 9.1.2.1 GetIdentifierReference (env,name,strict )
        2. 9.1.2.2 NewDeclarativeEnvironment (E )
        3. 9.1.2.3 NewObjectEnvironment (O,W,E )
        4. 9.1.2.4 NewFunctionEnvironment (F,newTarget )
        5. 9.1.2.5 NewGlobalEnvironment (G,thisValue )
        6. 9.1.2.6 NewModuleEnvironment (E )
    2. +9.2 PrivateEnvironment Records
      1. +9.2.1 PrivateEnvironment Record Operations
        1. 9.2.1.1 NewPrivateEnvironment (outerPrivEnv )
        2. 9.2.1.2 ResolvePrivateIdentifier (privEnv,identifier )
    3. +9.3 Realms
      1. 9.3.1 CreateRealm ( )
      2. 9.3.2 CreateIntrinsics (realmRec )
      3. 9.3.3 SetRealmGlobalObject (realmRec,globalObj,thisValue )
      4. 9.3.4 SetDefaultGlobalBindings (realmRec )
    4. +9.4 Execution Contexts
      1. 9.4.1 GetActiveScriptOrModule ( )
      2. 9.4.2 ResolveBinding (name [ ,env ] )
      3. 9.4.3 GetThisEnvironment ( )
      4. 9.4.4 ResolveThisBinding ( )
      5. 9.4.5 GetNewTarget ( )
      6. 9.4.6 GetGlobalObject ( )
    5. +9.5 Jobs and Host Operations to Enqueue Jobs
      1. 9.5.1 JobCallback Records
      2. 9.5.2 HostMakeJobCallback (callback )
      3. 9.5.3 HostCallJobCallback (jobCallback,V,argumentsList )
      4. 9.5.4 HostEnqueueGenericJob (job,realm )
      5. 9.5.5 HostEnqueuePromiseJob (job,realm )
      6. 9.5.6 HostEnqueueTimeoutJob (timeoutJob,realm,milliseconds )
    6. 9.6 InitializeHostDefinedRealm ( )
    7. +9.7 Agents
      1. 9.7.1 AgentSignifier ( )
      2. 9.7.2 AgentCanSuspend ( )
    8. 9.8 Agent Clusters
    9. 9.9 Forward Progress
    10. +9.10 Processing Model of WeakRef and FinalizationRegistry Targets
      1. 9.10.1 Objectives
      2. 9.10.2 Liveness
      3. 9.10.3 Execution
      4. +9.10.4 Host Hooks
        1. 9.10.4.1 HostEnqueueFinalizationRegistryCleanupJob (finalizationRegistry )
    11. 9.11 ClearKeptObjects ( )
    12. 9.12 AddToKeptObjects (value )
    13. 9.13 CleanupFinalizationRegistry (finalizationRegistry )
    14. 9.14 CanBeHeldWeakly (v )
  11. +10 Ordinary and Exotic Objects Behaviours
    1. +10.1 Ordinary Object Internal Methods and Internal Slots
      1. +10.1.1[[GetPrototypeOf]] ( )
        1. 10.1.1.1 OrdinaryGetPrototypeOf (O )
      2. +10.1.2[[SetPrototypeOf]] (V )
        1. 10.1.2.1 OrdinarySetPrototypeOf (O,V )
      3. +10.1.3[[IsExtensible]] ( )
        1. 10.1.3.1 OrdinaryIsExtensible (O )
      4. +10.1.4[[PreventExtensions]] ( )
        1. 10.1.4.1 OrdinaryPreventExtensions (O )
      5. +10.1.5[[GetOwnProperty]] (P )
        1. 10.1.5.1 OrdinaryGetOwnProperty (O,P )
      6. +10.1.6[[DefineOwnProperty]] (P,Desc )
        1. 10.1.6.1 OrdinaryDefineOwnProperty (O,P,Desc )
        2. 10.1.6.2 IsCompatiblePropertyDescriptor (Extensible,Desc,Current )
        3. 10.1.6.3 ValidateAndApplyPropertyDescriptor (O,P,extensible,Desc,current )
      7. +10.1.7[[HasProperty]] (P )
        1. 10.1.7.1 OrdinaryHasProperty (O,P )
      8. +10.1.8[[Get]] (P,Receiver )
        1. 10.1.8.1 OrdinaryGet (O,P,Receiver )
      9. +10.1.9[[Set]] (P,V,Receiver )
        1. 10.1.9.1 OrdinarySet (O,P,V,Receiver )
        2. 10.1.9.2 OrdinarySetWithOwnDescriptor (O,P,V,Receiver,ownDesc )
      10. +10.1.10[[Delete]] (P )
        1. 10.1.10.1 OrdinaryDelete (O,P )
      11. +10.1.11[[OwnPropertyKeys]] ( )
        1. 10.1.11.1 OrdinaryOwnPropertyKeys (O )
      12. 10.1.12 OrdinaryObjectCreate (proto [ ,additionalInternalSlotsList ] )
      13. 10.1.13 OrdinaryCreateFromConstructor (constructor,intrinsicDefaultProto [ ,internalSlotsList ] )
      14. 10.1.14 GetPrototypeFromConstructor (constructor,intrinsicDefaultProto )
      15. 10.1.15 RequireInternalSlot (O,internalSlot )
    2. +10.2 ECMAScript Function Objects
      1. +10.2.1[[Call]] (thisArgument,argumentsList )
        1. 10.2.1.1 PrepareForOrdinaryCall (F,newTarget )
        2. 10.2.1.2 OrdinaryCallBindThis (F,calleeContext,thisArgument )
        3. 10.2.1.3 RS: EvaluateBody
        4. 10.2.1.4 OrdinaryCallEvaluateBody (F,argumentsList )
      2. 10.2.2[[Construct]] (argumentsList,newTarget )
      3. 10.2.3 OrdinaryFunctionCreate (functionPrototype,sourceText,ParameterList,Body,thisMode,env,privateEnv )
      4. +10.2.4 AddRestrictedFunctionProperties (F,realm )
        1. 10.2.4.1 %ThrowTypeError% ( )
      5. 10.2.5 MakeConstructor (F [ ,writablePrototype [ ,prototype ] ] )
      6. 10.2.6 MakeClassConstructor (F )
      7. 10.2.7 MakeMethod (F,homeObject )
      8. 10.2.8 DefineMethodProperty (homeObject,key,closure,enumerable )
      9. 10.2.9 SetFunctionName (F,name [ ,prefix ] )
      10. 10.2.10 SetFunctionLength (F,length )
      11. 10.2.11 FunctionDeclarationInstantiation (func,argumentsList )
    3. +10.3 Built-in Function Objects
      1. 10.3.1[[Call]] (thisArgument,argumentsList )
      2. 10.3.2[[Construct]] (argumentsList,newTarget )
      3. 10.3.3 BuiltinCallOrConstruct (F,thisArgument,argumentsList,newTarget )
      4. 10.3.4 CreateBuiltinFunction (behaviour,length,name,additionalInternalSlotsList [ ,realm [ ,prototype [ ,prefix ] ] ] )
    4. +10.4 Built-in Exotic Object Internal Methods and Slots
      1. +10.4.1 Bound Function Exotic Objects
        1. 10.4.1.1[[Call]] (thisArgument,argumentsList )
        2. 10.4.1.2[[Construct]] (argumentsList,newTarget )
        3. 10.4.1.3 BoundFunctionCreate (targetFunction,boundThis,boundArgs )
      2. +10.4.2 Array Exotic Objects
        1. 10.4.2.1[[DefineOwnProperty]] (P,Desc )
        2. 10.4.2.2 ArrayCreate (length [ ,proto ] )
        3. 10.4.2.3 ArraySpeciesCreate (originalArray,length )
        4. 10.4.2.4 ArraySetLength (A,Desc )
      3. +10.4.3 String Exotic Objects
        1. 10.4.3.1[[GetOwnProperty]] (P )
        2. 10.4.3.2[[DefineOwnProperty]] (P,Desc )
        3. 10.4.3.3[[OwnPropertyKeys]] ( )
        4. 10.4.3.4 StringCreate (value,prototype )
        5. 10.4.3.5 StringGetOwnProperty (S,P )
      4. +10.4.4 Arguments Exotic Objects
        1. 10.4.4.1[[GetOwnProperty]] (P )
        2. 10.4.4.2[[DefineOwnProperty]] (P,Desc )
        3. 10.4.4.3[[Get]] (P,Receiver )
        4. 10.4.4.4[[Set]] (P,V,Receiver )
        5. 10.4.4.5[[Delete]] (P )
        6. 10.4.4.6 CreateUnmappedArgumentsObject (argumentsList )
        7. +10.4.4.7 CreateMappedArgumentsObject (func,formals,argumentsList,env )
          1. 10.4.4.7.1 MakeArgGetter (name,env )
          2. 10.4.4.7.2 MakeArgSetter (name,env )
      5. +10.4.5 TypedArray Exotic Objects
        1. 10.4.5.1[[GetOwnProperty]] (P )
        2. 10.4.5.2[[HasProperty]] (P )
        3. 10.4.5.3[[DefineOwnProperty]] (P,Desc )
        4. 10.4.5.4[[Get]] (P,Receiver )
        5. 10.4.5.5[[Set]] (P,V,Receiver )
        6. 10.4.5.6[[Delete]] (P )
        7. 10.4.5.7[[OwnPropertyKeys]] ( )
        8. 10.4.5.8 TypedArray With Buffer Witness Records
        9. 10.4.5.9 MakeTypedArrayWithBufferWitnessRecord (obj,order )
        10. 10.4.5.10 TypedArrayCreate (prototype )
        11. 10.4.5.11 TypedArrayByteLength (taRecord )
        12. 10.4.5.12 TypedArrayLength (taRecord )
        13. 10.4.5.13 IsTypedArrayOutOfBounds (taRecord )
        14. 10.4.5.14 IsValidIntegerIndex (O,index )
        15. 10.4.5.15 TypedArrayGetElement (O,index )
        16. 10.4.5.16 TypedArraySetElement (O,index,value )
        17. 10.4.5.17 IsArrayBufferViewOutOfBounds (O )
      6. +10.4.6 Module Namespace Exotic Objects
        1. 10.4.6.1[[GetPrototypeOf]] ( )
        2. 10.4.6.2[[SetPrototypeOf]] (V )
        3. 10.4.6.3[[IsExtensible]] ( )
        4. 10.4.6.4[[PreventExtensions]] ( )
        5. 10.4.6.5[[GetOwnProperty]] (P )
        6. 10.4.6.6[[DefineOwnProperty]] (P,Desc )
        7. 10.4.6.7[[HasProperty]] (P )
        8. 10.4.6.8[[Get]] (P,Receiver )
        9. 10.4.6.9[[Set]] (P,V,Receiver )
        10. 10.4.6.10[[Delete]] (P )
        11. 10.4.6.11[[OwnPropertyKeys]] ( )
        12. 10.4.6.12 ModuleNamespaceCreate (module,exports )
      7. +10.4.7 Immutable Prototype Exotic Objects
        1. 10.4.7.1[[SetPrototypeOf]] (V )
        2. 10.4.7.2 SetImmutablePrototype (O,V )
    5. +10.5 Proxy Object Internal Methods and Internal Slots
      1. 10.5.1[[GetPrototypeOf]] ( )
      2. 10.5.2[[SetPrototypeOf]] (V )
      3. 10.5.3[[IsExtensible]] ( )
      4. 10.5.4[[PreventExtensions]] ( )
      5. 10.5.5[[GetOwnProperty]] (P )
      6. 10.5.6[[DefineOwnProperty]] (P,Desc )
      7. 10.5.7[[HasProperty]] (P )
      8. 10.5.8[[Get]] (P,Receiver )
      9. 10.5.9[[Set]] (P,V,Receiver )
      10. 10.5.10[[Delete]] (P )
      11. 10.5.11[[OwnPropertyKeys]] ( )
      12. 10.5.12[[Call]] (thisArgument,argumentsList )
      13. 10.5.13[[Construct]] (argumentsList,newTarget )
      14. 10.5.14 ValidateNonRevokedProxy (proxy )
      15. 10.5.15 ProxyCreate (target,handler )
  12. +11 ECMAScript Language: Source Text
    1. +11.1 Source Text
      1. 11.1.1 SS: UTF16EncodeCodePoint (cp )
      2. 11.1.2 SS: CodePointsToString (text )
      3. 11.1.3 SS: UTF16SurrogatePairToCodePoint (lead,trail )
      4. 11.1.4 SS: CodePointAt (string,position )
      5. 11.1.5 SS: StringToCodePoints (string )
      6. 11.1.6 SS: ParseText (sourceText,goalSymbol )
    2. +11.2 Types of Source Code
      1. 11.2.1 Directive Prologues and the Use Strict Directive
      2. 11.2.2 Strict Mode Code
      3. 11.2.3 Non-ECMAScript Functions
  13. +12 ECMAScript Language: Lexical Grammar
    1. 12.1 Unicode Format-Control Characters
    2. 12.2 White Space
    3. 12.3 Line Terminators
    4. 12.4 Comments
    5. 12.5 Hashbang Comments
    6. 12.6 Tokens
    7. +12.7 Names and Keywords
      1. +12.7.1 Identifier Names
        1. 12.7.1.1 SS: Early Errors
        2. 12.7.1.2 SS: IdentifierCodePoints
        3. 12.7.1.3 SS: IdentifierCodePoint
      2. 12.7.2 Keywords and Reserved Words
    8. 12.8 Punctuators
    9. +12.9 Literals
      1. 12.9.1 Null Literals
      2. 12.9.2 Boolean Literals
      3. +12.9.3 Numeric Literals
        1. 12.9.3.1 SS: Early Errors
        2. 12.9.3.2 SS: MV
        3. 12.9.3.3 SS: NumericValue
      4. +12.9.4 String Literals
        1. 12.9.4.1 SS: Early Errors
        2. 12.9.4.2 SS: SV
        3. 12.9.4.3 SS: MV
      5. +12.9.5 Regular Expression Literals
        1. 12.9.5.1 SS: BodyText
        2. 12.9.5.2 SS: FlagText
      6. +12.9.6 Template Literal Lexical Components
        1. 12.9.6.1 SS: TV
        2. 12.9.6.2 SS: TRV
    10. +12.10 Automatic Semicolon Insertion
      1. 12.10.1 Rules of Automatic Semicolon Insertion
      2. 12.10.2 Examples of Automatic Semicolon Insertion
      3. +12.10.3 Interesting Cases of Automatic Semicolon Insertion
        1. 12.10.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists
        2. +12.10.3.2 Cases of Automatic Semicolon Insertion and “[noLineTerminator here]”
          1. 12.10.3.2.1 List of Grammar Productions with Optional Operands and “[noLineTerminator here]”
  14. +13 ECMAScript Language: Expressions
    1. +13.1 Identifiers
      1. 13.1.1 SS: Early Errors
      2. 13.1.2 SS: StringValue
      3. 13.1.3 RS: Evaluation
    2. +13.2 Primary Expression
      1. +13.2.1 Thethis Keyword
        1. 13.2.1.1 RS: Evaluation
      2. 13.2.2 Identifier Reference
      3. +13.2.3 Literals
        1. 13.2.3.1 RS: Evaluation
      4. +13.2.4 Array Initializer
        1. 13.2.4.1 RS: ArrayAccumulation
        2. 13.2.4.2 RS: Evaluation
      5. +13.2.5 Object Initializer
        1. 13.2.5.1 SS: Early Errors
        2. 13.2.5.2 SS: IsComputedPropertyKey
        3. 13.2.5.3 SS: PropertyNameList
        4. 13.2.5.4 RS: Evaluation
        5. 13.2.5.5 RS: PropertyDefinitionEvaluation
      6. 13.2.6 Function Defining Expressions
      7. +13.2.7 Regular Expression Literals
        1. 13.2.7.1 SS: Early Errors
        2. 13.2.7.2 SS: IsValidRegularExpressionLiteral (literal )
        3. 13.2.7.3 RS: Evaluation
      8. +13.2.8 Template Literals
        1. 13.2.8.1 SS: Early Errors
        2. 13.2.8.2 SS: TemplateStrings
        3. 13.2.8.3 SS: TemplateString (templateToken,raw )
        4. 13.2.8.4 GetTemplateObject (templateLiteral )
        5. 13.2.8.5 RS: SubstitutionEvaluation
        6. 13.2.8.6 RS: Evaluation
      9. +13.2.9 The Grouping Operator
        1. 13.2.9.1 SS: Early Errors
        2. 13.2.9.2 RS: Evaluation
    3. +13.3 Left-Hand-Side Expressions
      1. +13.3.1 Static Semantics
        1. 13.3.1.1 SS: Early Errors
      2. +13.3.2 Property Accessors
        1. 13.3.2.1 RS: Evaluation
      3. 13.3.3 EvaluatePropertyAccessWithExpressionKey (baseValue,expression,strict )
      4. 13.3.4 EvaluatePropertyAccessWithIdentifierKey (baseValue,identifierName,strict )
      5. +13.3.5 Thenew Operator
        1. +13.3.5.1 RS: Evaluation
          1. 13.3.5.1.1 EvaluateNew (constructExpr,arguments )
      6. +13.3.6 Function Calls
        1. 13.3.6.1 RS: Evaluation
        2. 13.3.6.2 EvaluateCall (func,ref,arguments,tailPosition )
      7. +13.3.7 Thesuper Keyword
        1. 13.3.7.1 RS: Evaluation
        2. 13.3.7.2 GetSuperConstructor ( )
        3. 13.3.7.3 MakeSuperPropertyReference (actualThis,propertyKey,strict )
      8. +13.3.8 Argument Lists
        1. 13.3.8.1 RS: ArgumentListEvaluation
      9. +13.3.9 Optional Chains
        1. 13.3.9.1 RS: Evaluation
        2. 13.3.9.2 RS: ChainEvaluation
      10. +13.3.10 Import Calls
        1. +13.3.10.1 RS: Evaluation
          1. 13.3.10.1.1 ContinueDynamicImport (promiseCapability,moduleCompletion )
      11. +13.3.11 Tagged Templates
        1. 13.3.11.1 RS: Evaluation
      12. +13.3.12 Meta Properties
        1. +13.3.12.1 RS: Evaluation
          1. 13.3.12.1.1 HostGetImportMetaProperties (moduleRecord )
          2. 13.3.12.1.2 HostFinalizeImportMeta (importMeta,moduleRecord )
    4. +13.4 Update Expressions
      1. 13.4.1 SS: Early Errors
      2. +13.4.2 Postfix Increment Operator
        1. 13.4.2.1 RS: Evaluation
      3. +13.4.3 Postfix Decrement Operator
        1. 13.4.3.1 RS: Evaluation
      4. +13.4.4 Prefix Increment Operator
        1. 13.4.4.1 RS: Evaluation
      5. +13.4.5 Prefix Decrement Operator
        1. 13.4.5.1 RS: Evaluation
    5. +13.5 Unary Operators
      1. +13.5.1 Thedelete Operator
        1. 13.5.1.1 SS: Early Errors
        2. 13.5.1.2 RS: Evaluation
      2. +13.5.2 Thevoid Operator
        1. 13.5.2.1 RS: Evaluation
      3. +13.5.3 Thetypeof Operator
        1. 13.5.3.1 RS: Evaluation
      4. +13.5.4 Unary+ Operator
        1. 13.5.4.1 RS: Evaluation
      5. +13.5.5 Unary- Operator
        1. 13.5.5.1 RS: Evaluation
      6. +13.5.6 Bitwise NOT Operator (~ )
        1. 13.5.6.1 RS: Evaluation
      7. +13.5.7 Logical NOT Operator (! )
        1. 13.5.7.1 RS: Evaluation
    6. +13.6 Exponentiation Operator
      1. 13.6.1 RS: Evaluation
    7. +13.7 Multiplicative Operators
      1. 13.7.1 RS: Evaluation
    8. +13.8 Additive Operators
      1. +13.8.1 The Addition Operator (+ )
        1. 13.8.1.1 RS: Evaluation
      2. +13.8.2 The Subtraction Operator (- )
        1. 13.8.2.1 RS: Evaluation
    9. +13.9 Bitwise Shift Operators
      1. +13.9.1 The Left Shift Operator (<< )
        1. 13.9.1.1 RS: Evaluation
      2. +13.9.2 The Signed Right Shift Operator (>> )
        1. 13.9.2.1 RS: Evaluation
      3. +13.9.3 The Unsigned Right Shift Operator (>>> )
        1. 13.9.3.1 RS: Evaluation
    10. +13.10 Relational Operators
      1. 13.10.1 RS: Evaluation
      2. 13.10.2 InstanceofOperator (V,target )
    11. +13.11 Equality Operators
      1. 13.11.1 RS: Evaluation
    12. +13.12 Binary Bitwise Operators
      1. 13.12.1 RS: Evaluation
    13. +13.13 Binary Logical Operators
      1. 13.13.1 RS: Evaluation
    14. +13.14 Conditional Operator (? : )
      1. 13.14.1 RS: Evaluation
    15. +13.15 Assignment Operators
      1. 13.15.1 SS: Early Errors
      2. 13.15.2 RS: Evaluation
      3. 13.15.3 ApplyStringOrNumericBinaryOperator (lval,opText,rval )
      4. 13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand,opText,rightOperand )
      5. +13.15.5 Destructuring Assignment
        1. 13.15.5.1 SS: Early Errors
        2. 13.15.5.2 RS: DestructuringAssignmentEvaluation
        3. 13.15.5.3 RS: PropertyDestructuringAssignmentEvaluation
        4. 13.15.5.4 RS: RestDestructuringAssignmentEvaluation
        5. 13.15.5.5 RS: IteratorDestructuringAssignmentEvaluation
        6. 13.15.5.6 RS: KeyedDestructuringAssignmentEvaluation
    16. +13.16 Comma Operator (, )
      1. 13.16.1 RS: Evaluation
  15. +14 ECMAScript Language: Statements and Declarations
    1. +14.1 Statement Semantics
      1. 14.1.1 RS: Evaluation
    2. +14.2 Block
      1. 14.2.1 SS: Early Errors
      2. 14.2.2 RS: Evaluation
      3. 14.2.3 BlockDeclarationInstantiation (code,env )
    3. +14.3 Declarations and the Variable Statement
      1. +14.3.1 Let and Const Declarations
        1. 14.3.1.1 SS: Early Errors
        2. 14.3.1.2 RS: Evaluation
      2. +14.3.2 Variable Statement
        1. 14.3.2.1 RS: Evaluation
      3. +14.3.3 Destructuring Binding Patterns
        1. 14.3.3.1 RS: PropertyBindingInitialization
        2. 14.3.3.2 RS: RestBindingInitialization
        3. 14.3.3.3 RS: KeyedBindingInitialization
    4. +14.4 Empty Statement
      1. 14.4.1 RS: Evaluation
    5. +14.5 Expression Statement
      1. 14.5.1 RS: Evaluation
    6. +14.6 Theif Statement
      1. 14.6.1 SS: Early Errors
      2. 14.6.2 RS: Evaluation
    7. +14.7 Iteration Statements
      1. +14.7.1 Semantics
        1. 14.7.1.1 LoopContinues (completion,labelSet )
        2. 14.7.1.2 RS: LoopEvaluation
      2. +14.7.2 Thedo-while Statement
        1. 14.7.2.1 SS: Early Errors
        2. 14.7.2.2 RS: DoWhileLoopEvaluation
      3. +14.7.3 Thewhile Statement
        1. 14.7.3.1 SS: Early Errors
        2. 14.7.3.2 RS: WhileLoopEvaluation
      4. +14.7.4 Thefor Statement
        1. 14.7.4.1 SS: Early Errors
        2. 14.7.4.2 RS: ForLoopEvaluation
        3. 14.7.4.3 ForBodyEvaluation (test,increment,stmt,perIterationBindings,labelSet )
        4. 14.7.4.4 CreatePerIterationEnvironment (perIterationBindings )
      5. +14.7.5 Thefor-in,for-of, andfor-await-of Statements
        1. 14.7.5.1 SS: Early Errors
        2. 14.7.5.2 SS: IsDestructuring
        3. 14.7.5.3 RS: ForDeclarationBindingInitialization
        4. 14.7.5.4 RS: ForDeclarationBindingInstantiation
        5. 14.7.5.5 RS: ForInOfLoopEvaluation
        6. 14.7.5.6 ForIn/OfHeadEvaluation (uninitializedBoundNames,expr,iterationKind )
        7. 14.7.5.7 ForIn/OfBodyEvaluation (lhs,stmt,iteratorRecord,iterationKind,lhsKind,labelSet [ ,iteratorKind ] )
        8. 14.7.5.8 RS: Evaluation
        9. 14.7.5.9 EnumerateObjectProperties (O )
        10. +14.7.5.10 For-In Iterator Objects
          1. 14.7.5.10.1 CreateForInIterator (object )
          2. +14.7.5.10.2 The %ForInIteratorPrototype% Object
            1. 14.7.5.10.2.1 %ForInIteratorPrototype%.next ( )
          3. 14.7.5.10.3 Properties of For-In Iterator Instances
    8. +14.8 Thecontinue Statement
      1. 14.8.1 SS: Early Errors
      2. 14.8.2 RS: Evaluation
    9. +14.9 Thebreak Statement
      1. 14.9.1 SS: Early Errors
      2. 14.9.2 RS: Evaluation
    10. +14.10 Thereturn Statement
      1. 14.10.1 RS: Evaluation
    11. +14.11 Thewith Statement
      1. 14.11.1 SS: Early Errors
      2. 14.11.2 RS: Evaluation
    12. +14.12 Theswitch Statement
      1. 14.12.1 SS: Early Errors
      2. 14.12.2 RS: CaseBlockEvaluation
      3. 14.12.3 CaseClauseIsSelected (C,input )
      4. 14.12.4 RS: Evaluation
    13. +14.13 Labelled Statements
      1. 14.13.1 SS: Early Errors
      2. 14.13.2 SS: IsLabelledFunction (stmt )
      3. 14.13.3 RS: Evaluation
      4. 14.13.4 RS: LabelledEvaluation
    14. +14.14 Thethrow Statement
      1. 14.14.1 RS: Evaluation
    15. +14.15 Thetry Statement
      1. 14.15.1 SS: Early Errors
      2. 14.15.2 RS: CatchClauseEvaluation
      3. 14.15.3 RS: Evaluation
    16. +14.16 Thedebugger Statement
      1. 14.16.1 RS: Evaluation
  16. +15 ECMAScript Language: Functions and Classes
    1. +15.1 Parameter Lists
      1. 15.1.1 SS: Early Errors
      2. 15.1.2 SS: ContainsExpression
      3. 15.1.3 SS: IsSimpleParameterList
      4. 15.1.4 SS: HasInitializer
      5. 15.1.5 SS: ExpectedArgumentCount
    2. +15.2 Function Definitions
      1. 15.2.1 SS: Early Errors
      2. 15.2.2 SS: FunctionBodyContainsUseStrict
      3. 15.2.3 RS: EvaluateFunctionBody
      4. 15.2.4 RS: InstantiateOrdinaryFunctionObject
      5. 15.2.5 RS: InstantiateOrdinaryFunctionExpression
      6. 15.2.6 RS: Evaluation
    3. +15.3 Arrow Function Definitions
      1. 15.3.1 SS: Early Errors
      2. 15.3.2 SS: ConciseBodyContainsUseStrict
      3. 15.3.3 RS: EvaluateConciseBody
      4. 15.3.4 RS: InstantiateArrowFunctionExpression
      5. 15.3.5 RS: Evaluation
    4. +15.4 Method Definitions
      1. 15.4.1 SS: Early Errors
      2. 15.4.2 SS: HasDirectSuper
      3. 15.4.3 SS: SpecialMethod
      4. 15.4.4 RS: DefineMethod
      5. 15.4.5 RS: MethodDefinitionEvaluation
    5. +15.5 Generator Function Definitions
      1. 15.5.1 SS: Early Errors
      2. 15.5.2 RS: EvaluateGeneratorBody
      3. 15.5.3 RS: InstantiateGeneratorFunctionObject
      4. 15.5.4 RS: InstantiateGeneratorFunctionExpression
      5. 15.5.5 RS: Evaluation
    6. +15.6 Async Generator Function Definitions
      1. 15.6.1 SS: Early Errors
      2. 15.6.2 RS: EvaluateAsyncGeneratorBody
      3. 15.6.3 RS: InstantiateAsyncGeneratorFunctionObject
      4. 15.6.4 RS: InstantiateAsyncGeneratorFunctionExpression
      5. 15.6.5 RS: Evaluation
    7. +15.7 Class Definitions
      1. 15.7.1 SS: Early Errors
      2. 15.7.2 SS: ClassElementKind
      3. 15.7.3 SS: ConstructorMethod
      4. 15.7.4 SS: IsStatic
      5. 15.7.5 SS: NonConstructorElements
      6. 15.7.6 SS: PrototypePropertyNameList
      7. 15.7.7 SS: AllPrivateIdentifiersValid
      8. 15.7.8 SS: PrivateBoundIdentifiers
      9. 15.7.9 SS: ContainsArguments
      10. 15.7.10 RS: ClassFieldDefinitionEvaluation
      11. 15.7.11 RS: ClassStaticBlockDefinitionEvaluation
      12. 15.7.12 RS: EvaluateClassStaticBlockBody
      13. 15.7.13 RS: ClassElementEvaluation
      14. 15.7.14 RS: ClassDefinitionEvaluation
      15. 15.7.15 RS: BindingClassDeclarationEvaluation
      16. 15.7.16 RS: Evaluation
    8. +15.8 Async Function Definitions
      1. 15.8.1 SS: Early Errors
      2. 15.8.2 RS: InstantiateAsyncFunctionObject
      3. 15.8.3 RS: InstantiateAsyncFunctionExpression
      4. 15.8.4 RS: EvaluateAsyncFunctionBody
      5. 15.8.5 RS: Evaluation
    9. +15.9 Async Arrow Function Definitions
      1. 15.9.1 SS: Early Errors
      2. 15.9.2 SS: AsyncConciseBodyContainsUseStrict
      3. 15.9.3 RS: EvaluateAsyncConciseBody
      4. 15.9.4 RS: InstantiateAsyncArrowFunctionExpression
      5. 15.9.5 RS: Evaluation
    10. +15.10 Tail Position Calls
      1. 15.10.1 SS: IsInTailPosition (call )
      2. 15.10.2 SS: HasCallInTailPosition
      3. 15.10.3 PrepareForTailCall ( )
  17. +16 ECMAScript Language: Scripts and Modules
    1. +16.1 Scripts
      1. 16.1.1 SS: Early Errors
      2. 16.1.2 SS: IsStrict
      3. 16.1.3 RS: Evaluation
      4. 16.1.4 Script Records
      5. 16.1.5 ParseScript (sourceText,realm,hostDefined )
      6. 16.1.6 ScriptEvaluation (scriptRecord )
      7. 16.1.7 GlobalDeclarationInstantiation (script,env )
    2. +16.2 Modules
      1. +16.2.1 Module Semantics
        1. 16.2.1.1 SS: Early Errors
        2. 16.2.1.2 SS: ImportedLocalNames (importEntries )
        3. 16.2.1.3 SS: ModuleRequests
        4. 16.2.1.4 Abstract Module Records
        5. +16.2.1.5 Cyclic Module Records
          1. +16.2.1.5.1 LoadRequestedModules ( [hostDefined ] )
            1. 16.2.1.5.1.1 InnerModuleLoading (state,module )
            2. 16.2.1.5.1.2 ContinueModuleLoading (state,moduleCompletion )
          2. +16.2.1.5.2 Link ( )
            1. 16.2.1.5.2.1 InnerModuleLinking (module,stack,index )
          3. +16.2.1.5.3 Evaluate ( )
            1. 16.2.1.5.3.1 InnerModuleEvaluation (module,stack,index )
            2. 16.2.1.5.3.2 ExecuteAsyncModule (module )
            3. 16.2.1.5.3.3 GatherAvailableAncestors (module,execList )
            4. 16.2.1.5.3.4 AsyncModuleExecutionFulfilled (module )
            5. 16.2.1.5.3.5 AsyncModuleExecutionRejected (module,error )
          4. 16.2.1.5.4 Example Cyclic Module Record Graphs
        6. +16.2.1.6 Source Text Module Records
          1. 16.2.1.6.1 ParseModule (sourceText,realm,hostDefined )
          2. 16.2.1.6.2 GetExportedNames ( [exportStarSet ] )
          3. 16.2.1.6.3 ResolveExport (exportName [ ,resolveSet ] )
          4. 16.2.1.6.4 InitializeEnvironment ( )
          5. 16.2.1.6.5 ExecuteModule ( [capability ] )
        7. 16.2.1.7 GetImportedModule (referrer,specifier )
        8. 16.2.1.8 HostLoadImportedModule (referrer,specifier,hostDefined,payload )
        9. 16.2.1.9 FinishLoadingImportedModule (referrer,specifier,payload,result )
        10. 16.2.1.10 GetModuleNamespace (module )
        11. 16.2.1.11 RS: Evaluation
      2. +16.2.2 Imports
        1. 16.2.2.1 SS: Early Errors
        2. 16.2.2.2 SS: ImportEntries
        3. 16.2.2.3 SS: ImportEntriesForModule
      3. +16.2.3 Exports
        1. 16.2.3.1 SS: Early Errors
        2. 16.2.3.2 SS: ExportedBindings
        3. 16.2.3.3 SS: ExportedNames
        4. 16.2.3.4 SS: ExportEntries
        5. 16.2.3.5 SS: ExportEntriesForModule
        6. 16.2.3.6 SS: ReferencedBindings
        7. 16.2.3.7 RS: Evaluation
  18. +17 Error Handling and Language Extensions
    1. 17.1 Forbidden Extensions
  19. 18 ECMAScript Standard Built-in Objects
  20. +19 The Global Object
    1. +19.1 Value Properties of the Global Object
      1. 19.1.1 globalThis
      2. 19.1.2 Infinity
      3. 19.1.3 NaN
      4. 19.1.4 undefined
    2. +19.2 Function Properties of the Global Object
      1. +19.2.1 eval (x )
        1. 19.2.1.1 PerformEval (x,strictCaller,direct )
        2. 19.2.1.2 HostEnsureCanCompileStrings (calleeRealm,parameterStrings,bodyString,direct )
        3. 19.2.1.3 EvalDeclarationInstantiation (body,varEnv,lexEnv,privateEnv,strict )
      2. 19.2.2 isFinite (number )
      3. 19.2.3 isNaN (number )
      4. 19.2.4 parseFloat (string )
      5. 19.2.5 parseInt (string,radix )
      6. +19.2.6 URI Handling Functions
        1. 19.2.6.1 decodeURI (encodedURI )
        2. 19.2.6.2 decodeURIComponent (encodedURIComponent )
        3. 19.2.6.3 encodeURI (uri )
        4. 19.2.6.4 encodeURIComponent (uriComponent )
        5. 19.2.6.5 Encode (string,extraUnescaped )
        6. 19.2.6.6 Decode (string,preserveEscapeSet )
        7. 19.2.6.7 ParseHexOctet (string,position )
    3. +19.3 Constructor Properties of the Global Object
      1. 19.3.1 AggregateError ( . . . )
      2. 19.3.2 Array ( . . . )
      3. 19.3.3 ArrayBuffer ( . . . )
      4. 19.3.4 BigInt ( . . . )
      5. 19.3.5 BigInt64Array ( . . . )
      6. 19.3.6 BigUint64Array ( . . . )
      7. 19.3.7 Boolean ( . . . )
      8. 19.3.8 DataView ( . . . )
      9. 19.3.9 Date ( . . . )
      10. 19.3.10 Error ( . . . )
      11. 19.3.11 EvalError ( . . . )
      12. 19.3.12 FinalizationRegistry ( . . . )
      13. 19.3.13 Float32Array ( . . . )
      14. 19.3.14 Float64Array ( . . . )
      15. 19.3.15 Function ( . . . )
      16. 19.3.16 Int8Array ( . . . )
      17. 19.3.17 Int16Array ( . . . )
      18. 19.3.18 Int32Array ( . . . )
      19. 19.3.19 Map ( . . . )
      20. 19.3.20 Number ( . . . )
      21. 19.3.21 Object ( . . . )
      22. 19.3.22 Promise ( . . . )
      23. 19.3.23 Proxy ( . . . )
      24. 19.3.24 RangeError ( . . . )
      25. 19.3.25 ReferenceError ( . . . )
      26. 19.3.26 RegExp ( . . . )
      27. 19.3.27 Set ( . . . )
      28. 19.3.28 SharedArrayBuffer ( . . . )
      29. 19.3.29 String ( . . . )
      30. 19.3.30 Symbol ( . . . )
      31. 19.3.31 SyntaxError ( . . . )
      32. 19.3.32 TypeError ( . . . )
      33. 19.3.33 Uint8Array ( . . . )
      34. 19.3.34 Uint8ClampedArray ( . . . )
      35. 19.3.35 Uint16Array ( . . . )
      36. 19.3.36 Uint32Array ( . . . )
      37. 19.3.37 URIError ( . . . )
      38. 19.3.38 WeakMap ( . . . )
      39. 19.3.39 WeakRef ( . . . )
      40. 19.3.40 WeakSet ( . . . )
    4. +19.4 Other Properties of the Global Object
      1. 19.4.1 Atomics
      2. 19.4.2 JSON
      3. 19.4.3 Math
      4. 19.4.4 Reflect
  21. +20 Fundamental Objects
    1. +20.1 Object Objects
      1. +20.1.1 The Object Constructor
        1. 20.1.1.1 Object ( [value ] )
      2. +20.1.2 Properties of the Object Constructor
        1. 20.1.2.1 Object.assign (target, ...sources )
        2. 20.1.2.2 Object.create (O,Properties )
        3. +20.1.2.3 Object.defineProperties (O,Properties )
          1. 20.1.2.3.1 ObjectDefineProperties (O,Properties )
        4. 20.1.2.4 Object.defineProperty (O,P,Attributes )
        5. 20.1.2.5 Object.entries (O )
        6. 20.1.2.6 Object.freeze (O )
        7. 20.1.2.7 Object.fromEntries (iterable )
        8. 20.1.2.8 Object.getOwnPropertyDescriptor (O,P )
        9. 20.1.2.9 Object.getOwnPropertyDescriptors (O )
        10. 20.1.2.10 Object.getOwnPropertyNames (O )
        11. +20.1.2.11 Object.getOwnPropertySymbols (O )
          1. 20.1.2.11.1 GetOwnPropertyKeys (O,type )
        12. 20.1.2.12 Object.getPrototypeOf (O )
        13. 20.1.2.13 Object.groupBy (items,callbackfn )
        14. 20.1.2.14 Object.hasOwn (O,P )
        15. 20.1.2.15 Object.is (value1,value2 )
        16. 20.1.2.16 Object.isExtensible (O )
        17. 20.1.2.17 Object.isFrozen (O )
        18. 20.1.2.18 Object.isSealed (O )
        19. 20.1.2.19 Object.keys (O )
        20. 20.1.2.20 Object.preventExtensions (O )
        21. 20.1.2.21 Object.prototype
        22. 20.1.2.22 Object.seal (O )
        23. 20.1.2.23 Object.setPrototypeOf (O,proto )
        24. 20.1.2.24 Object.values (O )
      3. +20.1.3 Properties of the Object Prototype Object
        1. 20.1.3.1 Object.prototype.constructor
        2. 20.1.3.2 Object.prototype.hasOwnProperty (V )
        3. 20.1.3.3 Object.prototype.isPrototypeOf (V )
        4. 20.1.3.4 Object.prototype.propertyIsEnumerable (V )
        5. 20.1.3.5 Object.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        6. 20.1.3.6 Object.prototype.toString ( )
        7. 20.1.3.7 Object.prototype.valueOf ( )
        8. +20.1.3.8 Object.prototype.__proto__
          1. 20.1.3.8.1 get Object.prototype.__proto__
          2. 20.1.3.8.2 set Object.prototype.__proto__
        9. +20.1.3.9 Legacy Object.prototype Accessor Methods
          1. 20.1.3.9.1 Object.prototype.__defineGetter__ (P,getter )
          2. 20.1.3.9.2 Object.prototype.__defineSetter__ (P,setter )
          3. 20.1.3.9.3 Object.prototype.__lookupGetter__ (P )
          4. 20.1.3.9.4 Object.prototype.__lookupSetter__ (P )
      4. 20.1.4 Properties of Object Instances
    2. +20.2 Function Objects
      1. +20.2.1 The Function Constructor
        1. +20.2.1.1 Function ( ...parameterArgs,bodyArg )
          1. 20.2.1.1.1 CreateDynamicFunction (constructor,newTarget,kind,parameterArgs,bodyArg )
      2. +20.2.2 Properties of the Function Constructor
        1. 20.2.2.1 Function.prototype
      3. +20.2.3 Properties of the Function Prototype Object
        1. 20.2.3.1 Function.prototype.apply (thisArg,argArray )
        2. 20.2.3.2 Function.prototype.bind (thisArg, ...args )
        3. 20.2.3.3 Function.prototype.call (thisArg, ...args )
        4. 20.2.3.4 Function.prototype.constructor
        5. 20.2.3.5 Function.prototype.toString ( )
        6. 20.2.3.6 Function.prototype [ @@hasInstance ] (V )
      4. +20.2.4 Function Instances
        1. 20.2.4.1 length
        2. 20.2.4.2 name
        3. 20.2.4.3 prototype
      5. 20.2.5 HostHasSourceTextAvailable (func )
    3. +20.3 Boolean Objects
      1. +20.3.1 The Boolean Constructor
        1. 20.3.1.1 Boolean (value )
      2. +20.3.2 Properties of the Boolean Constructor
        1. 20.3.2.1 Boolean.prototype
      3. +20.3.3 Properties of the Boolean Prototype Object
        1. 20.3.3.1 Boolean.prototype.constructor
        2. 20.3.3.2 Boolean.prototype.toString ( )
        3. +20.3.3.3 Boolean.prototype.valueOf ( )
          1. 20.3.3.3.1 ThisBooleanValue (value )
      4. 20.3.4 Properties of Boolean Instances
    4. +20.4 Symbol Objects
      1. +20.4.1 The Symbol Constructor
        1. 20.4.1.1 Symbol ( [description ] )
      2. +20.4.2 Properties of the Symbol Constructor
        1. 20.4.2.1 Symbol.asyncIterator
        2. 20.4.2.2 Symbol.for (key )
        3. 20.4.2.3 Symbol.hasInstance
        4. 20.4.2.4 Symbol.isConcatSpreadable
        5. 20.4.2.5 Symbol.iterator
        6. 20.4.2.6 Symbol.keyFor (sym )
        7. 20.4.2.7 Symbol.match
        8. 20.4.2.8 Symbol.matchAll
        9. 20.4.2.9 Symbol.prototype
        10. 20.4.2.10 Symbol.replace
        11. 20.4.2.11 Symbol.search
        12. 20.4.2.12 Symbol.species
        13. 20.4.2.13 Symbol.split
        14. 20.4.2.14 Symbol.toPrimitive
        15. 20.4.2.15 Symbol.toStringTag
        16. 20.4.2.16 Symbol.unscopables
      3. +20.4.3 Properties of the Symbol Prototype Object
        1. 20.4.3.1 Symbol.prototype.constructor
        2. 20.4.3.2 get Symbol.prototype.description
        3. +20.4.3.3 Symbol.prototype.toString ( )
          1. 20.4.3.3.1 SymbolDescriptiveString (sym )
        4. +20.4.3.4 Symbol.prototype.valueOf ( )
          1. 20.4.3.4.1 ThisSymbolValue (value )
        5. 20.4.3.5 Symbol.prototype [ @@toPrimitive ] (hint )
        6. 20.4.3.6 Symbol.prototype [ @@toStringTag ]
      4. 20.4.4 Properties of Symbol Instances
      5. +20.4.5 Abstract Operations for Symbols
        1. 20.4.5.1 KeyForSymbol (sym )
    5. +20.5 Error Objects
      1. +20.5.1 The Error Constructor
        1. 20.5.1.1 Error (message [ ,options ] )
      2. +20.5.2 Properties of the Error Constructor
        1. 20.5.2.1 Error.prototype
      3. +20.5.3 Properties of the Error Prototype Object
        1. 20.5.3.1 Error.prototype.constructor
        2. 20.5.3.2 Error.prototype.message
        3. 20.5.3.3 Error.prototype.name
        4. 20.5.3.4 Error.prototype.toString ( )
      4. 20.5.4 Properties of Error Instances
      5. +20.5.5 Native Error Types Used in This Standard
        1. 20.5.5.1 EvalError
        2. 20.5.5.2 RangeError
        3. 20.5.5.3 ReferenceError
        4. 20.5.5.4 SyntaxError
        5. 20.5.5.5 TypeError
        6. 20.5.5.6 URIError
      6. +20.5.6NativeError Object Structure
        1. +20.5.6.1 TheNativeError Constructors
          1. 20.5.6.1.1NativeError (message [ ,options ] )
        2. +20.5.6.2 Properties of theNativeError Constructors
          1. 20.5.6.2.1NativeError.prototype
        3. +20.5.6.3 Properties of theNativeError Prototype Objects
          1. 20.5.6.3.1NativeError.prototype.constructor
          2. 20.5.6.3.2NativeError.prototype.message
          3. 20.5.6.3.3NativeError.prototype.name
        4. 20.5.6.4 Properties ofNativeError Instances
      7. +20.5.7 AggregateError Objects
        1. +20.5.7.1 The AggregateError Constructor
          1. 20.5.7.1.1 AggregateError (errors,message [ ,options ] )
        2. +20.5.7.2 Properties of the AggregateError Constructor
          1. 20.5.7.2.1 AggregateError.prototype
        3. +20.5.7.3 Properties of the AggregateError Prototype Object
          1. 20.5.7.3.1 AggregateError.prototype.constructor
          2. 20.5.7.3.2 AggregateError.prototype.message
          3. 20.5.7.3.3 AggregateError.prototype.name
        4. 20.5.7.4 Properties of AggregateError Instances
      8. +20.5.8 Abstract Operations for Error Objects
        1. 20.5.8.1 InstallErrorCause (O,options )
  22. +21 Numbers and Dates
    1. +21.1 Number Objects
      1. +21.1.1 The Number Constructor
        1. 21.1.1.1 Number (value )
      2. +21.1.2 Properties of the Number Constructor
        1. 21.1.2.1 Number.EPSILON
        2. 21.1.2.2 Number.isFinite (number )
        3. 21.1.2.3 Number.isInteger (number )
        4. 21.1.2.4 Number.isNaN (number )
        5. 21.1.2.5 Number.isSafeInteger (number )
        6. 21.1.2.6 Number.MAX_SAFE_INTEGER
        7. 21.1.2.7 Number.MAX_VALUE
        8. 21.1.2.8 Number.MIN_SAFE_INTEGER
        9. 21.1.2.9 Number.MIN_VALUE
        10. 21.1.2.10 Number.NaN
        11. 21.1.2.11 Number.NEGATIVE_INFINITY
        12. 21.1.2.12 Number.parseFloat (string )
        13. 21.1.2.13 Number.parseInt (string,radix )
        14. 21.1.2.14 Number.POSITIVE_INFINITY
        15. 21.1.2.15 Number.prototype
      3. +21.1.3 Properties of the Number Prototype Object
        1. 21.1.3.1 Number.prototype.constructor
        2. 21.1.3.2 Number.prototype.toExponential (fractionDigits )
        3. 21.1.3.3 Number.prototype.toFixed (fractionDigits )
        4. 21.1.3.4 Number.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        5. 21.1.3.5 Number.prototype.toPrecision (precision )
        6. 21.1.3.6 Number.prototype.toString ( [radix ] )
        7. +21.1.3.7 Number.prototype.valueOf ( )
          1. 21.1.3.7.1 ThisNumberValue (value )
      4. 21.1.4 Properties of Number Instances
    2. +21.2 BigInt Objects
      1. +21.2.1 The BigInt Constructor
        1. +21.2.1.1 BigInt (value )
          1. 21.2.1.1.1 NumberToBigInt (number )
      2. +21.2.2 Properties of the BigInt Constructor
        1. 21.2.2.1 BigInt.asIntN (bits,bigint )
        2. 21.2.2.2 BigInt.asUintN (bits,bigint )
        3. 21.2.2.3 BigInt.prototype
      3. +21.2.3 Properties of the BigInt Prototype Object
        1. 21.2.3.1 BigInt.prototype.constructor
        2. 21.2.3.2 BigInt.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        3. 21.2.3.3 BigInt.prototype.toString ( [radix ] )
        4. +21.2.3.4 BigInt.prototype.valueOf ( )
          1. 21.2.3.4.1 ThisBigIntValue (value )
        5. 21.2.3.5 BigInt.prototype [ @@toStringTag ]
      4. 21.2.4 Properties of BigInt Instances
    3. +21.3 The Math Object
      1. +21.3.1 Value Properties of the Math Object
        1. 21.3.1.1 Math.E
        2. 21.3.1.2 Math.LN10
        3. 21.3.1.3 Math.LN2
        4. 21.3.1.4 Math.LOG10E
        5. 21.3.1.5 Math.LOG2E
        6. 21.3.1.6 Math.PI
        7. 21.3.1.7 Math.SQRT1_2
        8. 21.3.1.8 Math.SQRT2
        9. 21.3.1.9 Math [ @@toStringTag ]
      2. +21.3.2 Function Properties of the Math Object
        1. 21.3.2.1 Math.abs (x )
        2. 21.3.2.2 Math.acos (x )
        3. 21.3.2.3 Math.acosh (x )
        4. 21.3.2.4 Math.asin (x )
        5. 21.3.2.5 Math.asinh (x )
        6. 21.3.2.6 Math.atan (x )
        7. 21.3.2.7 Math.atanh (x )
        8. 21.3.2.8 Math.atan2 (y,x )
        9. 21.3.2.9 Math.cbrt (x )
        10. 21.3.2.10 Math.ceil (x )
        11. 21.3.2.11 Math.clz32 (x )
        12. 21.3.2.12 Math.cos (x )
        13. 21.3.2.13 Math.cosh (x )
        14. 21.3.2.14 Math.exp (x )
        15. 21.3.2.15 Math.expm1 (x )
        16. 21.3.2.16 Math.floor (x )
        17. 21.3.2.17 Math.fround (x )
        18. 21.3.2.18 Math.hypot ( ...args )
        19. 21.3.2.19 Math.imul (x,y )
        20. 21.3.2.20 Math.log (x )
        21. 21.3.2.21 Math.log1p (x )
        22. 21.3.2.22 Math.log10 (x )
        23. 21.3.2.23 Math.log2 (x )
        24. 21.3.2.24 Math.max ( ...args )
        25. 21.3.2.25 Math.min ( ...args )
        26. 21.3.2.26 Math.pow (base,exponent )
        27. 21.3.2.27 Math.random ( )
        28. 21.3.2.28 Math.round (x )
        29. 21.3.2.29 Math.sign (x )
        30. 21.3.2.30 Math.sin (x )
        31. 21.3.2.31 Math.sinh (x )
        32. 21.3.2.32 Math.sqrt (x )
        33. 21.3.2.33 Math.tan (x )
        34. 21.3.2.34 Math.tanh (x )
        35. 21.3.2.35 Math.trunc (x )
    4. +21.4 Date Objects
      1. +21.4.1 Overview of Date Objects and Definitions of Abstract Operations
        1. 21.4.1.1 Time Values and Time Range
        2. 21.4.1.2 Time-related Constants
        3. 21.4.1.3 Day (t )
        4. 21.4.1.4 TimeWithinDay (t )
        5. 21.4.1.5 DaysInYear (y )
        6. 21.4.1.6 DayFromYear (y )
        7. 21.4.1.7 TimeFromYear (y )
        8. 21.4.1.8 YearFromTime (t )
        9. 21.4.1.9 DayWithinYear (t )
        10. 21.4.1.10 InLeapYear (t )
        11. 21.4.1.11 MonthFromTime (t )
        12. 21.4.1.12 DateFromTime (t )
        13. 21.4.1.13 WeekDay (t )
        14. 21.4.1.14 HourFromTime (t )
        15. 21.4.1.15 MinFromTime (t )
        16. 21.4.1.16 SecFromTime (t )
        17. 21.4.1.17 msFromTime (t )
        18. 21.4.1.18 GetUTCEpochNanoseconds (year,month,day,hour,minute,second,millisecond,microsecond,nanosecond )
        19. 21.4.1.19 Time Zone Identifiers
        20. 21.4.1.20 GetNamedTimeZoneEpochNanoseconds (timeZoneIdentifier,year,month,day,hour,minute,second,millisecond,microsecond,nanosecond )
        21. 21.4.1.21 GetNamedTimeZoneOffsetNanoseconds (timeZoneIdentifier,epochNanoseconds )
        22. 21.4.1.22 Time Zone Identifier Record
        23. 21.4.1.23 AvailableNamedTimeZoneIdentifiers ( )
        24. 21.4.1.24 SystemTimeZoneIdentifier ( )
        25. 21.4.1.25 LocalTime (t )
        26. 21.4.1.26 UTC (t )
        27. 21.4.1.27 MakeTime (hour,min,sec,ms )
        28. 21.4.1.28 MakeDay (year,month,date )
        29. 21.4.1.29 MakeDate (day,time )
        30. 21.4.1.30 MakeFullYear (year )
        31. 21.4.1.31 TimeClip (time )
        32. +21.4.1.32 Date Time String Format
          1. 21.4.1.32.1 Expanded Years
        33. +21.4.1.33 Time Zone Offset String Format
          1. 21.4.1.33.1 IsTimeZoneOffsetString (offsetString )
          2. 21.4.1.33.2 ParseTimeZoneOffsetString (offsetString )
      2. +21.4.2 The Date Constructor
        1. 21.4.2.1 Date ( ...values )
      3. +21.4.3 Properties of the Date Constructor
        1. 21.4.3.1 Date.now ( )
        2. 21.4.3.2 Date.parse (string )
        3. 21.4.3.3 Date.prototype
        4. 21.4.3.4 Date.UTC (year [ ,month [ ,date [ ,hours [ ,minutes [ ,seconds [ ,ms ] ] ] ] ] ] )
      4. +21.4.4 Properties of the Date Prototype Object
        1. 21.4.4.1 Date.prototype.constructor
        2. 21.4.4.2 Date.prototype.getDate ( )
        3. 21.4.4.3 Date.prototype.getDay ( )
        4. 21.4.4.4 Date.prototype.getFullYear ( )
        5. 21.4.4.5 Date.prototype.getHours ( )
        6. 21.4.4.6 Date.prototype.getMilliseconds ( )
        7. 21.4.4.7 Date.prototype.getMinutes ( )
        8. 21.4.4.8 Date.prototype.getMonth ( )
        9. 21.4.4.9 Date.prototype.getSeconds ( )
        10. 21.4.4.10 Date.prototype.getTime ( )
        11. 21.4.4.11 Date.prototype.getTimezoneOffset ( )
        12. 21.4.4.12 Date.prototype.getUTCDate ( )
        13. 21.4.4.13 Date.prototype.getUTCDay ( )
        14. 21.4.4.14 Date.prototype.getUTCFullYear ( )
        15. 21.4.4.15 Date.prototype.getUTCHours ( )
        16. 21.4.4.16 Date.prototype.getUTCMilliseconds ( )
        17. 21.4.4.17 Date.prototype.getUTCMinutes ( )
        18. 21.4.4.18 Date.prototype.getUTCMonth ( )
        19. 21.4.4.19 Date.prototype.getUTCSeconds ( )
        20. 21.4.4.20 Date.prototype.setDate (date )
        21. 21.4.4.21 Date.prototype.setFullYear (year [ ,month [ ,date ] ] )
        22. 21.4.4.22 Date.prototype.setHours (hour [ ,min [ ,sec [ ,ms ] ] ] )
        23. 21.4.4.23 Date.prototype.setMilliseconds (ms )
        24. 21.4.4.24 Date.prototype.setMinutes (min [ ,sec [ ,ms ] ] )
        25. 21.4.4.25 Date.prototype.setMonth (month [ ,date ] )
        26. 21.4.4.26 Date.prototype.setSeconds (sec [ ,ms ] )
        27. 21.4.4.27 Date.prototype.setTime (time )
        28. 21.4.4.28 Date.prototype.setUTCDate (date )
        29. 21.4.4.29 Date.prototype.setUTCFullYear (year [ ,month [ ,date ] ] )
        30. 21.4.4.30 Date.prototype.setUTCHours (hour [ ,min [ ,sec [ ,ms ] ] ] )
        31. 21.4.4.31 Date.prototype.setUTCMilliseconds (ms )
        32. 21.4.4.32 Date.prototype.setUTCMinutes (min [ ,sec [ ,ms ] ] )
        33. 21.4.4.33 Date.prototype.setUTCMonth (month [ ,date ] )
        34. 21.4.4.34 Date.prototype.setUTCSeconds (sec [ ,ms ] )
        35. 21.4.4.35 Date.prototype.toDateString ( )
        36. 21.4.4.36 Date.prototype.toISOString ( )
        37. 21.4.4.37 Date.prototype.toJSON (key )
        38. 21.4.4.38 Date.prototype.toLocaleDateString ( [reserved1 [ ,reserved2 ] ] )
        39. 21.4.4.39 Date.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        40. 21.4.4.40 Date.prototype.toLocaleTimeString ( [reserved1 [ ,reserved2 ] ] )
        41. +21.4.4.41 Date.prototype.toString ( )
          1. 21.4.4.41.1 TimeString (tv )
          2. 21.4.4.41.2 DateString (tv )
          3. 21.4.4.41.3 TimeZoneString (tv )
          4. 21.4.4.41.4 ToDateString (tv )
        42. 21.4.4.42 Date.prototype.toTimeString ( )
        43. 21.4.4.43 Date.prototype.toUTCString ( )
        44. 21.4.4.44 Date.prototype.valueOf ( )
        45. 21.4.4.45 Date.prototype [ @@toPrimitive ] (hint )
      5. 21.4.5 Properties of Date Instances
  23. +22 Text Processing
    1. +22.1 String Objects
      1. +22.1.1 The String Constructor
        1. 22.1.1.1 String (value )
      2. +22.1.2 Properties of the String Constructor
        1. 22.1.2.1 String.fromCharCode ( ...codeUnits )
        2. 22.1.2.2 String.fromCodePoint ( ...codePoints )
        3. 22.1.2.3 String.prototype
        4. 22.1.2.4 String.raw (template, ...substitutions )
      3. +22.1.3 Properties of the String Prototype Object
        1. 22.1.3.1 String.prototype.at (index )
        2. 22.1.3.2 String.prototype.charAt (pos )
        3. 22.1.3.3 String.prototype.charCodeAt (pos )
        4. 22.1.3.4 String.prototype.codePointAt (pos )
        5. 22.1.3.5 String.prototype.concat ( ...args )
        6. 22.1.3.6 String.prototype.constructor
        7. 22.1.3.7 String.prototype.endsWith (searchString [ ,endPosition ] )
        8. 22.1.3.8 String.prototype.includes (searchString [ ,position ] )
        9. 22.1.3.9 String.prototype.indexOf (searchString [ ,position ] )
        10. 22.1.3.10 String.prototype.isWellFormed ( )
        11. 22.1.3.11 String.prototype.lastIndexOf (searchString [ ,position ] )
        12. 22.1.3.12 String.prototype.localeCompare (that [ ,reserved1 [ ,reserved2 ] ] )
        13. 22.1.3.13 String.prototype.match (regexp )
        14. 22.1.3.14 String.prototype.matchAll (regexp )
        15. 22.1.3.15 String.prototype.normalize ( [form ] )
        16. 22.1.3.16 String.prototype.padEnd (maxLength [ ,fillString ] )
        17. +22.1.3.17 String.prototype.padStart (maxLength [ ,fillString ] )
          1. 22.1.3.17.1 StringPaddingBuiltinsImpl (O,maxLength,fillString,placement )
          2. 22.1.3.17.2 StringPad (S,maxLength,fillString,placement )
          3. 22.1.3.17.3 ToZeroPaddedDecimalString (n,minLength )
        18. 22.1.3.18 String.prototype.repeat (count )
        19. +22.1.3.19 String.prototype.replace (searchValue,replaceValue )
          1. 22.1.3.19.1 GetSubstitution (matched,str,position,captures,namedCaptures,replacementTemplate )
        20. 22.1.3.20 String.prototype.replaceAll (searchValue,replaceValue )
        21. 22.1.3.21 String.prototype.search (regexp )
        22. 22.1.3.22 String.prototype.slice (start,end )
        23. 22.1.3.23 String.prototype.split (separator,limit )
        24. 22.1.3.24 String.prototype.startsWith (searchString [ ,position ] )
        25. 22.1.3.25 String.prototype.substring (start,end )
        26. 22.1.3.26 String.prototype.toLocaleLowerCase ( [reserved1 [ ,reserved2 ] ] )
        27. 22.1.3.27 String.prototype.toLocaleUpperCase ( [reserved1 [ ,reserved2 ] ] )
        28. 22.1.3.28 String.prototype.toLowerCase ( )
        29. 22.1.3.29 String.prototype.toString ( )
        30. 22.1.3.30 String.prototype.toUpperCase ( )
        31. 22.1.3.31 String.prototype.toWellFormed ( )
        32. +22.1.3.32 String.prototype.trim ( )
          1. 22.1.3.32.1 TrimString (string,where )
        33. 22.1.3.33 String.prototype.trimEnd ( )
        34. 22.1.3.34 String.prototype.trimStart ( )
        35. +22.1.3.35 String.prototype.valueOf ( )
          1. 22.1.3.35.1 ThisStringValue (value )
        36. 22.1.3.36 String.prototype [ @@iterator ] ( )
      4. +22.1.4 Properties of String Instances
        1. 22.1.4.1 length
      5. +22.1.5 String Iterator Objects
        1. +22.1.5.1 The %StringIteratorPrototype% Object
          1. 22.1.5.1.1 %StringIteratorPrototype%.next ( )
          2. 22.1.5.1.2 %StringIteratorPrototype% [ @@toStringTag ]
    2. +22.2 RegExp (Regular Expression) Objects
      1. +22.2.1 Patterns
        1. 22.2.1.1 SS: Early Errors
        2. 22.2.1.2 SS: CountLeftCapturingParensWithin (node )
        3. 22.2.1.3 SS: CountLeftCapturingParensBefore (node )
        4. 22.2.1.4 SS: CapturingGroupNumber
        5. 22.2.1.5 SS: IsCharacterClass
        6. 22.2.1.6 SS: CharacterValue
        7. 22.2.1.7 SS: MayContainStrings
        8. 22.2.1.8 SS: GroupSpecifiersThatMatch (thisGroupName )
        9. 22.2.1.9 SS: CapturingGroupName
        10. 22.2.1.10 SS: RegExpIdentifierCodePoints
        11. 22.2.1.11 SS: RegExpIdentifierCodePoint
      2. +22.2.2 Pattern Semantics
        1. +22.2.2.1 Notation
          1. 22.2.2.1.1 RegExp Records
        2. 22.2.2.2 RS: CompilePattern
        3. +22.2.2.3 RS: CompileSubpattern
          1. 22.2.2.3.1 RepeatMatcher (m,min,max,greedy,x,c,parenIndex,parenCount )
          2. 22.2.2.3.2 EmptyMatcher ( )
          3. 22.2.2.3.3 MatchTwoAlternatives (m1,m2 )
          4. 22.2.2.3.4 MatchSequence (m1,m2,direction )
        4. +22.2.2.4 RS: CompileAssertion
          1. 22.2.2.4.1 IsWordChar (rer,Input,e )
        5. 22.2.2.5 RS: CompileQuantifier
        6. 22.2.2.6 RS: CompileQuantifierPrefix
        7. +22.2.2.7 RS: CompileAtom
          1. 22.2.2.7.1 CharacterSetMatcher (rer,A,invert,direction )
          2. 22.2.2.7.2 BackreferenceMatcher (rer,n,direction )
          3. 22.2.2.7.3 Canonicalize (rer,ch )
        8. 22.2.2.8 RS: CompileCharacterClass
        9. +22.2.2.9 RS: CompileToCharSet
          1. 22.2.2.9.1 CharacterRange (A,B )
          2. 22.2.2.9.2 HasEitherUnicodeFlag (rer )
          3. 22.2.2.9.3 WordCharacters (rer )
          4. 22.2.2.9.4 AllCharacters (rer )
          5. 22.2.2.9.5 MaybeSimpleCaseFolding (rer,A )
          6. 22.2.2.9.6 CharacterComplement (rer,S )
          7. 22.2.2.9.7 UnicodeMatchProperty (rer,p )
          8. 22.2.2.9.8 UnicodeMatchPropertyValue (p,v )
        10. 22.2.2.10 RS: CompileClassSetString
      3. +22.2.3 Abstract Operations for RegExp Creation
        1. 22.2.3.1 RegExpCreate (P,F )
        2. 22.2.3.2 RegExpAlloc (newTarget )
        3. 22.2.3.3 RegExpInitialize (obj,pattern,flags )
        4. 22.2.3.4 SS: ParsePattern (patternText,u,v )
      4. +22.2.4 The RegExp Constructor
        1. 22.2.4.1 RegExp (pattern,flags )
      5. +22.2.5 Properties of the RegExp Constructor
        1. 22.2.5.1 RegExp.prototype
        2. 22.2.5.2 get RegExp [ @@species ]
      6. +22.2.6 Properties of the RegExp Prototype Object
        1. 22.2.6.1 RegExp.prototype.constructor
        2. 22.2.6.2 RegExp.prototype.exec (string )
        3. 22.2.6.3 get RegExp.prototype.dotAll
        4. +22.2.6.4 get RegExp.prototype.flags
          1. 22.2.6.4.1 RegExpHasFlag (R,codeUnit )
        5. 22.2.6.5 get RegExp.prototype.global
        6. 22.2.6.6 get RegExp.prototype.hasIndices
        7. 22.2.6.7 get RegExp.prototype.ignoreCase
        8. 22.2.6.8 RegExp.prototype [ @@match ] (string )
        9. 22.2.6.9 RegExp.prototype [ @@matchAll ] (string )
        10. 22.2.6.10 get RegExp.prototype.multiline
        11. 22.2.6.11 RegExp.prototype [ @@replace ] (string,replaceValue )
        12. 22.2.6.12 RegExp.prototype [ @@search ] (string )
        13. +22.2.6.13 get RegExp.prototype.source
          1. 22.2.6.13.1 EscapeRegExpPattern (P,F )
        14. 22.2.6.14 RegExp.prototype [ @@split ] (string,limit )
        15. 22.2.6.15 get RegExp.prototype.sticky
        16. 22.2.6.16 RegExp.prototype.test (S )
        17. 22.2.6.17 RegExp.prototype.toString ( )
        18. 22.2.6.18 get RegExp.prototype.unicode
        19. 22.2.6.19 get RegExp.prototype.unicodeSets
      7. +22.2.7 Abstract Operations for RegExp Matching
        1. 22.2.7.1 RegExpExec (R,S )
        2. 22.2.7.2 RegExpBuiltinExec (R,S )
        3. 22.2.7.3 AdvanceStringIndex (S,index,unicode )
        4. 22.2.7.4 GetStringIndex (S,codePointIndex )
        5. 22.2.7.5 Match Records
        6. 22.2.7.6 GetMatchString (S,match )
        7. 22.2.7.7 GetMatchIndexPair (S,match )
        8. 22.2.7.8 MakeMatchIndicesIndexPairArray (S,indices,groupNames,hasGroups )
      8. +22.2.8 Properties of RegExp Instances
        1. 22.2.8.1 lastIndex
      9. +22.2.9 RegExp String Iterator Objects
        1. 22.2.9.1 CreateRegExpStringIterator (R,S,global,fullUnicode )
        2. +22.2.9.2 The %RegExpStringIteratorPrototype% Object
          1. 22.2.9.2.1 %RegExpStringIteratorPrototype%.next ( )
          2. 22.2.9.2.2 %RegExpStringIteratorPrototype% [ @@toStringTag ]
  24. +23 Indexed Collections
    1. +23.1 Array Objects
      1. +23.1.1 The Array Constructor
        1. 23.1.1.1 Array ( ...values )
      2. +23.1.2 Properties of the Array Constructor
        1. 23.1.2.1 Array.from (items [ ,mapfn [ ,thisArg ] ] )
        2. 23.1.2.2 Array.isArray (arg )
        3. 23.1.2.3 Array.of ( ...items )
        4. 23.1.2.4 Array.prototype
        5. 23.1.2.5 get Array [ @@species ]
      3. +23.1.3 Properties of the Array Prototype Object
        1. 23.1.3.1 Array.prototype.at (index )
        2. +23.1.3.2 Array.prototype.concat ( ...items )
          1. 23.1.3.2.1 IsConcatSpreadable (O )
        3. 23.1.3.3 Array.prototype.constructor
        4. 23.1.3.4 Array.prototype.copyWithin (target,start [ ,end ] )
        5. 23.1.3.5 Array.prototype.entries ( )
        6. 23.1.3.6 Array.prototype.every (callbackfn [ ,thisArg ] )
        7. 23.1.3.7 Array.prototype.fill (value [ ,start [ ,end ] ] )
        8. 23.1.3.8 Array.prototype.filter (callbackfn [ ,thisArg ] )
        9. 23.1.3.9 Array.prototype.find (predicate [ ,thisArg ] )
        10. 23.1.3.10 Array.prototype.findIndex (predicate [ ,thisArg ] )
        11. 23.1.3.11 Array.prototype.findLast (predicate [ ,thisArg ] )
        12. +23.1.3.12 Array.prototype.findLastIndex (predicate [ ,thisArg ] )
          1. 23.1.3.12.1 FindViaPredicate (O,len,direction,predicate,thisArg )
        13. +23.1.3.13 Array.prototype.flat ( [depth ] )
          1. 23.1.3.13.1 FlattenIntoArray (target,source,sourceLen,start,depth [ ,mapperFunction [ ,thisArg ] ] )
        14. 23.1.3.14 Array.prototype.flatMap (mapperFunction [ ,thisArg ] )
        15. 23.1.3.15 Array.prototype.forEach (callbackfn [ ,thisArg ] )
        16. 23.1.3.16 Array.prototype.includes (searchElement [ ,fromIndex ] )
        17. 23.1.3.17 Array.prototype.indexOf (searchElement [ ,fromIndex ] )
        18. 23.1.3.18 Array.prototype.join (separator )
        19. 23.1.3.19 Array.prototype.keys ( )
        20. 23.1.3.20 Array.prototype.lastIndexOf (searchElement [ ,fromIndex ] )
        21. 23.1.3.21 Array.prototype.map (callbackfn [ ,thisArg ] )
        22. 23.1.3.22 Array.prototype.pop ( )
        23. 23.1.3.23 Array.prototype.push ( ...items )
        24. 23.1.3.24 Array.prototype.reduce (callbackfn [ ,initialValue ] )
        25. 23.1.3.25 Array.prototype.reduceRight (callbackfn [ ,initialValue ] )
        26. 23.1.3.26 Array.prototype.reverse ( )
        27. 23.1.3.27 Array.prototype.shift ( )
        28. 23.1.3.28 Array.prototype.slice (start,end )
        29. 23.1.3.29 Array.prototype.some (callbackfn [ ,thisArg ] )
        30. +23.1.3.30 Array.prototype.sort (comparefn )
          1. 23.1.3.30.1 SortIndexedProperties (obj,len,SortCompare,holes )
          2. 23.1.3.30.2 CompareArrayElements (x,y,comparefn )
        31. 23.1.3.31 Array.prototype.splice (start,deleteCount, ...items )
        32. 23.1.3.32 Array.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        33. 23.1.3.33 Array.prototype.toReversed ( )
        34. 23.1.3.34 Array.prototype.toSorted (comparefn )
        35. 23.1.3.35 Array.prototype.toSpliced (start,skipCount, ...items )
        36. 23.1.3.36 Array.prototype.toString ( )
        37. 23.1.3.37 Array.prototype.unshift ( ...items )
        38. 23.1.3.38 Array.prototype.values ( )
        39. 23.1.3.39 Array.prototype.with (index,value )
        40. 23.1.3.40 Array.prototype [ @@iterator ] ( )
        41. 23.1.3.41 Array.prototype [ @@unscopables ]
      4. +23.1.4 Properties of Array Instances
        1. 23.1.4.1 length
      5. +23.1.5 Array Iterator Objects
        1. 23.1.5.1 CreateArrayIterator (array,kind )
        2. +23.1.5.2 The %ArrayIteratorPrototype% Object
          1. 23.1.5.2.1 %ArrayIteratorPrototype%.next ( )
          2. 23.1.5.2.2 %ArrayIteratorPrototype% [ @@toStringTag ]
    2. +23.2 TypedArray Objects
      1. +23.2.1 The %TypedArray% Intrinsic Object
        1. 23.2.1.1 %TypedArray% ( )
      2. +23.2.2 Properties of the %TypedArray% Intrinsic Object
        1. 23.2.2.1 %TypedArray%.from (source [ ,mapfn [ ,thisArg ] ] )
        2. 23.2.2.2 %TypedArray%.of ( ...items )
        3. 23.2.2.3 %TypedArray%.prototype
        4. 23.2.2.4 get %TypedArray% [ @@species ]
      3. +23.2.3 Properties of the %TypedArray% Prototype Object
        1. 23.2.3.1 %TypedArray%.prototype.at (index )
        2. 23.2.3.2 get %TypedArray%.prototype.buffer
        3. 23.2.3.3 get %TypedArray%.prototype.byteLength
        4. 23.2.3.4 get %TypedArray%.prototype.byteOffset
        5. 23.2.3.5 %TypedArray%.prototype.constructor
        6. 23.2.3.6 %TypedArray%.prototype.copyWithin (target,start [ ,end ] )
        7. 23.2.3.7 %TypedArray%.prototype.entries ( )
        8. 23.2.3.8 %TypedArray%.prototype.every (callbackfn [ ,thisArg ] )
        9. 23.2.3.9 %TypedArray%.prototype.fill (value [ ,start [ ,end ] ] )
        10. 23.2.3.10 %TypedArray%.prototype.filter (callbackfn [ ,thisArg ] )
        11. 23.2.3.11 %TypedArray%.prototype.find (predicate [ ,thisArg ] )
        12. 23.2.3.12 %TypedArray%.prototype.findIndex (predicate [ ,thisArg ] )
        13. 23.2.3.13 %TypedArray%.prototype.findLast (predicate [ ,thisArg ] )
        14. 23.2.3.14 %TypedArray%.prototype.findLastIndex (predicate [ ,thisArg ] )
        15. 23.2.3.15 %TypedArray%.prototype.forEach (callbackfn [ ,thisArg ] )
        16. 23.2.3.16 %TypedArray%.prototype.includes (searchElement [ ,fromIndex ] )
        17. 23.2.3.17 %TypedArray%.prototype.indexOf (searchElement [ ,fromIndex ] )
        18. 23.2.3.18 %TypedArray%.prototype.join (separator )
        19. 23.2.3.19 %TypedArray%.prototype.keys ( )
        20. 23.2.3.20 %TypedArray%.prototype.lastIndexOf (searchElement [ ,fromIndex ] )
        21. 23.2.3.21 get %TypedArray%.prototype.length
        22. 23.2.3.22 %TypedArray%.prototype.map (callbackfn [ ,thisArg ] )
        23. 23.2.3.23 %TypedArray%.prototype.reduce (callbackfn [ ,initialValue ] )
        24. 23.2.3.24 %TypedArray%.prototype.reduceRight (callbackfn [ ,initialValue ] )
        25. 23.2.3.25 %TypedArray%.prototype.reverse ( )
        26. +23.2.3.26 %TypedArray%.prototype.set (source [ ,offset ] )
          1. 23.2.3.26.1 SetTypedArrayFromTypedArray (target,targetOffset,source )
          2. 23.2.3.26.2 SetTypedArrayFromArrayLike (target,targetOffset,source )
        27. 23.2.3.27 %TypedArray%.prototype.slice (start,end )
        28. 23.2.3.28 %TypedArray%.prototype.some (callbackfn [ ,thisArg ] )
        29. 23.2.3.29 %TypedArray%.prototype.sort (comparefn )
        30. 23.2.3.30 %TypedArray%.prototype.subarray (start,end )
        31. 23.2.3.31 %TypedArray%.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )
        32. 23.2.3.32 %TypedArray%.prototype.toReversed ( )
        33. 23.2.3.33 %TypedArray%.prototype.toSorted (comparefn )
        34. 23.2.3.34 %TypedArray%.prototype.toString ( )
        35. 23.2.3.35 %TypedArray%.prototype.values ( )
        36. 23.2.3.36 %TypedArray%.prototype.with (index,value )
        37. 23.2.3.37 %TypedArray%.prototype [ @@iterator ] ( )
        38. 23.2.3.38 get %TypedArray%.prototype [ @@toStringTag ]
      4. +23.2.4 Abstract Operations for TypedArray Objects
        1. 23.2.4.1 TypedArraySpeciesCreate (exemplar,argumentList )
        2. 23.2.4.2 TypedArrayCreateFromConstructor (constructor,argumentList )
        3. 23.2.4.3 TypedArrayCreateSameType (exemplar,argumentList )
        4. 23.2.4.4 ValidateTypedArray (O,order )
        5. 23.2.4.5 TypedArrayElementSize (O )
        6. 23.2.4.6 TypedArrayElementType (O )
        7. 23.2.4.7 CompareTypedArrayElements (x,y,comparefn )
      5. +23.2.5 TheTypedArray Constructors
        1. +23.2.5.1TypedArray ( ...args )
          1. 23.2.5.1.1 AllocateTypedArray (constructorName,newTarget,defaultProto [ ,length ] )
          2. 23.2.5.1.2 InitializeTypedArrayFromTypedArray (O,srcArray )
          3. 23.2.5.1.3 InitializeTypedArrayFromArrayBuffer (O,buffer,byteOffset,length )
          4. 23.2.5.1.4 InitializeTypedArrayFromList (O,values )
          5. 23.2.5.1.5 InitializeTypedArrayFromArrayLike (O,arrayLike )
          6. 23.2.5.1.6 AllocateTypedArrayBuffer (O,length )
      6. +23.2.6 Properties of theTypedArray Constructors
        1. 23.2.6.1TypedArray.BYTES_PER_ELEMENT
        2. 23.2.6.2TypedArray.prototype
      7. +23.2.7 Properties of theTypedArray Prototype Objects
        1. 23.2.7.1TypedArray.prototype.BYTES_PER_ELEMENT
        2. 23.2.7.2TypedArray.prototype.constructor
      8. 23.2.8 Properties ofTypedArray Instances
  25. +24 Keyed Collections
    1. +24.1 Map Objects
      1. +24.1.1 The Map Constructor
        1. 24.1.1.1 Map ( [iterable ] )
        2. 24.1.1.2 AddEntriesFromIterable (target,iterable,adder )
      2. +24.1.2 Properties of the Map Constructor
        1. 24.1.2.1 Map.groupBy (items,callbackfn )
        2. 24.1.2.2 Map.prototype
        3. 24.1.2.3 get Map [ @@species ]
      3. +24.1.3 Properties of the Map Prototype Object
        1. 24.1.3.1 Map.prototype.clear ( )
        2. 24.1.3.2 Map.prototype.constructor
        3. 24.1.3.3 Map.prototype.delete (key )
        4. 24.1.3.4 Map.prototype.entries ( )
        5. 24.1.3.5 Map.prototype.forEach (callbackfn [ ,thisArg ] )
        6. 24.1.3.6 Map.prototype.get (key )
        7. 24.1.3.7 Map.prototype.has (key )
        8. 24.1.3.8 Map.prototype.keys ( )
        9. 24.1.3.9 Map.prototype.set (key,value )
        10. 24.1.3.10 get Map.prototype.size
        11. 24.1.3.11 Map.prototype.values ( )
        12. 24.1.3.12 Map.prototype [ @@iterator ] ( )
        13. 24.1.3.13 Map.prototype [ @@toStringTag ]
      4. 24.1.4 Properties of Map Instances
      5. +24.1.5 Map Iterator Objects
        1. 24.1.5.1 CreateMapIterator (map,kind )
        2. +24.1.5.2 The %MapIteratorPrototype% Object
          1. 24.1.5.2.1 %MapIteratorPrototype%.next ( )
          2. 24.1.5.2.2 %MapIteratorPrototype% [ @@toStringTag ]
    2. +24.2 Set Objects
      1. +24.2.1 The Set Constructor
        1. 24.2.1.1 Set ( [iterable ] )
      2. +24.2.2 Properties of the Set Constructor
        1. 24.2.2.1 Set.prototype
        2. 24.2.2.2 get Set [ @@species ]
      3. +24.2.3 Properties of the Set Prototype Object
        1. 24.2.3.1 Set.prototype.add (value )
        2. 24.2.3.2 Set.prototype.clear ( )
        3. 24.2.3.3 Set.prototype.constructor
        4. 24.2.3.4 Set.prototype.delete (value )
        5. 24.2.3.5 Set.prototype.entries ( )
        6. 24.2.3.6 Set.prototype.forEach (callbackfn [ ,thisArg ] )
        7. 24.2.3.7 Set.prototype.has (value )
        8. 24.2.3.8 Set.prototype.keys ( )
        9. 24.2.3.9 get Set.prototype.size
        10. 24.2.3.10 Set.prototype.values ( )
        11. 24.2.3.11 Set.prototype [ @@iterator ] ( )
        12. 24.2.3.12 Set.prototype [ @@toStringTag ]
      4. 24.2.4 Properties of Set Instances
      5. +24.2.5 Set Iterator Objects
        1. 24.2.5.1 CreateSetIterator (set,kind )
        2. +24.2.5.2 The %SetIteratorPrototype% Object
          1. 24.2.5.2.1 %SetIteratorPrototype%.next ( )
          2. 24.2.5.2.2 %SetIteratorPrototype% [ @@toStringTag ]
    3. +24.3 WeakMap Objects
      1. +24.3.1 The WeakMap Constructor
        1. 24.3.1.1 WeakMap ( [iterable ] )
      2. +24.3.2 Properties of the WeakMap Constructor
        1. 24.3.2.1 WeakMap.prototype
      3. +24.3.3 Properties of the WeakMap Prototype Object
        1. 24.3.3.1 WeakMap.prototype.constructor
        2. 24.3.3.2 WeakMap.prototype.delete (key )
        3. 24.3.3.3 WeakMap.prototype.get (key )
        4. 24.3.3.4 WeakMap.prototype.has (key )
        5. 24.3.3.5 WeakMap.prototype.set (key,value )
        6. 24.3.3.6 WeakMap.prototype [ @@toStringTag ]
      4. 24.3.4 Properties of WeakMap Instances
    4. +24.4 WeakSet Objects
      1. +24.4.1 The WeakSet Constructor
        1. 24.4.1.1 WeakSet ( [iterable ] )
      2. +24.4.2 Properties of the WeakSet Constructor
        1. 24.4.2.1 WeakSet.prototype
      3. +24.4.3 Properties of the WeakSet Prototype Object
        1. 24.4.3.1 WeakSet.prototype.add (value )
        2. 24.4.3.2 WeakSet.prototype.constructor
        3. 24.4.3.3 WeakSet.prototype.delete (value )
        4. 24.4.3.4 WeakSet.prototype.has (value )
        5. 24.4.3.5 WeakSet.prototype [ @@toStringTag ]
      4. 24.4.4 Properties of WeakSet Instances
  26. +25 Structured Data
    1. +25.1 ArrayBuffer Objects
      1. 25.1.1 Notation
      2. 25.1.2 Fixed-length and Resizable ArrayBuffer Objects
      3. +25.1.3 Abstract Operations For ArrayBuffer Objects
        1. 25.1.3.1 AllocateArrayBuffer (constructor,byteLength [ ,maxByteLength ] )
        2. 25.1.3.2 ArrayBufferByteLength (arrayBuffer,order )
        3. 25.1.3.3 ArrayBufferCopyAndDetach (arrayBuffer,newLength,preserveResizability )
        4. 25.1.3.4 IsDetachedBuffer (arrayBuffer )
        5. 25.1.3.5 DetachArrayBuffer (arrayBuffer [ ,key ] )
        6. 25.1.3.6 CloneArrayBuffer (srcBuffer,srcByteOffset,srcLength )
        7. 25.1.3.7 GetArrayBufferMaxByteLengthOption (options )
        8. 25.1.3.8 HostResizeArrayBuffer (buffer,newByteLength )
        9. 25.1.3.9 IsFixedLengthArrayBuffer (arrayBuffer )
        10. 25.1.3.10 IsUnsignedElementType (type )
        11. 25.1.3.11 IsUnclampedIntegerElementType (type )
        12. 25.1.3.12 IsBigIntElementType (type )
        13. 25.1.3.13 IsNoTearConfiguration (type,order )
        14. 25.1.3.14 RawBytesToNumeric (type,rawBytes,isLittleEndian )
        15. 25.1.3.15 GetRawBytesFromSharedBlock (block,byteIndex,type,isTypedArray,order )
        16. 25.1.3.16 GetValueFromBuffer (arrayBuffer,byteIndex,type,isTypedArray,order [ ,isLittleEndian ] )
        17. 25.1.3.17 NumericToRawBytes (type,value,isLittleEndian )
        18. 25.1.3.18 SetValueInBuffer (arrayBuffer,byteIndex,type,value,isTypedArray,order [ ,isLittleEndian ] )
        19. 25.1.3.19 GetModifySetValueInBuffer (arrayBuffer,byteIndex,type,value,op )
      4. +25.1.4 The ArrayBuffer Constructor
        1. 25.1.4.1 ArrayBuffer (length [ ,options ] )
      5. +25.1.5 Properties of the ArrayBuffer Constructor
        1. 25.1.5.1 ArrayBuffer.isView (arg )
        2. 25.1.5.2 ArrayBuffer.prototype
        3. 25.1.5.3 get ArrayBuffer [ @@species ]
      6. +25.1.6 Properties of the ArrayBuffer Prototype Object
        1. 25.1.6.1 get ArrayBuffer.prototype.byteLength
        2. 25.1.6.2 ArrayBuffer.prototype.constructor
        3. 25.1.6.3 get ArrayBuffer.prototype.detached
        4. 25.1.6.4 get ArrayBuffer.prototype.maxByteLength
        5. 25.1.6.5 get ArrayBuffer.prototype.resizable
        6. 25.1.6.6 ArrayBuffer.prototype.resize (newLength )
        7. 25.1.6.7 ArrayBuffer.prototype.slice (start,end )
        8. 25.1.6.8 ArrayBuffer.prototype.transfer ( [newLength ] )
        9. 25.1.6.9 ArrayBuffer.prototype.transferToFixedLength ( [newLength ] )
        10. 25.1.6.10 ArrayBuffer.prototype [ @@toStringTag ]
      7. 25.1.7 Properties of ArrayBuffer Instances
      8. 25.1.8 Resizable ArrayBuffer Guidelines
    2. +25.2 SharedArrayBuffer Objects
      1. 25.2.1 Fixed-length and Growable SharedArrayBuffer Objects
      2. +25.2.2 Abstract Operations for SharedArrayBuffer Objects
        1. 25.2.2.1 AllocateSharedArrayBuffer (constructor,byteLength [ ,maxByteLength ] )
        2. 25.2.2.2 IsSharedArrayBuffer (obj )
        3. 25.2.2.3 HostGrowSharedArrayBuffer (buffer,newByteLength )
      3. +25.2.3 The SharedArrayBuffer Constructor
        1. 25.2.3.1 SharedArrayBuffer (length [ ,options ] )
      4. +25.2.4 Properties of the SharedArrayBuffer Constructor
        1. 25.2.4.1 SharedArrayBuffer.prototype
        2. 25.2.4.2 get SharedArrayBuffer [ @@species ]
      5. +25.2.5 Properties of the SharedArrayBuffer Prototype Object
        1. 25.2.5.1 get SharedArrayBuffer.prototype.byteLength
        2. 25.2.5.2 SharedArrayBuffer.prototype.constructor
        3. 25.2.5.3 SharedArrayBuffer.prototype.grow (newLength )
        4. 25.2.5.4 get SharedArrayBuffer.prototype.growable
        5. 25.2.5.5 get SharedArrayBuffer.prototype.maxByteLength
        6. 25.2.5.6 SharedArrayBuffer.prototype.slice (start,end )
        7. 25.2.5.7 SharedArrayBuffer.prototype [ @@toStringTag ]
      6. 25.2.6 Properties of SharedArrayBuffer Instances
      7. 25.2.7 Growable SharedArrayBuffer Guidelines
    3. +25.3 DataView Objects
      1. +25.3.1 Abstract Operations For DataView Objects
        1. 25.3.1.1 DataView With Buffer Witness Records
        2. 25.3.1.2 MakeDataViewWithBufferWitnessRecord (obj,order )
        3. 25.3.1.3 GetViewByteLength (viewRecord )
        4. 25.3.1.4 IsViewOutOfBounds (viewRecord )
        5. 25.3.1.5 GetViewValue (view,requestIndex,isLittleEndian,type )
        6. 25.3.1.6 SetViewValue (view,requestIndex,isLittleEndian,type,value )
      2. +25.3.2 The DataView Constructor
        1. 25.3.2.1 DataView (buffer [ ,byteOffset [ ,byteLength ] ] )
      3. +25.3.3 Properties of the DataView Constructor
        1. 25.3.3.1 DataView.prototype
      4. +25.3.4 Properties of the DataView Prototype Object
        1. 25.3.4.1 get DataView.prototype.buffer
        2. 25.3.4.2 get DataView.prototype.byteLength
        3. 25.3.4.3 get DataView.prototype.byteOffset
        4. 25.3.4.4 DataView.prototype.constructor
        5. 25.3.4.5 DataView.prototype.getBigInt64 (byteOffset [ ,littleEndian ] )
        6. 25.3.4.6 DataView.prototype.getBigUint64 (byteOffset [ ,littleEndian ] )
        7. 25.3.4.7 DataView.prototype.getFloat32 (byteOffset [ ,littleEndian ] )
        8. 25.3.4.8 DataView.prototype.getFloat64 (byteOffset [ ,littleEndian ] )
        9. 25.3.4.9 DataView.prototype.getInt8 (byteOffset )
        10. 25.3.4.10 DataView.prototype.getInt16 (byteOffset [ ,littleEndian ] )
        11. 25.3.4.11 DataView.prototype.getInt32 (byteOffset [ ,littleEndian ] )
        12. 25.3.4.12 DataView.prototype.getUint8 (byteOffset )
        13. 25.3.4.13 DataView.prototype.getUint16 (byteOffset [ ,littleEndian ] )
        14. 25.3.4.14 DataView.prototype.getUint32 (byteOffset [ ,littleEndian ] )
        15. 25.3.4.15 DataView.prototype.setBigInt64 (byteOffset,value [ ,littleEndian ] )
        16. 25.3.4.16 DataView.prototype.setBigUint64 (byteOffset,value [ ,littleEndian ] )
        17. 25.3.4.17 DataView.prototype.setFloat32 (byteOffset,value [ ,littleEndian ] )
        18. 25.3.4.18 DataView.prototype.setFloat64 (byteOffset,value [ ,littleEndian ] )
        19. 25.3.4.19 DataView.prototype.setInt8 (byteOffset,value )
        20. 25.3.4.20 DataView.prototype.setInt16 (byteOffset,value [ ,littleEndian ] )
        21. 25.3.4.21 DataView.prototype.setInt32 (byteOffset,value [ ,littleEndian ] )
        22. 25.3.4.22 DataView.prototype.setUint8 (byteOffset,value )
        23. 25.3.4.23 DataView.prototype.setUint16 (byteOffset,value [ ,littleEndian ] )
        24. 25.3.4.24 DataView.prototype.setUint32 (byteOffset,value [ ,littleEndian ] )
        25. 25.3.4.25 DataView.prototype [ @@toStringTag ]
      5. 25.3.5 Properties of DataView Instances
    4. +25.4 The Atomics Object
      1. 25.4.1 Waiter Record
      2. 25.4.2 WaiterList Records
      3. +25.4.3 Abstract Operations for Atomics
        1. 25.4.3.1 ValidateIntegerTypedArray (typedArray,waitable )
        2. 25.4.3.2 ValidateAtomicAccess (taRecord,requestIndex )
        3. 25.4.3.3 ValidateAtomicAccessOnIntegerTypedArray (typedArray,requestIndex [ ,waitable ] )
        4. 25.4.3.4 RevalidateAtomicAccess (typedArray,byteIndexInBuffer )
        5. 25.4.3.5 GetWaiterList (block,i )
        6. 25.4.3.6 EnterCriticalSection (WL )
        7. 25.4.3.7 LeaveCriticalSection (WL )
        8. 25.4.3.8 AddWaiter (WL,waiterRecord )
        9. 25.4.3.9 RemoveWaiter (WL,waiterRecord )
        10. 25.4.3.10 RemoveWaiters (WL,c )
        11. 25.4.3.11 SuspendThisAgent (WL,waiterRecord )
        12. 25.4.3.12 NotifyWaiter (WL,waiterRecord )
        13. 25.4.3.13 EnqueueResolveInAgentJob (agentSignifier,promiseCapability,resolution )
        14. 25.4.3.14 DoWait (mode,typedArray,index,value,timeout )
        15. 25.4.3.15 EnqueueAtomicsWaitAsyncTimeoutJob (WL,waiterRecord )
        16. 25.4.3.16 AtomicCompareExchangeInSharedBlock (block,byteIndexInBuffer,elementSize,expectedBytes,replacementBytes )
        17. 25.4.3.17 AtomicReadModifyWrite (typedArray,index,value,op )
        18. 25.4.3.18 ByteListBitwiseOp (op,xBytes,yBytes )
        19. 25.4.3.19 ByteListEqual (xBytes,yBytes )
      4. 25.4.4 Atomics.add (typedArray,index,value )
      5. 25.4.5 Atomics.and (typedArray,index,value )
      6. 25.4.6 Atomics.compareExchange (typedArray,index,expectedValue,replacementValue )
      7. 25.4.7 Atomics.exchange (typedArray,index,value )
      8. 25.4.8 Atomics.isLockFree (size )
      9. 25.4.9 Atomics.load (typedArray,index )
      10. 25.4.10 Atomics.or (typedArray,index,value )
      11. 25.4.11 Atomics.store (typedArray,index,value )
      12. 25.4.12 Atomics.sub (typedArray,index,value )
      13. 25.4.13 Atomics.wait (typedArray,index,value,timeout )
      14. 25.4.14 Atomics.waitAsync (typedArray,index,value,timeout )
      15. 25.4.15 Atomics.notify (typedArray,index,count )
      16. 25.4.16 Atomics.xor (typedArray,index,value )
      17. 25.4.17 Atomics [ @@toStringTag ]
    5. +25.5 The JSON Object
      1. +25.5.1 JSON.parse (text [ ,reviver ] )
        1. 25.5.1.1 InternalizeJSONProperty (holder,name,reviver )
      2. +25.5.2 JSON.stringify (value [ ,replacer [ ,space ] ] )
        1. 25.5.2.1 JSON Serialization Record
        2. 25.5.2.2 SerializeJSONProperty (state,key,holder )
        3. 25.5.2.3 QuoteJSONString (value )
        4. 25.5.2.4 UnicodeEscape (C )
        5. 25.5.2.5 SerializeJSONObject (state,value )
        6. 25.5.2.6 SerializeJSONArray (state,value )
      3. 25.5.3 JSON [ @@toStringTag ]
  27. +26 Managing Memory
    1. +26.1 WeakRef Objects
      1. +26.1.1 The WeakRef Constructor
        1. 26.1.1.1 WeakRef (target )
      2. +26.1.2 Properties of the WeakRef Constructor
        1. 26.1.2.1 WeakRef.prototype
      3. +26.1.3 Properties of the WeakRef Prototype Object
        1. 26.1.3.1 WeakRef.prototype.constructor
        2. 26.1.3.2 WeakRef.prototype.deref ( )
        3. 26.1.3.3 WeakRef.prototype [ @@toStringTag ]
      4. +26.1.4 WeakRef Abstract Operations
        1. 26.1.4.1 WeakRefDeref (weakRef )
      5. 26.1.5 Properties of WeakRef Instances
    2. +26.2 FinalizationRegistry Objects
      1. +26.2.1 The FinalizationRegistry Constructor
        1. 26.2.1.1 FinalizationRegistry (cleanupCallback )
      2. +26.2.2 Properties of the FinalizationRegistry Constructor
        1. 26.2.2.1 FinalizationRegistry.prototype
      3. +26.2.3 Properties of the FinalizationRegistry Prototype Object
        1. 26.2.3.1 FinalizationRegistry.prototype.constructor
        2. 26.2.3.2 FinalizationRegistry.prototype.register (target,heldValue [ ,unregisterToken ] )
        3. 26.2.3.3 FinalizationRegistry.prototype.unregister (unregisterToken )
        4. 26.2.3.4 FinalizationRegistry.prototype [ @@toStringTag ]
      4. 26.2.4 Properties of FinalizationRegistry Instances
  28. +27 Control Abstraction Objects
    1. +27.1 Iteration
      1. +27.1.1 Common Iteration Interfaces
        1. 27.1.1.1 TheIterable Interface
        2. 27.1.1.2 TheIterator Interface
        3. 27.1.1.3 TheAsyncIterable Interface
        4. 27.1.1.4 TheAsyncIterator Interface
        5. 27.1.1.5 TheIteratorResult Interface
      2. +27.1.2 The %IteratorPrototype% Object
        1. 27.1.2.1 %IteratorPrototype% [ @@iterator ] ( )
      3. +27.1.3 The %AsyncIteratorPrototype% Object
        1. 27.1.3.1 %AsyncIteratorPrototype% [ @@asyncIterator ] ( )
      4. +27.1.4 Async-from-Sync Iterator Objects
        1. 27.1.4.1 CreateAsyncFromSyncIterator (syncIteratorRecord )
        2. +27.1.4.2 The %AsyncFromSyncIteratorPrototype% Object
          1. 27.1.4.2.1 %AsyncFromSyncIteratorPrototype%.next ( [value ] )
          2. 27.1.4.2.2 %AsyncFromSyncIteratorPrototype%.return ( [value ] )
          3. 27.1.4.2.3 %AsyncFromSyncIteratorPrototype%.throw ( [value ] )
        3. 27.1.4.3 Properties of Async-from-Sync Iterator Instances
        4. 27.1.4.4 AsyncFromSyncIteratorContinuation (result,promiseCapability )
    2. +27.2 Promise Objects
      1. +27.2.1 Promise Abstract Operations
        1. +27.2.1.1 PromiseCapability Records
          1. 27.2.1.1.1 IfAbruptRejectPromise (value,capability )
        2. 27.2.1.2 PromiseReaction Records
        3. +27.2.1.3 CreateResolvingFunctions (promise )
          1. 27.2.1.3.1 Promise Reject Functions
          2. 27.2.1.3.2 Promise Resolve Functions
        4. 27.2.1.4 FulfillPromise (promise,value )
        5. 27.2.1.5 NewPromiseCapability (C )
        6. 27.2.1.6 IsPromise (x )
        7. 27.2.1.7 RejectPromise (promise,reason )
        8. 27.2.1.8 TriggerPromiseReactions (reactions,argument )
        9. 27.2.1.9 HostPromiseRejectionTracker (promise,operation )
      2. +27.2.2 Promise Jobs
        1. 27.2.2.1 NewPromiseReactionJob (reaction,argument )
        2. 27.2.2.2 NewPromiseResolveThenableJob (promiseToResolve,thenable,then )
      3. +27.2.3 The Promise Constructor
        1. 27.2.3.1 Promise (executor )
      4. +27.2.4 Properties of the Promise Constructor
        1. +27.2.4.1 Promise.all (iterable )
          1. 27.2.4.1.1 GetPromiseResolve (promiseConstructor )
          2. 27.2.4.1.2 PerformPromiseAll (iteratorRecord,constructor,resultCapability,promiseResolve )
          3. 27.2.4.1.3Promise.all Resolve Element Functions
        2. +27.2.4.2 Promise.allSettled (iterable )
          1. 27.2.4.2.1 PerformPromiseAllSettled (iteratorRecord,constructor,resultCapability,promiseResolve )
          2. 27.2.4.2.2Promise.allSettled Resolve Element Functions
          3. 27.2.4.2.3Promise.allSettled Reject Element Functions
        3. +27.2.4.3 Promise.any (iterable )
          1. 27.2.4.3.1 PerformPromiseAny (iteratorRecord,constructor,resultCapability,promiseResolve )
          2. 27.2.4.3.2Promise.any Reject Element Functions
        4. 27.2.4.4 Promise.prototype
        5. +27.2.4.5 Promise.race (iterable )
          1. 27.2.4.5.1 PerformPromiseRace (iteratorRecord,constructor,resultCapability,promiseResolve )
        6. 27.2.4.6 Promise.reject (r )
        7. +27.2.4.7 Promise.resolve (x )
          1. 27.2.4.7.1 PromiseResolve (C,x )
        8. 27.2.4.8 Promise.withResolvers ( )
        9. 27.2.4.9 get Promise [ @@species ]
      5. +27.2.5 Properties of the Promise Prototype Object
        1. 27.2.5.1 Promise.prototype.catch (onRejected )
        2. 27.2.5.2 Promise.prototype.constructor
        3. 27.2.5.3 Promise.prototype.finally (onFinally )
        4. +27.2.5.4 Promise.prototype.then (onFulfilled,onRejected )
          1. 27.2.5.4.1 PerformPromiseThen (promise,onFulfilled,onRejected [ ,resultCapability ] )
        5. 27.2.5.5 Promise.prototype [ @@toStringTag ]
      6. 27.2.6 Properties of Promise Instances
    3. +27.3 GeneratorFunction Objects
      1. +27.3.1 The GeneratorFunction Constructor
        1. 27.3.1.1 GeneratorFunction ( ...parameterArgs,bodyArg )
      2. +27.3.2 Properties of the GeneratorFunction Constructor
        1. 27.3.2.1 GeneratorFunction.prototype
      3. +27.3.3 Properties of the GeneratorFunction Prototype Object
        1. 27.3.3.1 GeneratorFunction.prototype.constructor
        2. 27.3.3.2 GeneratorFunction.prototype.prototype
        3. 27.3.3.3 GeneratorFunction.prototype [ @@toStringTag ]
      4. +27.3.4 GeneratorFunction Instances
        1. 27.3.4.1 length
        2. 27.3.4.2 name
        3. 27.3.4.3 prototype
    4. +27.4 AsyncGeneratorFunction Objects
      1. +27.4.1 The AsyncGeneratorFunction Constructor
        1. 27.4.1.1 AsyncGeneratorFunction ( ...parameterArgs,bodyArg )
      2. +27.4.2 Properties of the AsyncGeneratorFunction Constructor
        1. 27.4.2.1 AsyncGeneratorFunction.prototype
      3. +27.4.3 Properties of the AsyncGeneratorFunction Prototype Object
        1. 27.4.3.1 AsyncGeneratorFunction.prototype.constructor
        2. 27.4.3.2 AsyncGeneratorFunction.prototype.prototype
        3. 27.4.3.3 AsyncGeneratorFunction.prototype [ @@toStringTag ]
      4. +27.4.4 AsyncGeneratorFunction Instances
        1. 27.4.4.1 length
        2. 27.4.4.2 name
        3. 27.4.4.3 prototype
    5. +27.5 Generator Objects
      1. +27.5.1 Properties of the Generator Prototype Object
        1. 27.5.1.1 Generator.prototype.constructor
        2. 27.5.1.2 Generator.prototype.next (value )
        3. 27.5.1.3 Generator.prototype.return (value )
        4. 27.5.1.4 Generator.prototype.throw (exception )
        5. 27.5.1.5 Generator.prototype [ @@toStringTag ]
      2. 27.5.2 Properties of Generator Instances
      3. +27.5.3 Generator Abstract Operations
        1. 27.5.3.1 GeneratorStart (generator,generatorBody )
        2. 27.5.3.2 GeneratorValidate (generator,generatorBrand )
        3. 27.5.3.3 GeneratorResume (generator,value,generatorBrand )
        4. 27.5.3.4 GeneratorResumeAbrupt (generator,abruptCompletion,generatorBrand )
        5. 27.5.3.5 GetGeneratorKind ( )
        6. 27.5.3.6 GeneratorYield (iterNextObj )
        7. 27.5.3.7 Yield (value )
        8. 27.5.3.8 CreateIteratorFromClosure (closure,generatorBrand,generatorPrototype )
    6. +27.6 AsyncGenerator Objects
      1. +27.6.1 Properties of the AsyncGenerator Prototype Object
        1. 27.6.1.1 AsyncGenerator.prototype.constructor
        2. 27.6.1.2 AsyncGenerator.prototype.next (value )
        3. 27.6.1.3 AsyncGenerator.prototype.return (value )
        4. 27.6.1.4 AsyncGenerator.prototype.throw (exception )
        5. 27.6.1.5 AsyncGenerator.prototype [ @@toStringTag ]
      2. 27.6.2 Properties of AsyncGenerator Instances
      3. +27.6.3 AsyncGenerator Abstract Operations
        1. 27.6.3.1 AsyncGeneratorRequest Records
        2. 27.6.3.2 AsyncGeneratorStart (generator,generatorBody )
        3. 27.6.3.3 AsyncGeneratorValidate (generator,generatorBrand )
        4. 27.6.3.4 AsyncGeneratorEnqueue (generator,completion,promiseCapability )
        5. 27.6.3.5 AsyncGeneratorCompleteStep (generator,completion,done [ ,realm ] )
        6. 27.6.3.6 AsyncGeneratorResume (generator,completion )
        7. 27.6.3.7 AsyncGeneratorUnwrapYieldResumption (resumptionValue )
        8. 27.6.3.8 AsyncGeneratorYield (value )
        9. 27.6.3.9 AsyncGeneratorAwaitReturn (generator )
        10. 27.6.3.10 AsyncGeneratorDrainQueue (generator )
        11. 27.6.3.11 CreateAsyncIteratorFromClosure (closure,generatorBrand,generatorPrototype )
    7. +27.7 AsyncFunction Objects
      1. +27.7.1 The AsyncFunction Constructor
        1. 27.7.1.1 AsyncFunction ( ...parameterArgs,bodyArg )
      2. +27.7.2 Properties of the AsyncFunction Constructor
        1. 27.7.2.1 AsyncFunction.prototype
      3. +27.7.3 Properties of the AsyncFunction Prototype Object
        1. 27.7.3.1 AsyncFunction.prototype.constructor
        2. 27.7.3.2 AsyncFunction.prototype [ @@toStringTag ]
      4. +27.7.4 AsyncFunction Instances
        1. 27.7.4.1 length
        2. 27.7.4.2 name
      5. +27.7.5 Async Functions Abstract Operations
        1. 27.7.5.1 AsyncFunctionStart (promiseCapability,asyncFunctionBody )
        2. 27.7.5.2 AsyncBlockStart (promiseCapability,asyncBody,asyncContext )
        3. 27.7.5.3 Await (value )
  29. +28 Reflection
    1. +28.1 The Reflect Object
      1. 28.1.1 Reflect.apply (target,thisArgument,argumentsList )
      2. 28.1.2 Reflect.construct (target,argumentsList [ ,newTarget ] )
      3. 28.1.3 Reflect.defineProperty (target,propertyKey,attributes )
      4. 28.1.4 Reflect.deleteProperty (target,propertyKey )
      5. 28.1.5 Reflect.get (target,propertyKey [ ,receiver ] )
      6. 28.1.6 Reflect.getOwnPropertyDescriptor (target,propertyKey )
      7. 28.1.7 Reflect.getPrototypeOf (target )
      8. 28.1.8 Reflect.has (target,propertyKey )
      9. 28.1.9 Reflect.isExtensible (target )
      10. 28.1.10 Reflect.ownKeys (target )
      11. 28.1.11 Reflect.preventExtensions (target )
      12. 28.1.12 Reflect.set (target,propertyKey,V [ ,receiver ] )
      13. 28.1.13 Reflect.setPrototypeOf (target,proto )
      14. 28.1.14 Reflect [ @@toStringTag ]
    2. +28.2 Proxy Objects
      1. +28.2.1 The Proxy Constructor
        1. 28.2.1.1 Proxy (target,handler )
      2. +28.2.2 Properties of the Proxy Constructor
        1. 28.2.2.1 Proxy.revocable (target,handler )
    3. +28.3 Module Namespace Objects
      1. 28.3.1 @@toStringTag
  30. +29 Memory Model
    1. 29.1 Memory Model Fundamentals
    2. 29.2 Agent Events Records
    3. 29.3 Chosen Value Records
    4. 29.4 Candidate Executions
    5. +29.5 Abstract Operations for the Memory Model
      1. 29.5.1 EventSet (execution )
      2. 29.5.2 SharedDataBlockEventSet (execution )
      3. 29.5.3 HostEventSet (execution )
      4. 29.5.4 ComposeWriteEventBytes (execution,byteIndex,Ws )
      5. 29.5.5 ValueOfReadEvent (execution,R )
    6. +29.6 Relations of Candidate Executions
      1. 29.6.1 agent-order
      2. 29.6.2 reads-bytes-from
      3. 29.6.3 reads-from
      4. 29.6.4 host-synchronizes-with
      5. 29.6.5 synchronizes-with
      6. 29.6.6 happens-before
    7. +29.7 Properties of Valid Executions
      1. 29.7.1 Valid Chosen Reads
      2. 29.7.2 Coherent Reads
      3. 29.7.3 Tear Free Reads
      4. 29.7.4 Sequentially Consistent Atomics
      5. 29.7.5 Valid Executions
    8. 29.8 Races
    9. 29.9 Data Races
    10. 29.10 Data Race Freedom
    11. 29.11 Shared Memory Guidelines
  31. +A Grammar Summary
    1. A.1 Lexical Grammar
    2. A.2 Expressions
    3. A.3 Statements
    4. A.4 Functions and Classes
    5. A.5 Scripts and Modules
    6. A.6 Number Conversions
    7. A.7 Time Zone Offset String Format
    8. A.8 Regular Expressions
  32. +B Additional ECMAScript Features for Web Browsers
    1. +B.1 Additional Syntax
      1. B.1.1 HTML-like Comments
      2. +B.1.2 Regular Expressions Patterns
        1. B.1.2.1 SS: Early Errors
        2. B.1.2.2 SS: CountLeftCapturingParensWithin and CountLeftCapturingParensBefore
        3. B.1.2.3 SS: IsCharacterClass
        4. B.1.2.4 SS: CharacterValue
        5. B.1.2.5 RS: CompileSubpattern
        6. B.1.2.6 RS: CompileAssertion
        7. B.1.2.7 RS: CompileAtom
        8. +B.1.2.8 RS: CompileToCharSet
          1. B.1.2.8.1 CharacterRangeOrUnion (rer,A,B )
        9. B.1.2.9 SS: ParsePattern (patternText,u,v )
    2. +B.2 Additional Built-in Properties
      1. +B.2.1 Additional Properties of the Global Object
        1. B.2.1.1 escape (string )
        2. B.2.1.2 unescape (string )
      2. +B.2.2 Additional Properties of the String.prototype Object
        1. B.2.2.1 String.prototype.substr (start,length )
        2. +B.2.2.2 String.prototype.anchor (name )
          1. B.2.2.2.1 CreateHTML (string,tag,attribute,value )
        3. B.2.2.3 String.prototype.big ( )
        4. B.2.2.4 String.prototype.blink ( )
        5. B.2.2.5 String.prototype.bold ( )
        6. B.2.2.6 String.prototype.fixed ( )
        7. B.2.2.7 String.prototype.fontcolor (color )
        8. B.2.2.8 String.prototype.fontsize (size )
        9. B.2.2.9 String.prototype.italics ( )
        10. B.2.2.10 String.prototype.link (url )
        11. B.2.2.11 String.prototype.small ( )
        12. B.2.2.12 String.prototype.strike ( )
        13. B.2.2.13 String.prototype.sub ( )
        14. B.2.2.14 String.prototype.sup ( )
        15. B.2.2.15 String.prototype.trimLeft ( )
        16. B.2.2.16 String.prototype.trimRight ( )
      3. +B.2.3 Additional Properties of the Date.prototype Object
        1. B.2.3.1 Date.prototype.getYear ( )
        2. B.2.3.2 Date.prototype.setYear (year )
        3. B.2.3.3 Date.prototype.toGMTString ( )
      4. +B.2.4 Additional Properties of the RegExp.prototype Object
        1. B.2.4.1 RegExp.prototype.compile (pattern,flags )
    3. +B.3 Other Additional Features
      1. B.3.1 Labelled Function Declarations
      2. +B.3.2 Block-Level Function Declarations Web Legacy Compatibility Semantics
        1. B.3.2.1 Changes to FunctionDeclarationInstantiation
        2. B.3.2.2 Changes to GlobalDeclarationInstantiation
        3. B.3.2.3 Changes to EvalDeclarationInstantiation
        4. B.3.2.4 Changes to Block SS: Early Errors
        5. B.3.2.5 Changes toswitch Statement SS: Early Errors
        6. B.3.2.6 Changes to BlockDeclarationInstantiation
      3. B.3.3 FunctionDeclarations in IfStatement Statement Clauses
      4. B.3.4 VariableStatements in Catch Blocks
      5. B.3.5 Initializers in ForIn Statement Heads
      6. +B.3.6 The[[IsHTMLDDA]] Internal Slot
        1. B.3.6.1 Changes to ToBoolean
        2. B.3.6.2 Changes to IsLooselyEqual
        3. B.3.6.3 Changes to thetypeof Operator
      7. B.3.7 Non-default behaviour in HostMakeJobCallback
      8. B.3.8 Non-default behaviour in HostEnsureCanAddPrivateElement
  33. C The Strict Mode of ECMAScript
  34. +D Host Layering Points
    1. D.1 Host Hooks
    2. D.2 Host-defined Fields
    3. D.3 Host-defined Objects
    4. D.4 Running Jobs
    5. D.5 Internal Methods of Exotic Objects
    6. D.6 Built-in Objects and Methods
  35. E Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact
  36. F Additions and Changes That Introduce Incompatibilities with Prior Editions
  37. G Colophon
  38. H Bibliography
  39. I Copyright & Software License

ECMA-262, 15th edition, June 2024
ECMAScript® 2024 Language Specification

About this Specification

The document athttps://tc39.es/ecma262/ is the most accurate and up-to-date ECMAScript specification. It contains the content of the most recent yearly snapshot plus anyfinished proposals (those that have reached Stage 4 in theproposal process and thus are implemented in several implementations and will be in the next practical revision) since that snapshot was taken.

This document is available asa single page and asmultiple pages.

Contributing to this Specification

This specification is developed on GitHub with the help of the ECMAScript community. There are a number of ways to contribute to the development of this specification:

Refer to thecolophon for more information on how this document is created.

Introduction

This Ecma Standard defines the ECMAScript 2024 Language. It is the fifteenth edition of the ECMAScript Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely used general-purpose programming languages. It is best known as the language embedded in web browsers but has also been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation of future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web where it has become the programming language that is supported by essentially all web browsers. Significant work was done to develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language specification that have become common among browser implementations and added support for new features that had emerged since the publication of the third edition. Such features includeaccessor properties, reflective creation and inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The fifth edition was adopted by the Ecma General Assembly of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication. However, this was preceded by significant experimentation and language enhancement design efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a fifteen year effort. The goals for this edition included providing better support for large applications, library creation, and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming, destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode supplementary characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth edition was adopted by the General Assembly of June 2015.

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally, numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown. ES2016 also included support for a new exponentiation operator and adds a new method toArray.prototype calledincludes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language and library enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous programming experience by providing syntax for promise-returning functions. Shared Memory and Atomics introduce a newmemory model that allows multi-agent programs to communicate using atomic operations that ensure a well-defined execution order even on parallel CPUs. It also included new static methods on Object:Object.values,Object.entries, andObject.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the AsyncIterator protocol and async generators. It also included four new regular expression features: thedotAll flag, named capture groups, Unicode property escapes, and look-behind assertions. Lastly it included object rest and spread properties.

ECMAScript 2019 introduced a few new built-in functions:flat andflatMap onArray.prototype for flattening arrays,Object.fromEntries for directly turning the return value ofObject.entries into a new Object, andtrimStart andtrimEnd onString.prototype as better-named alternatives to the widely implemented but non-standardString.prototype.trimLeft andtrimRight built-ins. In addition, it included a few minor updates to syntax and semantics. Updated syntax included optional catch binding parameters and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in string literals to align with JSON. Other updates included requiring thatArray.prototype.sort be a stable sort, requiring thatJSON.stringify return well-formed UTF-8 regardless of input, and clarifyingFunction.prototype.toString by requiring that it either return the corresponding original source text or a standard placeholder.

ECMAScript 2020, the 11th edition, introduced thematchAll method for Strings, to produce an iterator for all match objects generated by a global regular expression;import(), a syntax to asynchronously import Modules with a dynamic specifier;BigInt, a new number primitive for working with arbitrary precisionintegers;Promise.allSettled, a new Promise combinator that does not short-circuit;globalThis, a universal way to access the globalthis value; dedicatedexport * as ns from 'module' syntax for use within modules; increased standardization offor-in enumeration order;import.meta, ahost-populated object available in Modules that may contain contextual information about the Module; as well as adding two new syntax features to improve working with “nullish” values (undefined ornull): nullish coalescing, a value selection operator; and optional chaining, a property access and function invocation operator that short-circuits if the value to access/invoke is nullish.

ECMAScript 2021, the 12th edition, introduced thereplaceAll method for Strings;Promise.any, a Promise combinator that short-circuits when an input value is fulfilled;AggregateError, a new Error type to represent multiple errors at once; logical assignment operators (??=,&&=,||=);WeakRef, for referring to a target object without preserving it from garbage collection, andFinalizationRegistry, to manage registration and unregistration of cleanup operations performed when target objects are garbage collected; separators for numeric literals (1_000); andArray.prototype.sort was made more precise, reducing the amount of cases that result in animplementation-definedsort order.

ECMAScript 2022, the 13th edition, introduced top-levelawait, allowing thekeyword to be used at the top level of modules; new class elements: public and private instance fields, public and private static fields, private instance methods and accessors, and private static methods and accessors; static blocks inside classes, to perform per-class evaluation initialization; the#x in obj syntax, to test for presence of private fields on objects; regular expression match indices via the/d flag, which provides start and end indices for matched substrings; thecause property onError objects, which can be used to record a causation chain in errors; theat method for Strings, Arrays, andTypedArrays, which allows relative indexing; andObject.hasOwn, a convenient alternative toObject.prototype.hasOwnProperty.

ECMAScript 2023, the 14th edition, introduced thetoSorted,toReversed,with,findLast, andfindLastIndex methods onArray.prototype andTypedArray.prototype, as well as thetoSpliced method onArray.prototype; added support for#! comments at the beginning of files to better facilitate executable ECMAScript files; and allowed the use of most Symbols as keys in weak collections.

ECMAScript 2024, the 15th edition, added facilities for resizing and transferring ArrayBuffers and SharedArrayBuffers; added a new RegExp/v flag for creating RegExps with more advanced features for working with sets of strings; and introduced thePromise.withResolvers convenience method for constructing Promises, theObject.groupBy andMap.groupBy methods for aggregating data, theAtomics.waitAsync method for asynchronously waiting for a change to shared memory, and theString.prototype.isWellFormed andString.prototype.toWellFormed methods for checking and ensuring that strings contain only well-formed Unicode.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed implementation experiments, contributed test suites, and educated the world-wide developer community about ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, Project Editor, 6th Edition

Brian Terlson
ECMA-262, Project Editor, 7th through 10th Editions

Jordan Harband
ECMA-262, Project Editor, 10th through 12th Editions

Shu-yu Guo
ECMA-262, Project Editor, 12th through 15th Editions

Michael Ficarra
ECMA-262, Project Editor, 12th through 15th Editions

Kevin Gibbons
ECMA-262, Project Editor, 12th through 15th Editions

1 Scope

This Standard defines the ECMAScript 2024 general-purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version of the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that supports programs that need to adapt to the linguistic and cultural conventions used by different human languages and countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide properties not described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of any “futurereserved words” noted in subclause12.7.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension in subclause17.1.

A conforming implementation of ECMAScript must not redefine any facilities that are notimplementation-defined,implementation-approximated, orhost-defined.

A conforming implementation of ECMAScript may choose to implement or not implementNormative Optional subclauses. If any Normative Optional behaviour is implemented, all of the behaviour in the containing Normative Optional clause must be implemented. A Normative Optional clause is denoted in this specification with the words "Normative Optional" in a coloured box, as shown below.

Normative Optional

2.1 Example Normative Optional Clause Heading

Example clause contents.

A conforming implementation of ECMAScript must implementLegacy subclauses, unless they are also marked as Normative Optional. All of the language features and behaviours specified within Legacy subclauses have one or more undesirable characteristics. However, their continued usage in existing applications prevents their removal from this specification. These features are not considered part of the core ECMAScript language. Programmers should not use or assume the existence of these features and behaviours when writing new ECMAScript code.

Legacy

2.2 Example Legacy Clause Heading

Example clause contents.

Normative Optional,Legacy

2.3 Example Legacy Normative Optional Clause Heading

Example clause contents.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEEE 754-2019,IEEE Standard for Floating-Point Arithmetic.

The Unicode Standard.
https://unicode.org/versions/latest

ISO/IEC 10646,Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, Amendment 4:2008, and additional amendments and corrigenda, or successor.

ECMA-402,ECMAScript Internationalization API Specification, specifically the annual edition corresponding to this edition of this specification.
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/

ECMA-404,The JSON Data Interchange Format.
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational objects within ahost environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only the objects and other facilities described in this specification but also certain environment-specific objects, whose description and behaviour are beyond the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-purpose programming language. Ascripting language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said to provide ahost environment of objects and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be aWeb scripting language, providing a mechanism to enliven Web pages in browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used to provide core scripting capabilities for a variety ofhost environments. Therefore the core language is specified in this document apart from any particularhost environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in many different environments and scales. As the usage of ECMAScript has expanded, so have the features and facilities it provides. ECMAScript is now a fully featured general-purpose programming language.

4.1 Web Scripting

A web browser provides an ECMAScripthost environment for client-side computation including, for instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further, thehost environment provides a means to attach scripting code to events such as change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is reactive to user interaction, and there is no need for a main program.

A web server provides a differenthost environment for server-side computation including objects representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is possible to distribute computation between the client and server while providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its ownhost environment, completing the ECMAScript execution environment.

4.2 Hosts and Implementations

To aid integrating ECMAScript intohost environments, this specification defers the definition of certain facilities (e.g.,abstract operations), either in whole or in part, to a source outside of this specification. Editorially, this specification distinguishes the following kinds of deferrals.

Animplementation is an external source that further defines facilities enumerated in AnnexD or those that are marked asimplementation-defined orimplementation-approximated. In informal use, an implementation refers to a concrete artefact, such as a particular web browser.

Animplementation-defined facility is one that defers its definition to an external source without further qualification. This specification does not make any recommendations for particular behaviours, and conforming implementations are free to choose any behaviour within the constraints put forth by this specification.

Animplementation-approximated facility is one that defers its definition to an external source while recommending an ideal behaviour. While conforming implementations are free to choose any behaviour within the constraints put forth by this specification, they are encouraged to strive to approximate the ideal. Some mathematical operations, such asMath.exp, areimplementation-approximated.

Ahost is an external source that further defines facilities listed in AnnexD but does not further define otherimplementation-defined orimplementation-approximated facilities. In informal use, ahost refers to the set of all implementations, such as the set of all web browsers, that interface with this specification in the same way via AnnexD. Ahost is often an external specification, such as WHATWG HTML (https://html.spec.whatwg.org/). In other words, facilities that arehost-defined are often further defined in external specifications.

Ahost hook is an abstract operation that is defined in whole or in part by an external source. Allhost hooks must be listed in AnnexD. Ahost hook must conform to at least the following requirements:

Ahost-defined facility is one that defers its definition to an external source without further qualification and is listed in AnnexD. Implementations that are nothosts may also provide definitions forhost-defined facilities.

Ahost environment is a particular choice of definition for allhost-defined facilities. Ahost environment typically includes objects or functions which allow obtaining input and providing output ashost-defined properties of theglobal object.

This specification follows the editorial convention of always using the most specific term. For example, if a facility ishost-defined, it should not be referred to asimplementation-defined.

Bothhosts and implementations may interface with this specification via the language types, specification types,abstract operations, grammar productions, intrinsic objects, and intrinsic symbols defined herein.

4.3 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part of the standard proper.

ECMAScript is object-based: basic language andhost facilities are provided by objects, and an ECMAScript program is a cluster of communicating objects. In ECMAScript, anobject is a collection of zero or moreproperties each withattributes that determine how each property can be used—for example, when the Writable attribute for a property is set tofalse, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are containers that hold other objects,primitive values, orfunctions. A primitive value is a member of one of the following built-in types:Undefined,Null,Boolean,Number,BigInt,String, andSymbol; an object is a member of the built-in typeObject; and a function is a callable object. A function that is associated with an object via a property is called amethod.

ECMAScript defines a collection ofbuilt-in objects that round out the definition of ECMAScript entities. These built-in objects include theglobal object; objects that are fundamental to theruntime semantics of the language includingObject,Function,Boolean,Symbol, and variousError objects; objects that represent and manipulate numeric values includingMath,Number, andDate; the text processing objectsString andRegExp; objects that are indexed collections of values includingArray and nine different kinds of Typed Arrays whose elements all have a specific numeric data representation; keyed collections includingMap andSet objects; objects supporting structured data including theJSON object,ArrayBuffer,SharedArrayBuffer, andDataView; objects supporting control abstractions including generator functions andPromise objects; and reflection objects includingProxy andReflect.

ECMAScript also defines a set of built-inoperators. ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported bymodules which allow a program to be divided into multiple sequences of statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types associated with properties, and defined functions are not required to have their declarations appear textually before calls to them.

4.3.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or viaconstructors which create objects and then execute code that initializes all or part of them by assigning initial values to their properties. Eachconstructor is a function that has a property named"prototype" that is used to implementprototype-based inheritance andshared properties. Objects are created by usingconstructors innew expressions; for example,new Date(2009, 11) creates a new Date object. Invoking aconstructor without usingnew has consequences that depend on theconstructor. For example,Date() produces a string representation of the current date and time rather than an object.

Every object created by aconstructor has an implicit reference (called the object'sprototype) to the value of itsconstructor's"prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is called theprototype chain. When a reference is made to a property in an object, that reference is to the property of that name in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned directly is examined for such a property; if that object contains the named property, that is the property to which the reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

Figure 1: Object/Prototype Relationships
An image of lots of boxes and arrows.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value. Figure 1 illustrates this:

CF is aconstructor (and also an object). Five objects have been created by usingnew expressions:cf1,cf2,cf3,cf4, andcf5. Each of these objects contains properties named"q1" and"q2". The dashed lines represent the implicit prototype relationship; so, for example,cf3's prototype isCFp. Theconstructor,CF, has two properties itself, named"P1" and"P2", which are not visible toCFp,cf1,cf2,cf3,cf4, orcf5. The property named"CFP1" inCFp is shared bycf1,cf2,cf3,cf4, andcf5 (but not byCF), as are any properties found inCFp's implicit prototype chain that are not named"q1","q2", or"CFP1". Notice that there is no implicit prototype link betweenCF andCFp.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them. That is,constructors are not required to name or assign values to all or any of the constructed object's properties. In the above diagram, one could add a new shared property forcf1,cf2,cf3,cf4, andcf5 by assigning a new value to the property inCFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based upon a common pattern ofconstructor functions, prototype objects, and methods. The ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes syntactic class definitions that permit programmers to concisely define objects that conform to the same class-like abstraction pattern used by the built-in objects.

4.3.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of some features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as thestrict mode of the language. Strict mode selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individualECMAScript source text units as described in11.2.2. Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes restrictions that have local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple source text units. A complete ECMAScript program may be composed of both strict mode and non-strict modeECMAScript source text units. In this case, strict mode only applies when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an implementation must support the combination of unrestricted and strict mode source text units into a single composite program.

4.4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.4.1 implementation-approximated

animplementation-approximated facility is defined in whole or in part by an external source but has a recommended, ideal behaviour in this specification

4.4.2 implementation-defined

animplementation-defined facility is defined in whole or in part by an external source to this specification

4.4.3 host-defined

same asimplementation-defined

Note

Editorially, see clause4.2.

4.4.4 type

set of data values as defined in clause6

4.4.5 primitive value

member of one of the types Undefined, Null, Boolean, Number, BigInt, Symbol, or String as defined in clause6

Note

A primitive value is a datum that is represented directly at the lowest level of the language implementation.

4.4.6 object

member of the type Object

Note

An object is a collection of properties and has a single prototype object. The prototype may benull.

4.4.7 constructor

function object that creates and initializes objects

Note

The value of aconstructor's"prototype" property is a prototype object that is used to implement inheritance and shared properties.

4.4.8 prototype

object that provides shared properties for other objects

Note

When aconstructor creates an object, that object implicitly references theconstructor's"prototype" property for the purpose of resolving property references. Theconstructor's"prototype" property can be referenced by the program expressionconstructor.prototype, and properties added to an object's prototype are shared, through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified prototype by using theObject.create built-in function.

4.4.9 ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.4.10 exotic object

object that does not have the default behaviour for one or more of the essential internal methods

Note

Any object that is not anordinary object is anexotic object.

4.4.11 standard object

object whose semantics are defined by this specification

4.4.12 built-in object

object specified and supplied by an ECMAScript implementation

Note

Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and supply additional kinds of built-in objects.

4.4.13 undefined value

primitive value used when a variable has not been assigned a value

4.4.14 Undefined type

type whose sole value is theundefined value

4.4.15 null value

primitive value that represents the intentional absence of any object value

4.4.16 Null type

type whose sole value is thenull value

4.4.17 Boolean value

member of theBoolean type

Note

There are only two Boolean values,true andfalse.

4.4.18 Boolean type

type consisting of the primitive valuestrue andfalse

4.4.19 Boolean object

member of theObject type that is an instance of the standard built-in Booleanconstructor

Note

A Boolean object is created by using the Booleanconstructor in anew expression, supplying a Boolean value as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be coerced to a Boolean value.

4.4.20 String value

primitive value that is afinite ordered sequence of zero or more 16-bit unsignedinteger values

Note

A String value is a member of theString type. Eachinteger value in the sequence usually represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that they must be 16-bit unsignedintegers.

4.4.21 String type

set of all possible String values

4.4.22 String object

member of theObject type that is an instance of the standard built-in Stringconstructor

Note

A String object is created by using the Stringconstructor in anew expression, supplying a String value as an argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a String value by calling the Stringconstructor as a function (22.1.1.1).

4.4.23 Number value

primitive value corresponding to a double-precision 64-bit binary formatIEEE 754-2019 value

Note

A Number value is a member of theNumber type and is a direct representation of a number.

4.4.24 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative infinity

4.4.25 Number object

member of theObject type that is an instance of the standard built-in Numberconstructor

Note

A Number object is created by using the Numberconstructor in anew expression, supplying a Number value as an argument. The resulting object has an internal slot whose value is the Number value. A Number object can be coerced to a Number value by calling the Numberconstructor as a function (21.1.1.1).

4.4.26 Infinity

Number value that is the positive infinite Number value

4.4.27 NaN

Number value that is anIEEE 754-2019 “Not-a-Number” value

4.4.28 BigInt value

primitive value corresponding to an arbitrary-precisioninteger value

4.4.29 BigInt type

set of all possible BigInt values

4.4.30 BigInt object

member of theObject type that is an instance of the standard built-in BigIntconstructor

4.4.31 Symbol value

primitive value that represents a unique, non-String Objectproperty key

4.4.32 Symbol type

set of all possible Symbol values

4.4.33 Symbol object

member of theObject type that is an instance of the standard built-in Symbolconstructor

4.4.34 function

member of theObject type that may be invoked as a subroutine

Note

In addition to its properties, a function contains executable code and state that determine how it behaves when invoked. A function's code may or may not be written in ECMAScript.

4.4.35 built-in function

built-in object that is a function

Note

Examples of built-in functions includeparseInt andMath.exp. Ahost or implementation may provide additional built-in functions that are not described in this specification.

4.4.36 built-in constructor

built-in function that is aconstructor

Note

Examples of built-inconstructors includeObject andFunction. Ahost or implementation may provide additional built-inconstructors that are not described in this specification.

4.4.37 property

part of an object that associates a key (either a String value or a Symbol value) and a value

Note

Depending upon the form of the property the value may be represented either directly as a data value (a primitive value, an object, or afunction object) or indirectly by a pair of accessor functions.

4.4.38 method

function that is the value of a property

Note

When a function is called as a method of an object, the object is passed to the function as itsthis value.

4.4.39 built-in method

method that is a built-in function

Note

Standard built-in methods are defined in this specification. Ahost or implementation may provide additional built-in methods that are not described in this specification.

4.4.40 attribute

internal value that defines some characteristic of a property

4.4.41 own property

property that is directly contained by its object

4.4.42 inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.5 Organization of This Specification

The remainder of this specification is organized as follows:

Clause5 defines the notational conventions used throughout the specification.

Clauses6 through10 define the execution environment within which ECMAScript programs operate.

Clauses11 through17 define the actual ECMAScript programming language including its syntactic encoding and the execution semantics of all language features.

Clauses18 through28 define the ECMAScript standard library. They include the definitions of all of the standard objects that are available for use by ECMAScript programs as they execute.

Clause29 describes the memory consistency model of accesses on SharedArrayBuffer-backed memory and methods of the Atomics object.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

Acontext-free grammar consists of a number ofproductions. Each production has an abstract symbol called anonterminal as itsleft-hand side, and a sequence of zero or more nonterminal andterminal symbols as itsright-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Achain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called thegoal symbol, a given context-free grammar specifies alanguage, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

Alexical grammar for ECMAScript is given in clause12. This grammar has as its terminal symbols Unicode code points that conform to the rules forSourceCharacter defined in11.1. It defines a set of productions, starting from thegoal symbolInputElementDiv,InputElementTemplateTail,InputElementRegExp,InputElementRegExpOrTemplateTail, orInputElementHashbangOrRegExp, that describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for ECMAScript and are called ECMAScripttokens. These tokens are thereserved words, identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become part of the stream of input elements and guide the process of automatic semicolon insertion (12.10). Simple white space and single-line comments are discarded and do not appear in the stream of input elements for the syntactic grammar. AMultiLineComment (that is, a comment of the form/**/ regardless of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if aMultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the stream of input elements for the syntactic grammar.

ARegExp grammar for ECMAScript is given in22.2.1. This grammar also has as its terminal symbols the code points as defined bySourceCharacter. It defines a set of productions, starting from thegoal symbolPattern, that describe how sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Anumeric string grammar appears in7.1.4.1. It has as its terminal symbolsSourceCharacter, and is used for translating Strings into numeric values starting from thegoal symbolStringNumericLiteral (which is similar to but distinct from thelexical grammar for numeric literals).

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation, and are never used for parsing source text.

5.1.4 The Syntactic Grammar

Thesyntactic grammar for ECMAScript is given in clauses13 through16. This grammar has ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two alternativegoal symbolsScript andModule, that describe how sequences of tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScriptScript orModule, it is first converted to a stream of input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal (Script orModule), with no tokens left over.

When a parse is successful, it constructs aparse tree, a rooted tree structure in which each node is aParse Node. Each Parse Node is aninstance of a symbol in the grammar; it represents a span of the source text that can be derived from that symbol. The root node of the parse tree, representing the whole of the source text, is an instance of the parse'sgoal symbol. When a Parse Node is an instance of a nonterminal, it is also an instance of some production that has that nonterminal as its left-hand side. Moreover, it has zero or morechildren, one for each symbol on the production's right-hand side: each child is a Parse Node that is an instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even of identical source text. Parse Nodes are consideredthe same Parse Node if and only if they represent the same span of source text, are instances of the same grammar symbol, and resulted from the same parser invocation.

Note 1

Parsing the same String multiple times will lead to different Parse Nodes. For example, consider:

let str ="1 + 1;";eval(str);eval(str);

Each call toeval converts the value ofstr intoECMAScript source text and performs an independent parse that creates its own separate tree of Parse Nodes. The trees are distinct even though each parse operates upon a source text that was derived from the same String value.

Note 2
Parse Nodes are specification artefacts, and implementations are not required to use an analogous data structure.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses13 through16 is not a complete account of which token sequences are accepted as a correct ECMAScriptScript orModule. Certain additional token sequences are also accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered acceptable if a line terminator character appears in certain “awkward” places.

In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that permit token sequences that do not form a valid ECMAScriptScript orModule. For example, this technique is used for object literals and object destructuring patterns. In such cases a more restrictivesupplemental grammar is provided that further restricts the acceptable token sequences. Typically, anearly error rule will then state that, in certain contexts, "Pmust cover anN", whereP is a Parse Node (an instance of the generalized production) andN is a nonterminal from the supplemental grammar. This means:

  1. The sequence of tokens originally matched byP is parsed again usingN as thegoal symbol. IfN takes grammatical parameters, then they are set to the same values used whenP was originally parsed.
  2. If the sequence of tokens can be parsed as a single instance ofN, with no tokens left over, then:
    1. We refer to that instance ofN (a Parse Node, unique for a givenP) as "theN that iscovered byP".
    2. All Early Error rules forN and its derived productions also apply to theN that is covered byP.
  3. Otherwise (if the parse fails), it is an early Syntax Error.

5.1.5 Grammar Notation

5.1.5.1 Terminal Symbols

In the ECMAScript grammars, some terminal symbols are shown infixed-width font. These are to appear in a source text exactly as written. All terminal symbol code points specified in this way are to be understood as the appropriate Unicode code points from the Basic Latin block, as opposed to any similar-looking code points from other Unicode ranges. A code point in a terminal symbol cannot be expressed by a\UnicodeEscapeSequence.

In grammars whose terminal symbols are individual Unicode code points (i.e., the lexical, RegExp, and numeric string grammars), a contiguous run of multiple fixed-width code points appearing in a production is a simple shorthand for the same sequence of code points, written as standalone terminal symbols.

For example, the production:

HexIntegerLiteral::0xHexDigits

is a shorthand for:

HexIntegerLiteral::0xHexDigits

In contrast, in the syntactic grammar, a contiguous run of fixed-width code points is a single terminal symbol.

Terminal symbols come in two other forms:

  • In the lexical and RegExp grammars, Unicode code points without a conventional printed representation are instead shown in the form "<ABBREV>" where "ABBREV" is a mnemonic for the code point or set of code points. These forms are defined inUnicode Format-Control Characters,White Space, andLine Terminators.
  • In the syntactic grammar, certain terminal symbols (e.g.IdentifierName andRegularExpressionLiteral) are shown in italics, as they refer to the nonterminals of the same name in the lexical grammar.

5.1.5.2 Nonterminal Symbols and Productions

Nonterminal symbols are shown initalic type. The definition of a nonterminal (also called a “production”) is introduced by the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement:while(Expression)Statement

states that the nonterminalWhileStatement represents the tokenwhile, followed by a left parenthesis token, followed by anExpression, followed by a right parenthesis token, followed by aStatement. The occurrences ofExpression andStatement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList:AssignmentExpressionArgumentList,AssignmentExpression

states that anArgumentList may represent either a singleAssignmentExpression or anArgumentList, followed by a comma, followed by anAssignmentExpression. This definition ofArgumentList is recursive, that is, it is defined in terms of itself. The result is that anArgumentList may contain any positive number of arguments, separated by commas, where each argument expression is anAssignmentExpression. Such recursive definitions of nonterminals are common.

5.1.5.3 Optional Symbols

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and one that includes it. This means that:

VariableDeclaration:BindingIdentifierInitializeropt

is a convenient abbreviation for:

VariableDeclaration:BindingIdentifierBindingIdentifierInitializer

and that:

ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement

is a convenient abbreviation for:

ForStatement:for(LexicalDeclaration;Expressionopt)Statementfor(LexicalDeclarationExpression;Expressionopt)Statement

which in turn is an abbreviation for:

ForStatement:for(LexicalDeclaration;)Statementfor(LexicalDeclaration;Expression)Statementfor(LexicalDeclarationExpression;)Statementfor(LexicalDeclarationExpression;Expression)Statement

so, in this example, the nonterminalForStatement actually has four alternative right-hand sides.

5.1.5.4 Grammatical Parameters

A production may be parameterized by a subscripted annotation of the form “[parameters]”, which may appear as a suffix to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma separated list of names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList[Return]:ReturnStatementExpressionStatement

is a convenient abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ReturnStatementExpressionStatement

and that:

StatementList[Return, In]:ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ReturnStatementExpressionStatementStatementList_In:ReturnStatementExpressionStatementStatementList_Return_In:ReturnStatementExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList:ReturnStatementExpressionStatement[+In]

is equivalent to saying:

StatementList:ReturnStatementExpressionStatement_In

and:

StatementList:ReturnStatementExpressionStatement[~In]

is equivalent to:

StatementList:ReturnStatementExpressionStatement

A nonterminal reference may have both a parameter list and an “opt” suffix. For example:

VariableDeclaration:BindingIdentifierInitializer[+In]opt

is an abbreviation for:

VariableDeclaration:BindingIdentifierBindingIdentifierInitializer_In

Prefixing a parameter name with “?” on a right-hand side nonterminal reference makes that parameter value dependent upon the occurrence of the parameter name on the reference to the current production's left-hand side symbol. For example:

VariableDeclaration[In]:BindingIdentifierInitializer[?In]

is an abbreviation for:

VariableDeclaration:BindingIdentifierInitializerVariableDeclaration_In:BindingIdentifierInitializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named parameter was used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed with “[~parameter]” that alternative is only available if the named parameter wasnot used in referencing the production's nonterminal symbol. This means that:

StatementList[Return]:[+Return]ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ExpressionStatementStatementList_Return:ReturnStatementExpressionStatement

and that:

StatementList[Return]:[~Return]ReturnStatementExpressionStatement

is an abbreviation for:

StatementList:ReturnStatementExpressionStatementStatementList_Return:ExpressionStatement

5.1.5.5 one of

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the production:

NonZeroDigit::one of123456789

which is merely a convenient abbreviation for:

NonZeroDigit::123456789

5.1.5.6 [empty]

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand side contains no terminals or nonterminals.

5.1.5.7 Lookahead Restrictions

If the phrase “[lookahead =seq]” appears in the right-hand side of a production, it indicates that the production may only be used if the token sequenceseq is a prefix of the immediately following input token sequence. Similarly, “[lookahead ∈set]”, whereset is afinite non-empty set of token sequences, indicates that the production may only be used if some element ofset is a prefix of the immediately following token sequence. For convenience, the set can also be written as a nonterminal, in which case it represents the set of all token sequences to which that nonterminal could expand. It is considered an editorial error if the nonterminal could expand to infinitely many distinct token sequences.

These conditions may be negated. “[lookahead ≠seq]” indicates that the containing production may only be used ifseq isnot a prefix of the immediately following input token sequence, and “[lookahead ∉set]” indicates that the production may only be used ifno element ofset is a prefix of the immediately following token sequence.

As an example, given the definitions:

DecimalDigit::one of0123456789DecimalDigits::DecimalDigitDecimalDigitsDecimalDigit

the definition:

LookaheadExample::n[lookahead ∉ {1,3,5,7,9 }]DecimalDigitsDecimalDigit[lookahead ∉DecimalDigit]

matches either the lettern followed by one or more decimal digits the first of which is even, or a decimal digit not followed by another decimal digit.

Note that when these phrases are used in the syntactic grammar, it may not be possible to unambiguously identify the immediately following token sequence because determining later tokens requires knowing which lexicalgoal symbol to use at later positions. As such, when these are used in the syntactic grammar, it is considered an editorial error for a token sequenceseq to appear in a lookahead restriction (including as part of a set of sequences) if the choices of lexicalgoal symbols to use could change whether or notseq would be a prefix of the resulting token sequence.

5.1.5.8 [noLineTerminator here]

If the phrase “[noLineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it indicates that the production isa restricted production: it may not be used if aLineTerminator occurs in the input stream at the indicated position. For example, the production:

ThrowStatement:throw[noLineTerminator here]Expression;

indicates that the production may not be used if aLineTerminator occurs in the script between thethrow token and theExpression.

Unless the presence of aLineTerminator is forbidden by a restricted production, any number of occurrences ofLineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the syntactic acceptability of the script.

5.1.5.9 but not

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier::IdentifierNamebut notReservedWord

means that the nonterminalIdentifier may be replaced by any sequence of code points that could replaceIdentifierName provided that the same sequence of code points could not replaceReservedWord.

5.1.5.10 Descriptive Phrases

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be impractical to list all the alternatives:

SourceCharacter::any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized with an ordered, comma-separated sequence of alias names which may be used within the algorithm steps to reference the argument passed in that position. Optional parameters are denoted with surrounding brackets ([ ,name ]) and are no different from required parameters within algorithm steps. A rest parameter may appear at the end of a parameter list, denoted with leading ellipsis (, ...name). The rest parameter captures all of the arguments provided following the required and optional parameters into aList. If there are no such additional arguments, thatList is empty.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of substeps labelled with lowercase alphabetic characters and the second level of substeps labelled with lowercase roman numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For example:

  1. Top-level step
    1. Substep.
    2. Substep.
      1. Subsubstep.
        1. Subsubsubstep
          1. Subsubsubsubstep
            1. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and hence need not be checked by an implementation. They are used simply to clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Letx besomeValue”. These aliases are reference-like in that bothx andsomeValue refer to the same underlying data and modifications to either are visible to both. Algorithm steps that want to avoid this reference-like behaviour should explicitly make a copy of the right-hand side: “Letx be a copy ofsomeValue” creates a shallow copy ofsomeValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps prior to the alias's declaration. Aliases may be modified using the form “Setx tosomeOtherValue”.

5.2.1 Abstract Operations

In order to facilitate their use in multiple parts of this specification, some algorithms, calledabstract operations, are named and written in parameterized functional form so that they may be referenced by name from within other algorithms. Abstract operations are typically referenced using a functional application style such as OperationName(arg1,arg2). Some abstract operations are treated as polymorphically dispatched methods of class-like specification abstractions. Such method-like abstract operations are typically referenced using a method application style such assomeValue.OperationName(arg1,arg2).

5.2.2 Syntax-Directed Operations

Asyntax-directed operation is a named operation whose definition consists of algorithms, each of which is associated with one or more productions from one of the ECMAScript grammars. A production that has multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a grammar production, it may reference the terminal and nonterminal symbols of the production alternative as if they were parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative definition that is matched when parsing the source text. Thesource text matched by a grammar production orParse Node derived from it is the portion of the source text that starts at the beginning of the first terminal that participated in the match and ends at the end of the last terminal that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[ ]” grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have no effect on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the conventions on steps1,3, and4 in the following algorithm:

  1. Letstatus be SyntaxDirectedOperation ofSomeNonTerminal.
  2. LetsomeParseNode be the parse of some source text.
  3. Perform SyntaxDirectedOperation ofsomeParseNode.
  4. Perform SyntaxDirectedOperation ofsomeParseNode with argument"value".

Unless explicitly specified otherwise, allchain productions have an implicit definition for every operation that might be applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same operation with the same parameters, if any, to thechain production's sole right-hand side nonterminal and then returns the result. For example, assume that some algorithm has a step of the form: “ReturnEvaluation ofBlock” and that there is a production:

Block:{StatementList}

but theEvaluation operation does not associate an algorithm with that production. In that case, theEvaluation operation implicitly includes an association of the form:

Runtime Semantics:Evaluation

Block:{StatementList}
  1. ReturnEvaluation ofStatementList.

5.2.3 Runtime Semantics

Algorithms which specify semantics that must be called at runtime are calledruntime semantics. Runtime semantics are defined byabstract operations orsyntax-directed operations.

5.2.3.1 Completion (completionRecord )

The abstract operation Completion takes argumentcompletionRecord (aCompletion Record) and returns aCompletion Record. It is used to emphasize that aCompletion Record is being returned. It performs the following steps when called:

  1. Assert:completionRecord is aCompletion Record.
  2. ReturncompletionRecord.

5.2.3.2 Throw an Exception

Algorithms steps that say to throw an exception, such as

  1. Throw aTypeError exception.

mean the same things as:

  1. ReturnThrowCompletion(a newly createdTypeError object).

5.2.3.3 ReturnIfAbrupt

Algorithms steps that say or are otherwise equivalent to:

  1. ReturnIfAbrupt(argument).

mean the same thing as:

  1. Assert:argument is aCompletion Record.
  2. Ifargument is anabrupt completion, returnCompletion(argument).
  3. Else, setargument toargument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:

  1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

  1. LethygienicTemp be AbstractOperation().
  2. Assert:hygienicTemp is aCompletion Record.
  3. IfhygienicTemp is anabrupt completion, returnCompletion(hygienicTemp).
  4. Else, sethygienicTemp tohygienicTemp.[[Value]].

WherehygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

  1. Letresult be AbstractOperation(ReturnIfAbrupt(argument)).

mean the same thing as:

  1. Assert:argument is aCompletion Record.
  2. Ifargument is anabrupt completion, returnCompletion(argument).
  3. Else, setargument toargument.[[Value]].
  4. Letresult be AbstractOperation(argument).

5.2.3.4 ReturnIfAbrupt Shorthands

Invocations ofabstract operations andsyntax-directed operations that are prefixed by? indicate thatReturnIfAbrupt should be applied to the resultingCompletion Record. For example, the step:

  1. ? OperationName().

is equivalent to the following step:

  1. ReturnIfAbrupt(OperationName()).

Similarly, for method application style, the step:

  1. someValue.OperationName().

is equivalent to:

  1. ReturnIfAbrupt(someValue.OperationName()).

Similarly, prefix! is used to indicate that the following invocation of an abstract orsyntax-directed operation will never return anabrupt completion and that the resultingCompletion Record's[[Value]] field should be used in place of the return value of the operation. For example, the step:

  1. Letval be ! OperationName().

is equivalent to the following steps:

  1. Letval be OperationName().
  2. Assert:val is anormal completion.
  3. Setval toval.[[Value]].

Syntax-directed operations forruntime semantics make use of this shorthand by placing! or? before the invocation of the operation:

  1. Perform ! SyntaxDirectedOperation ofNonTerminal.

5.2.3.5 Implicit Normal Completion

In algorithms withinabstract operations which are declared to return aCompletion Record, and within all built-in functions, the returned value is first passed toNormalCompletion, and the result is used instead. This rule does not apply within theCompletion algorithm or when the value being returned is clearly marked as aCompletion Record in that step; these cases are:

It is an editorial error if aCompletion Record is returned from such an abstract operation through any other means. For example, within theseabstract operations,

  1. Returntrue.

means the same things as any of

  1. ReturnNormalCompletion(true).

or

  1. Letcompletion beNormalCompletion(true).
  2. ReturnCompletion(completion).

or

  1. ReturnCompletion Record {[[Type]]:normal,[[Value]]:true,[[Target]]:empty }.

Note that, through theReturnIfAbrupt expansion, the following example is allowed, as within the expanded steps, the result of applyingCompletion is returned directly in the abrupt case and the implicitNormalCompletion application occurs after unwrapping in the normal case.

  1. Return ? completion.

The following example would be an editorial error because aCompletion Record is being returned without being annotated in that step.

  1. Letcompletion beNormalCompletion(true).
  2. Returncompletion.

5.2.4 Static Semantics

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input elements form a valid ECMAScriptScript orModule that may be evaluated. In some situations additional rules are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are always associated with a production of a grammar and are called thestatic semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are associated with grammar productions and a production that has multiple alternative definitions will typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

A special kind of static semantic rule is anEarly Error Rule.Early error rules defineearly error conditions (see clause17) that are associated with specific grammar productions.Evaluation of mostearly error rules are not explicitly invoked within the algorithms of this specification. A conforming implementation must, prior to the first evaluation of aScript orModule, validate all of theearly error rules of the productions used to parse thatScript orModule. If any of theearly error rules are violated theScript orModule is invalid and cannot be evaluated.

5.2.5 Mathematical Operations

This specification makes reference to these kinds of numeric values:

In the language of this specification, numerical values are distinguished among different numeric kinds using subscript suffixes. The subscript𝔽 refers to Numbers, and the subscript refers to BigInts. Numeric values without a subscript suffix refer tomathematical values.

Numeric operators such as +, ×, =, and ≥ refer to those operations as determined by the type of the operands. When applied tomathematical values, the operators refer to the usual mathematical operations. When applied toextended mathematical values, the operators refer to the usual mathematical operations over the extended real numbers; indeterminate forms are not defined and their use in this specification should be considered an editorial error. When applied to Numbers, the operators refer to the relevant operations withinIEEE 754-2019. When applied to BigInts, the operators refer to the usual mathematical operations applied to themathematical value of the BigInt.

In general, when this specification refers to a numerical value, such as in the phrase, "the length ofy" or "theinteger represented by the four hexadecimal digits ...", without explicitly specifying a numeric kind, the phrase refers to amathematical value. Phrases which refer to a Number or a BigInt value are explicitly annotated as such; for example, "theNumber value for the number of code points in …" or "theBigInt value for …".

Numeric operators applied to mixed-type operands (such as a Number and amathematical value) are not defined and should be considered an editorial error in this specification.

This specification denotes most numeric values in base 10; it also uses numeric values of the form 0x followed by digits 0-9 or A-F as base-16 values.

When the terminteger is used in this specification, it refers to amathematical value which is in the set ofintegers, unless otherwise stated. When the termintegral Number is used in this specification, it refers to a Number value whosemathematical value is in the set ofintegers.

Conversions betweenmathematical values and Numbers or BigInts are always explicit in this document. A conversion from amathematical value orextended mathematical valuex to a Number is denoted as "theNumber value forx" or𝔽(x), and is defined in6.1.6.1. A conversion from anintegerx to a BigInt is denoted as "theBigInt value forx" orℤ(x). A conversion from a Number or BigIntx to amathematical value is denoted as "themathematical value ofx", orℝ(x). Themathematical value of+0𝔽 and-0𝔽 is themathematical value 0. Themathematical value of non-finite values is not defined. Theextended mathematical value ofx is themathematical value ofx forfinite values, and is +∞ and -∞ for+∞𝔽 and-∞𝔽 respectively; it is not defined forNaN.

The mathematical functionabs(x) produces the absolute value ofx, which is-x ifx < 0 and otherwise isx itself.

The mathematical functionmin(x1,x2, … ,xN) produces the mathematically smallest ofx1 throughxN. The mathematical functionmax(x1,x2, ...,xN) produces the mathematically largest ofx1 throughxN. The domain and range of these mathematical functions are theextended mathematical values.

The notation “x moduloy” (y must befinite and non-zero) computes a valuek of the same sign asy (or zero) such thatabs(k) <abs(y) andx -k =q ×y for someintegerq.

The phrase "the result ofclampingx betweenlower andupper" (wherex is anextended mathematical value andlower andupper aremathematical values such thatlowerupper) produceslower ifx <lower, producesupper ifx >upper, and otherwise producesx.

The mathematical functionfloor(x) produces the largestinteger (closest to +∞) that is not larger thanx.

Note

floor(x) =x - (xmodulo 1).

The mathematical functiontruncate(x) removes the fractional part ofx by rounding towards zero, producing-floor(-x) ifx < 0 and otherwise producingfloor(x).

Mathematical functionsmin,max,abs,floor, andtruncate are not defined for Numbers and BigInts, and any usage of those methods that have non-mathematical value arguments would be an editorial error in this specification.

Aninterval from lower bounda to upper boundb is a possibly-infinite, possibly-empty set of numeric values of the same numeric type. Each bound will be described as either inclusive or exclusive, but not both. There are four kinds of intervals, as follows:

  • Aninterval froma (inclusive) tob (inclusive), also called aninclusive interval froma tob, includes all valuesx of the same numeric type such thataxb, and no others.
  • Aninterval froma (inclusive) tob (exclusive) includes all valuesx of the same numeric type such thatax <b, and no others.
  • Aninterval froma (exclusive) tob (inclusive) includes all valuesx of the same numeric type such thata <xb, and no others.
  • Aninterval froma (exclusive) tob (exclusive) includes all valuesx of the same numeric type such thata <x <b, and no others.

For example, theinterval from 1 (inclusive) to 2 (exclusive) consists of allmathematical values between 1 and 2, including 1 and not including 2. For the purpose of defining intervals,-0𝔽 <+0𝔽, so, for example, aninclusive interval with a lower bound of+0𝔽 includes+0𝔽 but not-0𝔽.NaN is never included in aninterval.

5.2.6 Value Notation

In this specification,ECMAScript language values are displayed inbold. Examples includenull,true, or"hello". These are distinguished fromECMAScript source text such asFunction.prototype.apply orlet n = 42;.

5.2.7 Identity

In this specification, both specification values andECMAScript language values are compared for equality. When comparing for equality, values fall into one of two categories.Values without identity are equal to other values without identity if all of their innate characteristics are the same — characteristics such as the magnitude of aninteger or the length of a sequence. Values without identity may be manifest without prior reference by fully describing their characteristics. In contrast, eachvalue with identity is unique and therefore only equal to itself. Values with identity are like values without identity but with an additional unguessable, unchangeable, universally-unique characteristic calledidentity. References to existing values with identity cannot be manifest simply by describing them, as the identity itself is indescribable; instead, references to these values must be explicitly passed from one place to another. Some values with identity are mutable and therefore can have their characteristics (except their identity) changed in-place, causing all holders of the value to observe the new characteristics. A value without identity is never equal to a value with identity.

From the perspective of this specification, the word “is” is used to compare two values for equality, as in “Ifbool istrue, then ...”, and the word “contains” is used to search for a value inside lists using equality comparisons, as in "Iflist contains aRecordr such thatr.[[Foo]] istrue, then ...". Thespecification identity of values determines the result of these comparisons and is axiomatic in this specification.

From the perspective of the ECMAScript language, language values are compared for equality using theSameValue abstract operation and theabstract operations it transitively calls. The algorithms of these comparisonabstract operations determinelanguage identity ofECMAScript language values.

For specification values, examples of values without specification identity include, but are not limited to:mathematical values andextended mathematical values;ECMAScript source text,surrogate pairs,Directive Prologues, etc; UTF-16 code units; Unicode code points;enums;abstract operations, includingsyntax-directed operations,host hooks, etc; and ordered pairs. Examples of specification values with specification identity include, but are not limited to: any kind ofRecords, includingProperty Descriptors,PrivateElements, etc;Parse Nodes;Lists;Sets andRelations;Abstract Closures;Data Blocks;Private Names;execution contexts andexecution context stacks;agent signifiers; andWaiterList Records.

Specification identity agrees with language identity for allECMAScript language values except Symbol values produced bySymbol.for. TheECMAScript language values without specification identity and without language identity areundefined,null,Booleans,Strings,Numbers, andBigInts. TheECMAScript language values with specification identity and language identity areSymbols not produced bySymbol.for andObjects. Symbol values produced bySymbol.for have specification identity, but not language identity.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are exactly those defined in this clause. Types are further subclassified intoECMAScript language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “thetype ofx” where “type” refers to the ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

AnECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol, Number, BigInt, and Object. AnECMAScript language value is a value that is characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, calledundefined. Any variable that has not been assigned a value has the valueundefined.

6.1.2 The Null Type

The Null type has exactly one value, callednull.

6.1.3 The Boolean Type

TheBoolean type represents a logical entity having two values, calledtrue andfalse.

6.1.4 The String Type

TheString type is the set of all ordered sequences of zero or more 16-bit unsignedinteger values (“elements”) up to a maximum length of 253 - 1 elements. The String type is generally used to represent textual data in a running ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as occupying a position within the sequence. These positions are indexed with non-negativeintegers. The first element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do interpret String values treat each element as a single UTF-16 code unit. However, ECMAScript does not restrict the value of or relationships between these code units, so operations that further interpret String contents as sequences of Unicode code points encoded in UTF-16 must account for ill-formed subsequences. Such operations apply special treatment to every code unit with a numeric value in theinclusive interval from 0xD800 to 0xDBFF (defined by the Unicode Standard as aleading surrogate, or more formally as ahigh-surrogate code unit) and every code unit with a numeric value in theinclusive interval from 0xDC00 to 0xDFFF (defined as atrailing surrogate, or more formally as alow-surrogate code unit) using the following rules:

The functionString.prototype.normalize (see22.1.3.15) can be used to explicitly normalize a String value.String.prototype.localeCompare (see22.1.3.12) internally normalizes String values, but no other operations implicitly normalize the strings upon which they operate. Operation results are not language- and/or locale-sensitive unless stated otherwise.

Note

The rationale behind this design was to keep the implementation of Strings as simple and high-performing as possible. IfECMAScript source text is in Normalized Form C, string literals are guaranteed to also be normalized, as long as they do not contain any Unicode escape sequences.

In this specification, the phrase "thestring-concatenation ofA,B, ..." (where each argument is a String value, a code unit, or a sequence of code units) denotes the String value whose sequence of code units is the concatenation of the code units (in order) of each of the arguments (in order).

The phrase "thesubstring ofS frominclusiveStart toexclusiveEnd" (whereS is a String value or a sequence of code units andinclusiveStart andexclusiveEnd areintegers) denotes the String value consisting of the consecutive code units ofS beginning at indexinclusiveStart and ending immediately before indexexclusiveEnd (which is the empty String wheninclusiveStart =exclusiveEnd). If the "to" suffix is omitted, the length ofS is used as the value ofexclusiveEnd.

The phrase "the ASCII word characters" denotes the following String value, which consists solely of every letter and number in the Unicode Basic Latin block along with U+005F (LOW LINE):
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_".
For historical reasons, it has significance to various algorithms.

6.1.4.1 StringIndexOf (string,searchValue,fromIndex )

The abstract operation StringIndexOf takes argumentsstring (a String),searchValue (a String), andfromIndex (a non-negativeinteger) and returns aninteger. It performs the following steps when called:

  1. Letlen be the length ofstring.
  2. IfsearchValue is the empty String andfromIndexlen, returnfromIndex.
  3. LetsearchLen be the length ofsearchValue.
  4. For eachintegeri such thatfromIndexilen -searchLen, in ascending order, do
    1. Letcandidate be thesubstring ofstring fromi toi +searchLen.
    2. Ifcandidate issearchValue, returni.
  5. Return -1.
Note 1

IfsearchValue is the empty String andfromIndex ≤ the length ofstring, this algorithm returnsfromIndex. The empty String is effectively found at every position within a string, including after the last code unit.

Note 2

This algorithm always returns -1 iffromIndex + the length ofsearchValue > the length ofstring.

6.1.5 The Symbol Type

TheSymbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called[[Description]] that is eitherundefined or a String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They are typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless otherwise specified, well-known symbols values are shared by allrealms (9.3).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where “name” is one of the values listed inTable 1.

Table 1: Well-known Symbols
Specification Name[[Description]] Value and Purpose
@@asyncIterator"Symbol.asyncIterator" A method that returns the default AsyncIterator for an object. Called by the semantics of thefor-await-of statement.
@@hasInstance"Symbol.hasInstance" A method that determines if aconstructor object recognizes an object as one of theconstructor's instances. Called by the semantics of theinstanceof operator.
@@isConcatSpreadable"Symbol.isConcatSpreadable" A Boolean valued property that if true indicates that an object should be flattened to its array elements byArray.prototype.concat.
@@iterator"Symbol.iterator" A method that returns the default Iterator for an object. Called by the semantics of the for-of statement.
@@match"Symbol.match" A regular expression method that matches the regular expression against a string. Called by theString.prototype.match method.
@@matchAll"Symbol.matchAll" A regular expression method that returns an iterator, that yields matches of the regular expression against a string. Called by theString.prototype.matchAll method.
@@replace"Symbol.replace" A regular expression method that replaces matched substrings of a string. Called by theString.prototype.replace method.
@@search"Symbol.search" A regular expression method that returns the index within a string that matches the regular expression. Called by theString.prototype.search method.
@@species"Symbol.species" A function valued property that is theconstructor function that is used to create derived objects.
@@split"Symbol.split" A regular expression method that splits a string at the indices that match the regular expression. Called by theString.prototype.split method.
@@toPrimitive"Symbol.toPrimitive" A method that converts an object to a corresponding primitive value. Called by theToPrimitive abstract operation.
@@toStringTag"Symbol.toStringTag" A String valued property that is used in the creation of the default string description of an object. Accessed by the built-in methodObject.prototype.toString.
@@unscopables"Symbol.unscopables" An object valued property whose own and inherited property names are property names that are excluded from thewith environment bindings of the associated object.

6.1.6 Numeric Types

ECMAScript has two built-in numeric types: Number and BigInt. The followingabstract operations are defined over these numeric types. The "Result" column shows the return type, along with an indication if it is possible for some invocations of the operation to return anabrupt completion.

Table 2: Numeric Type Operations
Operation Example source Invoked by theEvaluation semantics of ... Result
Number::unaryMinus-xUnary- Operator Number
BigInt::unaryMinus BigInt
Number::bitwiseNOT~xBitwise NOT Operator (~ ) Number
BigInt::bitwiseNOT BigInt
Number::exponentiatex ** yExponentiation Operator andMath.pow (base,exponent ) Number
BigInt::exponentiate either anormal completion containing a BigInt or athrow completion
Number::multiplyx * yMultiplicative Operators Number
BigInt::multiply BigInt
Number::dividex / yMultiplicative Operators Number
BigInt::divide either anormal completion containing a BigInt or athrow completion
Number::remainderx % yMultiplicative Operators Number
BigInt::remainder either anormal completion containing a BigInt or athrow completion
Number::addx ++
++ x
x + y
Postfix Increment Operator,Prefix Increment Operator, andThe Addition Operator (+ ) Number
BigInt::add BigInt
Number::subtractx --
-- x
x - y
Postfix Decrement Operator,Prefix Decrement Operator, andThe Subtraction Operator (- ) Number
BigInt::subtract BigInt
Number::leftShiftx << yThe Left Shift Operator (<< ) Number
BigInt::leftShift BigInt
Number::signedRightShiftx >> yThe Signed Right Shift Operator (>> ) Number
BigInt::signedRightShift BigInt
Number::unsignedRightShiftx >>> yThe Unsigned Right Shift Operator (>>> ) Number
BigInt::unsignedRightShift athrow completion
Number::lessThanx < y
x > y
x <= y
x >= y
Relational Operators, viaIsLessThan (x,y,LeftFirst ) Boolean orundefined (for unordered inputs)
BigInt::lessThan Boolean
Number::equalx == y
x != y
x === y
x !== y
Equality Operators, viaIsStrictlyEqual (x,y ) Boolean
BigInt::equal
Number::sameValueObject.is(x, y) Object internal methods, viaSameValue (x,y ), to test exact value equality Boolean
Number::sameValueZero[x].includes(y) Array, Map, and Set methods, viaSameValueZero (x,y ), to test value equality, ignoring the difference between+0𝔽 and-0𝔽 Boolean
Number::bitwiseANDx & yBinary Bitwise Operators Number
BigInt::bitwiseAND BigInt
Number::bitwiseXORx ^ y Number
BigInt::bitwiseXOR BigInt
Number::bitwiseORx | y Number
BigInt::bitwiseOR BigInt
Number::toStringString(x) Many expressions and built-in functions, viaToString (argument ) String
BigInt::toString

Because the numeric types are in general not convertible without loss of precision or truncation, the ECMAScript language provides no implicit conversion among these types. Programmers must explicitly callNumber andBigInt functions to convert among types when calling a function which requires another type.

Note

The first and subsequent editions of ECMAScript have provided, for certain operators, implicit numeric conversions that could lose precision ortruncate. These legacy implicit conversions are maintained for backward compatibility, but not provided for BigInt in order to minimize opportunity for programmer error, and to leave open the option of generalizedvalue types in a future edition.

6.1.6.1 The Number Type

TheNumber type has exactly 18,437,736,874,454,810,627 (that is,264 - 253 + 3) values, representing the double-precision 64-bit formatIEEE 754-2019 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that the 9,007,199,254,740,990 (that is,253 - 2) distinct “Not-a-Number” values of the IEEE Standard are represented in ECMAScript as a single specialNaN value. (Note that theNaN value is produced by the program expressionNaN.) In some implementations, external code might be able to detect a difference between various Not-a-Number values, but such behaviour isimplementation-defined; to ECMAScript code, allNaN values are indistinguishable from each other.

Note

The bit pattern that might be observed in an ArrayBuffer (see25.1) or a SharedArrayBuffer (see25.2) after a Number value has been stored into it is not necessarily the same as the internal representation of that Number value used by the ECMAScript implementation.

There are two other special values, calledpositive Infinity andnegative Infinity. For brevity, these values are also referred to for expository purposes by the symbols+∞𝔽 and-∞𝔽, respectively. (Note that these two infinite Number values are produced by the program expressions+Infinity (or simplyInfinity) and-Infinity.)

The other 18,437,736,874,454,810,624 (that is,264 - 253) values are called thefinite numbers. Half of these are positive numbers and half are negative numbers; for everyfinite positive Number value there is a corresponding negative value having the same magnitude.

Note that there is both apositive zero and anegative zero. For brevity, these values are also referred to for expository purposes by the symbols+0𝔽 and-0𝔽, respectively. (Note that these two different zero Number values are produced by the program expressions+0 (or simply0) and-0.)

The 18,437,736,874,454,810,622 (that is,264 - 253 - 2)finite non-zero values are of two kinds:

18,428,729,675,200,069,632 (that is,264 - 254) of them are normalized, having the form

s ×m × 2e

wheres is 1 or -1,m is aninteger in theinterval from 252 (inclusive) to 253 (exclusive), ande is aninteger in theinclusive interval from -1074 to 971.

The remaining 9,007,199,254,740,990 (that is,253 - 2) values are denormalized, having the form

s ×m × 2e

wheres is 1 or -1,m is aninteger in theinterval from 0 (exclusive) to 252 (exclusive), ande is -1074.

Note that all the positive and negativeintegers whose magnitude is no greater than 253 are representable in the Number type. Theinteger 0 has two representations in the Number type:+0𝔽 and-0𝔽.

Afinite number has anodd significand if it is non-zero and theintegerm used to express it (in one of the two forms shown above) is odd. Otherwise, it has aneven significand.

In this specification, the phrase “theNumber value forx” wherex represents an exact real mathematical quantity (which might even be an irrational number such as π) means a Number value chosen in the following manner. Consider the set of allfinite values of the Number type, with-0𝔽 removed and with two additional values added to it that are not representable in the Number type, namely 21024 (which is+1 × 253 × 2971) and-21024 (which is-1 × 253 × 2971). Choose the member of this set that is closest in value tox. If two values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two extra values 21024 and-21024 are considered to have even significands. Finally, if 21024 was chosen, replace it with+∞𝔽; if-21024 was chosen, replace it with-∞𝔽; if+0𝔽 was chosen, replace it with-0𝔽 if and only ifx < 0; any other chosen value is used unchanged. The result is theNumber value forx. (This procedure corresponds exactly to the behaviour of theIEEE 754-2019 roundTiesToEven mode.)

TheNumber value for +∞ is+∞𝔽, and theNumber value for -∞ is-∞𝔽.

Some ECMAScript operators deal only withintegers in specific ranges such as theinclusive interval from-231 to231 - 1 or theinclusive interval from 0 to216 - 1. These operators accept any value of the Number type but first convert each such value to aninteger value in the expected range. See the descriptions of the numeric conversion operations in7.1.

6.1.6.1.1 Number::unaryMinus (x )

The abstract operation Number::unaryMinus takes argumentx (a Number) and returns a Number. It performs the following steps when called:

  1. Ifx isNaN, returnNaN.
  2. Return the result of negatingx; that is, compute a Number with the same magnitude but opposite sign.

6.1.6.1.2 Number::bitwiseNOT (x )

The abstract operation Number::bitwiseNOT takes argumentx (a Number) and returns anintegral Number. It performs the following steps when called:

  1. LetoldValue be ! ToInt32(x).
  2. Return the result of applying bitwise complement tooldValue. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.3 Number::exponentiate (base,exponent )

The abstract operation Number::exponentiate takes argumentsbase (a Number) andexponent (a Number) and returns a Number. It returns animplementation-approximated value representing the result of raisingbase to theexponent power. It performs the following steps when called:

  1. Ifexponent isNaN, returnNaN.
  2. Ifexponent is either+0𝔽 or-0𝔽, return1𝔽.
  3. Ifbase isNaN, returnNaN.
  4. Ifbase is+∞𝔽, then
    1. Ifexponent >+0𝔽, return+∞𝔽. Otherwise, return+0𝔽.
  5. Ifbase is-∞𝔽, then
    1. Ifexponent >+0𝔽, then
      1. Ifexponent is an oddintegral Number, return-∞𝔽. Otherwise, return+∞𝔽.
    2. Else,
      1. Ifexponent is an oddintegral Number, return-0𝔽. Otherwise, return+0𝔽.
  6. Ifbase is+0𝔽, then
    1. Ifexponent >+0𝔽, return+0𝔽. Otherwise, return+∞𝔽.
  7. Ifbase is-0𝔽, then
    1. Ifexponent >+0𝔽, then
      1. Ifexponent is an oddintegral Number, return-0𝔽. Otherwise, return+0𝔽.
    2. Else,
      1. Ifexponent is an oddintegral Number, return-∞𝔽. Otherwise, return+∞𝔽.
  8. Assert:base isfinite and is neither+0𝔽 nor-0𝔽.
  9. Ifexponent is+∞𝔽, then
    1. Ifabs((base)) > 1, return+∞𝔽.
    2. Ifabs((base)) = 1, returnNaN.
    3. Ifabs((base)) < 1, return+0𝔽.
  10. Ifexponent is-∞𝔽, then
    1. Ifabs((base)) > 1, return+0𝔽.
    2. Ifabs((base)) = 1, returnNaN.
    3. Ifabs((base)) < 1, return+∞𝔽.
  11. Assert:exponent isfinite and is neither+0𝔽 nor-0𝔽.
  12. Ifbase <-0𝔽 andexponent is not anintegral Number, returnNaN.
  13. Return animplementation-approximated Number value representing the result of raising(base) to the(exponent) power.
Note

The result ofbase**exponent whenbase is1𝔽 or-1𝔽 andexponent is+∞𝔽 or-∞𝔽, or whenbase is1𝔽 andexponent isNaN, differs fromIEEE 754-2019. The first edition of ECMAScript specified a result ofNaN for this operation, whereas later revisions of IEEE 754 specified1𝔽. The historical ECMAScript behaviour is preserved for compatibility reasons.

6.1.6.1.4 Number::multiply (x,y )

The abstract operation Number::multiply takes argumentsx (a Number) andy (a Number) and returns a Number. It performs multiplication according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the product ofx andy. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is either+∞𝔽 or-∞𝔽, then
    1. Ify is either+0𝔽 or-0𝔽, returnNaN.
    2. Ify >+0𝔽, returnx.
    3. Return -x.
  3. Ify is either+∞𝔽 or-∞𝔽, then
    1. Ifx is either+0𝔽 or-0𝔽, returnNaN.
    2. Ifx >+0𝔽, returny.
    3. Return -y.
  4. Ifx is-0𝔽, then
    1. Ify is-0𝔽 ory <-0𝔽, return+0𝔽.
    2. Else, return-0𝔽.
  5. Ify is-0𝔽, then
    1. Ifx <-0𝔽, return+0𝔽.
    2. Else, return-0𝔽.
  6. Return𝔽((x) ×(y)).
Note

Finite-precision multiplication is commutative, but not always associative.

6.1.6.1.5 Number::divide (x,y )

The abstract operation Number::divide takes argumentsx (a Number) andy (a Number) and returns a Number. It performs division according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the quotient ofx andy wherex is the dividend andy is the divisor. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is either+∞𝔽 or-∞𝔽, then
    1. Ify is either+∞𝔽 or-∞𝔽, returnNaN.
    2. Ify is+0𝔽 ory >+0𝔽, returnx.
    3. Return -x.
  3. Ify is+∞𝔽, then
    1. Ifx is+0𝔽 orx >+0𝔽, return+0𝔽. Otherwise, return-0𝔽.
  4. Ify is-∞𝔽, then
    1. Ifx is+0𝔽 orx >+0𝔽, return-0𝔽. Otherwise, return+0𝔽.
  5. Ifx is either+0𝔽 or-0𝔽, then
    1. Ify is either+0𝔽 or-0𝔽, returnNaN.
    2. Ify >+0𝔽, returnx.
    3. Return -x.
  6. Ify is+0𝔽, then
    1. Ifx >+0𝔽, return+∞𝔽. Otherwise, return-∞𝔽.
  7. Ify is-0𝔽, then
    1. Ifx >+0𝔽, return-∞𝔽. Otherwise, return+∞𝔽.
  8. Return𝔽((x) /(y)).

6.1.6.1.6 Number::remainder (n,d )

The abstract operation Number::remainder takes argumentsn (a Number) andd (a Number) and returns a Number. It yields the remainder from an implied division of its operands wheren is the dividend andd is the divisor. It performs the following steps when called:

  1. Ifn isNaN ord isNaN, returnNaN.
  2. Ifn is either+∞𝔽 or-∞𝔽, returnNaN.
  3. Ifd is either+∞𝔽 or-∞𝔽, returnn.
  4. Ifd is either+0𝔽 or-0𝔽, returnNaN.
  5. Ifn is either+0𝔽 or-0𝔽, returnn.
  6. Assert:n andd arefinite and non-zero.
  7. Letquotient be(n) /(d).
  8. Letq betruncate(quotient).
  9. Letr be(n) - ((d) ×q).
  10. Ifr = 0 andn <-0𝔽, return-0𝔽.
  11. Return𝔽(r).
Note 1

In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-point operands.

Note 2
The result of a floating-point remainder operation as computed by the% operator is not the same as the “remainder” operation defined byIEEE 754-2019. TheIEEE 754-2019 “remainder” operation computes the remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usualinteger remainder operator. Instead the ECMAScript language defines% on floating-point operations to behave in a manner analogous to that of the Javainteger remainder operator; this may be compared with the C library function fmod.

6.1.6.1.7 Number::add (x,y )

The abstract operation Number::add takes argumentsx (a Number) andy (a Number) and returns a Number. It performs addition according to the rules ofIEEE 754-2019 binary double-precision arithmetic, producing the sum of its arguments. It performs the following steps when called:

  1. Ifx isNaN ory isNaN, returnNaN.
  2. Ifx is+∞𝔽 andy is-∞𝔽, returnNaN.
  3. Ifx is-∞𝔽 andy is+∞𝔽, returnNaN.
  4. Ifx is either+∞𝔽 or-∞𝔽, returnx.
  5. Ify is either+∞𝔽 or-∞𝔽, returny.
  6. Assert:x andy are bothfinite.
  7. Ifx is-0𝔽 andy is-0𝔽, return-0𝔽.
  8. Return𝔽((x) +(y)).
Note

Finite-precision addition is commutative, but not always associative.

6.1.6.1.8 Number::subtract (x,y )

The abstract operation Number::subtract takes argumentsx (a Number) andy (a Number) and returns a Number. It performs subtraction, producing the difference of its operands;x is the minuend andy is the subtrahend. It performs the following steps when called:

  1. ReturnNumber::add(x,Number::unaryMinus(y)).
Note

It is always the case thatx - y produces the same result asx + (-y).

6.1.6.1.9 Number::leftShift (x,y )

The abstract operation Number::leftShift takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. Letlnum be ! ToInt32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of left shiftinglnum byshiftCount bits. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.10 Number::signedRightShift (x,y )

The abstract operation Number::signedRightShift takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. Letlnum be ! ToInt32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of performing a sign-extending right shift oflnum byshiftCount bits. The most significant bit is propagated. Themathematical value of the result is exactly representable as a 32-bit two's complement bit string.

6.1.6.1.11 Number::unsignedRightShift (x,y )

The abstract operation Number::unsignedRightShift takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. Letlnum be ! ToUint32(x).
  2. Letrnum be ! ToUint32(y).
  3. LetshiftCount be(rnum)modulo 32.
  4. Return the result of performing a zero-filling right shift oflnum byshiftCount bits. Vacated bits are filled with zero. Themathematical value of the result is exactly representable as a 32-bit unsigned bit string.

6.1.6.1.12 Number::lessThan (x,y )

The abstract operation Number::lessThan takes argumentsx (a Number) andy (a Number) and returns a Boolean orundefined. It performs the following steps when called:

  1. Ifx isNaN, returnundefined.
  2. Ify isNaN, returnundefined.
  3. Ifx isy, returnfalse.
  4. Ifx is+0𝔽 andy is-0𝔽, returnfalse.
  5. Ifx is-0𝔽 andy is+0𝔽, returnfalse.
  6. Ifx is+∞𝔽, returnfalse.
  7. Ify is+∞𝔽, returntrue.
  8. Ify is-∞𝔽, returnfalse.
  9. Ifx is-∞𝔽, returntrue.
  10. Assert:x andy arefinite.
  11. If(x) <(y), returntrue. Otherwise, returnfalse.

6.1.6.1.13 Number::equal (x,y )

The abstract operation Number::equal takes argumentsx (a Number) andy (a Number) and returns a Boolean. It performs the following steps when called:

  1. Ifx isNaN, returnfalse.
  2. Ify isNaN, returnfalse.
  3. Ifx isy, returntrue.
  4. Ifx is+0𝔽 andy is-0𝔽, returntrue.
  5. Ifx is-0𝔽 andy is+0𝔽, returntrue.
  6. Returnfalse.

6.1.6.1.14 Number::sameValue (x,y )

The abstract operation Number::sameValue takes argumentsx (a Number) andy (a Number) and returns a Boolean. It performs the following steps when called:

  1. Ifx isNaN andy isNaN, returntrue.
  2. Ifx is+0𝔽 andy is-0𝔽, returnfalse.
  3. Ifx is-0𝔽 andy is+0𝔽, returnfalse.
  4. Ifx isy, returntrue.
  5. Returnfalse.

6.1.6.1.15 Number::sameValueZero (x,y )

The abstract operation Number::sameValueZero takes argumentsx (a Number) andy (a Number) and returns a Boolean. It performs the following steps when called:

  1. Ifx isNaN andy isNaN, returntrue.
  2. Ifx is+0𝔽 andy is-0𝔽, returntrue.
  3. Ifx is-0𝔽 andy is+0𝔽, returntrue.
  4. Ifx isy, returntrue.
  5. Returnfalse.

6.1.6.1.16 NumberBitwiseOp (op,x,y )

The abstract operation NumberBitwiseOp takes argumentsop (&,^, or|),x (a Number), andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. Letlnum be ! ToInt32(x).
  2. Letrnum be ! ToInt32(y).
  3. Letlbits be the 32-bit two's complement bit string representing(lnum).
  4. Letrbits be the 32-bit two's complement bit string representing(rnum).
  5. Ifop is&, then
    1. Letresult be the result of applying the bitwise AND operation tolbits andrbits.
  6. Else ifop is^, then
    1. Letresult be the result of applying the bitwise exclusive OR (XOR) operation tolbits andrbits.
  7. Else,
    1. Assert:op is|.
    2. Letresult be the result of applying the bitwise inclusive OR operation tolbits andrbits.
  8. Return theNumber value for theinteger represented by the 32-bit two's complement bit stringresult.

6.1.6.1.17 Number::bitwiseAND (x,y )

The abstract operation Number::bitwiseAND takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. ReturnNumberBitwiseOp(&,x,y).

6.1.6.1.18 Number::bitwiseXOR (x,y )

The abstract operation Number::bitwiseXOR takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. ReturnNumberBitwiseOp(^,x,y).

6.1.6.1.19 Number::bitwiseOR (x,y )

The abstract operation Number::bitwiseOR takes argumentsx (a Number) andy (a Number) and returns anintegral Number. It performs the following steps when called:

  1. ReturnNumberBitwiseOp(|,x,y).

6.1.6.1.20 Number::toString (x,radix )

The abstract operation Number::toString takes argumentsx (a Number) andradix (aninteger in theinclusive interval from 2 to 36) and returns a String. It representsx as a String using a positional numeral system with radixradix. The digits used in the representation of a number using radixr are taken from the firstr code units of"0123456789abcdefghijklmnopqrstuvwxyz" in order. The representation of numbers with magnitude greater than or equal to1𝔽 never includes leading zeroes. It performs the following steps when called:

  1. Ifx isNaN, return"NaN".
  2. Ifx is either+0𝔽 or-0𝔽, return"0".
  3. Ifx <-0𝔽, return thestring-concatenation of"-" andNumber::toString(-x,radix).
  4. Ifx is+∞𝔽, return"Infinity".
  5. Letn,k, ands beintegers such thatk ≥ 1,radixk - 1s <radixk,𝔽(s ×radixn -k) isx, andk is as small as possible. Note thatk is the number of digits in the representation ofs using radixradix, thats is not divisible byradix, and that the least significant digit ofs is not necessarily uniquely determined by these criteria.
  6. Ifradix ≠ 10 orn is in theinclusive interval from -5 to 21, then
    1. Ifnk, then
      1. Return thestring-concatenation of:
        • the code units of thek digits of the representation ofs using radixradix
        • n -k occurrences of the code unit 0x0030 (DIGIT ZERO)
    2. Else ifn > 0, then
      1. Return thestring-concatenation of:
        • the code units of the most significantn digits of the representation ofs using radixradix
        • the code unit 0x002E (FULL STOP)
        • the code units of the remainingk -n digits of the representation ofs using radixradix
    3. Else,
      1. Assert:n ≤ 0.
      2. Return thestring-concatenation of:
        • the code unit 0x0030 (DIGIT ZERO)
        • the code unit 0x002E (FULL STOP)
        • -n occurrences of the code unit 0x0030 (DIGIT ZERO)
        • the code units of thek digits of the representation ofs using radixradix
  7. NOTE: In this case, the input will be represented using scientific E notation, such as1.2e+3.
  8. Assert:radix is 10.
  9. Ifn < 0, then
    1. LetexponentSign be the code unit 0x002D (HYPHEN-MINUS).
  10. Else,
    1. LetexponentSign be the code unit 0x002B (PLUS SIGN).
  11. Ifk = 1, then
    1. Return thestring-concatenation of:
      • the code unit of the single digit ofs
      • the code unit 0x0065 (LATIN SMALL LETTER E)
      • exponentSign
      • the code units of the decimal representation ofabs(n - 1)
  12. Return thestring-concatenation of:
    • the code unit of the most significant digit of the decimal representation ofs
    • the code unit 0x002E (FULL STOP)
    • the code units of the remainingk - 1 digits of the decimal representation ofs
    • the code unit 0x0065 (LATIN SMALL LETTER E)
    • exponentSign
    • the code units of the decimal representation ofabs(n - 1)
Note 1

The following observations may be useful as guidelines for implementations, but are not part of the normative requirements of this Standard:

  • If x is any Number value other than-0𝔽, thenToNumber(ToString(x)) is x.
  • The least significant digit of s is not always uniquely determined by the requirements listed in step5.
Note 2

For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step5 be used as a guideline:

  1. Letn,k, ands beintegers such thatk ≥ 1,radixk - 1s <radixk,𝔽(s ×radixn -k) isx, andk is as small as possible. If there are multiple possibilities fors, choose the value ofs for whichs ×radixn -k is closest in value to(x). If there are two such possible values ofs, choose the one that is even. Note thatk is the number of digits in the representation ofs using radixradix and thats is not divisible byradix.
Note 3

Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis, Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). 30 November 1990. Available as
http://ampl.com/REFS/abstracts.html#rounding. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as
http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the variousnetlib mirror sites.

6.1.6.2 The BigInt Type

TheBigInt type represents aninteger value. The value may be any size and is not limited to a particular bit-width. Generally, where not otherwise noted, operations are designed to return exact mathematically-based answers. For binary operations, BigInts act as two's complement binary strings, with negative numbers treated as having bits set infinitely to the left.

6.1.6.2.1 BigInt::unaryMinus (x )

The abstract operation BigInt::unaryMinus takes argumentx (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Ifx is0, return0.
  2. Return -x.

6.1.6.2.2 BigInt::bitwiseNOT (x )

The abstract operation BigInt::bitwiseNOT takes argumentx (a BigInt) and returns a BigInt. It returns the one's complement ofx. It performs the following steps when called:

  1. Return -x -1.

6.1.6.2.3 BigInt::exponentiate (base,exponent )

The abstract operation BigInt::exponentiate takes argumentsbase (a BigInt) andexponent (a BigInt) and returns either anormal completion containing a BigInt or athrow completion. It performs the following steps when called:

  1. Ifexponent <0, throw aRangeError exception.
  2. Ifbase is0 andexponent is0, return1.
  3. Returnbase raised to the powerexponent.

6.1.6.2.4 BigInt::multiply (x,y )

The abstract operation BigInt::multiply takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Returnx ×y.
Note
Even if the result has a much larger bit width than the input, the exact mathematical answer is given.

6.1.6.2.5 BigInt::divide (x,y )

The abstract operation BigInt::divide takes argumentsx (a BigInt) andy (a BigInt) and returns either anormal completion containing a BigInt or athrow completion. It performs the following steps when called:

  1. Ify is0, throw aRangeError exception.
  2. Letquotient be(x) /(y).
  3. Return(truncate(quotient)).

6.1.6.2.6 BigInt::remainder (n,d )

The abstract operation BigInt::remainder takes argumentsn (a BigInt) andd (a BigInt) and returns either anormal completion containing a BigInt or athrow completion. It performs the following steps when called:

  1. Ifd is0, throw aRangeError exception.
  2. Ifn is0, return0.
  3. Letquotient be(n) /(d).
  4. Letq be(truncate(quotient)).
  5. Returnn - (d ×q).
Note
The sign of the result is the sign of the dividend.

6.1.6.2.7 BigInt::add (x,y )

The abstract operation BigInt::add takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Returnx +y.

6.1.6.2.8 BigInt::subtract (x,y )

The abstract operation BigInt::subtract takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Returnx -y.

6.1.6.2.9 BigInt::leftShift (x,y )

The abstract operation BigInt::leftShift takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Ify <0, then
    1. Return(floor((x) / 2-(y))).
  2. Returnx ×2y.
Note
Semantics here should be equivalent to a bitwise shift, treating the BigInt as an infinite length string of binary two's complement digits.

6.1.6.2.10 BigInt::signedRightShift (x,y )

The abstract operation BigInt::signedRightShift takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. ReturnBigInt::leftShift(x, -y).

6.1.6.2.11 BigInt::unsignedRightShift (x,y )

The abstract operation BigInt::unsignedRightShift takes argumentsx (a BigInt) andy (a BigInt) and returns athrow completion. It performs the following steps when called:

  1. Throw aTypeError exception.

6.1.6.2.12 BigInt::lessThan (x,y )

The abstract operation BigInt::lessThan takes argumentsx (a BigInt) andy (a BigInt) and returns a Boolean. It performs the following steps when called:

  1. If(x) <(y), returntrue; otherwise returnfalse.

6.1.6.2.13 BigInt::equal (x,y )

The abstract operation BigInt::equal takes argumentsx (a BigInt) andy (a BigInt) and returns a Boolean. It performs the following steps when called:

  1. If(x) =(y), returntrue; otherwise returnfalse.

6.1.6.2.14 BinaryAnd (x,y )

The abstract operation BinaryAnd takes argumentsx (0 or 1) andy (0 or 1) and returns 0 or 1. It performs the following steps when called:

  1. Ifx = 1 andy = 1, return 1.
  2. Else, return 0.

6.1.6.2.15 BinaryOr (x,y )

The abstract operation BinaryOr takes argumentsx (0 or 1) andy (0 or 1) and returns 0 or 1. It performs the following steps when called:

  1. Ifx = 1 ory = 1, return 1.
  2. Else, return 0.

6.1.6.2.16 BinaryXor (x,y )

The abstract operation BinaryXor takes argumentsx (0 or 1) andy (0 or 1) and returns 0 or 1. It performs the following steps when called:

  1. Ifx = 1 andy = 0, return 1.
  2. Else ifx = 0 andy = 1, return 1.
  3. Else, return 0.

6.1.6.2.17 BigIntBitwiseOp (op,x,y )

The abstract operation BigIntBitwiseOp takes argumentsop (&,^, or|),x (a BigInt), andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. Setx to(x).
  2. Sety to(y).
  3. Letresult be 0.
  4. Letshift be 0.
  5. Repeat, until (x = 0 orx = -1) and (y = 0 ory = -1),
    1. LetxDigit bexmodulo 2.
    2. LetyDigit beymodulo 2.
    3. Ifop is&, then
      1. Setresult toresult + 2shift ×BinaryAnd(xDigit,yDigit).
    4. Else ifop is|, then
      1. Setresult toresult + 2shift ×BinaryOr(xDigit,yDigit).
    5. Else,
      1. Assert:op is^.
      2. Setresult toresult + 2shift ×BinaryXor(xDigit,yDigit).
    6. Setshift toshift + 1.
    7. Setx to (x -xDigit) / 2.
    8. Sety to (y -yDigit) / 2.
  6. Ifop is&, then
    1. Lettmp beBinaryAnd(xmodulo 2,ymodulo 2).
  7. Else ifop is|, then
    1. Lettmp beBinaryOr(xmodulo 2,ymodulo 2).
  8. Else,
    1. Assert:op is^.
    2. Lettmp beBinaryXor(xmodulo 2,ymodulo 2).
  9. Iftmp ≠ 0, then
    1. Setresult toresult - 2shift.
    2. NOTE: This extends the sign.
  10. Return theBigInt value forresult.

6.1.6.2.18 BigInt::bitwiseAND (x,y )

The abstract operation BigInt::bitwiseAND takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(&,x,y).

6.1.6.2.19 BigInt::bitwiseXOR (x,y )

The abstract operation BigInt::bitwiseXOR takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(^,x,y).

6.1.6.2.20 BigInt::bitwiseOR (x,y )

The abstract operation BigInt::bitwiseOR takes argumentsx (a BigInt) andy (a BigInt) and returns a BigInt. It performs the following steps when called:

  1. ReturnBigIntBitwiseOp(|,x,y).

6.1.6.2.21 BigInt::toString (x,radix )

The abstract operation BigInt::toString takes argumentsx (a BigInt) andradix (aninteger in theinclusive interval from 2 to 36) and returns a String. It representsx as a String using a positional numeral system with radixradix. The digits used in the representation of a BigInt using radixr are taken from the firstr code units of"0123456789abcdefghijklmnopqrstuvwxyz" in order. The representation of BigInts other than0 never includes leading zeroes. It performs the following steps when called:

  1. Ifx <0, return thestring-concatenation of"-" andBigInt::toString(-x,radix).
  2. Return the String value consisting of the representation ofx using radixradix.

6.1.7 The Object Type

Each instance of theObject type, also referred to simply as “an Object”, represents a collection of properties. Each property is either a data property, or an accessor property:

  • Adata property associates a key value with anECMAScript language value and a set of Boolean attributes.
  • Anaccessor property associates a key value with one or two accessor functions, and a set of Boolean attributes. The accessor functions are used to store or retrieve anECMAScript language value that is associated with the property.

The properties of an object are uniquely identified using property keys. Aproperty key is either a String or a Symbol. All Strings and Symbols, including the empty String, are valid as property keys. Aproperty name is a property key thatis a String.

Aninteger index is aproperty namen such thatCanonicalNumericIndexString(n) returns anintegral Number in theinclusive interval from+0𝔽 to𝔽(253 - 1). Anarray index is aninteger indexn such thatCanonicalNumericIndexString(n) returns anintegral Number in theinclusive interval from+0𝔽 to𝔽(232 - 2).

Note

Every non-negativesafe integer has a correspondinginteger index. Every 32-bit unsignedinteger except232 - 1 has a correspondingarray index."-0" is neither aninteger index nor anarray index.

Property keys are used to access properties and their values. There are two kinds of access for properties:get andset, corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes bothown properties that are a direct part of an object andinherited properties which are provided by another associated object via a property inheritance relationship. Inherited properties may be either own or inherited properties of the associated object. Each own property of an object must each have a key value that is distinct from the key values of the other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics for accessing and manipulating their properties. Please see6.1.7.2 for definitions of the multiple forms of objects.

In addition, some objects are callable; these are referred to as functions orfunction objects and are described further below. All functions in ECMAScript are members of the Object type.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties as described inTable 3. Unless specified explicitly, the initial value of each attribute is its Default Value.

Table 3: Attributes of an Object property
Attribute NameTypes of property for which it is presentValue DomainDefault ValueDescription
[[Value]]data property anECMAScript language valueundefined The value retrieved by a get access of the property.
[[Writable]]data property a Booleanfalse Iffalse, attempts by ECMAScript code to change the property's[[Value]] attribute using[[Set]] will not succeed.
[[Get]]accessor property an Object orundefinedundefined If the valueis an Object it must be afunction object. The function's[[Call]] internal method (Table 5) is called with an empty arguments list to retrieve the property value each time a get access of the property is performed.
[[Set]]accessor property an Object orundefinedundefined If the valueis an Object it must be afunction object. The function's[[Call]] internal method (Table 5) is called with an arguments list containing the assigned value as its sole argument each time a set access of the property is performed. The effect of a property's[[Set]] internal method may, but is not required to, have an effect on the value returned by subsequent calls to the property's[[Get]] internal method.
[[Enumerable]]data property oraccessor property a Booleanfalse Iftrue, the property will be enumerated by a for-in enumeration (see14.7.5). Otherwise, the property is said to be non-enumerable.
[[Configurable]]data property oraccessor property a Booleanfalse Iffalse, attempts to delete the property, change it from adata property to anaccessor property or from anaccessor property to adata property, or make any changes to its attributes (other than replacing an existing[[Value]] or setting[[Writable]] tofalse) will fail.

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms calledinternal methods. Each object in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal methods are not part of the ECMAScript language. They are defined by this specification purely for expository purposes. However, each object within an implementation of ECMAScript must behave as specified by the internal methods associated with it. The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms when a common internal method name is invoked upon them. That actual object upon which an internal method is invoked is the “target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an internal method of an object that the object does not support, aTypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon the specific internal slot specification, such state may consist of values of anyECMAScript language type or of specific ECMAScript specification type values. Unless explicitly specified otherwise, internal slots are allocated as part of the process of creating an object and may not be dynamically added to an object. Unless specified otherwise, the initial value of an internal slot is the valueundefined. Various algorithms within this specification create objects that have internal slots. However, the ECMAScript language provides no direct way to associate internal slots with an object.

All objects have an internal slot named[[PrivateElements]], which is aList ofPrivateElements. ThisList represents the values of the private fields, methods, and accessors for the object. Initially, it is an emptyList.

Internal methods and internal slots are identified within this specification using names enclosed in double square brackets [[ ]].

Table 4 summarizes theessential internal methods used by this specification that are applicable to all objects created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods. However, all objects do not necessarily use the same algorithms for those methods.

Anordinary object is an object that satisfies all of the following criteria:

  • For the internal methods listed inTable 4, the object uses those defined in10.1.
  • If the object has a[[Call]] internal method, it uses either the one defined in10.2.1 or the one defined in10.3.1.
  • If the object has a[[Construct]] internal method, it uses either the one defined in10.2.2 or the one defined in10.3.2.

Anexotic object is an object that is not anordinary object.

This specification recognizes different kinds ofexotic objects by those objects' internal methods. An object that is behaviourally equivalent to a particular kind ofexotic object (such as anArray exotic object or abound function exotic object), but does not have the same collection of internal methods specified for that kind, is not recognized as that kind ofexotic object.

The “Signature” column ofTable 4 and other similar tables describes the invocation pattern for each internal method. The invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is the same as an ECMAScript type name then the name describes the required type of the parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol “→” and the type name of the returned value. The type names used in signatures refer to the types defined in clause6 augmented by the following additional names. “any” means the value may be anyECMAScript language type.

In addition to its parameters, an internal method always has access to the object that is the target of the method invocation.

An internal method implicitly returns aCompletion Record, either anormal completion that wraps a value of the return type shown in its invocation pattern, or athrow completion.

Table 4: Essential Internal Methods
Internal Method Signature Description
[[GetPrototypeOf]] ( ) Object | Null Determine the object that provides inherited properties for this object. Anull value indicates that there are no inherited properties.
[[SetPrototypeOf]] (Object | Null) Boolean Associate this object with another object that provides inherited properties. Passingnull indicates that there are no inherited properties. Returnstrue indicating that the operation was completed successfully orfalse indicating that the operation was not successful.
[[IsExtensible]] ( ) Boolean Determine whether it is permitted to add additional properties to this object.
[[PreventExtensions]] ( ) Boolean Control whether new properties may be added to this object. Returnstrue if the operation was successful orfalse if the operation was unsuccessful.
[[GetOwnProperty]] (propertyKey) Undefined |Property Descriptor Return aProperty Descriptor for the own property of this object whose key ispropertyKey, orundefined if no such property exists.
[[DefineOwnProperty]] (propertyKey,PropertyDescriptor) Boolean Create or alter the own property, whose key ispropertyKey, to have the state described byPropertyDescriptor. Returntrue if that property was successfully created/updated orfalse if the property could not be created or updated.
[[HasProperty]] (propertyKey) Boolean Return a Boolean value indicating whether this object already has either an own or inherited property whose key ispropertyKey.
[[Get]] (propertyKey,Receiver)any Return the value of the property whose key ispropertyKey from this object. If any ECMAScript code must be executed to retrieve the property value,Receiver is used as thethis value when evaluating the code.
[[Set]] (propertyKey,value,Receiver) Boolean Set the value of the property whose key ispropertyKey tovalue. If any ECMAScript code must be executed to set the property value,Receiver is used as thethis value when evaluating the code. Returnstrue if the property value was set orfalse if it could not be set.
[[Delete]] (propertyKey) Boolean Remove the own property whose key ispropertyKey from this object. Returnfalse if the property was not deleted and is still present. Returntrue if the property was deleted or is not present.
[[OwnPropertyKeys]] ( )List ofproperty keys Return aList whose elements are all of the ownproperty keys for the object.

Table 5 summarizes additional essential internal methods that are supported by objects that may be called as functions. Afunction object is an object that supports the[[Call]] internal method. Aconstructor is an object that supports the[[Construct]] internal method. Every object that supports[[Construct]] must support[[Call]]; that is, everyconstructor must be afunction object. Therefore, aconstructor may also be referred to as aconstructor function orconstructorfunction object.

Table 5: Additional Essential Internal Methods of Function Objects
Internal Method Signature Description
[[Call]] (any, aList ofany)any Executes code associated with this object. Invoked via a function call expression. The arguments to the internal method are athis value and aList whose elements are the arguments passed to the function by a call expression. Objects that implement this internal method arecallable.
[[Construct]] (aList ofany, Object) Object Creates an object. Invoked via thenew operator or asuper call. The first argument to the internal method is aList whose elements are the arguments of theconstructor invocation or thesuper call. The second argument is the object to which thenew operator was initially applied. Objects that implement this internal method are calledconstructors. Afunction object is not necessarily aconstructor and such non-constructorfunction objects do not have a[[Construct]] internal method.

The semantics of the essential internal methods forordinary objects and standardexotic objects are specified in clause10. If any specified use of an internal method of anexotic object is not supported by an implementation, that usage must throw aTypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below. Ordinary ECMAScript Objects as well as all standardexotic objects in this specification maintain these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of traps invoked on the[[ProxyHandler]] object.

Any implementation providedexotic objects must also maintain these invariants for those objects. Violation of these invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However, violation of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing alternative interfaces that implement the functionality of the essential internal methods without enforcing their invariants.

Definitions:

  • Thetarget of an internal method is the object upon which the internal method is called.
  • A target isnon-extensible if it has been observed to returnfalse from its[[IsExtensible]] internal method, ortrue from its[[PreventExtensions]] internal method.
  • Anon-existent property is a property that does not exist as an own property on a non-extensible target.
  • All references toSameValue are according to the definition of theSameValue algorithm.

Return value:

The value returned by any internal method must be aCompletion Record with either:

  • [[Type]] =normal,[[Target]] =empty, and[[Value]] = a value of the "normal return type" shown below for that internal method, or
  • [[Type]] =throw,[[Target]] =empty, and[[Value]] = anyECMAScript language value.
Note 1

An internal method must not return acontinue completion, abreak completion, or areturn completion.

[[GetPrototypeOf]] ( )

  • The normal return type is either Object or Null.
  • If target is non-extensible, and[[GetPrototypeOf]] returns a valueV, then any future calls to[[GetPrototypeOf]] should return theSameValue asV.
Note 2

An object's prototype chain should havefinite length (that is, starting from any object, recursively applying the[[GetPrototypeOf]] internal method to its result should eventually lead to the valuenull). However, this requirement is not enforceable as an object level invariant if the prototype chain includes anyexotic objects that do not use theordinary object definition of[[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when accessing object properties.

[[SetPrototypeOf]] (V )

  • The normal return type is Boolean.
  • If target is non-extensible,[[SetPrototypeOf]] must returnfalse, unlessV is theSameValue as the target's observed[[GetPrototypeOf]] value.

[[IsExtensible]] ( )

  • The normal return type is Boolean.
  • If[[IsExtensible]] returnsfalse, all future calls to[[IsExtensible]] on the target must returnfalse.

[[PreventExtensions]] ( )

  • The normal return type is Boolean.
  • If[[PreventExtensions]] returnstrue, all future calls to[[IsExtensible]] on the target must returnfalse and the target is now considered non-extensible.

[[GetOwnProperty]] (P )

  • The normal return type is eitherProperty Descriptor or Undefined.
  • If the Type of the return value isProperty Descriptor, the return value must be afully populated Property Descriptor.
  • IfP is described as a non-configurable, non-writable owndata property, all future calls to[[GetOwnProperty]] (P ) must returnProperty Descriptor whose[[Value]] isSameValue asP's[[Value]] attribute.
  • IfP's attributes other than[[Writable]] and[[Value]] may change over time, or if the property might be deleted, thenP's[[Configurable]] attribute must betrue.
  • If the[[Writable]] attribute may change fromfalse totrue, then the[[Configurable]] attribute must betrue.
  • If the target is non-extensible andP is non-existent, then all future calls to[[GetOwnProperty]] (P) on the target must describeP as non-existent (i.e.[[GetOwnProperty]] (P) must returnundefined).
Note 3

As a consequence of the third invariant, if a property is described as adata property and it may return different values over time, then either or both of the[[Writable]] and[[Configurable]] attributes must betrue even if no mechanism to change the value is exposed via the other essential internal methods.

[[DefineOwnProperty]] (P,Desc )

  • The normal return type is Boolean.
  • [[DefineOwnProperty]] must returnfalse ifP has previously been observed as a non-configurable own property of the target, unless either:
    1. P is a writabledata property. A non-configurable writabledata property can be changed into a non-configurable non-writabledata property.
    2. All attributes ofDesc are theSameValue asP's attributes.
  • [[DefineOwnProperty]] (P,Desc) must returnfalse if target is non-extensible andP is a non-existent own property. That is, a non-extensible target object cannot be extended with new properties.

[[HasProperty]] (P )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable own data oraccessor property of the target,[[HasProperty]] must returntrue.

[[Get]] (P,Receiver )

  • The normal return type is anyECMAScript language type.
  • IfP was previously observed as a non-configurable, non-writable owndata property of the target with valueV, then[[Get]] must return theSameValue asV.
  • IfP was previously observed as a non-configurable ownaccessor property of the target whose[[Get]] attribute isundefined, the[[Get]] operation must returnundefined.

[[Set]] (P,V,Receiver )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable, non-writable owndata property of the target, then[[Set]] must returnfalse unlessV is theSameValue asP's[[Value]] attribute.
  • IfP was previously observed as a non-configurable ownaccessor property of the target whose[[Set]] attribute isundefined, the[[Set]] operation must returnfalse.

[[Delete]] (P )

  • The normal return type is Boolean.
  • IfP was previously observed as a non-configurable own data oraccessor property of the target,[[Delete]] must returnfalse.

[[OwnPropertyKeys]] ( )

  • The normal return type isList.
  • The returnedList must not contain any duplicate entries.
  • The Type of each element of the returnedList is either String or Symbol.
  • The returnedList must contain at least the keys of all non-configurable own properties that have previously been observed.
  • If the target is non-extensible, the returnedList must contain only the keys of all own properties of the target that are observable using[[GetOwnProperty]].

[[Call]] ( )

[[Construct]] ( )

  • The normal return type is Object.
  • The target must also have a[[Call]] internal method.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and which usually haverealm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a set of similar objects, one perrealm.

Within this specification a reference such as %name% means the intrinsic object, associated with the currentrealm, corresponding to the name. A reference such as %name.a.b% means, as if the"b" property of the value of the"a" property of the intrinsic object %name% was accessed prior to any ECMAScript code being evaluated. Determination of the currentrealm and its intrinsics is described in9.4. The well-known intrinsics are listed inTable 6.

Table 6: Well-Known Intrinsic Objects
Intrinsic Name Global Name ECMAScript Language Association
%AggregateError%AggregateError TheAggregateErrorconstructor (20.5.7.1)
%Array%Array The Arrayconstructor (23.1.1)
%ArrayBuffer%ArrayBuffer The ArrayBufferconstructor (25.1.4)
%ArrayIteratorPrototype% The prototype of Array iterator objects (23.1.5)
%AsyncFromSyncIteratorPrototype% The prototype of async-from-sync iterator objects (27.1.4)
%AsyncFunction% Theconstructor of asyncfunction objects (27.7.1)
%AsyncGeneratorFunction% Theconstructor of async iterator objects (27.4.1)
%AsyncIteratorPrototype% An object that all standard built-in async iterator objects indirectly inherit from
%Atomics%Atomics TheAtomics object (25.4)
%BigInt%BigInt The BigIntconstructor (21.2.1)
%BigInt64Array%BigInt64Array The BigInt64Arrayconstructor (23.2)
%BigUint64Array%BigUint64Array The BigUint64Arrayconstructor (23.2)
%Boolean%Boolean The Booleanconstructor (20.3.1)
%DataView%DataView The DataViewconstructor (25.3.2)
%Date%Date The Dateconstructor (21.4.2)
%decodeURI%decodeURI ThedecodeURI function (19.2.6.1)
%decodeURIComponent%decodeURIComponent ThedecodeURIComponent function (19.2.6.2)
%encodeURI%encodeURI TheencodeURI function (19.2.6.3)
%encodeURIComponent%encodeURIComponent TheencodeURIComponent function (19.2.6.4)
%Error%Error The Errorconstructor (20.5.1)
%eval%eval Theeval function (19.2.1)
%EvalError%EvalError The EvalErrorconstructor (20.5.5.1)
%FinalizationRegistry%FinalizationRegistry TheFinalizationRegistryconstructor (26.2.1)
%Float32Array%Float32Array The Float32Arrayconstructor (23.2)
%Float64Array%Float64Array The Float64Arrayconstructor (23.2)
%ForInIteratorPrototype% The prototype of For-In iterator objects (14.7.5.10)
%Function%Function The Functionconstructor (20.2.1)
%GeneratorFunction% Theconstructor of Generators (27.3.1)
%Int8Array%Int8Array The Int8Arrayconstructor (23.2)
%Int16Array%Int16Array The Int16Arrayconstructor (23.2)
%Int32Array%Int32Array The Int32Arrayconstructor (23.2)
%isFinite%isFinite TheisFinite function (19.2.2)
%isNaN%isNaN TheisNaN function (19.2.3)
%IteratorPrototype% An object that all standard built-in iterator objects indirectly inherit from
%JSON%JSON TheJSON object (25.5)
%Map%Map The Mapconstructor (24.1.1)
%MapIteratorPrototype% The prototype of Map iterator objects (24.1.5)
%Math%Math TheMath object (21.3)
%Number%Number The Numberconstructor (21.1.1)
%Object%Object The Objectconstructor (20.1.1)
%parseFloat%parseFloat TheparseFloat function (19.2.4)
%parseInt%parseInt TheparseInt function (19.2.5)
%Promise%Promise The Promiseconstructor (27.2.3)
%Proxy%Proxy The Proxyconstructor (28.2.1)
%RangeError%RangeError The RangeErrorconstructor (20.5.5.2)
%ReferenceError%ReferenceError The ReferenceErrorconstructor (20.5.5.3)
%Reflect%Reflect TheReflect object (28.1)
%RegExp%RegExp The RegExpconstructor (22.2.4)
%RegExpStringIteratorPrototype% The prototype of RegExp String Iterator objects (22.2.9)
%Set%Set The Setconstructor (24.2.1)
%SetIteratorPrototype% The prototype of Set iterator objects (24.2.5)
%SharedArrayBuffer%SharedArrayBuffer The SharedArrayBufferconstructor (25.2.3)
%String%String The Stringconstructor (22.1.1)
%StringIteratorPrototype% The prototype of String iterator objects (22.1.5)
%Symbol%Symbol The Symbolconstructor (20.4.1)
%SyntaxError%SyntaxError The SyntaxErrorconstructor (20.5.5.4)
%ThrowTypeError% Afunction object that unconditionally throws a new instance of%TypeError%
%TypedArray% The super class of all typed Arrayconstructors (23.2.1)
%TypeError%TypeError The TypeErrorconstructor (20.5.5.5)
%Uint8Array%Uint8Array The Uint8Arrayconstructor (23.2)
%Uint8ClampedArray%Uint8ClampedArray The Uint8ClampedArrayconstructor (23.2)
%Uint16Array%Uint16Array The Uint16Arrayconstructor (23.2)
%Uint32Array%Uint32Array The Uint32Arrayconstructor (23.2)
%URIError%URIError The URIErrorconstructor (20.5.5.6)
%WeakMap%WeakMap The WeakMapconstructor (24.3.1)
%WeakRef%WeakRef TheWeakRefconstructor (26.1.1)
%WeakSet%WeakSet The WeakSetconstructor (24.4.1)
Note

Additional entries inTable 97.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript language constructs andECMAScript language types. The specification types include Reference,List,Completion Record,Property Descriptor,Environment Record,Abstract Closure, andData Block. Specification type values are specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript implementation. Specification type values may be used to describe intermediate results of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of ECMAScript language variables.

6.2.1 The Enum Specification Type

Enums are values which are internal to the specification and not directly observable from ECMAScript code. Enums are denoted using asans-serif typeface. For instance, aCompletion Record's[[Type]] field takes on values likenormal,return, orthrow. Enums have no characteristics other than their name. The name of an enum serves no purpose other than to distinguish it from other enums, and implies nothing about its usage or meaning in context.

6.2.2 The List and Record Specification Types

TheList type is used to explain the evaluation of argument lists (see13.3.8) innew expressions, in function calls, and in other algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered sequences of list elements containing the individual values. These sequences may be of any length. The elements of a list may be randomly accessed using 0-origin indices. For notational convenience an array-like syntax can be used to access List elements. For example,arguments[2] is shorthand for saying the 3rd element of the Listarguments.

When an algorithm iterates over the elements of a List without specifying an order, the order used is the order of the elements in the List.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific value. A new empty List can be expressed as « ».

In this specification, the phrase "thelist-concatenation ofA,B, ..." (where each argument is a possibly empty List) denotes a new List value whose elements are the concatenation of the elements (in order) of each of the arguments (in order).

TheRecord type is used to describe data aggregations within the algorithms of this specification. A Record type value consists of one or more named fields. The value of each field is anECMAScript language value or specification value. Field names are always enclosed in double brackets, for example[[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value. For example, {[[Field1]]: 42,[[Field2]]:false,[[Field3]]:empty } defines a Record value that has three fields, each of which is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example, if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named[[Field2]]”.

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a literal Record value to identify the specific kind of aggregations that is being described. For example: PropertyDescriptor {[[Value]]: 42,[[Writable]]:false,[[Configurable]]:true }.

6.2.3 The Set and Relation Specification Types

TheSet type is used to explain a collection of unordered elements for use in thememory model. It is distinct from the ECMAScript collection type of the same name. To disambiguate, instances of the ECMAScript collection are consistently referred to as "Set objects" within this specification. Values of the Set type are simple collections of elements, where no element appears more than once. Elements may be added to and removed from Sets. Sets may be unioned, intersected, or subtracted from each other.

TheRelation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered pairs of values from its value domain. For example, a Relation on events is a set of ordered pairs of events. For a RelationR and two valuesa andb in the value domain ofR,aRb is shorthand for saying the ordered pair (a,b) is a member ofR. A Relation is least with respect to some conditions when it is the smallest Relation that satisfies those conditions.

Astrict partial order is a Relation valueR that satisfies the following.

  • For alla,b, andc inR's domain:

    • It is not the case thataRa, and
    • IfaRb andbRc, thenaRc.
Note 1

The two properties above are called irreflexivity and transitivity, respectively.

Astrict total order is a Relation valueR that satisfies the following.

  • For alla,b, andc inR's domain:

    • a isb oraRb orbRa, and
    • It is not the case thataRa, and
    • IfaRb andbRc, thenaRc.
Note 2

The three properties above are called totality, irreflexivity, and transitivity, respectively.

6.2.4 The Completion Record Specification Type

TheCompletion Record specification type is used to explain the runtime propagation of values and control flow such as the behaviour of statements (break,continue,return andthrow) that perform nonlocal transfers of control.

Completion Records have the fields defined inTable 7.

Table 7:Completion Record Fields
Field Name Value Meaning
[[Type]]normal,break,continue,return, orthrow The type of completion that occurred.
[[Value]] any value except aCompletion Record The value that was produced.
[[Target]] a String orempty The target label for directed control transfers.

The following shorthand terms are sometimes used to refer to Completion Records.

  • normal completion refers to any Completion Record with a[[Type]] value ofnormal.
  • break completion refers to any Completion Record with a[[Type]] value ofbreak.
  • continue completion refers to any Completion Record with a[[Type]] value ofcontinue.
  • return completion refers to any Completion Record with a[[Type]] value ofreturn.
  • throw completion refers to any Completion Record with a[[Type]] value ofthrow.
  • abrupt completion refers to any Completion Record with a[[Type]] value other thannormal.
  • anormal completion containing some type of value refers to a normal completion that has a value of that type in its[[Value]] field.

Callable objects that are defined in this specification only return a normal completion or a throw completion. Returning any other kind of Completion Record is considered an editorial error.

Implementation-defined callable objects must return either a normal completion or a throw completion.

6.2.4.1 NormalCompletion (value )

The abstract operation NormalCompletion takes argumentvalue (any value except aCompletion Record) and returns anormal completion. It performs the following steps when called:

  1. ReturnCompletion Record {[[Type]]:normal,[[Value]]:value,[[Target]]:empty }.

6.2.4.2 ThrowCompletion (value )

The abstract operation ThrowCompletion takes argumentvalue (anECMAScript language value) and returns athrow completion. It performs the following steps when called:

  1. ReturnCompletion Record {[[Type]]:throw,[[Value]]:value,[[Target]]:empty }.

6.2.4.3 UpdateEmpty (completionRecord,value )

The abstract operation UpdateEmpty takes argumentscompletionRecord (aCompletion Record) andvalue (any value except aCompletion Record) and returns aCompletion Record. It performs the following steps when called:

  1. Assert: IfcompletionRecord is either areturn completion or athrow completion, thencompletionRecord.[[Value]] is notempty.
  2. IfcompletionRecord.[[Value]] is notempty, return ? completionRecord.
  3. ReturnCompletion Record {[[Type]]:completionRecord.[[Type]],[[Value]]:value,[[Target]]:completionRecord.[[Target]] }.

6.2.5 The Reference Record Specification Type

TheReference Record type is used to explain the behaviour of such operators asdelete,typeof, the assignment operators, thesuperkeyword and other language features. For example, the left-hand operand of an assignment is expected to produce a Reference Record.

A Reference Record is a resolved name or property binding; its fields are defined byTable 8.

Table 8:Reference Record Fields
Field NameValueMeaning
[[Base]]anECMAScript language value, anEnvironment Record, orunresolvableThe value orEnvironment Record which holds the binding. A[[Base]] ofunresolvable indicates that the binding could not be resolved.
[[ReferencedName]]a String, a Symbol, or aPrivate NameThe name of the binding. Always a String if[[Base]] value is anEnvironment Record.
[[Strict]]a Booleantrue if theReference Record originated instrict mode code,false otherwise.
[[ThisValue]]anECMAScript language value oremptyIf notempty, theReference Record represents a property binding that was expressed using thesuperkeyword; it is called aSuper Reference Record and its[[Base]] value will never be anEnvironment Record. In that case, the[[ThisValue]] field holds thethis value at the time theReference Record was created.

The followingabstract operations are used in this specification to operate upon Reference Records:

6.2.5.1 IsPropertyReference (V )

The abstract operation IsPropertyReference takes argumentV (aReference Record) and returns a Boolean. It performs the following steps when called:

  1. IfV.[[Base]] isunresolvable, returnfalse.
  2. IfV.[[Base]] is anEnvironment Record, returnfalse; otherwise returntrue.

6.2.5.2 IsUnresolvableReference (V )

The abstract operation IsUnresolvableReference takes argumentV (aReference Record) and returns a Boolean. It performs the following steps when called:

  1. IfV.[[Base]] isunresolvable, returntrue; otherwise returnfalse.

6.2.5.3 IsSuperReference (V )

The abstract operation IsSuperReference takes argumentV (aReference Record) and returns a Boolean. It performs the following steps when called:

  1. IfV.[[ThisValue]] is notempty, returntrue; otherwise returnfalse.

6.2.5.4 IsPrivateReference (V )

The abstract operation IsPrivateReference takes argumentV (aReference Record) and returns a Boolean. It performs the following steps when called:

  1. IfV.[[ReferencedName]] is aPrivate Name, returntrue; otherwise returnfalse.

6.2.5.5 GetValue (V )

The abstract operation GetValue takes argumentV (aReference Record or anECMAScript language value) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. IfV is not aReference Record, returnV.
  2. IfIsUnresolvableReference(V) istrue, throw aReferenceError exception.
  3. IfIsPropertyReference(V) istrue, then
    1. LetbaseObj be ? ToObject(V.[[Base]]).
    2. IfIsPrivateReference(V) istrue, then
      1. Return ? PrivateGet(baseObj,V.[[ReferencedName]]).
    3. Return ? baseObj.[[Get]](V.[[ReferencedName]],GetThisValue(V)).
  4. Else,
    1. Letbase beV.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ? base.GetBindingValue(V.[[ReferencedName]],V.[[Strict]]) (see9.1).
Note

The object that may be created in step3.a is not accessible outside of the above abstract operation and theordinary object[[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.2.5.6 PutValue (V,W )

The abstract operation PutValue takes argumentsV (aReference Record or anECMAScript language value) andW (anECMAScript language value) and returns either anormal completion containingunused or anabrupt completion. It performs the following steps when called:

  1. IfV is not aReference Record, throw aReferenceError exception.
  2. IfIsUnresolvableReference(V) istrue, then
    1. IfV.[[Strict]] istrue, throw aReferenceError exception.
    2. LetglobalObj beGetGlobalObject().
    3. Perform ? Set(globalObj,V.[[ReferencedName]],W,false).
    4. Returnunused.
  3. IfIsPropertyReference(V) istrue, then
    1. LetbaseObj be ? ToObject(V.[[Base]]).
    2. IfIsPrivateReference(V) istrue, then
      1. Return ? PrivateSet(baseObj,V.[[ReferencedName]],W).
    3. Letsucceeded be ? baseObj.[[Set]](V.[[ReferencedName]],W,GetThisValue(V)).
    4. Ifsucceeded isfalse andV.[[Strict]] istrue, throw aTypeError exception.
    5. Returnunused.
  4. Else,
    1. Letbase beV.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ? base.SetMutableBinding(V.[[ReferencedName]],W,V.[[Strict]]) (see9.1).
Note

The object that may be created in step3.a is not accessible outside of the above abstract operation and theordinary object[[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.5.7 GetThisValue (V )

The abstract operation GetThisValue takes argumentV (aReference Record) and returns anECMAScript language value. It performs the following steps when called:

  1. Assert:IsPropertyReference(V) istrue.
  2. IfIsSuperReference(V) istrue, returnV.[[ThisValue]]; otherwise returnV.[[Base]].

6.2.5.8 InitializeReferencedBinding (V,W )

The abstract operation InitializeReferencedBinding takes argumentsV (aReference Record) andW (anECMAScript language value) and returns either anormal completion containingunused or anabrupt completion. It performs the following steps when called:

  1. Assert:IsUnresolvableReference(V) isfalse.
  2. Letbase beV.[[Base]].
  3. Assert:base is anEnvironment Record.
  4. Return ? base.InitializeBinding(V.[[ReferencedName]],W).

6.2.5.9 MakePrivateReference (baseValue,privateIdentifier )

The abstract operation MakePrivateReference takes argumentsbaseValue (anECMAScript language value) andprivateIdentifier (a String) and returns aReference Record. It performs the following steps when called:

  1. LetprivEnv be therunning execution context's PrivateEnvironment.
  2. Assert:privEnv is notnull.
  3. LetprivateName beResolvePrivateIdentifier(privEnv,privateIdentifier).
  4. Return theReference Record {[[Base]]:baseValue,[[ReferencedName]]:privateName,[[Strict]]:true,[[ThisValue]]:empty }.

6.2.6 The Property Descriptor Specification Type

TheProperty Descriptor type is used to explain the manipulation and reification of Object property attributes. A Property Descriptor is aRecord with zero or more fields, where each field's name is an attribute name and its value is a corresponding attribute value as specified in6.1.7.1. The schema name used within this specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named either[[Value]] or[[Writable]]. An accessor Property Descriptor is one that includes any fields named either[[Get]] or[[Set]]. Any Property Descriptor may have fields named[[Enumerable]] and[[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor Property Descriptor; however, it may be neither (in which case it is a generic Property Descriptor). Afully populated Property Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all of the corresponding fields defined inTable 3.

The followingabstract operations are used in this specification to operate upon Property Descriptor values:

6.2.6.1 IsAccessorDescriptor (Desc )

The abstract operation IsAccessorDescriptor takes argumentDesc (aProperty Descriptor orundefined) and returns a Boolean. It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. IfDesc has a[[Get]] field, returntrue.
  3. IfDesc has a[[Set]] field, returntrue.
  4. Returnfalse.

6.2.6.2 IsDataDescriptor (Desc )

The abstract operation IsDataDescriptor takes argumentDesc (aProperty Descriptor orundefined) and returns a Boolean. It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. IfDesc has a[[Value]] field, returntrue.
  3. IfDesc has a[[Writable]] field, returntrue.
  4. Returnfalse.

6.2.6.3 IsGenericDescriptor (Desc )

The abstract operation IsGenericDescriptor takes argumentDesc (aProperty Descriptor orundefined) and returns a Boolean. It performs the following steps when called:

  1. IfDesc isundefined, returnfalse.
  2. IfIsAccessorDescriptor(Desc) istrue, returnfalse.
  3. IfIsDataDescriptor(Desc) istrue, returnfalse.
  4. Returntrue.

6.2.6.4 FromPropertyDescriptor (Desc )

The abstract operation FromPropertyDescriptor takes argumentDesc (aProperty Descriptor orundefined) and returns an Object orundefined. It performs the following steps when called:

  1. IfDesc isundefined, returnundefined.
  2. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  3. Assert:obj is an extensibleordinary object with no own properties.
  4. IfDesc has a[[Value]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"value",Desc.[[Value]]).
  5. IfDesc has a[[Writable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"writable",Desc.[[Writable]]).
  6. IfDesc has a[[Get]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"get",Desc.[[Get]]).
  7. IfDesc has a[[Set]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"set",Desc.[[Set]]).
  8. IfDesc has an[[Enumerable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"enumerable",Desc.[[Enumerable]]).
  9. IfDesc has a[[Configurable]] field, then
    1. Perform ! CreateDataPropertyOrThrow(obj,"configurable",Desc.[[Configurable]]).
  10. Returnobj.

6.2.6.5 ToPropertyDescriptor (Obj )

The abstract operation ToPropertyDescriptor takes argumentObj (anECMAScript language value) and returns either anormal completion containing aProperty Descriptor or athrow completion. It performs the following steps when called:

  1. IfObjis not an Object, throw aTypeError exception.
  2. Letdesc be a newProperty Descriptor that initially has no fields.
  3. LethasEnumerable be ? HasProperty(Obj,"enumerable").
  4. IfhasEnumerable istrue, then
    1. Letenumerable beToBoolean(?Get(Obj,"enumerable")).
    2. Setdesc.[[Enumerable]] toenumerable.
  5. LethasConfigurable be ? HasProperty(Obj,"configurable").
  6. IfhasConfigurable istrue, then
    1. Letconfigurable beToBoolean(?Get(Obj,"configurable")).
    2. Setdesc.[[Configurable]] toconfigurable.
  7. LethasValue be ? HasProperty(Obj,"value").
  8. IfhasValue istrue, then
    1. Letvalue be ? Get(Obj,"value").
    2. Setdesc.[[Value]] tovalue.
  9. LethasWritable be ? HasProperty(Obj,"writable").
  10. IfhasWritable istrue, then
    1. Letwritable beToBoolean(?Get(Obj,"writable")).
    2. Setdesc.[[Writable]] towritable.
  11. LethasGet be ? HasProperty(Obj,"get").
  12. IfhasGet istrue, then
    1. Letgetter be ? Get(Obj,"get").
    2. IfIsCallable(getter) isfalse andgetter is notundefined, throw aTypeError exception.
    3. Setdesc.[[Get]] togetter.
  13. LethasSet be ? HasProperty(Obj,"set").
  14. IfhasSet istrue, then
    1. Letsetter be ? Get(Obj,"set").
    2. IfIsCallable(setter) isfalse andsetter is notundefined, throw aTypeError exception.
    3. Setdesc.[[Set]] tosetter.
  15. Ifdesc has a[[Get]] field ordesc has a[[Set]] field, then
    1. Ifdesc has a[[Value]] field ordesc has a[[Writable]] field, throw aTypeError exception.
  16. Returndesc.

6.2.6.6 CompletePropertyDescriptor (Desc )

The abstract operation CompletePropertyDescriptor takes argumentDesc (aProperty Descriptor) and returnsunused. It performs the following steps when called:

  1. Letlike be theRecord {[[Value]]:undefined,[[Writable]]:false,[[Get]]:undefined,[[Set]]:undefined,[[Enumerable]]:false,[[Configurable]]:false }.
  2. IfIsGenericDescriptor(Desc) istrue orIsDataDescriptor(Desc) istrue, then
    1. IfDesc does not have a[[Value]] field, setDesc.[[Value]] tolike.[[Value]].
    2. IfDesc does not have a[[Writable]] field, setDesc.[[Writable]] tolike.[[Writable]].
  3. Else,
    1. IfDesc does not have a[[Get]] field, setDesc.[[Get]] tolike.[[Get]].
    2. IfDesc does not have a[[Set]] field, setDesc.[[Set]] tolike.[[Set]].
  4. IfDesc does not have an[[Enumerable]] field, setDesc.[[Enumerable]] tolike.[[Enumerable]].
  5. IfDesc does not have a[[Configurable]] field, setDesc.[[Configurable]] tolike.[[Configurable]].
  6. Returnunused.

6.2.7 The Environment Record Specification Type

TheEnvironment Record type is used to explain the behaviour of name resolution in nested functions and blocks. This type and the operations upon it are defined in9.1.

6.2.8 The Abstract Closure Specification Type

TheAbstract Closure specification type is used to refer to algorithm steps together with a collection of values. Abstract Closures are meta-values and are invoked using function application style such asclosure(arg1,arg2). Likeabstract operations, invocations perform the algorithm steps described by the Abstract Closure.

In algorithm steps that create an Abstract Closure, values are captured with the verb "capture" followed by a list of aliases. When an Abstract Closure is created, it captures the value that is associated with each alias at that time. In steps that specify the algorithm to be performed when an Abstract Closure is called, each captured value is referred to by the alias that was used to capture the value.

If an Abstract Closure returns aCompletion Record, thatCompletion Record must be either anormal completion or athrow completion.

Abstract Closures are created inline as part of other algorithms, shown in the following example.

  1. Letaddend be 41.
  2. Letclosure be a newAbstract Closure with parameters (x) that capturesaddend and performs the following steps when called:
    1. Returnx +addend.
  3. Letval beclosure(1).
  4. Assert:val is 42.

6.2.9 Data Blocks

TheData Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric values. Abyte value is aninteger in theinclusive interval from 0 to 255. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of a Data Block value. This notation presents a Data Block value as a 0-originedinteger-indexed sequence of bytes. For example, ifdb is a 5 byte Data Block value thendb[2] can be used to access its 3rd byte.

A data block that resides in memory that can be referenced from multipleagents concurrently is designated aShared Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data Block values) that isaddress-free: it is tied not to the virtual addresses the block is mapped to in any process, but to the set of locations in memory that the block represents. Two data blocks are equal only if the sets of the locations they contain are equal; otherwise, they are not equal and the intersection of the sets of locations they contain is empty. Finally, Shared Data Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined usingShared Data Block events by thememory model.Abstract operations below introduceShared Data Block events and act as the interface between evaluation semantics and the event semantics of thememory model. The events form acandidate execution, on which thememory model acts as a filter. Please consult thememory model for full semantics.

Shared Data Block events are modeled byRecords, defined in thememory model.

The followingabstract operations are used in this specification to operate upon Data Block values:

6.2.9.1 CreateByteDataBlock (size )

The abstract operation CreateByteDataBlock takes argumentsize (a non-negativeinteger) and returns either anormal completion containing aData Block or athrow completion. It performs the following steps when called:

  1. Ifsize > 253 - 1, throw aRangeError exception.
  2. Letdb be a newData Block value consisting ofsize bytes. If it is impossible to create such aData Block, throw aRangeError exception.
  3. Set all of the bytes ofdb to 0.
  4. Returndb.

6.2.9.2 CreateSharedByteDataBlock (size )

The abstract operation CreateSharedByteDataBlock takes argumentsize (a non-negativeinteger) and returns either anormal completion containing aShared Data Block or athrow completion. It performs the following steps when called:

  1. Letdb be a newShared Data Block value consisting ofsize bytes. If it is impossible to create such aShared Data Block, throw aRangeError exception.
  2. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
  3. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
  4. Letzero be « 0 ».
  5. For each indexi ofdb, do
    1. AppendWriteSharedMemory {[[Order]]:init,[[NoTear]]:true,[[Block]]:db,[[ByteIndex]]:i,[[ElementSize]]: 1,[[Payload]]:zero } toeventsRecord.[[EventList]].
  6. Returndb.

6.2.9.3 CopyDataBlockBytes (toBlock,toIndex,fromBlock,fromIndex,count )

The abstract operation CopyDataBlockBytes takes argumentstoBlock (aData Block or aShared Data Block),toIndex (a non-negativeinteger),fromBlock (aData Block or aShared Data Block),fromIndex (a non-negativeinteger), andcount (a non-negativeinteger) and returnsunused. It performs the following steps when called:

  1. Assert:fromBlock andtoBlock are distinct values.
  2. LetfromSize be the number of bytes infromBlock.
  3. Assert:fromIndex +countfromSize.
  4. LettoSize be the number of bytes intoBlock.
  5. Assert:toIndex +counttoSize.
  6. Repeat, whilecount > 0,
    1. IffromBlock is aShared Data Block, then
      1. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
      2. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
      3. Letbytes be aList whose sole element is a nondeterministically chosenbyte value.
      4. NOTE: In implementations,bytes is the result of a non-atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
      5. LetreadEvent beReadSharedMemory {[[Order]]:unordered,[[NoTear]]:true,[[Block]]:fromBlock,[[ByteIndex]]:fromIndex,[[ElementSize]]: 1 }.
      6. AppendreadEvent toeventsRecord.[[EventList]].
      7. AppendChosen Value Record {[[Event]]:readEvent,[[ChosenValue]]:bytes } toexecution.[[ChosenValues]].
      8. IftoBlock is aShared Data Block, then
        1. AppendWriteSharedMemory {[[Order]]:unordered,[[NoTear]]:true,[[Block]]:toBlock,[[ByteIndex]]:toIndex,[[ElementSize]]: 1,[[Payload]]:bytes } toeventsRecord.[[EventList]].
      9. Else,
        1. SettoBlock[toIndex] tobytes[0].
    2. Else,
      1. Assert:toBlock is not aShared Data Block.
      2. SettoBlock[toIndex] tofromBlock[fromIndex].
    3. SettoIndex totoIndex + 1.
    4. SetfromIndex tofromIndex + 1.
    5. Setcount tocount - 1.
  7. Returnunused.

6.2.10 The PrivateElement Specification Type

The PrivateElement type is aRecord used in the specification of private class fields, methods, and accessors. AlthoughProperty Descriptors are not used for private elements, private fields behave similarly to non-configurable, non-enumerable, writabledata properties, private methods behave similarly to non-configurable, non-enumerable, non-writabledata properties, and private accessors behave similarly to non-configurable, non-enumerableaccessor properties.

Values of the PrivateElement type areRecord values whose fields are defined byTable 9. Such values are referred to asPrivateElements.

Table 9:PrivateElement Fields
Field Name Values of the[[Kind]] field for which it is present Value Meaning
[[Key]] All aPrivate Name The name of the field, method, or accessor.
[[Kind]] Allfield,method, oraccessor The kind of the element.
[[Value]]field andmethod anECMAScript language value The value of the field.
[[Get]]accessor afunction object orundefined The getter for a private accessor.
[[Set]]accessor afunction object orundefined The setter for a private accessor.

6.2.11 The ClassFieldDefinition Record Specification Type

The ClassFieldDefinition type is aRecord used in the specification of class fields.

Values of the ClassFieldDefinition type areRecord values whose fields are defined byTable 10. Such values are referred to asClassFieldDefinition Records.

Table 10:ClassFieldDefinition Record Fields
Field Name Value Meaning
[[Name]] aPrivate Name, a String, or a Symbol The name of the field.
[[Initializer]] an ECMAScriptfunction object orempty The initializer of the field, if any.

6.2.12 Private Names

ThePrivate Name specification type is used to describe a globally unique value (one which differs from any other Private Name, even if they are otherwise indistinguishable) which represents the key of a private class element (field, method, or accessor). Each Private Name has an associated immutable[[Description]] whichis a String value. A Private Name may be installed on any ECMAScript object withPrivateFieldAdd orPrivateMethodOrAccessorAdd, and then read or written usingPrivateGet andPrivateSet.

6.2.13 The ClassStaticBlockDefinition Record Specification Type

AClassStaticBlockDefinition Record is aRecord value used to encapsulate the executable code for a class static initialization block.

ClassStaticBlockDefinition Records have the fields listed inTable 11.

Table 11:ClassStaticBlockDefinition Record Fields
Field Name Value Meaning
[[BodyFunction]] an ECMAScriptfunction object Thefunction object to be called during static initialization of a class.

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here solely to aid the specification of the semantics of the ECMAScript language. Other, more specializedabstract operations are defined throughout this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain constructs it is useful to define a set of conversionabstract operations. The conversionabstract operations are polymorphic; they can accept a value of anyECMAScript language type. But no other specification types are used with these operations.

TheBigInt type has no implicit conversions in the ECMAScript language; programmers must call BigInt explicitly to convert values from other types.

7.1.1 ToPrimitive (input [ ,preferredType ] )

The abstract operation ToPrimitive takes argumentinput (anECMAScript language value) and optional argumentpreferredType (string ornumber) and returns either anormal completion containing anECMAScript language value or athrow completion. It converts itsinput argument to a non-Object type. If an object is capable of converting to more than one primitive type, it may use the optional hintpreferredType to favour that type. It performs the following steps when called:

  1. Ifinputis an Object, then
    1. LetexoticToPrim be ? GetMethod(input,@@toPrimitive).
    2. IfexoticToPrim is notundefined, then
      1. IfpreferredType is not present, then
        1. Lethint be"default".
      2. Else ifpreferredType isstring, then
        1. Lethint be"string".
      3. Else,
        1. Assert:preferredType isnumber.
        2. Lethint be"number".
      4. Letresult be ? Call(exoticToPrim,input, «hint »).
      5. Ifresultis not an Object, returnresult.
      6. Throw aTypeError exception.
    3. IfpreferredType is not present, letpreferredType benumber.
    4. Return ? OrdinaryToPrimitive(input,preferredType).
  2. Returninput.
Note

When ToPrimitive is called without a hint, then it generally behaves as if the hint werenumber. However, objects may over-ride this behaviour by defining a@@toPrimitive method. Of the objects defined in this specification only Dates (see21.4.4.45) and Symbol objects (see20.4.3.5) over-ride the default ToPrimitive behaviour. Dates treat the absence of a hint as if the hint werestring.

7.1.1.1 OrdinaryToPrimitive (O,hint )

The abstract operation OrdinaryToPrimitive takes argumentsO (an Object) andhint (string ornumber) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Ifhint isstring, then
    1. LetmethodNames be «"toString","valueOf" ».
  2. Else,
    1. LetmethodNames be «"valueOf","toString" ».
  3. For each elementname ofmethodNames, do
    1. Letmethod be ? Get(O,name).
    2. IfIsCallable(method) istrue, then
      1. Letresult be ? Call(method,O).
      2. Ifresultis not an Object, returnresult.
  4. Throw aTypeError exception.

7.1.2 ToBoolean (argument )

The abstract operation ToBoolean takes argumentargument (anECMAScript language value) and returns a Boolean. It convertsargument to a value of type Boolean. It performs the following steps when called:

  1. Ifargumentis a Boolean, returnargument.
  2. Ifargument is one ofundefined,null,+0𝔽,-0𝔽,NaN,0, or the empty String, returnfalse.
  3. NOTE: This step is replaced in sectionB.3.6.1.
  4. Returntrue.

7.1.3 ToNumeric (value )

The abstract operation ToNumeric takes argumentvalue (anECMAScript language value) and returns either anormal completion containing either a Number or a BigInt, or athrow completion. It returnsvalue converted to a Number or a BigInt. It performs the following steps when called:

  1. LetprimValue be ? ToPrimitive(value,number).
  2. IfprimValueis a BigInt, returnprimValue.
  3. Return ? ToNumber(primValue).

7.1.4 ToNumber (argument )

The abstract operation ToNumber takes argumentargument (anECMAScript language value) and returns either anormal completion containing a Number or athrow completion. It convertsargument to a value of type Number. It performs the following steps when called:

  1. Ifargumentis a Number, returnargument.
  2. Ifargument is either a Symbol or a BigInt, throw aTypeError exception.
  3. Ifargument isundefined, returnNaN.
  4. Ifargument is eithernull orfalse, return+0𝔽.
  5. Ifargument istrue, return1𝔽.
  6. Ifargumentis a String, returnStringToNumber(argument).
  7. Assert:argumentis an Object.
  8. LetprimValue be ? ToPrimitive(argument,number).
  9. Assert:primValueis not an Object.
  10. Return ? ToNumber(primValue).

7.1.4.1 ToNumber Applied to the String Type

The abstract operationStringToNumber specifies how to convert a String value to a Number value, using the following grammar.

Syntax

StringNumericLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrNumericLiteralStrWhiteSpaceoptStrWhiteSpace:::StrWhiteSpaceCharStrWhiteSpaceoptStrWhiteSpaceChar:::WhiteSpaceLineTerminatorStrNumericLiteral:::StrDecimalLiteralNonDecimalIntegerLiteral[~Sep]StrDecimalLiteral:::StrUnsignedDecimalLiteral+StrUnsignedDecimalLiteral-StrUnsignedDecimalLiteralStrUnsignedDecimalLiteral:::InfinityDecimalDigits[~Sep].DecimalDigits[~Sep]optExponentPart[~Sep]opt.DecimalDigits[~Sep]ExponentPart[~Sep]optDecimalDigits[~Sep]ExponentPart[~Sep]opt

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric literals (12.9.3)

Note

Some differences should be noted between the syntax of aStringNumericLiteral and aNumericLiteral:

7.1.4.1.1 StringToNumber (str )

The abstract operation StringToNumber takes argumentstr (a String) and returns a Number. It performs the following steps when called:

  1. Lettext beStringToCodePoints(str).
  2. Letliteral beParseText(text,StringNumericLiteral).
  3. Ifliteral is aList of errors, returnNaN.
  4. ReturnStringNumericValue ofliteral.

7.1.4.1.2 Runtime Semantics: StringNumericValue

Thesyntax-directed operation StringNumericValue takes no arguments and returns a Number.

Note

The conversion of aStringNumericLiteral to a Number value is similar overall to the determination of theNumericValue of aNumericLiteral (see12.9.3), but some of the details are different.

It is defined piecewise over the following productions:

StringNumericLiteral:::StrWhiteSpaceopt
  1. Return+0𝔽.
StringNumericLiteral:::StrWhiteSpaceoptStrNumericLiteralStrWhiteSpaceopt
  1. ReturnStringNumericValue ofStrNumericLiteral.
StrNumericLiteral:::NonDecimalIntegerLiteral
  1. Return𝔽(MV ofNonDecimalIntegerLiteral).
StrDecimalLiteral:::-StrUnsignedDecimalLiteral
  1. Leta beStringNumericValue ofStrUnsignedDecimalLiteral.
  2. Ifa is+0𝔽, return-0𝔽.
  3. Return -a.
StrUnsignedDecimalLiteral:::Infinity
  1. Return+∞𝔽.
StrUnsignedDecimalLiteral:::DecimalDigits.DecimalDigitsoptExponentPartopt
  1. Leta be MV of the firstDecimalDigits.
  2. If the secondDecimalDigits is present, then
    1. Letb be MV of the secondDecimalDigits.
    2. Letn be the number of code points in the secondDecimalDigits.
  3. Else,
    1. Letb be 0.
    2. Letn be 0.
  4. IfExponentPart is present, lete be MV ofExponentPart. Otherwise, lete be 0.
  5. ReturnRoundMVResult((a + (b × 10-n)) × 10e).
StrUnsignedDecimalLiteral:::.DecimalDigitsExponentPartopt
  1. Letb be MV ofDecimalDigits.
  2. IfExponentPart is present, lete be MV ofExponentPart. Otherwise, lete be 0.
  3. Letn be the number of code points inDecimalDigits.
  4. ReturnRoundMVResult(b × 10e -n).
StrUnsignedDecimalLiteral:::DecimalDigitsExponentPartopt
  1. Leta be MV ofDecimalDigits.
  2. IfExponentPart is present, lete be MV ofExponentPart. Otherwise, lete be 0.
  3. ReturnRoundMVResult(a × 10e).

7.1.4.1.3 RoundMVResult (n )

The abstract operation RoundMVResult takes argumentn (amathematical value) and returns a Number. It convertsn to a Number in animplementation-defined manner. For the purposes of this abstract operation, a digit is significant if it is not zero or there is a non-zero digit to its left and there is a non-zero digit to its right. For the purposes of this abstract operation, "themathematical value denoted by" a representation of amathematical value is the inverse of "the decimal representation of" amathematical value. It performs the following steps when called:

  1. If the decimal representation ofn has 20 or fewer significant digits, return𝔽(n).
  2. Letoption1 be themathematical value denoted by the result of replacing each significant digit in the decimal representation ofn after the 20th with a 0 digit.
  3. Letoption2 be themathematical value denoted by the result of replacing each significant digit in the decimal representation ofn after the 20th with a 0 digit and then incrementing it at the 20th position (with carrying as necessary).
  4. Letchosen be animplementation-defined choice of eitheroption1 oroption2.
  5. Return𝔽(chosen).

7.1.5 ToIntegerOrInfinity (argument )

The abstract operation ToIntegerOrInfinity takes argumentargument (anECMAScript language value) and returns either anormal completion containing either aninteger, +∞, or -∞, or athrow completion. It convertsargument to aninteger representing its Number value with fractional part truncated, or to +∞ or -∞ when that Number value is infinite. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is one ofNaN,+0𝔽, or-0𝔽, return 0.
  3. Ifnumber is+∞𝔽, return +∞.
  4. Ifnumber is-∞𝔽, return -∞.
  5. Returntruncate((number)).
Note
𝔽(ToIntegerOrInfinity(x)) never returns-0𝔽 for any value ofx. The truncation of the fractional part is performed after convertingx to amathematical value.

7.1.6 ToInt32 (argument )

The abstract operation ToInt32 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 232integral Number values in theinclusive interval from𝔽(-231) to𝔽(231 - 1). It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint32bit beintmodulo 232.
  5. Ifint32bit ≥ 231, return𝔽(int32bit - 232); otherwise return𝔽(int32bit).
Note

Given the above definition of ToInt32:

  • The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
  • ToInt32(ToUint32(x)) is the same value as ToInt32(x) for all values ofx. (It is to preserve this latter property that+∞𝔽 and-∞𝔽 are mapped to+0𝔽.)
  • ToInt32 maps-0𝔽 to+0𝔽.

7.1.7 ToUint32 (argument )

The abstract operation ToUint32 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 232integral Number values in theinclusive interval from+0𝔽 to𝔽(232 - 1). It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint32bit beintmodulo 232.
  5. Return𝔽(int32bit).
Note

Given the above definition of ToUint32:

  • Step5 is the only difference between ToUint32 andToInt32.
  • The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that value unchanged.
  • ToUint32(ToInt32(x)) is the same value as ToUint32(x) for all values ofx. (It is to preserve this latter property that+∞𝔽 and-∞𝔽 are mapped to+0𝔽.)
  • ToUint32 maps-0𝔽 to+0𝔽.

7.1.8 ToInt16 (argument )

The abstract operation ToInt16 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 216integral Number values in theinclusive interval from𝔽(-215) to𝔽(215 - 1). It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint16bit beintmodulo 216.
  5. Ifint16bit ≥ 215, return𝔽(int16bit - 216); otherwise return𝔽(int16bit).

7.1.9 ToUint16 (argument )

The abstract operation ToUint16 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 216integral Number values in theinclusive interval from+0𝔽 to𝔽(216 - 1). It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint16bit beintmodulo 216.
  5. Return𝔽(int16bit).
Note

Given the above definition of ToUint16:

  • The substitution of 216 for 232 in step4 is the only difference betweenToUint32 and ToUint16.
  • ToUint16 maps-0𝔽 to+0𝔽.

7.1.10 ToInt8 (argument )

The abstract operation ToInt8 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 28integral Number values in theinclusive interval from-128𝔽 to127𝔽. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint8bit beintmodulo 28.
  5. Ifint8bit ≥ 27, return𝔽(int8bit - 28); otherwise return𝔽(int8bit).

7.1.11 ToUint8 (argument )

The abstract operation ToUint8 takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It convertsargument to one of 28integral Number values in theinclusive interval from+0𝔽 to255𝔽. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber is notfinite ornumber is either+0𝔽 or-0𝔽, return+0𝔽.
  3. Letint betruncate((number)).
  4. Letint8bit beintmodulo 28.
  5. Return𝔽(int8bit).

7.1.12 ToUint8Clamp (argument )

The abstract operation ToUint8Clamp takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It clamps and roundsargument to one of 28integral Number values in theinclusive interval from+0𝔽 to255𝔽. It performs the following steps when called:

  1. Letnumber be ? ToNumber(argument).
  2. Ifnumber isNaN, return+0𝔽.
  3. Letmv be theextended mathematical value ofnumber.
  4. Letclamped be the result ofclampingmv between 0 and 255.
  5. Letf befloor(clamped).
  6. Ifclamped <f + 0.5, return𝔽(f).
  7. Ifclamped >f + 0.5, return𝔽(f + 1).
  8. Iff is even, return𝔽(f). Otherwise, return𝔽(f + 1).
Note

Unlike most other ECMAScriptinteger conversion operations, ToUint8Clamp rounds rather than truncates non-integral values. It also uses “round half to even” tie-breaking, which differs from the “round half up” tie-breaking ofMath.round.

7.1.13 ToBigInt (argument )

The abstract operation ToBigInt takes argumentargument (anECMAScript language value) and returns either anormal completion containing a BigInt or athrow completion. It convertsargument to a BigInt value, or throws if an implicit conversion from Number would be required. It performs the following steps when called:

  1. Letprim be ? ToPrimitive(argument,number).
  2. Return the value thatprim corresponds to inTable 12.
Table 12: BigInt Conversions
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Return1n ifprim istrue and0n ifprim isfalse.
BigInt Returnprim.
Number Throw aTypeError exception.
String
  1. Letn beStringToBigInt(prim).
  2. Ifn isundefined, throw aSyntaxError exception.
  3. Returnn.
Symbol Throw aTypeError exception.

7.1.14 StringToBigInt (str )

The abstract operation StringToBigInt takes argumentstr (a String) and returns a BigInt orundefined. It performs the following steps when called:

  1. Lettext beStringToCodePoints(str).
  2. Letliteral beParseText(text,StringIntegerLiteral).
  3. Ifliteral is aList of errors, returnundefined.
  4. Letmv be the MV ofliteral.
  5. Assert:mv is aninteger.
  6. Return(mv).

7.1.14.1 StringIntegerLiteral Grammar

StringToBigInt uses the following grammar.

Syntax

StringIntegerLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrIntegerLiteralStrWhiteSpaceoptStrIntegerLiteral:::SignedInteger[~Sep]NonDecimalIntegerLiteral[~Sep]

7.1.14.2 Runtime Semantics: MV

7.1.15 ToBigInt64 (argument )

The abstract operation ToBigInt64 takes argumentargument (anECMAScript language value) and returns either anormal completion containing a BigInt or athrow completion. It convertsargument to one of 264 BigInt values in theinclusive interval from(-263) to(263 - 1). It performs the following steps when called:

  1. Letn be ? ToBigInt(argument).
  2. Letint64bit be(n)modulo 264.
  3. Ifint64bit ≥ 263, return(int64bit - 264); otherwise return(int64bit).

7.1.16 ToBigUint64 (argument )

The abstract operation ToBigUint64 takes argumentargument (anECMAScript language value) and returns either anormal completion containing a BigInt or athrow completion. It convertsargument to one of 264 BigInt values in theinclusive interval from0 to(264 - 1). It performs the following steps when called:

  1. Letn be ? ToBigInt(argument).
  2. Letint64bit be(n)modulo 264.
  3. Return(int64bit).

7.1.17 ToString (argument )

The abstract operation ToString takes argumentargument (anECMAScript language value) and returns either anormal completion containing a String or athrow completion. It convertsargument to a value of type String. It performs the following steps when called:

  1. Ifargumentis a String, returnargument.
  2. Ifargumentis a Symbol, throw aTypeError exception.
  3. Ifargument isundefined, return"undefined".
  4. Ifargument isnull, return"null".
  5. Ifargument istrue, return"true".
  6. Ifargument isfalse, return"false".
  7. Ifargumentis a Number, returnNumber::toString(argument, 10).
  8. Ifargumentis a BigInt, returnBigInt::toString(argument, 10).
  9. Assert:argumentis an Object.
  10. LetprimValue be ? ToPrimitive(argument,string).
  11. Assert:primValueis not an Object.
  12. Return ? ToString(primValue).

7.1.18 ToObject (argument )

The abstract operation ToObject takes argumentargument (anECMAScript language value) and returns either anormal completion containing an Object or athrow completion. It convertsargument to a value of type Object according toTable 13:

Table 13:ToObject Conversions
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Return a new Boolean object whose[[BooleanData]] internal slot is set toargument. See20.3 for a description of Boolean objects.
Number Return a new Number object whose[[NumberData]] internal slot is set toargument. See21.1 for a description of Number objects.
String Return a new String object whose[[StringData]] internal slot is set toargument. See22.1 for a description of String objects.
Symbol Return a new Symbol object whose[[SymbolData]] internal slot is set toargument. See20.4 for a description of Symbol objects.
BigInt Return a new BigInt object whose[[BigIntData]] internal slot is set toargument. See21.2 for a description of BigInt objects.
Object Returnargument.

7.1.19 ToPropertyKey (argument )

The abstract operation ToPropertyKey takes argumentargument (anECMAScript language value) and returns either anormal completion containing aproperty key or athrow completion. It convertsargument to a value that can be used as aproperty key. It performs the following steps when called:

  1. Letkey be ? ToPrimitive(argument,string).
  2. Ifkeyis a Symbol, then
    1. Returnkey.
  3. Return ! ToString(key).

7.1.20 ToLength (argument )

The abstract operation ToLength takes argumentargument (anECMAScript language value) and returns either anormal completion containing anintegral Number or athrow completion. It clamps and truncatesargument to anintegral Number suitable for use as the length of anarray-like object. It performs the following steps when called:

  1. Letlen be ? ToIntegerOrInfinity(argument).
  2. Iflen ≤ 0, return+0𝔽.
  3. Return𝔽(min(len, 253 - 1)).

7.1.21 CanonicalNumericIndexString (argument )

The abstract operation CanonicalNumericIndexString takes argumentargument (a String) and returns a Number orundefined. Ifargument is either"-0" or exactly matches the result ofToString(n) for some Number valuen, it returns the respective Number value. Otherwise, it returnsundefined. It performs the following steps when called:

  1. Ifargument is"-0", return-0𝔽.
  2. Letn be ! ToNumber(argument).
  3. If ! ToString(n) isargument, returnn.
  4. Returnundefined.

Acanonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not returnundefined.

7.1.22 ToIndex (value )

The abstract operation ToIndex takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a non-negativeinteger or athrow completion. It convertsvalue to aninteger and returns thatinteger if it is non-negative and corresponds with aninteger index. Otherwise, it throws an exception. It performs the following steps when called:

  1. Letinteger be ? ToIntegerOrInfinity(value).
  2. Ifinteger is not in theinclusive interval from 0 to 253 - 1, throw aRangeError exception.
  3. Returninteger.

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible (argument )

The abstract operation RequireObjectCoercible takes argumentargument (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It throws an error ifargument is a value that cannot be converted to an Object usingToObject. It is defined byTable 14:

Table 14:RequireObjectCoercible Results
Argument Type Result
Undefined Throw aTypeError exception.
Null Throw aTypeError exception.
Boolean Returnargument.
Number Returnargument.
String Returnargument.
Symbol Returnargument.
BigInt Returnargument.
Object Returnargument.

7.2.2 IsArray (argument )

The abstract operation IsArray takes argumentargument (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Ifargumentis not an Object, returnfalse.
  2. Ifargument is anArray exotic object, returntrue.
  3. Ifargument is aProxy exotic object, then
    1. Perform ? ValidateNonRevokedProxy(argument).
    2. LetproxyTarget beargument.[[ProxyTarget]].
    3. Return ? IsArray(proxyTarget).
  4. Returnfalse.

7.2.3 IsCallable (argument )

The abstract operation IsCallable takes argumentargument (anECMAScript language value) and returns a Boolean. It determines ifargument is a callable function with a[[Call]] internal method. It performs the following steps when called:

  1. Ifargumentis not an Object, returnfalse.
  2. Ifargument has a[[Call]] internal method, returntrue.
  3. Returnfalse.

7.2.4 IsConstructor (argument )

The abstract operation IsConstructor takes argumentargument (anECMAScript language value) and returns a Boolean. It determines ifargument is afunction object with a[[Construct]] internal method. It performs the following steps when called:

  1. Ifargumentis not an Object, returnfalse.
  2. Ifargument has a[[Construct]] internal method, returntrue.
  3. Returnfalse.

7.2.5 IsExtensible (O )

The abstract operation IsExtensible takes argumentO (an Object) and returns either anormal completion containing a Boolean or athrow completion. It is used to determine whether additional properties can be added toO. It performs the following steps when called:

  1. Return ? O.[[IsExtensible]]().

7.2.6 IsIntegralNumber (argument )

The abstract operation IsIntegralNumber takes argumentargument (anECMAScript language value) and returns a Boolean. It determines ifargument is afiniteintegral Number value. It performs the following steps when called:

  1. Ifargumentis not a Number, returnfalse.
  2. Ifargument is notfinite, returnfalse.
  3. Iftruncate((argument)) ≠(argument), returnfalse.
  4. Returntrue.

7.2.7 IsPropertyKey (argument )

The abstract operation IsPropertyKey takes argumentargument (anECMAScript language value) and returns a Boolean. It determines ifargument is a value that may be used as aproperty key. It performs the following steps when called:

  1. Ifargumentis a String, returntrue.
  2. Ifargumentis a Symbol, returntrue.
  3. Returnfalse.

7.2.8 IsRegExp (argument )

The abstract operation IsRegExp takes argumentargument (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Ifargumentis not an Object, returnfalse.
  2. Letmatcher be ? Get(argument,@@match).
  3. Ifmatcher is notundefined, returnToBoolean(matcher).
  4. Ifargument has a[[RegExpMatcher]] internal slot, returntrue.
  5. Returnfalse.

7.2.9 Static Semantics: IsStringWellFormedUnicode (string )

The abstract operation IsStringWellFormedUnicode takes argumentstring (a String) and returns a Boolean. It interpretsstring as a sequence of UTF-16 encoded code points, as described in6.1.4, and determines whether it is awell formed UTF-16 sequence. It performs the following steps when called:

  1. Letlen be the length ofstring.
  2. Letk be 0.
  3. Repeat, whilek <len,
    1. Letcp beCodePointAt(string,k).
    2. Ifcp.[[IsUnpairedSurrogate]] istrue, returnfalse.
    3. Setk tok +cp.[[CodeUnitCount]].
  4. Returntrue.

7.2.10 SameValue (x,y )

The abstract operation SameValue takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a Boolean. It determines whether or not the two arguments are the same value. It performs the following steps when called:

  1. IfType(x) is notType(y), returnfalse.
  2. Ifxis a Number, then
    1. ReturnNumber::sameValue(x,y).
  3. ReturnSameValueNonNumber(x,y).
Note

This algorithm differs from theIsStrictlyEqual Algorithm by treating allNaN values as equivalent and by differentiating+0𝔽 from-0𝔽.

7.2.11 SameValueZero (x,y )

The abstract operation SameValueZero takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a Boolean. It determines whether or not the two arguments are the same value (ignoring the difference between+0𝔽 and-0𝔽). It performs the following steps when called:

  1. IfType(x) is notType(y), returnfalse.
  2. Ifxis a Number, then
    1. ReturnNumber::sameValueZero(x,y).
  3. ReturnSameValueNonNumber(x,y).
Note

SameValueZero differs fromSameValue only in that it treats+0𝔽 and-0𝔽 as equivalent.

7.2.12 SameValueNonNumber (x,y )

The abstract operation SameValueNonNumber takes argumentsx (anECMAScript language value, but not a Number) andy (anECMAScript language value, but not a Number) and returns a Boolean. It performs the following steps when called:

  1. Assert:Type(x) isType(y).
  2. Ifx is eithernull orundefined, returntrue.
  3. Ifxis a BigInt, then
    1. ReturnBigInt::equal(x,y).
  4. Ifxis a String, then
    1. Ifx andy have the same length and the same code units in the same positions, returntrue; otherwise, returnfalse.
  5. Ifxis a Boolean, then
    1. Ifx andy are bothtrue or bothfalse, returntrue; otherwise, returnfalse.
  6. NOTE: All otherECMAScript language values are compared by identity.
  7. Ifx isy, returntrue; otherwise, returnfalse.
Note 1
For expository purposes, some cases are handled separately within this algorithm even if it is unnecessary to do so.
Note 2
The specifics of what "x isy" means are detailed in5.2.7.

7.2.13 IsLessThan (x,y,LeftFirst )

The abstract operation IsLessThan takes argumentsx (anECMAScript language value),y (anECMAScript language value), andLeftFirst (a Boolean) and returns either anormal completion containing either a Boolean orundefined, or athrow completion. It provides the semantics for the comparisonx <y, returningtrue,false, orundefined (which indicates that at least one operand isNaN). TheLeftFirst flag is used to control the order in which operations with potentially visible side-effects are performed uponx andy. It is necessary because ECMAScript specifies left to right evaluation of expressions. IfLeftFirst istrue, thex parameter corresponds to an expression that occurs to the left of they parameter's corresponding expression. IfLeftFirst isfalse, the reverse is the case and operations must be performed upony beforex. It performs the following steps when called:

  1. IfLeftFirst istrue, then
    1. Letpx be ? ToPrimitive(x,number).
    2. Letpy be ? ToPrimitive(y,number).
  2. Else,
    1. NOTE: The order of evaluation needs to be reversed to preserve left to right evaluation.
    2. Letpy be ? ToPrimitive(y,number).
    3. Letpx be ? ToPrimitive(x,number).
  3. Ifpxis a String andpyis a String, then
    1. Letlx be the length ofpx.
    2. Letly be the length ofpy.
    3. For eachintegeri such that 0 ≤i <min(lx,ly), in ascending order, do
      1. Letcx be the numeric value of the code unit at indexi withinpx.
      2. Letcy be the numeric value of the code unit at indexi withinpy.
      3. Ifcx <cy, returntrue.
      4. Ifcx >cy, returnfalse.
    4. Iflx <ly, returntrue. Otherwise, returnfalse.
  4. Else,
    1. Ifpxis a BigInt andpyis a String, then
      1. Letny beStringToBigInt(py).
      2. Ifny isundefined, returnundefined.
      3. ReturnBigInt::lessThan(px,ny).
    2. Ifpxis a String andpyis a BigInt, then
      1. Letnx beStringToBigInt(px).
      2. Ifnx isundefined, returnundefined.
      3. ReturnBigInt::lessThan(nx,py).
    3. NOTE: Becausepx andpy are primitive values, evaluation order is not important.
    4. Letnx be ? ToNumeric(px).
    5. Letny be ? ToNumeric(py).
    6. IfType(nx) isType(ny), then
      1. Ifnxis a Number, then
        1. ReturnNumber::lessThan(nx,ny).
      2. Else,
        1. Assert:nxis a BigInt.
        2. ReturnBigInt::lessThan(nx,ny).
    7. Assert:nxis a BigInt andnyis a Number, ornxis a Number andnyis a BigInt.
    8. Ifnx orny isNaN, returnundefined.
    9. Ifnx is-∞𝔽 orny is+∞𝔽, returntrue.
    10. Ifnx is+∞𝔽 orny is-∞𝔽, returnfalse.
    11. If(nx) <(ny), returntrue; otherwise returnfalse.
Note 1

Step3 differs from step1.c in the algorithm that handles the addition operator+ (13.15.3) by using the logical-and operation instead of the logical-or operation.

Note 2

The comparison of Strings uses a simple lexicographic ordering on sequences of UTF-16 code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode Standard but not in the same normalization form could test as unequal. Also note that lexicographic ordering bycode unit differs from ordering bycode point for Strings containingsurrogate pairs.

7.2.14 IsLooselyEqual (x,y )

The abstract operation IsLooselyEqual takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It provides the semantics for the== operator. It performs the following steps when called:

  1. IfType(x) isType(y), then
    1. ReturnIsStrictlyEqual(x,y).
  2. Ifx isnull andy isundefined, returntrue.
  3. Ifx isundefined andy isnull, returntrue.
  4. NOTE: This step is replaced in sectionB.3.6.2.
  5. Ifxis a Number andyis a String, return ! IsLooselyEqual(x, ! ToNumber(y)).
  6. Ifxis a String andyis a Number, return ! IsLooselyEqual(!ToNumber(x),y).
  7. Ifxis a BigInt andyis a String, then
    1. Letn beStringToBigInt(y).
    2. Ifn isundefined, returnfalse.
    3. Return ! IsLooselyEqual(x,n).
  8. Ifxis a String andyis a BigInt, return ! IsLooselyEqual(y,x).
  9. Ifxis a Boolean, return ! IsLooselyEqual(!ToNumber(x),y).
  10. Ifyis a Boolean, return ! IsLooselyEqual(x, ! ToNumber(y)).
  11. Ifx is either a String, a Number, a BigInt, or a Symbol andyis an Object, return ! IsLooselyEqual(x, ? ToPrimitive(y)).
  12. Ifxis an Object andy is either a String, a Number, a BigInt, or a Symbol, return ! IsLooselyEqual(?ToPrimitive(x),y).
  13. Ifxis a BigInt andyis a Number, or ifxis a Number andyis a BigInt, then
    1. Ifx is notfinite ory is notfinite, returnfalse.
    2. If(x) =(y), returntrue; otherwise returnfalse.
  14. Returnfalse.

7.2.15 IsStrictlyEqual (x,y )

The abstract operation IsStrictlyEqual takes argumentsx (anECMAScript language value) andy (anECMAScript language value) and returns a Boolean. It provides the semantics for the=== operator. It performs the following steps when called:

  1. IfType(x) is notType(y), returnfalse.
  2. Ifxis a Number, then
    1. ReturnNumber::equal(x,y).
  3. ReturnSameValueNonNumber(x,y).
Note

This algorithm differs from theSameValue Algorithm in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 MakeBasicObject (internalSlotsList )

The abstract operation MakeBasicObject takes argumentinternalSlotsList (aList of internal slot names) and returns an Object. It is the source of all ECMAScript objects that are created algorithmically, including bothordinary objects andexotic objects. It factors out common steps used in creating all objects, and centralizes object creation. It performs the following steps when called:

  1. Letobj be a newly created object with an internal slot for each name ininternalSlotsList.
  2. Setobj's essential internal methods to the defaultordinary object definitions specified in10.1.
  3. Assert: If the caller will not be overriding bothobj's[[GetPrototypeOf]] and[[SetPrototypeOf]] essential internal methods, theninternalSlotsList contains[[Prototype]].
  4. Assert: If the caller will not be overriding all ofobj's[[SetPrototypeOf]],[[IsExtensible]], and[[PreventExtensions]] essential internal methods, theninternalSlotsList contains[[Extensible]].
  5. IfinternalSlotsList contains[[Extensible]], setobj.[[Extensible]] totrue.
  6. Returnobj.
Note

Within this specification,exotic objects are created inabstract operations such asArrayCreate andBoundFunctionCreate by first calling MakeBasicObject to obtain a basic, foundational object, and then overriding some or all of that object's internal methods. In order to encapsulateexotic object creation, the object's essential internal methods are never modified outside those operations.

7.3.2 Get (O,P )

The abstract operation Get takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containing anECMAScript language value or athrow completion. It is used to retrieve the value of a specific property of an object. It performs the following steps when called:

  1. Return ? O.[[Get]](P,O).

7.3.3 GetV (V,P )

The abstract operation GetV takes argumentsV (anECMAScript language value) andP (aproperty key) and returns either anormal completion containing anECMAScript language value or athrow completion. It is used to retrieve the value of a specific property of anECMAScript language value. If the value is not an object, the property lookup is performed using a wrapper object appropriate for the type of the value. It performs the following steps when called:

  1. LetO be ? ToObject(V).
  2. Return ? O.[[Get]](P,V).

7.3.4 Set (O,P,V,Throw )

The abstract operation Set takes argumentsO (an Object),P (aproperty key),V (anECMAScript language value), andThrow (a Boolean) and returns either anormal completion containingunused or athrow completion. It is used to set the value of a specific property of an object.V is the new value for the property. It performs the following steps when called:

  1. Letsuccess be ? O.[[Set]](P,V,O).
  2. Ifsuccess isfalse andThrow istrue, throw aTypeError exception.
  3. Returnunused.

7.3.5 CreateDataProperty (O,P,V )

The abstract operation CreateDataProperty takes argumentsO (an Object),P (aproperty key), andV (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It is used to create a new own property of an object. It performs the following steps when called:

  1. LetnewDesc be the PropertyDescriptor {[[Value]]:V,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:true }.
  2. Return ? O.[[DefineOwnProperty]](P,newDesc).
Note

This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not configurable or ifO is not extensible,[[DefineOwnProperty]] will returnfalse.

7.3.6 CreateDataPropertyOrThrow (O,P,V )

The abstract operation CreateDataPropertyOrThrow takes argumentsO (an Object),P (aproperty key), andV (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It is used to create a new own property of an object. It throws aTypeError exception if the requested property update cannot be performed. It performs the following steps when called:

  1. Letsuccess be ? CreateDataProperty(O,P,V).
  2. Ifsuccess isfalse, throw aTypeError exception.
  3. Returnunused.
Note

This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and is not configurable or ifO is not extensible,[[DefineOwnProperty]] will returnfalse causing this operation to throw aTypeError exception.

7.3.7 CreateNonEnumerableDataPropertyOrThrow (O,P,V )

The abstract operation CreateNonEnumerableDataPropertyOrThrow takes argumentsO (an Object),P (aproperty key), andV (anECMAScript language value) and returnsunused. It is used to create a new non-enumerable own property of anordinary object. It performs the following steps when called:

  1. Assert:O is an ordinary, extensible object with no non-configurable properties.
  2. LetnewDesc be the PropertyDescriptor {[[Value]]:V,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }.
  3. Perform ! DefinePropertyOrThrow(O,P,newDesc).
  4. Returnunused.
Note

This abstract operation creates a property whose attributes are set to the same defaults used for properties created by the ECMAScript language assignment operator except it is not enumerable. Normally, the property will not already exist. If it does exist,DefinePropertyOrThrow is guaranteed to complete normally.

7.3.8 DefinePropertyOrThrow (O,P,desc )

The abstract operation DefinePropertyOrThrow takes argumentsO (an Object),P (aproperty key), anddesc (aProperty Descriptor) and returns either anormal completion containingunused or athrow completion. It is used to call the[[DefineOwnProperty]] internal method of an object in a manner that will throw aTypeError exception if the requested property update cannot be performed. It performs the following steps when called:

  1. Letsuccess be ? O.[[DefineOwnProperty]](P,desc).
  2. Ifsuccess isfalse, throw aTypeError exception.
  3. Returnunused.

7.3.9 DeletePropertyOrThrow (O,P )

The abstract operation DeletePropertyOrThrow takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containingunused or athrow completion. It is used to remove a specific own property of an object. It throws an exception if the property is not configurable. It performs the following steps when called:

  1. Letsuccess be ? O.[[Delete]](P).
  2. Ifsuccess isfalse, throw aTypeError exception.
  3. Returnunused.

7.3.10 GetMethod (V,P )

The abstract operation GetMethod takes argumentsV (anECMAScript language value) andP (aproperty key) and returns either anormal completion containing either afunction object orundefined, or athrow completion. It is used to get the value of a specific property of anECMAScript language value when the value of the property is expected to be a function. It performs the following steps when called:

  1. Letfunc be ? GetV(V,P).
  2. Iffunc is eitherundefined ornull, returnundefined.
  3. IfIsCallable(func) isfalse, throw aTypeError exception.
  4. Returnfunc.

7.3.11 HasProperty (O,P )

The abstract operation HasProperty takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It is used to determine whether an object has a property with the specifiedproperty key. The property may be either own or inherited. It performs the following steps when called:

  1. Return ? O.[[HasProperty]](P).

7.3.12 HasOwnProperty (O,P )

The abstract operation HasOwnProperty takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It is used to determine whether an object has an own property with the specifiedproperty key. It performs the following steps when called:

  1. Letdesc be ? O.[[GetOwnProperty]](P).
  2. Ifdesc isundefined, returnfalse.
  3. Returntrue.

7.3.13 Call (F,V [ ,argumentsList ] )

The abstract operation Call takes argumentsF (anECMAScript language value) andV (anECMAScript language value) and optional argumentargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It is used to call the[[Call]] internal method of afunction object.F is thefunction object,V is anECMAScript language value that is thethis value of the[[Call]], andargumentsList is the value passed to the corresponding argument of the internal method. IfargumentsList is not present, a new emptyList is used as its value. It performs the following steps when called:

  1. IfargumentsList is not present, setargumentsList to a new emptyList.
  2. IfIsCallable(F) isfalse, throw aTypeError exception.
  3. Return ? F.[[Call]](V,argumentsList).

7.3.14 Construct (F [ ,argumentsList [ ,newTarget ] ] )

The abstract operation Construct takes argumentF (aconstructor) and optional argumentsargumentsList (aList ofECMAScript language values) andnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It is used to call the[[Construct]] internal method of afunction object.argumentsList andnewTarget are the values to be passed as the corresponding arguments of the internal method. IfargumentsList is not present, a new emptyList is used as its value. IfnewTarget is not present,F is used as its value. It performs the following steps when called:

  1. IfnewTarget is not present, setnewTarget toF.
  2. IfargumentsList is not present, setargumentsList to a new emptyList.
  3. Return ? F.[[Construct]](argumentsList,newTarget).
Note

IfnewTarget is not present, this operation is equivalent to:new F(...argumentsList)

7.3.15 SetIntegrityLevel (O,level )

The abstract operation SetIntegrityLevel takes argumentsO (an Object) andlevel (sealed orfrozen) and returns either anormal completion containing a Boolean or athrow completion. It is used to fix the set of own properties of an object. It performs the following steps when called:

  1. Letstatus be ? O.[[PreventExtensions]]().
  2. Ifstatus isfalse, returnfalse.
  3. Letkeys be ? O.[[OwnPropertyKeys]]().
  4. Iflevel issealed, then
    1. For each elementk ofkeys, do
      1. Perform ? DefinePropertyOrThrow(O,k, PropertyDescriptor {[[Configurable]]:false }).
  5. Else,
    1. Assert:level isfrozen.
    2. For each elementk ofkeys, do
      1. LetcurrentDesc be ? O.[[GetOwnProperty]](k).
      2. IfcurrentDesc is notundefined, then
        1. IfIsAccessorDescriptor(currentDesc) istrue, then
          1. Letdesc be the PropertyDescriptor {[[Configurable]]:false }.
        2. Else,
          1. Letdesc be the PropertyDescriptor {[[Configurable]]:false,[[Writable]]:false }.
        3. Perform ? DefinePropertyOrThrow(O,k,desc).
  6. Returntrue.

7.3.16 TestIntegrityLevel (O,level )

The abstract operation TestIntegrityLevel takes argumentsO (an Object) andlevel (sealed orfrozen) and returns either anormal completion containing a Boolean or athrow completion. It is used to determine if the set of own properties of an object are fixed. It performs the following steps when called:

  1. Letextensible be ? IsExtensible(O).
  2. Ifextensible istrue, returnfalse.
  3. NOTE: If the object is extensible, none of its properties are examined.
  4. Letkeys be ? O.[[OwnPropertyKeys]]().
  5. For each elementk ofkeys, do
    1. LetcurrentDesc be ? O.[[GetOwnProperty]](k).
    2. IfcurrentDesc is notundefined, then
      1. IfcurrentDesc.[[Configurable]] istrue, returnfalse.
      2. Iflevel isfrozen andIsDataDescriptor(currentDesc) istrue, then
        1. IfcurrentDesc.[[Writable]] istrue, returnfalse.
  6. Returntrue.

7.3.17 CreateArrayFromList (elements )

The abstract operation CreateArrayFromList takes argumentelements (aList ofECMAScript language values) and returns an Array. It is used to create an Array whose elements are provided byelements. It performs the following steps when called:

  1. Letarray be ! ArrayCreate(0).
  2. Letn be 0.
  3. For each elemente ofelements, do
    1. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(n)),e).
    2. Setn ton + 1.
  4. Returnarray.

7.3.18 LengthOfArrayLike (obj )

The abstract operation LengthOfArrayLike takes argumentobj (an Object) and returns either anormal completion containing a non-negativeinteger or athrow completion. It returns the value of the"length" property of an array-like object. It performs the following steps when called:

  1. Return(?ToLength(?Get(obj,"length"))).

Anarray-like object is any object for which this operation returns anormal completion.

Note 1
Typically, an array-like object would also have some properties withinteger index names. However, that is not a requirement of this definition.
Note 2
Arrays and String objects are examples of array-like objects.

7.3.19 CreateListFromArrayLike (obj [ ,elementTypes ] )

The abstract operation CreateListFromArrayLike takes argumentobj (anECMAScript language value) and optional argumentelementTypes (aList of names of ECMAScript Language Types) and returns either anormal completion containing aList ofECMAScript language values or athrow completion. It is used to create aList value whose elements are provided by the indexed properties ofobj.elementTypes contains the names of ECMAScript Language Types that are allowed for element values of theList that is created. It performs the following steps when called:

  1. IfelementTypes is not present, setelementTypes to « Undefined, Null, Boolean, String, Symbol, Number, BigInt, Object ».
  2. Ifobjis not an Object, throw aTypeError exception.
  3. Letlen be ? LengthOfArrayLike(obj).
  4. Letlist be a new emptyList.
  5. Letindex be 0.
  6. Repeat, whileindex <len,
    1. LetindexName be ! ToString(𝔽(index)).
    2. Letnext be ? Get(obj,indexName).
    3. IfelementTypes does not containType(next), throw aTypeError exception.
    4. Appendnext tolist.
    5. Setindex toindex + 1.
  7. Returnlist.

7.3.20 Invoke (V,P [ ,argumentsList ] )

The abstract operation Invoke takes argumentsV (anECMAScript language value) andP (aproperty key) and optional argumentargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It is used to call a method property of anECMAScript language value.V serves as both the lookup point for the property and thethis value of the call.argumentsList is the list of arguments values passed to the method. IfargumentsList is not present, a new emptyList is used as its value. It performs the following steps when called:

  1. IfargumentsList is not present, setargumentsList to a new emptyList.
  2. Letfunc be ? GetV(V,P).
  3. Return ? Call(func,V,argumentsList).

7.3.21 OrdinaryHasInstance (C,O )

The abstract operation OrdinaryHasInstance takes argumentsC (anECMAScript language value) andO (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It implements the default algorithm for determining ifO inherits from the instance object inheritance path provided byC. It performs the following steps when called:

  1. IfIsCallable(C) isfalse, returnfalse.
  2. IfC has a[[BoundTargetFunction]] internal slot, then
    1. LetBC beC.[[BoundTargetFunction]].
    2. Return ? InstanceofOperator(O,BC).
  3. IfOis not an Object, returnfalse.
  4. LetP be ? Get(C,"prototype").
  5. IfPis not an Object, throw aTypeError exception.
  6. Repeat,
    1. SetO to ? O.[[GetPrototypeOf]]().
    2. IfO isnull, returnfalse.
    3. IfSameValue(P,O) istrue, returntrue.

7.3.22 SpeciesConstructor (O,defaultConstructor )

The abstract operation SpeciesConstructor takes argumentsO (an Object) anddefaultConstructor (aconstructor) and returns either anormal completion containing aconstructor or athrow completion. It is used to retrieve theconstructor that should be used to create new objects that are derived fromO.defaultConstructor is theconstructor to use if aconstructor@@species property cannot be found starting fromO. It performs the following steps when called:

  1. LetC be ? Get(O,"constructor").
  2. IfC isundefined, returndefaultConstructor.
  3. IfCis not an Object, throw aTypeError exception.
  4. LetS be ? Get(C,@@species).
  5. IfS is eitherundefined ornull, returndefaultConstructor.
  6. IfIsConstructor(S) istrue, returnS.
  7. Throw aTypeError exception.

7.3.23 EnumerableOwnProperties (O,kind )

The abstract operation EnumerableOwnProperties takes argumentsO (an Object) andkind (key,value, orkey+value) and returns either anormal completion containing aList ofECMAScript language values or athrow completion. It performs the following steps when called:

  1. LetownKeys be ? O.[[OwnPropertyKeys]]().
  2. Letresults be a new emptyList.
  3. For each elementkey ofownKeys, do
    1. Ifkeyis a String, then
      1. Letdesc be ? O.[[GetOwnProperty]](key).
      2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
        1. Ifkind iskey, then
          1. Appendkey toresults.
        2. Else,
          1. Letvalue be ? Get(O,key).
          2. Ifkind isvalue, then
            1. Appendvalue toresults.
          3. Else,
            1. Assert:kind iskey+value.
            2. Letentry beCreateArrayFromListkey,value »).
            3. Appendentry toresults.
  4. Returnresults.

7.3.24 GetFunctionRealm (obj )

The abstract operation GetFunctionRealm takes argumentobj (afunction object) and returns either anormal completion containing aRealm Record or athrow completion. It performs the following steps when called:

  1. Ifobj has a[[Realm]] internal slot, then
    1. Returnobj.[[Realm]].
  2. Ifobj is abound function exotic object, then
    1. LetboundTargetFunction beobj.[[BoundTargetFunction]].
    2. Return ? GetFunctionRealm(boundTargetFunction).
  3. Ifobj is aProxy exotic object, then
    1. Perform ? ValidateNonRevokedProxy(obj).
    2. LetproxyTarget beobj.[[ProxyTarget]].
    3. Return ? GetFunctionRealm(proxyTarget).
  4. Returnthe current Realm Record.
Note

Step4 will only be reached ifobj is a non-standard functionexotic object that does not have a[[Realm]] internal slot.

7.3.25 CopyDataProperties (target,source,excludedItems )

The abstract operation CopyDataProperties takes argumentstarget (an Object),source (anECMAScript language value), andexcludedItems (aList ofproperty keys) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Ifsource is eitherundefined ornull, returnunused.
  2. Letfrom be ! ToObject(source).
  3. Letkeys be ? from.[[OwnPropertyKeys]]().
  4. For each elementnextKey ofkeys, do
    1. Letexcluded befalse.
    2. For each elemente ofexcludedItems, do
      1. IfSameValue(e,nextKey) istrue, then
        1. Setexcluded totrue.
    3. Ifexcluded isfalse, then
      1. Letdesc be ? from.[[GetOwnProperty]](nextKey).
      2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
        1. LetpropValue be ? Get(from,nextKey).
        2. Perform ! CreateDataPropertyOrThrow(target,nextKey,propValue).
  5. Returnunused.
Note

The target passed in here is always a newly created object which is not directly accessible in case of an error being thrown.

7.3.26 PrivateElementFind (O,P )

The abstract operation PrivateElementFind takes argumentsO (an Object) andP (aPrivate Name) and returns aPrivateElement orempty. It performs the following steps when called:

  1. IfO.[[PrivateElements]] contains aPrivateElementpe such thatpe.[[Key]] isP, then
    1. Returnpe.
  2. Returnempty.

7.3.27 PrivateFieldAdd (O,P,value )

The abstract operation PrivateFieldAdd takes argumentsO (an Object),P (aPrivate Name), andvalue (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. If thehost is a web browser, then
    1. Perform ? HostEnsureCanAddPrivateElement(O).
  2. Letentry bePrivateElementFind(O,P).
  3. Ifentry is notempty, throw aTypeError exception.
  4. AppendPrivateElement {[[Key]]:P,[[Kind]]:field,[[Value]]:value } toO.[[PrivateElements]].
  5. Returnunused.

7.3.28 PrivateMethodOrAccessorAdd (O,method )

The abstract operation PrivateMethodOrAccessorAdd takes argumentsO (an Object) andmethod (aPrivateElement) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Assert:method.[[Kind]] is eithermethod oraccessor.
  2. If thehost is a web browser, then
    1. Perform ? HostEnsureCanAddPrivateElement(O).
  3. Letentry bePrivateElementFind(O,method.[[Key]]).
  4. Ifentry is notempty, throw aTypeError exception.
  5. Appendmethod toO.[[PrivateElements]].
  6. Returnunused.
Note

The values for private methods and accessors are shared across instances. This operation does not create a new copy of the method or accessor.

7.3.29 HostEnsureCanAddPrivateElement (O )

Thehost-defined abstract operation HostEnsureCanAddPrivateElement takes argumentO (an Object) and returns either anormal completion containingunused or athrow completion. It allowshost environments to prevent the addition of private elements to particularhost-definedexotic objects.

An implementation of HostEnsureCanAddPrivateElement must conform to the following requirements:

The default implementation of HostEnsureCanAddPrivateElement is to returnNormalCompletion(unused).

This abstract operation is only invoked by ECMAScripthosts that are web browsers.

7.3.30 PrivateGet (O,P )

The abstract operation PrivateGet takes argumentsO (an Object) andP (aPrivate Name) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letentry bePrivateElementFind(O,P).
  2. Ifentry isempty, throw aTypeError exception.
  3. Ifentry.[[Kind]] is eitherfield ormethod, then
    1. Returnentry.[[Value]].
  4. Assert:entry.[[Kind]] isaccessor.
  5. Ifentry.[[Get]] isundefined, throw aTypeError exception.
  6. Letgetter beentry.[[Get]].
  7. Return ? Call(getter,O).

7.3.31 PrivateSet (O,P,value )

The abstract operation PrivateSet takes argumentsO (an Object),P (aPrivate Name), andvalue (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letentry bePrivateElementFind(O,P).
  2. Ifentry isempty, throw aTypeError exception.
  3. Ifentry.[[Kind]] isfield, then
    1. Setentry.[[Value]] tovalue.
  4. Else ifentry.[[Kind]] ismethod, then
    1. Throw aTypeError exception.
  5. Else,
    1. Assert:entry.[[Kind]] isaccessor.
    2. Ifentry.[[Set]] isundefined, throw aTypeError exception.
    3. Letsetter beentry.[[Set]].
    4. Perform ? Call(setter,O, «value »).
  6. Returnunused.

7.3.32 DefineField (receiver,fieldRecord )

The abstract operation DefineField takes argumentsreceiver (an Object) andfieldRecord (aClassFieldDefinition Record) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. LetfieldName befieldRecord.[[Name]].
  2. Letinitializer befieldRecord.[[Initializer]].
  3. Ifinitializer is notempty, then
    1. LetinitValue be ? Call(initializer,receiver).
  4. Else,
    1. LetinitValue beundefined.
  5. IffieldName is aPrivate Name, then
    1. Perform ? PrivateFieldAdd(receiver,fieldName,initValue).
  6. Else,
    1. Assert:IsPropertyKey(fieldName) istrue.
    2. Perform ? CreateDataPropertyOrThrow(receiver,fieldName,initValue).
  7. Returnunused.

7.3.33 InitializeInstanceElements (O,constructor )

The abstract operation InitializeInstanceElements takes argumentsO (an Object) andconstructor (an ECMAScriptfunction object) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letmethods be the value ofconstructor.[[PrivateMethods]].
  2. For eachPrivateElementmethod ofmethods, do
    1. Perform ? PrivateMethodOrAccessorAdd(O,method).
  3. Letfields be the value ofconstructor.[[Fields]].
  4. For each elementfieldRecord offields, do
    1. Perform ? DefineField(O,fieldRecord).
  5. Returnunused.

7.3.34 AddValueToKeyedGroup (groups,key,value )

The abstract operation AddValueToKeyedGroup takes argumentsgroups (aList ofRecords with fields[[Key]] (anECMAScript language value) and[[Elements]] (aList ofECMAScript language values)),key (anECMAScript language value), andvalue (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. For eachRecord {[[Key]],[[Elements]] }g ofgroups, do
    1. IfSameValue(g.[[Key]],key) istrue, then
      1. Assert: Exactly one element ofgroups meets this criterion.
      2. Appendvalue tog.[[Elements]].
      3. Returnunused.
  2. Letgroup be theRecord {[[Key]]:key,[[Elements]]: «value » }.
  3. Appendgroup togroups.
  4. Returnunused.

7.3.35 GroupBy (items,callbackfn,keyCoercion )

The abstract operation GroupBy takes argumentsitems (anECMAScript language value),callbackfn (anECMAScript language value), andkeyCoercion (property orzero) and returns either anormal completion containing aList ofRecords with fields[[Key]] (anECMAScript language value) and[[Elements]] (aList ofECMAScript language values), or athrow completion. It performs the following steps when called:

  1. Perform ? RequireObjectCoercible(items).
  2. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  3. Letgroups be a new emptyList.
  4. LetiteratorRecord be ? GetIterator(items,sync).
  5. Letk be 0.
  6. Repeat,
    1. Ifk ≥ 253 - 1, then
      1. Leterror beThrowCompletion(a newly createdTypeError object).
      2. Return ? IteratorClose(iteratorRecord,error).
    2. Letnext be ? IteratorStepValue(iteratorRecord).
    3. Ifnext isdone, then
      1. Returngroups.
    4. Letvalue benext.
    5. Letkey beCompletion(Call(callbackfn,undefined, «value,𝔽(k) »)).
    6. IfAbruptCloseIterator(key,iteratorRecord).
    7. IfkeyCoercion isproperty, then
      1. Setkey toCompletion(ToPropertyKey(key)).
      2. IfAbruptCloseIterator(key,iteratorRecord).
    8. Else,
      1. Assert:keyCoercion iszero.
      2. Ifkey is-0𝔽, setkey to+0𝔽.
    9. PerformAddValueToKeyedGroup(groups,key,value).
    10. Setk tok + 1.

7.4 Operations on Iterator Objects

See Common Iteration Interfaces (27.1).

7.4.1 Iterator Records

AnIterator Record is aRecord value used to encapsulate an Iterator or AsyncIterator along with thenext method.

Iterator Records have the fields listed inTable 15.

Table 15:Iterator Record Fields
Field Name Value Meaning
[[Iterator]] an Object An object that conforms to theIterator orAsyncIterator interface.
[[NextMethod]] anECMAScript language value Thenext method of the[[Iterator]] object.
[[Done]] a Boolean Whether the iterator has been closed.

7.4.2 GetIteratorFromMethod (obj,method )

The abstract operation GetIteratorFromMethod takes argumentsobj (anECMAScript language value) andmethod (afunction object) and returns either anormal completion containing anIterator Record or athrow completion. It performs the following steps when called:

  1. Letiterator be ? Call(method,obj).
  2. Ifiteratoris not an Object, throw aTypeError exception.
  3. LetnextMethod be ? Get(iterator,"next").
  4. LetiteratorRecord be theIterator Record {[[Iterator]]:iterator,[[NextMethod]]:nextMethod,[[Done]]:false }.
  5. ReturniteratorRecord.

7.4.3 GetIterator (obj,kind )

The abstract operation GetIterator takes argumentsobj (anECMAScript language value) andkind (sync orasync) and returns either anormal completion containing anIterator Record or athrow completion. It performs the following steps when called:

  1. Ifkind isasync, then
    1. Letmethod be ? GetMethod(obj,@@asyncIterator).
    2. Ifmethod isundefined, then
      1. LetsyncMethod be ? GetMethod(obj,@@iterator).
      2. IfsyncMethod isundefined, throw aTypeError exception.
      3. LetsyncIteratorRecord be ? GetIteratorFromMethod(obj,syncMethod).
      4. ReturnCreateAsyncFromSyncIterator(syncIteratorRecord).
  2. Else,
    1. Letmethod be ? GetMethod(obj,@@iterator).
  3. Ifmethod isundefined, throw aTypeError exception.
  4. Return ? GetIteratorFromMethod(obj,method).

7.4.4 IteratorNext (iteratorRecord [ ,value ] )

The abstract operation IteratorNext takes argumentiteratorRecord (anIterator Record) and optional argumentvalue (anECMAScript language value) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Ifvalue is not present, then
    1. Letresult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]]).
  2. Else,
    1. Letresult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]], «value »).
  3. Ifresultis not an Object, throw aTypeError exception.
  4. Returnresult.

7.4.5 IteratorComplete (iterResult )

The abstract operation IteratorComplete takes argumentiterResult (an Object) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. ReturnToBoolean(?Get(iterResult,"done")).

7.4.6 IteratorValue (iterResult )

The abstract operation IteratorValue takes argumentiterResult (an Object) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Return ? Get(iterResult,"value").

7.4.7 IteratorStep (iteratorRecord )

The abstract operation IteratorStep takes argumentiteratorRecord (anIterator Record) and returns either anormal completion containing either an Object orfalse, or athrow completion. It requests the next value fromiteratorRecord.[[Iterator]] by callingiteratorRecord.[[NextMethod]] and returns eitherfalse indicating that the iterator has reached its end or the IteratorResult object if a next value is available. It performs the following steps when called:

  1. Letresult be ? IteratorNext(iteratorRecord).
  2. Letdone be ? IteratorComplete(result).
  3. Ifdone istrue, returnfalse.
  4. Returnresult.

7.4.8 IteratorStepValue (iteratorRecord )

The abstract operation IteratorStepValue takes argumentiteratorRecord (anIterator Record) and returns either anormal completion containing either anECMAScript language value ordone, or athrow completion. It requests the next value fromiteratorRecord.[[Iterator]] by callingiteratorRecord.[[NextMethod]] and returns eitherdone indicating that the iterator has reached its end or the value from the IteratorResult object if a next value is available. It performs the following steps when called:

  1. Letresult beCompletion(IteratorNext(iteratorRecord)).
  2. Ifresult is athrow completion, then
    1. SetiteratorRecord.[[Done]] totrue.
    2. Return ? result.
  3. Setresult to ! result.
  4. Letdone beCompletion(IteratorComplete(result)).
  5. Ifdone is athrow completion, then
    1. SetiteratorRecord.[[Done]] totrue.
    2. Return ? done.
  6. Setdone to ! done.
  7. Ifdone istrue, then
    1. SetiteratorRecord.[[Done]] totrue.
    2. Returndone.
  8. Letvalue beCompletion(Get(result,"value")).
  9. Ifvalue is athrow completion, then
    1. SetiteratorRecord.[[Done]] totrue.
  10. Return ? value.

7.4.9 IteratorClose (iteratorRecord,completion )

The abstract operation IteratorClose takes argumentsiteratorRecord (anIterator Record) andcompletion (aCompletion Record) and returns aCompletion Record. It is used to notify an iterator that it should perform any actions it would normally perform when it has reached its completed state. It performs the following steps when called:

  1. Assert:iteratorRecord.[[Iterator]]is an Object.
  2. Letiterator beiteratorRecord.[[Iterator]].
  3. LetinnerResult beCompletion(GetMethod(iterator,"return")).
  4. IfinnerResult is anormal completion, then
    1. Letreturn beinnerResult.[[Value]].
    2. Ifreturn isundefined, return ? completion.
    3. SetinnerResult toCompletion(Call(return,iterator)).
  5. Ifcompletion is athrow completion, return ? completion.
  6. IfinnerResult is athrow completion, return ? innerResult.
  7. IfinnerResult.[[Value]]is not an Object, throw aTypeError exception.
  8. Return ? completion.

7.4.10 IfAbruptCloseIterator (value,iteratorRecord )

IfAbruptCloseIterator is a shorthand for a sequence of algorithm steps that use anIterator Record. An algorithm step of the form:

  1. IfAbruptCloseIterator(value,iteratorRecord).

means the same thing as:

  1. Assert:value is aCompletion Record.
  2. Ifvalue is anabrupt completion, return ? IteratorClose(iteratorRecord,value).
  3. Else, setvalue to ! value.

7.4.11 AsyncIteratorClose (iteratorRecord,completion )

The abstract operation AsyncIteratorClose takes argumentsiteratorRecord (anIterator Record) andcompletion (aCompletion Record) and returns aCompletion Record. It is used to notify an async iterator that it should perform any actions it would normally perform when it has reached its completed state. It performs the following steps when called:

  1. Assert:iteratorRecord.[[Iterator]]is an Object.
  2. Letiterator beiteratorRecord.[[Iterator]].
  3. LetinnerResult beCompletion(GetMethod(iterator,"return")).
  4. IfinnerResult is anormal completion, then
    1. Letreturn beinnerResult.[[Value]].
    2. Ifreturn isundefined, return ? completion.
    3. SetinnerResult toCompletion(Call(return,iterator)).
    4. IfinnerResult is anormal completion, setinnerResult toCompletion(Await(innerResult.[[Value]])).
  5. Ifcompletion is athrow completion, return ? completion.
  6. IfinnerResult is athrow completion, return ? innerResult.
  7. IfinnerResult.[[Value]]is not an Object, throw aTypeError exception.
  8. Return ? completion.

7.4.12 CreateIterResultObject (value,done )

The abstract operation CreateIterResultObject takes argumentsvalue (anECMAScript language value) anddone (a Boolean) and returns an Object that conforms to theIteratorResult interface. It creates an object that conforms to theIteratorResult interface. It performs the following steps when called:

  1. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  2. Perform ! CreateDataPropertyOrThrow(obj,"value",value).
  3. Perform ! CreateDataPropertyOrThrow(obj,"done",done).
  4. Returnobj.

7.4.13 CreateListIteratorRecord (list )

The abstract operation CreateListIteratorRecord takes argumentlist (aList ofECMAScript language values) and returns anIterator Record. It creates an Iterator (27.1.1.2) object record whosenext method returns the successive elements oflist. It performs the following steps when called:

  1. Letclosure be a newAbstract Closure with no parameters that captureslist and performs the following steps when called:
    1. For each elementE oflist, do
      1. Perform ? GeneratorYield(CreateIterResultObject(E,false)).
    2. ReturnNormalCompletion(undefined).
  2. Letiterator beCreateIteratorFromClosure(closure,empty,%IteratorPrototype%).
  3. Return theIterator Record {[[Iterator]]:iterator,[[NextMethod]]: %GeneratorFunction.prototype.prototype.next%,[[Done]]:false }.
Note

The list iterator object is never directly accessible to ECMAScript code.

7.4.14 IteratorToList (iteratorRecord )

The abstract operation IteratorToList takes argumentiteratorRecord (anIterator Record) and returns either anormal completion containing aList ofECMAScript language values or athrow completion. It performs the following steps when called:

  1. Letvalues be a new emptyList.
  2. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, then
      1. Returnvalues.
    3. Appendnext tovalues.

8 Syntax-Directed Operations

In addition to those defined in this section, specializedsyntax-directed operations are defined throughout this specification.

8.1 Runtime Semantics: Evaluation

Thesyntax-directed operation Evaluation takes no arguments and returns aCompletion Record.

Note
The definitions for this operation are distributed over the "ECMAScript Language" sections of this specification. Each definition appears after the defining occurrence of the relevant productions.

8.2 Scope Analysis

8.2.1 Static Semantics: BoundNames

Thesyntax-directed operation BoundNames takes no arguments and returns aList of Strings.

Note

"*default*" is used within this specification as a synthetic name for a module's default export when it does not have another name. An entry in the module's[[Environment]] is created with that name and holds the corresponding value, and resolving the export named"default" by callingResolveExport (exportName [ ,resolveSet ] ) for the module will return aResolvedBinding Record whose[[BindingName]] is"*default*", which will then resolve in the module's[[Environment]] to the above-mentioned value. This is done only for ease of specification, so that anonymous default exports can be resolved like any other export. This"*default*" string is never accessible to ECMAScript code or to the module linking algorithm.

It is defined piecewise over the following productions:

BindingIdentifier:Identifier
  1. Return aList whose sole element is theStringValue ofIdentifier.
BindingIdentifier:yield
  1. Return «"yield" ».
BindingIdentifier:await
  1. Return «"await" ».
LexicalDeclaration:LetOrConstBindingList;
  1. Return theBoundNames ofBindingList.
BindingList:BindingList,LexicalBinding
  1. Letnames1 be theBoundNames ofBindingList.
  2. Letnames2 be theBoundNames ofLexicalBinding.
  3. Return thelist-concatenation ofnames1 andnames2.
LexicalBinding:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
LexicalBinding:BindingPatternInitializer
  1. Return theBoundNames ofBindingPattern.
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Letnames1 beBoundNames ofVariableDeclarationList.
  2. Letnames2 beBoundNames ofVariableDeclaration.
  3. Return thelist-concatenation ofnames1 andnames2.
VariableDeclaration:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
VariableDeclaration:BindingPatternInitializer
  1. Return theBoundNames ofBindingPattern.
ObjectBindingPattern:{}
  1. Return a new emptyList.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. Letnames1 beBoundNames ofBindingPropertyList.
  2. Letnames2 beBoundNames ofBindingRestProperty.
  3. Return thelist-concatenation ofnames1 andnames2.
ArrayBindingPattern:[Elisionopt]
  1. Return a new emptyList.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. Return theBoundNames ofBindingRestElement.
ArrayBindingPattern:[BindingElementList,Elisionopt]
  1. Return theBoundNames ofBindingElementList.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Letnames1 beBoundNames ofBindingElementList.
  2. Letnames2 beBoundNames ofBindingRestElement.
  3. Return thelist-concatenation ofnames1 andnames2.
BindingPropertyList:BindingPropertyList,BindingProperty
  1. Letnames1 beBoundNames ofBindingPropertyList.
  2. Letnames2 beBoundNames ofBindingProperty.
  3. Return thelist-concatenation ofnames1 andnames2.
BindingElementList:BindingElementList,BindingElisionElement
  1. Letnames1 beBoundNames ofBindingElementList.
  2. Letnames2 beBoundNames ofBindingElisionElement.
  3. Return thelist-concatenation ofnames1 andnames2.
BindingElisionElement:ElisionoptBindingElement
  1. ReturnBoundNames ofBindingElement.
BindingProperty:PropertyName:BindingElement
  1. Return theBoundNames ofBindingElement.
SingleNameBinding:BindingIdentifierInitializeropt
  1. Return theBoundNames ofBindingIdentifier.
BindingElement:BindingPatternInitializeropt
  1. Return theBoundNames ofBindingPattern.
ForDeclaration:LetOrConstForBinding
  1. Return theBoundNames ofForBinding.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Return theBoundNames ofBindingIdentifier.
FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. Return «"*default*" ».
FormalParameters:[empty]
  1. Return a new emptyList.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Letnames1 beBoundNames ofFormalParameterList.
  2. Letnames2 beBoundNames ofFunctionRestParameter.
  3. Return thelist-concatenation ofnames1 andnames2.
FormalParameterList:FormalParameterList,FormalParameter
  1. Letnames1 beBoundNames ofFormalParameterList.
  2. Letnames2 beBoundNames ofFormalParameter.
  3. Return thelist-concatenation ofnames1 andnames2.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. Return theBoundNames offormals.
GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Return theBoundNames ofBindingIdentifier.
GeneratorDeclaration:function*(FormalParameters){GeneratorBody}
  1. Return «"*default*" ».
AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Return theBoundNames ofBindingIdentifier.
AsyncGeneratorDeclaration:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. Return «"*default*" ».
ClassDeclaration:classBindingIdentifierClassTail
  1. Return theBoundNames ofBindingIdentifier.
ClassDeclaration:classClassTail
  1. Return «"*default*" ».
AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Return theBoundNames ofBindingIdentifier.
AsyncFunctionDeclaration:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Return «"*default*" ».
CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Lethead be theAsyncArrowHead that iscovered byCoverCallExpressionAndAsyncArrowHead.
  2. Return theBoundNames ofhead.
ImportDeclaration:importImportClauseFromClause;
  1. Return theBoundNames ofImportClause.
ImportDeclaration:importModuleSpecifier;
  1. Return a new emptyList.
ImportClause:ImportedDefaultBinding,NameSpaceImport
  1. Letnames1 be theBoundNames ofImportedDefaultBinding.
  2. Letnames2 be theBoundNames ofNameSpaceImport.
  3. Return thelist-concatenation ofnames1 andnames2.
ImportClause:ImportedDefaultBinding,NamedImports
  1. Letnames1 be theBoundNames ofImportedDefaultBinding.
  2. Letnames2 be theBoundNames ofNamedImports.
  3. Return thelist-concatenation ofnames1 andnames2.
NamedImports:{}
  1. Return a new emptyList.
ImportsList:ImportsList,ImportSpecifier
  1. Letnames1 be theBoundNames ofImportsList.
  2. Letnames2 be theBoundNames ofImportSpecifier.
  3. Return thelist-concatenation ofnames1 andnames2.
ImportSpecifier:ModuleExportNameasImportedBinding
  1. Return theBoundNames ofImportedBinding.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;
  1. Return a new emptyList.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. LetdeclarationNames be theBoundNames ofHoistableDeclaration.
  2. IfdeclarationNames does not include the element"*default*", append"*default*" todeclarationNames.
  3. ReturndeclarationNames.
ExportDeclaration:exportdefaultClassDeclaration
  1. LetdeclarationNames be theBoundNames ofClassDeclaration.
  2. IfdeclarationNames does not include the element"*default*", append"*default*" todeclarationNames.
  3. ReturndeclarationNames.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Return «"*default*" ».

8.2.2 Static Semantics: DeclarationPart

Thesyntax-directed operation DeclarationPart takes no arguments and returns aParse Node. It is defined piecewise over the following productions:

HoistableDeclaration:FunctionDeclaration
  1. ReturnFunctionDeclaration.
HoistableDeclaration:GeneratorDeclaration
  1. ReturnGeneratorDeclaration.
HoistableDeclaration:AsyncFunctionDeclaration
  1. ReturnAsyncFunctionDeclaration.
HoistableDeclaration:AsyncGeneratorDeclaration
  1. ReturnAsyncGeneratorDeclaration.
Declaration:ClassDeclaration
  1. ReturnClassDeclaration.
Declaration:LexicalDeclaration
  1. ReturnLexicalDeclaration.

8.2.3 Static Semantics: IsConstantDeclaration

Thesyntax-directed operation IsConstantDeclaration takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

LexicalDeclaration:LetOrConstBindingList;
  1. ReturnIsConstantDeclaration ofLetOrConst.
LetOrConst:let
  1. Returnfalse.
LetOrConst:const
  1. Returntrue.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Returnfalse.
ClassDeclaration:classBindingIdentifierClassTailclassClassTail
  1. Returnfalse.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportdefaultAssignmentExpression;
  1. Returnfalse.
Note

It is not necessary to treatexport defaultAssignmentExpression as a constant declaration because there is no syntax that permits assignment to the internal bound name used to reference a module's default object.

8.2.4 Static Semantics: LexicallyDeclaredNames

Thesyntax-directed operation LexicallyDeclaredNames takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letnames1 beLexicallyDeclaredNames ofStatementList.
  2. Letnames2 beLexicallyDeclaredNames ofStatementListItem.
  3. Return thelist-concatenation ofnames1 andnames2.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnLexicallyDeclaredNames ofLabelledStatement.
  2. Return a new emptyList.
StatementListItem:Declaration
  1. Return theBoundNames ofDeclaration.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letnames1 be theLexicallyDeclaredNames of the firstCaseClauses.
  2. Else, letnames1 be a new emptyList.
  3. Letnames2 beLexicallyDeclaredNames ofDefaultClause.
  4. If the secondCaseClauses is present, letnames3 be theLexicallyDeclaredNames of the secondCaseClauses.
  5. Else, letnames3 be a new emptyList.
  6. Return thelist-concatenation ofnames1,names2, andnames3.
CaseClauses:CaseClausesCaseClause
  1. Letnames1 beLexicallyDeclaredNames ofCaseClauses.
  2. Letnames2 beLexicallyDeclaredNames ofCaseClause.
  3. Return thelist-concatenation ofnames1 andnames2.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theLexicallyDeclaredNames ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theLexicallyDeclaredNames ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theLexicallyDeclaredNames ofLabelledItem.
LabelledItem:Statement
  1. Return a new emptyList.
LabelledItem:FunctionDeclaration
  1. ReturnBoundNames ofFunctionDeclaration.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. ReturnTopLevelLexicallyDeclaredNames ofStatementList.
ClassStaticBlockStatementList:[empty]
  1. Return a new emptyList.
ClassStaticBlockStatementList:StatementList
  1. Return theTopLevelLexicallyDeclaredNames ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
Script:[empty]
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelLexicallyDeclaredNames ofStatementList.
Note 1

At the top level of aScript, function declarations are treated like var declarations rather than like lexical declarations.

Note 2

The LexicallyDeclaredNames of aModule includes the names of all of its imported bindings.

ModuleItemList:ModuleItemListModuleItem
  1. Letnames1 beLexicallyDeclaredNames ofModuleItemList.
  2. Letnames2 beLexicallyDeclaredNames ofModuleItem.
  3. Return thelist-concatenation ofnames1 andnames2.
ModuleItem:ImportDeclaration
  1. Return theBoundNames ofImportDeclaration.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, return a new emptyList.
  2. Return theBoundNames ofExportDeclaration.
ModuleItem:StatementListItem
  1. ReturnLexicallyDeclaredNames ofStatementListItem.
Note 3

At the top level of aModule, function declarations are treated like lexical declarations rather than like var declarations.

8.2.5 Static Semantics: LexicallyScopedDeclarations

Thesyntax-directed operation LexicallyScopedDeclarations takes no arguments and returns aList ofParse Nodes. It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Letdeclarations1 beLexicallyScopedDeclarations ofStatementList.
  2. Letdeclarations2 beLexicallyScopedDeclarations ofStatementListItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnLexicallyScopedDeclarations ofLabelledStatement.
  2. Return a new emptyList.
StatementListItem:Declaration
  1. Return aList whose sole element isDeclarationPart ofDeclaration.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letdeclarations1 be theLexicallyScopedDeclarations of the firstCaseClauses.
  2. Else, letdeclarations1 be a new emptyList.
  3. Letdeclarations2 beLexicallyScopedDeclarations ofDefaultClause.
  4. If the secondCaseClauses is present, letdeclarations3 be theLexicallyScopedDeclarations of the secondCaseClauses.
  5. Else, letdeclarations3 be a new emptyList.
  6. Return thelist-concatenation ofdeclarations1,declarations2, anddeclarations3.
CaseClauses:CaseClausesCaseClause
  1. Letdeclarations1 beLexicallyScopedDeclarations ofCaseClauses.
  2. Letdeclarations2 beLexicallyScopedDeclarations ofCaseClause.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theLexicallyScopedDeclarations ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theLexicallyScopedDeclarations ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theLexicallyScopedDeclarations ofLabelledItem.
LabelledItem:Statement
  1. Return a new emptyList.
LabelledItem:FunctionDeclaration
  1. Return «FunctionDeclaration ».
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. Return theTopLevelLexicallyScopedDeclarations ofStatementList.
ClassStaticBlockStatementList:[empty]
  1. Return a new emptyList.
ClassStaticBlockStatementList:StatementList
  1. Return theTopLevelLexicallyScopedDeclarations ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
Script:[empty]
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelLexicallyScopedDeclarations ofStatementList.
Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letdeclarations1 beLexicallyScopedDeclarations ofModuleItemList.
  2. Letdeclarations2 beLexicallyScopedDeclarations ofModuleItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement
  1. Return a new emptyList.
ExportDeclaration:exportDeclaration
  1. Return aList whose sole element isDeclarationPart ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Return aList whose sole element isDeclarationPart ofHoistableDeclaration.
ExportDeclaration:exportdefaultClassDeclaration
  1. Return aList whose sole element isClassDeclaration.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Return aList whose sole element is thisExportDeclaration.

8.2.6 Static Semantics: VarDeclaredNames

Thesyntax-directed operation VarDeclaredNames takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

Statement:EmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatement
  1. Return a new emptyList.
Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letnames1 beVarDeclaredNames ofStatementList.
  2. Letnames2 beVarDeclaredNames ofStatementListItem.
  3. Return thelist-concatenation ofnames1 andnames2.
StatementListItem:Declaration
  1. Return a new emptyList.
VariableStatement:varVariableDeclarationList;
  1. ReturnBoundNames ofVariableDeclarationList.
IfStatement:if(Expression)StatementelseStatement
  1. Letnames1 beVarDeclaredNames of the firstStatement.
  2. Letnames2 beVarDeclaredNames of the secondStatement.
  3. Return thelist-concatenation ofnames1 andnames2.
IfStatement:if(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
DoWhileStatement:doStatementwhile(Expression);
  1. Return theVarDeclaredNames ofStatement.
WhileStatement:while(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. Return theVarDeclaredNames ofStatement.
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. Letnames1 beBoundNames ofVariableDeclarationList.
  2. Letnames2 beVarDeclaredNames ofStatement.
  3. Return thelist-concatenation ofnames1 andnames2.
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. Return theVarDeclaredNames ofStatement.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. Return theVarDeclaredNames ofStatement.
ForInOfStatement:for(varForBindinginExpression)Statementfor(varForBindingofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statement
  1. Letnames1 be theBoundNames ofForBinding.
  2. Letnames2 be theVarDeclaredNames ofStatement.
  3. Return thelist-concatenation ofnames1 andnames2.
Note

This section is extended by AnnexB.3.5.

WithStatement:with(Expression)Statement
  1. Return theVarDeclaredNames ofStatement.
SwitchStatement:switch(Expression)CaseBlock
  1. Return theVarDeclaredNames ofCaseBlock.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letnames1 be theVarDeclaredNames of the firstCaseClauses.
  2. Else, letnames1 be a new emptyList.
  3. Letnames2 beVarDeclaredNames ofDefaultClause.
  4. If the secondCaseClauses is present, letnames3 be theVarDeclaredNames of the secondCaseClauses.
  5. Else, letnames3 be a new emptyList.
  6. Return thelist-concatenation ofnames1,names2, andnames3.
CaseClauses:CaseClausesCaseClause
  1. Letnames1 beVarDeclaredNames ofCaseClauses.
  2. Letnames2 beVarDeclaredNames ofCaseClause.
  3. Return thelist-concatenation ofnames1 andnames2.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theVarDeclaredNames ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theVarDeclaredNames ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theVarDeclaredNames ofLabelledItem.
LabelledItem:FunctionDeclaration
  1. Return a new emptyList.
TryStatement:tryBlockCatch
  1. Letnames1 beVarDeclaredNames ofBlock.
  2. Letnames2 beVarDeclaredNames ofCatch.
  3. Return thelist-concatenation ofnames1 andnames2.
TryStatement:tryBlockFinally
  1. Letnames1 beVarDeclaredNames ofBlock.
  2. Letnames2 beVarDeclaredNames ofFinally.
  3. Return thelist-concatenation ofnames1 andnames2.
TryStatement:tryBlockCatchFinally
  1. Letnames1 beVarDeclaredNames ofBlock.
  2. Letnames2 beVarDeclaredNames ofCatch.
  3. Letnames3 beVarDeclaredNames ofFinally.
  4. Return thelist-concatenation ofnames1,names2, andnames3.
Catch:catch(CatchParameter)Block
  1. Return theVarDeclaredNames ofBlock.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. ReturnTopLevelVarDeclaredNames ofStatementList.
ClassStaticBlockStatementList:[empty]
  1. Return a new emptyList.
ClassStaticBlockStatementList:StatementList
  1. Return theTopLevelVarDeclaredNames ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
Script:[empty]
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelVarDeclaredNames ofStatementList.
ModuleItemList:ModuleItemListModuleItem
  1. Letnames1 beVarDeclaredNames ofModuleItemList.
  2. Letnames2 beVarDeclaredNames ofModuleItem.
  3. Return thelist-concatenation ofnames1 andnames2.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, returnBoundNames ofExportDeclaration.
  2. Return a new emptyList.

8.2.7 Static Semantics: VarScopedDeclarations

Thesyntax-directed operation VarScopedDeclarations takes no arguments and returns aList ofParse Nodes. It is defined piecewise over the following productions:

Statement:EmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatement
  1. Return a new emptyList.
Block:{}
  1. Return a new emptyList.
StatementList:StatementListStatementListItem
  1. Letdeclarations1 beVarScopedDeclarations ofStatementList.
  2. Letdeclarations2 beVarScopedDeclarations ofStatementListItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
StatementListItem:Declaration
  1. Return a new emptyList.
VariableDeclarationList:VariableDeclaration
  1. Return «VariableDeclaration ».
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Letdeclarations1 beVarScopedDeclarations ofVariableDeclarationList.
  2. Return thelist-concatenation ofdeclarations1 and «VariableDeclaration ».
IfStatement:if(Expression)StatementelseStatement
  1. Letdeclarations1 beVarScopedDeclarations of the firstStatement.
  2. Letdeclarations2 beVarScopedDeclarations of the secondStatement.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
IfStatement:if(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
DoWhileStatement:doStatementwhile(Expression);
  1. Return theVarScopedDeclarations ofStatement.
WhileStatement:while(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. Letdeclarations1 beVarScopedDeclarations ofVariableDeclarationList.
  2. Letdeclarations2 beVarScopedDeclarations ofStatement.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. Return theVarScopedDeclarations ofStatement.
ForInOfStatement:for(varForBindinginExpression)Statementfor(varForBindingofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statement
  1. Letdeclarations1 be «ForBinding ».
  2. Letdeclarations2 beVarScopedDeclarations ofStatement.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
Note

This section is extended by AnnexB.3.5.

WithStatement:with(Expression)Statement
  1. Return theVarScopedDeclarations ofStatement.
SwitchStatement:switch(Expression)CaseBlock
  1. Return theVarScopedDeclarations ofCaseBlock.
CaseBlock:{}
  1. Return a new emptyList.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, letdeclarations1 be theVarScopedDeclarations of the firstCaseClauses.
  2. Else, letdeclarations1 be a new emptyList.
  3. Letdeclarations2 beVarScopedDeclarations ofDefaultClause.
  4. If the secondCaseClauses is present, letdeclarations3 be theVarScopedDeclarations of the secondCaseClauses.
  5. Else, letdeclarations3 be a new emptyList.
  6. Return thelist-concatenation ofdeclarations1,declarations2, anddeclarations3.
CaseClauses:CaseClausesCaseClause
  1. Letdeclarations1 beVarScopedDeclarations ofCaseClauses.
  2. Letdeclarations2 beVarScopedDeclarations ofCaseClause.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, return theVarScopedDeclarations ofStatementList.
  2. Return a new emptyList.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, return theVarScopedDeclarations ofStatementList.
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theVarScopedDeclarations ofLabelledItem.
LabelledItem:FunctionDeclaration
  1. Return a new emptyList.
TryStatement:tryBlockCatch
  1. Letdeclarations1 beVarScopedDeclarations ofBlock.
  2. Letdeclarations2 beVarScopedDeclarations ofCatch.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
TryStatement:tryBlockFinally
  1. Letdeclarations1 beVarScopedDeclarations ofBlock.
  2. Letdeclarations2 beVarScopedDeclarations ofFinally.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
TryStatement:tryBlockCatchFinally
  1. Letdeclarations1 beVarScopedDeclarations ofBlock.
  2. Letdeclarations2 beVarScopedDeclarations ofCatch.
  3. Letdeclarations3 beVarScopedDeclarations ofFinally.
  4. Return thelist-concatenation ofdeclarations1,declarations2, anddeclarations3.
Catch:catch(CatchParameter)Block
  1. Return theVarScopedDeclarations ofBlock.
FunctionStatementList:[empty]
  1. Return a new emptyList.
FunctionStatementList:StatementList
  1. Return theTopLevelVarScopedDeclarations ofStatementList.
ClassStaticBlockStatementList:[empty]
  1. Return a new emptyList.
ClassStaticBlockStatementList:StatementList
  1. Return theTopLevelVarScopedDeclarations ofStatementList.
ConciseBody:ExpressionBody
  1. Return a new emptyList.
AsyncConciseBody:ExpressionBody
  1. Return a new emptyList.
Script:[empty]
  1. Return a new emptyList.
ScriptBody:StatementList
  1. ReturnTopLevelVarScopedDeclarations ofStatementList.
Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letdeclarations1 beVarScopedDeclarations ofModuleItemList.
  2. Letdeclarations2 beVarScopedDeclarations ofModuleItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
ModuleItem:ImportDeclaration
  1. Return a new emptyList.
ModuleItem:ExportDeclaration
  1. IfExportDeclaration isexportVariableStatement, returnVarScopedDeclarations ofVariableStatement.
  2. Return a new emptyList.

8.2.8 Static Semantics: TopLevelLexicallyDeclaredNames

Thesyntax-directed operation TopLevelLexicallyDeclaredNames takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Letnames1 beTopLevelLexicallyDeclaredNames ofStatementList.
  2. Letnames2 beTopLevelLexicallyDeclaredNames ofStatementListItem.
  3. Return thelist-concatenation ofnames1 andnames2.
StatementListItem:Statement
  1. Return a new emptyList.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration, then
    1. Return a new emptyList.
  2. Return theBoundNames ofDeclaration.
Note

At the top level of a function, or script, function declarations are treated like var declarations rather than like lexical declarations.

8.2.9 Static Semantics: TopLevelLexicallyScopedDeclarations

Thesyntax-directed operation TopLevelLexicallyScopedDeclarations takes no arguments and returns aList ofParse Nodes. It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Letdeclarations1 beTopLevelLexicallyScopedDeclarations ofStatementList.
  2. Letdeclarations2 beTopLevelLexicallyScopedDeclarations ofStatementListItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
StatementListItem:Statement
  1. Return a new emptyList.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration, then
    1. Return a new emptyList.
  2. Return «Declaration ».

8.2.10 Static Semantics: TopLevelVarDeclaredNames

Thesyntax-directed operation TopLevelVarDeclaredNames takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Letnames1 beTopLevelVarDeclaredNames ofStatementList.
  2. Letnames2 beTopLevelVarDeclaredNames ofStatementListItem.
  3. Return thelist-concatenation ofnames1 andnames2.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration, then
    1. Return theBoundNames ofHoistableDeclaration.
  2. Return a new emptyList.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnTopLevelVarDeclaredNames ofStatement.
  2. ReturnVarDeclaredNames ofStatement.
Note

At the top level of a function or script, inner function declarations are treated like var declarations.

LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theTopLevelVarDeclaredNames ofLabelledItem.
LabelledItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnTopLevelVarDeclaredNames ofStatement.
  2. ReturnVarDeclaredNames ofStatement.
LabelledItem:FunctionDeclaration
  1. ReturnBoundNames ofFunctionDeclaration.

8.2.11 Static Semantics: TopLevelVarScopedDeclarations

Thesyntax-directed operation TopLevelVarScopedDeclarations takes no arguments and returns aList ofParse Nodes. It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Letdeclarations1 beTopLevelVarScopedDeclarations ofStatementList.
  2. Letdeclarations2 beTopLevelVarScopedDeclarations ofStatementListItem.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.
StatementListItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnTopLevelVarScopedDeclarations ofStatement.
  2. ReturnVarScopedDeclarations ofStatement.
StatementListItem:Declaration
  1. IfDeclaration isDeclaration:HoistableDeclaration, then
    1. Letdeclaration beDeclarationPart ofHoistableDeclaration.
    2. Return «declaration ».
  2. Return a new emptyList.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Return theTopLevelVarScopedDeclarations ofLabelledItem.
LabelledItem:Statement
  1. IfStatement isStatement:LabelledStatement, returnTopLevelVarScopedDeclarations ofStatement.
  2. ReturnVarScopedDeclarations ofStatement.
LabelledItem:FunctionDeclaration
  1. Return «FunctionDeclaration ».

8.3 Labels

8.3.1 Static Semantics: ContainsDuplicateLabels

Thesyntax-directed operation ContainsDuplicateLabels takes argumentlabelSet (aList of Strings) and returns a Boolean. It is defined piecewise over the following productions:

Statement:VariableStatementEmptyStatementExpressionStatementContinueStatementBreakStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
StatementList:StatementListStatementListItem
  1. LethasDuplicates beContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofStatementListItem with argumentlabelSet.
IfStatement:if(Expression)StatementelseStatement
  1. LethasDuplicate beContainsDuplicateLabels of the firstStatement with argumentlabelSet.
  2. IfhasDuplicate istrue, returntrue.
  3. ReturnContainsDuplicateLabels of the secondStatement with argumentlabelSet.
IfStatement:if(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
WhileStatement:while(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
Note

This section is extended by AnnexB.3.5.

WithStatement:with(Expression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsDuplicateLabels ofCaseBlock with argumentlabelSet.
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. IfContainsDuplicateLabels of the firstCaseClauses with argumentlabelSet istrue, returntrue.
  2. IfContainsDuplicateLabels ofDefaultClause with argumentlabelSet istrue, returntrue.
  3. If the secondCaseClauses is not present, returnfalse.
  4. ReturnContainsDuplicateLabels of the secondCaseClauses with argumentlabelSet.
CaseClauses:CaseClausesCaseClause
  1. LethasDuplicates beContainsDuplicateLabels ofCaseClauses with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofCaseClause with argumentlabelSet.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsDuplicateLabels ofStatementList with argumentlabelSet.
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. IflabelSet containslabel, returntrue.
  3. LetnewLabelSet be thelist-concatenation oflabelSet and «label ».
  4. ReturnContainsDuplicateLabels ofLabelledItem with argumentnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasDuplicates beContainsDuplicateLabels ofBlock with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofCatch with argumentlabelSet.
TryStatement:tryBlockFinally
  1. LethasDuplicates beContainsDuplicateLabels ofBlock with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofFinally with argumentlabelSet.
TryStatement:tryBlockCatchFinally
  1. IfContainsDuplicateLabels ofBlock with argumentlabelSet istrue, returntrue.
  2. IfContainsDuplicateLabels ofCatch with argumentlabelSet istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofFinally with argumentlabelSet.
Catch:catch(CatchParameter)Block
  1. ReturnContainsDuplicateLabels ofBlock with argumentlabelSet.
FunctionStatementList:[empty]
  1. Returnfalse.
ClassStaticBlockStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasDuplicates beContainsDuplicateLabels ofModuleItemList with argumentlabelSet.
  2. IfhasDuplicates istrue, returntrue.
  3. ReturnContainsDuplicateLabels ofModuleItem with argumentlabelSet.
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.3.2 Static Semantics: ContainsUndefinedBreakTarget

Thesyntax-directed operation ContainsUndefinedBreakTarget takes argumentlabelSet (aList of Strings) and returns a Boolean. It is defined piecewise over the following productions:

Statement:VariableStatementEmptyStatementExpressionStatementContinueStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
StatementList:StatementListStatementListItem
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofStatementListItem with argumentlabelSet.
IfStatement:if(Expression)StatementelseStatement
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget of the firstStatement with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget of the secondStatement with argumentlabelSet.
IfStatement:if(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
WhileStatement:while(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
Note

This section is extended by AnnexB.3.5.

BreakStatement:break;
  1. Returnfalse.
BreakStatement:breakLabelIdentifier;
  1. IflabelSet does not contain theStringValue ofLabelIdentifier, returntrue.
  2. Returnfalse.
WithStatement:with(Expression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsUndefinedBreakTarget ofCaseBlock with argumentlabelSet.
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. IfContainsUndefinedBreakTarget of the firstCaseClauses with argumentlabelSet istrue, returntrue.
  2. IfContainsUndefinedBreakTarget ofDefaultClause with argumentlabelSet istrue, returntrue.
  3. If the secondCaseClauses is not present, returnfalse.
  4. ReturnContainsUndefinedBreakTarget of the secondCaseClauses with argumentlabelSet.
CaseClauses:CaseClausesCaseClause
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofCaseClauses with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofCaseClause with argumentlabelSet.
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedBreakTarget ofStatementList with argumentlabelSet.
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. LetnewLabelSet be thelist-concatenation oflabelSet and «label ».
  3. ReturnContainsUndefinedBreakTarget ofLabelledItem with argumentnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofCatch with argumentlabelSet.
TryStatement:tryBlockFinally
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofFinally with argumentlabelSet.
TryStatement:tryBlockCatchFinally
  1. IfContainsUndefinedBreakTarget ofBlock with argumentlabelSet istrue, returntrue.
  2. IfContainsUndefinedBreakTarget ofCatch with argumentlabelSet istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofFinally with argumentlabelSet.
Catch:catch(CatchParameter)Block
  1. ReturnContainsUndefinedBreakTarget ofBlock with argumentlabelSet.
FunctionStatementList:[empty]
  1. Returnfalse.
ClassStaticBlockStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasUndefinedLabels beContainsUndefinedBreakTarget ofModuleItemList with argumentlabelSet.
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedBreakTarget ofModuleItem with argumentlabelSet.
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.3.3 Static Semantics: ContainsUndefinedContinueTarget

Thesyntax-directed operation ContainsUndefinedContinueTarget takes argumentsiterationSet (aList of Strings) andlabelSet (aList of Strings) and returns a Boolean. It is defined piecewise over the following productions:

Statement:VariableStatementEmptyStatementExpressionStatementBreakStatementReturnStatementThrowStatementDebuggerStatementBlock:{}StatementListItem:Declaration
  1. Returnfalse.
Statement:BlockStatement
  1. ReturnContainsUndefinedContinueTarget ofBlockStatement with argumentsiterationSet and « ».
BreakableStatement:IterationStatement
  1. LetnewIterationSet be thelist-concatenation ofiterationSet andlabelSet.
  2. ReturnContainsUndefinedContinueTarget ofIterationStatement with argumentsnewIterationSet and « ».
StatementList:StatementListStatementListItem
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofStatementListItem with argumentsiterationSet and « ».
IfStatement:if(Expression)StatementelseStatement
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget of the firstStatement with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget of the secondStatement with argumentsiterationSet and « ».
IfStatement:if(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
DoWhileStatement:doStatementwhile(Expression);
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
WhileStatement:while(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
Note

This section is extended by AnnexB.3.5.

ContinueStatement:continue;
  1. Returnfalse.
ContinueStatement:continueLabelIdentifier;
  1. IfiterationSet does not contain theStringValue ofLabelIdentifier, returntrue.
  2. Returnfalse.
WithStatement:with(Expression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnContainsUndefinedContinueTarget ofCaseBlock with argumentsiterationSet and « ».
CaseBlock:{}
  1. Returnfalse.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. If the firstCaseClauses is present, then
    1. IfContainsUndefinedContinueTarget of the firstCaseClauses with argumentsiterationSet and « » istrue, returntrue.
  2. IfContainsUndefinedContinueTarget ofDefaultClause with argumentsiterationSet and « » istrue, returntrue.
  3. If the secondCaseClauses is not present, returnfalse.
  4. ReturnContainsUndefinedContinueTarget of the secondCaseClauses with argumentsiterationSet and « ».
CaseClauses:CaseClausesCaseClause
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofCaseClauses with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofCaseClause with argumentsiterationSet and « ».
CaseClause:caseExpression:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. Returnfalse.
DefaultClause:default:StatementListopt
  1. If theStatementList is present, returnContainsUndefinedContinueTarget ofStatementList with argumentsiterationSet and « ».
  2. Returnfalse.
LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. LetnewLabelSet be thelist-concatenation oflabelSet and «label ».
  3. ReturnContainsUndefinedContinueTarget ofLabelledItem with argumentsiterationSet andnewLabelSet.
LabelledItem:FunctionDeclaration
  1. Returnfalse.
TryStatement:tryBlockCatch
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofCatch with argumentsiterationSet and « ».
TryStatement:tryBlockFinally
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofFinally with argumentsiterationSet and « ».
TryStatement:tryBlockCatchFinally
  1. IfContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « » istrue, returntrue.
  2. IfContainsUndefinedContinueTarget ofCatch with argumentsiterationSet and « » istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofFinally with argumentsiterationSet and « ».
Catch:catch(CatchParameter)Block
  1. ReturnContainsUndefinedContinueTarget ofBlock with argumentsiterationSet and « ».
FunctionStatementList:[empty]
  1. Returnfalse.
ClassStaticBlockStatementList:[empty]
  1. Returnfalse.
ModuleItemList:ModuleItemListModuleItem
  1. LethasUndefinedLabels beContainsUndefinedContinueTarget ofModuleItemList with argumentsiterationSet and « ».
  2. IfhasUndefinedLabels istrue, returntrue.
  3. ReturnContainsUndefinedContinueTarget ofModuleItem with argumentsiterationSet and « ».
ModuleItem:ImportDeclarationExportDeclaration
  1. Returnfalse.

8.4 Function Name Inference

8.4.1 Static Semantics: HasName

Thesyntax-directed operation HasName takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. IfIsFunctionDefinition ofexpr isfalse, returnfalse.
  3. ReturnHasName ofexpr.
FunctionExpression:function(FormalParameters){FunctionBody}GeneratorExpression:function*(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}ArrowFunction:ArrowParameters=>ConciseBodyAsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBodyClassExpression:classClassTail
  1. Returnfalse.
FunctionExpression:functionBindingIdentifier(FormalParameters){FunctionBody}GeneratorExpression:function*BindingIdentifier(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}ClassExpression:classBindingIdentifierClassTail
  1. Returntrue.

8.4.2 Static Semantics: IsFunctionDefinition

Thesyntax-directed operation IsFunctionDefinition takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnIsFunctionDefinition ofexpr.
PrimaryExpression:thisIdentifierReferenceLiteralArrayLiteralObjectLiteralRegularExpressionLiteralTemplateLiteralMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsMemberExpression.PrivateIdentifierNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionPrivateIdentifierinShiftExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionLogicalANDExpression:LogicalANDExpression&&BitwiseORExpressionLogicalORExpression:LogicalORExpression||LogicalANDExpressionCoalesceExpression:CoalesceExpressionHead??BitwiseORExpressionConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpressionAssignmentExpression:YieldExpressionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionExpression:Expression,AssignmentExpression
  1. Returnfalse.
AssignmentExpression:ArrowFunctionAsyncArrowFunctionFunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}ClassExpression:classBindingIdentifieroptClassTail
  1. Returntrue.

8.4.3 Static Semantics: IsAnonymousFunctionDefinition (expr )

The abstract operation IsAnonymousFunctionDefinition takes argumentexpr (anAssignmentExpressionParse Node, anInitializerParse Node, or anExpressionParse Node) and returns a Boolean. It determines if its argument is a function definition that does not bind a name. It performs the following steps when called:

  1. IfIsFunctionDefinition ofexpr isfalse, returnfalse.
  2. LethasName beHasName ofexpr.
  3. IfhasName istrue, returnfalse.
  4. Returntrue.

8.4.4 Static Semantics: IsIdentifierRef

Thesyntax-directed operation IsIdentifierRef takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

PrimaryExpression:IdentifierReference
  1. Returntrue.
PrimaryExpression:thisLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteralCoverParenthesizedExpressionAndArrowParameterListMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsMemberExpression.PrivateIdentifierNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpression
  1. Returnfalse.

8.4.5 Runtime Semantics: NamedEvaluation

Thesyntax-directed operation NamedEvaluation takes argumentname (aproperty key or aPrivate Name) and returns either anormal completion containing afunction object or anabrupt completion. It is defined piecewise over the following productions:

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. Return ? NamedEvaluation ofexpr with argumentname.
ParenthesizedExpression:(Expression)
  1. Assert:IsAnonymousFunctionDefinition(Expression) istrue.
  2. Return ? NamedEvaluation ofExpression with argumentname.
FunctionExpression:function(FormalParameters){FunctionBody}
  1. ReturnInstantiateOrdinaryFunctionExpression ofFunctionExpression with argumentname.
GeneratorExpression:function*(FormalParameters){GeneratorBody}
  1. ReturnInstantiateGeneratorFunctionExpression ofGeneratorExpression with argumentname.
AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. ReturnInstantiateAsyncGeneratorFunctionExpression ofAsyncGeneratorExpression with argumentname.
AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. ReturnInstantiateAsyncFunctionExpression ofAsyncFunctionExpression with argumentname.
ArrowFunction:ArrowParameters=>ConciseBody
  1. ReturnInstantiateArrowFunctionExpression ofArrowFunction with argumentname.
AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. ReturnInstantiateAsyncArrowFunctionExpression ofAsyncArrowFunction with argumentname.
ClassExpression:classClassTail
  1. Letvalue be ? ClassDefinitionEvaluation ofClassTail with argumentsundefined andname.
  2. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  3. Returnvalue.

8.5 Contains

8.5.1 Static Semantics: Contains

Thesyntax-directed operation Contains takes argumentsymbol (a grammar symbol) and returns a Boolean.

Every grammar production alternative in this specification which is not listed below implicitly has the following default definition of Contains:

  1. For each child nodechild of thisParse Node, do
    1. Ifchild is an instance ofsymbol, returntrue.
    2. Ifchild is an instance of a nonterminal, then
      1. Letcontained be the result ofchildContainssymbol.
      2. Ifcontained istrue, returntrue.
  2. Returnfalse.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}
  1. Returnfalse.
Note 1

Static semantic rules that depend upon substructure generally do not look into function definitions.

ClassTail:ClassHeritageopt{ClassBody}
  1. Ifsymbol isClassBody, returntrue.
  2. Ifsymbol isClassHeritage, then
    1. IfClassHeritage is present, returntrue; otherwise returnfalse.
  3. IfClassHeritage is present, then
    1. IfClassHeritageContainssymbol istrue, returntrue.
  4. Return the result ofComputedPropertyContains ofClassBody with argumentsymbol.
Note 2

Static semantic rules that depend upon substructure generally do not look into class bodies except forPropertyNames.

ClassStaticBlock:static{ClassStaticBlockBody}
  1. Returnfalse.
Note 3

Static semantic rules that depend upon substructure generally do not look intostatic initialization blocks.

ArrowFunction:ArrowParameters=>ConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super, orthis, returnfalse.
  2. IfArrowParametersContainssymbol istrue, returntrue.
  3. ReturnConciseBodyContainssymbol.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnformalsContainssymbol.
AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super, orthis, returnfalse.
  2. ReturnAsyncConciseBodyContainssymbol.
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. Ifsymbol is not one ofNewTarget,SuperProperty,SuperCall,super, orthis, returnfalse.
  2. Lethead be theAsyncArrowHead that iscovered byCoverCallExpressionAndAsyncArrowHead.
  3. IfheadContainssymbol istrue, returntrue.
  4. ReturnAsyncConciseBodyContainssymbol.
Note 4

Contains is used to detectnew.target,this, andsuper usage within anArrowFunction orAsyncArrowFunction.

PropertyDefinition:MethodDefinition
  1. Ifsymbol isMethodDefinition, returntrue.
  2. Return the result ofComputedPropertyContains ofMethodDefinition with argumentsymbol.
LiteralPropertyName:IdentifierName
  1. Returnfalse.
MemberExpression:MemberExpression.IdentifierName
  1. IfMemberExpressionContainssymbol istrue, returntrue.
  2. Returnfalse.
SuperProperty:super.IdentifierName
  1. Ifsymbol is theReservedWordsuper, returntrue.
  2. Returnfalse.
CallExpression:CallExpression.IdentifierName
  1. IfCallExpressionContainssymbol istrue, returntrue.
  2. Returnfalse.
OptionalChain:?.IdentifierName
  1. Returnfalse.
OptionalChain:OptionalChain.IdentifierName
  1. IfOptionalChainContainssymbol istrue, returntrue.
  2. Returnfalse.

8.5.2 Static Semantics: ComputedPropertyContains

Thesyntax-directed operation ComputedPropertyContains takes argumentsymbol (a grammar symbol) and returns a Boolean. It is defined piecewise over the following productions:

ClassElementName:PrivateIdentifierPropertyName:LiteralPropertyName
  1. Returnfalse.
PropertyName:ComputedPropertyName
  1. Return the result ofComputedPropertyNameContainssymbol.
MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}getClassElementName(){FunctionBody}setClassElementName(PropertySetParameterList){FunctionBody}
  1. Return the result ofComputedPropertyContains ofClassElementName with argumentsymbol.
GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}
  1. Return the result ofComputedPropertyContains ofClassElementName with argumentsymbol.
AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}
  1. Return the result ofComputedPropertyContains ofClassElementName with argumentsymbol.
ClassElementList:ClassElementListClassElement
  1. LetinList beComputedPropertyContains ofClassElementList with argumentsymbol.
  2. IfinList istrue, returntrue.
  3. Return the result ofComputedPropertyContains ofClassElement with argumentsymbol.
ClassElement:ClassStaticBlock
  1. Returnfalse.
ClassElement:;
  1. Returnfalse.
AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}
  1. Return the result ofComputedPropertyContains ofClassElementName with argumentsymbol.
FieldDefinition:ClassElementNameInitializeropt
  1. Return the result ofComputedPropertyContains ofClassElementName with argumentsymbol.

8.6 Miscellaneous

These operations are used in multiple places throughout the specification.

8.6.1 Runtime Semantics: InstantiateFunctionObject

Thesyntax-directed operation InstantiateFunctionObject takes argumentsenv (anEnvironment Record) andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}
  1. ReturnInstantiateOrdinaryFunctionObject ofFunctionDeclaration with argumentsenv andprivateEnv.
GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}
  1. ReturnInstantiateGeneratorFunctionObject ofGeneratorDeclaration with argumentsenv andprivateEnv.
AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. ReturnInstantiateAsyncGeneratorFunctionObject ofAsyncGeneratorDeclaration with argumentsenv andprivateEnv.
AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}
  1. ReturnInstantiateAsyncFunctionObject ofAsyncFunctionDeclaration with argumentsenv andprivateEnv.

8.6.2 Runtime Semantics: BindingInitialization

Thesyntax-directed operation BindingInitialization takes argumentsvalue (anECMAScript language value) andenvironment (anEnvironment Record orundefined) and returns either anormal completion containingunused or anabrupt completion.

Note

undefined is passed forenvironment to indicate that aPutValue operation should be used to assign the initialization value. This is the case forvar statements and formal parameter lists of somenon-strict functions (See10.2.11). In those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

It is defined piecewise over the following productions:

BindingIdentifier:Identifier
  1. Letname beStringValue ofIdentifier.
  2. Return ? InitializeBoundName(name,value,environment).
BindingIdentifier:yield
  1. Return ? InitializeBoundName("yield",value,environment).
BindingIdentifier:await
  1. Return ? InitializeBoundName("await",value,environment).
BindingPattern:ObjectBindingPattern
  1. Perform ? RequireObjectCoercible(value).
  2. Return ? BindingInitialization ofObjectBindingPattern with argumentsvalue andenvironment.
BindingPattern:ArrayBindingPattern
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. Letresult beCompletion(IteratorBindingInitialization ofArrayBindingPattern with argumentsiteratorRecord andenvironment).
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Return ? result.
ObjectBindingPattern:{}
  1. Returnunused.
ObjectBindingPattern:{BindingPropertyList}{BindingPropertyList,}
  1. Perform ? PropertyBindingInitialization ofBindingPropertyList with argumentsvalue andenvironment.
  2. Returnunused.
ObjectBindingPattern:{BindingRestProperty}
  1. LetexcludedNames be a new emptyList.
  2. Return ? RestBindingInitialization ofBindingRestProperty with argumentsvalue,environment, andexcludedNames.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. LetexcludedNames be ? PropertyBindingInitialization ofBindingPropertyList with argumentsvalue andenvironment.
  2. Return ? RestBindingInitialization ofBindingRestProperty with argumentsvalue,environment, andexcludedNames.

8.6.2.1 InitializeBoundName (name,value,environment )

The abstract operation InitializeBoundName takes argumentsname (a String),value (anECMAScript language value), andenvironment (anEnvironment Record orundefined) and returns either anormal completion containingunused or anabrupt completion. It performs the following steps when called:

  1. Ifenvironment is notundefined, then
    1. Perform ! environment.InitializeBinding(name,value).
    2. Returnunused.
  2. Else,
    1. Letlhs be ? ResolveBinding(name).
    2. Return ? PutValue(lhs,value).

8.6.3 Runtime Semantics: IteratorBindingInitialization

Thesyntax-directed operation IteratorBindingInitialization takes argumentsiteratorRecord (anIterator Record) andenvironment (anEnvironment Record orundefined) and returns either anormal completion containingunused or anabrupt completion.

Note

Whenundefined is passed forenvironment it indicates that aPutValue operation should be used to assign the initialization value. This is the case for formal parameter lists ofnon-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

It is defined piecewise over the following productions:

ArrayBindingPattern:[]
  1. Returnunused.
ArrayBindingPattern:[Elision]
  1. Return ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. IfElision is present, then
    1. Perform ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  2. Return ? IteratorBindingInitialization ofBindingRestElement with argumentsiteratorRecord andenvironment.
ArrayBindingPattern:[BindingElementList,Elision]
  1. Perform ? IteratorBindingInitialization ofBindingElementList with argumentsiteratorRecord andenvironment.
  2. Return ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Perform ? IteratorBindingInitialization ofBindingElementList with argumentsiteratorRecord andenvironment.
  2. IfElision is present, then
    1. Perform ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  3. Return ? IteratorBindingInitialization ofBindingRestElement with argumentsiteratorRecord andenvironment.
BindingElementList:BindingElementList,BindingElisionElement
  1. Perform ? IteratorBindingInitialization ofBindingElementList with argumentsiteratorRecord andenvironment.
  2. Return ? IteratorBindingInitialization ofBindingElisionElement with argumentsiteratorRecord andenvironment.
BindingElisionElement:ElisionBindingElement
  1. Perform ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  2. Return ? IteratorBindingInitialization ofBindingElement with argumentsiteratorRecord andenvironment.
SingleNameBinding:BindingIdentifierInitializeropt
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId,environment).
  3. Letv beundefined.
  4. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext is notdone, then
      1. Setv tonext.
  5. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to ? NamedEvaluation ofInitializer with argumentbindingId.
    2. Else,
      1. LetdefaultValue be ? Evaluation ofInitializer.
      2. Setv to ? GetValue(defaultValue).
  6. Ifenvironment isundefined, return ? PutValue(lhs,v).
  7. Return ? InitializeReferencedBinding(lhs,v).
BindingElement:BindingPatternInitializeropt
  1. Letv beundefined.
  2. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext is notdone, then
      1. Setv tonext.
  3. IfInitializer is present andv isundefined, then
    1. LetdefaultValue be ? Evaluation ofInitializer.
    2. Setv to ? GetValue(defaultValue).
  4. Return ? BindingInitialization ofBindingPattern with argumentsv andenvironment.
BindingRestElement:...BindingIdentifier
  1. Letlhs be ? ResolveBinding(StringValue ofBindingIdentifier,environment).
  2. LetA be ! ArrayCreate(0).
  3. Letn be 0.
  4. Repeat,
    1. Letnext bedone.
    2. IfiteratorRecord.[[Done]] isfalse, then
      1. Setnext to ? IteratorStepValue(iteratorRecord).
    3. Ifnext isdone, then
      1. Ifenvironment isundefined, return ? PutValue(lhs,A).
      2. Return ? InitializeReferencedBinding(lhs,A).
    4. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),next).
    5. Setn ton + 1.
BindingRestElement:...BindingPattern
  1. LetA be ! ArrayCreate(0).
  2. Letn be 0.
  3. Repeat,
    1. Letnext bedone.
    2. IfiteratorRecord.[[Done]] isfalse, then
      1. Setnext to ? IteratorStepValue(iteratorRecord).
    3. Ifnext isdone, then
      1. Return ? BindingInitialization ofBindingPattern with argumentsA andenvironment.
    4. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),next).
    5. Setn ton + 1.
FormalParameters:[empty]
  1. Returnunused.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Perform ? IteratorBindingInitialization ofFormalParameterList with argumentsiteratorRecord andenvironment.
  2. Return ? IteratorBindingInitialization ofFunctionRestParameter with argumentsiteratorRecord andenvironment.
FormalParameterList:FormalParameterList,FormalParameter
  1. Perform ? IteratorBindingInitialization ofFormalParameterList with argumentsiteratorRecord andenvironment.
  2. Return ? IteratorBindingInitialization ofFormalParameter with argumentsiteratorRecord andenvironment.
ArrowParameters:BindingIdentifier
  1. Letv beundefined.
  2. Assert:iteratorRecord.[[Done]] isfalse.
  3. Letnext be ? IteratorStepValue(iteratorRecord).
  4. Ifnext is notdone, then
    1. Setv tonext.
  5. Return ? BindingInitialization ofBindingIdentifier with argumentsv andenvironment.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. Return ? IteratorBindingInitialization offormals with argumentsiteratorRecord andenvironment.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Letv beundefined.
  2. Assert:iteratorRecord.[[Done]] isfalse.
  3. Letnext be ? IteratorStepValue(iteratorRecord).
  4. Ifnext is notdone, then
    1. Setv tonext.
  5. Return ? BindingInitialization ofBindingIdentifier with argumentsv andenvironment.

8.6.4 Static Semantics: AssignmentTargetType

Thesyntax-directed operation AssignmentTargetType takes no arguments and returnssimple orinvalid. It is defined piecewise over the following productions:

IdentifierReference:Identifier
  1. If thisIdentifierReference is contained instrict mode code andStringValue ofIdentifier is either"eval" or"arguments", returninvalid.
  2. Returnsimple.
IdentifierReference:yieldawaitCallExpression:CallExpression[Expression]CallExpression.IdentifierNameCallExpression.PrivateIdentifierMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameSuperPropertyMemberExpression.PrivateIdentifier
  1. Returnsimple.
PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnAssignmentTargetType ofexpr.
PrimaryExpression:thisLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteralCallExpression:CoverCallExpressionAndAsyncArrowHeadSuperCallImportCallCallExpressionArgumentsCallExpressionTemplateLiteralNewExpression:newNewExpressionMemberExpression:MemberExpressionTemplateLiteralnewMemberExpressionArgumentsNewTarget:new.targetImportMeta:import.metaLeftHandSideExpression:OptionalExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionPrivateIdentifierinShiftExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionLogicalANDExpression:LogicalANDExpression&&BitwiseORExpressionLogicalORExpression:LogicalORExpression||LogicalANDExpressionCoalesceExpression:CoalesceExpressionHead??BitwiseORExpressionConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpressionAssignmentExpression:YieldExpressionArrowFunctionAsyncArrowFunctionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionExpression:Expression,AssignmentExpression
  1. Returninvalid.

8.6.5 Static Semantics: PropName

Thesyntax-directed operation PropName takes no arguments and returns a String orempty. It is defined piecewise over the following productions:

PropertyDefinition:IdentifierReference
  1. ReturnStringValue ofIdentifierReference.
PropertyDefinition:...AssignmentExpression
  1. Returnempty.
PropertyDefinition:PropertyName:AssignmentExpression
  1. ReturnPropName ofPropertyName.
LiteralPropertyName:IdentifierName
  1. ReturnStringValue ofIdentifierName.
LiteralPropertyName:StringLiteral
  1. Return theSV ofStringLiteral.
LiteralPropertyName:NumericLiteral
  1. Letnbr be theNumericValue ofNumericLiteral.
  2. Return ! ToString(nbr).
ComputedPropertyName:[AssignmentExpression]
  1. Returnempty.
MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}getClassElementName(){FunctionBody}setClassElementName(PropertySetParameterList){FunctionBody}
  1. ReturnPropName ofClassElementName.
GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}
  1. ReturnPropName ofClassElementName.
AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}
  1. ReturnPropName ofClassElementName.
ClassElement:ClassStaticBlock
  1. Returnempty.
ClassElement:;
  1. Returnempty.
AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}
  1. ReturnPropName ofClassElementName.
FieldDefinition:ClassElementNameInitializeropt
  1. ReturnPropName ofClassElementName.
ClassElementName:PrivateIdentifier
  1. Returnempty.

9 Executable Code and Execution Contexts

9.1 Environment Records

Environment Record is a specification type used to define the association ofIdentifiers to specific variables and functions, based upon the lexical nesting structure of ECMAScript code. Usually an Environment Record is associated with some specific syntactic structure of ECMAScript code such as aFunctionDeclaration, aBlockStatement, or aCatch clause of aTryStatement. Each time such code is evaluated, a new Environment Record is created to record the identifier bindings that are created by that code.

Every Environment Record has an[[OuterEnv]] field, which is eithernull or a reference to an outer Environment Record. This is used to model the logical nesting of Environment Record values. The outer reference of an (inner) Environment Record is a reference to the Environment Record that logically surrounds the inner Environment Record. An outer Environment Record may, of course, have its own outer Environment Record. An Environment Record may serve as the outer environment for multiple inner Environment Records. For example, if aFunctionDeclaration contains two nestedFunctionDeclarations then the Environment Records of each of the nested functions will have as their outer Environment Record the Environment Record of the current evaluation of the surrounding function.

Environment Records are purely specification mechanisms and need not correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or manipulate such values.

9.1.1 The Environment Record Type Hierarchy

Environment Records can be thought of as existing in a simple object-oriented hierarchy whereEnvironment Record is an abstract class with three concrete subclasses:Declarative Environment Record,Object Environment Record, andGlobal Environment Record.Function Environment Records andModule Environment Records are subclasses ofDeclarative Environment Record.

TheEnvironment Record abstract class includes the abstract specification methods defined inTable 16. These abstract methods have distinct concrete algorithms for each of the concrete subclasses.

Table 16: Abstract Methods ofEnvironment Records
Method Purpose
HasBinding(N) Determine if anEnvironment Record has a binding for the String valueN. Returntrue if it does andfalse if it does not.
CreateMutableBinding(N, D) Create a new but uninitialized mutable binding in anEnvironment Record. The String valueN is the text of the bound name. If the Boolean argumentD istrue the binding may be subsequently deleted.
CreateImmutableBinding(N, S) Create a new but uninitialized immutable binding in anEnvironment Record. The String valueN is the text of the bound name. IfS istrue then attempts to set it after it has been initialized will always throw an exception, regardless of the strict mode setting of operations that reference that binding.
InitializeBinding(N, V) Set the value of an already existing but uninitialized binding in anEnvironment Record. The String valueN is the text of the bound name.V is the value for the binding and is a value of anyECMAScript language type.
SetMutableBinding(N, V, S) Set the value of an already existing mutable binding in anEnvironment Record. The String valueN is the text of the bound name.V is the value for the binding and may be a value of anyECMAScript language type.Sis a Boolean flag. IfS istrue and the binding cannot be set throw aTypeError exception.
GetBindingValue(N, S) Returns the value of an already existing binding from anEnvironment Record. The String valueN is the text of the bound name.S is used to identify references originating instrict mode code or that otherwise require strict mode reference semantics. IfS istrue and the binding does not exist throw aReferenceError exception. If the binding exists but is uninitialized aReferenceError is thrown, regardless of the value ofS.
DeleteBinding(N) Delete a binding from anEnvironment Record. The String valueN is the text of the bound name. If a binding forN exists, remove the binding and returntrue. If the binding exists but cannot be removed returnfalse. If the binding does not exist returntrue.
HasThisBinding() Determine if anEnvironment Record establishes athis binding. Returntrue if it does andfalse if it does not.
HasSuperBinding() Determine if anEnvironment Record establishes asuper method binding. Returntrue if it does andfalse if it does not.
WithBaseObject() If thisEnvironment Record is associated with awith statement, return the with object. Otherwise, returnundefined.

9.1.1.1 Declarative Environment Records

EachDeclarative Environment Record is associated with an ECMAScript program scope containing variable, constant, let, class, module, import, and/or function declarations. A Declarative Environment Record binds the set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the following algorithms.

9.1.1.1.1 HasBinding (N )

The HasBinding concrete method of aDeclarative Environment RecordenvRec takes argumentN (a String) and returns anormal completion containing a Boolean. It determines if the argument identifier is one of the identifiers bound by the record. It performs the following steps when called:

  1. IfenvRec has a binding forN, returntrue.
  2. Returnfalse.

9.1.1.1.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of aDeclarative Environment RecordenvRec takes argumentsN (a String) andD (a Boolean) and returns anormal completion containingunused. It creates a new mutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfD istrue, the new binding is marked as being subject to deletion. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Create a mutable binding inenvRec forN and record that it is uninitialized. IfD istrue, record that the newly created binding may be deleted by a subsequent DeleteBinding call.
  3. Returnunused.

9.1.1.1.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of aDeclarative Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns anormal completion containingunused. It creates a new immutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfS istrue, the new binding is marked as a strict binding. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Create an immutable binding inenvRec forN and record that it is uninitialized. IfS istrue, record that the newly created binding is a strict binding.
  3. Returnunused.

9.1.1.1.4 InitializeBinding (N,V )

The InitializeBinding concrete method of aDeclarative Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value) and returns anormal completion containingunused. It is used to set the bound value of the current binding of the identifier whose name isN to the valueV. An uninitialized binding forN must already exist. It performs the following steps when called:

  1. Assert:envRec must have an uninitialized binding forN.
  2. Set the bound value forN inenvRec toV.
  3. Record that the binding forN inenvRec has been initialized.
  4. Returnunused.

9.1.1.1.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of aDeclarative Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean) and returns either anormal completion containingunused or athrow completion. It attempts to change the bound value of the current binding of the identifier whose name isN to the valueV. A binding forN normally already exists, but in rare cases it may not. If the binding is an immutable binding, aTypeError is thrown ifS istrue. It performs the following steps when called:

  1. IfenvRec does not have a binding forN, then
    1. IfS istrue, throw aReferenceError exception.
    2. Perform ! envRec.CreateMutableBinding(N,true).
    3. Perform ! envRec.InitializeBinding(N,V).
    4. Returnunused.
  2. If the binding forN inenvRec is a strict binding, setS totrue.
  3. If the binding forN inenvRec has not yet been initialized, then
    1. Throw aReferenceError exception.
  4. Else if the binding forN inenvRec is a mutable binding, then
    1. Change its bound value toV.
  5. Else,
    1. Assert: This is an attempt to change the value of an immutable binding.
    2. IfS istrue, throw aTypeError exception.
  6. Returnunused.
Note

An example of ECMAScript code that results in a missing binding at step1 is:

functionf() {eval("var x; x = (delete x, 0);"); }

9.1.1.1.6 GetBindingValue (N,S )

The GetBindingValue concrete method of aDeclarative Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns either anormal completion containing anECMAScript language value or athrow completion. It returns the value of its bound identifier whose name isN. If the binding exists but is uninitialized aReferenceError is thrown, regardless of the value ofS. It performs the following steps when called:

  1. Assert:envRec has a binding forN.
  2. If the binding forN inenvRec is an uninitialized binding, throw aReferenceError exception.
  3. Return the value currently bound toN inenvRec.

9.1.1.1.7 DeleteBinding (N )

The DeleteBinding concrete method of aDeclarative Environment RecordenvRec takes argumentN (a String) and returns anormal completion containing a Boolean. It can only delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps when called:

  1. Assert:envRec has a binding forN.
  2. If the binding forN inenvRec cannot be deleted, returnfalse.
  3. Remove the binding forN fromenvRec.
  4. Returntrue.

9.1.1.1.8 HasThisBinding ( )

The HasThisBinding concrete method of aDeclarative Environment RecordenvRec takes no arguments and returnsfalse. It performs the following steps when called:

  1. Returnfalse.
Note

A regularDeclarative Environment Record (i.e., one that is neither aFunction Environment Record nor aModule Environment Record) does not provide athis binding.

9.1.1.1.9 HasSuperBinding ( )

The HasSuperBinding concrete method of aDeclarative Environment RecordenvRec takes no arguments and returnsfalse. It performs the following steps when called:

  1. Returnfalse.
Note

A regularDeclarative Environment Record (i.e., one that is neither aFunction Environment Record nor aModule Environment Record) does not provide asuper binding.

9.1.1.1.10 WithBaseObject ( )

The WithBaseObject concrete method of aDeclarative Environment RecordenvRec takes no arguments and returnsundefined. It performs the following steps when called:

  1. Returnundefined.

9.1.1.2 Object Environment Records

EachObject Environment Record is associated with an object called itsbinding object. An Object Environment Record binds the set of string identifier names that directly correspond to the property names of its binding object.Property keys that are not strings in the form of anIdentifierName are not included in the set of bound identifiers. Both own and inherited properties are included in the set regardless of the setting of their[[Enumerable]] attribute. Because properties can be dynamically added and deleted from objects, the set of identifiers bound by an Object Environment Record may potentially change as a side-effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding property isfalse. Immutable bindings do not exist for Object Environment Records.

Object Environment Records created forwith statements (14.11) can provide their binding object as an implicitthis value for use in function calls. The capability is controlled by a Boolean[[IsWithEnvironment]] field.

Object Environment Records have the additional state fields listed inTable 17.

Table 17: Additional Fields ofObject Environment Records
Field Name Value Meaning
[[BindingObject]] an Object The binding object of thisEnvironment Record.
[[IsWithEnvironment]] a Boolean Indicates whether thisEnvironment Record is created for awith statement.

The behaviour of the concrete specification methods for Object Environment Records is defined by the following algorithms.

9.1.1.2.1 HasBinding (N )

The HasBinding concrete method of anObject Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It determines if its associated binding object has a property whose name isN. It performs the following steps when called:

  1. LetbindingObject beenvRec.[[BindingObject]].
  2. LetfoundBinding be ? HasProperty(bindingObject,N).
  3. IffoundBinding isfalse, returnfalse.
  4. IfenvRec.[[IsWithEnvironment]] isfalse, returntrue.
  5. Letunscopables be ? Get(bindingObject,@@unscopables).
  6. Ifunscopablesis an Object, then
    1. Letblocked beToBoolean(?Get(unscopables,N)).
    2. Ifblocked istrue, returnfalse.
  7. Returntrue.

9.1.1.2.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of anObject Environment RecordenvRec takes argumentsN (a String) andD (a Boolean) and returns either anormal completion containingunused or athrow completion. It creates in anEnvironment Record's associated binding object a property whose name isN and initializes it to the valueundefined. IfD istrue, the new property's[[Configurable]] attribute is set totrue; otherwise it is set tofalse. It performs the following steps when called:

  1. LetbindingObject beenvRec.[[BindingObject]].
  2. Perform ? DefinePropertyOrThrow(bindingObject,N, PropertyDescriptor {[[Value]]:undefined,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:D }).
  3. Returnunused.
Note

NormallyenvRec will not have a binding forN but if it does, the semantics ofDefinePropertyOrThrow may result in an existing binding being replaced or shadowed or cause anabrupt completion to be returned.

9.1.1.2.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of anObject Environment Record is never used within this specification.

9.1.1.2.4 InitializeBinding (N,V )

The InitializeBinding concrete method of anObject Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It is used to set the bound value of the current binding of the identifier whose name isN to the valueV. It performs the following steps when called:

  1. Perform ? envRec.SetMutableBinding(N,V,false).
  2. Returnunused.
Note

In this specification, all uses of CreateMutableBinding forObject Environment Records are immediately followed by a call to InitializeBinding for the same name. Hence, this specification does not explicitly track the initialization state of bindings inObject Environment Records.

9.1.1.2.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of anObject Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean) and returns either anormal completion containingunused or athrow completion. It attempts to set the value of theEnvironment Record's associated binding object's property whose name isN to the valueV. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. LetbindingObject beenvRec.[[BindingObject]].
  2. LetstillExists be ? HasProperty(bindingObject,N).
  3. IfstillExists isfalse andS istrue, throw aReferenceError exception.
  4. Perform ? Set(bindingObject,N,V,S).
  5. Returnunused.

9.1.1.2.6 GetBindingValue (N,S )

The GetBindingValue concrete method of anObject Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns either anormal completion containing anECMAScript language value or athrow completion. It returns the value of its associated binding object's property whose name isN. The property should already exist but if it does not the result depends uponS. It performs the following steps when called:

  1. LetbindingObject beenvRec.[[BindingObject]].
  2. Letvalue be ? HasProperty(bindingObject,N).
  3. Ifvalue isfalse, then
    1. IfS isfalse, returnundefined; otherwise throw aReferenceError exception.
  4. Return ? Get(bindingObject,N).

9.1.1.2.7 DeleteBinding (N )

The DeleteBinding concrete method of anObject Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It can only delete bindings that correspond to properties of the environment object whose[[Configurable]] attribute have the valuetrue. It performs the following steps when called:

  1. LetbindingObject beenvRec.[[BindingObject]].
  2. Return ? bindingObject.[[Delete]](N).

9.1.1.2.8 HasThisBinding ( )

The HasThisBinding concrete method of anObject Environment RecordenvRec takes no arguments and returnsfalse. It performs the following steps when called:

  1. Returnfalse.
Note

Object Environment Records do not provide athis binding.

9.1.1.2.9 HasSuperBinding ( )

The HasSuperBinding concrete method of anObject Environment RecordenvRec takes no arguments and returnsfalse. It performs the following steps when called:

  1. Returnfalse.
Note

Object Environment Records do not provide asuper binding.

9.1.1.2.10 WithBaseObject ( )

The WithBaseObject concrete method of anObject Environment RecordenvRec takes no arguments and returns an Object orundefined. It performs the following steps when called:

  1. IfenvRec.[[IsWithEnvironment]] istrue, returnenvRec.[[BindingObject]].
  2. Otherwise, returnundefined.

9.1.1.3 Function Environment Records

AFunction Environment Record is aDeclarative Environment Record that is used to represent the top-level scope of a function and, if the function is not anArrowFunction, provides athis binding. If a function is not anArrowFunction function and referencessuper, its Function Environment Record also contains the state that is used to performsuper method invocations from within the function.

Function Environment Records have the additional state fields listed inTable 18.

Table 18: Additional Fields ofFunction Environment Records
Field Name Value Meaning
[[ThisValue]] anECMAScript language value This is thethis value used for this invocation of the function.
[[ThisBindingStatus]]lexical,initialized, oruninitialized If the value islexical, this is anArrowFunction and does not have a localthis value.
[[FunctionObject]] an ECMAScriptfunction object Thefunction object whose invocation caused thisEnvironment Record to be created.
[[NewTarget]] an Object orundefined If thisEnvironment Record was created by the[[Construct]] internal method,[[NewTarget]] is the value of the[[Construct]]newTarget parameter. Otherwise, its value isundefined.

Function Environment Records support all of theDeclarative Environment Record methods listed inTable 16 and share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition, Function Environment Records support the methods listed inTable 19:

Table 19: Additional Methods ofFunction Environment Records
Method Purpose
BindThisValue(V) Set the[[ThisValue]] and record that it has been initialized.
GetThisBinding() Return the value of thisEnvironment Record'sthis binding. Throws aReferenceError if thethis binding has not been initialized.
GetSuperBase() Return the object that is the base forsuper property accesses bound in thisEnvironment Record. The valueundefined indicates that such accesses will produce runtime errors.

The behaviour of the additional concrete specification methods for Function Environment Records is defined by the following algorithms:

9.1.1.3.1 BindThisValue (V )

The BindThisValue concrete method of aFunction Environment RecordenvRec takes argumentV (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Assert:envRec.[[ThisBindingStatus]] is notlexical.
  2. IfenvRec.[[ThisBindingStatus]] isinitialized, throw aReferenceError exception.
  3. SetenvRec.[[ThisValue]] toV.
  4. SetenvRec.[[ThisBindingStatus]] toinitialized.
  5. ReturnV.

9.1.1.3.2 HasThisBinding ( )

The HasThisBinding concrete method of aFunction Environment RecordenvRec takes no arguments and returns a Boolean. It performs the following steps when called:

  1. IfenvRec.[[ThisBindingStatus]] islexical, returnfalse; otherwise, returntrue.

9.1.1.3.3 HasSuperBinding ( )

The HasSuperBinding concrete method of aFunction Environment RecordenvRec takes no arguments and returns a Boolean. It performs the following steps when called:

  1. IfenvRec.[[ThisBindingStatus]] islexical, returnfalse.
  2. IfenvRec.[[FunctionObject]].[[HomeObject]] isundefined, returnfalse; otherwise, returntrue.

9.1.1.3.4 GetThisBinding ( )

The GetThisBinding concrete method of aFunction Environment RecordenvRec takes no arguments and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Assert:envRec.[[ThisBindingStatus]] is notlexical.
  2. IfenvRec.[[ThisBindingStatus]] isuninitialized, throw aReferenceError exception.
  3. ReturnenvRec.[[ThisValue]].

9.1.1.3.5 GetSuperBase ( )

The GetSuperBase concrete method of aFunction Environment RecordenvRec takes no arguments and returns either anormal completion containing either an Object,null, orundefined, or athrow completion. It performs the following steps when called:

  1. Lethome beenvRec.[[FunctionObject]].[[HomeObject]].
  2. Ifhome isundefined, returnundefined.
  3. Assert:homeis an Object.
  4. Return ? home.[[GetPrototypeOf]]().

9.1.1.4 Global Environment Records

AGlobal Environment Record is used to represent the outer most scope that is shared by all of the ECMAScriptScript elements that are processed in a commonrealm. A Global Environment Record provides the bindings for built-in globals (clause19), properties of theglobal object, and for all top-level declarations (8.2.9,8.2.11) that occur within aScript.

A Global Environment Record is logically a single record but it is specified as a composite encapsulating anObject Environment Record and aDeclarative Environment Record. TheObject Environment Record has as its base object theglobal object of the associatedRealm Record. Thisglobal object is the value returned by the Global Environment Record's GetThisBinding concrete method. TheObject Environment Record component of a Global Environment Record contains the bindings for all built-in globals (clause19) and all bindings introduced by aFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, orVariableStatement contained in global code. The bindings for all other ECMAScript declarations in global code are contained in theDeclarative Environment Record component of the Global Environment Record.

Properties may be created directly on aglobal object. Hence, theObject Environment Record component of a Global Environment Record may contain both bindings created explicitly byFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, orVariableDeclaration declarations and bindings created implicitly as properties of theglobal object. In order to identify which bindings were explicitly created using declarations, a Global Environment Record maintains a list of the names bound using its CreateGlobalVarBinding and CreateGlobalFunctionBinding concrete methods.

Global Environment Records have the additional fields listed inTable 20 and the additional methods listed inTable 21.

Table 20: Additional Fields ofGlobal Environment Records
Field Name Value Meaning
[[ObjectRecord]] anObject Environment Record Binding object is theglobal object. It contains global built-in bindings as well asFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclaration bindings in global code for the associatedrealm.
[[GlobalThisValue]] an Object The value returned bythis in global scope.Hosts may provide any ECMAScript Object value.
[[DeclarativeRecord]] aDeclarative Environment RecordContains bindings for all declarations in global code for the associatedrealm code except forFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclaration bindings.
[[VarNames]] aList of Strings The string names bound byFunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration,AsyncGeneratorDeclaration, andVariableDeclaration declarations in global code for the associatedrealm.
Table 21: Additional Methods ofGlobal Environment Records
Method Purpose
GetThisBinding() Return the value of thisEnvironment Record'sthis binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in thisEnvironment Record that was created using aVariableDeclaration,FunctionDeclaration,GeneratorDeclaration,AsyncFunctionDeclaration, orAsyncGeneratorDeclaration.
HasLexicalDeclaration (N) Determines if the argument identifier has a binding in thisEnvironment Record that was created using a lexical declaration such as aLexicalDeclaration or aClassDeclaration.
HasRestrictedGlobalProperty (N) Determines if the argument is the name of aglobal object property that may not be shadowed by a global lexical binding.
CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same argumentN.
CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argumentN.
CreateGlobalVarBinding(N, D) Used to create and initialize toundefined a globalvar binding in the[[ObjectRecord]] component of aGlobal Environment Record. The binding will be a mutable binding. The correspondingglobal object property will have attribute values appropriate for avar. The String valueN is the bound name. IfD istrue, the binding may be deleted. Logically equivalent to CreateMutableBinding followed by a SetMutableBinding but it allows var declarations to receive special treatment.
CreateGlobalFunctionBinding(N, V, D) Create and initialize a globalfunction binding in the[[ObjectRecord]] component of aGlobal Environment Record. The binding will be a mutable binding. The correspondingglobal object property will have attribute values appropriate for afunction. The String valueN is the bound name.V is the initialization value. If the Boolean argumentD istrue, the binding may be deleted. Logically equivalent to CreateMutableBinding followed by a SetMutableBinding but it allows function declarations to receive special treatment.

The behaviour of the concrete specification methods for Global Environment Records is defined by the following algorithms.

9.1.1.4.1 HasBinding (N )

The HasBinding concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It determines if the argument identifier is one of the identifiers bound by the record. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, returntrue.
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ? ObjRec.HasBinding(N).

9.1.1.4.2 CreateMutableBinding (N,D )

The CreateMutableBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String) andD (a Boolean) and returns either anormal completion containingunused or athrow completion. It creates a new mutable binding for the nameN that is uninitialized. The binding is created in the associated DeclarativeRecord. A binding forN must not already exist in the DeclarativeRecord. IfD istrue, the new binding is marked as being subject to deletion. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, throw aTypeError exception.
  3. Return ! DclRec.CreateMutableBinding(N,D).

9.1.1.4.3 CreateImmutableBinding (N,S )

The CreateImmutableBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns either anormal completion containingunused or athrow completion. It creates a new immutable binding for the nameN that is uninitialized. A binding must not already exist in thisEnvironment Record forN. IfS istrue, the new binding is marked as a strict binding. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, throw aTypeError exception.
  3. Return ! DclRec.CreateImmutableBinding(N,S).

9.1.1.4.4 InitializeBinding (N,V )

The InitializeBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String) andV (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It is used to set the bound value of the current binding of the identifier whose name isN to the valueV. An uninitialized binding forN must already exist. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, then
    1. Return ! DclRec.InitializeBinding(N,V).
  3. Assert: If the binding exists, it must be in theObject Environment Record.
  4. LetObjRec beenvRec.[[ObjectRecord]].
  5. Return ? ObjRec.InitializeBinding(N,V).

9.1.1.4.5 SetMutableBinding (N,V,S )

The SetMutableBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andS (a Boolean) and returns either anormal completion containingunused or athrow completion. It attempts to change the bound value of the current binding of the identifier whose name isN to the valueV. If the binding is an immutable binding andS istrue, aTypeError is thrown. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, then
    1. Return ? DclRec.SetMutableBinding(N,V,S).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ? ObjRec.SetMutableBinding(N,V,S).

9.1.1.4.6 GetBindingValue (N,S )

The GetBindingValue concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns either anormal completion containing anECMAScript language value or athrow completion. It returns the value of its bound identifier whose name isN. If the binding is an uninitialized binding throw aReferenceError exception. A property namedN normally already exists but if it does not or is not currently writable, error handling is determined byS. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, then
    1. Return ? DclRec.GetBindingValue(N,S).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. Return ? ObjRec.GetBindingValue(N,S).

9.1.1.4.7 DeleteBinding (N )

The DeleteBinding concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It can only delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. If ! DclRec.HasBinding(N) istrue, then
    1. Return ! DclRec.DeleteBinding(N).
  3. LetObjRec beenvRec.[[ObjectRecord]].
  4. LetglobalObject beObjRec.[[BindingObject]].
  5. LetexistingProp be ? HasOwnProperty(globalObject,N).
  6. IfexistingProp istrue, then
    1. Letstatus be ? ObjRec.DeleteBinding(N).
    2. Ifstatus istrue andenvRec.[[VarNames]] containsN, then
      1. RemoveN fromenvRec.[[VarNames]].
    3. Returnstatus.
  7. Returntrue.

9.1.1.4.8 HasThisBinding ( )

The HasThisBinding concrete method of aGlobal Environment RecordenvRec takes no arguments and returnstrue. It performs the following steps when called:

  1. Returntrue.
Note

Global Environment Records always provide athis binding.

9.1.1.4.9 HasSuperBinding ( )

The HasSuperBinding concrete method of aGlobal Environment RecordenvRec takes no arguments and returnsfalse. It performs the following steps when called:

  1. Returnfalse.
Note

Global Environment Records do not provide asuper binding.

9.1.1.4.10 WithBaseObject ( )

The WithBaseObject concrete method of aGlobal Environment RecordenvRec takes no arguments and returnsundefined. It performs the following steps when called:

  1. Returnundefined.

9.1.1.4.11 GetThisBinding ( )

The GetThisBinding concrete method of aGlobal Environment RecordenvRec takes no arguments and returns anormal completion containing an Object. It performs the following steps when called:

  1. ReturnenvRec.[[GlobalThisValue]].

9.1.1.4.12 HasVarDeclaration (N )

The HasVarDeclaration concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns a Boolean. It determines if the argument identifier has a binding in this record that was created using aVariableStatement or aFunctionDeclaration. It performs the following steps when called:

  1. LetvarDeclaredNames beenvRec.[[VarNames]].
  2. IfvarDeclaredNames containsN, returntrue.
  3. Returnfalse.

9.1.1.4.13 HasLexicalDeclaration (N )

The HasLexicalDeclaration concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns a Boolean. It determines if the argument identifier has a binding in this record that was created using a lexical declaration such as aLexicalDeclaration or aClassDeclaration. It performs the following steps when called:

  1. LetDclRec beenvRec.[[DeclarativeRecord]].
  2. Return ! DclRec.HasBinding(N).

9.1.1.4.14 HasRestrictedGlobalProperty (N )

The HasRestrictedGlobalProperty concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It determines if the argument identifier is the name of a property of theglobal object that must not be shadowed by a global lexical binding. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject beObjRec.[[BindingObject]].
  3. LetexistingProp be ? globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined, returnfalse.
  5. IfexistingProp.[[Configurable]] istrue, returnfalse.
  6. Returntrue.
Note

Properties may exist upon aglobal object that were directly created rather than being declared using a var or function declaration. A global lexical binding may not be created that has the same name as a non-configurable property of theglobal object. The global property"undefined" is an example of such a property.

9.1.1.4.15 CanDeclareGlobalVar (N )

The CanDeclareGlobalVar concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same argumentN. Redundant var declarations and var declarations for pre-existingglobal object properties are allowed. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject beObjRec.[[BindingObject]].
  3. LethasProperty be ? HasOwnProperty(globalObject,N).
  4. IfhasProperty istrue, returntrue.
  5. Return ? IsExtensible(globalObject).

9.1.1.4.16 CanDeclareGlobalFunction (N )

The CanDeclareGlobalFunction concrete method of aGlobal Environment RecordenvRec takes argumentN (a String) and returns either anormal completion containing a Boolean or athrow completion. It determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argumentN. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject beObjRec.[[BindingObject]].
  3. LetexistingProp be ? globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined, return ? IsExtensible(globalObject).
  5. IfexistingProp.[[Configurable]] istrue, returntrue.
  6. IfIsDataDescriptor(existingProp) istrue andexistingProp has attribute values {[[Writable]]:true,[[Enumerable]]:true }, returntrue.
  7. Returnfalse.

9.1.1.4.17 CreateGlobalVarBinding (N,D )

The CreateGlobalVarBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String) andD (a Boolean) and returns either anormal completion containingunused or athrow completion. It creates and initializes a mutable binding in the associatedObject Environment Record and records the bound name in the associated[[VarNames]]List. If a binding already exists, it is reused and assumed to be initialized. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject beObjRec.[[BindingObject]].
  3. LethasProperty be ? HasOwnProperty(globalObject,N).
  4. Letextensible be ? IsExtensible(globalObject).
  5. IfhasProperty isfalse andextensible istrue, then
    1. Perform ? ObjRec.CreateMutableBinding(N,D).
    2. Perform ? ObjRec.InitializeBinding(N,undefined).
  6. IfenvRec.[[VarNames]] does not containN, then
    1. AppendN toenvRec.[[VarNames]].
  7. Returnunused.

9.1.1.4.18 CreateGlobalFunctionBinding (N,V,D )

The CreateGlobalFunctionBinding concrete method of aGlobal Environment RecordenvRec takes argumentsN (a String),V (anECMAScript language value), andD (a Boolean) and returns either anormal completion containingunused or athrow completion. It creates and initializes a mutable binding in the associatedObject Environment Record and records the bound name in the associated[[VarNames]]List. If a binding already exists, it is replaced. It performs the following steps when called:

  1. LetObjRec beenvRec.[[ObjectRecord]].
  2. LetglobalObject beObjRec.[[BindingObject]].
  3. LetexistingProp be ? globalObject.[[GetOwnProperty]](N).
  4. IfexistingProp isundefined orexistingProp.[[Configurable]] istrue, then
    1. Letdesc be the PropertyDescriptor {[[Value]]:V,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:D }.
  5. Else,
    1. Letdesc be the PropertyDescriptor {[[Value]]:V }.
  6. Perform ? DefinePropertyOrThrow(globalObject,N,desc).
  7. Perform ? Set(globalObject,N,V,false).
  8. IfenvRec.[[VarNames]] does not containN, then
    1. AppendN toenvRec.[[VarNames]].
  9. Returnunused.
Note

Global function declarations are always represented as own properties of theglobal object. If possible, an existing own property is reconfigured to have a standard set of attribute values. Step7 is equivalent to what calling the InitializeBinding concrete method would do and ifglobalObject is a Proxy will produce the same sequence of Proxy trap calls.

9.1.1.5 Module Environment Records

AModule Environment Record is aDeclarative Environment Record that is used to represent the outer scope of an ECMAScriptModule. In additional to normal mutable and immutable bindings, Module Environment Records also provide immutable import bindings which are bindings that provide indirect access to a target binding that exists in anotherEnvironment Record.

Module Environment Records support all of theDeclarative Environment Record methods listed inTable 16 and share the same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and GetThisBinding. In addition, Module Environment Records support the methods listed inTable 22:

Table 22: Additional Methods ofModule Environment Records
Method Purpose
CreateImportBinding(N, M, N2) Create an immutable indirect binding in aModule Environment Record. The String valueN is the text of the bound name.M is aModule Record, andN2 is a binding that exists inM'sModule Environment Record.
GetThisBinding() Return the value of thisEnvironment Record'sthis binding.

The behaviour of the additional concrete specification methods for Module Environment Records are defined by the following algorithms:

9.1.1.5.1 GetBindingValue (N,S )

The GetBindingValue concrete method of aModule Environment RecordenvRec takes argumentsN (a String) andS (a Boolean) and returns either anormal completion containing anECMAScript language value or athrow completion. It returns the value of its bound identifier whose name isN. However, if the binding is an indirect binding the value of the target binding is returned. If the binding exists but is uninitialized aReferenceError is thrown. It performs the following steps when called:

  1. Assert:S istrue.
  2. Assert:envRec has a binding forN.
  3. If the binding forN is an indirect binding, then
    1. LetM andN2 be the indirection values provided when this binding forN was created.
    2. LettargetEnv beM.[[Environment]].
    3. IftargetEnv isempty, throw aReferenceError exception.
    4. Return ? targetEnv.GetBindingValue(N2,true).
  4. If the binding forN inenvRec is an uninitialized binding, throw aReferenceError exception.
  5. Return the value currently bound toN inenvRec.
Note

S will always betrue because aModule is alwaysstrict mode code.

9.1.1.5.2 DeleteBinding (N )

The DeleteBinding concrete method of aModule Environment Record is never used within this specification.

Note

Module Environment Records are only used within strict code and anearly error rule prevents the delete operator, in strict code, from being applied to aReference Record that would resolve to aModule Environment Record binding. See13.5.1.1.

9.1.1.5.3 HasThisBinding ( )

The HasThisBinding concrete method of aModule Environment RecordenvRec takes no arguments and returnstrue. It performs the following steps when called:

  1. Returntrue.
Note

Module Environment Records always provide athis binding.

9.1.1.5.4 GetThisBinding ( )

The GetThisBinding concrete method of aModule Environment RecordenvRec takes no arguments and returns anormal completion containingundefined. It performs the following steps when called:

  1. Returnundefined.

9.1.1.5.5 CreateImportBinding (N,M,N2 )

The CreateImportBinding concrete method of aModule Environment RecordenvRec takes argumentsN (a String),M (aModule Record), andN2 (a String) and returnsunused. It creates a new initialized immutable indirect binding for the nameN. A binding must not already exist in thisEnvironment Record forN.N2 is the name of a binding that exists inM'sModule Environment Record. Accesses to the value of the new binding will indirectly access the bound value of the target binding. It performs the following steps when called:

  1. Assert:envRec does not already have a binding forN.
  2. Assert: WhenM.[[Environment]] is instantiated, it will have a direct binding forN2.
  3. Create an immutable indirect binding inenvRec forN that referencesM andN2 as its target binding and record that the binding is initialized.
  4. Returnunused.

9.1.2 Environment Record Operations

The followingabstract operations are used in this specification to operate uponEnvironment Records:

9.1.2.1 GetIdentifierReference (env,name,strict )

The abstract operation GetIdentifierReference takes argumentsenv (anEnvironment Record ornull),name (a String), andstrict (a Boolean) and returns either anormal completion containing aReference Record or athrow completion. It performs the following steps when called:

  1. Ifenv isnull, then
    1. Return theReference Record {[[Base]]:unresolvable,[[ReferencedName]]:name,[[Strict]]:strict,[[ThisValue]]:empty }.
  2. Letexists be ? env.HasBinding(name).
  3. Ifexists istrue, then
    1. Return theReference Record {[[Base]]:env,[[ReferencedName]]:name,[[Strict]]:strict,[[ThisValue]]:empty }.
  4. Else,
    1. Letouter beenv.[[OuterEnv]].
    2. Return ? GetIdentifierReference(outer,name,strict).

9.1.2.2 NewDeclarativeEnvironment (E )

The abstract operation NewDeclarativeEnvironment takes argumentE (anEnvironment Record ornull) and returns aDeclarative Environment Record. It performs the following steps when called:

  1. Letenv be a newDeclarative Environment Record containing no bindings.
  2. Setenv.[[OuterEnv]] toE.
  3. Returnenv.

9.1.2.3 NewObjectEnvironment (O,W,E )

The abstract operation NewObjectEnvironment takes argumentsO (an Object),W (a Boolean), andE (anEnvironment Record ornull) and returns anObject Environment Record. It performs the following steps when called:

  1. Letenv be a newObject Environment Record.
  2. Setenv.[[BindingObject]] toO.
  3. Setenv.[[IsWithEnvironment]] toW.
  4. Setenv.[[OuterEnv]] toE.
  5. Returnenv.

9.1.2.4 NewFunctionEnvironment (F,newTarget )

The abstract operation NewFunctionEnvironment takes argumentsF (an ECMAScriptfunction object) andnewTarget (an Object orundefined) and returns aFunction Environment Record. It performs the following steps when called:

  1. Letenv be a newFunction Environment Record containing no bindings.
  2. Setenv.[[FunctionObject]] toF.
  3. IfF.[[ThisMode]] islexical, setenv.[[ThisBindingStatus]] tolexical.
  4. Else, setenv.[[ThisBindingStatus]] touninitialized.
  5. Setenv.[[NewTarget]] tonewTarget.
  6. Setenv.[[OuterEnv]] toF.[[Environment]].
  7. Returnenv.

9.1.2.5 NewGlobalEnvironment (G,thisValue )

The abstract operation NewGlobalEnvironment takes argumentsG (an Object) andthisValue (an Object) and returns aGlobal Environment Record. It performs the following steps when called:

  1. LetobjRec beNewObjectEnvironment(G,false,null).
  2. LetdclRec beNewDeclarativeEnvironment(null).
  3. Letenv be a newGlobal Environment Record.
  4. Setenv.[[ObjectRecord]] toobjRec.
  5. Setenv.[[GlobalThisValue]] tothisValue.
  6. Setenv.[[DeclarativeRecord]] todclRec.
  7. Setenv.[[VarNames]] to a new emptyList.
  8. Setenv.[[OuterEnv]] tonull.
  9. Returnenv.

9.1.2.6 NewModuleEnvironment (E )

The abstract operation NewModuleEnvironment takes argumentE (anEnvironment Record) and returns aModule Environment Record. It performs the following steps when called:

  1. Letenv be a newModule Environment Record containing no bindings.
  2. Setenv.[[OuterEnv]] toE.
  3. Returnenv.

9.2 PrivateEnvironment Records

APrivateEnvironment Record is a specification mechanism used to trackPrivate Names based upon the lexical nesting structure ofClassDeclarations andClassExpressions in ECMAScript code. They are similar to, but distinct from,Environment Records. EachPrivateEnvironment Record is associated with aClassDeclaration orClassExpression. Each time such a class is evaluated, a newPrivateEnvironment Record is created to record thePrivate Names declared by that class.

EachPrivateEnvironment Record has the fields defined inTable 23.

Table 23:PrivateEnvironment Record Fields
Field Name Value Type Meaning
[[OuterPrivateEnvironment]] aPrivateEnvironment Record ornull ThePrivateEnvironment Record of the nearest containing class.null if the class with which thisPrivateEnvironment Record is associated is not contained in any other class.
[[Names]] aList ofPrivate Names ThePrivate Names declared by this class.

9.2.1 PrivateEnvironment Record Operations

The followingabstract operations are used in this specification to operate uponPrivateEnvironment Records:

9.2.1.1 NewPrivateEnvironment (outerPrivEnv )

The abstract operation NewPrivateEnvironment takes argumentouterPrivEnv (aPrivateEnvironment Record ornull) and returns aPrivateEnvironment Record. It performs the following steps when called:

  1. Letnames be a new emptyList.
  2. Return thePrivateEnvironment Record {[[OuterPrivateEnvironment]]:outerPrivEnv,[[Names]]:names }.

9.2.1.2 ResolvePrivateIdentifier (privEnv,identifier )

The abstract operation ResolvePrivateIdentifier takes argumentsprivEnv (aPrivateEnvironment Record) andidentifier (a String) and returns aPrivate Name. It performs the following steps when called:

  1. Letnames beprivEnv.[[Names]].
  2. For eachPrivate Namepn ofnames, do
    1. Ifpn.[[Description]] isidentifier, then
      1. Returnpn.
  3. LetouterPrivEnv beprivEnv.[[OuterPrivateEnvironment]].
  4. Assert:outerPrivEnv is notnull.
  5. ReturnResolvePrivateIdentifier(outerPrivEnv,identifier).

9.3 Realms

Before it is evaluated, all ECMAScript code must be associated with arealm. Conceptually, arealm consists of a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of that global environment, and other associated state and resources.

Arealm is represented in this specification as aRealm Record with the fields specified inTable 24:

Table 24:Realm Record Fields
Field Name Value Meaning
[[AgentSignifier]] anagent signifier Theagent that owns thisrealm
[[Intrinsics]] aRecord whose field names are intrinsic keys and whose values are objects The intrinsic values used by code associated with thisrealm
[[GlobalObject]] an Object orundefined Theglobal object for thisrealm
[[GlobalEnv]] aGlobal Environment Record The global environment for thisrealm
[[TemplateMap]] aList ofRecords with fields[[Site]] (aTemplateLiteralParse Node) and[[Array]] (an Array)

Template objects are canonicalized separately for eachrealm using itsRealm Record's[[TemplateMap]]. Each[[Site]] value is aParse Node that is aTemplateLiteral. The associated[[Array]] value is the corresponding template object that is passed to a tag function.

Note 1
Once aParse Node becomes unreachable, the corresponding[[Array]] is also unreachable, and it would be unobservable if an implementation removed the pair from the[[TemplateMap]] list.
[[LoadedModules]] aList ofRecords with fields[[Specifier]] (a String) and[[Module]] (aModule Record)

A map from the specifier strings imported by thisrealm to the resolvedModule Record. The list does not contain two differentRecords with the same[[Specifier]].

Note 2
As mentioned inHostLoadImportedModule (16.2.1.8 Note 1),[[LoadedModules]] inRealm Records is only used when running animport() expression in a context where there is noactive script or module.
[[HostDefined]] anything (default value isundefined) Field reserved for use byhosts that need to associate additional information with aRealm Record.

9.3.1 CreateRealm ( )

The abstract operation CreateRealm takes no arguments and returns aRealm Record. It performs the following steps when called:

  1. LetrealmRec be a newRealm Record.
  2. PerformCreateIntrinsics(realmRec).
  3. SetrealmRec.[[AgentSignifier]] toAgentSignifier().
  4. SetrealmRec.[[GlobalObject]] toundefined.
  5. SetrealmRec.[[GlobalEnv]] toundefined.
  6. SetrealmRec.[[TemplateMap]] to a new emptyList.
  7. ReturnrealmRec.

9.3.2 CreateIntrinsics (realmRec )

The abstract operation CreateIntrinsics takes argumentrealmRec (aRealm Record) and returnsunused. It performs the following steps when called:

  1. SetrealmRec.[[Intrinsics]] to a newRecord.
  2. Set fields ofrealmRec.[[Intrinsics]] with the values listed inTable 6. The field names are the names listed in column one of the table. The value of each field is a new object value fully and recursively populated with property values as defined by the specification of each object in clauses19 through28. All object property values are newly created object values. All values that are built-infunction objects are created by performingCreateBuiltinFunction(steps,length,name,slots,realmRec,prototype) wheresteps is the definition of that function provided by this specification,name is the initial value of the function's"name" property,length is the initial value of the function's"length" property,slots is a list of the names, if any, of the function's specified internal slots, andprototype is the specified value of the function's[[Prototype]] internal slot. The creation of the intrinsics and their properties must be ordered to avoid any dependencies upon objects that have not yet been created.
  3. PerformAddRestrictedFunctionProperties(realmRec.[[Intrinsics]].[[%Function.prototype%]],realmRec).
  4. Returnunused.

9.3.3 SetRealmGlobalObject (realmRec,globalObj,thisValue )

The abstract operation SetRealmGlobalObject takes argumentsrealmRec (aRealm Record),globalObj (an Object orundefined), andthisValue (an Object orundefined) and returnsunused. It performs the following steps when called:

  1. IfglobalObj isundefined, then
    1. Letintrinsics berealmRec.[[Intrinsics]].
    2. SetglobalObj toOrdinaryObjectCreate(intrinsics.[[%Object.prototype%]]).
  2. Assert:globalObjis an Object.
  3. IfthisValue isundefined, setthisValue toglobalObj.
  4. SetrealmRec.[[GlobalObject]] toglobalObj.
  5. LetnewGlobalEnv beNewGlobalEnvironment(globalObj,thisValue).
  6. SetrealmRec.[[GlobalEnv]] tonewGlobalEnv.
  7. Returnunused.

9.3.4 SetDefaultGlobalBindings (realmRec )

The abstract operation SetDefaultGlobalBindings takes argumentrealmRec (aRealm Record) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Letglobal berealmRec.[[GlobalObject]].
  2. For each property of the Global Object specified in clause19, do
    1. Letname be the String value of theproperty name.
    2. Letdesc be the fully populated dataProperty Descriptor for the property, containing the specified attributes for the property. For properties listed in19.2,19.3, or19.4 the value of the[[Value]] attribute is the corresponding intrinsic object fromrealmRec.
    3. Perform ? DefinePropertyOrThrow(global,name,desc).
  3. Returnglobal.

9.4 Execution Contexts

Anexecution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript implementation. At any point in time, there is at most one execution context peragent that is actually executing code. This is known as theagent'srunning execution context. All references to therunning execution context in this specification denote therunning execution context of thesurrounding agent.

Theexecution context stack is used to track execution contexts. Therunning execution context is always the top element of this stack. A new execution context is created whenever control is transferred from the executable code associated with the currentlyrunning execution context to executable code that is not associated with that execution context. The newly created execution context is pushed onto the stack and becomes therunning execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its associated code. Each execution context has at least the state components listed inTable 25.

Table 25: State Components for All Execution Contexts
Component Purpose
code evaluation state Any state needed to perform, suspend, and resume evaluation of the code associated with thisexecution context.
Function If thisexecution context is evaluating the code of afunction object, then the value of this component is thatfunction object. If the context is evaluating the code of aScript orModule, the value isnull.
Realm TheRealm Record from which associated code accesses ECMAScript resources.
ScriptOrModule TheModule Record orScript Record from which associated code originates. If there is no originating script or module, as is the case for the originalexecution context created inInitializeHostDefinedRealm, the value isnull.

Evaluation of code by therunning execution context may be suspended at various points defined within this specification. Once therunning execution context has been suspended a different execution context may become therunning execution context and commence evaluating its code. At some later time a suspended execution context may again become therunning execution context and continue evaluating its code at the point where it had previously been suspended. Transition of therunning execution context status among execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features require non-LIFO transitions of therunning execution context.

The value of theRealm component of therunning execution context is also calledthe current Realm Record. The value of the Function component of therunning execution context is also called theactive function object.

ECMAScript code execution contexts have the additional state components listed inTable 26.

Table 26: Additional State Components for ECMAScript Code Execution Contexts
Component Purpose
LexicalEnvironment Identifies theEnvironment Record used to resolve identifier references made by code within thisexecution context.
VariableEnvironment Identifies theEnvironment Record that holds bindings created byVariableStatements within thisexecution context.
PrivateEnvironment Identifies thePrivateEnvironment Record that holdsPrivate Names created byClassElements in the nearest containing class.null if there is no containing class.

The LexicalEnvironment and VariableEnvironment components of an execution context are alwaysEnvironment Records.

Execution contexts representing the evaluation of Generators have the additional state components listed inTable 27.

Table 27: Additional State Components for Generator Execution Contexts
Component Purpose
Generator The Generator that thisexecution context is evaluating.

In most situations only therunning execution context (the top of theexecution context stack) is directly manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used without qualification they are in reference to those components of therunning execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

9.4.1 GetActiveScriptOrModule ( )

The abstract operation GetActiveScriptOrModule takes no arguments and returns aScript Record, aModule Record, ornull. It is used to determine the running script or module, based on therunning execution context. It performs the following steps when called:

  1. If theexecution context stack is empty, returnnull.
  2. Letec be the topmostexecution context on theexecution context stack whose ScriptOrModule component is notnull.
  3. If no suchexecution context exists, returnnull. Otherwise, returnec's ScriptOrModule.

9.4.2 ResolveBinding (name [ ,env ] )

The abstract operation ResolveBinding takes argumentname (a String) and optional argumentenv (anEnvironment Record orundefined) and returns either anormal completion containing aReference Record or athrow completion. It is used to determine the binding ofname.env can be used to explicitly provide theEnvironment Record that is to be searched for the binding. It performs the following steps when called:

  1. Ifenv is not present orenv isundefined, then
    1. Setenv to therunning execution context's LexicalEnvironment.
  2. Assert:env is anEnvironment Record.
  3. If thesource text matched by the syntactic production that is being evaluated is contained instrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? GetIdentifierReference(env,name,strict).
Note

The result of ResolveBinding is always aReference Record whose[[ReferencedName]] field isname.

9.4.3 GetThisEnvironment ( )

The abstract operation GetThisEnvironment takes no arguments and returns anEnvironment Record. It finds theEnvironment Record that currently supplies the binding of thekeywordthis. It performs the following steps when called:

  1. Letenv be therunning execution context's LexicalEnvironment.
  2. Repeat,
    1. Letexists beenv.HasThisBinding().
    2. Ifexists istrue, returnenv.
    3. Letouter beenv.[[OuterEnv]].
    4. Assert:outer is notnull.
    5. Setenv toouter.
Note

The loop in step2 will always terminate because the list of environments always ends with the global environment which has athis binding.

9.4.4 ResolveThisBinding ( )

The abstract operation ResolveThisBinding takes no arguments and returns either anormal completion containing anECMAScript language value or athrow completion. It determines the binding of thekeywordthis using the LexicalEnvironment of therunning execution context. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Return ? envRec.GetThisBinding().

9.4.5 GetNewTarget ( )

The abstract operation GetNewTarget takes no arguments and returns an Object orundefined. It determines the NewTarget value using the LexicalEnvironment of therunning execution context. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Assert:envRec has a[[NewTarget]] field.
  3. ReturnenvRec.[[NewTarget]].

9.4.6 GetGlobalObject ( )

The abstract operation GetGlobalObject takes no arguments and returns an Object. It returns theglobal object used by the currentlyrunning execution context. It performs the following steps when called:

  1. LetcurrentRealm bethe current Realm Record.
  2. ReturncurrentRealm.[[GlobalObject]].

9.5 Jobs and Host Operations to Enqueue Jobs

AJob is anAbstract Closure with no parameters that initiates an ECMAScript computation when no other ECMAScript computation is currently in progress.

Jobs are scheduled for execution by ECMAScripthost environments in a particularagent. This specification describes thehost hooksHostEnqueueGenericJob,HostEnqueueFinalizationRegistryCleanupJob,HostEnqueuePromiseJob, andHostEnqueueTimeoutJob to schedule jobs. Thehost hooks in this specification are organized by the additional constraints imposed on the scheduling of jobs.Hosts may define additionalabstract operations which schedule jobs. Such operations accept aJobAbstract Closure and arealm (aRealm Record ornull) as parameters. If aRealm Record is provided, these operations schedule the job to be performed at some future time in the providedrealm, in theagent that owns therealm. Ifnull is provided instead for therealm, then the job does not evaluate ECMAScript code. Their implementations must conform to the following requirements:

Note 1
Host environments are not required to treatJobs uniformly with respect to scheduling. For example, web browsers and Node.js treat Promise-handlingJobs as a higher priority than other work; future features may addJobs that are not treated at such a high priority.

At any particular time,scriptOrModule (aScript Record, aModule Record, ornull) is theactive script or module if all of the following conditions are true:

At any particular time, an execution isprepared to evaluate ECMAScript code if all of the following conditions are true:

Note 2

Host environments may prepare an execution to evaluate code by pushingexecution contexts onto theexecution context stack. The specific steps areimplementation-defined.

The specific choice ofRealm is up to thehost environment. This initialexecution context andRealm is only in use before any callback function is invoked. When a callback function related to aJob, like a Promise handler, is invoked, the invocation pushes its ownexecution context andRealm.

Particular kinds ofJobs have additional conformance requirements.

9.5.1 JobCallback Records

AJobCallback Record is aRecord value used to store afunction object and ahost-defined value.Function objects that are invoked via aJob enqueued by thehost may have additionalhost-defined context. To propagate the state,JobAbstract Closures should not capture and callfunction objects directly. Instead, useHostMakeJobCallback andHostCallJobCallback.

Note

The WHATWG HTML specification (https://html.spec.whatwg.org/), for example, uses thehost-defined value to propagate the incumbent settings object for Promise callbacks.

JobCallback Records have the fields listed inTable 28.

Table 28:JobCallback Record Fields
Field Name Value Meaning
[[Callback]] afunction object The function to invoke when theJob is invoked.
[[HostDefined]] anything (default value isempty) Field reserved for use byhosts.

9.5.2 HostMakeJobCallback (callback )

Thehost-defined abstract operation HostMakeJobCallback takes argumentcallback (afunction object) and returns aJobCallback Record.

An implementation of HostMakeJobCallback must conform to the following requirements:

The default implementation of HostMakeJobCallback performs the following steps when called:

  1. Return theJobCallback Record {[[Callback]]:callback,[[HostDefined]]:empty }.

ECMAScripthosts that are not web browsers must use the default implementation of HostMakeJobCallback.

Note

This is called at the time that the callback is passed to the function that is responsible for its being eventually scheduled and run. For example,promise.then(thenAction) calls MakeJobCallback onthenAction at the time of invokingPromise.prototype.then, not at the time of scheduling the reactionJob.

9.5.3 HostCallJobCallback (jobCallback,V,argumentsList )

Thehost-defined abstract operation HostCallJobCallback takes argumentsjobCallback (aJobCallback Record),V (anECMAScript language value), andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion.

An implementation of HostCallJobCallback must conform to the following requirements:

  • It must perform and return the result ofCall(jobCallback.[[Callback]],V,argumentsList).
Note

This requirement means thathosts cannot change the[[Call]] behaviour offunction objects defined in this specification.

The default implementation of HostCallJobCallback performs the following steps when called:

  1. Assert:IsCallable(jobCallback.[[Callback]]) istrue.
  2. Return ? Call(jobCallback.[[Callback]],V,argumentsList).

ECMAScripthosts that are not web browsers must use the default implementation of HostCallJobCallback.

9.5.4 HostEnqueueGenericJob (job,realm )

Thehost-defined abstract operation HostEnqueueGenericJob takes argumentsjob (aJobAbstract Closure) andrealm (aRealm Record) and returnsunused. It schedulesjob in therealmrealm in theagent signified byrealm.[[AgentSignifier]] to be performed at some future time. TheAbstract Closures used with this algorithm are intended to be scheduled without additional constraints, such as priority and ordering.

An implementation of HostEnqueueGenericJob must conform to the requirements in9.5.

9.5.5 HostEnqueuePromiseJob (job,realm )

Thehost-defined abstract operation HostEnqueuePromiseJob takes argumentsjob (aJobAbstract Closure) andrealm (aRealm Record ornull) and returnsunused. It schedulesjob to be performed at some future time. TheAbstract Closures used with this algorithm are intended to be related to the handling of Promises, or otherwise, to be scheduled with equal priority to Promise handling operations.

An implementation of HostEnqueuePromiseJob must conform to the requirements in9.5 as well as the following:

Note

Therealm forJobs returned byNewPromiseResolveThenableJob is usually the result of callingGetFunctionRealm on thethenfunction object. Therealm forJobs returned byNewPromiseReactionJob is usually the result of callingGetFunctionRealm on the handler if the handler is notundefined. If the handler isundefined,realm isnull. For both kinds ofJobs, whenGetFunctionRealm completes abnormally (i.e. called on a revoked Proxy),realm isthe current Realm Record at the time of theGetFunctionRealm call. When therealm isnull, no user ECMAScript code will be evaluated and no new ECMAScript objects (e.g. Error objects) will be created. The WHATWG HTML specification (https://html.spec.whatwg.org/), for example, usesrealm to check for the ability to run script and for theentry concept.

9.5.6 HostEnqueueTimeoutJob (timeoutJob,realm,milliseconds )

Thehost-defined abstract operation HostEnqueueTimeoutJob takes argumentstimeoutJob (aJobAbstract Closure),realm (aRealm Record), andmilliseconds (a non-negativefinite Number) and returnsunused. It schedulestimeoutJob in therealmrealm in theagent signified byrealm.[[AgentSignifier]] to be performed after at leastmilliseconds milliseconds.

An implementation of HostEnqueueTimeoutJob must conform to the requirements in9.5.

9.6 InitializeHostDefinedRealm ( )

The abstract operation InitializeHostDefinedRealm takes no arguments and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letrealm beCreateRealm().
  2. LetnewContext be a newexecution context.
  3. Set the Function ofnewContext tonull.
  4. Set theRealm ofnewContext torealm.
  5. Set the ScriptOrModule ofnewContext tonull.
  6. PushnewContext onto theexecution context stack;newContext is now therunning execution context.
  7. If thehost requires use of anexotic object to serve asrealm'sglobal object, letglobal be such an object created in ahost-defined manner. Otherwise, letglobal beundefined, indicating that anordinary object should be created as theglobal object.
  8. If thehost requires that thethis binding inrealm's global scope return an object other than theglobal object, letthisValue be such an object created in ahost-defined manner. Otherwise, letthisValue beundefined, indicating thatrealm's globalthis binding should be theglobal object.
  9. PerformSetRealmGlobalObject(realm,global,thisValue).
  10. LetglobalObj be ? SetDefaultGlobalBindings(realm).
  11. Create anyhost-definedglobal object properties onglobalObj.
  12. Returnunused.

9.7 Agents

Anagent comprises a set of ECMAScriptexecution contexts, anexecution context stack, arunning execution context, anAgent Record, and anexecuting thread. Except for theexecuting thread, the constituents of anagent belong exclusively to thatagent.

Anagent'sexecuting thread executes algorithmic steps on theagent'sexecution contexts independently of otheragents, except that anexecuting thread may be used as theexecuting thread by multipleagents, provided none of theagents sharing the thread have anAgent Record whose[[CanBlock]] field istrue.

Note 1

Some web browsers share a singleexecuting thread across multiple unrelated tabs of a browser window, for example.

While anagent'sexecuting thread is executing algorithmic steps, theagent is thesurrounding agent for those steps. The steps use thesurrounding agent to access the specification-level execution objects held within theagent: therunning execution context, theexecution context stack, and theAgent Record's fields.

Anagent signifier is a globally-unique opaque value used to identify anAgent.

Table 29:Agent Record Fields
Field NameValueMeaning
[[LittleEndian]]a BooleanThe default value computed for theisLittleEndian parameter when it is needed by the algorithmsGetValueFromBuffer andSetValueInBuffer. The choice isimplementation-defined and should be the alternative that is most efficient for the implementation. Once the value has been observed it cannot change.
[[CanBlock]]a BooleanDetermines whether theagent can block or not.
[[Signifier]]anagent signifierUniquely identifies theagent within itsagent cluster.
[[IsLockFree1]]a Booleantrue if atomic operations on one-byte values are lock-free,false otherwise.
[[IsLockFree2]]a Booleantrue if atomic operations on two-byte values are lock-free,false otherwise.
[[IsLockFree8]]a Booleantrue if atomic operations on eight-byte values are lock-free,false otherwise.
[[CandidateExecution]]acandidate executionRecordSee thememory model.
[[KeptAlive]]aList of either Objects or SymbolsInitially a new emptyList, representing the list of objects and/or symbols to be kept alive until the end of the currentJob

Once the values of[[Signifier]],[[IsLockFree1]], and[[IsLockFree2]] have been observed by anyagent in theagent cluster they cannot change.

Note 2

The values of[[IsLockFree1]] and[[IsLockFree2]] are not necessarily determined by the hardware, but may also reflect implementation choices that can vary over time and between ECMAScript implementations.

There is no[[IsLockFree4]] field: 4-byte atomic operations are always lock-free.

In practice, if an atomic operation is implemented with any type of lock the operation is not lock-free. Lock-free does not imply wait-free: there is no upper bound on how many machine steps may be required to complete a lock-free atomic operation.

That an atomic access of sizen is lock-free does not imply anything about the (perceived) atomicity of non-atomic accesses of sizen, specifically, non-atomic accesses may still be performed as a sequence of several separate memory accesses. SeeReadSharedMemory andWriteSharedMemory for details.

Note 3

Anagent is a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation.

9.7.1 AgentSignifier ( )

The abstract operation AgentSignifier takes no arguments and returns anagent signifier. It performs the following steps when called:

  1. LetAR be theAgent Record of thesurrounding agent.
  2. ReturnAR.[[Signifier]].

9.7.2 AgentCanSuspend ( )

The abstract operation AgentCanSuspend takes no arguments and returns a Boolean. It performs the following steps when called:

  1. LetAR be theAgent Record of thesurrounding agent.
  2. ReturnAR.[[CanBlock]].
Note

In some environments it may not be reasonable for a givenagent to suspend. For example, in a web browser environment, it may be reasonable to disallow suspending a document's main event handling thread, while still allowing workers' event handling threads to suspend.

9.8 Agent Clusters

Anagent cluster is a maximal set ofagents that can communicate by operating on shared memory.

Note 1

Programs within differentagents may share memory by unspecified means. At a minimum, the backing memory for SharedArrayBuffers can be shared among theagents in the cluster.

There may beagents that can communicate by message passing that cannot share memory; they are never in the same agent cluster.

Everyagent belongs to exactly one agent cluster.

Note 2

Theagents in a cluster need not all be alive at some particular point in time. IfagentA creates anotheragentB, after whichA terminates andB createsagentC, the threeagents are in the same cluster ifA could share some memory withB andB could share some memory withC.

Allagents within a cluster must have the same value for the[[LittleEndian]] field in their respectiveAgent Records.

Note 3

If differentagents within an agent cluster have different values of[[LittleEndian]] it becomes hard to use shared memory for multi-byte data.

Allagents within a cluster must have the same values for the[[IsLockFree1]] field in their respectiveAgent Records; similarly for the[[IsLockFree2]] field.

Allagents within a cluster must have different values for the[[Signifier]] field in their respectiveAgent Records.

An embedding may deactivate (stop forward progress) or activate (resume forward progress) anagent without theagent's knowledge or cooperation. If the embedding does so, it must not leave someagents in the cluster active while otheragents in the cluster are deactivated indefinitely.

Note 4

The purpose of the preceding restriction is to avoid a situation where anagent deadlocks or starves because anotheragent has been deactivated. For example, if an HTML shared worker that has a lifetime independent of documents in any windows were allowed to share memory with the dedicated worker of such an independent document, and the document and its dedicated worker were to be deactivated while the dedicated worker holds a lock (say, the document is pushed into its window's history), and the shared worker then tries to acquire the lock, then the shared worker will be blocked until the dedicated worker is activated again, if ever. Meanwhile other workers trying to access the shared worker from other windows will starve.

The implication of the restriction is that it will not be possible to share memory betweenagents that don't belong to the same suspend/wake collective within the embedding.

An embedding may terminate anagent without any of theagent's cluster's otheragents' prior knowledge or cooperation. If anagent is terminated not by programmatic action of its own or of anotheragent in the cluster but by forces external to the cluster, then the embedding must choose one of two strategies: Either terminate all theagents in the cluster, or provide reliable APIs that allow theagents in the cluster to coordinate so that at least one remaining member of the cluster will be able to detect the termination, with the termination data containing enough information to identify theagent that was terminated.

Note 5

Examples of that type of termination are: operating systems or users terminatingagents that are running in separate processes; the embedding itself terminating anagent that is running in-process with the otheragents when per-agent resource accounting indicates that theagent is runaway.

Each of the following specification values, and values transitively reachable from them, belong to exactly one agent cluster.

Prior to any evaluation of any ECMAScript code by anyagent in a cluster, the[[CandidateExecution]] field of theAgent Record for allagents in the cluster is set to the initialcandidate execution. The initialcandidate execution is anempty candidate execution whose[[EventsRecords]] field is aList containing, for eachagent, anAgent Events Record whose[[AgentSignifier]] field is thatagent'sagent signifier, and whose[[EventList]] and[[AgentSynchronizesWith]] fields are emptyLists.

Note 6

Allagents in an agent cluster share the samecandidate execution in itsAgent Record's[[CandidateExecution]] field. Thecandidate execution is a specification mechanism used by thememory model.

Note 7

An agent cluster is a specification mechanism and need not correspond to any particular artefact of an ECMAScript implementation.

9.9 Forward Progress

For anagent tomake forward progress is for it to perform an evaluation step according to this specification.

Anagent becomesblocked when itsrunning execution context waits synchronously and indefinitely for an external event. Onlyagents whoseAgent Record's[[CanBlock]] field istrue can become blocked in this sense. Anunblockedagent is one that is not blocked.

Implementations must ensure that:

Note

This, along with the liveness guarantee in thememory model, ensures that allseq-cst writes eventually become observable to allagents.

9.10 Processing Model of WeakRef and FinalizationRegistry Targets

9.10.1 Objectives

This specification does not make any guarantees that any object or symbol will be garbage collected. Objects or symbols which are notlive may be released after long periods of time, or never at all. For this reason, this specification uses the term "may" when describing behaviour triggered by garbage collection.

The semantics ofWeakRefs andFinalizationRegistrys is based on two operations which happen at particular points in time:

  • WhenWeakRef.prototype.deref is called, the referent (ifundefined is not returned) is kept alive so that subsequent, synchronous accesses also return the same value. This list is reset when synchronous work is done using theClearKeptObjects abstract operation.
  • When an object or symbol which is registered with aFinalizationRegistry becomes unreachable, a call of theFinalizationRegistry's cleanup callback may eventually be made, after synchronous ECMAScript execution completes. TheFinalizationRegistry cleanup is performed with theCleanupFinalizationRegistry abstract operation.

Neither of these actions (ClearKeptObjects orCleanupFinalizationRegistry) may interrupt synchronous ECMAScript execution. Becausehosts may assemble longer, synchronous ECMAScript execution runs, this specification defers the scheduling ofClearKeptObjects andCleanupFinalizationRegistry to thehost environment.

Some ECMAScript implementations include garbage collector implementations which run in the background, including when ECMAScript is idle. Letting thehost environment scheduleCleanupFinalizationRegistry allows it to resume ECMAScript execution in order to run finalizer work, which may free up held values, reducing overall memory usage.

9.10.2 Liveness

For some set of objects and/or symbolsS ahypothetical WeakRef-oblivious execution with respect toS is an execution whereby the abstract operationWeakRefDeref of aWeakRef whose referent is an element ofS always returnsundefined.

Note 1
WeakRef-obliviousness, together with liveness, capture two notions. One, that aWeakRef itself does not keep its referent alive. Two, that cycles in liveness does not imply that a value is live. To be concrete, if determiningv's liveness depends on determining the liveness of aWeakRef referent,r,r's liveness cannot assumev's liveness, which would be circular reasoning.
Note 2
WeakRef-obliviousness is defined on sets of objects or symbols instead of individual values to account for cycles. If it were defined on individual values, then aWeakRef referent in a cycle will be considered live even though its identity is only observed via otherWeakRef referents in the cycle.
Note 3
Colloquially, we say that an individual object or symbol is live if every set containing it is live.

At any point during evaluation, a set of objects and/or symbolsS is consideredlive if either of the following conditions is met:

  • Any element inS is included in anyagent's[[KeptAlive]]List.
  • There exists a valid future hypothetical WeakRef-oblivious execution with respect toS that observes the identity of any value inS.
Note 4
The second condition above intends to capture the intuition that a value is live if its identity is observable via non-WeakRef means. A value's identity may be observed by observing a strict equality comparison or observing the value being used as key in a Map.
Note 5

Presence of an object or a symbol in a field, an internal slot, or a property does not imply that the value is live. For example if the value in question is never passed back to the program, then it cannot be observed.

This is the case for keys in a WeakMap, members of a WeakSet, as well as the[[WeakRefTarget]] and[[UnregisterToken]] fields of aFinalizationRegistry Cell record.

The above definition implies that, if a key in a WeakMap is not live, then its corresponding value is not necessarily live either.

Note 6
Liveness is the lower bound for guaranteeing whichWeakRefs engines must not empty. Liveness as defined here is undecidable. In practice, engines use conservative approximations such as reachability. There is expected to be significant implementation leeway.

9.10.3 Execution

At any time, if a set of objects and/or symbolsS is notlive, an ECMAScript implementation may perform the following steps atomically:

  1. For each elementvalue ofS, do
    1. For eachWeakRefref such thatref.[[WeakRefTarget]] isvalue, do
      1. Setref.[[WeakRefTarget]] toempty.
    2. For eachFinalizationRegistryfg such thatfg.[[Cells]] contains aRecordcell such thatcell.[[WeakRefTarget]] isvalue, do
      1. Setcell.[[WeakRefTarget]] toempty.
      2. Optionally, performHostEnqueueFinalizationRegistryCleanupJob(fg).
    3. For each WeakMapmap such thatmap.[[WeakMapData]] contains aRecordr such thatr.[[Key]] isvalue, do
      1. Setr.[[Key]] toempty.
      2. Setr.[[Value]] toempty.
    4. For each WeakSetset such thatset.[[WeakSetData]] containsvalue, do
      1. Replace the element ofset.[[WeakSetData]] whose value isvalue with an element whose value isempty.
Note 1

Together with the definition of liveness, this clause prescribes optimizations that an implementation may apply regardingWeakRefs.

It is possible to access an object without observing its identity. Optimizations such as dead variable elimination and scalar replacement on properties of non-escaping objects whose identity is not observed are allowed. These optimizations are thus allowed to observably emptyWeakRefs that point to such objects.

On the other hand, if an object's identity is observable, and that object is in the[[WeakRefTarget]] internal slot of aWeakRef, optimizations such as rematerialization that observably empty theWeakRef are prohibited.

Because callingHostEnqueueFinalizationRegistryCleanupJob is optional, registered objects in aFinalizationRegistry do not necessarily hold thatFinalizationRegistrylive. Implementations may omitFinalizationRegistry callbacks for any reason, e.g., if theFinalizationRegistry itself becomes dead, or if the application is shutting down.

Note 2

Implementations are not obligated to emptyWeakRefs for maximal sets of non-live objects or symbols.

If an implementation chooses a non-live setS in which to emptyWeakRefs, this definition requires that it emptiesWeakRefs for all values inS simultaneously. In other words, it is not conformant for an implementation to empty aWeakRef pointing to a valuev without emptying out otherWeakRefs that, if not emptied, could result in an execution that observes the value ofv.

9.10.4 Host Hooks

9.10.4.1 HostEnqueueFinalizationRegistryCleanupJob (finalizationRegistry )

Thehost-defined abstract operation HostEnqueueFinalizationRegistryCleanupJob takes argumentfinalizationRegistry (aFinalizationRegistry) and returnsunused.

LetcleanupJob be a newJobAbstract Closure with no parameters that capturesfinalizationRegistry and performs the following steps when called:

  1. LetcleanupResult beCompletion(CleanupFinalizationRegistry(finalizationRegistry)).
  2. IfcleanupResult is anabrupt completion, perform anyhost-defined steps for reporting the error.
  3. Returnunused.

An implementation of HostEnqueueFinalizationRegistryCleanupJob schedulescleanupJob to be performed at some future time, if possible. It must also conform to the requirements in9.5.

9.11 ClearKeptObjects ( )

The abstract operation ClearKeptObjects takes no arguments and returnsunused. ECMAScript implementations are expected to call ClearKeptObjects when a synchronous sequence of ECMAScript executions completes. It performs the following steps when called:

  1. LetagentRecord be thesurrounding agent'sAgent Record.
  2. SetagentRecord.[[KeptAlive]] to a new emptyList.
  3. Returnunused.

9.12 AddToKeptObjects (value )

The abstract operation AddToKeptObjects takes argumentvalue (an Object or a Symbol) and returnsunused. It performs the following steps when called:

  1. LetagentRecord be thesurrounding agent'sAgent Record.
  2. Appendvalue toagentRecord.[[KeptAlive]].
  3. Returnunused.
Note
When the abstract operation AddToKeptObjects is called with a target object or symbol, it adds the target to a list that will point strongly at the target untilClearKeptObjects is called.

9.13 CleanupFinalizationRegistry (finalizationRegistry )

The abstract operation CleanupFinalizationRegistry takes argumentfinalizationRegistry (aFinalizationRegistry) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Assert:finalizationRegistry has[[Cells]] and[[CleanupCallback]] internal slots.
  2. Letcallback befinalizationRegistry.[[CleanupCallback]].
  3. WhilefinalizationRegistry.[[Cells]] contains aRecordcell such thatcell.[[WeakRefTarget]] isempty, an implementation may perform the following steps:
    1. Choose any suchcell.
    2. Removecell fromfinalizationRegistry.[[Cells]].
    3. Perform ? HostCallJobCallback(callback,undefined, «cell.[[HeldValue]] »).
  4. Returnunused.

9.14 CanBeHeldWeakly (v )

The abstract operation CanBeHeldWeakly takes argumentv (anECMAScript language value) and returns a Boolean. It returnstrue if and only ifv is suitable for use as a weak reference. Only values that are suitable for use as a weak reference may be a key of a WeakMap, an element of a WeakSet, the target of aWeakRef, or one of the targets of aFinalizationRegistry. It performs the following steps when called:

  1. Ifvis an Object, returntrue.
  2. Ifvis a Symbol andKeyForSymbol(v) isundefined, returntrue.
  3. Returnfalse.
Note

A language value withoutlanguage identity can be manifested without prior reference and is unsuitable for use as a weak reference. A Symbol value produced bySymbol.for, unlike other Symbol values, does not have language identity and is unsuitable for use as a weak reference.Well-known symbols are likely to never be collected, but are nonetheless treated as suitable for use as a weak reference because they are limited in number and therefore manageable by a variety of implementation approaches. However, any value associated to a well-known symbol in alive WeakMap is unlikely to be collected and could “leak” memory resources in implementations.

10 Ordinary and Exotic Objects Behaviours

10.1 Ordinary Object Internal Methods and Internal Slots

Allordinary objects have an internal slot called[[Prototype]]. The value of this internal slot is eithernull or an object and is used for implementing inheritance. Assume a property namedP is missing from anordinary objectO but exists on its[[Prototype]] object. IfP refers to adata property on the[[Prototype]] object,O inherits it for get access, making it behave as ifP was a property ofO. IfP refers to a writabledata property on the[[Prototype]] object, set access ofP onO creates a newdata property namedP onO. IfP refers to a non-writabledata property on the[[Prototype]] object, set access ofP onO fails. IfP refers to anaccessor property on the[[Prototype]] object, the accessor is inherited byO for both get access and set access.

Everyordinary object has a Boolean-valued[[Extensible]] internal slot which is used to fulfill the extensibility-related internal method invariants specified in6.1.7.3. Namely, once the value of an object's[[Extensible]] internal slot has been set tofalse, it is no longer possible to add properties to the object, to modify the value of the object's[[Prototype]] internal slot, or to subsequently change the value of[[Extensible]] totrue.

In the following algorithm descriptions, assumeO is anordinary object,P is aproperty key value,V is anyECMAScript language value, andDesc is aProperty Descriptor record.

Eachordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation depends on another internal method, then the internal method is invoked onO rather than calling the similarly-named abstract operation directly. These semantics ensure thatexotic objects have their overridden internal methods invoked whenordinary object internal methods are applied to them.

10.1.1[[GetPrototypeOf]] ( )

The[[GetPrototypeOf]] internal method of anordinary objectO takes no arguments and returns anormal completion containing either an Object ornull. It performs the following steps when called:

  1. ReturnOrdinaryGetPrototypeOf(O).

10.1.1.1 OrdinaryGetPrototypeOf (O )

The abstract operation OrdinaryGetPrototypeOf takes argumentO (an Object) and returns an Object ornull. It performs the following steps when called:

  1. ReturnO.[[Prototype]].

10.1.2[[SetPrototypeOf]] (V )

The[[SetPrototypeOf]] internal method of anordinary objectO takes argumentV (an Object ornull) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. ReturnOrdinarySetPrototypeOf(O,V).

10.1.2.1 OrdinarySetPrototypeOf (O,V )

The abstract operation OrdinarySetPrototypeOf takes argumentsO (an Object) andV (an Object ornull) and returns a Boolean. It performs the following steps when called:

  1. Letcurrent beO.[[Prototype]].
  2. IfSameValue(V,current) istrue, returntrue.
  3. Letextensible beO.[[Extensible]].
  4. Ifextensible isfalse, returnfalse.
  5. Letp beV.
  6. Letdone befalse.
  7. Repeat, whiledone isfalse,
    1. Ifp isnull, then
      1. Setdone totrue.
    2. Else ifSameValue(p,O) istrue, then
      1. Returnfalse.
    3. Else,
      1. Ifp.[[GetPrototypeOf]] is not theordinary object internal method defined in10.1.1, setdone totrue.
      2. Else, setp top.[[Prototype]].
  8. SetO.[[Prototype]] toV.
  9. Returntrue.
Note

The loop in step7 guarantees that there will be no circularities in any prototype chain that only includes objects that use theordinary object definitions for[[GetPrototypeOf]] and[[SetPrototypeOf]].

10.1.3[[IsExtensible]] ( )

The[[IsExtensible]] internal method of anordinary objectO takes no arguments and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. ReturnOrdinaryIsExtensible(O).

10.1.3.1 OrdinaryIsExtensible (O )

The abstract operation OrdinaryIsExtensible takes argumentO (an Object) and returns a Boolean. It performs the following steps when called:

  1. ReturnO.[[Extensible]].

10.1.4[[PreventExtensions]] ( )

The[[PreventExtensions]] internal method of anordinary objectO takes no arguments and returns anormal completion containingtrue. It performs the following steps when called:

  1. ReturnOrdinaryPreventExtensions(O).

10.1.4.1 OrdinaryPreventExtensions (O )

The abstract operation OrdinaryPreventExtensions takes argumentO (an Object) and returnstrue. It performs the following steps when called:

  1. SetO.[[Extensible]] tofalse.
  2. Returntrue.

10.1.5[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of anordinary objectO takes argumentP (aproperty key) and returns anormal completion containing either aProperty Descriptor orundefined. It performs the following steps when called:

  1. ReturnOrdinaryGetOwnProperty(O,P).

10.1.5.1 OrdinaryGetOwnProperty (O,P )

The abstract operation OrdinaryGetOwnProperty takes argumentsO (an Object) andP (aproperty key) and returns aProperty Descriptor orundefined. It performs the following steps when called:

  1. IfO does not have an own property with keyP, returnundefined.
  2. LetD be a newly createdProperty Descriptor with no fields.
  3. LetX beO's own property whose key isP.
  4. IfX is adata property, then
    1. SetD.[[Value]] to the value ofX's[[Value]] attribute.
    2. SetD.[[Writable]] to the value ofX's[[Writable]] attribute.
  5. Else,
    1. Assert:X is anaccessor property.
    2. SetD.[[Get]] to the value ofX's[[Get]] attribute.
    3. SetD.[[Set]] to the value ofX's[[Set]] attribute.
  6. SetD.[[Enumerable]] to the value ofX's[[Enumerable]] attribute.
  7. SetD.[[Configurable]] to the value ofX's[[Configurable]] attribute.
  8. ReturnD.

10.1.6[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of anordinary objectO takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Return ? OrdinaryDefineOwnProperty(O,P,Desc).

10.1.6.1 OrdinaryDefineOwnProperty (O,P,Desc )

The abstract operation OrdinaryDefineOwnProperty takes argumentsO (an Object),P (aproperty key), andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Letcurrent be ? O.[[GetOwnProperty]](P).
  2. Letextensible be ? IsExtensible(O).
  3. ReturnValidateAndApplyPropertyDescriptor(O,P,extensible,Desc,current).

10.1.6.2 IsCompatiblePropertyDescriptor (Extensible,Desc,Current )

The abstract operation IsCompatiblePropertyDescriptor takes argumentsExtensible (a Boolean),Desc (aProperty Descriptor), andCurrent (aProperty Descriptor orundefined) and returns a Boolean. It performs the following steps when called:

  1. ReturnValidateAndApplyPropertyDescriptor(undefined,"",Extensible,Desc,Current).

10.1.6.3 ValidateAndApplyPropertyDescriptor (O,P,extensible,Desc,current )

The abstract operation ValidateAndApplyPropertyDescriptor takes argumentsO (an Object orundefined),P (aproperty key),extensible (a Boolean),Desc (aProperty Descriptor), andcurrent (aProperty Descriptor orundefined) and returns a Boolean. It returnstrue if and only ifDesc can be applied as the property of an object with specifiedextensibility and current propertycurrent while upholdinginvariants. When such application is possible andO is notundefined, it is performed for the property namedP (which is created if necessary). It performs the following steps when called:

  1. Assert:IsPropertyKey(P) istrue.
  2. Ifcurrent isundefined, then
    1. Ifextensible isfalse, returnfalse.
    2. IfO isundefined, returntrue.
    3. IfIsAccessorDescriptor(Desc) istrue, then
      1. Create an ownaccessor property namedP of objectO whose[[Get]],[[Set]],[[Enumerable]], and[[Configurable]] attributes are set to the value of the corresponding field inDesc ifDesc has that field, or to the attribute'sdefault value otherwise.
    4. Else,
      1. Create an owndata property namedP of objectO whose[[Value]],[[Writable]],[[Enumerable]], and[[Configurable]] attributes are set to the value of the corresponding field inDesc ifDesc has that field, or to the attribute'sdefault value otherwise.
    5. Returntrue.
  3. Assert:current is afully populated Property Descriptor.
  4. IfDesc does not have any fields, returntrue.
  5. Ifcurrent.[[Configurable]] isfalse, then
    1. IfDesc has a[[Configurable]] field andDesc.[[Configurable]] istrue, returnfalse.
    2. IfDesc has an[[Enumerable]] field andDesc.[[Enumerable]] is notcurrent.[[Enumerable]], returnfalse.
    3. IfIsGenericDescriptor(Desc) isfalse andIsAccessorDescriptor(Desc) is notIsAccessorDescriptor(current), returnfalse.
    4. IfIsAccessorDescriptor(current) istrue, then
      1. IfDesc has a[[Get]] field andSameValue(Desc.[[Get]],current.[[Get]]) isfalse, returnfalse.
      2. IfDesc has a[[Set]] field andSameValue(Desc.[[Set]],current.[[Set]]) isfalse, returnfalse.
    5. Else ifcurrent.[[Writable]] isfalse, then
      1. IfDesc has a[[Writable]] field andDesc.[[Writable]] istrue, returnfalse.
      2. IfDesc has a[[Value]] field andSameValue(Desc.[[Value]],current.[[Value]]) isfalse, returnfalse.
  6. IfO is notundefined, then
    1. IfIsDataDescriptor(current) istrue andIsAccessorDescriptor(Desc) istrue, then
      1. IfDesc has a[[Configurable]] field, letconfigurable beDesc.[[Configurable]]; else letconfigurable becurrent.[[Configurable]].
      2. IfDesc has a[[Enumerable]] field, letenumerable beDesc.[[Enumerable]]; else letenumerable becurrent.[[Enumerable]].
      3. Replace the property namedP of objectO with anaccessor property whose[[Configurable]] and[[Enumerable]] attributes are set toconfigurable andenumerable, respectively, and whose[[Get]] and[[Set]] attributes are set to the value of the corresponding field inDesc ifDesc has that field, or to the attribute'sdefault value otherwise.
    2. Else ifIsAccessorDescriptor(current) istrue andIsDataDescriptor(Desc) istrue, then
      1. IfDesc has a[[Configurable]] field, letconfigurable beDesc.[[Configurable]]; else letconfigurable becurrent.[[Configurable]].
      2. IfDesc has a[[Enumerable]] field, letenumerable beDesc.[[Enumerable]]; else letenumerable becurrent.[[Enumerable]].
      3. Replace the property namedP of objectO with adata property whose[[Configurable]] and[[Enumerable]] attributes are set toconfigurable andenumerable, respectively, and whose[[Value]] and[[Writable]] attributes are set to the value of the corresponding field inDesc ifDesc has that field, or to the attribute'sdefault value otherwise.
    3. Else,
      1. For each field ofDesc, set the corresponding attribute of the property namedP of objectO to the value of the field.
  7. Returntrue.

10.1.7[[HasProperty]] (P )

The[[HasProperty]] internal method of anordinary objectO takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Return ? OrdinaryHasProperty(O,P).

10.1.7.1 OrdinaryHasProperty (O,P )

The abstract operation OrdinaryHasProperty takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. LethasOwn be ? O.[[GetOwnProperty]](P).
  2. IfhasOwn is notundefined, returntrue.
  3. Letparent be ? O.[[GetPrototypeOf]]().
  4. Ifparent is notnull, then
    1. Return ? parent.[[HasProperty]](P).
  5. Returnfalse.

10.1.8[[Get]] (P,Receiver )

The[[Get]] internal method of anordinary objectO takes argumentsP (aproperty key) andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Return ? OrdinaryGet(O,P,Receiver).

10.1.8.1 OrdinaryGet (O,P,Receiver )

The abstract operation OrdinaryGet takes argumentsO (an Object),P (aproperty key), andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letdesc be ? O.[[GetOwnProperty]](P).
  2. Ifdesc isundefined, then
    1. Letparent be ? O.[[GetPrototypeOf]]().
    2. Ifparent isnull, returnundefined.
    3. Return ? parent.[[Get]](P,Receiver).
  3. IfIsDataDescriptor(desc) istrue, returndesc.[[Value]].
  4. Assert:IsAccessorDescriptor(desc) istrue.
  5. Letgetter bedesc.[[Get]].
  6. Ifgetter isundefined, returnundefined.
  7. Return ? Call(getter,Receiver).

10.1.9[[Set]] (P,V,Receiver )

The[[Set]] internal method of anordinary objectO takes argumentsP (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Return ? OrdinarySet(O,P,V,Receiver).

10.1.9.1 OrdinarySet (O,P,V,Receiver )

The abstract operation OrdinarySet takes argumentsO (an Object),P (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. LetownDesc be ? O.[[GetOwnProperty]](P).
  2. Return ? OrdinarySetWithOwnDescriptor(O,P,V,Receiver,ownDesc).

10.1.9.2 OrdinarySetWithOwnDescriptor (O,P,V,Receiver,ownDesc )

The abstract operation OrdinarySetWithOwnDescriptor takes argumentsO (an Object),P (aproperty key),V (anECMAScript language value),Receiver (anECMAScript language value), andownDesc (aProperty Descriptor orundefined) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfownDesc isundefined, then
    1. Letparent be ? O.[[GetPrototypeOf]]().
    2. Ifparent is notnull, then
      1. Return ? parent.[[Set]](P,V,Receiver).
    3. Else,
      1. SetownDesc to the PropertyDescriptor {[[Value]]:undefined,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:true }.
  2. IfIsDataDescriptor(ownDesc) istrue, then
    1. IfownDesc.[[Writable]] isfalse, returnfalse.
    2. IfReceiveris not an Object, returnfalse.
    3. LetexistingDescriptor be ? Receiver.[[GetOwnProperty]](P).
    4. IfexistingDescriptor is notundefined, then
      1. IfIsAccessorDescriptor(existingDescriptor) istrue, returnfalse.
      2. IfexistingDescriptor.[[Writable]] isfalse, returnfalse.
      3. LetvalueDesc be the PropertyDescriptor {[[Value]]:V }.
      4. Return ? Receiver.[[DefineOwnProperty]](P,valueDesc).
    5. Else,
      1. Assert:Receiver does not currently have a propertyP.
      2. Return ? CreateDataProperty(Receiver,P,V).
  3. Assert:IsAccessorDescriptor(ownDesc) istrue.
  4. Letsetter beownDesc.[[Set]].
  5. Ifsetter isundefined, returnfalse.
  6. Perform ? Call(setter,Receiver, «V »).
  7. Returntrue.

10.1.10[[Delete]] (P )

The[[Delete]] internal method of anordinary objectO takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Return ? OrdinaryDelete(O,P).

10.1.10.1 OrdinaryDelete (O,P )

The abstract operation OrdinaryDelete takes argumentsO (an Object) andP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Letdesc be ? O.[[GetOwnProperty]](P).
  2. Ifdesc isundefined, returntrue.
  3. Ifdesc.[[Configurable]] istrue, then
    1. Remove the own property with nameP fromO.
    2. Returntrue.
  4. Returnfalse.

10.1.11[[OwnPropertyKeys]] ( )

The[[OwnPropertyKeys]] internal method of anordinary objectO takes no arguments and returns anormal completion containing aList ofproperty keys. It performs the following steps when called:

  1. ReturnOrdinaryOwnPropertyKeys(O).

10.1.11.1 OrdinaryOwnPropertyKeys (O )

The abstract operation OrdinaryOwnPropertyKeys takes argumentO (an Object) and returns aList ofproperty keys. It performs the following steps when called:

  1. Letkeys be a new emptyList.
  2. For each ownproperty keyP ofO such thatP is anarray index, in ascending numeric index order, do
    1. AppendP tokeys.
  3. For each ownproperty keyP ofO such thatPis a String andP is not anarray index, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  4. For each ownproperty keyP ofO such thatPis a Symbol, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  5. Returnkeys.

10.1.12 OrdinaryObjectCreate (proto [ ,additionalInternalSlotsList ] )

The abstract operation OrdinaryObjectCreate takes argumentproto (an Object ornull) and optional argumentadditionalInternalSlotsList (aList of names of internal slots) and returns an Object. It is used to specify the runtime creation of newordinary objects.additionalInternalSlotsList contains the names of additional internal slots that must be defined as part of the object, beyond[[Prototype]] and[[Extensible]]. IfadditionalInternalSlotsList is not provided, a new emptyList is used. It performs the following steps when called:

  1. LetinternalSlotsList be «[[Prototype]],[[Extensible]] ».
  2. IfadditionalInternalSlotsList is present, setinternalSlotsList to thelist-concatenation ofinternalSlotsList andadditionalInternalSlotsList.
  3. LetO beMakeBasicObject(internalSlotsList).
  4. SetO.[[Prototype]] toproto.
  5. ReturnO.
Note

Although OrdinaryObjectCreate does little more than callMakeBasicObject, its use communicates the intention to create anordinary object, and not an exotic one. Thus, within this specification, it is not called by any algorithm that subsequently modifies the internal methods of the object in ways that would make the result non-ordinary. Operations that createexotic objects invokeMakeBasicObject directly.

10.1.13 OrdinaryCreateFromConstructor (constructor,intrinsicDefaultProto [ ,internalSlotsList ] )

The abstract operation OrdinaryCreateFromConstructor takes argumentsconstructor (aconstructor) andintrinsicDefaultProto (a String) and optional argumentinternalSlotsList (aList of names of internal slots) and returns either anormal completion containing an Object or athrow completion. It creates anordinary object whose[[Prototype]] value is retrieved from aconstructor's"prototype" property, if it exists. Otherwise the intrinsic named byintrinsicDefaultProto is used for[[Prototype]].internalSlotsList contains the names of additional internal slots that must be defined as part of the object. IfinternalSlotsList is not provided, a new emptyList is used. It performs the following steps when called:

  1. Assert:intrinsicDefaultProto is this specification's name of an intrinsic object. The corresponding object must be an intrinsic that is intended to be used as the[[Prototype]] value of an object.
  2. Letproto be ? GetPrototypeFromConstructor(constructor,intrinsicDefaultProto).
  3. IfinternalSlotsList is present, letslotsList beinternalSlotsList.
  4. Else, letslotsList be a new emptyList.
  5. ReturnOrdinaryObjectCreate(proto,slotsList).

10.1.14 GetPrototypeFromConstructor (constructor,intrinsicDefaultProto )

The abstract operation GetPrototypeFromConstructor takes argumentsconstructor (afunction object) andintrinsicDefaultProto (a String) and returns either anormal completion containing an Object or athrow completion. It determines the[[Prototype]] value that should be used to create an object corresponding to a specificconstructor. The value is retrieved from theconstructor's"prototype" property, if it exists. Otherwise the intrinsic named byintrinsicDefaultProto is used for[[Prototype]]. It performs the following steps when called:

  1. Assert:intrinsicDefaultProto is this specification's name of an intrinsic object. The corresponding object must be an intrinsic that is intended to be used as the[[Prototype]] value of an object.
  2. Letproto be ? Get(constructor,"prototype").
  3. Ifprotois not an Object, then
    1. Letrealm be ? GetFunctionRealm(constructor).
    2. Setproto torealm's intrinsic object namedintrinsicDefaultProto.
  4. Returnproto.
Note

Ifconstructor does not supply a[[Prototype]] value, the default value that is used is obtained from therealm of theconstructor function rather than from therunning execution context.

10.1.15 RequireInternalSlot (O,internalSlot )

The abstract operation RequireInternalSlot takes argumentsO (anECMAScript language value) andinternalSlot (an internal slot name) and returns either anormal completion containingunused or athrow completion. It throws an exception unlessOis an Object and has the given internal slot. It performs the following steps when called:

  1. IfOis not an Object, throw aTypeError exception.
  2. IfO does not have aninternalSlot internal slot, throw aTypeError exception.
  3. Returnunused.

10.2 ECMAScript Function Objects

ECMAScriptfunction objects encapsulate parameterized ECMAScript code closed over a lexical environment and support the dynamic evaluation of that code. An ECMAScriptfunction object is anordinary object and has the same internal slots and the same internal methods as otherordinary objects. The code of an ECMAScriptfunction object may be eitherstrict mode code (11.2.2) ornon-strict code. An ECMAScriptfunction object whose code isstrict mode code is called astrict function. One whose code is notstrict mode code is called anon-strict function.

In addition to[[Extensible]] and[[Prototype]], ECMAScriptfunction objects also have the internal slots listed inTable 30.

Table 30: Internal Slots of ECMAScript Function Objects
Internal Slot Type Description
[[Environment]] anEnvironment Record TheEnvironment Record that the function was closed over. Used as the outer environment when evaluating the code of the function.
[[PrivateEnvironment]] aPrivateEnvironment Record ornull ThePrivateEnvironment Record forPrivate Names that the function was closed over.null if this function is not syntactically contained within a class. Used as the outer PrivateEnvironment for inner classes when evaluating the code of the function.
[[FormalParameters]] aParse Node The root parse node of the source text that defines the function's formal parameter list.
[[ECMAScriptCode]] aParse Node The root parse node of the source text that defines the function's body.
[[ConstructorKind]]base orderived Whether or not the function is a derived classconstructor.
[[Realm]] aRealm Record Therealm in which the function was created and which provides any intrinsic objects that are accessed when evaluating the function.
[[ScriptOrModule]] aScript Record or aModule Record The script or module in which the function was created.
[[ThisMode]]lexical,strict, orglobal Defines howthis references are interpreted within the formal parameters and code body of the function.lexical means thatthis refers to thethis value of a lexically enclosing function.strict means that thethis value is used exactly as provided by an invocation of the function.global means that athis value ofundefined ornull is interpreted as a reference to theglobal object, and any otherthis value is first passed toToObject.
[[Strict]] a Booleantrue if this is astrict function,false if this is anon-strict function.
[[HomeObject]] an Object If the function usessuper, this is the object whose[[GetPrototypeOf]] provides the object wheresuper property lookups begin.
[[SourceText]] a sequence of Unicode code points Thesource text that defines the function.
[[Fields]] aList ofClassFieldDefinition Records If the function is a class, this is a list ofRecords representing the non-static fields and corresponding initializers of the class.
[[PrivateMethods]] aList ofPrivateElements If the function is a class, this is a list representing the non-static private methods and accessors of the class.
[[ClassFieldInitializerName]] a String, a Symbol, aPrivate Name, orempty If the function is created as the initializer of a class field, the name to use forNamedEvaluation of the field;empty otherwise.
[[IsClassConstructor]] a Boolean Indicates whether the function is a classconstructor. (Iftrue, invoking the function's[[Call]] will immediately throw aTypeError exception.)

All ECMAScriptfunction objects have the[[Call]] internal method defined here. ECMAScript functions that are alsoconstructors in addition have the[[Construct]] internal method.

10.2.1[[Call]] (thisArgument,argumentsList )

The[[Call]] internal method of an ECMAScriptfunction objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. LetcallerContext be therunning execution context.
  2. LetcalleeContext bePrepareForOrdinaryCall(F,undefined).
  3. Assert:calleeContext is now therunning execution context.
  4. IfF.[[IsClassConstructor]] istrue, then
    1. Leterror be a newly createdTypeError object.
    2. NOTE:error is created incalleeContext withF's associatedRealm Record.
    3. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
    4. ReturnThrowCompletion(error).
  5. PerformOrdinaryCallBindThis(F,calleeContext,thisArgument).
  6. Letresult beCompletion(OrdinaryCallEvaluateBody(F,argumentsList)).
  7. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  8. Ifresult is areturn completion, returnresult.[[Value]].
  9. ReturnIfAbrupt(result).
  10. Returnundefined.
Note

WhencalleeContext is removed from theexecution context stack in step7 it must not be destroyed if it is suspended and retained for later resumption by an accessible Generator.

10.2.1.1 PrepareForOrdinaryCall (F,newTarget )

The abstract operation PrepareForOrdinaryCall takes argumentsF (an ECMAScriptfunction object) andnewTarget (an Object orundefined) and returns anexecution context. It performs the following steps when called:

  1. LetcallerContext be therunning execution context.
  2. LetcalleeContext be a newECMAScript code execution context.
  3. Set the Function ofcalleeContext toF.
  4. LetcalleeRealm beF.[[Realm]].
  5. Set theRealm ofcalleeContext tocalleeRealm.
  6. Set the ScriptOrModule ofcalleeContext toF.[[ScriptOrModule]].
  7. LetlocalEnv beNewFunctionEnvironment(F,newTarget).
  8. Set the LexicalEnvironment ofcalleeContext tolocalEnv.
  9. Set the VariableEnvironment ofcalleeContext tolocalEnv.
  10. Set the PrivateEnvironment ofcalleeContext toF.[[PrivateEnvironment]].
  11. IfcallerContext is not already suspended, suspendcallerContext.
  12. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  13. NOTE: Any exception objects produced after this point are associated withcalleeRealm.
  14. ReturncalleeContext.

10.2.1.2 OrdinaryCallBindThis (F,calleeContext,thisArgument )

The abstract operation OrdinaryCallBindThis takes argumentsF (an ECMAScriptfunction object),calleeContext (anexecution context), andthisArgument (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. LetthisMode beF.[[ThisMode]].
  2. IfthisMode islexical, returnunused.
  3. LetcalleeRealm beF.[[Realm]].
  4. LetlocalEnv be the LexicalEnvironment ofcalleeContext.
  5. IfthisMode isstrict, then
    1. LetthisValue bethisArgument.
  6. Else,
    1. IfthisArgument is eitherundefined ornull, then
      1. LetglobalEnv becalleeRealm.[[GlobalEnv]].
      2. Assert:globalEnv is aGlobal Environment Record.
      3. LetthisValue beglobalEnv.[[GlobalThisValue]].
    2. Else,
      1. LetthisValue be ! ToObject(thisArgument).
      2. NOTE:ToObject produces wrapper objects usingcalleeRealm.
  7. Assert:localEnv is aFunction Environment Record.
  8. Assert: The next step never returns anabrupt completion becauselocalEnv.[[ThisBindingStatus]] is notinitialized.
  9. Perform ! localEnv.BindThisValue(thisValue).
  10. Returnunused.

10.2.1.3 Runtime Semantics: EvaluateBody

Thesyntax-directed operation EvaluateBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

FunctionBody:FunctionStatementList
  1. Return ? EvaluateFunctionBody ofFunctionBody with argumentsfunctionObject andargumentsList.
ConciseBody:ExpressionBody
  1. Return ? EvaluateConciseBody ofConciseBody with argumentsfunctionObject andargumentsList.
GeneratorBody:FunctionBody
  1. Return ? EvaluateGeneratorBody ofGeneratorBody with argumentsfunctionObject andargumentsList.
AsyncGeneratorBody:FunctionBody
  1. Return ? EvaluateAsyncGeneratorBody ofAsyncGeneratorBody with argumentsfunctionObject andargumentsList.
AsyncFunctionBody:FunctionBody
  1. Return ? EvaluateAsyncFunctionBody ofAsyncFunctionBody with argumentsfunctionObject andargumentsList.
AsyncConciseBody:ExpressionBody
  1. Return ? EvaluateAsyncConciseBody ofAsyncConciseBody with argumentsfunctionObject andargumentsList.
Initializer:=AssignmentExpression
  1. Assert:argumentsList is empty.
  2. Assert:functionObject.[[ClassFieldInitializerName]] is notempty.
  3. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue, then
    1. Letvalue be ? NamedEvaluation ofInitializer with argumentfunctionObject.[[ClassFieldInitializerName]].
  4. Else,
    1. Letrhs be ? Evaluation ofAssignmentExpression.
    2. Letvalue be ? GetValue(rhs).
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:value,[[Target]]:empty }.
Note

Even though field initializers constitute a function boundary, callingFunctionDeclarationInstantiation does not have any observable effect and so is omitted.

ClassStaticBlockBody:ClassStaticBlockStatementList
  1. Assert:argumentsList is empty.
  2. Return ? EvaluateClassStaticBlockBody ofClassStaticBlockBody with argumentfunctionObject.

10.2.1.4 OrdinaryCallEvaluateBody (F,argumentsList )

The abstract operation OrdinaryCallEvaluateBody takes argumentsF (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. Return ? EvaluateBody ofF.[[ECMAScriptCode]] with argumentsF andargumentsList.

10.2.2[[Construct]] (argumentsList,newTarget )

The[[Construct]] internal method of an ECMAScriptfunction objectF takes argumentsargumentsList (aList ofECMAScript language values) andnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. LetcallerContext be therunning execution context.
  2. Letkind beF.[[ConstructorKind]].
  3. Ifkind isbase, then
    1. LetthisArgument be ? OrdinaryCreateFromConstructor(newTarget,"%Object.prototype%").
  4. LetcalleeContext bePrepareForOrdinaryCall(F,newTarget).
  5. Assert:calleeContext is now therunning execution context.
  6. Ifkind isbase, then
    1. PerformOrdinaryCallBindThis(F,calleeContext,thisArgument).
    2. LetinitializeResult beCompletion(InitializeInstanceElements(thisArgument,F)).
    3. IfinitializeResult is anabrupt completion, then
      1. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
      2. Return ? initializeResult.
  7. LetconstructorEnv be the LexicalEnvironment ofcalleeContext.
  8. Letresult beCompletion(OrdinaryCallEvaluateBody(F,argumentsList)).
  9. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  10. Ifresult is areturn completion, then
    1. Ifresult.[[Value]]is an Object, returnresult.[[Value]].
    2. Ifkind isbase, returnthisArgument.
    3. Ifresult.[[Value]] is notundefined, throw aTypeError exception.
  11. Else,
    1. ReturnIfAbrupt(result).
  12. LetthisBinding be ? constructorEnv.GetThisBinding().
  13. Assert:thisBindingis an Object.
  14. ReturnthisBinding.

10.2.3 OrdinaryFunctionCreate (functionPrototype,sourceText,ParameterList,Body,thisMode,env,privateEnv )

The abstract operation OrdinaryFunctionCreate takes argumentsfunctionPrototype (an Object),sourceText (a sequence of Unicode code points),ParameterList (aParse Node),Body (aParse Node),thisMode (lexical-this ornon-lexical-this),env (anEnvironment Record), andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is used to specify the runtime creation of a new function with a default[[Call]] internal method and no[[Construct]] internal method (although one may be subsequently added by an operation such asMakeConstructor).sourceText is the source text of the syntactic definition of the function to be created. It performs the following steps when called:

  1. LetinternalSlotsList be the internal slots listed inTable 30.
  2. LetF beOrdinaryObjectCreate(functionPrototype,internalSlotsList).
  3. SetF.[[Call]] to the definition specified in10.2.1.
  4. SetF.[[SourceText]] tosourceText.
  5. SetF.[[FormalParameters]] toParameterList.
  6. SetF.[[ECMAScriptCode]] toBody.
  7. If thesource text matched byBody isstrict mode code, letStrict betrue; else letStrict befalse.
  8. SetF.[[Strict]] toStrict.
  9. IfthisMode islexical-this, setF.[[ThisMode]] tolexical.
  10. Else ifStrict istrue, setF.[[ThisMode]] tostrict.
  11. Else, setF.[[ThisMode]] toglobal.
  12. SetF.[[IsClassConstructor]] tofalse.
  13. SetF.[[Environment]] toenv.
  14. SetF.[[PrivateEnvironment]] toprivateEnv.
  15. SetF.[[ScriptOrModule]] toGetActiveScriptOrModule().
  16. SetF.[[Realm]] tothe current Realm Record.
  17. SetF.[[HomeObject]] toundefined.
  18. SetF.[[Fields]] to a new emptyList.
  19. SetF.[[PrivateMethods]] to a new emptyList.
  20. SetF.[[ClassFieldInitializerName]] toempty.
  21. Letlen be theExpectedArgumentCount ofParameterList.
  22. PerformSetFunctionLength(F,len).
  23. ReturnF.

10.2.4 AddRestrictedFunctionProperties (F,realm )

The abstract operation AddRestrictedFunctionProperties takes argumentsF (afunction object) andrealm (aRealm Record) and returnsunused. It performs the following steps when called:

  1. Assert:realm.[[Intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.
  2. Letthrower berealm.[[Intrinsics]].[[%ThrowTypeError%]].
  3. Perform ! DefinePropertyOrThrow(F,"caller", PropertyDescriptor {[[Get]]:thrower,[[Set]]:thrower,[[Enumerable]]:false,[[Configurable]]:true }).
  4. Perform ! DefinePropertyOrThrow(F,"arguments", PropertyDescriptor {[[Get]]:thrower,[[Set]]:thrower,[[Enumerable]]:false,[[Configurable]]:true }).
  5. Returnunused.

10.2.4.1 %ThrowTypeError% ( )

This function is the%ThrowTypeError% intrinsic object.

It is an anonymous built-infunction object that is defined once for eachrealm.

It performs the following steps when called:

  1. Throw aTypeError exception.

The value of the[[Extensible]] internal slot of this function isfalse.

The"length" property of this function has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

The"name" property of this function has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

10.2.5 MakeConstructor (F [ ,writablePrototype [ ,prototype ] ] )

The abstract operation MakeConstructor takes argumentF (an ECMAScriptfunction object or a built-infunction object) and optional argumentswritablePrototype (a Boolean) andprototype (an Object) and returnsunused. It convertsF into aconstructor. It performs the following steps when called:

  1. IfF is an ECMAScriptfunction object, then
    1. Assert:IsConstructor(F) isfalse.
    2. Assert:F is an extensible object that does not have a"prototype" own property.
    3. SetF.[[Construct]] to the definition specified in10.2.2.
  2. Else,
    1. SetF.[[Construct]] to the definition specified in10.3.2.
  3. SetF.[[ConstructorKind]] tobase.
  4. IfwritablePrototype is not present, setwritablePrototype totrue.
  5. Ifprototype is not present, then
    1. Setprototype toOrdinaryObjectCreate(%Object.prototype%).
    2. Perform ! DefinePropertyOrThrow(prototype,"constructor", PropertyDescriptor {[[Value]]:F,[[Writable]]:writablePrototype,[[Enumerable]]:false,[[Configurable]]:true }).
  6. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:writablePrototype,[[Enumerable]]:false,[[Configurable]]:false }).
  7. Returnunused.

10.2.6 MakeClassConstructor (F )

The abstract operation MakeClassConstructor takes argumentF (an ECMAScriptfunction object) and returnsunused. It performs the following steps when called:

  1. Assert:F.[[IsClassConstructor]] isfalse.
  2. SetF.[[IsClassConstructor]] totrue.
  3. Returnunused.

10.2.7 MakeMethod (F,homeObject )

The abstract operation MakeMethod takes argumentsF (an ECMAScriptfunction object) andhomeObject (an Object) and returnsunused. It configuresF as a method. It performs the following steps when called:

  1. SetF.[[HomeObject]] tohomeObject.
  2. Returnunused.

10.2.8 DefineMethodProperty (homeObject,key,closure,enumerable )

The abstract operation DefineMethodProperty takes argumentshomeObject (an Object),key (aproperty key orPrivate Name),closure (afunction object), andenumerable (a Boolean) and returns either anormal completion containing either aPrivateElement orunused, or anabrupt completion. It performs the following steps when called:

  1. Assert:homeObject is an ordinary, extensible object.
  2. Ifkey is aPrivate Name, then
    1. ReturnPrivateElement {[[Key]]:key,[[Kind]]:method,[[Value]]:closure }.
  3. Else,
    1. Letdesc be the PropertyDescriptor {[[Value]]:closure,[[Writable]]:true,[[Enumerable]]:enumerable,[[Configurable]]:true }.
    2. Perform ? DefinePropertyOrThrow(homeObject,key,desc).
    3. NOTE:DefinePropertyOrThrow only returns anabrupt completion when attempting to define a class static method whosekey is"prototype".
    4. Returnunused.

10.2.9 SetFunctionName (F,name [ ,prefix ] )

The abstract operation SetFunctionName takes argumentsF (afunction object) andname (aproperty key orPrivate Name) and optional argumentprefix (a String) and returnsunused. It adds a"name" property toF. It performs the following steps when called:

  1. Assert:F is an extensible object that does not have a"name" own property.
  2. Ifnameis a Symbol, then
    1. Letdescription bename's[[Description]] value.
    2. Ifdescription isundefined, setname to the empty String.
    3. Else, setname to thestring-concatenation of"[",description, and"]".
  3. Else ifname is aPrivate Name, then
    1. Setname toname.[[Description]].
  4. IfF has an[[InitialName]] internal slot, then
    1. SetF.[[InitialName]] toname.
  5. Ifprefix is present, then
    1. Setname to thestring-concatenation ofprefix, the code unit 0x0020 (SPACE), andname.
    2. IfF has an[[InitialName]] internal slot, then
      1. Optionally, setF.[[InitialName]] toname.
  6. Perform ! DefinePropertyOrThrow(F,"name", PropertyDescriptor {[[Value]]:name,[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }).
  7. Returnunused.

10.2.10 SetFunctionLength (F,length )

The abstract operation SetFunctionLength takes argumentsF (afunction object) andlength (a non-negativeinteger or +∞) and returnsunused. It adds a"length" property toF. It performs the following steps when called:

  1. Assert:F is an extensible object that does not have a"length" own property.
  2. Perform ! DefinePropertyOrThrow(F,"length", PropertyDescriptor {[[Value]]:𝔽(length),[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }).
  3. Returnunused.

10.2.11 FunctionDeclarationInstantiation (func,argumentsList )

The abstract operation FunctionDeclarationInstantiation takes argumentsfunc (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containingunused or anabrupt completion.func is thefunction object for which theexecution context is being established.

Note 1

When anexecution context is established for evaluating an ECMAScript function a newFunction Environment Record is created and bindings for each formal parameter are instantiated in thatEnvironment Record. Each declaration in the function body is also instantiated. If the function's formal parameters do not include any default value initializers then the body declarations are instantiated in the sameEnvironment Record as the parameters. If default value parameter initializers exist, a secondEnvironment Record is created for the body declarations. Formal parameters and functions are initialized as part of FunctionDeclarationInstantiation. All other bindings are initialized during evaluation of the function body.

It performs the following steps when called:

  1. LetcalleeContext be therunning execution context.
  2. Letcode befunc.[[ECMAScriptCode]].
  3. Letstrict befunc.[[Strict]].
  4. Letformals befunc.[[FormalParameters]].
  5. LetparameterNames be theBoundNames offormals.
  6. IfparameterNames has any duplicate entries, lethasDuplicates betrue. Otherwise, lethasDuplicates befalse.
  7. LetsimpleParameterList beIsSimpleParameterList offormals.
  8. LethasParameterExpressions beContainsExpression offormals.
  9. LetvarNames be theVarDeclaredNames ofcode.
  10. LetvarDeclarations be theVarScopedDeclarations ofcode.
  11. LetlexicalNames be theLexicallyDeclaredNames ofcode.
  12. LetfunctionNames be a new emptyList.
  13. LetfunctionsToInitialize be a new emptyList.
  14. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is neither aVariableDeclaration nor aForBinding nor aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. Letfn be the sole element of theBoundNames ofd.
      3. IffunctionNames does not containfn, then
        1. Insertfn as the first element offunctionNames.
        2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
        3. Insertd as the first element offunctionsToInitialize.
  15. LetargumentsObjectNeeded betrue.
  16. Iffunc.[[ThisMode]] islexical, then
    1. NOTE: Arrow functions never have an arguments object.
    2. SetargumentsObjectNeeded tofalse.
  17. Else ifparameterNames contains"arguments", then
    1. SetargumentsObjectNeeded tofalse.
  18. Else ifhasParameterExpressions isfalse, then
    1. IffunctionNames contains"arguments" orlexicalNames contains"arguments", then
      1. SetargumentsObjectNeeded tofalse.
  19. Ifstrict istrue orhasParameterExpressions isfalse, then
    1. NOTE: Only a singleEnvironment Record is needed for the parameters, since calls toeval instrict mode code cannot create new bindings which are visible outside of theeval.
    2. Letenv be the LexicalEnvironment ofcalleeContext.
  20. Else,
    1. NOTE: A separateEnvironment Record is needed to ensure that bindings created bydirect eval calls in the formal parameter list are outside the environment where parameters are declared.
    2. LetcalleeEnv be the LexicalEnvironment ofcalleeContext.
    3. Letenv beNewDeclarativeEnvironment(calleeEnv).
    4. Assert: The VariableEnvironment ofcalleeContext iscalleeEnv.
    5. Set the LexicalEnvironment ofcalleeContext toenv.
  21. For each StringparamName ofparameterNames, do
    1. LetalreadyDeclared be ! env.HasBinding(paramName).
    2. NOTE:Early errors ensure that duplicate parameter names can only occur innon-strict functions that do not have parameter default values or rest parameters.
    3. IfalreadyDeclared isfalse, then
      1. Perform ! env.CreateMutableBinding(paramName,false).
      2. IfhasDuplicates istrue, then
        1. Perform ! env.InitializeBinding(paramName,undefined).
  22. IfargumentsObjectNeeded istrue, then
    1. Ifstrict istrue orsimpleParameterList isfalse, then
      1. Letao beCreateUnmappedArgumentsObject(argumentsList).
    2. Else,
      1. NOTE: A mapped argument object is only provided fornon-strict functions that don't have a rest parameter, any parameter default value initializers, or any destructured parameters.
      2. Letao beCreateMappedArgumentsObject(func,formals,argumentsList,env).
    3. Ifstrict istrue, then
      1. Perform ! env.CreateImmutableBinding("arguments",false).
      2. NOTE: Instrict mode codeearly errors prevent attempting to assign to this binding, so its mutability is not observable.
    4. Else,
      1. Perform ! env.CreateMutableBinding("arguments",false).
    5. Perform ! env.InitializeBinding("arguments",ao).
    6. LetparameterBindings be thelist-concatenation ofparameterNames and «"arguments" ».
  23. Else,
    1. LetparameterBindings beparameterNames.
  24. LetiteratorRecord beCreateListIteratorRecord(argumentsList).
  25. IfhasDuplicates istrue, then
    1. Perform ? IteratorBindingInitialization offormals with argumentsiteratorRecord andundefined.
  26. Else,
    1. Perform ? IteratorBindingInitialization offormals with argumentsiteratorRecord andenv.
  27. IfhasParameterExpressions isfalse, then
    1. NOTE: Only a singleEnvironment Record is needed for the parameters and top-level vars.
    2. LetinstantiatedVarNames be a copy of theListparameterBindings.
    3. For each elementn ofvarNames, do
      1. IfinstantiatedVarNames does not containn, then
        1. Appendn toinstantiatedVarNames.
        2. Perform ! env.CreateMutableBinding(n,false).
        3. Perform ! env.InitializeBinding(n,undefined).
    4. LetvarEnv beenv.
  28. Else,
    1. NOTE: A separateEnvironment Record is needed to ensure that closures created by expressions in the formal parameter list do not have visibility of declarations in the function body.
    2. LetvarEnv beNewDeclarativeEnvironment(env).
    3. Set the VariableEnvironment ofcalleeContext tovarEnv.
    4. LetinstantiatedVarNames be a new emptyList.
    5. For each elementn ofvarNames, do
      1. IfinstantiatedVarNames does not containn, then
        1. Appendn toinstantiatedVarNames.
        2. Perform ! varEnv.CreateMutableBinding(n,false).
        3. IfparameterBindings does not containn, or iffunctionNames containsn, then
          1. LetinitialValue beundefined.
        4. Else,
          1. LetinitialValue be ! env.GetBindingValue(n,false).
        5. Perform ! varEnv.InitializeBinding(n,initialValue).
        6. NOTE: A var with the same name as a formal parameter initially has the same value as the corresponding initialized parameter.
  29. NOTE: AnnexB.3.2.1 adds additional steps at this point.
  30. Ifstrict isfalse, then
    1. LetlexEnv beNewDeclarativeEnvironment(varEnv).
    2. NOTE:Non-strict functions use a separateEnvironment Record for top-level lexical declarations so that adirect eval can determine whether any var scoped declarations introduced by the eval code conflict with pre-existing top-level lexically scoped declarations. This is not needed forstrict functions because a strictdirect eval always places all declarations into a newEnvironment Record.
  31. Else,
    1. LetlexEnv bevarEnv.
  32. Set the LexicalEnvironment ofcalleeContext tolexEnv.
  33. LetlexDeclarations be theLexicallyScopedDeclarations ofcode.
  34. For each elementd oflexDeclarations, do
    1. NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ! lexEnv.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ! lexEnv.CreateMutableBinding(dn,false).
  35. LetprivateEnv be the PrivateEnvironment ofcalleeContext.
  36. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentslexEnv andprivateEnv.
    3. Perform ! varEnv.SetMutableBinding(fn,fo,false).
  37. Returnunused.
Note 2

B.3.2 provides an extension to the above algorithm that is necessary for backwards compatibility with web browser implementations of ECMAScript that predate ECMAScript 2015.

10.3 Built-in Function Objects

A built-infunction object is anordinary object; it must satisfy the requirements forordinary objects set out in10.1.

In addition to the internal slots required of everyordinary object (see10.1), a built-infunction object must also have the following internal slots:

  • [[Realm]], aRealm Record that represents therealm in which the function was created.
  • [[InitialName]], a String that is the initial name of the function. It is used by20.2.3.5.

The initial value of a built-infunction object's[[Prototype]] internal slot is%Function.prototype%, unless otherwise specified.

A built-infunction object must have a[[Call]] internal method that conforms to the definition in10.3.1.

A built-infunction object has a[[Construct]] internal method if and only if it is described as a “constructor”, or some algorithm in this specification explicitly sets its[[Construct]] internal method. Such a[[Construct]] internal method must conform to the definition in10.3.2.

An implementation may provide additional built-infunction objects that are not defined in this specification.

10.3.1[[Call]] (thisArgument,argumentsList )

The[[Call]] internal method of a built-infunction objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Return ? BuiltinCallOrConstruct(F,thisArgument,argumentsList,undefined).

10.3.2[[Construct]] (argumentsList,newTarget )

The[[Construct]] internal method of a built-infunction objectF (when the method is present) takes argumentsargumentsList (aList ofECMAScript language values) andnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Return ? BuiltinCallOrConstruct(F,uninitialized,argumentsList,newTarget).

10.3.3 BuiltinCallOrConstruct (F,thisArgument,argumentsList,newTarget )

The abstract operation BuiltinCallOrConstruct takes argumentsF (a built-infunction object),thisArgument (anECMAScript language value oruninitialized),argumentsList (aList ofECMAScript language values), andnewTarget (aconstructor orundefined) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. LetcallerContext be therunning execution context.
  2. IfcallerContext is not already suspended, suspendcallerContext.
  3. LetcalleeContext be a newexecution context.
  4. Set the Function ofcalleeContext toF.
  5. LetcalleeRealm beF.[[Realm]].
  6. Set theRealm ofcalleeContext tocalleeRealm.
  7. Set the ScriptOrModule ofcalleeContext tonull.
  8. Perform any necessaryimplementation-defined initialization ofcalleeContext.
  9. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  10. Letresult be theCompletion Record that isthe result of evaluatingF in a manner that conforms to the specification ofF. IfthisArgument isuninitialized, thethis value is uninitialized; otherwise,thisArgument provides thethis value.argumentsList provides the named parameters.newTarget provides the NewTarget value.
  11. NOTE: IfF is defined in this document, “the specification ofF” is the behaviour specified for it via algorithm steps or other means.
  12. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  13. Return ? result.
Note

WhencalleeContext is removed from theexecution context stack it must not be destroyed if it has been suspended and retained by an accessible Generator for later resumption.

10.3.4 CreateBuiltinFunction (behaviour,length,name,additionalInternalSlotsList [ ,realm [ ,prototype [ ,prefix ] ] ] )

The abstract operation CreateBuiltinFunction takes argumentsbehaviour (anAbstract Closure, a set of algorithm steps, or some other definition of a function's behaviour provided in this specification),length (a non-negativeinteger or +∞),name (aproperty key or aPrivate Name), andadditionalInternalSlotsList (aList of names of internal slots) and optional argumentsrealm (aRealm Record),prototype (an Object ornull), andprefix (a String) and returns afunction object.additionalInternalSlotsList contains the names of additional internal slots that must be defined as part of the object. This operation creates a built-infunction object. It performs the following steps when called:

  1. Ifrealm is not present, setrealm tothe current Realm Record.
  2. Ifprototype is not present, setprototype torealm.[[Intrinsics]].[[%Function.prototype%]].
  3. LetinternalSlotsList be aList containing the names of all the internal slots that10.3 requires for the built-infunction object that is about to be created.
  4. Append tointernalSlotsList the elements ofadditionalInternalSlotsList.
  5. Letfunc be a new built-infunction object that, when called, performs the action described bybehaviour using the provided arguments as the values of the corresponding parameters specified bybehaviour. The newfunction object has internal slots whose names are the elements ofinternalSlotsList, and an[[InitialName]] internal slot.
  6. Setfunc.[[Prototype]] toprototype.
  7. Setfunc.[[Extensible]] totrue.
  8. Setfunc.[[Realm]] torealm.
  9. Setfunc.[[InitialName]] tonull.
  10. PerformSetFunctionLength(func,length).
  11. Ifprefix is not present, then
    1. PerformSetFunctionName(func,name).
  12. Else,
    1. PerformSetFunctionName(func,name,prefix).
  13. Returnfunc.

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation.

10.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-inexotic objects. These objects generally behave similar toordinary objects except for a few specific situations. The followingexotic objects use theordinary object internal methods except where it is explicitly specified otherwise below:

10.4.1 Bound Function Exotic Objects

Abound function exotic object is anexotic object that wraps anotherfunction object. Abound function exotic object is callable (it has a[[Call]] internal method and may have a[[Construct]] internal method). Calling abound function exotic object generally results in a call of its wrapped function.

An object is abound function exotic object if its[[Call]] and (if applicable)[[Construct]] internal methods use the following implementations, and its other essential internal methods use the definitions found in10.1. These methods are installed inBoundFunctionCreate.

Bound function exotic objects do not have the internal slots of ECMAScriptfunction objects listed inTable 30. Instead they have the internal slots listed inTable 31, in addition to[[Prototype]] and[[Extensible]].

Table 31: Internal Slots of Bound Function Exotic Objects
Internal Slot Type Description
[[BoundTargetFunction]] a callable Object The wrappedfunction object.
[[BoundThis]] anECMAScript language value The value that is always passed as thethis value when calling the wrapped function.
[[BoundArguments]] aList ofECMAScript language values A list of values whose elements are used as the first arguments to any call to the wrapped function.

10.4.1.1[[Call]] (thisArgument,argumentsList )

The[[Call]] internal method of abound function exotic objectF takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Lettarget beF.[[BoundTargetFunction]].
  2. LetboundThis beF.[[BoundThis]].
  3. LetboundArgs beF.[[BoundArguments]].
  4. Letargs be thelist-concatenation ofboundArgs andargumentsList.
  5. Return ? Call(target,boundThis,args).

10.4.1.2[[Construct]] (argumentsList,newTarget )

The[[Construct]] internal method of abound function exotic objectF takes argumentsargumentsList (aList ofECMAScript language values) andnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Lettarget beF.[[BoundTargetFunction]].
  2. Assert:IsConstructor(target) istrue.
  3. LetboundArgs beF.[[BoundArguments]].
  4. Letargs be thelist-concatenation ofboundArgs andargumentsList.
  5. IfSameValue(F,newTarget) istrue, setnewTarget totarget.
  6. Return ? Construct(target,args,newTarget).

10.4.1.3 BoundFunctionCreate (targetFunction,boundThis,boundArgs )

The abstract operation BoundFunctionCreate takes argumentstargetFunction (afunction object),boundThis (anECMAScript language value), andboundArgs (aList ofECMAScript language values) and returns either anormal completion containing afunction object or athrow completion. It is used to specify the creation of newbound function exotic objects. It performs the following steps when called:

  1. Letproto be ? targetFunction.[[GetPrototypeOf]]().
  2. LetinternalSlotsList be thelist-concatenation of «[[Prototype]],[[Extensible]] » and the internal slots listed inTable 31.
  3. Letobj beMakeBasicObject(internalSlotsList).
  4. Setobj.[[Prototype]] toproto.
  5. Setobj.[[Call]] as described in10.4.1.1.
  6. IfIsConstructor(targetFunction) istrue, then
    1. Setobj.[[Construct]] as described in10.4.1.2.
  7. Setobj.[[BoundTargetFunction]] totargetFunction.
  8. Setobj.[[BoundThis]] toboundThis.
  9. Setobj.[[BoundArguments]] toboundArgs.
  10. Returnobj.

10.4.2 Array Exotic Objects

An Array is anexotic object that gives special treatment toarray indexproperty keys (see6.1.7). A property whoseproperty name is anarray index is also called anelement. Every Array has a non-configurable"length" property whose value is always a non-negativeintegral Number whosemathematical value is strictly less than 232. The value of the"length" property is numerically greater than the name of every own property whose name is anarray index; whenever an own property of an Array is created or changed, other properties are adjusted as necessary to maintain this invariant. Specifically, whenever an own property is added whose name is anarray index, the value of the"length" property is changed, if necessary, to be one more than the numeric value of thatarray index; and whenever the value of the"length" property is changed, every own property whose name is anarray index whose value is not smaller than the new length is deleted. This constraint applies only to own properties of an Array and is unaffected by"length" orarray index properties that may be inherited from its prototypes.

An object is anArray exotic object (or simply, an Array) if its[[DefineOwnProperty]] internal method uses the following implementation, and its other essential internal methods use the definitions found in10.1. These methods are installed inArrayCreate.

10.4.2.1[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of anArray exotic objectA takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfP is"length", then
    1. Return ? ArraySetLength(A,Desc).
  2. Else ifP is anarray index, then
    1. LetlengthDesc beOrdinaryGetOwnProperty(A,"length").
    2. Assert:IsDataDescriptor(lengthDesc) istrue.
    3. Assert:lengthDesc.[[Configurable]] isfalse.
    4. Letlength belengthDesc.[[Value]].
    5. Assert:length is a non-negativeintegral Number.
    6. Letindex be ! ToUint32(P).
    7. Ifindexlength andlengthDesc.[[Writable]] isfalse, returnfalse.
    8. Letsucceeded be ! OrdinaryDefineOwnProperty(A,P,Desc).
    9. Ifsucceeded isfalse, returnfalse.
    10. Ifindexlength, then
      1. SetlengthDesc.[[Value]] toindex +1𝔽.
      2. Setsucceeded to ! OrdinaryDefineOwnProperty(A,"length",lengthDesc).
      3. Assert:succeeded istrue.
    11. Returntrue.
  3. Return ? OrdinaryDefineOwnProperty(A,P,Desc).

10.4.2.2 ArrayCreate (length [ ,proto ] )

The abstract operation ArrayCreate takes argumentlength (a non-negativeinteger) and optional argumentproto (an Object) and returns either anormal completion containing anArray exotic object or athrow completion. It is used to specify the creation of new Arrays. It performs the following steps when called:

  1. Iflength > 232 - 1, throw aRangeError exception.
  2. Ifproto is not present, setproto to%Array.prototype%.
  3. LetA beMakeBasicObject[[Prototype]],[[Extensible]] »).
  4. SetA.[[Prototype]] toproto.
  5. SetA.[[DefineOwnProperty]] as specified in10.4.2.1.
  6. Perform ! OrdinaryDefineOwnProperty(A,"length", PropertyDescriptor {[[Value]]:𝔽(length),[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  7. ReturnA.

10.4.2.3 ArraySpeciesCreate (originalArray,length )

The abstract operation ArraySpeciesCreate takes argumentsoriginalArray (an Object) andlength (a non-negativeinteger) and returns either anormal completion containing an Object or athrow completion. It is used to specify the creation of a new Array or similar object using aconstructor function that is derived fromoriginalArray. It does not enforce that theconstructor function returns an Array. It performs the following steps when called:

  1. LetisArray be ? IsArray(originalArray).
  2. IfisArray isfalse, return ? ArrayCreate(length).
  3. LetC be ? Get(originalArray,"constructor").
  4. IfIsConstructor(C) istrue, then
    1. LetthisRealm bethe current Realm Record.
    2. LetrealmC be ? GetFunctionRealm(C).
    3. IfthisRealm andrealmC are not the sameRealm Record, then
      1. IfSameValue(C,realmC.[[Intrinsics]].[[%Array%]]) istrue, setC toundefined.
  5. IfCis an Object, then
    1. SetC to ? Get(C,@@species).
    2. IfC isnull, setC toundefined.
  6. IfC isundefined, return ? ArrayCreate(length).
  7. IfIsConstructor(C) isfalse, throw aTypeError exception.
  8. Return ? Construct(C, «𝔽(length) »).
Note

IforiginalArray was created using the standard built-in Arrayconstructor for arealm that is not therealm of therunning execution context, then a new Array is created using therealm of therunning execution context. This maintains compatibility with Web browsers that have historically had that behaviour for theArray.prototype methods that now are defined using ArraySpeciesCreate.

10.4.2.4 ArraySetLength (A,Desc )

The abstract operation ArraySetLength takes argumentsA (an Array) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfDesc does not have a[[Value]] field, then
    1. Return ! OrdinaryDefineOwnProperty(A,"length",Desc).
  2. LetnewLenDesc be a copy ofDesc.
  3. LetnewLen be ? ToUint32(Desc.[[Value]]).
  4. LetnumberLen be ? ToNumber(Desc.[[Value]]).
  5. IfSameValueZero(newLen,numberLen) isfalse, throw aRangeError exception.
  6. SetnewLenDesc.[[Value]] tonewLen.
  7. LetoldLenDesc beOrdinaryGetOwnProperty(A,"length").
  8. Assert:IsDataDescriptor(oldLenDesc) istrue.
  9. Assert:oldLenDesc.[[Configurable]] isfalse.
  10. LetoldLen beoldLenDesc.[[Value]].
  11. IfnewLenoldLen, then
    1. Return ! OrdinaryDefineOwnProperty(A,"length",newLenDesc).
  12. IfoldLenDesc.[[Writable]] isfalse, returnfalse.
  13. IfnewLenDesc does not have a[[Writable]] field ornewLenDesc.[[Writable]] istrue, then
    1. LetnewWritable betrue.
  14. Else,
    1. NOTE: Setting the[[Writable]] attribute tofalse is deferred in case any elements cannot be deleted.
    2. LetnewWritable befalse.
    3. SetnewLenDesc.[[Writable]] totrue.
  15. Letsucceeded be ! OrdinaryDefineOwnProperty(A,"length",newLenDesc).
  16. Ifsucceeded isfalse, returnfalse.
  17. For each ownproperty keyP ofA such thatP is anarray index and ! ToUint32(P) ≥newLen, in descending numeric index order, do
    1. LetdeleteSucceeded be ! A.[[Delete]](P).
    2. IfdeleteSucceeded isfalse, then
      1. SetnewLenDesc.[[Value]] to ! ToUint32(P) +1𝔽.
      2. IfnewWritable isfalse, setnewLenDesc.[[Writable]] tofalse.
      3. Perform ! OrdinaryDefineOwnProperty(A,"length",newLenDesc).
      4. Returnfalse.
  18. IfnewWritable isfalse, then
    1. Setsucceeded to ! OrdinaryDefineOwnProperty(A,"length", PropertyDescriptor {[[Writable]]:false }).
    2. Assert:succeeded istrue.
  19. Returntrue.
Note

In steps3 and4, ifDesc.[[Value]] is an object then itsvalueOf method is called twice. This is legacy behaviour that was specified with this effect starting with the 2nd Edition of this specification.

10.4.3 String Exotic Objects

A String object is anexotic object that encapsulates a String value and exposes virtualinteger-indexeddata properties corresponding to the individual code unit elements of the String value.String exotic objects always have adata property named"length" whose value is the length of the encapsulated String value. Both the code unitdata properties and the"length" property are non-writable and non-configurable.

An object is aString exotic object (or simply, a String object) if its[[GetOwnProperty]],[[DefineOwnProperty]], and[[OwnPropertyKeys]] internal methods use the following implementations, and its other essential internal methods use the definitions found in10.1. These methods are installed inStringCreate.

String exotic objects have the same internal slots asordinary objects. They also have a[[StringData]] internal slot.

10.4.3.1[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of aString exotic objectS takes argumentP (aproperty key) and returns anormal completion containing either aProperty Descriptor orundefined. It performs the following steps when called:

  1. Letdesc beOrdinaryGetOwnProperty(S,P).
  2. Ifdesc is notundefined, returndesc.
  3. ReturnStringGetOwnProperty(S,P).

10.4.3.2[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of aString exotic objectS takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. LetstringDesc beStringGetOwnProperty(S,P).
  2. IfstringDesc is notundefined, then
    1. Letextensible beS.[[Extensible]].
    2. ReturnIsCompatiblePropertyDescriptor(extensible,Desc,stringDesc).
  3. Return ! OrdinaryDefineOwnProperty(S,P,Desc).

10.4.3.3[[OwnPropertyKeys]] ( )

The[[OwnPropertyKeys]] internal method of aString exotic objectO takes no arguments and returns anormal completion containing aList ofproperty keys. It performs the following steps when called:

  1. Letkeys be a new emptyList.
  2. Letstr beO.[[StringData]].
  3. Assert:stris a String.
  4. Letlen be the length ofstr.
  5. For eachintegeri such that 0 ≤i <len, in ascending order, do
    1. Append ! ToString(𝔽(i)) tokeys.
  6. For each ownproperty keyP ofO such thatP is anarray index and ! ToIntegerOrInfinity(P) ≥len, in ascending numeric index order, do
    1. AppendP tokeys.
  7. For each ownproperty keyP ofO such thatPis a String andP is not anarray index, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  8. For each ownproperty keyP ofO such thatPis a Symbol, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  9. Returnkeys.

10.4.3.4 StringCreate (value,prototype )

The abstract operation StringCreate takes argumentsvalue (a String) andprototype (an Object) and returns aString exotic object. It is used to specify the creation of newString exotic objects. It performs the following steps when called:

  1. LetS beMakeBasicObject[[Prototype]],[[Extensible]],[[StringData]] »).
  2. SetS.[[Prototype]] toprototype.
  3. SetS.[[StringData]] tovalue.
  4. SetS.[[GetOwnProperty]] as specified in10.4.3.1.
  5. SetS.[[DefineOwnProperty]] as specified in10.4.3.2.
  6. SetS.[[OwnPropertyKeys]] as specified in10.4.3.3.
  7. Letlength be the length ofvalue.
  8. Perform ! DefinePropertyOrThrow(S,"length", PropertyDescriptor {[[Value]]:𝔽(length),[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }).
  9. ReturnS.

10.4.3.5 StringGetOwnProperty (S,P )

The abstract operation StringGetOwnProperty takes argumentsS (an Object that has a[[StringData]] internal slot) andP (aproperty key) and returns aProperty Descriptor orundefined. It performs the following steps when called:

  1. IfPis not a String, returnundefined.
  2. Letindex beCanonicalNumericIndexString(P).
  3. Ifindex isundefined, returnundefined.
  4. IfIsIntegralNumber(index) isfalse, returnundefined.
  5. Ifindex is-0𝔽, returnundefined.
  6. Letstr beS.[[StringData]].
  7. Assert:stris a String.
  8. Letlen be the length ofstr.
  9. If(index) < 0 orlen(index), returnundefined.
  10. LetresultStr be thesubstring ofstr from(index) to(index) + 1.
  11. Return the PropertyDescriptor {[[Value]]:resultStr,[[Writable]]:false,[[Enumerable]]:true,[[Configurable]]:false }.

10.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments object available to their code. Depending upon the characteristics of the function definition, its arguments object is either anordinary object or anarguments exotic object. Anarguments exotic object is anexotic object whosearray index properties map to the formal parameters bindings of an invocation of its associated ECMAScript function.

An object is anarguments exotic object if its internal methods use the following implementations, with the ones not specified here using those found in10.1. These methods are installed inCreateMappedArgumentsObject.

Note 1

WhileCreateUnmappedArgumentsObject is grouped into this clause, it creates anordinary object, not anarguments exotic object.

Arguments exotic objects have the same internal slots asordinary objects. They also have a[[ParameterMap]] internal slot. Ordinary arguments objects also have a[[ParameterMap]] internal slot whose value is always undefined. For ordinary argument objects the[[ParameterMap]] internal slot is only used byObject.prototype.toString (20.1.3.6) to identify them as such.

Note 2

Theinteger-indexeddata properties of anarguments exotic object whose numeric name values are less than the number of formal parameters of the correspondingfunction object initially share their values with the corresponding argument bindings in the function'sexecution context. This means that changing the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if such a property is deleted and then redefined or if the property is changed into anaccessor property. If the arguments object is anordinary object, the values of its properties are simply a copy of the arguments passed to the function and there is no dynamic linkage between the property values and the formal parameter values.

Note 3

The ParameterMap object and its property values are used as a device for specifying the arguments object correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to actually create or use such objects to implement the specified semantics.

Note 4

Ordinary arguments objects define a non-configurableaccessor property named"callee" which throws aTypeError exception on access. The"callee" property has a more specific meaning forarguments exotic objects, which are created only for some class ofnon-strict functions. The definition of this property in the ordinary variant exists to ensure that it is not defined in any other manner by conforming ECMAScript implementations.

Note 5

ECMAScript implementations ofarguments exotic objects have historically contained anaccessor property named"caller". Prior to ECMAScript 2017, this specification included the definition of a throwing"caller" property on ordinary arguments objects. Since implementations do not contain this extension any longer, ECMAScript 2017 dropped the requirement for a throwing"caller" accessor.

10.4.4.1[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of anarguments exotic objectargs takes argumentP (aproperty key) and returns anormal completion containing either aProperty Descriptor orundefined. It performs the following steps when called:

  1. Letdesc beOrdinaryGetOwnProperty(args,P).
  2. Ifdesc isundefined, returnundefined.
  3. Letmap beargs.[[ParameterMap]].
  4. LetisMapped be ! HasOwnProperty(map,P).
  5. IfisMapped istrue, then
    1. Setdesc.[[Value]] to ! Get(map,P).
  6. Returndesc.

10.4.4.2[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of anarguments exotic objectargs takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped be ! HasOwnProperty(map,P).
  3. LetnewArgDesc beDesc.
  4. IfisMapped istrue andIsDataDescriptor(Desc) istrue, then
    1. IfDesc does not have a[[Value]] field,Desc has a[[Writable]] field, andDesc.[[Writable]] isfalse, then
      1. SetnewArgDesc to a copy ofDesc.
      2. SetnewArgDesc.[[Value]] to ! Get(map,P).
  5. Letallowed be ! OrdinaryDefineOwnProperty(args,P,newArgDesc).
  6. Ifallowed isfalse, returnfalse.
  7. IfisMapped istrue, then
    1. IfIsAccessorDescriptor(Desc) istrue, then
      1. Perform ! map.[[Delete]](P).
    2. Else,
      1. IfDesc has a[[Value]] field, then
        1. Assert: The following Set will succeed, since formal parameters mapped by arguments objects are always writable.
        2. Perform ! Set(map,P,Desc.[[Value]],false).
      2. IfDesc has a[[Writable]] field andDesc.[[Writable]] isfalse, then
        1. Perform ! map.[[Delete]](P).
  8. Returntrue.

10.4.4.3[[Get]] (P,Receiver )

The[[Get]] internal method of anarguments exotic objectargs takes argumentsP (aproperty key) andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped be ! HasOwnProperty(map,P).
  3. IfisMapped isfalse, then
    1. Return ? OrdinaryGet(args,P,Receiver).
  4. Else,
    1. Assert:map contains a formal parameter mapping forP.
    2. Return ! Get(map,P).

10.4.4.4[[Set]] (P,V,Receiver )

The[[Set]] internal method of anarguments exotic objectargs takes argumentsP (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfSameValue(args,Receiver) isfalse, then
    1. LetisMapped befalse.
  2. Else,
    1. Letmap beargs.[[ParameterMap]].
    2. LetisMapped be ! HasOwnProperty(map,P).
  3. IfisMapped istrue, then
    1. Assert: The following Set will succeed, since formal parameters mapped by arguments objects are always writable.
    2. Perform ! Set(map,P,V,false).
  4. Return ? OrdinarySet(args,P,V,Receiver).

10.4.4.5[[Delete]] (P )

The[[Delete]] internal method of anarguments exotic objectargs takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Letmap beargs.[[ParameterMap]].
  2. LetisMapped be ! HasOwnProperty(map,P).
  3. Letresult be ? OrdinaryDelete(args,P).
  4. Ifresult istrue andisMapped istrue, then
    1. Perform ! map.[[Delete]](P).
  5. Returnresult.

10.4.4.6 CreateUnmappedArgumentsObject (argumentsList )

The abstract operation CreateUnmappedArgumentsObject takes argumentargumentsList (aList ofECMAScript language values) and returns anordinary object. It performs the following steps when called:

  1. Letlen be the number of elements inargumentsList.
  2. Letobj beOrdinaryObjectCreate(%Object.prototype%, «[[ParameterMap]] »).
  3. Setobj.[[ParameterMap]] toundefined.
  4. Perform ! DefinePropertyOrThrow(obj,"length", PropertyDescriptor {[[Value]]:𝔽(len),[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }).
  5. Letindex be 0.
  6. Repeat, whileindex <len,
    1. Letval beargumentsList[index].
    2. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)),val).
    3. Setindex toindex + 1.
  7. Perform ! DefinePropertyOrThrow(obj,@@iterator, PropertyDescriptor {[[Value]]: %Array.prototype.values%,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }).
  8. Perform ! DefinePropertyOrThrow(obj,"callee", PropertyDescriptor {[[Get]]:%ThrowTypeError%,[[Set]]:%ThrowTypeError%,[[Enumerable]]:false,[[Configurable]]:false }).
  9. Returnobj.

10.4.4.7 CreateMappedArgumentsObject (func,formals,argumentsList,env )

The abstract operation CreateMappedArgumentsObject takes argumentsfunc (an Object),formals (aParse Node),argumentsList (aList ofECMAScript language values), andenv (anEnvironment Record) and returns anarguments exotic object. It performs the following steps when called:

  1. Assert:formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain duplicate identifiers.
  2. Letlen be the number of elements inargumentsList.
  3. Letobj beMakeBasicObject[[Prototype]],[[Extensible]],[[ParameterMap]] »).
  4. Setobj.[[GetOwnProperty]] as specified in10.4.4.1.
  5. Setobj.[[DefineOwnProperty]] as specified in10.4.4.2.
  6. Setobj.[[Get]] as specified in10.4.4.3.
  7. Setobj.[[Set]] as specified in10.4.4.4.
  8. Setobj.[[Delete]] as specified in10.4.4.5.
  9. Setobj.[[Prototype]] to%Object.prototype%.
  10. Letmap beOrdinaryObjectCreate(null).
  11. Setobj.[[ParameterMap]] tomap.
  12. LetparameterNames be theBoundNames offormals.
  13. LetnumberOfParameters be the number of elements inparameterNames.
  14. Letindex be 0.
  15. Repeat, whileindex <len,
    1. Letval beargumentsList[index].
    2. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(𝔽(index)),val).
    3. Setindex toindex + 1.
  16. Perform ! DefinePropertyOrThrow(obj,"length", PropertyDescriptor {[[Value]]:𝔽(len),[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }).
  17. LetmappedNames be a new emptyList.
  18. Setindex tonumberOfParameters - 1.
  19. Repeat, whileindex ≥ 0,
    1. Letname beparameterNames[index].
    2. IfmappedNames does not containname, then
      1. Appendname tomappedNames.
      2. Ifindex <len, then
        1. Letg beMakeArgGetter(name,env).
        2. Letp beMakeArgSetter(name,env).
        3. Perform ! map.[[DefineOwnProperty]](!ToString(𝔽(index)), PropertyDescriptor {[[Set]]:p,[[Get]]:g,[[Enumerable]]:false,[[Configurable]]:true }).
    3. Setindex toindex - 1.
  20. Perform ! DefinePropertyOrThrow(obj,@@iterator, PropertyDescriptor {[[Value]]: %Array.prototype.values%,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }).
  21. Perform ! DefinePropertyOrThrow(obj,"callee", PropertyDescriptor {[[Value]]:func,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }).
  22. Returnobj.

10.4.4.7.1 MakeArgGetter (name,env )

The abstract operation MakeArgGetter takes argumentsname (a String) andenv (anEnvironment Record) and returns afunction object. It creates a built-infunction object that when executed returns the value bound forname inenv. It performs the following steps when called:

  1. LetgetterClosure be a newAbstract Closure with no parameters that capturesname andenv and performs the following steps when called:
    1. Returnenv.GetBindingValue(name,false).
  2. Letgetter beCreateBuiltinFunction(getterClosure, 0,"", « »).
  3. NOTE:getter is never directly accessible to ECMAScript code.
  4. Returngetter.

10.4.4.7.2 MakeArgSetter (name,env )

The abstract operation MakeArgSetter takes argumentsname (a String) andenv (anEnvironment Record) and returns afunction object. It creates a built-infunction object that when executed sets the value bound forname inenv. It performs the following steps when called:

  1. LetsetterClosure be a newAbstract Closure with parameters (value) that capturesname andenv and performs the following steps when called:
    1. Return ! env.SetMutableBinding(name,value,false).
  2. Letsetter beCreateBuiltinFunction(setterClosure, 1,"", « »).
  3. NOTE:setter is never directly accessible to ECMAScript code.
  4. Returnsetter.

10.4.5 TypedArray Exotic Objects

ATypedArray is anexotic object that performs special handling ofinteger indexproperty keys.

TypedArrays have the same internal slots asordinary objects and additionally[[ViewedArrayBuffer]],[[ArrayLength]],[[ByteOffset]],[[ContentType]], and[[TypedArrayName]] internal slots.

An object is aTypedArray if its[[GetOwnProperty]],[[HasProperty]],[[DefineOwnProperty]],[[Get]],[[Set]],[[Delete]], and[[OwnPropertyKeys]] internal methods use the definitions in this section, and its other essential internal methods use the definitions found in10.1. These methods are installed byTypedArrayCreate.

10.4.5.1[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of aTypedArrayO takes argumentP (aproperty key) and returns anormal completion containing either aProperty Descriptor orundefined. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. Letvalue beTypedArrayGetElement(O,numericIndex).
      2. Ifvalue isundefined, returnundefined.
      3. Return the PropertyDescriptor {[[Value]]:value,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:true }.
  2. ReturnOrdinaryGetOwnProperty(O,P).

10.4.5.2[[HasProperty]] (P )

The[[HasProperty]] internal method of aTypedArrayO takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, returnIsValidIntegerIndex(O,numericIndex).
  2. Return ? OrdinaryHasProperty(O,P).

10.4.5.3[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of aTypedArrayO takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. IfIsValidIntegerIndex(O,numericIndex) isfalse, returnfalse.
      2. IfDesc has a[[Configurable]] field andDesc.[[Configurable]] isfalse, returnfalse.
      3. IfDesc has an[[Enumerable]] field andDesc.[[Enumerable]] isfalse, returnfalse.
      4. IfIsAccessorDescriptor(Desc) istrue, returnfalse.
      5. IfDesc has a[[Writable]] field andDesc.[[Writable]] isfalse, returnfalse.
      6. IfDesc has a[[Value]] field, perform ? TypedArraySetElement(O,numericIndex,Desc.[[Value]]).
      7. Returntrue.
  2. Return ! OrdinaryDefineOwnProperty(O,P,Desc).

10.4.5.4[[Get]] (P,Receiver )

The[[Get]] internal method of aTypedArrayO takes argumentsP (aproperty key) andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. ReturnTypedArrayGetElement(O,numericIndex).
  2. Return ? OrdinaryGet(O,P,Receiver).

10.4.5.5[[Set]] (P,V,Receiver )

The[[Set]] internal method of aTypedArrayO takes argumentsP (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. IfSameValue(O,Receiver) istrue, then
        1. Perform ? TypedArraySetElement(O,numericIndex,V).
        2. Returntrue.
      2. IfIsValidIntegerIndex(O,numericIndex) isfalse, returntrue.
  2. Return ? OrdinarySet(O,P,V,Receiver).

10.4.5.6[[Delete]] (P )

The[[Delete]] internal method of aTypedArrayO takes argumentP (aproperty key) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. IfPis a String, then
    1. LetnumericIndex beCanonicalNumericIndexString(P).
    2. IfnumericIndex is notundefined, then
      1. IfIsValidIntegerIndex(O,numericIndex) isfalse, returntrue; else returnfalse.
  2. Return ! OrdinaryDelete(O,P).

10.4.5.7[[OwnPropertyKeys]] ( )

The[[OwnPropertyKeys]] internal method of aTypedArrayO takes no arguments and returns anormal completion containing aList ofproperty keys. It performs the following steps when called:

  1. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  2. Letkeys be a new emptyList.
  3. IfIsTypedArrayOutOfBounds(taRecord) isfalse, then
    1. Letlength beTypedArrayLength(taRecord).
    2. For eachintegeri such that 0 ≤i <length, in ascending order, do
      1. Append ! ToString(𝔽(i)) tokeys.
  4. For each ownproperty keyP ofO such thatPis a String andP is not aninteger index, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  5. For each ownproperty keyP ofO such thatPis a Symbol, in ascending chronological order of property creation, do
    1. AppendP tokeys.
  6. Returnkeys.

10.4.5.8 TypedArray With Buffer Witness Records

AnTypedArray With Buffer Witness Record is aRecord value used to encapsulate aTypedArray along with a cached byte length of the viewed buffer. It is used to help ensure there is a single shared memory read event of the byte length data block when the viewed buffer is agrowable SharedArrayBuffer.

TypedArray With Buffer Witness Records have the fields listed inTable 32.

Table 32:TypedArray With Buffer Witness Record Fields
Field Name Value Meaning
[[Object]] aTypedArray TheTypedArray whose buffer's byte length is loaded.
[[CachedBufferByteLength]] a non-negativeinteger ordetached The byte length of the object's[[ViewedArrayBuffer]] when theRecord was created.

10.4.5.9 MakeTypedArrayWithBufferWitnessRecord (obj,order )

The abstract operation MakeTypedArrayWithBufferWitnessRecord takes argumentsobj (aTypedArray) andorder (seq-cst orunordered) and returns aTypedArray With Buffer Witness Record. It performs the following steps when called:

  1. Letbuffer beobj.[[ViewedArrayBuffer]].
  2. IfIsDetachedBuffer(buffer) istrue, then
    1. LetbyteLength bedetached.
  3. Else,
    1. LetbyteLength beArrayBufferByteLength(buffer,order).
  4. Return theTypedArray With Buffer Witness Record {[[Object]]:obj,[[CachedBufferByteLength]]:byteLength }.

10.4.5.10 TypedArrayCreate (prototype )

The abstract operation TypedArrayCreate takes argumentprototype (an Object) and returns aTypedArray. It is used to specify the creation of newTypedArrays. It performs the following steps when called:

  1. LetinternalSlotsList be «[[Prototype]],[[Extensible]],[[ViewedArrayBuffer]],[[TypedArrayName]],[[ContentType]],[[ByteLength]],[[ByteOffset]],[[ArrayLength]] ».
  2. LetA beMakeBasicObject(internalSlotsList).
  3. SetA.[[GetOwnProperty]] as specified in10.4.5.1.
  4. SetA.[[HasProperty]] as specified in10.4.5.2.
  5. SetA.[[DefineOwnProperty]] as specified in10.4.5.3.
  6. SetA.[[Get]] as specified in10.4.5.4.
  7. SetA.[[Set]] as specified in10.4.5.5.
  8. SetA.[[Delete]] as specified in10.4.5.6.
  9. SetA.[[OwnPropertyKeys]] as specified in10.4.5.7.
  10. SetA.[[Prototype]] toprototype.
  11. ReturnA.

10.4.5.11 TypedArrayByteLength (taRecord )

The abstract operation TypedArrayByteLength takes argumenttaRecord (aTypedArray With Buffer Witness Record) and returns a non-negativeinteger. It performs the following steps when called:

  1. IfIsTypedArrayOutOfBounds(taRecord) istrue, return 0.
  2. Letlength beTypedArrayLength(taRecord).
  3. Iflength = 0, return 0.
  4. LetO betaRecord.[[Object]].
  5. IfO.[[ByteLength]] is notauto, returnO.[[ByteLength]].
  6. LetelementSize beTypedArrayElementSize(O).
  7. Returnlength ×elementSize.

10.4.5.12 TypedArrayLength (taRecord )

The abstract operation TypedArrayLength takes argumenttaRecord (aTypedArray With Buffer Witness Record) and returns a non-negativeinteger. It performs the following steps when called:

  1. Assert:IsTypedArrayOutOfBounds(taRecord) isfalse.
  2. LetO betaRecord.[[Object]].
  3. IfO.[[ArrayLength]] is notauto, returnO.[[ArrayLength]].
  4. Assert:IsFixedLengthArrayBuffer(O.[[ViewedArrayBuffer]]) isfalse.
  5. LetbyteOffset beO.[[ByteOffset]].
  6. LetelementSize beTypedArrayElementSize(O).
  7. LetbyteLength betaRecord.[[CachedBufferByteLength]].
  8. Assert:byteLength is notdetached.
  9. Returnfloor((byteLength -byteOffset) /elementSize).

10.4.5.13 IsTypedArrayOutOfBounds (taRecord )

The abstract operation IsTypedArrayOutOfBounds takes argumenttaRecord (aTypedArray With Buffer Witness Record) and returns a Boolean. It checks if any of the object's numeric properties reference a value at an index not contained within the underlying buffer's bounds. It performs the following steps when called:

  1. LetO betaRecord.[[Object]].
  2. LetbufferByteLength betaRecord.[[CachedBufferByteLength]].
  3. Assert:IsDetachedBuffer(O.[[ViewedArrayBuffer]]) istrue if and only ifbufferByteLength isdetached.
  4. IfbufferByteLength isdetached, returntrue.
  5. LetbyteOffsetStart beO.[[ByteOffset]].
  6. IfO.[[ArrayLength]] isauto, then
    1. LetbyteOffsetEnd bebufferByteLength.
  7. Else,
    1. LetelementSize beTypedArrayElementSize(O).
    2. LetbyteOffsetEnd bebyteOffsetStart +O.[[ArrayLength]] ×elementSize.
  8. IfbyteOffsetStart >bufferByteLength orbyteOffsetEnd >bufferByteLength, returntrue.
  9. NOTE: 0-lengthTypedArrays are not considered out-of-bounds.
  10. Returnfalse.

10.4.5.14 IsValidIntegerIndex (O,index )

The abstract operation IsValidIntegerIndex takes argumentsO (aTypedArray) andindex (a Number) and returns a Boolean. It performs the following steps when called:

  1. IfIsDetachedBuffer(O.[[ViewedArrayBuffer]]) istrue, returnfalse.
  2. IfIsIntegralNumber(index) isfalse, returnfalse.
  3. Ifindex is-0𝔽, returnfalse.
  4. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,unordered).
  5. NOTE: Bounds checking is not a synchronizing operation whenO's backing buffer is agrowable SharedArrayBuffer.
  6. IfIsTypedArrayOutOfBounds(taRecord) istrue, returnfalse.
  7. Letlength beTypedArrayLength(taRecord).
  8. If(index) < 0 or(index) ≥length, returnfalse.
  9. Returntrue.

10.4.5.15 TypedArrayGetElement (O,index )

The abstract operation TypedArrayGetElement takes argumentsO (aTypedArray) andindex (a Number) and returns a Number, a BigInt, orundefined. It performs the following steps when called:

  1. IfIsValidIntegerIndex(O,index) isfalse, returnundefined.
  2. Letoffset beO.[[ByteOffset]].
  3. LetelementSize beTypedArrayElementSize(O).
  4. LetbyteIndexInBuffer be ((index) ×elementSize) +offset.
  5. LetelementType beTypedArrayElementType(O).
  6. ReturnGetValueFromBuffer(O.[[ViewedArrayBuffer]],byteIndexInBuffer,elementType,true,unordered).

10.4.5.16 TypedArraySetElement (O,index,value )

The abstract operation TypedArraySetElement takes argumentsO (aTypedArray),index (a Number), andvalue (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. IfO.[[ContentType]] isbigint, letnumValue be ? ToBigInt(value).
  2. Otherwise, letnumValue be ? ToNumber(value).
  3. IfIsValidIntegerIndex(O,index) istrue, then
    1. Letoffset beO.[[ByteOffset]].
    2. LetelementSize beTypedArrayElementSize(O).
    3. LetbyteIndexInBuffer be ((index) ×elementSize) +offset.
    4. LetelementType beTypedArrayElementType(O).
    5. PerformSetValueInBuffer(O.[[ViewedArrayBuffer]],byteIndexInBuffer,elementType,numValue,true,unordered).
  4. Returnunused.
Note

This operation always appears to succeed, but it has no effect when attempting to write past the end of aTypedArray or to aTypedArray which is backed by a detached ArrayBuffer.

10.4.5.17 IsArrayBufferViewOutOfBounds (O )

The abstract operation IsArrayBufferViewOutOfBounds takes argumentO (aTypedArray or a DataView) and returns a Boolean. It checks if either any of aTypedArray's numeric properties or a DataView object's methods can reference a value at an index not contained within the underlying data block's bounds. This abstract operation exists as a convenience for upstream specifications. It performs the following steps when called:

  1. IfO has a[[DataView]] internal slot, then
    1. LetviewRecord beMakeDataViewWithBufferWitnessRecord(O,seq-cst).
    2. ReturnIsViewOutOfBounds(viewRecord).
  2. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  3. ReturnIsTypedArrayOutOfBounds(taRecord).

10.4.6 Module Namespace Exotic Objects

Amodule namespace exotic object is anexotic object that exposes the bindings exported from an ECMAScriptModule (See16.2.3). There is a one-to-one correspondence between the String-keyed own properties of amodule namespace exotic object and the binding names exported by theModule. The exported bindings include any bindings that are indirectly exported usingexport * export items. Each String-valued ownproperty key is theStringValue of the corresponding exported binding name. These are the only String-keyed properties of amodule namespace exotic object. Each such property has the attributes {[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:false }.Module namespace exotic objects are not extensible.

An object is amodule namespace exotic object if its[[GetPrototypeOf]],[[SetPrototypeOf]],[[IsExtensible]],[[PreventExtensions]],[[GetOwnProperty]],[[DefineOwnProperty]],[[HasProperty]],[[Get]],[[Set]],[[Delete]], and[[OwnPropertyKeys]] internal methods use the definitions in this section, and its other essential internal methods use the definitions found in10.1. These methods are installed byModuleNamespaceCreate.

Module namespace exotic objects have the internal slots defined inTable 33.

Table 33: Internal Slots of Module Namespace Exotic Objects
Internal Slot Type Description
[[Module]] aModule Record TheModule Record whose exports this namespace exposes.
[[Exports]] aList of Strings AList whose elements are the String values of the exported names exposed as own properties of this object. The list is ordered as if an Array of those String values had been sorted using %Array.prototype.sort% usingundefined ascomparefn.

10.4.6.1[[GetPrototypeOf]] ( )

The[[GetPrototypeOf]] internal method of amodule namespace exotic object takes no arguments and returns anormal completion containingnull. It performs the following steps when called:

  1. Returnnull.

10.4.6.2[[SetPrototypeOf]] (V )

The[[SetPrototypeOf]] internal method of amodule namespace exotic objectO takes argumentV (an Object ornull) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. Return ! SetImmutablePrototype(O,V).

10.4.6.3[[IsExtensible]] ( )

The[[IsExtensible]] internal method of amodule namespace exotic object takes no arguments and returns anormal completion containingfalse. It performs the following steps when called:

  1. Returnfalse.

10.4.6.4[[PreventExtensions]] ( )

The[[PreventExtensions]] internal method of amodule namespace exotic object takes no arguments and returns anormal completion containingtrue. It performs the following steps when called:

  1. Returntrue.

10.4.6.5[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of amodule namespace exotic objectO takes argumentP (aproperty key) and returns either anormal completion containing either aProperty Descriptor orundefined, or athrow completion. It performs the following steps when called:

  1. IfPis a Symbol, returnOrdinaryGetOwnProperty(O,P).
  2. Letexports beO.[[Exports]].
  3. Ifexports does not containP, returnundefined.
  4. Letvalue be ? O.[[Get]](P,O).
  5. Return PropertyDescriptor {[[Value]]:value,[[Writable]]:true,[[Enumerable]]:true,[[Configurable]]:false }.

10.4.6.6[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of amodule namespace exotic objectO takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfPis a Symbol, return ! OrdinaryDefineOwnProperty(O,P,Desc).
  2. Letcurrent be ? O.[[GetOwnProperty]](P).
  3. Ifcurrent isundefined, returnfalse.
  4. IfDesc has a[[Configurable]] field andDesc.[[Configurable]] istrue, returnfalse.
  5. IfDesc has an[[Enumerable]] field andDesc.[[Enumerable]] isfalse, returnfalse.
  6. IfIsAccessorDescriptor(Desc) istrue, returnfalse.
  7. IfDesc has a[[Writable]] field andDesc.[[Writable]] isfalse, returnfalse.
  8. IfDesc has a[[Value]] field, returnSameValue(Desc.[[Value]],current.[[Value]]).
  9. Returntrue.

10.4.6.7[[HasProperty]] (P )

The[[HasProperty]] internal method of amodule namespace exotic objectO takes argumentP (aproperty key) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. IfPis a Symbol, return ! OrdinaryHasProperty(O,P).
  2. Letexports beO.[[Exports]].
  3. Ifexports containsP, returntrue.
  4. Returnfalse.

10.4.6.8[[Get]] (P,Receiver )

The[[Get]] internal method of amodule namespace exotic objectO takes argumentsP (aproperty key) andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. IfPis a Symbol, then
    1. Return ! OrdinaryGet(O,P,Receiver).
  2. Letexports beO.[[Exports]].
  3. Ifexports does not containP, returnundefined.
  4. Letm beO.[[Module]].
  5. Letbinding bem.ResolveExport(P).
  6. Assert:binding is aResolvedBinding Record.
  7. LettargetModule bebinding.[[Module]].
  8. Assert:targetModule is notundefined.
  9. Ifbinding.[[BindingName]] isnamespace, then
    1. ReturnGetModuleNamespace(targetModule).
  10. LettargetEnv betargetModule.[[Environment]].
  11. IftargetEnv isempty, throw aReferenceError exception.
  12. Return ? targetEnv.GetBindingValue(binding.[[BindingName]],true).
Note

ResolveExport is side-effect free. Each time this operation is called with a specificexportName,resolveSet pair as arguments it must return the same result. An implementation might choose to pre-compute or cache the ResolveExport results for the[[Exports]] of eachmodule namespace exotic object.

10.4.6.9[[Set]] (P,V,Receiver )

The[[Set]] internal method of amodule namespace exotic object takes argumentsP (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns anormal completion containingfalse. It performs the following steps when called:

  1. Returnfalse.

10.4.6.10[[Delete]] (P )

The[[Delete]] internal method of amodule namespace exotic objectO takes argumentP (aproperty key) and returns anormal completion containing a Boolean. It performs the following steps when called:

  1. IfPis a Symbol, then
    1. Return ! OrdinaryDelete(O,P).
  2. Letexports beO.[[Exports]].
  3. Ifexports containsP, returnfalse.
  4. Returntrue.

10.4.6.11[[OwnPropertyKeys]] ( )

The[[OwnPropertyKeys]] internal method of amodule namespace exotic objectO takes no arguments and returns anormal completion containing aList ofproperty keys. It performs the following steps when called:

  1. Letexports beO.[[Exports]].
  2. LetsymbolKeys beOrdinaryOwnPropertyKeys(O).
  3. Return thelist-concatenation ofexports andsymbolKeys.

10.4.6.12 ModuleNamespaceCreate (module,exports )

The abstract operation ModuleNamespaceCreate takes argumentsmodule (aModule Record) andexports (aList of Strings) and returns amodule namespace exotic object. It is used to specify the creation of newmodule namespace exotic objects. It performs the following steps when called:

  1. Assert:module.[[Namespace]] isempty.
  2. LetinternalSlotsList be the internal slots listed inTable 33.
  3. LetM beMakeBasicObject(internalSlotsList).
  4. SetM's essential internal methods to the definitions specified in10.4.6.
  5. SetM.[[Module]] tomodule.
  6. LetsortedExports be aList whose elements are the elements ofexports ordered as if an Array of the same values had been sorted using %Array.prototype.sort% usingundefined ascomparefn.
  7. SetM.[[Exports]] tosortedExports.
  8. Create own properties ofM corresponding to the definitions in28.3.
  9. Setmodule.[[Namespace]] toM.
  10. ReturnM.

10.4.7 Immutable Prototype Exotic Objects

Animmutable prototype exotic object is anexotic object that has a[[Prototype]] internal slot that will not change once it is initialized.

An object is animmutable prototype exotic object if its[[SetPrototypeOf]] internal method uses the following implementation. (Its other essential internal methods may use any implementation, depending on the specificimmutable prototype exotic object in question.)

Note

Unlike otherexotic objects, there is not a dedicated creation abstract operation provided forimmutable prototype exotic objects. This is because they are only used by%Object.prototype% and byhost environments, and inhost environments, the relevant objects are potentially exotic in other ways and thus need their own dedicated creation operation.

10.4.7.1[[SetPrototypeOf]] (V )

The[[SetPrototypeOf]] internal method of animmutable prototype exotic objectO takes argumentV (an Object ornull) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Return ? SetImmutablePrototype(O,V).

10.4.7.2 SetImmutablePrototype (O,V )

The abstract operation SetImmutablePrototype takes argumentsO (an Object) andV (an Object ornull) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Letcurrent be ? O.[[GetPrototypeOf]]().
  2. IfSameValue(V,current) istrue, returntrue.
  3. Returnfalse.

10.5 Proxy Object Internal Methods and Internal Slots

A Proxy object is anexotic object whose essential internal methods are partially implemented using ECMAScript code. Every Proxy object has an internal slot called[[ProxyHandler]]. The value of[[ProxyHandler]] is an object, called the proxy'shandler object, ornull. Methods (seeTable 34) of a handler object may be used to augment the implementation for one or more of the Proxy object's internal methods. Every Proxy object also has an internal slot called[[ProxyTarget]] whose value is either an object or thenull value. This object is called the proxy'starget object.

An object is aProxy exotic object if its essential internal methods (including[[Call]] and[[Construct]], if applicable) use the definitions in this section. These internal methods are installed inProxyCreate.

Table 34: Proxy Handler Methods
Internal Method Handler Method
[[GetPrototypeOf]]getPrototypeOf
[[SetPrototypeOf]]setPrototypeOf
[[IsExtensible]]isExtensible
[[PreventExtensions]]preventExtensions
[[GetOwnProperty]]getOwnPropertyDescriptor
[[DefineOwnProperty]]defineProperty
[[HasProperty]]has
[[Get]]get
[[Set]]set
[[Delete]]deleteProperty
[[OwnPropertyKeys]]ownKeys
[[Call]]apply
[[Construct]]construct

When a handler method is called to provide the implementation of a Proxy object internal method, the handler method is passed the proxy's target object as a parameter. A proxy's handler object does not necessarily have a method corresponding to every essential internal method. Invoking an internal method on the proxy results in the invocation of the corresponding internal method on the proxy's target object if the handler object does not have a method corresponding to the internal trap.

The[[ProxyHandler]] and[[ProxyTarget]] internal slots of a Proxy object are always initialized when the object is created and typically may not be modified. Some Proxy objects are created in a manner that permits them to be subsequentlyrevoked. When a proxy is revoked, its[[ProxyHandler]] and[[ProxyTarget]] internal slots are set tonull causing subsequent invocations of internal methods on that Proxy object to throw aTypeError exception.

Because Proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript code, it is possible to define a Proxy object whose handler methods violates the invariants defined in6.1.7.3. Some of the internal method invariants defined in6.1.7.3 are essential integrity invariants. These invariants are explicitly enforced by the Proxy object internal methods specified in this section. An ECMAScript implementation must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assumeO is an ECMAScript Proxy object,P is aproperty key value,V is anyECMAScript language value andDesc is aProperty Descriptor record.

10.5.1[[GetPrototypeOf]] ( )

The[[GetPrototypeOf]] internal method of aProxy exotic objectO takes no arguments and returns either anormal completion containing either an Object ornull, or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"getPrototypeOf").
  6. Iftrap isundefined, then
    1. Return ? target.[[GetPrototypeOf]]().
  7. LethandlerProto be ? Call(trap,handler, «target »).
  8. IfhandlerProtois not an Object andhandlerProto is notnull, throw aTypeError exception.
  9. LetextensibleTarget be ? IsExtensible(target).
  10. IfextensibleTarget istrue, returnhandlerProto.
  11. LettargetProto be ? target.[[GetPrototypeOf]]().
  12. IfSameValue(handlerProto,targetProto) isfalse, throw aTypeError exception.
  13. ReturnhandlerProto.
Note

[[GetPrototypeOf]] for Proxy objects enforces the following invariants:

  • The result of[[GetPrototypeOf]] must be either an Object ornull.
  • If the target object is not extensible,[[GetPrototypeOf]] applied to the Proxy object must return the same value as[[GetPrototypeOf]] applied to the Proxy object's target object.

10.5.2[[SetPrototypeOf]] (V )

The[[SetPrototypeOf]] internal method of aProxy exotic objectO takes argumentV (an Object ornull) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"setPrototypeOf").
  6. Iftrap isundefined, then
    1. Return ? target.[[SetPrototypeOf]](V).
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target,V »)).
  8. IfbooleanTrapResult isfalse, returnfalse.
  9. LetextensibleTarget be ? IsExtensible(target).
  10. IfextensibleTarget istrue, returntrue.
  11. LettargetProto be ? target.[[GetPrototypeOf]]().
  12. IfSameValue(V,targetProto) isfalse, throw aTypeError exception.
  13. Returntrue.
Note

[[SetPrototypeOf]] for Proxy objects enforces the following invariants:

  • The result of[[SetPrototypeOf]]is a Boolean value.
  • If the target object is not extensible, the argument value must be the same as the result of[[GetPrototypeOf]] applied to target object.

10.5.3[[IsExtensible]] ( )

The[[IsExtensible]] internal method of aProxy exotic objectO takes no arguments and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"isExtensible").
  6. Iftrap isundefined, then
    1. Return ? IsExtensible(target).
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target »)).
  8. LettargetResult be ? IsExtensible(target).
  9. IfbooleanTrapResult is nottargetResult, throw aTypeError exception.
  10. ReturnbooleanTrapResult.
Note

[[IsExtensible]] for Proxy objects enforces the following invariants:

  • The result of[[IsExtensible]]is a Boolean value.
  • [[IsExtensible]] applied to the Proxy object must return the same value as[[IsExtensible]] applied to the Proxy object's target object with the same argument.

10.5.4[[PreventExtensions]] ( )

The[[PreventExtensions]] internal method of aProxy exotic objectO takes no arguments and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"preventExtensions").
  6. Iftrap isundefined, then
    1. Return ? target.[[PreventExtensions]]().
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target »)).
  8. IfbooleanTrapResult istrue, then
    1. LetextensibleTarget be ? IsExtensible(target).
    2. IfextensibleTarget istrue, throw aTypeError exception.
  9. ReturnbooleanTrapResult.
Note

[[PreventExtensions]] for Proxy objects enforces the following invariants:

  • The result of[[PreventExtensions]]is a Boolean value.
  • [[PreventExtensions]] applied to the Proxy object only returnstrue if[[IsExtensible]] applied to the Proxy object's target object isfalse.

10.5.5[[GetOwnProperty]] (P )

The[[GetOwnProperty]] internal method of aProxy exotic objectO takes argumentP (aproperty key) and returns either anormal completion containing either aProperty Descriptor orundefined, or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"getOwnPropertyDescriptor").
  6. Iftrap isundefined, then
    1. Return ? target.[[GetOwnProperty]](P).
  7. LettrapResultObj be ? Call(trap,handler, «target,P »).
  8. IftrapResultObjis not an Object andtrapResultObj is notundefined, throw aTypeError exception.
  9. LettargetDesc be ? target.[[GetOwnProperty]](P).
  10. IftrapResultObj isundefined, then
    1. IftargetDesc isundefined, returnundefined.
    2. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
    3. LetextensibleTarget be ? IsExtensible(target).
    4. IfextensibleTarget isfalse, throw aTypeError exception.
    5. Returnundefined.
  11. LetextensibleTarget be ? IsExtensible(target).
  12. LetresultDesc be ? ToPropertyDescriptor(trapResultObj).
  13. PerformCompletePropertyDescriptor(resultDesc).
  14. Letvalid beIsCompatiblePropertyDescriptor(extensibleTarget,resultDesc,targetDesc).
  15. Ifvalid isfalse, throw aTypeError exception.
  16. IfresultDesc.[[Configurable]] isfalse, then
    1. IftargetDesc isundefined ortargetDesc.[[Configurable]] istrue, then
      1. Throw aTypeError exception.
    2. IfresultDesc has a[[Writable]] field andresultDesc.[[Writable]] isfalse, then
      1. Assert:targetDesc has a[[Writable]] field.
      2. IftargetDesc.[[Writable]] istrue, throw aTypeError exception.
  17. ReturnresultDesc.
Note

[[GetOwnProperty]] for Proxy objects enforces the following invariants:

  • The result of[[GetOwnProperty]] must be either an Object orundefined.
  • A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as non-existent, if it exists as an own property of a non-extensible target object.
  • A property cannot be reported as existent, if it does not exist as an own property of the target object and the target object is not extensible.
  • A property cannot be reported as non-configurable, unless it exists as a non-configurable own property of the target object.
  • A property cannot be reported as both non-configurable and non-writable, unless it exists as a non-configurable, non-writable own property of the target object.

10.5.6[[DefineOwnProperty]] (P,Desc )

The[[DefineOwnProperty]] internal method of aProxy exotic objectO takes argumentsP (aproperty key) andDesc (aProperty Descriptor) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"defineProperty").
  6. Iftrap isundefined, then
    1. Return ? target.[[DefineOwnProperty]](P,Desc).
  7. LetdescObj beFromPropertyDescriptor(Desc).
  8. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target,P,descObj »)).
  9. IfbooleanTrapResult isfalse, returnfalse.
  10. LettargetDesc be ? target.[[GetOwnProperty]](P).
  11. LetextensibleTarget be ? IsExtensible(target).
  12. IfDesc has a[[Configurable]] field andDesc.[[Configurable]] isfalse, then
    1. LetsettingConfigFalse betrue.
  13. Else,
    1. LetsettingConfigFalse befalse.
  14. IftargetDesc isundefined, then
    1. IfextensibleTarget isfalse, throw aTypeError exception.
    2. IfsettingConfigFalse istrue, throw aTypeError exception.
  15. Else,
    1. IfIsCompatiblePropertyDescriptor(extensibleTarget,Desc,targetDesc) isfalse, throw aTypeError exception.
    2. IfsettingConfigFalse istrue andtargetDesc.[[Configurable]] istrue, throw aTypeError exception.
    3. IfIsDataDescriptor(targetDesc) istrue,targetDesc.[[Configurable]] isfalse, andtargetDesc.[[Writable]] istrue, then
      1. IfDesc has a[[Writable]] field andDesc.[[Writable]] isfalse, throw aTypeError exception.
  16. Returntrue.
Note

[[DefineOwnProperty]] for Proxy objects enforces the following invariants:

  • The result of[[DefineOwnProperty]]is a Boolean value.
  • A property cannot be added, if the target object is not extensible.
  • A property cannot be non-configurable, unless there exists a corresponding non-configurable own property of the target object.
  • A non-configurable property cannot be non-writable, unless there exists a corresponding non-configurable, non-writable own property of the target object.
  • If a property has a corresponding target object property then applying theProperty Descriptor of the property to the target object using[[DefineOwnProperty]] will not throw an exception.

10.5.7[[HasProperty]] (P )

The[[HasProperty]] internal method of aProxy exotic objectO takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"has").
  6. Iftrap isundefined, then
    1. Return ? target.[[HasProperty]](P).
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target,P »)).
  8. IfbooleanTrapResult isfalse, then
    1. LettargetDesc be ? target.[[GetOwnProperty]](P).
    2. IftargetDesc is notundefined, then
      1. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
      2. LetextensibleTarget be ? IsExtensible(target).
      3. IfextensibleTarget isfalse, throw aTypeError exception.
  9. ReturnbooleanTrapResult.
Note

[[HasProperty]] for Proxy objects enforces the following invariants:

  • The result of[[HasProperty]]is a Boolean value.
  • A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as non-existent, if it exists as an own property of the target object and the target object is not extensible.

10.5.8[[Get]] (P,Receiver )

The[[Get]] internal method of aProxy exotic objectO takes argumentsP (aproperty key) andReceiver (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"get").
  6. Iftrap isundefined, then
    1. Return ? target.[[Get]](P,Receiver).
  7. LettrapResult be ? Call(trap,handler, «target,P,Receiver »).
  8. LettargetDesc be ? target.[[GetOwnProperty]](P).
  9. IftargetDesc is notundefined andtargetDesc.[[Configurable]] isfalse, then
    1. IfIsDataDescriptor(targetDesc) istrue andtargetDesc.[[Writable]] isfalse, then
      1. IfSameValue(trapResult,targetDesc.[[Value]]) isfalse, throw aTypeError exception.
    2. IfIsAccessorDescriptor(targetDesc) istrue andtargetDesc.[[Get]] isundefined, then
      1. IftrapResult is notundefined, throw aTypeError exception.
  10. ReturntrapResult.
Note

[[Get]] for Proxy objects enforces the following invariants:

  • The value reported for a property must be the same as the value of the corresponding target object property if the target object property is a non-writable, non-configurable owndata property.
  • The value reported for a property must beundefined if the corresponding target object property is a non-configurable ownaccessor property that hasundefined as its[[Get]] attribute.

10.5.9[[Set]] (P,V,Receiver )

The[[Set]] internal method of aProxy exotic objectO takes argumentsP (aproperty key),V (anECMAScript language value), andReceiver (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"set").
  6. Iftrap isundefined, then
    1. Return ? target.[[Set]](P,V,Receiver).
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target,P,V,Receiver »)).
  8. IfbooleanTrapResult isfalse, returnfalse.
  9. LettargetDesc be ? target.[[GetOwnProperty]](P).
  10. IftargetDesc is notundefined andtargetDesc.[[Configurable]] isfalse, then
    1. IfIsDataDescriptor(targetDesc) istrue andtargetDesc.[[Writable]] isfalse, then
      1. IfSameValue(V,targetDesc.[[Value]]) isfalse, throw aTypeError exception.
    2. IfIsAccessorDescriptor(targetDesc) istrue, then
      1. IftargetDesc.[[Set]] isundefined, throw aTypeError exception.
  11. Returntrue.
Note

[[Set]] for Proxy objects enforces the following invariants:

  • The result of[[Set]]is a Boolean value.
  • Cannot change the value of a property to be different from the value of the corresponding target object property if the corresponding target object property is a non-writable, non-configurable owndata property.
  • Cannot set the value of a property if the corresponding target object property is a non-configurable ownaccessor property that hasundefined as its[[Set]] attribute.

10.5.10[[Delete]] (P )

The[[Delete]] internal method of aProxy exotic objectO takes argumentP (aproperty key) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"deleteProperty").
  6. Iftrap isundefined, then
    1. Return ? target.[[Delete]](P).
  7. LetbooleanTrapResult beToBoolean(?Call(trap,handler, «target,P »)).
  8. IfbooleanTrapResult isfalse, returnfalse.
  9. LettargetDesc be ? target.[[GetOwnProperty]](P).
  10. IftargetDesc isundefined, returntrue.
  11. IftargetDesc.[[Configurable]] isfalse, throw aTypeError exception.
  12. LetextensibleTarget be ? IsExtensible(target).
  13. IfextensibleTarget isfalse, throw aTypeError exception.
  14. Returntrue.
Note

[[Delete]] for Proxy objects enforces the following invariants:

  • The result of[[Delete]]is a Boolean value.
  • A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.
  • A property cannot be reported as deleted, if it exists as an own property of the target object and the target object is non-extensible.

10.5.11[[OwnPropertyKeys]] ( )

The[[OwnPropertyKeys]] internal method of aProxy exotic objectO takes no arguments and returns either anormal completion containing aList ofproperty keys or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"ownKeys").
  6. Iftrap isundefined, then
    1. Return ? target.[[OwnPropertyKeys]]().
  7. LettrapResultArray be ? Call(trap,handler, «target »).
  8. LettrapResult be ? CreateListFromArrayLike(trapResultArray, « String, Symbol »).
  9. IftrapResult contains any duplicate entries, throw aTypeError exception.
  10. LetextensibleTarget be ? IsExtensible(target).
  11. LettargetKeys be ? target.[[OwnPropertyKeys]]().
  12. Assert:targetKeys is aList ofproperty keys.
  13. Assert:targetKeys contains no duplicate entries.
  14. LettargetConfigurableKeys be a new emptyList.
  15. LettargetNonconfigurableKeys be a new emptyList.
  16. For each elementkey oftargetKeys, do
    1. Letdesc be ? target.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined anddesc.[[Configurable]] isfalse, then
      1. Appendkey totargetNonconfigurableKeys.
    3. Else,
      1. Appendkey totargetConfigurableKeys.
  17. IfextensibleTarget istrue andtargetNonconfigurableKeys is empty, then
    1. ReturntrapResult.
  18. LetuncheckedResultKeys be aList whose elements are the elements oftrapResult.
  19. For each elementkey oftargetNonconfigurableKeys, do
    1. IfuncheckedResultKeys does not containkey, throw aTypeError exception.
    2. Removekey fromuncheckedResultKeys.
  20. IfextensibleTarget istrue, returntrapResult.
  21. For each elementkey oftargetConfigurableKeys, do
    1. IfuncheckedResultKeys does not containkey, throw aTypeError exception.
    2. Removekey fromuncheckedResultKeys.
  22. IfuncheckedResultKeys is not empty, throw aTypeError exception.
  23. ReturntrapResult.
Note

[[OwnPropertyKeys]] for Proxy objects enforces the following invariants:

  • The result of[[OwnPropertyKeys]] is aList.
  • The returnedList contains no duplicate entries.
  • The Type of each resultList element is either String or Symbol.
  • The resultList must contain the keys of all non-configurable own properties of the target object.
  • If the target object is not extensible, then the resultList must contain all the keys of the own properties of the target object and no other values.

10.5.12[[Call]] (thisArgument,argumentsList )

The[[Call]] internal method of aProxy exotic objectO takes argumentsthisArgument (anECMAScript language value) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Lethandler beO.[[ProxyHandler]].
  4. Assert:handleris an Object.
  5. Lettrap be ? GetMethod(handler,"apply").
  6. Iftrap isundefined, then
    1. Return ? Call(target,thisArgument,argumentsList).
  7. LetargArray beCreateArrayFromList(argumentsList).
  8. Return ? Call(trap,handler, «target,thisArgument,argArray »).
Note

AProxy exotic object only has a[[Call]] internal method if the initial value of its[[ProxyTarget]] internal slot is an object that has a[[Call]] internal method.

10.5.13[[Construct]] (argumentsList,newTarget )

The[[Construct]] internal method of aProxy exotic objectO takes argumentsargumentsList (aList ofECMAScript language values) andnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Perform ? ValidateNonRevokedProxy(O).
  2. Lettarget beO.[[ProxyTarget]].
  3. Assert:IsConstructor(target) istrue.
  4. Lethandler beO.[[ProxyHandler]].
  5. Assert:handleris an Object.
  6. Lettrap be ? GetMethod(handler,"construct").
  7. Iftrap isundefined, then
    1. Return ? Construct(target,argumentsList,newTarget).
  8. LetargArray beCreateArrayFromList(argumentsList).
  9. LetnewObj be ? Call(trap,handler, «target,argArray,newTarget »).
  10. IfnewObjis not an Object, throw aTypeError exception.
  11. ReturnnewObj.
Note 1

AProxy exotic object only has a[[Construct]] internal method if the initial value of its[[ProxyTarget]] internal slot is an object that has a[[Construct]] internal method.

Note 2

[[Construct]] for Proxy objects enforces the following invariants:

  • The result of[[Construct]] must be an Object.

10.5.14 ValidateNonRevokedProxy (proxy )

The abstract operation ValidateNonRevokedProxy takes argumentproxy (aProxy exotic object) and returns either anormal completion containingunused or athrow completion. It throws aTypeError exception ifproxy has been revoked. It performs the following steps when called:

  1. Ifproxy.[[ProxyTarget]] isnull, throw aTypeError exception.
  2. Assert:proxy.[[ProxyHandler]] is notnull.
  3. Returnunused.

10.5.15 ProxyCreate (target,handler )

The abstract operation ProxyCreate takes argumentstarget (anECMAScript language value) andhandler (anECMAScript language value) and returns either anormal completion containing aProxy exotic object or athrow completion. It is used to specify the creation of new Proxy objects. It performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Ifhandleris not an Object, throw aTypeError exception.
  3. LetP beMakeBasicObject[[ProxyHandler]],[[ProxyTarget]] »).
  4. SetP's essential internal methods, except for[[Call]] and[[Construct]], to the definitions specified in10.5.
  5. IfIsCallable(target) istrue, then
    1. SetP.[[Call]] as specified in10.5.12.
    2. IfIsConstructor(target) istrue, then
      1. SetP.[[Construct]] as specified in10.5.13.
  6. SetP.[[ProxyTarget]] totarget.
  7. SetP.[[ProxyHandler]] tohandler.
  8. ReturnP.

11 ECMAScript Language: Source Text

11.1 Source Text

Syntax

SourceCharacter::any Unicode code point

ECMAScript source text is a sequence of Unicode code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate code points, may occur in ECMAScript source text where permitted by the ECMAScript grammars. The actual encodings used to store and interchange ECMAScript source text is not relevant to this specification. Regardless of the external source text encoding, a conforming ECMAScript implementation processes the source text as if it was an equivalent sequence ofSourceCharacter values, eachSourceCharacter being a Unicode code point. Conforming ECMAScript implementations are not required to perform any normalization of source text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though a user might think of the whole sequence as a single character.

Note

In string literals, regular expression literals, template literals and identifiers, any Unicode code point may also be expressed using Unicode escape sequences that explicitly express a code point's numeric value. Within a comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java program, if the Unicode escape sequence\u000A, for example, occurs within a single-line comment, it is interpreted as a line terminator (Unicode code point U+000A is LINE FEED (LF)) and therefore the next code point is not part of the comment. Similarly, if the Unicode escape sequence\u000A occurs within a string literal in a Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one must write\n instead of\u000A to cause a LINE FEED (LF) to be part of the String value of a string literal. In an ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always contributes to the literal and is never interpreted as a line terminator or as a code point that might terminate the string literal.

11.1.1 Static Semantics: UTF16EncodeCodePoint (cp )

The abstract operation UTF16EncodeCodePoint takes argumentcp (a Unicode code point) and returns a String. It performs the following steps when called:

  1. Assert: 0 ≤cp ≤ 0x10FFFF.
  2. Ifcp ≤ 0xFFFF, return the String value consisting of the code unit whose numeric value iscp.
  3. Letcu1 be the code unit whose numeric value isfloor((cp - 0x10000) / 0x400) + 0xD800.
  4. Letcu2 be the code unit whose numeric value is ((cp - 0x10000)modulo 0x400) + 0xDC00.
  5. Return thestring-concatenation ofcu1 andcu2.

11.1.2 Static Semantics: CodePointsToString (text )

The abstract operation CodePointsToString takes argumenttext (a sequence of Unicode code points) and returns a String. It convertstext into a String value, as described in6.1.4. It performs the following steps when called:

  1. Letresult be the empty String.
  2. For each code pointcp oftext, do
    1. Setresult to thestring-concatenation ofresult andUTF16EncodeCodePoint(cp).
  3. Returnresult.

11.1.3 Static Semantics: UTF16SurrogatePairToCodePoint (lead,trail )

The abstract operation UTF16SurrogatePairToCodePoint takes argumentslead (a code unit) andtrail (a code unit) and returns a code point. Two code units that form a UTF-16surrogate pair are converted to a code point. It performs the following steps when called:

  1. Assert:lead is aleading surrogate andtrail is atrailing surrogate.
  2. Letcp be (lead - 0xD800) × 0x400 + (trail - 0xDC00) + 0x10000.
  3. Return the code pointcp.

11.1.4 Static Semantics: CodePointAt (string,position )

The abstract operation CodePointAt takes argumentsstring (a String) andposition (a non-negativeinteger) and returns aRecord with fields[[CodePoint]] (a code point),[[CodeUnitCount]] (a positiveinteger), and[[IsUnpairedSurrogate]] (a Boolean). It interpretsstring as a sequence of UTF-16 encoded code points, as described in6.1.4, and reads from it a single code point starting with the code unit at indexposition. It performs the following steps when called:

  1. Letsize be the length ofstring.
  2. Assert:position ≥ 0 andposition <size.
  3. Letfirst be the code unit at indexposition withinstring.
  4. Letcp be the code point whose numeric value is the numeric value offirst.
  5. Iffirst is neither aleading surrogate nor atrailing surrogate, then
    1. Return theRecord {[[CodePoint]]:cp,[[CodeUnitCount]]: 1,[[IsUnpairedSurrogate]]:false }.
  6. Iffirst is atrailing surrogate orposition + 1 =size, then
    1. Return theRecord {[[CodePoint]]:cp,[[CodeUnitCount]]: 1,[[IsUnpairedSurrogate]]:true }.
  7. Letsecond be the code unit at indexposition + 1 withinstring.
  8. Ifsecond is not atrailing surrogate, then
    1. Return theRecord {[[CodePoint]]:cp,[[CodeUnitCount]]: 1,[[IsUnpairedSurrogate]]:true }.
  9. Setcp toUTF16SurrogatePairToCodePoint(first,second).
  10. Return theRecord {[[CodePoint]]:cp,[[CodeUnitCount]]: 2,[[IsUnpairedSurrogate]]:false }.

11.1.5 Static Semantics: StringToCodePoints (string )

The abstract operation StringToCodePoints takes argumentstring (a String) and returns aList of code points. It returns the sequence of Unicode code points that results from interpretingstring as UTF-16 encoded Unicode text as described in6.1.4. It performs the following steps when called:

  1. LetcodePoints be a new emptyList.
  2. Letsize be the length ofstring.
  3. Letposition be 0.
  4. Repeat, whileposition <size,
    1. Letcp beCodePointAt(string,position).
    2. Appendcp.[[CodePoint]] tocodePoints.
    3. Setposition toposition +cp.[[CodeUnitCount]].
  5. ReturncodePoints.

11.1.6 Static Semantics: ParseText (sourceText,goalSymbol )

The abstract operation ParseText takes argumentssourceText (a sequence of Unicode code points) andgoalSymbol (a nonterminal in one of the ECMAScript grammars) and returns aParse Node or a non-emptyList ofSyntaxError objects. It performs the following steps when called:

  1. Attempt to parsesourceText usinggoalSymbol as thegoal symbol, and analyse the parse result for anyearly error conditions. Parsing andearly error detection may be interleaved in animplementation-defined manner.
  2. If the parse succeeded and noearly errors were found, return theParse Node (an instance ofgoalSymbol) at the root of the parse tree resulting from the parse.
  3. Otherwise, return aList of one or moreSyntaxError objects representing the parsing errors and/orearly errors. If more than one parsing error orearly error is present, the number and ordering of error objects in the list isimplementation-defined, but at least one must be present.
Note 1

Consider a text that has anearly error at a particular point, and also a syntax error at a later point. An implementation that does a parse pass followed by anearly errors pass might report the syntax error and not proceed to theearly errors pass. An implementation that interleaves the two activities might report theearly error and not proceed to find the syntax error. A third implementation might report both errors. All of these behaviours are conformant.

Note 2

See also clause17.

11.2 Types of Source Code

There are four types of ECMAScript code:

Note 1

Function code is generally provided as the bodies of Function Definitions (15.2), Arrow Function Definitions (15.3), Method Definitions (15.4), Generator Function Definitions (15.5), Async Function Definitions (15.8), Async Generator Function Definitions (15.6), and Async Arrow Functions (15.9). Function code is also derived from the arguments to the Functionconstructor (20.2.1.1), the GeneratorFunctionconstructor (27.3.1.1), and the AsyncFunctionconstructor (27.7.1.1).

Note 2

The practical effect of including theBindingIdentifier in function code is that the Early Errors forstrict mode code are applied to aBindingIdentifier that is the name of a function whose body contains a "use strict" directive, even if the surrounding code is notstrict mode code.

11.2.1 Directive Prologues and the Use Strict Directive

ADirective Prologue is the longest sequence ofExpressionStatements occurring as the initialStatementListItems orModuleItems of aFunctionBody, aScriptBody, or aModuleBody and where eachExpressionStatement in the sequence consists entirely of aStringLiteral token followed by a semicolon. The semicolon may appear explicitly or may be inserted by automatic semicolon insertion (12.10). ADirective Prologue may be an empty sequence.

AUse Strict Directive is anExpressionStatement in aDirective Prologue whoseStringLiteral is either of the exact code point sequences"use strict" or'use strict'. AUse Strict Directive may not contain anEscapeSequence orLineContinuation.

ADirective Prologue may contain more than oneUse Strict Directive. However, an implementation may issue a warning if this occurs.

Note

TheExpressionStatements of aDirective Prologue are evaluated normally during evaluation of the containing production. Implementations may define implementation specific meanings forExpressionStatements which are not aUse Strict Directive and which occur in aDirective Prologue. If an appropriate notification mechanism exists, an implementation should issue a warning if it encounters in aDirective Prologue anExpressionStatement that is not aUse Strict Directive and which does not have a meaning defined by the implementation.

11.2.2 Strict Mode Code

An ECMAScript syntactic unit may be processed using either unrestricted or strict mode syntax and semantics (4.3.2). Code is interpreted asstrict mode code in the following situations:

ECMAScript code that is not strict mode code is callednon-strict code.

11.2.3 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of functionexotic objects whose evaluative behaviour is expressed in somehost-defined form of executable code other thanECMAScript source text. Whether afunction object is defined within ECMAScript code or is a built-in function is not observable from the perspective of ECMAScript code that calls or is called by such afunction object.

12 ECMAScript Language: Lexical Grammar

The source text of an ECMAScriptScript orModule is first converted into a sequence of input elements, which are tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar context that is consuming the input elements. This requires multiplegoal symbols for the lexical grammar. TheInputElementHashbangOrRegExp goal is used at the start of aScript orModule. TheInputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where aRegularExpressionLiteral, aTemplateMiddle, or aTemplateTail is permitted. TheInputElementRegExpgoal symbol is used in all syntactic grammar contexts where aRegularExpressionLiteral is permitted but neither aTemplateMiddle, nor aTemplateTail is permitted. TheInputElementTemplateTail goal is used in all syntactic grammar contexts where aTemplateMiddle or aTemplateTail is permitted but aRegularExpressionLiteral is not permitted. In all other contexts,InputElementDiv is used as the lexicalgoal symbol.

Note

The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect automatic semicolon insertion. For example, there are no syntactic grammar contexts where both a leading division or division-assignment, and a leadingRegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see12.10); in examples such as the following:

a = b/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment code point after aLineTerminator is U+002F (SOLIDUS) and the syntactic context allows division or division-assignment, no semicolon is inserted at theLineTerminator. That is, the above example is interpreted in the same way as:

a = b / hi / g.exec(c).map(d);

Syntax

InputElementDiv::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorRightBracePunctuatorInputElementRegExp::WhiteSpaceLineTerminatorCommentCommonTokenRightBracePunctuatorRegularExpressionLiteralInputElementRegExpOrTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenRegularExpressionLiteralTemplateSubstitutionTailInputElementTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorTemplateSubstitutionTailInputElementHashbangOrRegExp::WhiteSpaceLineTerminatorCommentCommonTokenHashbangCommentRegularExpressionLiteral

12.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control characters may be used within comments, and within string literals, template literals, and regular expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters that are used to make necessary distinctions when forming words or phrases in certain languages. InECMAScript source text these code points may also be used in anIdentifierName after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to mark it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters intended for this purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. InECMAScript source text <ZWNBSP> code points are treated as white space characters (see12.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression literals is summarized inTable 35.

Table 35: Format-Control Code Point Usage
Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ>IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ>IdentifierPart
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>WhiteSpace

12.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible lexical units) from each other, but are otherwise insignificant. White space code points may occur between any two tokens and at the start or end of input. White space code points may occur within aStringLiteral, aRegularExpressionLiteral, aTemplate, or aTemplateSubstitutionTail where they are considered significant code points forming part of a literal value. They may also occur within aComment, but cannot appear within any other kind of token.

The ECMAScript white space code points are listed inTable 36.

Table 36: White Space Code Points
Code Points Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
U+000C FORM FEED (FF) <FF>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>
any code point in general category “Space_Separator” <USP>
Note 1

U+0020 (SPACE) and U+00A0 (NO-BREAK SPACE) code points are part of <USP>.

Note 2

Other than for the code points listed inTable 36, ECMAScriptWhiteSpace intentionally excludes all code points that have the Unicode “White_Space” property but which are not classified in general category “Space_Separator” (“Zs”).

Syntax

WhiteSpace::<TAB><VT><FF><ZWNBSP><USP>

12.3 Line Terminators

Like white space code points, line terminator code points are used to improve source text readability and to separate tokens (indivisible lexical units) from each other. However, unlike white space code points, line terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two tokens, but there are a few places where they are forbidden by the syntactic grammar. Line terminators also affect the process of automatic semicolon insertion (12.10). A line terminator cannot occur within any token except aStringLiteral,Template, orTemplateSubstitutionTail. <LF> and <CR> line terminators cannot occur within aStringLiteral token except as part of aLineContinuation.

A line terminator can occur within aMultiLineComment but cannot occur within aSingleLineComment.

Line terminators are included in the set of white space code points that are matched by the\s class in regular expressions.

The ECMAScript line terminator code points are listed inTable 37.

Table 37: Line Terminator Code Points
Code Point Unicode Name Abbreviation
U+000A LINE FEED (LF) <LF>
U+000D CARRIAGE RETURN (CR) <CR>
U+2028 LINE SEPARATOR <LS>
U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points inTable 37 are treated as line terminators. Other new line or line breaking Unicode code points are not treated as line terminators but are treated as white space if they meet the requirements listed inTable 36. The sequence <CR><LF> is commonly used as a line terminator. It should be considered a singleSourceCharacter for the purpose of reporting line numbers.

Syntax

LineTerminator::<LF><CR><LS><PS>LineTerminatorSequence::<LF><CR>[lookahead ≠<LF>]<LS><PS><CR><LF>

12.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except aLineTerminator code point, and because of the general rule that a token is always as long as possible, a single-line comment always consists of all code points from the// marker to the end of the line. However, theLineTerminator at the end of the line is not considered to be part of the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of input elements for the syntactic grammar. This point is very important, because it implies that the presence or absence of single-line comments does not affect the process of automatic semicolon insertion (see12.10).

Comments behave like white space and are discarded except that, if aMultiLineComment contains a line terminator code point, then the entire comment is considered to be aLineTerminator for purposes of parsing by the syntactic grammar.

Syntax

Comment::MultiLineCommentSingleLineCommentMultiLineComment::/*MultiLineCommentCharsopt*/MultiLineCommentChars::MultiLineNotAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptPostAsteriskCommentChars::MultiLineNotForwardSlashOrAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptMultiLineNotAsteriskChar::SourceCharacterbut not*MultiLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or*SingleLineComment:://SingleLineCommentCharsoptSingleLineCommentChars::SingleLineCommentCharSingleLineCommentCharsoptSingleLineCommentChar::SourceCharacterbut notLineTerminator

A number of productions in this section are given alternative definitions in sectionB.1.1

12.5 Hashbang Comments

Hashbang Comments are location-sensitive and like other types of comments are discarded from the stream of input elements for the syntactic grammar.

Syntax

HashbangComment::#!SingleLineCommentCharsopt

12.6 Tokens

Syntax

CommonToken::IdentifierNamePrivateIdentifierPunctuatorNumericLiteralStringLiteralTemplateNote

TheDivPunctuator,RegularExpressionLiteral,RightBracePunctuator, andTemplateSubstitutionTail productions derive additional tokens that are not included in theCommonToken production.

12.7 Names and Keywords

IdentifierName andReservedWord are tokens that are interpreted according to the Default Identifier Syntax given in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications.ReservedWord is an enumerated subset ofIdentifierName. The syntactic grammar definesIdentifier as anIdentifierName that is not aReservedWord. The Unicode identifier grammar is based on character properties specified by the Unicode Standard. The Unicode code points in the specified categories in the latest version of the Unicode Standard must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript implementations may recognize identifier code points defined in later editions of the Unicode Standard.

Note 1

This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE) are permitted anywhere in anIdentifierName, and the code points U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are permitted anywhere after the first code point of anIdentifierName.

Syntax

PrivateIdentifier::#IdentifierNameIdentifierName::IdentifierStartIdentifierNameIdentifierPartIdentifierStart::IdentifierStartChar\UnicodeEscapeSequenceIdentifierPart::IdentifierPartChar\UnicodeEscapeSequenceIdentifierStartChar::UnicodeIDStart$_IdentifierPartChar::UnicodeIDContinue$<ZWNJ><ZWJ>AsciiLetter::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZUnicodeIDStart::any Unicode code point with the Unicode property “ID_Start”UnicodeIDContinue::any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminalUnicodeEscapeSequence is given in12.9.4.

Note 2

The nonterminalIdentifierPart derives_ viaUnicodeIDContinue.

Note 3

The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include, respectively, the code points with Unicode properties “Other_ID_Start” and “Other_ID_Continue”.

12.7.1 Identifier Names

Unicode escape sequences are permitted in anIdentifierName, where they contribute a single Unicode code point equal to theIdentifierCodePoint of theUnicodeEscapeSequence. The\ preceding theUnicodeEscapeSequence does not contribute any code points. AUnicodeEscapeSequence cannot be used to contribute a code point to anIdentifierName that would otherwise be invalid. In other words, if a\UnicodeEscapeSequence sequence were replaced by theSourceCharacter it contributes, the result must still be a validIdentifierName that has the exact same sequence ofSourceCharacter elements as the originalIdentifierName. All interpretations ofIdentifierName within this specification are based upon their actual code points regardless of whether or not an escape sequence was used to contribute any particular code point.

TwoIdentifierNames that are canonically equivalent according to the Unicode Standard arenot equal unless, after replacement of eachUnicodeEscapeSequence, they are represented by the exact same sequence of code points.

12.7.1.1 Static Semantics: Early Errors

IdentifierStart::\UnicodeEscapeSequenceIdentifierPart::\UnicodeEscapeSequence

12.7.1.2 Static Semantics: IdentifierCodePoints

Thesyntax-directed operation IdentifierCodePoints takes no arguments and returns aList of code points. It is defined piecewise over the following productions:

IdentifierName::IdentifierStart
  1. Letcp beIdentifierCodePoint ofIdentifierStart.
  2. Return «cp ».
IdentifierName::IdentifierNameIdentifierPart
  1. Letcps beIdentifierCodePoints of the derivedIdentifierName.
  2. Letcp beIdentifierCodePoint ofIdentifierPart.
  3. Return thelist-concatenation ofcps and «cp ».

12.7.1.3 Static Semantics: IdentifierCodePoint

Thesyntax-directed operation IdentifierCodePoint takes no arguments and returns a code point. It is defined piecewise over the following productions:

IdentifierStart::IdentifierStartChar
  1. Return the code point matched byIdentifierStartChar.
IdentifierPart::IdentifierPartChar
  1. Return the code point matched byIdentifierPartChar.
UnicodeEscapeSequence::uHex4Digits
  1. Return the code point whose numeric value is the MV ofHex4Digits.
UnicodeEscapeSequence::u{CodePoint}
  1. Return the code point whose numeric value is the MV ofCodePoint.

12.7.2 Keywords and Reserved Words

Akeyword is a token that matchesIdentifierName, but also has a syntactic use; that is, it appears literally, in afixed width font, in some syntactic production. The keywords of ECMAScript includeif,while,async,await, and many others.

Areserved word is anIdentifierName that cannot be used as an identifier. Many keywords are reserved words, but some are not, and some are reserved only in certain contexts.if andwhile are reserved words.await is reserved only inside async functions and modules.async is not reserved; it can be used as a variable name or statement label without restriction.

This specification uses a combination of grammatical productions andearly error rules to specify which names are valid identifiers and which are reserved words. All tokens in theReservedWord list below, except forawait andyield, are unconditionally reserved. Exceptions forawait andyield are specified in13.1, using parameterized syntactic productions. Lastly, severalearly error rules restrict the set of valid identifiers. See13.1.1,14.3.1.1,14.7.5.1, and15.7.1. In summary, there are five categories of identifier names:

  • Those that are always allowed as identifiers, and are not keywords, such asMath,window,toString, and_;

  • Those that are never allowed as identifiers, namely theReservedWords listed below exceptawait andyield;

  • Those that are contextually allowed as identifiers, namelyawait andyield;

  • Those that are contextually disallowed as identifiers, instrict mode code:let,static,implements,interface,package,private,protected, andpublic;

  • Those that are always allowed as identifiers, but also appear as keywords within certain syntactic productions, at places whereIdentifier is not allowed:as,async,from,get,meta,of,set, andtarget.

The termconditional keyword, orcontextual keyword, is sometimes used to refer to the keywords that fall in the last three categories, and thus can be used as identifiers in some contexts and as keywords in others.

Syntax

ReservedWord::one ofawaitbreakcasecatchclassconstcontinuedebuggerdefaultdeletedoelseenumexportextendsfalsefinallyforfunctionifimportininstanceofnewnullreturnsuperswitchthisthrowtruetrytypeofvarvoidwhilewithyieldNote 1

Per5.1.5, keywords in the grammar match literal sequences of specificSourceCharacter elements. A code point in a keyword cannot be expressed by a\UnicodeEscapeSequence.

AnIdentifierName can contain\UnicodeEscapeSequences, but it is not possible to declare a variable named "else" by spelling itels\u{65}. Theearly error rules in13.1.1 rule out identifiers with the sameStringValue as a reserved word.

Note 2

enum is not currently used as a keyword in this specification. It is afuture reserved word, set aside for use as a keyword in future language extensions.

Similarly,implements,interface,package,private,protected, andpublic are future reserved words instrict mode code.

Note 3

The namesarguments andeval are not keywords, but they are subject to some restrictions instrict mode code. See13.1.1,8.6.4,15.2.1,15.5.1,15.6.1, and15.8.1.

12.8 Punctuators

Syntax

Punctuator::OptionalChainingPunctuatorOtherPunctuatorOptionalChainingPunctuator::?.[lookahead ∉DecimalDigit]OtherPunctuator::one of{()[]....;,<><=>===!====!==+-*%**++--<<>>>>>&|^!~&&||???:=+=-=*=%=**=<<=>>=>>>=&=|=^=&&=||=??==>DivPunctuator:://=RightBracePunctuator::}

12.9 Literals

12.9.1 Null Literals

Syntax

NullLiteral::null

12.9.2 Boolean Literals

Syntax

BooleanLiteral::truefalse

12.9.3 Numeric Literals

Syntax

NumericLiteralSeparator::_NumericLiteral::DecimalLiteralDecimalBigIntegerLiteralNonDecimalIntegerLiteral[+Sep]NonDecimalIntegerLiteral[+Sep]BigIntLiteralSuffixLegacyOctalIntegerLiteralDecimalBigIntegerLiteral::0BigIntLiteralSuffixNonZeroDigitDecimalDigits[+Sep]optBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigits[+Sep]BigIntLiteralSuffixNonDecimalIntegerLiteral[Sep]::BinaryIntegerLiteral[?Sep]OctalIntegerLiteral[?Sep]HexIntegerLiteral[?Sep]BigIntLiteralSuffix::nDecimalLiteral::DecimalIntegerLiteral.DecimalDigits[+Sep]optExponentPart[+Sep]opt.DecimalDigits[+Sep]ExponentPart[+Sep]optDecimalIntegerLiteralExponentPart[+Sep]optDecimalIntegerLiteral::0NonZeroDigitNonZeroDigitNumericLiteralSeparatoroptDecimalDigits[+Sep]NonOctalDecimalIntegerLiteralDecimalDigits[Sep]::DecimalDigitDecimalDigits[?Sep]DecimalDigit[+Sep]DecimalDigits[+Sep]NumericLiteralSeparatorDecimalDigitDecimalDigit::one of0123456789NonZeroDigit::one of123456789ExponentPart[Sep]::ExponentIndicatorSignedInteger[?Sep]ExponentIndicator::one ofeESignedInteger[Sep]::DecimalDigits[?Sep]+DecimalDigits[?Sep]-DecimalDigits[?Sep]BinaryIntegerLiteral[Sep]::0bBinaryDigits[?Sep]0BBinaryDigits[?Sep]BinaryDigits[Sep]::BinaryDigitBinaryDigits[?Sep]BinaryDigit[+Sep]BinaryDigits[+Sep]NumericLiteralSeparatorBinaryDigitBinaryDigit::one of01OctalIntegerLiteral[Sep]::0oOctalDigits[?Sep]0OOctalDigits[?Sep]OctalDigits[Sep]::OctalDigitOctalDigits[?Sep]OctalDigit[+Sep]OctalDigits[+Sep]NumericLiteralSeparatorOctalDigitLegacyOctalIntegerLiteral::0OctalDigitLegacyOctalIntegerLiteralOctalDigitNonOctalDecimalIntegerLiteral::0NonOctalDigitLegacyOctalLikeDecimalIntegerLiteralNonOctalDigitNonOctalDecimalIntegerLiteralDecimalDigitLegacyOctalLikeDecimalIntegerLiteral::0OctalDigitLegacyOctalLikeDecimalIntegerLiteralOctalDigitOctalDigit::one of01234567NonOctalDigit::one of89HexIntegerLiteral[Sep]::0xHexDigits[?Sep]0XHexDigits[?Sep]HexDigits[Sep]::HexDigitHexDigits[?Sep]HexDigit[+Sep]HexDigits[+Sep]NumericLiteralSeparatorHexDigitHexDigit::one of0123456789abcdefABCDEF

TheSourceCharacter immediately following aNumericLiteral must not be anIdentifierStart orDecimalDigit.

Note

For example:3in is an error and not the two input elements3 andin.

12.9.3.1 Static Semantics: Early Errors

NumericLiteral::LegacyOctalIntegerLiteralDecimalIntegerLiteral::NonOctalDecimalIntegerLiteralNote
Innon-strict code, this syntax isLegacy.

12.9.3.2 Static Semantics: MV

A numeric literal stands for a value of theNumber type or theBigInt type.

12.9.3.3 Static Semantics: NumericValue

Thesyntax-directed operation NumericValue takes no arguments and returns a Number or a BigInt. It is defined piecewise over the following productions:

NumericLiteral::DecimalLiteral
  1. ReturnRoundMVResult(MV ofDecimalLiteral).
NumericLiteral::NonDecimalIntegerLiteral
  1. Return𝔽(MV ofNonDecimalIntegerLiteral).
NumericLiteral::LegacyOctalIntegerLiteral
  1. Return𝔽(MV ofLegacyOctalIntegerLiteral).
NumericLiteral::NonDecimalIntegerLiteralBigIntLiteralSuffix
  1. Return theBigInt value for the MV ofNonDecimalIntegerLiteral.
DecimalBigIntegerLiteral::0BigIntLiteralSuffix
  1. Return0.
DecimalBigIntegerLiteral::NonZeroDigitBigIntLiteralSuffix
  1. Return theBigInt value for the MV ofNonZeroDigit.
DecimalBigIntegerLiteral::NonZeroDigitDecimalDigitsBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigitsBigIntLiteralSuffix
  1. Letn be the number of code points inDecimalDigits, excluding all occurrences ofNumericLiteralSeparator.
  2. Letmv be (the MV ofNonZeroDigit × 10n) plus the MV ofDecimalDigits.
  3. Return(mv).

12.9.4 String Literals

Note 1

A string literal is 0 or more Unicode code points enclosed in single or double quotes. Unicode code points may also be represented by an escape sequence. All code points may appear literally in a string literal except for the closing quote code points, U+005C (REVERSE SOLIDUS), U+000D (CARRIAGE RETURN), and U+000A (LINE FEED). Any code points may appear in the form of an escape sequence. String literals evaluate to ECMAScript String values. When generating these String values Unicode code points are UTF-16 encoded as defined in11.1.1. Code points belonging to the Basic Multilingual Plane are encoded as a single code unit element of the string. All other code points are encoded as two code unit elements of the string.

Syntax

StringLiteral::"DoubleStringCharactersopt"'SingleStringCharactersopt'DoubleStringCharacters::DoubleStringCharacterDoubleStringCharactersoptSingleStringCharacters::SingleStringCharacterSingleStringCharactersoptDoubleStringCharacter::SourceCharacterbut not one of" or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationSingleStringCharacter::SourceCharacterbut not one of' or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationLineContinuation::\LineTerminatorSequenceEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]LegacyOctalEscapeSequenceNonOctalDecimalEscapeSequenceHexEscapeSequenceUnicodeEscapeSequenceCharacterEscapeSequence::SingleEscapeCharacterNonEscapeCharacterSingleEscapeCharacter::one of'"\bfnrtvNonEscapeCharacter::SourceCharacterbut not one ofEscapeCharacter orLineTerminatorEscapeCharacter::SingleEscapeCharacterDecimalDigitxuLegacyOctalEscapeSequence::0[lookahead ∈ {8,9 }]NonZeroOctalDigit[lookahead ∉OctalDigit]ZeroToThreeOctalDigit[lookahead ∉OctalDigit]FourToSevenOctalDigitZeroToThreeOctalDigitOctalDigitNonZeroOctalDigit::OctalDigitbut not0ZeroToThree::one of0123FourToSeven::one of4567NonOctalDecimalEscapeSequence::one of89HexEscapeSequence::xHexDigitHexDigitUnicodeEscapeSequence::uHex4Digitsu{CodePoint}Hex4Digits::HexDigitHexDigitHexDigitHexDigit

The definition of the nonterminalHexDigit is given in12.9.3.SourceCharacter is defined in11.1.

Note 2

<LF> and <CR> cannot appear in a string literal, except as part of aLineContinuation to produce the empty code points sequence. The proper way to include either in the String value of a string literal is to use an escape sequence such as\n or\u000A.

12.9.4.1 Static Semantics: Early Errors

EscapeSequence::LegacyOctalEscapeSequenceNonOctalDecimalEscapeSequenceNote 1
Innon-strict code, this syntax isLegacy.
Note 2

It is possible for string literals to precede aUse Strict Directive that places the enclosing code instrict mode, and implementations must take care to enforce the above rules for such literals. For example, the following source text contains a Syntax Error:

functioninvalid() {"\7";"use strict"; }

12.9.4.2 Static Semantics: SV

Thesyntax-directed operation SV takes no arguments and returns a String.

A string literal stands for a value of theString type. SV produces String values for string literals through recursive application on the various parts of the string literal. As part of this process, some Unicode code points within the string literal are interpreted as having amathematical value, as described below or in12.9.3.

Table 38: String Single Character Escape Sequences
Escape Sequence Code Unit Value Unicode Character Name Symbol
\b0x0008 BACKSPACE <BS>
\t0x0009 CHARACTER TABULATION <HT>
\n0x000A LINE FEED (LF) <LF>
\v0x000B LINE TABULATION <VT>
\f0x000C FORM FEED (FF) <FF>
\r0x000D CARRIAGE RETURN (CR) <CR>
\"0x0022 QUOTATION MARK"
\'0x0027 APOSTROPHE'
\\0x005C REVERSE SOLIDUS\

12.9.4.3 Static Semantics: MV

12.9.5 Regular Expression Literals

Note 1

A regular expression literal is an input element that is converted to a RegExp object (see22.2) each time the literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that never compare as=== to each other even if the two literals' contents are identical. A RegExp object may also be created at runtime bynew RegExp or calling the RegExpconstructor as a function (see22.2.4).

The productions below describe the syntax for a regular expression literal and are used by the input element scanner to find the end of the regular expression literal. The source text comprising theRegularExpressionBody and theRegularExpressionFlags are subsequently parsed again using the more stringent ECMAScript Regular Expression grammar (22.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in22.2.1, but it must not extend theRegularExpressionBody andRegularExpressionFlags productions defined below or the productions used by these productions.

Syntax

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlagsRegularExpressionBody::RegularExpressionFirstCharRegularExpressionCharsRegularExpressionChars::[empty]RegularExpressionCharsRegularExpressionCharRegularExpressionFirstChar::RegularExpressionNonTerminatorbut not one of* or\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionChar::RegularExpressionNonTerminatorbut not one of\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionBackslashSequence::\RegularExpressionNonTerminatorRegularExpressionNonTerminator::SourceCharacterbut notLineTerminatorRegularExpressionClass::[RegularExpressionClassChars]RegularExpressionClassChars::[empty]RegularExpressionClassCharsRegularExpressionClassCharRegularExpressionClassChar::RegularExpressionNonTerminatorbut not one of] or\RegularExpressionBackslashSequenceRegularExpressionFlags::[empty]RegularExpressionFlagsIdentifierPartCharNote 2

Regular expression literals may not be empty; instead of representing an empty regular expression literal, the code unit sequence// starts a single-line comment. To specify an empty regular expression, use:/(?:)/.

12.9.5.1 Static Semantics: BodyText

Thesyntax-directed operation BodyText takes no arguments and returns source text. It is defined piecewise over the following productions:

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlags
  1. Return the source text that was recognized asRegularExpressionBody.

12.9.5.2 Static Semantics: FlagText

Thesyntax-directed operation FlagText takes no arguments and returns source text. It is defined piecewise over the following productions:

RegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlags
  1. Return the source text that was recognized asRegularExpressionFlags.

12.9.6 Template Literal Lexical Components

Syntax

Template::NoSubstitutionTemplateTemplateHeadNoSubstitutionTemplate::`TemplateCharactersopt`TemplateHead::`TemplateCharactersopt${TemplateSubstitutionTail::TemplateMiddleTemplateTailTemplateMiddle::}TemplateCharactersopt${TemplateTail::}TemplateCharactersopt`TemplateCharacters::TemplateCharacterTemplateCharactersoptTemplateCharacter::$[lookahead ≠{]\TemplateEscapeSequence\NotEscapeSequenceLineContinuationLineTerminatorSequenceSourceCharacterbut not one of` or\ or$ orLineTerminatorTemplateEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]HexEscapeSequenceUnicodeEscapeSequenceNotEscapeSequence::0DecimalDigitDecimalDigitbut not0x[lookahead ∉HexDigit]xHexDigit[lookahead ∉HexDigit]u[lookahead ∉HexDigit][lookahead ≠{]uHexDigit[lookahead ∉HexDigit]uHexDigitHexDigit[lookahead ∉HexDigit]uHexDigitHexDigitHexDigit[lookahead ∉HexDigit]u{[lookahead ∉HexDigit]u{NotCodePoint[lookahead ∉HexDigit]u{CodePoint[lookahead ∉HexDigit][lookahead ≠}]NotCodePoint::HexDigits[~Sep]but only if MV ofHexDigits > 0x10FFFFCodePoint::HexDigits[~Sep]but only if MV ofHexDigits ≤ 0x10FFFFNote

TemplateSubstitutionTail is used by theInputElementTemplateTail alternative lexical goal.

12.9.6.1 Static Semantics: TV

Thesyntax-directed operation TV takes no arguments and returns a String orundefined. A template literal component is interpreted by TV as a value of theString type. TV is used to construct the indexed components of a template object (colloquially, the template values). In TV, escape sequences are replaced by the UTF-16 code unit(s) of the Unicode code point represented by the escape sequence.

12.9.6.2 Static Semantics: TRV

Thesyntax-directed operation TRV takes no arguments and returns a String. A template literal component is interpreted by TRV as a value of theString type. TRV is used to construct the raw components of a template object (colloquially, the template raw values). TRV is similar toTV with the difference being that in TRV, escape sequences are interpreted as they appear in the literal.

Note

TV excludes the code units ofLineContinuation while TRV includes them. <CR><LF> and <CR>LineTerminatorSequences are normalized to <LF> for bothTV and TRV. An explicitTemplateEscapeSequence is needed to include a <CR> or <CR><LF> sequence.

12.10 Automatic Semicolon Insertion

Most ECMAScript statements and declarations must be terminated with a semicolon. Such semicolons may always appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in certain situations. These situations are described by saying that semicolons are automatically inserted into the source code token stream in those situations.

12.10.1 Rules of Automatic Semicolon Insertion

In the following rules, “token” means the actual recognized lexical token determined using the current lexicalgoal symbol as described in clause12.

There are three basic rules of semicolon insertion:

  1. When, as the source text is parsed from left to right, a token (called theoffending token) is encountered that is not allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token if one or more of the following conditions is true:

    • The offending token is separated from the previous token by at least oneLineTerminator.
    • The offending token is}.
    • The previous token is) and the inserted semicolon would then be parsed as the terminating semicolon of a do-while statement (14.7.2).
  2. When, as the source text is parsed from left to right, the end of the input stream of tokens is encountered and the parser is unable to parse the input token stream as a single instance of the goal nonterminal, then a semicolon is automatically inserted at the end of the input stream.
  3. When, as the source text is parsed from left to right, a token is encountered that is allowed by some production of the grammar, but the production is arestricted production and the token would be the first token for a terminal or nonterminal immediately following the annotation “[noLineTerminator here]” within the restricted production (and therefore such a token is called a restricted token), and the restricted token is separated from the previous token by at least oneLineTerminator, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become one of the two semicolons in the header of afor statement (see14.7.4).

Note

The following are the only restricted productions in the grammar:

UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]ArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]AsyncFunctionDeclaration[Yield, Await, Default]:async[noLineTerminator here]functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, +Await]){AsyncFunctionBody}[+Default]async[noLineTerminator here]function(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionExpression:async[noLineTerminator here]functionBindingIdentifier[~Yield, +Await]opt(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncMethod[Yield, Await]:async[noLineTerminator here]ClassElementName[?Yield, ?Await](UniqueFormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncGeneratorDeclaration[Yield, Await, Default]:async[noLineTerminator here]function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, +Await]){AsyncGeneratorBody}[+Default]async[noLineTerminator here]function*(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorExpression:async[noLineTerminator here]function*BindingIdentifier[+Yield, +Await]opt(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorMethod[Yield, Await]:async[noLineTerminator here]*ClassElementName[?Yield, ?Await](UniqueFormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncArrowFunction[In, Yield, Await]:async[noLineTerminator here]AsyncArrowBindingIdentifier[?Yield][noLineTerminator here]=>AsyncConciseBody[?In]CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]AsyncArrowHead:async[noLineTerminator here]ArrowFormalParameters[~Yield, +Await]

The practical effect of these restricted productions is as follows:

  • When a++ or-- token is encountered where the parser would treat it as a postfix operator, and at least oneLineTerminator occurred between the preceding token and the++ or-- token, then a semicolon is automatically inserted before the++ or-- token.
  • When acontinue,break,return,throw, oryield token is encountered and aLineTerminator is encountered before the next token, a semicolon is automatically inserted after thecontinue,break,return,throw, oryield token.
  • When arrow function parameter(s) are followed by aLineTerminator before a=> token, a semicolon is automatically inserted and the punctuator causes a syntax error.
  • When anasync token is followed by aLineTerminator before afunction orIdentifierName or( token, a semicolon is automatically inserted and theasync token is not treated as part of the same expression or class element as the following tokens.
  • When anasync token is followed by aLineTerminator before a* token, a semicolon is automatically inserted and the punctuator causes a syntax error.

The resulting practical advice to ECMAScript programmers is:

  • A postfix++ or-- operator should be on the same line as its operand.
  • AnExpression in areturn orthrow statement or anAssignmentExpression in ayield expression should start on the same line as thereturn,throw, oryield token.
  • ALabelIdentifier in abreak orcontinue statement should be on the same line as thebreak orcontinue token.
  • The end of an arrow function's parameter(s) and its=> should be on the same line.
  • Theasync token preceding an asynchronous function or method should be on the same line as the immediately following token.

12.10.2 Examples of Automatic Semicolon Insertion

This section is non-normative.

The source

{12 }3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the source

{12 }3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

{1;2 ;}3;

which is a valid ECMAScript sentence.

The source

for (a; b)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is needed for the header of afor statement. Automatic semicolon insertion never inserts one of the two semicolons in the header of afor statement.

The source

returna + b

is transformed by automatic semicolon insertion into the following:

return;a + b;
Note 1

The expressiona + b is not treated as a value to be returned by thereturn statement, because aLineTerminator separates it from the tokenreturn.

The source

a = b++c

is transformed by automatic semicolon insertion into the following:

a = b;++c;
Note 2

The token++ is not treated as a postfix operator applying to the variableb, because aLineTerminator occurs betweenb and++.

The source

if (a > b)else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before theelse token, even though no production of the grammar applies at that point, because an automatically inserted semicolon would then be parsed as an empty statement.

The source

a = b + c(d + e).print()

isnot transformed by automatic semicolon insertion, because the parenthesized expression that begins the second line can be interpreted as an argument list for a function call:

a = b +c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic semicolon insertion.

12.10.3 Interesting Cases of Automatic Semicolon Insertion

This section is non-normative.

ECMAScript programs can be written in a style with very few semicolons by relying on automatic semicolon insertion. As described above, semicolons are not inserted at every newline, and automatic semicolon insertion can depend on multiple tokens across line terminators.

As new syntactic features are added to ECMAScript, additional grammar productions could be added that cause lines relying on automatic semicolon insertion preceding them to change grammar productions when parsed.

For the purposes of this section, a case of automatic semicolon insertion is considered interesting if it is a place where a semicolon may or may not be inserted, depending on the source text which precedes it. The rest of this section describes a number of interesting cases of automatic semicolon insertion in this version of ECMAScript.

12.10.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists

In aStatementList, manyStatementListItems end in semicolons, which may be omitted using automatic semicolon insertion. As a consequence of the rules above, at the end of a line ending an expression, a semicolon is required if the following line begins with any of the following:

  • An opening parenthesis ((). Without a semicolon, the two lines together are treated as aCallExpression.
  • An opening square bracket ([). Without a semicolon, the two lines together are treated as property access, rather than anArrayLiteral orArrayAssignmentPattern.
  • A template literal (`). Without a semicolon, the two lines together are interpreted as a tagged Template (13.3.11), with the previous expression as theMemberExpression.
  • Unary+ or-. Without a semicolon, the two lines together are interpreted as a usage of the corresponding binary operator.
  • A RegExp literal. Without a semicolon, the two lines together may be parsed instead as the/MultiplicativeOperator, for example if the RegExp has flags.

12.10.3.2 Cases of Automatic Semicolon Insertion and “[noLineTerminator here]”

This section is non-normative.

ECMAScript contains grammar productions which include “[noLineTerminator here]”. These productions are sometimes a means to have optional operands in the grammar. Introducing aLineTerminator in these locations would change the grammar production of a source text by using the grammar production without the optional operand.

The rest of this section describes a number of productions using “[noLineTerminator here]” in this version of ECMAScript.

12.10.3.2.1 List of Grammar Productions with Optional Operands and “[noLineTerminator here]”

13 ECMAScript Language: Expressions

13.1 Identifiers

Syntax

IdentifierReference[Yield, Await]:Identifier[~Yield]yield[~Await]awaitBindingIdentifier[Yield, Await]:IdentifieryieldawaitLabelIdentifier[Yield, Await]:Identifier[~Yield]yield[~Await]awaitIdentifier:IdentifierNamebut notReservedWordNote

yield andawait are permitted asBindingIdentifier in the grammar, and prohibited withstatic semantics below, to prohibit automatic semicolon insertion in cases such as

letawait0;

13.1.1 Static Semantics: Early Errors

BindingIdentifier:IdentifierIdentifierReference:yieldBindingIdentifier:yieldLabelIdentifier:yieldIdentifierReference:awaitBindingIdentifier:awaitLabelIdentifier:awaitBindingIdentifier[Yield, Await]:yield
  • It is a Syntax Error if this production has a[Yield] parameter.
BindingIdentifier[Yield, Await]:await
  • It is a Syntax Error if this production has an[Await] parameter.
IdentifierReference[Yield, Await]:IdentifierBindingIdentifier[Yield, Await]:IdentifierLabelIdentifier[Yield, Await]:IdentifierIdentifier:IdentifierNamebut notReservedWordNote

StringValue ofIdentifierName normalizes any Unicode escape sequences inIdentifierName hence such escapes cannot be used to write anIdentifier whose code point sequence is the same as aReservedWord.

13.1.2 Static Semantics: StringValue

Thesyntax-directed operation StringValue takes no arguments and returns a String. It is defined piecewise over the following productions:

IdentifierName::IdentifierStartIdentifierNameIdentifierPart
  1. LetidTextUnescaped beIdentifierCodePoints ofIdentifierName.
  2. ReturnCodePointsToString(idTextUnescaped).
IdentifierReference:yieldBindingIdentifier:yieldLabelIdentifier:yield
  1. Return"yield".
IdentifierReference:awaitBindingIdentifier:awaitLabelIdentifier:await
  1. Return"await".
Identifier:IdentifierNamebut notReservedWord
  1. Return theStringValue ofIdentifierName.
PrivateIdentifier::#IdentifierName
  1. Return thestring-concatenation of 0x0023 (NUMBER SIGN) and theStringValue ofIdentifierName.
ModuleExportName:StringLiteral
  1. Return theSV ofStringLiteral.

13.1.3 Runtime Semantics: Evaluation

IdentifierReference:Identifier
  1. Return ? ResolveBinding(StringValue ofIdentifier).
IdentifierReference:yield
  1. Return ? ResolveBinding("yield").
IdentifierReference:await
  1. Return ? ResolveBinding("await").
Note 1

The result of evaluating anIdentifierReference is always a value of type Reference.

Note 2

Innon-strict code, thekeywordyield may be used as an identifier. Evaluating theIdentifierReference resolves the binding ofyield as if it was anIdentifier. Early Error restriction ensures that such an evaluation only can occur fornon-strict code.

13.2 Primary Expression

Syntax

PrimaryExpression[Yield, Await]:thisIdentifierReference[?Yield, ?Await]LiteralArrayLiteral[?Yield, ?Await]ObjectLiteral[?Yield, ?Await]FunctionExpressionClassExpression[?Yield, ?Await]GeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral[?Yield, ?Await, ~Tagged]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[Yield, Await]:(Expression[+In, ?Yield, ?Await])(Expression[+In, ?Yield, ?Await],)()(...BindingIdentifier[?Yield, ?Await])(...BindingPattern[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingIdentifier[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingPattern[?Yield, ?Await])

Supplemental Syntax

When processing an instance of the production
PrimaryExpression[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await]:(Expression[+In, ?Yield, ?Await])

13.2.1 Thethis Keyword

13.2.1.1 Runtime Semantics: Evaluation

PrimaryExpression:this
  1. Return ? ResolveThisBinding().

13.2.2 Identifier Reference

See13.1 forIdentifierReference.

13.2.3 Literals

Syntax

Literal:NullLiteralBooleanLiteralNumericLiteralStringLiteral

13.2.3.1 Runtime Semantics: Evaluation

Literal:NullLiteral
  1. Returnnull.
Literal:BooleanLiteral
  1. IfBooleanLiteral is the tokenfalse, returnfalse.
  2. IfBooleanLiteral is the tokentrue, returntrue.
Literal:NumericLiteral
  1. Return theNumericValue ofNumericLiteral as defined in12.9.3.
Literal:StringLiteral
  1. Return theSV ofStringLiteral as defined in12.9.4.2.

13.2.4 Array Initializer

Note

AnArrayLiteral is an expression describing the initialization of an Array, using a list, of zero or more expressions each of which represents an array element, enclosed in square brackets. The elements need not be literals; they are evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element list is not preceded by anAssignmentExpression (i.e., a comma at the beginning or after another comma), the missing array element contributes to the length of the Array and increases the index of subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array, that element does not contribute to the length of the Array.

Syntax

ArrayLiteral[Yield, Await]:[Elisionopt][ElementList[?Yield, ?Await]][ElementList[?Yield, ?Await],Elisionopt]ElementList[Yield, Await]:ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElisionoptSpreadElement[?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptSpreadElement[?Yield, ?Await]Elision:,Elision,SpreadElement[Yield, Await]:...AssignmentExpression[+In, ?Yield, ?Await]

13.2.4.1 Runtime Semantics: ArrayAccumulation

Thesyntax-directed operation ArrayAccumulation takes argumentsarray (an Array) andnextIndex (aninteger) and returns either anormal completion containing aninteger or anabrupt completion. It is defined piecewise over the following productions:

Elision:,
  1. Letlen benextIndex + 1.
  2. Perform ? Set(array,"length",𝔽(len),true).
  3. NOTE: The above step throws iflen exceeds 232 - 1.
  4. Returnlen.
Elision:Elision,
  1. Return ? ArrayAccumulation ofElision with argumentsarray and (nextIndex + 1).
ElementList:ElisionoptAssignmentExpression
  1. IfElision is present, then
    1. SetnextIndex to ? ArrayAccumulation ofElision with argumentsarray andnextIndex.
  2. LetinitResult be ? Evaluation ofAssignmentExpression.
  3. LetinitValue be ? GetValue(initResult).
  4. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),initValue).
  5. ReturnnextIndex + 1.
ElementList:ElisionoptSpreadElement
  1. IfElision is present, then
    1. SetnextIndex to ? ArrayAccumulation ofElision with argumentsarray andnextIndex.
  2. Return ? ArrayAccumulation ofSpreadElement with argumentsarray andnextIndex.
ElementList:ElementList,ElisionoptAssignmentExpression
  1. SetnextIndex to ? ArrayAccumulation ofElementList with argumentsarray andnextIndex.
  2. IfElision is present, then
    1. SetnextIndex to ? ArrayAccumulation ofElision with argumentsarray andnextIndex.
  3. LetinitResult be ? Evaluation ofAssignmentExpression.
  4. LetinitValue be ? GetValue(initResult).
  5. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),initValue).
  6. ReturnnextIndex + 1.
ElementList:ElementList,ElisionoptSpreadElement
  1. SetnextIndex to ? ArrayAccumulation ofElementList with argumentsarray andnextIndex.
  2. IfElision is present, then
    1. SetnextIndex to ? ArrayAccumulation ofElision with argumentsarray andnextIndex.
  3. Return ? ArrayAccumulation ofSpreadElement with argumentsarray andnextIndex.
SpreadElement:...AssignmentExpression
  1. LetspreadRef be ? Evaluation ofAssignmentExpression.
  2. LetspreadObj be ? GetValue(spreadRef).
  3. LetiteratorRecord be ? GetIterator(spreadObj,sync).
  4. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returnnextIndex.
    3. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)),next).
    4. SetnextIndex tonextIndex + 1.
Note

CreateDataPropertyOrThrow is used to ensure that own properties are defined for the array even if the standard built-inArray prototype object has been modified in a manner that would preclude the creation of new own properties using[[Set]].

13.2.4.2 Runtime Semantics: Evaluation

ArrayLiteral:[Elisionopt]
  1. Letarray be ! ArrayCreate(0).
  2. IfElision is present, then
    1. Perform ? ArrayAccumulation ofElision with argumentsarray and 0.
  3. Returnarray.
ArrayLiteral:[ElementList]
  1. Letarray be ! ArrayCreate(0).
  2. Perform ? ArrayAccumulation ofElementList with argumentsarray and 0.
  3. Returnarray.
ArrayLiteral:[ElementList,Elisionopt]
  1. Letarray be ! ArrayCreate(0).
  2. LetnextIndex be ? ArrayAccumulation ofElementList with argumentsarray and 0.
  3. IfElision is present, then
    1. Perform ? ArrayAccumulation ofElision with argumentsarray andnextIndex.
  4. Returnarray.

13.2.5 Object Initializer

Note 1

An object initializer is an expression describing the initialization of an Object, written in a form resembling a literal. It is a list of zero or more pairs ofproperty keys and associated values, enclosed in curly brackets. The values need not be literals; they are evaluated each time the object initializer is evaluated.

Syntax

ObjectLiteral[Yield, Await]:{}{PropertyDefinitionList[?Yield, ?Await]}{PropertyDefinitionList[?Yield, ?Await],}PropertyDefinitionList[Yield, Await]:PropertyDefinition[?Yield, ?Await]PropertyDefinitionList[?Yield, ?Await],PropertyDefinition[?Yield, ?Await]PropertyDefinition[Yield, Await]:IdentifierReference[?Yield, ?Await]CoverInitializedName[?Yield, ?Await]PropertyName[?Yield, ?Await]:AssignmentExpression[+In, ?Yield, ?Await]MethodDefinition[?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]PropertyName[Yield, Await]:LiteralPropertyNameComputedPropertyName[?Yield, ?Await]LiteralPropertyName:IdentifierNameStringLiteralNumericLiteralComputedPropertyName[Yield, Await]:[AssignmentExpression[+In, ?Yield, ?Await]]CoverInitializedName[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]Initializer[In, Yield, Await]:=AssignmentExpression[?In, ?Yield, ?Await]Note 2

MethodDefinition is defined in15.4.

Note 3

In certain contexts,ObjectLiteral is used as a cover grammar for a more restricted secondary grammar. TheCoverInitializedName production is necessary to fully cover these secondary grammars. However, use of this production results in an early Syntax Error in normal contexts where an actualObjectLiteral is expected.

13.2.5.1 Static Semantics: Early Errors

PropertyDefinition:MethodDefinition

In addition to describing an actual object initializer theObjectLiteral productions are also used as a cover grammar forObjectAssignmentPattern and may be recognized as part of aCoverParenthesizedExpressionAndArrowParameterList. WhenObjectLiteral appears in a context whereObjectAssignmentPattern is required the following Early Error rules arenot applied. In addition, they are not applied when initially parsing aCoverParenthesizedExpressionAndArrowParameterList orCoverCallExpressionAndAsyncArrowHead.

PropertyDefinition:CoverInitializedName
  • It is a Syntax Error if any source text is matched by this production.
Note 1

This production exists so thatObjectLiteral can serve as a cover grammar forObjectAssignmentPattern. It cannot occur in an actual object initializer.

ObjectLiteral:{PropertyDefinitionList}{PropertyDefinitionList,}Note 2

TheList returned byPropertyNameList does not include property names defined using aComputedPropertyName.

13.2.5.2 Static Semantics: IsComputedPropertyKey

Thesyntax-directed operation IsComputedPropertyKey takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

PropertyName:LiteralPropertyName
  1. Returnfalse.
PropertyName:ComputedPropertyName
  1. Returntrue.

13.2.5.3 Static Semantics: PropertyNameList

Thesyntax-directed operation PropertyNameList takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

PropertyDefinitionList:PropertyDefinition
  1. LetpropName bePropName ofPropertyDefinition.
  2. IfpropName isempty, return a new emptyList.
  3. Return «propName ».
PropertyDefinitionList:PropertyDefinitionList,PropertyDefinition
  1. Letlist bePropertyNameList ofPropertyDefinitionList.
  2. LetpropName bePropName ofPropertyDefinition.
  3. IfpropName isempty, returnlist.
  4. Return thelist-concatenation oflist and «propName ».

13.2.5.4 Runtime Semantics: Evaluation

ObjectLiteral:{}
  1. ReturnOrdinaryObjectCreate(%Object.prototype%).
ObjectLiteral:{PropertyDefinitionList}{PropertyDefinitionList,}
  1. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  2. Perform ? PropertyDefinitionEvaluation ofPropertyDefinitionList with argumentobj.
  3. Returnobj.
LiteralPropertyName:IdentifierName
  1. ReturnStringValue ofIdentifierName.
LiteralPropertyName:StringLiteral
  1. Return theSV ofStringLiteral.
LiteralPropertyName:NumericLiteral
  1. Letnbr be theNumericValue ofNumericLiteral.
  2. Return ! ToString(nbr).
ComputedPropertyName:[AssignmentExpression]
  1. LetexprValue be ? Evaluation ofAssignmentExpression.
  2. LetpropName be ? GetValue(exprValue).
  3. Return ? ToPropertyKey(propName).

13.2.5.5 Runtime Semantics: PropertyDefinitionEvaluation

Thesyntax-directed operation PropertyDefinitionEvaluation takes argumentobject (an Object) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

PropertyDefinitionList:PropertyDefinitionList,PropertyDefinition
  1. Perform ? PropertyDefinitionEvaluation ofPropertyDefinitionList with argumentobject.
  2. Perform ? PropertyDefinitionEvaluation ofPropertyDefinition with argumentobject.
  3. Returnunused.
PropertyDefinition:...AssignmentExpression
  1. LetexprValue be ? Evaluation ofAssignmentExpression.
  2. LetfromValue be ? GetValue(exprValue).
  3. LetexcludedNames be a new emptyList.
  4. Perform ? CopyDataProperties(object,fromValue,excludedNames).
  5. Returnunused.
PropertyDefinition:IdentifierReference
  1. LetpropName beStringValue ofIdentifierReference.
  2. LetexprValue be ? Evaluation ofIdentifierReference.
  3. LetpropValue be ? GetValue(exprValue).
  4. Assert:object is an ordinary, extensible object with no non-configurable properties.
  5. Perform ! CreateDataPropertyOrThrow(object,propName,propValue).
  6. Returnunused.
PropertyDefinition:PropertyName:AssignmentExpression
  1. LetpropKey be ? Evaluation ofPropertyName.
  2. If thisPropertyDefinition is contained within aScript that is being evaluated for JSON.parse (see step7 ofJSON.parse), then
    1. LetisProtoSetter befalse.
  3. Else ifpropKey is"__proto__" andIsComputedPropertyKey ofPropertyName isfalse, then
    1. LetisProtoSetter betrue.
  4. Else,
    1. LetisProtoSetter befalse.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andisProtoSetter isfalse, then
    1. LetpropValue be ? NamedEvaluation ofAssignmentExpression with argumentpropKey.
  6. Else,
    1. LetexprValueRef be ? Evaluation ofAssignmentExpression.
    2. LetpropValue be ? GetValue(exprValueRef).
  7. IfisProtoSetter istrue, then
    1. IfpropValueis an Object orpropValue isnull, then
      1. Perform ! object.[[SetPrototypeOf]](propValue).
    2. Returnunused.
  8. Assert:object is an ordinary, extensible object with no non-configurable properties.
  9. Perform ! CreateDataPropertyOrThrow(object,propKey,propValue).
  10. Returnunused.
PropertyDefinition:MethodDefinition
  1. Perform ? MethodDefinitionEvaluation ofMethodDefinition with argumentsobject andtrue.
  2. Returnunused.

13.2.6 Function Defining Expressions

See15.2 forPrimaryExpression:FunctionExpression.

See15.5 forPrimaryExpression:GeneratorExpression.

See15.7 forPrimaryExpression:ClassExpression.

See15.8 forPrimaryExpression:AsyncFunctionExpression.

See15.6 forPrimaryExpression:AsyncGeneratorExpression.

13.2.7 Regular Expression Literals

Syntax

See12.9.5.

13.2.7.1 Static Semantics: Early Errors

PrimaryExpression:RegularExpressionLiteral

13.2.7.2 Static Semantics: IsValidRegularExpressionLiteral (literal )

The abstract operation IsValidRegularExpressionLiteral takes argumentliteral (aRegularExpressionLiteralParse Node) and returns a Boolean. It determines if its argument is a valid regular expression literal. It performs the following steps when called:

  1. Letflags beFlagText ofliteral.
  2. Ifflags contains any code points other thand,g,i,m,s,u,v, ory, or ifflags contains any code point more than once, returnfalse.
  3. Ifflags containsu, letu betrue; else letu befalse.
  4. Ifflags containsv, letv betrue; else letv befalse.
  5. LetpatternText beBodyText ofliteral.
  6. Ifu isfalse andv isfalse, then
    1. LetstringValue beCodePointsToString(patternText).
    2. SetpatternText to the sequence of code points resulting from interpreting each of the 16-bit elements ofstringValue as a Unicode BMP code point. UTF-16 decoding is not applied to the elements.
  7. LetparseResult beParsePattern(patternText,u,v).
  8. IfparseResult is aParse Node, returntrue; else returnfalse.

13.2.7.3 Runtime Semantics: Evaluation

PrimaryExpression:RegularExpressionLiteral
  1. Letpattern beCodePointsToString(BodyText ofRegularExpressionLiteral).
  2. Letflags beCodePointsToString(FlagText ofRegularExpressionLiteral).
  3. Return ! RegExpCreate(pattern,flags).

13.2.8 Template Literals

Syntax

TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateSubstitutionTemplate[?Yield, ?Await, ?Tagged]SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]

13.2.8.1 Static Semantics: Early Errors

TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateTemplateLiteral[Yield, Await, Tagged]:SubstitutionTemplate[?Yield, ?Await, ?Tagged]
  • It is a Syntax Error if the number of elements in the result ofTemplateStrings ofTemplateLiteral with argumentfalse is greater than or equal to 232.
SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]

13.2.8.2 Static Semantics: TemplateStrings

Thesyntax-directed operation TemplateStrings takes argumentraw (a Boolean) and returns aList of either Strings orundefined. It is defined piecewise over the following productions:

TemplateLiteral:NoSubstitutionTemplate
  1. Return «TemplateString(NoSubstitutionTemplate,raw) ».
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. Lethead be «TemplateString(TemplateHead,raw) ».
  2. Lettail beTemplateStrings ofTemplateSpans with argumentraw.
  3. Return thelist-concatenation ofhead andtail.
TemplateSpans:TemplateTail
  1. Return «TemplateString(TemplateTail,raw) ».
TemplateSpans:TemplateMiddleListTemplateTail
  1. Letmiddle beTemplateStrings ofTemplateMiddleList with argumentraw.
  2. Lettail be «TemplateString(TemplateTail,raw) ».
  3. Return thelist-concatenation ofmiddle andtail.
TemplateMiddleList:TemplateMiddleExpression
  1. Return «TemplateString(TemplateMiddle,raw) ».
TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letfront beTemplateStrings ofTemplateMiddleList with argumentraw.
  2. Letlast be «TemplateString(TemplateMiddle,raw) ».
  3. Return thelist-concatenation offront andlast.

13.2.8.3 Static Semantics: TemplateString (templateToken,raw )

The abstract operation TemplateString takes argumentstemplateToken (aNoSubstitutionTemplateParse Node, aTemplateHeadParse Node, aTemplateMiddleParse Node, or aTemplateTailParse Node) andraw (a Boolean) and returns a String orundefined. It performs the following steps when called:

  1. Ifraw istrue, then
    1. Letstring be theTRV oftemplateToken.
  2. Else,
    1. Letstring be theTV oftemplateToken.
  3. Returnstring.
Note

This operation returnsundefined ifraw isfalse andtemplateToken contains aNotEscapeSequence. In all other cases, it returns a String.

13.2.8.4 GetTemplateObject (templateLiteral )

The abstract operation GetTemplateObject takes argumenttemplateLiteral (aParse Node) and returns an Array. It performs the following steps when called:

  1. Letrealm bethe current Realm Record.
  2. LettemplateRegistry berealm.[[TemplateMap]].
  3. For each elemente oftemplateRegistry, do
    1. Ife.[[Site]] isthe same Parse Node astemplateLiteral, then
      1. Returne.[[Array]].
  4. LetrawStrings beTemplateStrings oftemplateLiteral with argumenttrue.
  5. Assert:rawStrings is aList of Strings.
  6. LetcookedStrings beTemplateStrings oftemplateLiteral with argumentfalse.
  7. Letcount be the number of elements in theListcookedStrings.
  8. Assert:count ≤ 232 - 1.
  9. Lettemplate be ! ArrayCreate(count).
  10. LetrawObj be ! ArrayCreate(count).
  11. Letindex be 0.
  12. Repeat, whileindex <count,
    1. Letprop be ! ToString(𝔽(index)).
    2. LetcookedValue becookedStrings[index].
    3. Perform ! DefinePropertyOrThrow(template,prop, PropertyDescriptor {[[Value]]:cookedValue,[[Writable]]:false,[[Enumerable]]:true,[[Configurable]]:false }).
    4. LetrawValue be the String valuerawStrings[index].
    5. Perform ! DefinePropertyOrThrow(rawObj,prop, PropertyDescriptor {[[Value]]:rawValue,[[Writable]]:false,[[Enumerable]]:true,[[Configurable]]:false }).
    6. Setindex toindex + 1.
  13. Perform ! SetIntegrityLevel(rawObj,frozen).
  14. Perform ! DefinePropertyOrThrow(template,"raw", PropertyDescriptor {[[Value]]:rawObj,[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }).
  15. Perform ! SetIntegrityLevel(template,frozen).
  16. Append theRecord {[[Site]]:templateLiteral,[[Array]]:template } torealm.[[TemplateMap]].
  17. Returntemplate.
Note 1

The creation of a template object cannot result in anabrupt completion.

Note 2

EachTemplateLiteral in the program code of arealm is associated with a unique template object that is used in the evaluation of tagged Templates (13.2.8.6). The template objects are frozen and the same template object is used each time a specific tagged Template is evaluated. Whether template objects are created lazily upon first evaluation of theTemplateLiteral or eagerly prior to first evaluation is an implementation choice that is not observable to ECMAScript code.

Note 3

Future editions of this specification may define additional non-enumerable properties of template objects.

13.2.8.5 Runtime Semantics: SubstitutionEvaluation

Thesyntax-directed operation SubstitutionEvaluation takes no arguments and returns either anormal completion containing aList ofECMAScript language values or anabrupt completion. It is defined piecewise over the following productions:

TemplateSpans:TemplateTail
  1. Return a new emptyList.
TemplateSpans:TemplateMiddleListTemplateTail
  1. Return ? SubstitutionEvaluation ofTemplateMiddleList.
TemplateMiddleList:TemplateMiddleExpression
  1. LetsubRef be ? Evaluation ofExpression.
  2. Letsub be ? GetValue(subRef).
  3. Return «sub ».
TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letpreceding be ? SubstitutionEvaluation ofTemplateMiddleList.
  2. LetnextRef be ? Evaluation ofExpression.
  3. Letnext be ? GetValue(nextRef).
  4. Return thelist-concatenation ofpreceding and «next ».

13.2.8.6 Runtime Semantics: Evaluation

TemplateLiteral:NoSubstitutionTemplate
  1. Return theTV ofNoSubstitutionTemplate as defined in12.9.6.
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. Lethead be theTV ofTemplateHead as defined in12.9.6.
  2. LetsubRef be ? Evaluation ofExpression.
  3. Letsub be ? GetValue(subRef).
  4. Letmiddle be ? ToString(sub).
  5. Lettail be ? Evaluation ofTemplateSpans.
  6. Return thestring-concatenation ofhead,middle, andtail.
Note 1

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

TemplateSpans:TemplateTail
  1. Return theTV ofTemplateTail as defined in12.9.6.
TemplateSpans:TemplateMiddleListTemplateTail
  1. Lethead be ? Evaluation ofTemplateMiddleList.
  2. Lettail be theTV ofTemplateTail as defined in12.9.6.
  3. Return thestring-concatenation ofhead andtail.
TemplateMiddleList:TemplateMiddleExpression
  1. Lethead be theTV ofTemplateMiddle as defined in12.9.6.
  2. LetsubRef be ? Evaluation ofExpression.
  3. Letsub be ? GetValue(subRef).
  4. Letmiddle be ? ToString(sub).
  5. Return thestring-concatenation ofhead andmiddle.
Note 2

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

TemplateMiddleList:TemplateMiddleListTemplateMiddleExpression
  1. Letrest be ? Evaluation ofTemplateMiddleList.
  2. Letmiddle be theTV ofTemplateMiddle as defined in12.9.6.
  3. LetsubRef be ? Evaluation ofExpression.
  4. Letsub be ? GetValue(subRef).
  5. Letlast be ? ToString(sub).
  6. Return thestring-concatenation ofrest,middle, andlast.
Note 3

The string conversion semantics applied to theExpression value are likeString.prototype.concat rather than the+ operator.

13.2.9 The Grouping Operator

13.2.9.1 Static Semantics: Early Errors

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList

13.2.9.2 Runtime Semantics: Evaluation

PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. Return ? Evaluation ofexpr.
ParenthesizedExpression:(Expression)
  1. Return ? Evaluation ofExpression. This may be of type Reference.
Note

This algorithm does not applyGetValue toEvaluation ofExpression. The principal motivation for this is so that operators such asdelete andtypeof may be applied to parenthesized expressions.

13.3 Left-Hand-Side Expressions

Syntax

MemberExpression[Yield, Await]:PrimaryExpression[?Yield, ?Await]MemberExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]MemberExpression[?Yield, ?Await].IdentifierNameMemberExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]SuperProperty[?Yield, ?Await]MetaPropertynewMemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]MemberExpression[?Yield, ?Await].PrivateIdentifierSuperProperty[Yield, Await]:super[Expression[+In, ?Yield, ?Await]]super.IdentifierNameMetaProperty:NewTargetImportMetaNewTarget:new.targetImportMeta:import.metaNewExpression[Yield, Await]:MemberExpression[?Yield, ?Await]newNewExpression[?Yield, ?Await]CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]SuperCall[?Yield, ?Await]ImportCall[?Yield, ?Await]CallExpression[?Yield, ?Await]Arguments[?Yield, ?Await]CallExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]CallExpression[?Yield, ?Await].IdentifierNameCallExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]CallExpression[?Yield, ?Await].PrivateIdentifierSuperCall[Yield, Await]:superArguments[?Yield, ?Await]ImportCall[Yield, Await]:import(AssignmentExpression[+In, ?Yield, ?Await])Arguments[Yield, Await]:()(ArgumentList[?Yield, ?Await])(ArgumentList[?Yield, ?Await],)ArgumentList[Yield, Await]:AssignmentExpression[+In, ?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],...AssignmentExpression[+In, ?Yield, ?Await]OptionalExpression[Yield, Await]:MemberExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalChain[Yield, Await]:?.Arguments[?Yield, ?Await]?.[Expression[+In, ?Yield, ?Await]]?.IdentifierName?.TemplateLiteral[?Yield, ?Await, +Tagged]?.PrivateIdentifierOptionalChain[?Yield, ?Await]Arguments[?Yield, ?Await]OptionalChain[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]OptionalChain[?Yield, ?Await].IdentifierNameOptionalChain[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]OptionalChain[?Yield, ?Await].PrivateIdentifierLeftHandSideExpression[Yield, Await]:NewExpression[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalExpression[?Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
CallExpression:CoverCallExpressionAndAsyncArrowHead
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

13.3.1 Static Semantics

13.3.1.1 Static Semantics: Early Errors

OptionalChain:?.TemplateLiteralOptionalChainTemplateLiteral
  • It is a Syntax Error if any source text is matched by this production.
Note

This production exists in order to prevent automatic semicolon insertion rules (12.10) from being applied to the following code:

a?.b`c`

so that it would be interpreted as two valid statements. The purpose is to maintain consistency with similar code without optional chaining:

a.b`c`

which is a valid statement and where automatic semicolon insertion does not apply.

ImportMeta:import.meta

13.3.2 Property Accessors

Note

Properties are accessed by name, using either the dot notation:

or the bracket notation:

The dot notation is explained by the following syntactic conversion:

is identical in its behaviour to

MemberExpression[ <identifier-name-string>]

and similarly

is identical in its behaviour to

CallExpression[ <identifier-name-string>]

where <identifier-name-string> is the result of evaluatingStringValue ofIdentifierName.

13.3.2.1 Runtime Semantics: Evaluation

MemberExpression:MemberExpression[Expression]
  1. LetbaseReference be ? Evaluation ofMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If thesource text matched by thisMemberExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
MemberExpression:MemberExpression.IdentifierName
  1. LetbaseReference be ? Evaluation ofMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If thesource text matched by thisMemberExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. ReturnEvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).
MemberExpression:MemberExpression.PrivateIdentifier
  1. LetbaseReference be ? Evaluation ofMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. LetfieldNameString be theStringValue ofPrivateIdentifier.
  4. ReturnMakePrivateReference(baseValue,fieldNameString).
CallExpression:CallExpression[Expression]
  1. LetbaseReference be ? Evaluation ofCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If thesource text matched by thisCallExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
CallExpression:CallExpression.IdentifierName
  1. LetbaseReference be ? Evaluation ofCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. If thesource text matched by thisCallExpression isstrict mode code, letstrict betrue; else letstrict befalse.
  4. ReturnEvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).
CallExpression:CallExpression.PrivateIdentifier
  1. LetbaseReference be ? Evaluation ofCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. LetfieldNameString be theStringValue ofPrivateIdentifier.
  4. ReturnMakePrivateReference(baseValue,fieldNameString).

13.3.3 EvaluatePropertyAccessWithExpressionKey (baseValue,expression,strict )

The abstract operation EvaluatePropertyAccessWithExpressionKey takes argumentsbaseValue (anECMAScript language value),expression (anExpressionParse Node), andstrict (a Boolean) and returns either anormal completion containing aReference Record or anabrupt completion. It performs the following steps when called:

  1. LetpropertyNameReference be ? Evaluation ofexpression.
  2. LetpropertyNameValue be ? GetValue(propertyNameReference).
  3. LetpropertyKey be ? ToPropertyKey(propertyNameValue).
  4. Return theReference Record {[[Base]]:baseValue,[[ReferencedName]]:propertyKey,[[Strict]]:strict,[[ThisValue]]:empty }.

13.3.4 EvaluatePropertyAccessWithIdentifierKey (baseValue,identifierName,strict )

The abstract operation EvaluatePropertyAccessWithIdentifierKey takes argumentsbaseValue (anECMAScript language value),identifierName (anIdentifierNameParse Node), andstrict (a Boolean) and returns aReference Record. It performs the following steps when called:

  1. LetpropertyNameString beStringValue ofidentifierName.
  2. Return theReference Record {[[Base]]:baseValue,[[ReferencedName]]:propertyNameString,[[Strict]]:strict,[[ThisValue]]:empty }.

13.3.5 Thenew Operator

13.3.5.1 Runtime Semantics: Evaluation

NewExpression:newNewExpression
  1. Return ? EvaluateNew(NewExpression,empty).
MemberExpression:newMemberExpressionArguments
  1. Return ? EvaluateNew(MemberExpression,Arguments).

13.3.5.1.1 EvaluateNew (constructExpr,arguments )

The abstract operation EvaluateNew takes argumentsconstructExpr (aNewExpressionParse Node or aMemberExpressionParse Node) andarguments (empty or anArgumentsParse Node) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. Letref be ? Evaluation ofconstructExpr.
  2. Letconstructor be ? GetValue(ref).
  3. Ifarguments isempty, then
    1. LetargList be a new emptyList.
  4. Else,
    1. LetargList be ? ArgumentListEvaluation ofarguments.
  5. IfIsConstructor(constructor) isfalse, throw aTypeError exception.
  6. Return ? Construct(constructor,argList).

13.3.6 Function Calls

13.3.6.1 Runtime Semantics: Evaluation

CallExpression:CoverCallExpressionAndAsyncArrowHead
  1. Letexpr be theCallMemberExpression that iscovered byCoverCallExpressionAndAsyncArrowHead.
  2. LetmemberExpr be theMemberExpression ofexpr.
  3. Letarguments be theArguments ofexpr.
  4. Letref be ? Evaluation ofmemberExpr.
  5. Letfunc be ? GetValue(ref).
  6. Ifref is aReference Record,IsPropertyReference(ref) isfalse, andref.[[ReferencedName]] is"eval", then
    1. IfSameValue(func,%eval%) istrue, then
      1. LetargList be ? ArgumentListEvaluation ofarguments.
      2. IfargList has no elements, returnundefined.
      3. LetevalArg be the first element ofargList.
      4. If thesource text matched by thisCallExpression isstrict mode code, letstrictCaller betrue. Otherwise letstrictCaller befalse.
      5. Return ? PerformEval(evalArg,strictCaller,true).
  7. LetthisCall be thisCallExpression.
  8. LettailCall beIsInTailPosition(thisCall).
  9. Return ? EvaluateCall(func,ref,arguments,tailCall).

ACallExpression evaluation that executes step6.a.v is adirect eval.

CallExpression:CallExpressionArguments
  1. Letref be ? Evaluation ofCallExpression.
  2. Letfunc be ? GetValue(ref).
  3. LetthisCall be thisCallExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(func,ref,Arguments,tailCall).

13.3.6.2 EvaluateCall (func,ref,arguments,tailPosition )

The abstract operation EvaluateCall takes argumentsfunc (anECMAScript language value),ref (anECMAScript language value or aReference Record),arguments (aParse Node), andtailPosition (a Boolean) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. Ifref is aReference Record, then
    1. IfIsPropertyReference(ref) istrue, then
      1. LetthisValue beGetThisValue(ref).
    2. Else,
      1. LetrefEnv beref.[[Base]].
      2. Assert:refEnv is anEnvironment Record.
      3. LetthisValue berefEnv.WithBaseObject().
  2. Else,
    1. LetthisValue beundefined.
  3. LetargList be ? ArgumentListEvaluation ofarguments.
  4. Iffuncis not an Object, throw aTypeError exception.
  5. IfIsCallable(func) isfalse, throw aTypeError exception.
  6. IftailPosition istrue, performPrepareForTailCall().
  7. Return ? Call(func,thisValue,argList).

13.3.7 Thesuper Keyword

13.3.7.1 Runtime Semantics: Evaluation

SuperProperty:super[Expression]
  1. Letenv beGetThisEnvironment().
  2. LetactualThis be ? env.GetThisBinding().
  3. LetpropertyNameReference be ? Evaluation ofExpression.
  4. LetpropertyNameValue be ? GetValue(propertyNameReference).
  5. LetpropertyKey be ? ToPropertyKey(propertyNameValue).
  6. If thesource text matched by thisSuperProperty isstrict mode code, letstrict betrue; else letstrict befalse.
  7. Return ? MakeSuperPropertyReference(actualThis,propertyKey,strict).
SuperProperty:super.IdentifierName
  1. Letenv beGetThisEnvironment().
  2. LetactualThis be ? env.GetThisBinding().
  3. LetpropertyKey beStringValue ofIdentifierName.
  4. If thesource text matched by thisSuperProperty isstrict mode code, letstrict betrue; else letstrict befalse.
  5. Return ? MakeSuperPropertyReference(actualThis,propertyKey,strict).
SuperCall:superArguments
  1. LetnewTarget beGetNewTarget().
  2. Assert:newTargetis an Object.
  3. Letfunc beGetSuperConstructor().
  4. LetargList be ? ArgumentListEvaluation ofArguments.
  5. IfIsConstructor(func) isfalse, throw aTypeError exception.
  6. Letresult be ? Construct(func,argList,newTarget).
  7. LetthisER beGetThisEnvironment().
  8. Perform ? thisER.BindThisValue(result).
  9. LetF bethisER.[[FunctionObject]].
  10. Assert:F is an ECMAScriptfunction object.
  11. Perform ? InitializeInstanceElements(result,F).
  12. Returnresult.

13.3.7.2 GetSuperConstructor ( )

The abstract operation GetSuperConstructor takes no arguments and returns anECMAScript language value. It performs the following steps when called:

  1. LetenvRec beGetThisEnvironment().
  2. Assert:envRec is aFunction Environment Record.
  3. LetactiveFunction beenvRec.[[FunctionObject]].
  4. Assert:activeFunction is an ECMAScriptfunction object.
  5. LetsuperConstructor be ! activeFunction.[[GetPrototypeOf]]().
  6. ReturnsuperConstructor.

13.3.7.3 MakeSuperPropertyReference (actualThis,propertyKey,strict )

The abstract operation MakeSuperPropertyReference takes argumentsactualThis (anECMAScript language value),propertyKey (aproperty key), andstrict (a Boolean) and returns either anormal completion containing aSuper Reference Record or athrow completion. It performs the following steps when called:

  1. Letenv beGetThisEnvironment().
  2. Assert:env.HasSuperBinding() istrue.
  3. LetbaseValue be ? env.GetSuperBase().
  4. Return theReference Record {[[Base]]:baseValue,[[ReferencedName]]:propertyKey,[[Strict]]:strict,[[ThisValue]]:actualThis }.

13.3.8 Argument Lists

Note

The evaluation of an argument list produces aList of values.

13.3.8.1 Runtime Semantics: ArgumentListEvaluation

Thesyntax-directed operation ArgumentListEvaluation takes no arguments and returns either anormal completion containing aList ofECMAScript language values or anabrupt completion. It is defined piecewise over the following productions:

Arguments:()
  1. Return a new emptyList.
ArgumentList:AssignmentExpression
  1. Letref be ? Evaluation ofAssignmentExpression.
  2. Letarg be ? GetValue(ref).
  3. Return «arg ».
ArgumentList:...AssignmentExpression
  1. Letlist be a new emptyList.
  2. LetspreadRef be ? Evaluation ofAssignmentExpression.
  3. LetspreadObj be ? GetValue(spreadRef).
  4. LetiteratorRecord be ? GetIterator(spreadObj,sync).
  5. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returnlist.
    3. Appendnext tolist.
ArgumentList:ArgumentList,AssignmentExpression
  1. LetprecedingArgs be ? ArgumentListEvaluation ofArgumentList.
  2. Letref be ? Evaluation ofAssignmentExpression.
  3. Letarg be ? GetValue(ref).
  4. Return thelist-concatenation ofprecedingArgs and «arg ».
ArgumentList:ArgumentList,...AssignmentExpression
  1. LetprecedingArgs be ? ArgumentListEvaluation ofArgumentList.
  2. LetspreadRef be ? Evaluation ofAssignmentExpression.
  3. LetiteratorRecord be ? GetIterator(?GetValue(spreadRef),sync).
  4. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returnprecedingArgs.
    3. Appendnext toprecedingArgs.
TemplateLiteral:NoSubstitutionTemplate
  1. LettemplateLiteral be thisTemplateLiteral.
  2. LetsiteObj beGetTemplateObject(templateLiteral).
  3. Return «siteObj ».
TemplateLiteral:SubstitutionTemplate
  1. LettemplateLiteral be thisTemplateLiteral.
  2. LetsiteObj beGetTemplateObject(templateLiteral).
  3. Letremaining be ? ArgumentListEvaluation ofSubstitutionTemplate.
  4. Return thelist-concatenation of «siteObj » andremaining.
SubstitutionTemplate:TemplateHeadExpressionTemplateSpans
  1. LetfirstSubRef be ? Evaluation ofExpression.
  2. LetfirstSub be ? GetValue(firstSubRef).
  3. LetrestSub be ? SubstitutionEvaluation ofTemplateSpans.
  4. Assert:restSub is a possibly emptyList.
  5. Return thelist-concatenation of «firstSub » andrestSub.

13.3.9 Optional Chains

Note
An optional chain is a chain of one or more property accesses and function calls, the first of which begins with the token?..

13.3.9.1 Runtime Semantics: Evaluation

OptionalExpression:MemberExpressionOptionalChain
  1. LetbaseReference be ? Evaluation ofMemberExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue is eitherundefined ornull, then
    1. Returnundefined.
  4. Return ? ChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.
OptionalExpression:CallExpressionOptionalChain
  1. LetbaseReference be ? Evaluation ofCallExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue is eitherundefined ornull, then
    1. Returnundefined.
  4. Return ? ChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.
OptionalExpression:OptionalExpressionOptionalChain
  1. LetbaseReference be ? Evaluation ofOptionalExpression.
  2. LetbaseValue be ? GetValue(baseReference).
  3. IfbaseValue is eitherundefined ornull, then
    1. Returnundefined.
  4. Return ? ChainEvaluation ofOptionalChain with argumentsbaseValue andbaseReference.

13.3.9.2 Runtime Semantics: ChainEvaluation

Thesyntax-directed operation ChainEvaluation takes argumentsbaseValue (anECMAScript language value) andbaseReference (anECMAScript language value or aReference Record) and returns either anormal completion containing either anECMAScript language value or aReference Record, or anabrupt completion. It is defined piecewise over the following productions:

OptionalChain:?.Arguments
  1. LetthisChain be thisOptionalChain.
  2. LettailCall beIsInTailPosition(thisChain).
  3. Return ? EvaluateCall(baseValue,baseReference,Arguments,tailCall).
OptionalChain:?.[Expression]
  1. If thesource text matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  2. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue,Expression,strict).
OptionalChain:?.IdentifierName
  1. If thesource text matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  2. ReturnEvaluatePropertyAccessWithIdentifierKey(baseValue,IdentifierName,strict).
OptionalChain:?.PrivateIdentifier
  1. LetfieldNameString be theStringValue ofPrivateIdentifier.
  2. ReturnMakePrivateReference(baseValue,fieldNameString).
OptionalChain:OptionalChainArguments
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ? ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. LetthisChain be thisOptionalChain.
  5. LettailCall beIsInTailPosition(thisChain).
  6. Return ? EvaluateCall(newValue,newReference,Arguments,tailCall).
OptionalChain:OptionalChain[Expression]
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ? ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. If thesource text matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  5. Return ? EvaluatePropertyAccessWithExpressionKey(newValue,Expression,strict).
OptionalChain:OptionalChain.IdentifierName
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ? ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. If thesource text matched by thisOptionalChain isstrict mode code, letstrict betrue; else letstrict befalse.
  5. ReturnEvaluatePropertyAccessWithIdentifierKey(newValue,IdentifierName,strict).
OptionalChain:OptionalChain.PrivateIdentifier
  1. LetoptionalChain beOptionalChain.
  2. LetnewReference be ? ChainEvaluation ofoptionalChain with argumentsbaseValue andbaseReference.
  3. LetnewValue be ? GetValue(newReference).
  4. LetfieldNameString be theStringValue ofPrivateIdentifier.
  5. ReturnMakePrivateReference(newValue,fieldNameString).

13.3.10 Import Calls

13.3.10.1 Runtime Semantics: Evaluation

ImportCall:import(AssignmentExpression)
  1. Letreferrer beGetActiveScriptOrModule().
  2. Ifreferrer isnull, setreferrer tothe current Realm Record.
  3. LetargRef be ? Evaluation ofAssignmentExpression.
  4. Letspecifier be ? GetValue(argRef).
  5. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  6. LetspecifierString beCompletion(ToString(specifier)).
  7. IfAbruptRejectPromise(specifierString,promiseCapability).
  8. PerformHostLoadImportedModule(referrer,specifierString,empty,promiseCapability).
  9. ReturnpromiseCapability.[[Promise]].

13.3.10.1.1 ContinueDynamicImport (promiseCapability,moduleCompletion )

The abstract operation ContinueDynamicImport takes argumentspromiseCapability (aPromiseCapability Record) andmoduleCompletion (either anormal completion containing aModule Record or athrow completion) and returnsunused. It completes the process of a dynamic import originally started by animport() call, resolving or rejecting the promise returned by that call as appropriate. It performs the following steps when called:

  1. IfmoduleCompletion is anabrupt completion, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «moduleCompletion.[[Value]] »).
    2. Returnunused.
  2. Letmodule bemoduleCompletion.[[Value]].
  3. LetloadPromise bemodule.LoadRequestedModules().
  4. LetrejectedClosure be a newAbstract Closure with parameters (reason) that capturespromiseCapability and performs the following steps when called:
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «reason »).
    2. Returnunused.
  5. LetonRejected beCreateBuiltinFunction(rejectedClosure, 1,"", « »).
  6. LetlinkAndEvaluateClosure be a newAbstract Closure with no parameters that capturesmodule,promiseCapability, andonRejected and performs the following steps when called:
    1. Letlink beCompletion(module.Link()).
    2. Iflink is anabrupt completion, then
      1. Perform ! Call(promiseCapability.[[Reject]],undefined, «link.[[Value]] »).
      2. Returnunused.
    3. LetevaluatePromise bemodule.Evaluate().
    4. LetfulfilledClosure be a newAbstract Closure with no parameters that capturesmodule andpromiseCapability and performs the following steps when called:
      1. Letnamespace beGetModuleNamespace(module).
      2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «namespace »).
      3. Returnunused.
    5. LetonFulfilled beCreateBuiltinFunction(fulfilledClosure, 0,"", « »).
    6. PerformPerformPromiseThen(evaluatePromise,onFulfilled,onRejected).
    7. Returnunused.
  7. LetlinkAndEvaluate beCreateBuiltinFunction(linkAndEvaluateClosure, 0,"", « »).
  8. PerformPerformPromiseThen(loadPromise,linkAndEvaluate,onRejected).
  9. Returnunused.

13.3.11 Tagged Templates

Note

A tagged template is a function call where the arguments of the call are derived from aTemplateLiteral (13.2.8). The actual arguments include a template object (13.2.8.4) and the values produced by evaluating the expressions embedded within theTemplateLiteral.

13.3.11.1 Runtime Semantics: Evaluation

MemberExpression:MemberExpressionTemplateLiteral
  1. LettagRef be ? Evaluation ofMemberExpression.
  2. LettagFunc be ? GetValue(tagRef).
  3. LetthisCall be thisMemberExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(tagFunc,tagRef,TemplateLiteral,tailCall).
CallExpression:CallExpressionTemplateLiteral
  1. LettagRef be ? Evaluation ofCallExpression.
  2. LettagFunc be ? GetValue(tagRef).
  3. LetthisCall be thisCallExpression.
  4. LettailCall beIsInTailPosition(thisCall).
  5. Return ? EvaluateCall(tagFunc,tagRef,TemplateLiteral,tailCall).

13.3.12 Meta Properties

13.3.12.1 Runtime Semantics: Evaluation

NewTarget:new.target
  1. ReturnGetNewTarget().
ImportMeta:import.meta
  1. Letmodule beGetActiveScriptOrModule().
  2. Assert:module is aSource Text Module Record.
  3. LetimportMeta bemodule.[[ImportMeta]].
  4. IfimportMeta isempty, then
    1. SetimportMeta toOrdinaryObjectCreate(null).
    2. LetimportMetaValues beHostGetImportMetaProperties(module).
    3. For eachRecord {[[Key]],[[Value]] }p ofimportMetaValues, do
      1. Perform ! CreateDataPropertyOrThrow(importMeta,p.[[Key]],p.[[Value]]).
    4. PerformHostFinalizeImportMeta(importMeta,module).
    5. Setmodule.[[ImportMeta]] toimportMeta.
    6. ReturnimportMeta.
  5. Else,
    1. Assert:importMetais an Object.
    2. ReturnimportMeta.

13.3.12.1.1 HostGetImportMetaProperties (moduleRecord )

Thehost-defined abstract operation HostGetImportMetaProperties takes argumentmoduleRecord (aModule Record) and returns aList ofRecords with fields[[Key]] (aproperty key) and[[Value]] (anECMAScript language value). It allowshosts to provideproperty keys and values for the object returned fromimport.meta.

The default implementation of HostGetImportMetaProperties is to return a new emptyList.

13.3.12.1.2 HostFinalizeImportMeta (importMeta,moduleRecord )

Thehost-defined abstract operation HostFinalizeImportMeta takes argumentsimportMeta (an Object) andmoduleRecord (aModule Record) and returnsunused. It allowshosts to perform any extraordinary operations to prepare the object returned fromimport.meta.

Mosthosts will be able to simply defineHostGetImportMetaProperties, and leave HostFinalizeImportMeta with its default behaviour. However, HostFinalizeImportMeta provides an "escape hatch" forhosts which need to directly manipulate the object before it is exposed to ECMAScript code.

The default implementation of HostFinalizeImportMeta is to returnunused.

13.4 Update Expressions

Syntax

UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--++UnaryExpression[?Yield, ?Await]--UnaryExpression[?Yield, ?Await]

13.4.1 Static Semantics: Early Errors

UpdateExpression:LeftHandSideExpression++LeftHandSideExpression--UpdateExpression:++UnaryExpression--UnaryExpression

13.4.2 Postfix Increment Operator

13.4.2.1 Runtime Semantics: Evaluation

UpdateExpression:LeftHandSideExpression++
  1. Letlhs be ? Evaluation ofLeftHandSideExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(lhs)).
  3. IfoldValueis a Number, then
    1. LetnewValue beNumber::add(oldValue,1𝔽).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. LetnewValue beBigInt::add(oldValue,1).
  5. Perform ? PutValue(lhs,newValue).
  6. ReturnoldValue.

13.4.3 Postfix Decrement Operator

13.4.3.1 Runtime Semantics: Evaluation

UpdateExpression:LeftHandSideExpression--
  1. Letlhs be ? Evaluation ofLeftHandSideExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(lhs)).
  3. IfoldValueis a Number, then
    1. LetnewValue beNumber::subtract(oldValue,1𝔽).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. LetnewValue beBigInt::subtract(oldValue,1).
  5. Perform ? PutValue(lhs,newValue).
  6. ReturnoldValue.

13.4.4 Prefix Increment Operator

13.4.4.1 Runtime Semantics: Evaluation

UpdateExpression:++UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. IfoldValueis a Number, then
    1. LetnewValue beNumber::add(oldValue,1𝔽).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. LetnewValue beBigInt::add(oldValue,1).
  5. Perform ? PutValue(expr,newValue).
  6. ReturnnewValue.

13.4.5 Prefix Decrement Operator

13.4.5.1 Runtime Semantics: Evaluation

UpdateExpression:--UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. IfoldValueis a Number, then
    1. LetnewValue beNumber::subtract(oldValue,1𝔽).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. LetnewValue beBigInt::subtract(oldValue,1).
  5. Perform ? PutValue(expr,newValue).
  6. ReturnnewValue.

13.5 Unary Operators

Syntax

UnaryExpression[Yield, Await]:UpdateExpression[?Yield, ?Await]deleteUnaryExpression[?Yield, ?Await]voidUnaryExpression[?Yield, ?Await]typeofUnaryExpression[?Yield, ?Await]+UnaryExpression[?Yield, ?Await]-UnaryExpression[?Yield, ?Await]~UnaryExpression[?Yield, ?Await]!UnaryExpression[?Yield, ?Await][+Await]AwaitExpression[?Yield]

13.5.1 Thedelete Operator

13.5.1.1 Static Semantics: Early Errors

UnaryExpression:deleteUnaryExpressionNote

The last rule means that expressions such asdelete (((foo))) produceearly errors because of recursive application of the first rule.

13.5.1.2 Runtime Semantics: Evaluation

UnaryExpression:deleteUnaryExpression
  1. Letref be ? Evaluation ofUnaryExpression.
  2. Ifref is not aReference Record, returntrue.
  3. IfIsUnresolvableReference(ref) istrue, then
    1. Assert:ref.[[Strict]] isfalse.
    2. Returntrue.
  4. IfIsPropertyReference(ref) istrue, then
    1. Assert:IsPrivateReference(ref) isfalse.
    2. IfIsSuperReference(ref) istrue, throw aReferenceError exception.
    3. LetbaseObj be ? ToObject(ref.[[Base]]).
    4. LetdeleteStatus be ? baseObj.[[Delete]](ref.[[ReferencedName]]).
    5. IfdeleteStatus isfalse andref.[[Strict]] istrue, throw aTypeError exception.
    6. ReturndeleteStatus.
  5. Else,
    1. Letbase beref.[[Base]].
    2. Assert:base is anEnvironment Record.
    3. Return ? base.DeleteBinding(ref.[[ReferencedName]]).
Note 1

When adelete operator occurs withinstrict mode code, aSyntaxError exception is thrown if itsUnaryExpression is a direct reference to a variable, function argument, or function name. In addition, if adelete operator occurs withinstrict mode code and the property to be deleted has the attribute {[[Configurable]]:false } (or otherwise cannot be deleted), aTypeError exception is thrown.

Note 2

The object that may be created in step4.c is not accessible outside of the above abstract operation and theordinary object[[Delete]] internal method. An implementation might choose to avoid the actual creation of that object.

13.5.2 Thevoid Operator

13.5.2.1 Runtime Semantics: Evaluation

UnaryExpression:voidUnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. Perform ? GetValue(expr).
  3. Returnundefined.
Note

GetValue must be called even though its value is not used because it may have observable side-effects.

13.5.3 Thetypeof Operator

13.5.3.1 Runtime Semantics: Evaluation

UnaryExpression:typeofUnaryExpression
  1. Letval be ? Evaluation ofUnaryExpression.
  2. Ifval is aReference Record, then
    1. IfIsUnresolvableReference(val) istrue, return"undefined".
  3. Setval to ? GetValue(val).
  4. Ifval isundefined, return"undefined".
  5. Ifval isnull, return"object".
  6. Ifvalis a String, return"string".
  7. Ifvalis a Symbol, return"symbol".
  8. Ifvalis a Boolean, return"boolean".
  9. Ifvalis a Number, return"number".
  10. Ifvalis a BigInt, return"bigint".
  11. Assert:valis an Object.
  12. NOTE: This step is replaced in sectionB.3.6.3.
  13. Ifval has a[[Call]] internal slot, return"function".
  14. Return"object".

13.5.4 Unary+ Operator

Note

The unary + operator converts its operand toNumber type.

13.5.4.1 Runtime Semantics: Evaluation

UnaryExpression:+UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. Return ? ToNumber(?GetValue(expr)).

13.5.5 Unary- Operator

Note

The unary- operator converts its operand to a numeric value and then negates it. Negating+0𝔽 produces-0𝔽, and negating-0𝔽 produces+0𝔽.

13.5.5.1 Runtime Semantics: Evaluation

UnaryExpression:-UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. IfoldValueis a Number, then
    1. ReturnNumber::unaryMinus(oldValue).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. ReturnBigInt::unaryMinus(oldValue).

13.5.6 Bitwise NOT Operator (~ )

13.5.6.1 Runtime Semantics: Evaluation

UnaryExpression:~UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. LetoldValue be ? ToNumeric(?GetValue(expr)).
  3. IfoldValueis a Number, then
    1. ReturnNumber::bitwiseNOT(oldValue).
  4. Else,
    1. Assert:oldValueis a BigInt.
    2. ReturnBigInt::bitwiseNOT(oldValue).

13.5.7 Logical NOT Operator (! )

13.5.7.1 Runtime Semantics: Evaluation

UnaryExpression:!UnaryExpression
  1. Letexpr be ? Evaluation ofUnaryExpression.
  2. LetoldValue beToBoolean(?GetValue(expr)).
  3. IfoldValue istrue, returnfalse.
  4. Returntrue.

13.6 Exponentiation Operator

Syntax

ExponentiationExpression[Yield, Await]:UnaryExpression[?Yield, ?Await]UpdateExpression[?Yield, ?Await]**ExponentiationExpression[?Yield, ?Await]

13.6.1 Runtime Semantics: Evaluation

ExponentiationExpression:UpdateExpression**ExponentiationExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(UpdateExpression,**,ExponentiationExpression).

13.7 Multiplicative Operators

Syntax

MultiplicativeExpression[Yield, Await]:ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[?Yield, ?Await]MultiplicativeOperatorExponentiationExpression[?Yield, ?Await]MultiplicativeOperator:one of*/%Note
  • The* operator performs multiplication, producing the product of its operands.
  • The/ operator performs division, producing the quotient of its operands.
  • The% operator yields the remainder of its operands from an implied division.

13.7.1 Runtime Semantics: Evaluation

MultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpression
  1. LetopText be thesource text matched byMultiplicativeOperator.
  2. Return ? EvaluateStringOrNumericBinaryExpression(MultiplicativeExpression,opText,ExponentiationExpression).

13.8 Additive Operators

Syntax

AdditiveExpression[Yield, Await]:MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]+MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]-MultiplicativeExpression[?Yield, ?Await]

13.8.1 The Addition Operator (+ )

Note

The addition operator either performs string concatenation or numeric addition.

13.8.1.1 Runtime Semantics: Evaluation

AdditiveExpression:AdditiveExpression+MultiplicativeExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression,+,MultiplicativeExpression).

13.8.2 The Subtraction Operator (- )

Note

The- operator performs subtraction, producing the difference of its operands.

13.8.2.1 Runtime Semantics: Evaluation

AdditiveExpression:AdditiveExpression-MultiplicativeExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression,-,MultiplicativeExpression).

13.9 Bitwise Shift Operators

Syntax

ShiftExpression[Yield, Await]:AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]<<AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>>AdditiveExpression[?Yield, ?Await]

13.9.1 The Left Shift Operator (<< )

Note

Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

13.9.1.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression<<AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,<<,AdditiveExpression).

13.9.2 The Signed Right Shift Operator (>> )

Note

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

13.9.2.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression>>AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,>>,AdditiveExpression).

13.9.3 The Unsigned Right Shift Operator (>>> )

Note

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right operand.

13.9.3.1 Runtime Semantics: Evaluation

ShiftExpression:ShiftExpression>>>AdditiveExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression,>>>,AdditiveExpression).

13.10 Relational Operators

Note 1

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

RelationalExpression[In, Yield, Await]:ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]instanceofShiftExpression[?Yield, ?Await][+In]RelationalExpression[+In, ?Yield, ?Await]inShiftExpression[?Yield, ?Await][+In]PrivateIdentifierinShiftExpression[?Yield, ?Await]Note 2

The[In] grammar parameter is needed to avoid confusing thein operator in a relational expression with thein operator in afor statement.

13.10.1 Runtime Semantics: Evaluation

RelationalExpression:RelationalExpression<ShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be ? IsLessThan(lval,rval,true).
  6. Ifr isundefined, returnfalse. Otherwise, returnr.
RelationalExpression:RelationalExpression>ShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be ? IsLessThan(rval,lval,false).
  6. Ifr isundefined, returnfalse. Otherwise, returnr.
RelationalExpression:RelationalExpression<=ShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be ? IsLessThan(rval,lval,false).
  6. Ifr is eithertrue orundefined, returnfalse. Otherwise, returntrue.
RelationalExpression:RelationalExpression>=ShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be ? IsLessThan(lval,rval,true).
  6. Ifr is eithertrue orundefined, returnfalse. Otherwise, returntrue.
RelationalExpression:RelationalExpressioninstanceofShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Return ? InstanceofOperator(lval,rval).
RelationalExpression:RelationalExpressioninShiftExpression
  1. Letlref be ? Evaluation ofRelationalExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofShiftExpression.
  4. Letrval be ? GetValue(rref).
  5. Ifrvalis not an Object, throw aTypeError exception.
  6. Return ? HasProperty(rval, ? ToPropertyKey(lval)).
RelationalExpression:PrivateIdentifierinShiftExpression
  1. LetprivateIdentifier be theStringValue ofPrivateIdentifier.
  2. Letrref be ? Evaluation ofShiftExpression.
  3. Letrval be ? GetValue(rref).
  4. Ifrvalis not an Object, throw aTypeError exception.
  5. LetprivateEnv be therunning execution context's PrivateEnvironment.
  6. LetprivateName beResolvePrivateIdentifier(privateEnv,privateIdentifier).
  7. IfPrivateElementFind(rval,privateName) is notempty, returntrue.
  8. Returnfalse.

13.10.2 InstanceofOperator (V,target )

The abstract operation InstanceofOperator takes argumentsV (anECMAScript language value) andtarget (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It implements the generic algorithm for determining ifV is an instance oftarget either by consultingtarget's@@hasInstance method or, if absent, determining whether the value oftarget's"prototype" property is present inV's prototype chain. It performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. LetinstOfHandler be ? GetMethod(target,@@hasInstance).
  3. IfinstOfHandler is notundefined, then
    1. ReturnToBoolean(?Call(instOfHandler,target, «V »)).
  4. IfIsCallable(target) isfalse, throw aTypeError exception.
  5. Return ? OrdinaryHasInstance(target,V).
Note

Steps4 and5 provide compatibility with previous editions of ECMAScript that did not use a@@hasInstance method to define theinstanceof operator semantics. If an object does not define or inherit@@hasInstance it uses the defaultinstanceof semantics.

13.11 Equality Operators

Note

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship named by the operator holds between its two operands.

Syntax

EqualityExpression[In, Yield, Await]:RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]==RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!=RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]===RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!==RelationalExpression[?In, ?Yield, ?Await]

13.11.1 Runtime Semantics: Evaluation

EqualityExpression:EqualityExpression==RelationalExpression
  1. Letlref be ? Evaluation ofEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Return ? IsLooselyEqual(rval,lval).
EqualityExpression:EqualityExpression!=RelationalExpression
  1. Letlref be ? Evaluation ofEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr be ? IsLooselyEqual(rval,lval).
  6. Ifr istrue, returnfalse. Otherwise, returntrue.
EqualityExpression:EqualityExpression===RelationalExpression
  1. Letlref be ? Evaluation ofEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. ReturnIsStrictlyEqual(rval,lval).
EqualityExpression:EqualityExpression!==RelationalExpression
  1. Letlref be ? Evaluation ofEqualityExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofRelationalExpression.
  4. Letrval be ? GetValue(rref).
  5. Letr beIsStrictlyEqual(rval,lval).
  6. Ifr istrue, returnfalse. Otherwise, returntrue.
Note 1

Given the above definition of equality:

  • String comparison can be forced by:`${a}` == `${b}`.
  • Numeric comparison can be forced by:+a == +b.
  • Boolean comparison can be forced by:!a == !b.
Note 2

The equality operators maintain the following invariants:

  • A != B is equivalent to!(A == B).
  • A == B is equivalent toB == A, except in the order of evaluation ofA andB.
Note 3

The equality operator is not always transitive. For example, there might be two distinct String objects, each representing the same String value; each String object would be considered equal to the String value by the== operator, but the two String objects would not be equal to each other. For example:

  • new String("a") == "a" and"a" == new String("a") are bothtrue.
  • new String("a") == new String("a") isfalse.
Note 4

Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to use the more complex, semantically oriented definitions of character or string equality and collating order defined in the Unicode specification. Therefore Strings values that are canonically equal according to the Unicode Standard could test as unequal. In effect this algorithm assumes that both Strings are already in normalized form.

13.12 Binary Bitwise Operators

Syntax

BitwiseANDExpression[In, Yield, Await]:EqualityExpression[?In, ?Yield, ?Await]BitwiseANDExpression[?In, ?Yield, ?Await]&EqualityExpression[?In, ?Yield, ?Await]BitwiseXORExpression[In, Yield, Await]:BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseXORExpression[?In, ?Yield, ?Await]^BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseORExpression[In, Yield, Await]:BitwiseXORExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]|BitwiseXORExpression[?In, ?Yield, ?Await]

13.12.1 Runtime Semantics: Evaluation

BitwiseANDExpression:BitwiseANDExpression&EqualityExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseANDExpression,&,EqualityExpression).
BitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseXORExpression,^,BitwiseANDExpression).
BitwiseORExpression:BitwiseORExpression|BitwiseXORExpression
  1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseORExpression,|,BitwiseXORExpression).

13.13 Binary Logical Operators

Syntax

LogicalANDExpression[In, Yield, Await]:BitwiseORExpression[?In, ?Yield, ?Await]LogicalANDExpression[?In, ?Yield, ?Await]&&BitwiseORExpression[?In, ?Yield, ?Await]LogicalORExpression[In, Yield, Await]:LogicalANDExpression[?In, ?Yield, ?Await]LogicalORExpression[?In, ?Yield, ?Await]||LogicalANDExpression[?In, ?Yield, ?Await]CoalesceExpression[In, Yield, Await]:CoalesceExpressionHead[?In, ?Yield, ?Await]??BitwiseORExpression[?In, ?Yield, ?Await]CoalesceExpressionHead[In, Yield, Await]:CoalesceExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]ShortCircuitExpression[In, Yield, Await]:LogicalORExpression[?In, ?Yield, ?Await]CoalesceExpression[?In, ?Yield, ?Await]Note

The value produced by a&& or|| operator is not necessarily of type Boolean. The value produced will always be the value of one of the two operand expressions.

13.13.1 Runtime Semantics: Evaluation

LogicalANDExpression:LogicalANDExpression&&BitwiseORExpression
  1. Letlref be ? Evaluation ofLogicalANDExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool beToBoolean(lval).
  4. Iflbool isfalse, returnlval.
  5. Letrref be ? Evaluation ofBitwiseORExpression.
  6. Return ? GetValue(rref).
LogicalORExpression:LogicalORExpression||LogicalANDExpression
  1. Letlref be ? Evaluation ofLogicalORExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool beToBoolean(lval).
  4. Iflbool istrue, returnlval.
  5. Letrref be ? Evaluation ofLogicalANDExpression.
  6. Return ? GetValue(rref).
CoalesceExpression:CoalesceExpressionHead??BitwiseORExpression
  1. Letlref be ? Evaluation ofCoalesceExpressionHead.
  2. Letlval be ? GetValue(lref).
  3. Iflval is eitherundefined ornull, then
    1. Letrref be ? Evaluation ofBitwiseORExpression.
    2. Return ? GetValue(rref).
  4. Else,
    1. Returnlval.

13.14 Conditional Operator (? : )

Syntax

ConditionalExpression[In, Yield, Await]:ShortCircuitExpression[?In, ?Yield, ?Await]ShortCircuitExpression[?In, ?Yield, ?Await]?AssignmentExpression[+In, ?Yield, ?Await]:AssignmentExpression[?In, ?Yield, ?Await]Note

The grammar for aConditionalExpression in ECMAScript is slightly different from that in C and Java, which each allow the second subexpression to be anExpression but restrict the third expression to be aConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

13.14.1 Runtime Semantics: Evaluation

ConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpression
  1. Letlref be ? Evaluation ofShortCircuitExpression.
  2. Letlval beToBoolean(?GetValue(lref)).
  3. Iflval istrue, then
    1. LettrueRef be ? Evaluation of the firstAssignmentExpression.
    2. Return ? GetValue(trueRef).
  4. Else,
    1. LetfalseRef be ? Evaluation of the secondAssignmentExpression.
    2. Return ? GetValue(falseRef).

13.15 Assignment Operators

Syntax

AssignmentExpression[In, Yield, Await]:ConditionalExpression[?In, ?Yield, ?Await][+Yield]YieldExpression[?In, ?Await]ArrowFunction[?In, ?Yield, ?Await]AsyncArrowFunction[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]AssignmentOperatorAssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]&&=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]||=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]??=AssignmentExpression[?In, ?Yield, ?Await]AssignmentOperator:one of*=/=%=+=-=<<=>>=>>>=&=^=|=**=

13.15.1 Static Semantics: Early Errors

AssignmentExpression:LeftHandSideExpression=AssignmentExpression

IfLeftHandSideExpression is either anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

AssignmentExpression:LeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpression

13.15.2 Runtime Semantics: Evaluation

AssignmentExpression:LeftHandSideExpression=AssignmentExpression
  1. IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be ? Evaluation ofLeftHandSideExpression.
    2. IfIsAnonymousFunctionDefinition(AssignmentExpression) andIsIdentifierRef ofLeftHandSideExpression are bothtrue, then
      1. Letrval be ? NamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
    3. Else,
      1. Letrref be ? Evaluation ofAssignmentExpression.
      2. Letrval be ? GetValue(rref).
    4. Perform ? PutValue(lref,rval).
    5. Returnrval.
  2. LetassignmentPattern be theAssignmentPattern that iscovered byLeftHandSideExpression.
  3. Letrref be ? Evaluation ofAssignmentExpression.
  4. Letrval be ? GetValue(rref).
  5. Perform ? DestructuringAssignmentEvaluation ofassignmentPattern with argumentrval.
  6. Returnrval.
AssignmentExpression:LeftHandSideExpressionAssignmentOperatorAssignmentExpression
  1. Letlref be ? Evaluation ofLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofAssignmentExpression.
  4. Letrval be ? GetValue(rref).
  5. LetassignmentOpText be thesource text matched byAssignmentOperator.
  6. LetopText be the sequence of Unicode code points associated withassignmentOpText in the following table:
    assignmentOpTextopText
    **=**
    *=*
    /=/
    %=%
    +=+
    -=-
    <<=<<
    >>=>>
    >>>=>>>
    &=&
    ^=^
    |=|
  7. Letr be ? ApplyStringOrNumericBinaryOperator(lval,opText,rval).
  8. Perform ? PutValue(lref,r).
  9. Returnr.
AssignmentExpression:LeftHandSideExpression&&=AssignmentExpression
  1. Letlref be ? Evaluation ofLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool beToBoolean(lval).
  4. Iflbool isfalse, returnlval.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval be ? NamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  6. Else,
    1. Letrref be ? Evaluation ofAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  7. Perform ? PutValue(lref,rval).
  8. Returnrval.
AssignmentExpression:LeftHandSideExpression||=AssignmentExpression
  1. Letlref be ? Evaluation ofLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Letlbool beToBoolean(lval).
  4. Iflbool istrue, returnlval.
  5. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval be ? NamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  6. Else,
    1. Letrref be ? Evaluation ofAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  7. Perform ? PutValue(lref,rval).
  8. Returnrval.
AssignmentExpression:LeftHandSideExpression??=AssignmentExpression
  1. Letlref be ? Evaluation ofLeftHandSideExpression.
  2. Letlval be ? GetValue(lref).
  3. Iflval is neitherundefined nornull, returnlval.
  4. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue andIsIdentifierRef ofLeftHandSideExpression istrue, then
    1. Letrval be ? NamedEvaluation ofAssignmentExpression with argumentlref.[[ReferencedName]].
  5. Else,
    1. Letrref be ? Evaluation ofAssignmentExpression.
    2. Letrval be ? GetValue(rref).
  6. Perform ? PutValue(lref,rval).
  7. Returnrval.
Note

When this expression occurs withinstrict mode code, it is a runtime error iflref in step1.d,2,2,2,2 is an unresolvable reference. If it is, aReferenceError exception is thrown. Additionally, it is a runtime error if thelref in step8,7,7,6 is a reference to adata property with the attribute value {[[Writable]]:false }, to anaccessor property with the attribute value {[[Set]]:undefined }, or to a non-existent property of an object for which theIsExtensible predicate returns the valuefalse. In these cases aTypeError exception is thrown.

13.15.3 ApplyStringOrNumericBinaryOperator (lval,opText,rval )

The abstract operation ApplyStringOrNumericBinaryOperator takes argumentslval (anECMAScript language value),opText (**,*,/,%,+,-,<<,>>,>>>,&,^, or|), andrval (anECMAScript language value) and returns either anormal completion containing either a String, a BigInt, or a Number, or athrow completion. It performs the following steps when called:

  1. IfopText is+, then
    1. Letlprim be ? ToPrimitive(lval).
    2. Letrprim be ? ToPrimitive(rval).
    3. Iflprimis a String orrprimis a String, then
      1. Letlstr be ? ToString(lprim).
      2. Letrstr be ? ToString(rprim).
      3. Return thestring-concatenation oflstr andrstr.
    4. Setlval tolprim.
    5. Setrval torprim.
  2. NOTE: At this point, it must be a numeric operation.
  3. Letlnum be ? ToNumeric(lval).
  4. Letrnum be ? ToNumeric(rval).
  5. IfType(lnum) is notType(rnum), throw aTypeError exception.
  6. Iflnumis a BigInt, then
    1. IfopText is**, return ? BigInt::exponentiate(lnum,rnum).
    2. IfopText is/, return ? BigInt::divide(lnum,rnum).
    3. IfopText is%, return ? BigInt::remainder(lnum,rnum).
    4. IfopText is>>>, return ? BigInt::unsignedRightShift(lnum,rnum).
  7. Letoperation be the abstract operation associated withopText andType(lnum) in the following table:
    opTextType(lnum)operation
    ** NumberNumber::exponentiate
    * NumberNumber::multiply
    * BigIntBigInt::multiply
    / NumberNumber::divide
    % NumberNumber::remainder
    + NumberNumber::add
    + BigIntBigInt::add
    - NumberNumber::subtract
    - BigIntBigInt::subtract
    << NumberNumber::leftShift
    << BigIntBigInt::leftShift
    >> NumberNumber::signedRightShift
    >> BigIntBigInt::signedRightShift
    >>> NumberNumber::unsignedRightShift
    & NumberNumber::bitwiseAND
    & BigIntBigInt::bitwiseAND
    ^ NumberNumber::bitwiseXOR
    ^ BigIntBigInt::bitwiseXOR
    | NumberNumber::bitwiseOR
    | BigIntBigInt::bitwiseOR
  8. Returnoperation(lnum,rnum).
Note 1

No hint is provided in the calls toToPrimitive in steps1.a and1.b. All standard objects except Dates handle the absence of a hint as ifnumber were given; Dates handle the absence of a hint as ifstring were given.Exotic objects may handle the absence of a hint in some other manner.

Note 2

Step1.c differs from step3 of theIsLessThan algorithm, by using the logical-or operation instead of the logical-and operation.

13.15.4 EvaluateStringOrNumericBinaryExpression (leftOperand,opText,rightOperand )

The abstract operation EvaluateStringOrNumericBinaryExpression takes argumentsleftOperand (aParse Node),opText (a sequence of Unicode code points), andrightOperand (aParse Node) and returns either anormal completion containing either a String, a BigInt, or a Number, or anabrupt completion. It performs the following steps when called:

  1. Letlref be ? Evaluation ofleftOperand.
  2. Letlval be ? GetValue(lref).
  3. Letrref be ? Evaluation ofrightOperand.
  4. Letrval be ? GetValue(rref).
  5. Return ? ApplyStringOrNumericBinaryOperator(lval,opText,rval).

13.15.5 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing an instance of the production
AssignmentExpression:LeftHandSideExpression=AssignmentExpression
the interpretation ofLeftHandSideExpression is refined using the following grammar:

AssignmentPattern[Yield, Await]:ObjectAssignmentPattern[?Yield, ?Await]ArrayAssignmentPattern[?Yield, ?Await]ObjectAssignmentPattern[Yield, Await]:{}{AssignmentRestProperty[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await],AssignmentRestProperty[?Yield, ?Await]opt}ArrayAssignmentPattern[Yield, Await]:[ElisionoptAssignmentRestElement[?Yield, ?Await]opt][AssignmentElementList[?Yield, ?Await]][AssignmentElementList[?Yield, ?Await],ElisionoptAssignmentRestElement[?Yield, ?Await]opt]AssignmentRestProperty[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]AssignmentPropertyList[Yield, Await]:AssignmentProperty[?Yield, ?Await]AssignmentPropertyList[?Yield, ?Await],AssignmentProperty[?Yield, ?Await]AssignmentElementList[Yield, Await]:AssignmentElisionElement[?Yield, ?Await]AssignmentElementList[?Yield, ?Await],AssignmentElisionElement[?Yield, ?Await]AssignmentElisionElement[Yield, Await]:ElisionoptAssignmentElement[?Yield, ?Await]AssignmentProperty[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optPropertyName[?Yield, ?Await]:AssignmentElement[?Yield, ?Await]AssignmentElement[Yield, Await]:DestructuringAssignmentTarget[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optAssignmentRestElement[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]DestructuringAssignmentTarget[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]

13.15.5.1 Static Semantics: Early Errors

AssignmentProperty:IdentifierReferenceInitializeroptAssignmentRestProperty:...DestructuringAssignmentTargetDestructuringAssignmentTarget:LeftHandSideExpression

IfLeftHandSideExpression is either anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

13.15.5.2 Runtime Semantics: DestructuringAssignmentEvaluation

Thesyntax-directed operation DestructuringAssignmentEvaluation takes argumentvalue (anECMAScript language value) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

ObjectAssignmentPattern:{}
  1. Perform ? RequireObjectCoercible(value).
  2. Returnunused.
ObjectAssignmentPattern:{AssignmentPropertyList}{AssignmentPropertyList,}
  1. Perform ? RequireObjectCoercible(value).
  2. Perform ? PropertyDestructuringAssignmentEvaluation ofAssignmentPropertyList with argumentvalue.
  3. Returnunused.
ObjectAssignmentPattern:{AssignmentRestProperty}
  1. Perform ? RequireObjectCoercible(value).
  2. LetexcludedNames be a new emptyList.
  3. Return ? RestDestructuringAssignmentEvaluation ofAssignmentRestProperty with argumentsvalue andexcludedNames.
ObjectAssignmentPattern:{AssignmentPropertyList,AssignmentRestProperty}
  1. Perform ? RequireObjectCoercible(value).
  2. LetexcludedNames be ? PropertyDestructuringAssignmentEvaluation ofAssignmentPropertyList with argumentvalue.
  3. Return ? RestDestructuringAssignmentEvaluation ofAssignmentRestProperty with argumentsvalue andexcludedNames.
ArrayAssignmentPattern:[]
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. Return ? IteratorClose(iteratorRecord,NormalCompletion(unused)).
ArrayAssignmentPattern:[Elision]
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. Letresult beCompletion(IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord).
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Returnresult.
ArrayAssignmentPattern:[ElisionoptAssignmentRestElement]
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. IfElision is present, then
    1. Letstatus beCompletion(IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord).
    2. Ifstatus is anabrupt completion, then
      1. Assert:iteratorRecord.[[Done]] istrue.
      2. Return ? status.
  3. Letresult beCompletion(IteratorDestructuringAssignmentEvaluation ofAssignmentRestElement with argumentiteratorRecord).
  4. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  5. Returnresult.
ArrayAssignmentPattern:[AssignmentElementList]
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. Letresult beCompletion(IteratorDestructuringAssignmentEvaluation ofAssignmentElementList with argumentiteratorRecord).
  3. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,result).
  4. Returnresult.
ArrayAssignmentPattern:[AssignmentElementList,ElisionoptAssignmentRestElementopt]
  1. LetiteratorRecord be ? GetIterator(value,sync).
  2. Letstatus beCompletion(IteratorDestructuringAssignmentEvaluation ofAssignmentElementList with argumentiteratorRecord).
  3. Ifstatus is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,status).
    2. Return ? status.
  4. IfElision is present, then
    1. Setstatus toCompletion(IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord).
    2. Ifstatus is anabrupt completion, then
      1. Assert:iteratorRecord.[[Done]] istrue.
      2. Return ? status.
  5. IfAssignmentRestElement is present, then
    1. Setstatus toCompletion(IteratorDestructuringAssignmentEvaluation ofAssignmentRestElement with argumentiteratorRecord).
  6. IfiteratorRecord.[[Done]] isfalse, return ? IteratorClose(iteratorRecord,status).
  7. Return ? status.

13.15.5.3 Runtime Semantics: PropertyDestructuringAssignmentEvaluation

Thesyntax-directed operation PropertyDestructuringAssignmentEvaluation takes argumentvalue (anECMAScript language value) and returns either anormal completion containing aList ofproperty keys or anabrupt completion. It collects a list of all destructuredproperty keys. It is defined piecewise over the following productions:

AssignmentPropertyList:AssignmentPropertyList,AssignmentProperty
  1. LetpropertyNames be ? PropertyDestructuringAssignmentEvaluation ofAssignmentPropertyList with argumentvalue.
  2. LetnextNames be ? PropertyDestructuringAssignmentEvaluation ofAssignmentProperty with argumentvalue.
  3. Return thelist-concatenation ofpropertyNames andnextNames.
AssignmentProperty:IdentifierReferenceInitializeropt
  1. LetP beStringValue ofIdentifierReference.
  2. Letlref be ? ResolveBinding(P).
  3. Letv be ? GetV(value,P).
  4. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to ? NamedEvaluation ofInitializer with argumentP.
    2. Else,
      1. LetdefaultValue be ? Evaluation ofInitializer.
      2. Setv to ? GetValue(defaultValue).
  5. Perform ? PutValue(lref,v).
  6. Return «P ».
AssignmentProperty:PropertyName:AssignmentElement
  1. Letname be ? Evaluation ofPropertyName.
  2. Perform ? KeyedDestructuringAssignmentEvaluation ofAssignmentElement with argumentsvalue andname.
  3. Return «name ».

13.15.5.4 Runtime Semantics: RestDestructuringAssignmentEvaluation

Thesyntax-directed operation RestDestructuringAssignmentEvaluation takes argumentsvalue (anECMAScript language value) andexcludedNames (aList ofproperty keys) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

AssignmentRestProperty:...DestructuringAssignmentTarget
  1. Letlref be ? Evaluation ofDestructuringAssignmentTarget.
  2. LetrestObj beOrdinaryObjectCreate(%Object.prototype%).
  3. Perform ? CopyDataProperties(restObj,value,excludedNames).
  4. Return ? PutValue(lref,restObj).

13.15.5.5 Runtime Semantics: IteratorDestructuringAssignmentEvaluation

Thesyntax-directed operation IteratorDestructuringAssignmentEvaluation takes argumentiteratorRecord (anIterator Record) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

AssignmentElementList:AssignmentElisionElement
  1. Return ? IteratorDestructuringAssignmentEvaluation ofAssignmentElisionElement with argumentiteratorRecord.
AssignmentElementList:AssignmentElementList,AssignmentElisionElement
  1. Perform ? IteratorDestructuringAssignmentEvaluation ofAssignmentElementList with argumentiteratorRecord.
  2. Return ? IteratorDestructuringAssignmentEvaluation ofAssignmentElisionElement with argumentiteratorRecord.
AssignmentElisionElement:AssignmentElement
  1. Return ? IteratorDestructuringAssignmentEvaluation ofAssignmentElement with argumentiteratorRecord.
AssignmentElisionElement:ElisionAssignmentElement
  1. Perform ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  2. Return ? IteratorDestructuringAssignmentEvaluation ofAssignmentElement with argumentiteratorRecord.
Elision:,
  1. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beCompletion(IteratorStep(iteratorRecord)).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  2. Returnunused.
Elision:Elision,
  1. Perform ? IteratorDestructuringAssignmentEvaluation ofElision with argumentiteratorRecord.
  2. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext beCompletion(IteratorStep(iteratorRecord)).
    2. Ifnext is anabrupt completion, setiteratorRecord.[[Done]] totrue.
    3. ReturnIfAbrupt(next).
    4. Ifnext isfalse, setiteratorRecord.[[Done]] totrue.
  3. Returnunused.
AssignmentElement:DestructuringAssignmentTargetInitializeropt
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be ? Evaluation ofDestructuringAssignmentTarget.
  2. Letvalue beundefined.
  3. IfiteratorRecord.[[Done]] isfalse, then
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext is notdone, then
      1. Setvalue tonext.
  4. IfInitializer is present andvalue isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue andIsIdentifierRef ofDestructuringAssignmentTarget istrue, then
      1. Letv be ? NamedEvaluation ofInitializer with argumentlref.[[ReferencedName]].
    2. Else,
      1. LetdefaultValue be ? Evaluation ofInitializer.
      2. Letv be ? GetValue(defaultValue).
  5. Else,
    1. Letv bevalue.
  6. IfDestructuringAssignmentTarget is either anObjectLiteral or anArrayLiteral, then
    1. LetnestedAssignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
    2. Return ? DestructuringAssignmentEvaluation ofnestedAssignmentPattern with argumentv.
  7. Return ? PutValue(lref,v).
Note

Left to right evaluation order is maintained by evaluating aDestructuringAssignmentTarget that is not a destructuring pattern prior to accessing the iterator or evaluating theInitializer.

AssignmentRestElement:...DestructuringAssignmentTarget
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be ? Evaluation ofDestructuringAssignmentTarget.
  2. LetA be ! ArrayCreate(0).
  3. Letn be 0.
  4. Repeat, whileiteratorRecord.[[Done]] isfalse,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext is notdone, then
      1. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),next).
      2. Setn ton + 1.
  5. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Return ? PutValue(lref,A).
  6. LetnestedAssignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
  7. Return ? DestructuringAssignmentEvaluation ofnestedAssignmentPattern with argumentA.

13.15.5.6 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

Thesyntax-directed operation KeyedDestructuringAssignmentEvaluation takes argumentsvalue (anECMAScript language value) andpropertyName (aproperty key) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

AssignmentElement:DestructuringAssignmentTargetInitializeropt
  1. IfDestructuringAssignmentTarget is neither anObjectLiteral nor anArrayLiteral, then
    1. Letlref be ? Evaluation ofDestructuringAssignmentTarget.
  2. Letv be ? GetV(value,propertyName).
  3. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) andIsIdentifierRef ofDestructuringAssignmentTarget are bothtrue, then
      1. LetrhsValue be ? NamedEvaluation ofInitializer with argumentlref.[[ReferencedName]].
    2. Else,
      1. LetdefaultValue be ? Evaluation ofInitializer.
      2. LetrhsValue be ? GetValue(defaultValue).
  4. Else,
    1. LetrhsValue bev.
  5. IfDestructuringAssignmentTarget is either anObjectLiteral or anArrayLiteral, then
    1. LetassignmentPattern be theAssignmentPattern that iscovered byDestructuringAssignmentTarget.
    2. Return ? DestructuringAssignmentEvaluation ofassignmentPattern with argumentrhsValue.
  6. Return ? PutValue(lref,rhsValue).

13.16 Comma Operator (, )

Syntax

Expression[In, Yield, Await]:AssignmentExpression[?In, ?Yield, ?Await]Expression[?In, ?Yield, ?Await],AssignmentExpression[?In, ?Yield, ?Await]

13.16.1 Runtime Semantics: Evaluation

Expression:Expression,AssignmentExpression
  1. Letlref be ? Evaluation ofExpression.
  2. Perform ? GetValue(lref).
  3. Letrref be ? Evaluation ofAssignmentExpression.
  4. Return ? GetValue(rref).
Note

GetValue must be called even though its value is not used because it may have observable side-effects.

14 ECMAScript Language: Statements and Declarations

Syntax

Statement[Yield, Await, Return]:BlockStatement[?Yield, ?Await, ?Return]VariableStatement[?Yield, ?Await]EmptyStatementExpressionStatement[?Yield, ?Await]IfStatement[?Yield, ?Await, ?Return]BreakableStatement[?Yield, ?Await, ?Return]ContinueStatement[?Yield, ?Await]BreakStatement[?Yield, ?Await][+Return]ReturnStatement[?Yield, ?Await]WithStatement[?Yield, ?Await, ?Return]LabelledStatement[?Yield, ?Await, ?Return]ThrowStatement[?Yield, ?Await]TryStatement[?Yield, ?Await, ?Return]DebuggerStatementDeclaration[Yield, Await]:HoistableDeclaration[?Yield, ?Await, ~Default]ClassDeclaration[?Yield, ?Await, ~Default]LexicalDeclaration[+In, ?Yield, ?Await]HoistableDeclaration[Yield, Await, Default]:FunctionDeclaration[?Yield, ?Await, ?Default]GeneratorDeclaration[?Yield, ?Await, ?Default]AsyncFunctionDeclaration[?Yield, ?Await, ?Default]AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]BreakableStatement[Yield, Await, Return]:IterationStatement[?Yield, ?Await, ?Return]SwitchStatement[?Yield, ?Await, ?Return]

14.1 Statement Semantics

14.1.1 Runtime Semantics: Evaluation

HoistableDeclaration:GeneratorDeclarationAsyncFunctionDeclarationAsyncGeneratorDeclaration
  1. Returnempty.
HoistableDeclaration:FunctionDeclaration
  1. Return ? Evaluation ofFunctionDeclaration.
BreakableStatement:IterationStatementSwitchStatement
  1. LetnewLabelSet be a new emptyList.
  2. Return ? LabelledEvaluation of thisBreakableStatement with argumentnewLabelSet.

14.2 Block

Syntax

BlockStatement[Yield, Await, Return]:Block[?Yield, ?Await, ?Return]Block[Yield, Await, Return]:{StatementList[?Yield, ?Await, ?Return]opt}StatementList[Yield, Await, Return]:StatementListItem[?Yield, ?Await, ?Return]StatementList[?Yield, ?Await, ?Return]StatementListItem[?Yield, ?Await, ?Return]StatementListItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]Declaration[?Yield, ?Await]

14.2.1 Static Semantics: Early Errors

Block:{StatementList}

14.2.2 Runtime Semantics: Evaluation

Block:{}
  1. Returnempty.
Block:{StatementList}
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetblockEnv beNewDeclarativeEnvironment(oldEnv).
  3. PerformBlockDeclarationInstantiation(StatementList,blockEnv).
  4. Set therunning execution context's LexicalEnvironment toblockEnv.
  5. LetblockValue beCompletion(Evaluation ofStatementList).
  6. Set therunning execution context's LexicalEnvironment tooldEnv.
  7. Return ? blockValue.
Note 1

No matter how control leaves theBlock the LexicalEnvironment is always restored to its former state.

StatementList:StatementListStatementListItem
  1. Letsl be ? Evaluation ofStatementList.
  2. Lets beCompletion(Evaluation ofStatementListItem).
  3. Return ? UpdateEmpty(s,sl).
Note 2

The value of aStatementList is the value of the last value-producing item in theStatementList. For example, the following calls to theeval function all return the value 1:

eval("1;;;;;")eval("1;{}")eval("1;var a;")

14.2.3 BlockDeclarationInstantiation (code,env )

The abstract operation BlockDeclarationInstantiation takes argumentscode (aParse Node) andenv (aDeclarative Environment Record) and returnsunused.code is theParse Node corresponding to the body of the block.env is theEnvironment Record in which bindings are to be created.

Note

When aBlock orCaseBlock is evaluated a newDeclarative Environment Record is created and bindings for each block scoped variable, constant, function, or class declared in the block are instantiated in theEnvironment Record.

It performs the following steps when called:

  1. Letdeclarations be theLexicallyScopedDeclarations ofcode.
  2. LetprivateEnv be therunning execution context's PrivateEnvironment.
  3. For each elementd ofdeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ! env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ! env.CreateMutableBinding(dn,false). NOTE: This step is replaced in sectionB.3.2.6.
    2. Ifd is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration, then
      1. Letfn be the sole element of theBoundNames ofd.
      2. Letfo beInstantiateFunctionObject ofd with argumentsenv andprivateEnv.
      3. Perform ! env.InitializeBinding(fn,fo). NOTE: This step is replaced in sectionB.3.2.6.
  4. Returnunused.

14.3 Declarations and the Variable Statement

14.3.1 Let and Const Declarations

Note

let andconst declarations define variables that are scoped to therunning execution context's LexicalEnvironment. The variables are created when their containingEnvironment Record is instantiated but may not be accessed in any way until the variable'sLexicalBinding is evaluated. A variable defined by aLexicalBinding with anInitializer is assigned the value of itsInitializer'sAssignmentExpression when theLexicalBinding is evaluated, not when the variable is created. If aLexicalBinding in alet declaration does not have anInitializer the variable is assigned the valueundefined when theLexicalBinding is evaluated.

Syntax

LexicalDeclaration[In, Yield, Await]:LetOrConstBindingList[?In, ?Yield, ?Await];LetOrConst:letconstBindingList[In, Yield, Await]:LexicalBinding[?In, ?Yield, ?Await]BindingList[?In, ?Yield, ?Await],LexicalBinding[?In, ?Yield, ?Await]LexicalBinding[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]

14.3.1.1 Static Semantics: Early Errors

LexicalDeclaration:LetOrConstBindingList;LexicalBinding:BindingIdentifierInitializeropt

14.3.1.2 Runtime Semantics: Evaluation

LexicalDeclaration:LetOrConstBindingList;
  1. Perform ? Evaluation ofBindingList.
  2. Returnempty.
BindingList:BindingList,LexicalBinding
  1. Perform ? Evaluation ofBindingList.
  2. Return ? Evaluation ofLexicalBinding.
LexicalBinding:BindingIdentifier
  1. Letlhs be ! ResolveBinding(StringValue ofBindingIdentifier).
  2. Perform ! InitializeReferencedBinding(lhs,undefined).
  3. Returnempty.
Note

Astatic semantics rule ensures that this form ofLexicalBinding never occurs in aconst declaration.

LexicalBinding:BindingIdentifierInitializer
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ! ResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue be ? NamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be ? Evaluation ofInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. Perform ! InitializeReferencedBinding(lhs,value).
  6. Returnempty.
LexicalBinding:BindingPatternInitializer
  1. Letrhs be ? Evaluation ofInitializer.
  2. Letvalue be ? GetValue(rhs).
  3. Letenv be therunning execution context's LexicalEnvironment.
  4. Return ? BindingInitialization ofBindingPattern with argumentsvalue andenv.

14.3.2 Variable Statement

Note

Avar statement declares variables that are scoped to therunning execution context's VariableEnvironment. Var variables are created when their containingEnvironment Record is instantiated and are initialized toundefined when created. Within the scope of any VariableEnvironment a commonBindingIdentifier may appear in more than oneVariableDeclaration but those declarations collectively define only one variable. A variable defined by aVariableDeclaration with anInitializer is assigned the value of itsInitializer'sAssignmentExpression when theVariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement[Yield, Await]:varVariableDeclarationList[+In, ?Yield, ?Await];VariableDeclarationList[In, Yield, Await]:VariableDeclaration[?In, ?Yield, ?Await]VariableDeclarationList[?In, ?Yield, ?Await],VariableDeclaration[?In, ?Yield, ?Await]VariableDeclaration[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]

14.3.2.1 Runtime Semantics: Evaluation

VariableStatement:varVariableDeclarationList;
  1. Perform ? Evaluation ofVariableDeclarationList.
  2. Returnempty.
VariableDeclarationList:VariableDeclarationList,VariableDeclaration
  1. Perform ? Evaluation ofVariableDeclarationList.
  2. Return ? Evaluation ofVariableDeclaration.
VariableDeclaration:BindingIdentifier
  1. Returnempty.
VariableDeclaration:BindingIdentifierInitializer
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue be ? NamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be ? Evaluation ofInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. Perform ? PutValue(lhs,value).
  6. Returnempty.
Note

If aVariableDeclaration is nested within a with statement and theBindingIdentifier in theVariableDeclaration is the same as aproperty name of the binding object of the with statement'sObject Environment Record, then step5 will assignvalue to the property instead of assigning to the VariableEnvironment binding of theIdentifier.

VariableDeclaration:BindingPatternInitializer
  1. Letrhs be ? Evaluation ofInitializer.
  2. Letrval be ? GetValue(rhs).
  3. Return ? BindingInitialization ofBindingPattern with argumentsrval andundefined.

14.3.3 Destructuring Binding Patterns

Syntax

BindingPattern[Yield, Await]:ObjectBindingPattern[?Yield, ?Await]ArrayBindingPattern[?Yield, ?Await]ObjectBindingPattern[Yield, Await]:{}{BindingRestProperty[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await],BindingRestProperty[?Yield, ?Await]opt}ArrayBindingPattern[Yield, Await]:[ElisionoptBindingRestElement[?Yield, ?Await]opt][BindingElementList[?Yield, ?Await]][BindingElementList[?Yield, ?Await],ElisionoptBindingRestElement[?Yield, ?Await]opt]BindingRestProperty[Yield, Await]:...BindingIdentifier[?Yield, ?Await]BindingPropertyList[Yield, Await]:BindingProperty[?Yield, ?Await]BindingPropertyList[?Yield, ?Await],BindingProperty[?Yield, ?Await]BindingElementList[Yield, Await]:BindingElisionElement[?Yield, ?Await]BindingElementList[?Yield, ?Await],BindingElisionElement[?Yield, ?Await]BindingElisionElement[Yield, Await]:ElisionoptBindingElement[?Yield, ?Await]BindingProperty[Yield, Await]:SingleNameBinding[?Yield, ?Await]PropertyName[?Yield, ?Await]:BindingElement[?Yield, ?Await]BindingElement[Yield, Await]:SingleNameBinding[?Yield, ?Await]BindingPattern[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optSingleNameBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optBindingRestElement[Yield, Await]:...BindingIdentifier[?Yield, ?Await]...BindingPattern[?Yield, ?Await]

14.3.3.1 Runtime Semantics: PropertyBindingInitialization

Thesyntax-directed operation PropertyBindingInitialization takes argumentsvalue (anECMAScript language value) andenvironment (anEnvironment Record orundefined) and returns either anormal completion containing aList ofproperty keys or anabrupt completion. It collects a list of all bound property names. It is defined piecewise over the following productions:

BindingPropertyList:BindingPropertyList,BindingProperty
  1. LetboundNames be ? PropertyBindingInitialization ofBindingPropertyList with argumentsvalue andenvironment.
  2. LetnextNames be ? PropertyBindingInitialization ofBindingProperty with argumentsvalue andenvironment.
  3. Return thelist-concatenation ofboundNames andnextNames.
BindingProperty:SingleNameBinding
  1. Letname be the sole element of theBoundNames ofSingleNameBinding.
  2. Perform ? KeyedBindingInitialization ofSingleNameBinding with argumentsvalue,environment, andname.
  3. Return «name ».
BindingProperty:PropertyName:BindingElement
  1. LetP be ? Evaluation ofPropertyName.
  2. Perform ? KeyedBindingInitialization ofBindingElement with argumentsvalue,environment, andP.
  3. Return «P ».

14.3.3.2 Runtime Semantics: RestBindingInitialization

Thesyntax-directed operation RestBindingInitialization takes argumentsvalue (anECMAScript language value),environment (anEnvironment Record orundefined), andexcludedNames (aList ofproperty keys) and returns either anormal completion containingunused or anabrupt completion. It is defined piecewise over the following productions:

BindingRestProperty:...BindingIdentifier
  1. Letlhs be ? ResolveBinding(StringValue ofBindingIdentifier,environment).
  2. LetrestObj beOrdinaryObjectCreate(%Object.prototype%).
  3. Perform ? CopyDataProperties(restObj,value,excludedNames).
  4. Ifenvironment isundefined, return ? PutValue(lhs,restObj).
  5. Return ? InitializeReferencedBinding(lhs,restObj).

14.3.3.3 Runtime Semantics: KeyedBindingInitialization

Thesyntax-directed operation KeyedBindingInitialization takes argumentsvalue (anECMAScript language value),environment (anEnvironment Record orundefined), andpropertyName (aproperty key) and returns either anormal completion containingunused or anabrupt completion.

Note

Whenundefined is passed forenvironment it indicates that aPutValue operation should be used to assign the initialization value. This is the case for formal parameter lists ofnon-strict functions. In that case the formal parameter bindings are preinitialized in order to deal with the possibility of multiple parameters with the same name.

It is defined piecewise over the following productions:

BindingElement:BindingPatternInitializeropt
  1. Letv be ? GetV(value,propertyName).
  2. IfInitializer is present andv isundefined, then
    1. LetdefaultValue be ? Evaluation ofInitializer.
    2. Setv to ? GetValue(defaultValue).
  3. Return ? BindingInitialization ofBindingPattern with argumentsv andenvironment.
SingleNameBinding:BindingIdentifierInitializeropt
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId,environment).
  3. Letv be ? GetV(value,propertyName).
  4. IfInitializer is present andv isundefined, then
    1. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
      1. Setv to ? NamedEvaluation ofInitializer with argumentbindingId.
    2. Else,
      1. LetdefaultValue be ? Evaluation ofInitializer.
      2. Setv to ? GetValue(defaultValue).
  5. Ifenvironment isundefined, return ? PutValue(lhs,v).
  6. Return ? InitializeReferencedBinding(lhs,v).

14.4 Empty Statement

Syntax

EmptyStatement:;

14.4.1 Runtime Semantics: Evaluation

EmptyStatement:;
  1. Returnempty.

14.5 Expression Statement

Syntax

ExpressionStatement[Yield, Await]:[lookahead ∉ {{,function,async[noLineTerminator here]function,class,let[ }]Expression[+In, ?Yield, ?Await];Note

AnExpressionStatement cannot start with a U+007B (LEFT CURLY BRACKET) because that might make it ambiguous with aBlock. AnExpressionStatement cannot start with thefunction orclasskeywords because that would make it ambiguous with aFunctionDeclaration, aGeneratorDeclaration, or aClassDeclaration. AnExpressionStatement cannot start withasync function because that would make it ambiguous with anAsyncFunctionDeclaration or aAsyncGeneratorDeclaration. AnExpressionStatement cannot start with the two token sequencelet [ because that would make it ambiguous with aletLexicalDeclaration whose firstLexicalBinding was anArrayBindingPattern.

14.5.1 Runtime Semantics: Evaluation

ExpressionStatement:Expression;
  1. LetexprRef be ? Evaluation ofExpression.
  2. Return ? GetValue(exprRef).

14.6 Theif Statement

Syntax

IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][lookahead ≠else]Note
The lookahead-restriction [lookahead ≠else] resolves the classic "dangling else" problem in the usual way. That is, when the choice of associatedif is otherwise ambiguous, theelse is associated with the nearest (innermost) of the candidateifs

14.6.1 Static Semantics: Early Errors

IfStatement:if(Expression)StatementelseStatementIfStatement:if(Expression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.1 is implemented.

14.6.2 Runtime Semantics: Evaluation

IfStatement:if(Expression)StatementelseStatement
  1. LetexprRef be ? Evaluation ofExpression.
  2. LetexprValue beToBoolean(?GetValue(exprRef)).
  3. IfexprValue istrue, then
    1. LetstmtCompletion beCompletion(Evaluation of the firstStatement).
  4. Else,
    1. LetstmtCompletion beCompletion(Evaluation of the secondStatement).
  5. Return ? UpdateEmpty(stmtCompletion,undefined).
IfStatement:if(Expression)Statement
  1. LetexprRef be ? Evaluation ofExpression.
  2. LetexprValue beToBoolean(?GetValue(exprRef)).
  3. IfexprValue isfalse, then
    1. Returnundefined.
  4. Else,
    1. LetstmtCompletion beCompletion(Evaluation ofStatement).
    2. Return ? UpdateEmpty(stmtCompletion,undefined).

14.7 Iteration Statements

Syntax

IterationStatement[Yield, Await, Return]:DoWhileStatement[?Yield, ?Await, ?Return]WhileStatement[?Yield, ?Await, ?Return]ForStatement[?Yield, ?Await, ?Return]ForInOfStatement[?Yield, ?Await, ?Return]

14.7.1 Semantics

14.7.1.1 LoopContinues (completion,labelSet )

The abstract operation LoopContinues takes argumentscompletion (aCompletion Record) andlabelSet (aList of Strings) and returns a Boolean. It performs the following steps when called:

  1. Ifcompletion is anormal completion, returntrue.
  2. Ifcompletion is not acontinue completion, returnfalse.
  3. Ifcompletion.[[Target]] isempty, returntrue.
  4. IflabelSet containscompletion.[[Target]], returntrue.
  5. Returnfalse.
Note

Within theStatement part of anIterationStatement aContinueStatement may be used to begin a new iteration.

14.7.1.2 Runtime Semantics: LoopEvaluation

Thesyntax-directed operation LoopEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

IterationStatement:DoWhileStatement
  1. Return ? DoWhileLoopEvaluation ofDoWhileStatement with argumentlabelSet.
IterationStatement:WhileStatement
  1. Return ? WhileLoopEvaluation ofWhileStatement with argumentlabelSet.
IterationStatement:ForStatement
  1. Return ? ForLoopEvaluation ofForStatement with argumentlabelSet.
IterationStatement:ForInOfStatement
  1. Return ? ForInOfLoopEvaluation ofForInOfStatement with argumentlabelSet.

14.7.2 Thedo-while Statement

Syntax

DoWhileStatement[Yield, Await, Return]:doStatement[?Yield, ?Await, ?Return]while(Expression[+In, ?Yield, ?Await]);

14.7.2.1 Static Semantics: Early Errors

DoWhileStatement:doStatementwhile(Expression);Note

It is only necessary to apply this rule if the extension specified inB.3.1 is implemented.

14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation

Thesyntax-directed operation DoWhileLoopEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

DoWhileStatement:doStatementwhile(Expression);
  1. LetV beundefined.
  2. Repeat,
    1. LetstmtResult beCompletion(Evaluation ofStatement).
    2. IfLoopContinues(stmtResult,labelSet) isfalse, return ? UpdateEmpty(stmtResult,V).
    3. IfstmtResult.[[Value]] is notempty, setV tostmtResult.[[Value]].
    4. LetexprRef be ? Evaluation ofExpression.
    5. LetexprValue be ? GetValue(exprRef).
    6. IfToBoolean(exprValue) isfalse, returnV.

14.7.3 Thewhile Statement

Syntax

WhileStatement[Yield, Await, Return]:while(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]

14.7.3.1 Static Semantics: Early Errors

WhileStatement:while(Expression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.1 is implemented.

14.7.3.2 Runtime Semantics: WhileLoopEvaluation

Thesyntax-directed operation WhileLoopEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

WhileStatement:while(Expression)Statement
  1. LetV beundefined.
  2. Repeat,
    1. LetexprRef be ? Evaluation ofExpression.
    2. LetexprValue be ? GetValue(exprRef).
    3. IfToBoolean(exprValue) isfalse, returnV.
    4. LetstmtResult beCompletion(Evaluation ofStatement).
    5. IfLoopContinues(stmtResult,labelSet) isfalse, return ? UpdateEmpty(stmtResult,V).
    6. IfstmtResult.[[Value]] is notempty, setV tostmtResult.[[Value]].

14.7.4 Thefor Statement

Syntax

ForStatement[Yield, Await, Return]:for([lookahead ≠let[]Expression[~In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(varVariableDeclarationList[~In, ?Yield, ?Await];Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(LexicalDeclaration[~In, ?Yield, ?Await]Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]

14.7.4.1 Static Semantics: Early Errors

ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.1 is implemented.

ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement

14.7.4.2 Runtime Semantics: ForLoopEvaluation

Thesyntax-directed operation ForLoopEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

ForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statement
  1. If the firstExpression is present, then
    1. LetexprRef be ? Evaluation of the firstExpression.
    2. Perform ? GetValue(exprRef).
  2. If the secondExpression is present, lettest be the secondExpression; otherwise, lettest beempty.
  3. If the thirdExpression is present, letincrement be the thirdExpression; otherwise, letincrement beempty.
  4. Return ? ForBodyEvaluation(test,increment,Statement, « »,labelSet).
ForStatement:for(varVariableDeclarationList;Expressionopt;Expressionopt)Statement
  1. Perform ? Evaluation ofVariableDeclarationList.
  2. If the firstExpression is present, lettest be the firstExpression; otherwise, lettest beempty.
  3. If the secondExpression is present, letincrement be the secondExpression; otherwise, letincrement beempty.
  4. Return ? ForBodyEvaluation(test,increment,Statement, « »,labelSet).
ForStatement:for(LexicalDeclarationExpressionopt;Expressionopt)Statement
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetloopEnv beNewDeclarativeEnvironment(oldEnv).
  3. LetisConst beIsConstantDeclaration ofLexicalDeclaration.
  4. LetboundNames be theBoundNames ofLexicalDeclaration.
  5. For each elementdn ofboundNames, do
    1. IfisConst istrue, then
      1. Perform ! loopEnv.CreateImmutableBinding(dn,true).
    2. Else,
      1. Perform ! loopEnv.CreateMutableBinding(dn,false).
  6. Set therunning execution context's LexicalEnvironment toloopEnv.
  7. LetforDcl beCompletion(Evaluation ofLexicalDeclaration).
  8. IfforDcl is anabrupt completion, then
    1. Set therunning execution context's LexicalEnvironment tooldEnv.
    2. Return ? forDcl.
  9. IfisConst isfalse, letperIterationLets beboundNames; otherwise letperIterationLets be a new emptyList.
  10. If the firstExpression is present, lettest be the firstExpression; otherwise, lettest beempty.
  11. If the secondExpression is present, letincrement be the secondExpression; otherwise, letincrement beempty.
  12. LetbodyResult beCompletion(ForBodyEvaluation(test,increment,Statement,perIterationLets,labelSet)).
  13. Set therunning execution context's LexicalEnvironment tooldEnv.
  14. Return ? bodyResult.

14.7.4.3 ForBodyEvaluation (test,increment,stmt,perIterationBindings,labelSet )

The abstract operation ForBodyEvaluation takes argumentstest (anExpressionParse Node orempty),increment (anExpressionParse Node orempty),stmt (aStatementParse Node),perIterationBindings (aList of Strings), andlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. LetV beundefined.
  2. Perform ? CreatePerIterationEnvironment(perIterationBindings).
  3. Repeat,
    1. Iftest is notempty, then
      1. LettestRef be ? Evaluation oftest.
      2. LettestValue be ? GetValue(testRef).
      3. IfToBoolean(testValue) isfalse, returnV.
    2. Letresult beCompletion(Evaluation ofstmt).
    3. IfLoopContinues(result,labelSet) isfalse, return ? UpdateEmpty(result,V).
    4. Ifresult.[[Value]] is notempty, setV toresult.[[Value]].
    5. Perform ? CreatePerIterationEnvironment(perIterationBindings).
    6. Ifincrement is notempty, then
      1. LetincRef be ? Evaluation ofincrement.
      2. Perform ? GetValue(incRef).

14.7.4.4 CreatePerIterationEnvironment (perIterationBindings )

The abstract operation CreatePerIterationEnvironment takes argumentperIterationBindings (aList of Strings) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. IfperIterationBindings has any elements, then
    1. LetlastIterationEnv be therunning execution context's LexicalEnvironment.
    2. Letouter belastIterationEnv.[[OuterEnv]].
    3. Assert:outer is notnull.
    4. LetthisIterationEnv beNewDeclarativeEnvironment(outer).
    5. For each elementbn ofperIterationBindings, do
      1. Perform ! thisIterationEnv.CreateMutableBinding(bn,false).
      2. LetlastValue be ? lastIterationEnv.GetBindingValue(bn,true).
      3. Perform ! thisIterationEnv.InitializeBinding(bn,lastValue).
    6. Set therunning execution context's LexicalEnvironment tothisIterationEnv.
  2. Returnunused.

14.7.5 Thefor-in,for-of, andfor-await-of Statements

Syntax

ForInOfStatement[Yield, Await, Return]:for([lookahead ≠let[]LeftHandSideExpression[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for([lookahead ∉ {let,asyncof }]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait([lookahead ≠let]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForDeclaration[Yield, Await]:LetOrConstForBinding[?Yield, ?Await]ForBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]Note

This section is extended by AnnexB.3.5.

14.7.5.1 Static Semantics: Early Errors

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statementforawait(varForBindingofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)StatementNote

It is only necessary to apply this rule if the extension specified inB.3.1 is implemented.

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(LeftHandSideExpressionofAssignmentExpression)Statementforawait(LeftHandSideExpressionofAssignmentExpression)Statement

IfLeftHandSideExpression is either anObjectLiteral or anArrayLiteral, the following Early Error rules are applied:

IfLeftHandSideExpression is neither anObjectLiteral nor anArrayLiteral, the following Early Error rule is applied:

ForInOfStatement:for(ForDeclarationinExpression)Statementfor(ForDeclarationofAssignmentExpression)Statementforawait(ForDeclarationofAssignmentExpression)Statement

14.7.5.2 Static Semantics: IsDestructuring

Thesyntax-directed operation IsDestructuring takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

MemberExpression:PrimaryExpression
  1. IfPrimaryExpression is either anObjectLiteral or anArrayLiteral, returntrue.
  2. Returnfalse.
MemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameMemberExpressionTemplateLiteralSuperPropertyMetaPropertynewMemberExpressionArgumentsMemberExpression.PrivateIdentifierNewExpression:newNewExpressionLeftHandSideExpression:CallExpressionOptionalExpression
  1. Returnfalse.
ForDeclaration:LetOrConstForBinding
  1. ReturnIsDestructuring ofForBinding.
ForBinding:BindingIdentifier
  1. Returnfalse.
ForBinding:BindingPattern
  1. Returntrue.
Note

This section is extended by AnnexB.3.5.

14.7.5.3 Runtime Semantics: ForDeclarationBindingInitialization

Thesyntax-directed operation ForDeclarationBindingInitialization takes argumentsvalue (anECMAScript language value) andenvironment (anEnvironment Record orundefined) and returns either anormal completion containingunused or anabrupt completion.

Note

undefined is passed forenvironment to indicate that aPutValue operation should be used to assign the initialization value. This is the case forvar statements and the formal parameter lists of somenon-strict functions (see10.2.11). In those cases a lexical binding is hoisted and preinitialized prior to evaluation of its initializer.

It is defined piecewise over the following productions:

ForDeclaration:LetOrConstForBinding
  1. Return ? BindingInitialization ofForBinding with argumentsvalue andenvironment.

14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation

Thesyntax-directed operation ForDeclarationBindingInstantiation takes argumentenvironment (aDeclarative Environment Record) and returnsunused. It is defined piecewise over the following productions:

ForDeclaration:LetOrConstForBinding
  1. For each elementname of theBoundNames ofForBinding, do
    1. IfIsConstantDeclaration ofLetOrConst istrue, then
      1. Perform ! environment.CreateImmutableBinding(name,true).
    2. Else,
      1. Perform ! environment.CreateMutableBinding(name,false).
  2. Returnunused.

14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation

Thesyntax-directed operation ForInOfLoopEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

ForInOfStatement:for(LeftHandSideExpressioninExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,enumerate,assignment,labelSet).
ForInOfStatement:for(varForBindinginExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  2. Return ? ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,enumerate,var-binding,labelSet).
ForInOfStatement:for(ForDeclarationinExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,Expression,enumerate).
  2. Return ? ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,enumerate,lexical-binding,labelSet).
ForInOfStatement:for(LeftHandSideExpressionofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,AssignmentExpression,iterate).
  2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,iterate,assignment,labelSet).
ForInOfStatement:for(varForBindingofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,AssignmentExpression,iterate).
  2. Return ? ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,iterate,var-binding,labelSet).
ForInOfStatement:for(ForDeclarationofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,AssignmentExpression,iterate).
  2. Return ? ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,iterate,lexical-binding,labelSet).
ForInOfStatement:forawait(LeftHandSideExpressionofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,AssignmentExpression,async-iterate).
  2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression,Statement,keyResult,iterate,assignment,labelSet,async).
ForInOfStatement:forawait(varForBindingofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,AssignmentExpression,async-iterate).
  2. Return ? ForIn/OfBodyEvaluation(ForBinding,Statement,keyResult,iterate,var-binding,labelSet,async).
ForInOfStatement:forawait(ForDeclarationofAssignmentExpression)Statement
  1. LetkeyResult be ? ForIn/OfHeadEvaluation(BoundNames ofForDeclaration,AssignmentExpression,async-iterate).
  2. Return ? ForIn/OfBodyEvaluation(ForDeclaration,Statement,keyResult,iterate,lexical-binding,labelSet,async).
Note

This section is extended by AnnexB.3.5.

14.7.5.6 ForIn/OfHeadEvaluation (uninitializedBoundNames,expr,iterationKind )

The abstract operation ForIn/OfHeadEvaluation takes argumentsuninitializedBoundNames (aList of Strings),expr (anExpressionParse Node or anAssignmentExpressionParse Node), anditerationKind (enumerate,iterate, orasync-iterate) and returns either anormal completion containing anIterator Record or anabrupt completion. It performs the following steps when called:

  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. IfuninitializedBoundNames is not empty, then
    1. Assert:uninitializedBoundNames has no duplicate entries.
    2. LetnewEnv beNewDeclarativeEnvironment(oldEnv).
    3. For each Stringname ofuninitializedBoundNames, do
      1. Perform ! newEnv.CreateMutableBinding(name,false).
    4. Set therunning execution context's LexicalEnvironment tonewEnv.
  3. LetexprRef beCompletion(Evaluation ofexpr).
  4. Set therunning execution context's LexicalEnvironment tooldEnv.
  5. LetexprValue be ? GetValue(?exprRef).
  6. IfiterationKind isenumerate, then
    1. IfexprValue is eitherundefined ornull, then
      1. ReturnCompletion Record {[[Type]]:break,[[Value]]:empty,[[Target]]:empty }.
    2. Letobj be ! ToObject(exprValue).
    3. Letiterator beEnumerateObjectProperties(obj).
    4. LetnextMethod be ! GetV(iterator,"next").
    5. Return theIterator Record {[[Iterator]]:iterator,[[NextMethod]]:nextMethod,[[Done]]:false }.
  7. Else,
    1. Assert:iterationKind is eitheriterate orasync-iterate.
    2. IfiterationKind isasync-iterate, letiteratorKind beasync.
    3. Else, letiteratorKind besync.
    4. Return ? GetIterator(exprValue,iteratorKind).

14.7.5.7 ForIn/OfBodyEvaluation (lhs,stmt,iteratorRecord,iterationKind,lhsKind,labelSet [ ,iteratorKind ] )

The abstract operation ForIn/OfBodyEvaluation takes argumentslhs (aParse Node),stmt (aStatementParse Node),iteratorRecord (anIterator Record),iterationKind (enumerate oriterate),lhsKind (assignment,var-binding, orlexical-binding), andlabelSet (aList of Strings) and optional argumentiteratorKind (sync orasync) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. IfiteratorKind is not present, setiteratorKind tosync.
  2. LetoldEnv be therunning execution context's LexicalEnvironment.
  3. LetV beundefined.
  4. Letdestructuring beIsDestructuring oflhs.
  5. Ifdestructuring istrue andlhsKind isassignment, then
    1. Assert:lhs is aLeftHandSideExpression.
    2. LetassignmentPattern be theAssignmentPattern that iscovered bylhs.
  6. Repeat,
    1. LetnextResult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]]).
    2. IfiteratorKind isasync, setnextResult to ? Await(nextResult).
    3. IfnextResultis not an Object, throw aTypeError exception.
    4. Letdone be ? IteratorComplete(nextResult).
    5. Ifdone istrue, returnV.
    6. LetnextValue be ? IteratorValue(nextResult).
    7. IflhsKind is eitherassignment orvar-binding, then
      1. Ifdestructuring istrue, then
        1. IflhsKind isassignment, then
          1. Letstatus beCompletion(DestructuringAssignmentEvaluation ofassignmentPattern with argumentnextValue).
        2. Else,
          1. Assert:lhsKind isvar-binding.
          2. Assert:lhs is aForBinding.
          3. Letstatus beCompletion(BindingInitialization oflhs with argumentsnextValue andundefined).
      2. Else,
        1. LetlhsRef beCompletion(Evaluation oflhs). (It may be evaluated repeatedly.)
        2. IflhsRef is anabrupt completion, then
          1. Letstatus belhsRef.
        3. Else,
          1. Letstatus beCompletion(PutValue(lhsRef.[[Value]],nextValue)).
    8. Else,
      1. Assert:lhsKind islexical-binding.
      2. Assert:lhs is aForDeclaration.
      3. LetiterationEnv beNewDeclarativeEnvironment(oldEnv).
      4. PerformForDeclarationBindingInstantiation oflhs with argumentiterationEnv.
      5. Set therunning execution context's LexicalEnvironment toiterationEnv.
      6. Ifdestructuring istrue, then
        1. Letstatus beCompletion(ForDeclarationBindingInitialization oflhs with argumentsnextValue anditerationEnv).
      7. Else,
        1. Assert:lhs binds a single name.
        2. LetlhsName be the sole element ofBoundNames oflhs.
        3. LetlhsRef be ! ResolveBinding(lhsName).
        4. Letstatus beCompletion(InitializeReferencedBinding(lhsRef,nextValue)).
    9. Ifstatus is anabrupt completion, then
      1. Set therunning execution context's LexicalEnvironment tooldEnv.
      2. IfiteratorKind isasync, return ? AsyncIteratorClose(iteratorRecord,status).
      3. IfiterationKind isenumerate, then
        1. Return ? status.
      4. Else,
        1. Assert:iterationKind isiterate.
        2. Return ? IteratorClose(iteratorRecord,status).
    10. Letresult beCompletion(Evaluation ofstmt).
    11. Set therunning execution context's LexicalEnvironment tooldEnv.
    12. IfLoopContinues(result,labelSet) isfalse, then
      1. IfiterationKind isenumerate, then
        1. Return ? UpdateEmpty(result,V).
      2. Else,
        1. Assert:iterationKind isiterate.
        2. Setstatus toCompletion(UpdateEmpty(result,V)).
        3. IfiteratorKind isasync, return ? AsyncIteratorClose(iteratorRecord,status).
        4. Return ? IteratorClose(iteratorRecord,status).
    13. Ifresult.[[Value]] is notempty, setV toresult.[[Value]].

14.7.5.8 Runtime Semantics: Evaluation

BindingIdentifier:Identifieryieldawait
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Return ? ResolveBinding(bindingId).

14.7.5.9 EnumerateObjectProperties (O )

The abstract operation EnumerateObjectProperties takes argumentO (an Object) and returns an Iterator. It performs the following steps when called:

  1. Return an Iterator object (27.1.1.2) whosenext method iterates over all the String-valued keys of enumerable properties ofO. The iterator object is never directly accessible to ECMAScript code. The mechanics and order of enumerating the properties is not specified but must conform to the rules specified below.

The iterator'sthrow andreturn methods arenull and are never invoked. The iterator'snext method processes object properties to determine whether theproperty key should be returned as an iterator value. Returnedproperty keys do not include keys that are Symbols. Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator'snext method is ignored. If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration. Aproperty name will be returned by the iterator'snext method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively; but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator'snext method. The values of[[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed. The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument. EnumerateObjectProperties must obtain the ownproperty keys of the target object by calling its[[OwnPropertyKeys]] internal method. Property attributes of the target object must be obtained by calling its[[GetOwnProperty]] internal method.

In addition, if neitherO nor any object in its prototype chain is aProxy exotic object,TypedArray,module namespace exotic object, or implementation providedexotic object, then the iterator must behave as would the iterator given byCreateForInIterator(O) until one of the following occurs:

  • the value of the[[Prototype]] internal slot ofO or an object in its prototype chain changes,
  • a property is removed fromO or an object in its prototype chain,
  • a property is added to an object inO's prototype chain, or
  • the value of the[[Enumerable]] attribute of a property ofO or an object in its prototype chain changes.
Note 1

ECMAScript implementations are not required to implement the algorithm in14.7.5.10.2.1 directly. They may choose any implementation whose behaviour will not deviate from that algorithm unless one of the constraints in the previous paragraph is violated.

The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function*EnumerateObjectProperties(obj) {const visited =newSet();for (const keyofReflect.ownKeys(obj)) {if (typeof key ==="symbol")continue;const desc =Reflect.getOwnPropertyDescriptor(obj, key);if (desc) {      visited.add(key);if (desc.enumerable)yield key;    }  }const proto =Reflect.getPrototypeOf(obj);if (proto ===null)return;for (const protoKeyofEnumerateObjectProperties(proto)) {if (!visited.has(protoKey))yield protoKey;  }}
Note 2
The list ofexotic objects for which implementations are not required to matchCreateForInIterator was chosen because implementations historically differed in behaviour for those cases, and agreed in all others.

14.7.5.10 For-In Iterator Objects

A For-In Iterator is an object that represents a specific iteration over some specific object. For-In Iterator objects are never directly accessible to ECMAScript code; they exist solely to illustrate the behaviour ofEnumerateObjectProperties.

14.7.5.10.1 CreateForInIterator (object )

The abstract operation CreateForInIterator takes argumentobject (an Object) and returns a For-In Iterator. It is used to create a For-In Iterator object which iterates over the own and inherited enumerable string properties ofobject in a specific order. It performs the following steps when called:

  1. Letiterator beOrdinaryObjectCreate(%ForInIteratorPrototype%, «[[Object]],[[ObjectWasVisited]],[[VisitedKeys]],[[RemainingKeys]] »).
  2. Setiterator.[[Object]] toobject.
  3. Setiterator.[[ObjectWasVisited]] tofalse.
  4. Setiterator.[[VisitedKeys]] to a new emptyList.
  5. Setiterator.[[RemainingKeys]] to a new emptyList.
  6. Returniterator.

14.7.5.10.2 The %ForInIteratorPrototype% Object

The%ForInIteratorPrototype% object:

  • has properties that are inherited by all For-In Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • is never directly accessible to ECMAScript code.
  • has the following properties:

14.7.5.10.2.1 %ForInIteratorPrototype%.next ( )

  1. LetO be thethis value.
  2. Assert:Ois an Object.
  3. Assert:O has all of the internal slots of a For-In Iterator Instance (14.7.5.10.3).
  4. Letobject beO.[[Object]].
  5. Repeat,
    1. IfO.[[ObjectWasVisited]] isfalse, then
      1. Letkeys be ? object.[[OwnPropertyKeys]]().
      2. For each elementkey ofkeys, do
        1. Ifkeyis a String, then
          1. Appendkey toO.[[RemainingKeys]].
      3. SetO.[[ObjectWasVisited]] totrue.
    2. Repeat, whileO.[[RemainingKeys]] is not empty,
      1. Letr be the first element ofO.[[RemainingKeys]].
      2. Remove the first element fromO.[[RemainingKeys]].
      3. If there does not exist an elementv ofO.[[VisitedKeys]] such thatSameValue(r,v) istrue, then
        1. Letdesc be ? object.[[GetOwnProperty]](r).
        2. Ifdesc is notundefined, then
          1. Appendr toO.[[VisitedKeys]].
          2. Ifdesc.[[Enumerable]] istrue, returnCreateIterResultObject(r,false).
    3. Setobject to ? object.[[GetPrototypeOf]]().
    4. SetO.[[Object]] toobject.
    5. SetO.[[ObjectWasVisited]] tofalse.
    6. Ifobject isnull, returnCreateIterResultObject(undefined,true).

14.7.5.10.3 Properties of For-In Iterator Instances

For-In Iterator instances areordinary objects that inherit properties from the%ForInIteratorPrototype% intrinsic object. For-In Iterator instances are initially created with the internal slots listed inTable 39.

Table 39: Internal Slots of For-In Iterator Instances
Internal Slot Type Description
[[Object]] an Object The Object value whose properties are being iterated.
[[ObjectWasVisited]] a Booleantrue if the iterator has invoked[[OwnPropertyKeys]] on[[Object]],false otherwise.
[[VisitedKeys]] aList of Strings The values that have been emitted by this iterator thus far.
[[RemainingKeys]] aList of Strings The values remaining to be emitted for the current object, before iterating the properties of its prototype (if its prototype is notnull).

14.8 Thecontinue Statement

Syntax

ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];

14.8.1 Static Semantics: Early Errors

ContinueStatement:continue;continueLabelIdentifier;
  • It is a Syntax Error if thisContinueStatement is not nested, directly or indirectly (but not crossing function orstatic initialization block boundaries), within anIterationStatement.

14.8.2 Runtime Semantics: Evaluation

ContinueStatement:continue;
  1. ReturnCompletion Record {[[Type]]:continue,[[Value]]:empty,[[Target]]:empty }.
ContinueStatement:continueLabelIdentifier;
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. ReturnCompletion Record {[[Type]]:continue,[[Value]]:empty,[[Target]]:label }.

14.9 Thebreak Statement

Syntax

BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];

14.9.1 Static Semantics: Early Errors

BreakStatement:break;

14.9.2 Runtime Semantics: Evaluation

BreakStatement:break;
  1. ReturnCompletion Record {[[Type]]:break,[[Value]]:empty,[[Target]]:empty }.
BreakStatement:breakLabelIdentifier;
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. ReturnCompletion Record {[[Type]]:break,[[Value]]:empty,[[Target]]:label }.

14.10 Thereturn Statement

Syntax

ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];Note

Areturn statement causes a function to cease execution and, in most cases, returns a value to the caller. IfExpression is omitted, the return value isundefined. Otherwise, the return value is the value ofExpression. Areturn statement may not actually return a value to the caller depending on surrounding context. For example, in atry block, areturn statement'sCompletion Record may be replaced with anotherCompletion Record during evaluation of thefinally block.

14.10.1 Runtime Semantics: Evaluation

ReturnStatement:return;
  1. ReturnCompletion Record {[[Type]]:return,[[Value]]:undefined,[[Target]]:empty }.
ReturnStatement:returnExpression;
  1. LetexprRef be ? Evaluation ofExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. IfGetGeneratorKind() isasync, setexprValue to ? Await(exprValue).
  4. ReturnCompletion Record {[[Type]]:return,[[Value]]:exprValue,[[Target]]:empty }.
Legacy

14.11 Thewith Statement

Note 1

Use of theLegacywith statement is discouraged in new ECMAScript code. Consider alternatives that are permitted in bothstrict mode code andnon-strict code, such asdestructuring assignment.

Syntax

WithStatement[Yield, Await, Return]:with(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]Note 2

Thewith statement adds anObject Environment Record for a computed object to the lexical environment of therunning execution context. It then executes a statement using this augmented lexical environment. Finally, it restores the original lexical environment.

14.11.1 Static Semantics: Early Errors

WithStatement:with(Expression)StatementNote

It is only necessary to apply the second rule if the extension specified inB.3.1 is implemented.

14.11.2 Runtime Semantics: Evaluation

WithStatement:with(Expression)Statement
  1. Letval be ? Evaluation ofExpression.
  2. Letobj be ? ToObject(?GetValue(val)).
  3. LetoldEnv be therunning execution context's LexicalEnvironment.
  4. LetnewEnv beNewObjectEnvironment(obj,true,oldEnv).
  5. Set therunning execution context's LexicalEnvironment tonewEnv.
  6. LetC beCompletion(Evaluation ofStatement).
  7. Set therunning execution context's LexicalEnvironment tooldEnv.
  8. Return ? UpdateEmpty(C,undefined).
Note

No matter how control leaves the embeddedStatement, whether normally or by some form ofabrupt completion or exception, the LexicalEnvironment is always restored to its former state.

14.12 Theswitch Statement

Syntax

SwitchStatement[Yield, Await, Return]:switch(Expression[+In, ?Yield, ?Await])CaseBlock[?Yield, ?Await, ?Return]CaseBlock[Yield, Await, Return]:{CaseClauses[?Yield, ?Await, ?Return]opt}{CaseClauses[?Yield, ?Await, ?Return]optDefaultClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]opt}CaseClauses[Yield, Await, Return]:CaseClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]CaseClause[?Yield, ?Await, ?Return]CaseClause[Yield, Await, Return]:caseExpression[+In, ?Yield, ?Await]:StatementList[?Yield, ?Await, ?Return]optDefaultClause[Yield, Await, Return]:default:StatementList[?Yield, ?Await, ?Return]opt

14.12.1 Static Semantics: Early Errors

SwitchStatement:switch(Expression)CaseBlock

14.12.2 Runtime Semantics: CaseBlockEvaluation

Thesyntax-directed operation CaseBlockEvaluation takes argumentinput (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

CaseBlock:{}
  1. Returnundefined.
CaseBlock:{CaseClauses}
  1. LetV beundefined.
  2. LetA be theList ofCaseClause items inCaseClauses, in source text order.
  3. Letfound befalse.
  4. For eachCaseClauseC ofA, do
    1. Iffound isfalse, then
      1. Setfound to ? CaseClauseIsSelected(C,input).
    2. Iffound istrue, then
      1. LetR beCompletion(Evaluation ofC).
      2. IfR.[[Value]] is notempty, setV toR.[[Value]].
      3. IfR is anabrupt completion, return ? UpdateEmpty(R,V).
  5. ReturnV.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. LetV beundefined.
  2. If the firstCaseClauses is present, then
    1. LetA be theList ofCaseClause items in the firstCaseClauses, in source text order.
  3. Else,
    1. LetA be a new emptyList.
  4. Letfound befalse.
  5. For eachCaseClauseC ofA, do
    1. Iffound isfalse, then
      1. Setfound to ? CaseClauseIsSelected(C,input).
    2. Iffound istrue, then
      1. LetR beCompletion(Evaluation ofC).
      2. IfR.[[Value]] is notempty, setV toR.[[Value]].
      3. IfR is anabrupt completion, return ? UpdateEmpty(R,V).
  6. LetfoundInB befalse.
  7. If the secondCaseClauses is present, then
    1. LetB be theList ofCaseClause items in the secondCaseClauses, in source text order.
  8. Else,
    1. LetB be a new emptyList.
  9. Iffound isfalse, then
    1. For eachCaseClauseC ofB, do
      1. IffoundInB isfalse, then
        1. SetfoundInB to ? CaseClauseIsSelected(C,input).
      2. IffoundInB istrue, then
        1. LetR beCompletion(Evaluation ofCaseClauseC).
        2. IfR.[[Value]] is notempty, setV toR.[[Value]].
        3. IfR is anabrupt completion, return ? UpdateEmpty(R,V).
  10. IffoundInB istrue, returnV.
  11. LetdefaultR beCompletion(Evaluation ofDefaultClause).
  12. IfdefaultR.[[Value]] is notempty, setV todefaultR.[[Value]].
  13. IfdefaultR is anabrupt completion, return ? UpdateEmpty(defaultR,V).
  14. NOTE: The following is another complete iteration of the secondCaseClauses.
  15. For eachCaseClauseC ofB, do
    1. LetR beCompletion(Evaluation ofCaseClauseC).
    2. IfR.[[Value]] is notempty, setV toR.[[Value]].
    3. IfR is anabrupt completion, return ? UpdateEmpty(R,V).
  16. ReturnV.

14.12.3 CaseClauseIsSelected (C,input )

The abstract operation CaseClauseIsSelected takes argumentsC (aCaseClauseParse Node) andinput (anECMAScript language value) and returns either anormal completion containing a Boolean or anabrupt completion. It determines whetherC matchesinput. It performs the following steps when called:

  1. Assert:C is an instance of the productionCaseClause:caseExpression:StatementListopt.
  2. LetexprRef be ? Evaluation of theExpression ofC.
  3. LetclauseSelector be ? GetValue(exprRef).
  4. ReturnIsStrictlyEqual(input,clauseSelector).
Note

This operation does not executeC'sStatementList (if any). TheCaseBlock algorithm uses its return value to determine whichStatementList to start executing.

14.12.4 Runtime Semantics: Evaluation

SwitchStatement:switch(Expression)CaseBlock
  1. LetexprRef be ? Evaluation ofExpression.
  2. LetswitchValue be ? GetValue(exprRef).
  3. LetoldEnv be therunning execution context's LexicalEnvironment.
  4. LetblockEnv beNewDeclarativeEnvironment(oldEnv).
  5. PerformBlockDeclarationInstantiation(CaseBlock,blockEnv).
  6. Set therunning execution context's LexicalEnvironment toblockEnv.
  7. LetR beCompletion(CaseBlockEvaluation ofCaseBlock with argumentswitchValue).
  8. Set therunning execution context's LexicalEnvironment tooldEnv.
  9. ReturnR.
Note

No matter how control leaves theSwitchStatement the LexicalEnvironment is always restored to its former state.

CaseClause:caseExpression:
  1. Returnempty.
CaseClause:caseExpression:StatementList
  1. Return ? Evaluation ofStatementList.
DefaultClause:default:
  1. Returnempty.
DefaultClause:default:StatementList
  1. Return ? Evaluation ofStatementList.

14.13 Labelled Statements

Syntax

LabelledStatement[Yield, Await, Return]:LabelIdentifier[?Yield, ?Await]:LabelledItem[?Yield, ?Await, ?Return]LabelledItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]FunctionDeclaration[?Yield, ?Await, ~Default]Note

AStatement may be prefixed by a label. Labelled statements are only used in conjunction with labelledbreak andcontinue statements. ECMAScript has nogoto statement. AStatement can be part of aLabelledStatement, which itself can be part of aLabelledStatement, and so on. The labels introduced this way are collectively referred to as the “current label set” when describing the semantics of individual statements.

14.13.1 Static Semantics: Early Errors

LabelledItem:FunctionDeclaration
  • It is a Syntax Error if any source text is matched by this production.
Note

An alternative definition for this rule is provided inB.3.1.

14.13.2 Static Semantics: IsLabelledFunction (stmt )

The abstract operation IsLabelledFunction takes argumentstmt (aStatementParse Node) and returns a Boolean. It performs the following steps when called:

  1. Ifstmt is not aLabelledStatement, returnfalse.
  2. Letitem be theLabelledItem ofstmt.
  3. Ifitem isLabelledItem:FunctionDeclaration, returntrue.
  4. LetsubStmt be theStatement ofitem.
  5. ReturnIsLabelledFunction(subStmt).

14.13.3 Runtime Semantics: Evaluation

LabelledStatement:LabelIdentifier:LabelledItem
  1. Return ? LabelledEvaluation of thisLabelledStatement with argument « ».

14.13.4 Runtime Semantics: LabelledEvaluation

Thesyntax-directed operation LabelledEvaluation takes argumentlabelSet (aList of Strings) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

BreakableStatement:IterationStatement
  1. LetstmtResult beCompletion(LoopEvaluation ofIterationStatement with argumentlabelSet).
  2. IfstmtResult is abreak completion, then
    1. IfstmtResult.[[Target]] isempty, then
      1. IfstmtResult.[[Value]] isempty, setstmtResult toNormalCompletion(undefined).
      2. Else, setstmtResult toNormalCompletion(stmtResult.[[Value]]).
  3. Return ? stmtResult.
BreakableStatement:SwitchStatement
  1. LetstmtResult beCompletion(Evaluation ofSwitchStatement).
  2. IfstmtResult is abreak completion, then
    1. IfstmtResult.[[Target]] isempty, then
      1. IfstmtResult.[[Value]] isempty, setstmtResult toNormalCompletion(undefined).
      2. Else, setstmtResult toNormalCompletion(stmtResult.[[Value]]).
  3. Return ? stmtResult.
Note 1

ABreakableStatement is one that can be exited via an unlabelledBreakStatement.

LabelledStatement:LabelIdentifier:LabelledItem
  1. Letlabel be theStringValue ofLabelIdentifier.
  2. LetnewLabelSet be thelist-concatenation oflabelSet and «label ».
  3. LetstmtResult beCompletion(LabelledEvaluation ofLabelledItem with argumentnewLabelSet).
  4. IfstmtResult is abreak completion andstmtResult.[[Target]] islabel, then
    1. SetstmtResult toNormalCompletion(stmtResult.[[Value]]).
  5. Return ? stmtResult.
LabelledItem:FunctionDeclaration
  1. Return ? Evaluation ofFunctionDeclaration.
Statement:BlockStatementVariableStatementEmptyStatementExpressionStatementIfStatementContinueStatementBreakStatementReturnStatementWithStatementThrowStatementTryStatementDebuggerStatement
  1. Return ? Evaluation ofStatement.
Note 2

The only two productions ofStatement which have special semantics for LabelledEvaluation areBreakableStatement andLabelledStatement.

14.14 Thethrow Statement

Syntax

ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];

14.14.1 Runtime Semantics: Evaluation

ThrowStatement:throwExpression;
  1. LetexprRef be ? Evaluation ofExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. ReturnThrowCompletion(exprValue).

14.15 Thetry Statement

Syntax

TryStatement[Yield, Await, Return]:tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]Catch[Yield, Await, Return]:catch(CatchParameter[?Yield, ?Await])Block[?Yield, ?Await, ?Return]catchBlock[?Yield, ?Await, ?Return]Finally[Yield, Await, Return]:finallyBlock[?Yield, ?Await, ?Return]CatchParameter[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]Note

Thetry statement encloses a block of code in which an exceptional condition can occur, such as a runtime error or athrow statement. Thecatch clause provides the exception-handling code. When a catch clause catches an exception, itsCatchParameter is bound to that exception.

14.15.1 Static Semantics: Early Errors

Catch:catch(CatchParameter)BlockNote

An alternativestatic semantics for this production is given inB.3.4.

14.15.2 Runtime Semantics: CatchClauseEvaluation

Thesyntax-directed operation CatchClauseEvaluation takes argumentthrownValue (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

Catch:catch(CatchParameter)Block
  1. LetoldEnv be therunning execution context's LexicalEnvironment.
  2. LetcatchEnv beNewDeclarativeEnvironment(oldEnv).
  3. For each elementargName of theBoundNames ofCatchParameter, do
    1. Perform ! catchEnv.CreateMutableBinding(argName,false).
  4. Set therunning execution context's LexicalEnvironment tocatchEnv.
  5. Letstatus beCompletion(BindingInitialization ofCatchParameter with argumentsthrownValue andcatchEnv).
  6. Ifstatus is anabrupt completion, then
    1. Set therunning execution context's LexicalEnvironment tooldEnv.
    2. Return ? status.
  7. LetB beCompletion(Evaluation ofBlock).
  8. Set therunning execution context's LexicalEnvironment tooldEnv.
  9. Return ? B.
Catch:catchBlock
  1. Return ? Evaluation ofBlock.
Note

No matter how control leaves theBlock the LexicalEnvironment is always restored to its former state.

14.15.3 Runtime Semantics: Evaluation

TryStatement:tryBlockCatch
  1. LetB beCompletion(Evaluation ofBlock).
  2. IfB is athrow completion, letC beCompletion(CatchClauseEvaluation ofCatch with argumentB.[[Value]]).
  3. Else, letC beB.
  4. Return ? UpdateEmpty(C,undefined).
TryStatement:tryBlockFinally
  1. LetB beCompletion(Evaluation ofBlock).
  2. LetF beCompletion(Evaluation ofFinally).
  3. IfF is anormal completion, setF toB.
  4. Return ? UpdateEmpty(F,undefined).
TryStatement:tryBlockCatchFinally
  1. LetB beCompletion(Evaluation ofBlock).
  2. IfB is athrow completion, letC beCompletion(CatchClauseEvaluation ofCatch with argumentB.[[Value]]).
  3. Else, letC beB.
  4. LetF beCompletion(Evaluation ofFinally).
  5. IfF is anormal completion, setF toC.
  6. Return ? UpdateEmpty(F,undefined).

14.16 Thedebugger Statement

Syntax

DebuggerStatement:debugger;

14.16.1 Runtime Semantics: Evaluation

Note

Evaluating aDebuggerStatement may allow an implementation to cause a breakpoint when run under a debugger. If a debugger is not present or active this statement has no observable effect.

DebuggerStatement:debugger;
  1. If animplementation-defined debugging facility is available and enabled, then
    1. Perform animplementation-defined debugging action.
    2. Return a newimplementation-definedCompletion Record.
  2. Else,
    1. Returnempty.

15 ECMAScript Language: Functions and Classes

Note

Various ECMAScript language elements cause the creation of ECMAScriptfunction objects (10.2).Evaluation of such functions starts with the execution of their[[Call]] internal method (10.2.1).

15.1 Parameter Lists

Syntax

UniqueFormalParameters[Yield, Await]:FormalParameters[?Yield, ?Await]FormalParameters[Yield, Await]:[empty]FunctionRestParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameterList[?Yield, ?Await],FunctionRestParameter[?Yield, ?Await]FormalParameterList[Yield, Await]:FormalParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameter[?Yield, ?Await]FunctionRestParameter[Yield, Await]:BindingRestElement[?Yield, ?Await]FormalParameter[Yield, Await]:BindingElement[?Yield, ?Await]

15.1.1 Static Semantics: Early Errors

UniqueFormalParameters:FormalParametersFormalParameters:FormalParameterListNote

Multiple occurrences of the sameBindingIdentifier in aFormalParameterList is only allowed for functions which have simple parameter lists and which are not defined instrict mode code.

15.1.2 Static Semantics: ContainsExpression

Thesyntax-directed operation ContainsExpression takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

ObjectBindingPattern:{}{BindingRestProperty}
  1. Returnfalse.
ObjectBindingPattern:{BindingPropertyList,BindingRestProperty}
  1. ReturnContainsExpression ofBindingPropertyList.
ArrayBindingPattern:[Elisionopt]
  1. Returnfalse.
ArrayBindingPattern:[ElisionoptBindingRestElement]
  1. ReturnContainsExpression ofBindingRestElement.
ArrayBindingPattern:[BindingElementList,Elisionopt]
  1. ReturnContainsExpression ofBindingElementList.
ArrayBindingPattern:[BindingElementList,ElisionoptBindingRestElement]
  1. Lethas beContainsExpression ofBindingElementList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingRestElement.
BindingPropertyList:BindingPropertyList,BindingProperty
  1. Lethas beContainsExpression ofBindingPropertyList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingProperty.
BindingElementList:BindingElementList,BindingElisionElement
  1. Lethas beContainsExpression ofBindingElementList.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingElisionElement.
BindingElisionElement:ElisionoptBindingElement
  1. ReturnContainsExpression ofBindingElement.
BindingProperty:PropertyName:BindingElement
  1. Lethas beIsComputedPropertyKey ofPropertyName.
  2. Ifhas istrue, returntrue.
  3. ReturnContainsExpression ofBindingElement.
BindingElement:BindingPatternInitializer
  1. Returntrue.
SingleNameBinding:BindingIdentifier
  1. Returnfalse.
SingleNameBinding:BindingIdentifierInitializer
  1. Returntrue.
BindingRestElement:...BindingIdentifier
  1. Returnfalse.
BindingRestElement:...BindingPattern
  1. ReturnContainsExpression ofBindingPattern.
FormalParameters:[empty]
  1. Returnfalse.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. IfContainsExpression ofFormalParameterList istrue, returntrue.
  2. ReturnContainsExpression ofFunctionRestParameter.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfContainsExpression ofFormalParameterList istrue, returntrue.
  2. ReturnContainsExpression ofFormalParameter.
ArrowParameters:BindingIdentifier
  1. Returnfalse.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnContainsExpression offormals.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Returnfalse.

15.1.3 Static Semantics: IsSimpleParameterList

Thesyntax-directed operation IsSimpleParameterList takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

BindingElement:BindingPattern
  1. Returnfalse.
BindingElement:BindingPatternInitializer
  1. Returnfalse.
SingleNameBinding:BindingIdentifier
  1. Returntrue.
SingleNameBinding:BindingIdentifierInitializer
  1. Returnfalse.
FormalParameters:[empty]
  1. Returntrue.
FormalParameters:FunctionRestParameter
  1. Returnfalse.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. Returnfalse.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfIsSimpleParameterList ofFormalParameterList isfalse, returnfalse.
  2. ReturnIsSimpleParameterList ofFormalParameter.
FormalParameter:BindingElement
  1. ReturnIsSimpleParameterList ofBindingElement.
ArrowParameters:BindingIdentifier
  1. Returntrue.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnIsSimpleParameterList offormals.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Returntrue.
CoverCallExpressionAndAsyncArrowHead:MemberExpressionArguments
  1. Lethead be theAsyncArrowHead that iscovered byCoverCallExpressionAndAsyncArrowHead.
  2. ReturnIsSimpleParameterList ofhead.

15.1.4 Static Semantics: HasInitializer

Thesyntax-directed operation HasInitializer takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

BindingElement:BindingPattern
  1. Returnfalse.
BindingElement:BindingPatternInitializer
  1. Returntrue.
SingleNameBinding:BindingIdentifier
  1. Returnfalse.
SingleNameBinding:BindingIdentifierInitializer
  1. Returntrue.
FormalParameterList:FormalParameterList,FormalParameter
  1. IfHasInitializer ofFormalParameterList istrue, returntrue.
  2. ReturnHasInitializer ofFormalParameter.

15.1.5 Static Semantics: ExpectedArgumentCount

Thesyntax-directed operation ExpectedArgumentCount takes no arguments and returns aninteger. It is defined piecewise over the following productions:

FormalParameters:[empty]FunctionRestParameter
  1. Return 0.
FormalParameters:FormalParameterList,FunctionRestParameter
  1. ReturnExpectedArgumentCount ofFormalParameterList.
Note

The ExpectedArgumentCount of aFormalParameterList is the number ofFormalParameters to the left of either the rest parameter or the firstFormalParameter with an Initializer. AFormalParameter without an initializer is allowed after the first parameter with an initializer but such parameters are considered to be optional withundefined as their default value.

FormalParameterList:FormalParameter
  1. IfHasInitializer ofFormalParameter istrue, return 0.
  2. Return 1.
FormalParameterList:FormalParameterList,FormalParameter
  1. Letcount beExpectedArgumentCount ofFormalParameterList.
  2. IfHasInitializer ofFormalParameterList istrue orHasInitializer ofFormalParameter istrue, returncount.
  3. Returncount + 1.
ArrowParameters:BindingIdentifier
  1. Return 1.
ArrowParameters:CoverParenthesizedExpressionAndArrowParameterList
  1. Letformals be theArrowFormalParameters that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnExpectedArgumentCount offormals.
PropertySetParameterList:FormalParameter
  1. IfHasInitializer ofFormalParameter istrue, return 0.
  2. Return 1.
AsyncArrowBindingIdentifier:BindingIdentifier
  1. Return 1.

15.2 Function Definitions

Syntax

FunctionDeclaration[Yield, Await, Default]:functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}[+Default]function(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionExpression:functionBindingIdentifier[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionBody[Yield, Await]:FunctionStatementList[?Yield, ?Await]FunctionStatementList[Yield, Await]:StatementList[?Yield, ?Await, +Return]opt

15.2.1 Static Semantics: Early Errors

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}Note

TheLexicallyDeclaredNames of aFunctionBody does not include identifiers bound using var or function declarations.

FunctionBody:FunctionStatementList

15.2.2 Static Semantics: FunctionBodyContainsUseStrict

Thesyntax-directed operation FunctionBodyContainsUseStrict takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

FunctionBody:FunctionStatementList
  1. If theDirective Prologue ofFunctionBody contains aUse Strict Directive, returntrue; otherwise, returnfalse.

15.2.3 Runtime Semantics: EvaluateFunctionBody

Thesyntax-directed operation EvaluateFunctionBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

FunctionBody:FunctionStatementList
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Return ? Evaluation ofFunctionStatementList.

15.2.4 Runtime Semantics: InstantiateOrdinaryFunctionObject

Thesyntax-directed operation InstantiateOrdinaryFunctionObject takes argumentsenv (anEnvironment Record) andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byFunctionDeclaration.
  3. LetF beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,env,privateEnv).
  4. PerformSetFunctionName(F,name).
  5. PerformMakeConstructor(F).
  6. ReturnF.
FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. LetsourceText be thesource text matched byFunctionDeclaration.
  2. LetF beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,env,privateEnv).
  3. PerformSetFunctionName(F,"default").
  4. PerformMakeConstructor(F).
  5. ReturnF.
Note

An anonymousFunctionDeclaration can only occur as part of anexport default declaration, and its function code is therefore alwaysstrict mode code.

15.2.5 Runtime Semantics: InstantiateOrdinaryFunctionExpression

Thesyntax-directed operation InstantiateOrdinaryFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

FunctionExpression:function(FormalParameters){FunctionBody}
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byFunctionExpression.
  5. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,env,privateEnv).
  6. PerformSetFunctionName(closure,name).
  7. PerformMakeConstructor(closure).
  8. Returnclosure.
FunctionExpression:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. LetouterEnv be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv beNewDeclarativeEnvironment(outerEnv).
  5. Perform ! funcEnv.CreateImmutableBinding(name,false).
  6. LetprivateEnv be therunning execution context's PrivateEnvironment.
  7. LetsourceText be thesource text matched byFunctionExpression.
  8. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,FormalParameters,FunctionBody,non-lexical-this,funcEnv,privateEnv).
  9. PerformSetFunctionName(closure,name).
  10. PerformMakeConstructor(closure).
  11. Perform ! funcEnv.InitializeBinding(name,closure).
  12. Returnclosure.
Note

TheBindingIdentifier in aFunctionExpression can be referenced from inside theFunctionExpression'sFunctionBody to allow the function to call itself recursively. However, unlike in aFunctionDeclaration, theBindingIdentifier in aFunctionExpression cannot be referenced from and does not affect the scope enclosing theFunctionExpression.

15.2.6 Runtime Semantics: Evaluation

FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}
  1. Returnempty.
Note 1

An alternative semantics is provided inB.3.2.

FunctionDeclaration:function(FormalParameters){FunctionBody}
  1. Returnempty.
FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}
  1. ReturnInstantiateOrdinaryFunctionExpression ofFunctionExpression.
Note 2

A"prototype" property is automatically created for every function defined using aFunctionDeclaration orFunctionExpression, to allow for the possibility that the function will be used as aconstructor.

FunctionStatementList:[empty]
  1. Returnundefined.

15.3 Arrow Function Definitions

Syntax

ArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]ArrowParameters[Yield, Await]:BindingIdentifier[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]ConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, ~Await]{FunctionBody[~Yield, ~Await]}ExpressionBody[In, Await]:AssignmentExpression[?In, ~Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
ArrowParameters[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ArrowFormalParameters[Yield, Await]:(UniqueFormalParameters[?Yield, ?Await])

15.3.1 Static Semantics: Early Errors

ArrowFunction:ArrowParameters=>ConciseBodyArrowParameters:CoverParenthesizedExpressionAndArrowParameterList

15.3.2 Static Semantics: ConciseBodyContainsUseStrict

Thesyntax-directed operation ConciseBodyContainsUseStrict takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

ConciseBody:ExpressionBody
  1. Returnfalse.
ConciseBody:{FunctionBody}
  1. ReturnFunctionBodyContainsUseStrict ofFunctionBody.

15.3.3 Runtime Semantics: EvaluateConciseBody

Thesyntax-directed operation EvaluateConciseBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

ConciseBody:ExpressionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Return ? Evaluation ofExpressionBody.

15.3.4 Runtime Semantics: InstantiateArrowFunctionExpression

Thesyntax-directed operation InstantiateArrowFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

ArrowFunction:ArrowParameters=>ConciseBody
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byArrowFunction.
  5. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,ArrowParameters,ConciseBody,lexical-this,env,privateEnv).
  6. PerformSetFunctionName(closure,name).
  7. Returnclosure.
Note

AnArrowFunction does not define local bindings forarguments,super,this, ornew.target. Any reference toarguments,super,this, ornew.target within anArrowFunction must resolve to a binding in a lexically enclosing environment. Typically this will be the Function Environment of an immediately enclosing function. Even though anArrowFunction may contain references tosuper, thefunction object created in step5 is not made into a method by performingMakeMethod. AnArrowFunction that referencessuper is always contained within a non-ArrowFunction and the necessary state to implementsuper is accessible via theenv that is captured by thefunction object of theArrowFunction.

15.3.5 Runtime Semantics: Evaluation

ArrowFunction:ArrowParameters=>ConciseBody
  1. ReturnInstantiateArrowFunctionExpression ofArrowFunction.
ExpressionBody:AssignmentExpression
  1. LetexprRef be ? Evaluation ofAssignmentExpression.
  2. LetexprValue be ? GetValue(exprRef).
  3. ReturnCompletion Record {[[Type]]:return,[[Value]]:exprValue,[[Target]]:empty }.

15.4 Method Definitions

Syntax

MethodDefinition[Yield, Await]:ClassElementName[?Yield, ?Await](UniqueFormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}GeneratorMethod[?Yield, ?Await]AsyncMethod[?Yield, ?Await]AsyncGeneratorMethod[?Yield, ?Await]getClassElementName[?Yield, ?Await](){FunctionBody[~Yield, ~Await]}setClassElementName[?Yield, ?Await](PropertySetParameterList){FunctionBody[~Yield, ~Await]}PropertySetParameterList:FormalParameter[~Yield, ~Await]

15.4.1 Static Semantics: Early Errors

MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}MethodDefinition:setClassElementName(PropertySetParameterList){FunctionBody}

15.4.2 Static Semantics: HasDirectSuper

Thesyntax-directed operation HasDirectSuper takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnFunctionBodyContainsSuperCall.
MethodDefinition:getClassElementName(){FunctionBody}
  1. ReturnFunctionBodyContainsSuperCall.
MethodDefinition:setClassElementName(PropertySetParameterList){FunctionBody}
  1. IfPropertySetParameterListContainsSuperCall istrue, returntrue.
  2. ReturnFunctionBodyContainsSuperCall.
GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnGeneratorBodyContainsSuperCall.
AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnAsyncGeneratorBodyContainsSuperCall.
AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}
  1. IfUniqueFormalParametersContainsSuperCall istrue, returntrue.
  2. ReturnAsyncFunctionBodyContainsSuperCall.

15.4.3 Static Semantics: SpecialMethod

Thesyntax-directed operation SpecialMethod takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}
  1. Returnfalse.
MethodDefinition:GeneratorMethodAsyncMethodAsyncGeneratorMethodgetClassElementName(){FunctionBody}setClassElementName(PropertySetParameterList){FunctionBody}
  1. Returntrue.

15.4.4 Runtime Semantics: DefineMethod

Thesyntax-directed operation DefineMethod takes argumentobject (an Object) and optional argumentfunctionPrototype (an Object) and returns either anormal completion containing aRecord with fields[[Key]] (aproperty key) and[[Closure]] (an ECMAScriptfunction object) or anabrupt completion. It is defined piecewise over the following productions:

MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be therunning execution context's LexicalEnvironment.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. IffunctionPrototype is present, then
    1. Letprototype befunctionPrototype.
  5. Else,
    1. Letprototype be%Function.prototype%.
  6. LetsourceText be thesource text matched byMethodDefinition.
  7. Letclosure beOrdinaryFunctionCreate(prototype,sourceText,UniqueFormalParameters,FunctionBody,non-lexical-this,env,privateEnv).
  8. PerformMakeMethod(closure,object).
  9. Return theRecord {[[Key]]:propKey,[[Closure]]:closure }.

15.4.5 Runtime Semantics: MethodDefinitionEvaluation

Thesyntax-directed operation MethodDefinitionEvaluation takes argumentsobject (an Object) andenumerable (a Boolean) and returns either anormal completion containing either aPrivateElement orunused, or anabrupt completion. It is defined piecewise over the following productions:

MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}
  1. LetmethodDef be ? DefineMethod ofMethodDefinition with argumentobject.
  2. PerformSetFunctionName(methodDef.[[Closure]],methodDef.[[Key]]).
  3. Return ? DefineMethodProperty(object,methodDef.[[Key]],methodDef.[[Closure]],enumerable).
MethodDefinition:getClassElementName(){FunctionBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be therunning execution context's LexicalEnvironment.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byMethodDefinition.
  5. LetformalParameterList be an instance of the productionFormalParameters:[empty].
  6. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,formalParameterList,FunctionBody,non-lexical-this,env,privateEnv).
  7. PerformMakeMethod(closure,object).
  8. PerformSetFunctionName(closure,propKey,"get").
  9. IfpropKey is aPrivate Name, then
    1. ReturnPrivateElement {[[Key]]:propKey,[[Kind]]:accessor,[[Get]]:closure,[[Set]]:undefined }.
  10. Else,
    1. Letdesc be the PropertyDescriptor {[[Get]]:closure,[[Enumerable]]:enumerable,[[Configurable]]:true }.
    2. Perform ? DefinePropertyOrThrow(object,propKey,desc).
    3. Returnunused.
MethodDefinition:setClassElementName(PropertySetParameterList){FunctionBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be therunning execution context's LexicalEnvironment.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byMethodDefinition.
  5. Letclosure beOrdinaryFunctionCreate(%Function.prototype%,sourceText,PropertySetParameterList,FunctionBody,non-lexical-this,env,privateEnv).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey,"set").
  8. IfpropKey is aPrivate Name, then
    1. ReturnPrivateElement {[[Key]]:propKey,[[Kind]]:accessor,[[Get]]:undefined,[[Set]]:closure }.
  9. Else,
    1. Letdesc be the PropertyDescriptor {[[Set]]:closure,[[Enumerable]]:enumerable,[[Configurable]]:true }.
    2. Perform ? DefinePropertyOrThrow(object,propKey,desc).
    3. Returnunused.
GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be therunning execution context's LexicalEnvironment.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byGeneratorMethod.
  5. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,UniqueFormalParameters,GeneratorBody,non-lexical-this,env,privateEnv).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey).
  8. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  9. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  10. Return ? DefineMethodProperty(object,propKey,closure,enumerable).
AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be therunning execution context's LexicalEnvironment.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncGeneratorMethod.
  5. Letclosure beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,UniqueFormalParameters,AsyncGeneratorBody,non-lexical-this,env,privateEnv).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey).
  8. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  9. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  10. Return ? DefineMethodProperty(object,propKey,closure,enumerable).
AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}
  1. LetpropKey be ? Evaluation ofClassElementName.
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncMethod.
  5. Letclosure beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,UniqueFormalParameters,AsyncFunctionBody,non-lexical-this,env,privateEnv).
  6. PerformMakeMethod(closure,object).
  7. PerformSetFunctionName(closure,propKey).
  8. Return ? DefineMethodProperty(object,propKey,closure,enumerable).

15.5 Generator Function Definitions

Syntax

GeneratorDeclaration[Yield, Await, Default]:function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, ~Await]){GeneratorBody}[+Default]function*(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorExpression:function*BindingIdentifier[+Yield, ~Await]opt(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorMethod[Yield, Await]:*ClassElementName[?Yield, ?Await](UniqueFormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorBody:FunctionBody[+Yield, ~Await]YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]Note 1

The syntactic context immediately followingyield requires use of theInputElementRegExpOrTemplateTail lexical goal.

Note 2

YieldExpression cannot be used within theFormalParameters of a generator function because any expressions that are part ofFormalParameters are evaluated before the resulting Generator is in a resumable state.

Note 3

Abstract operations relating to Generators are defined in27.5.3.

15.5.1 Static Semantics: Early Errors

GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}

15.5.2 Runtime Semantics: EvaluateGeneratorBody

Thesyntax-directed operation EvaluateGeneratorBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns athrow completion or areturn completion. It is defined piecewise over the following productions:

GeneratorBody:FunctionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. LetG be ? OrdinaryCreateFromConstructor(functionObject,"%GeneratorFunction.prototype.prototype%", «[[GeneratorState]],[[GeneratorContext]],[[GeneratorBrand]] »).
  3. SetG.[[GeneratorBrand]] toempty.
  4. PerformGeneratorStart(G,FunctionBody).
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:G,[[Target]]:empty }.

15.5.3 Runtime Semantics: InstantiateGeneratorFunctionObject

Thesyntax-directed operation InstantiateGeneratorFunctionObject takes argumentsenv (anEnvironment Record) andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byGeneratorDeclaration.
  3. LetF beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,env,privateEnv).
  4. PerformSetFunctionName(F,name).
  5. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  6. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  7. ReturnF.
GeneratorDeclaration:function*(FormalParameters){GeneratorBody}
  1. LetsourceText be thesource text matched byGeneratorDeclaration.
  2. LetF beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,env,privateEnv).
  3. PerformSetFunctionName(F,"default").
  4. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  5. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  6. ReturnF.
Note

An anonymousGeneratorDeclaration can only occur as part of anexport default declaration, and its function code is therefore alwaysstrict mode code.

15.5.4 Runtime Semantics: InstantiateGeneratorFunctionExpression

Thesyntax-directed operation InstantiateGeneratorFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

GeneratorExpression:function*(FormalParameters){GeneratorBody}
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byGeneratorExpression.
  5. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,env,privateEnv).
  6. PerformSetFunctionName(closure,name).
  7. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  8. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  9. Returnclosure.
GeneratorExpression:function*BindingIdentifier(FormalParameters){GeneratorBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. LetouterEnv be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv beNewDeclarativeEnvironment(outerEnv).
  5. Perform ! funcEnv.CreateImmutableBinding(name,false).
  6. LetprivateEnv be therunning execution context's PrivateEnvironment.
  7. LetsourceText be thesource text matched byGeneratorExpression.
  8. Letclosure beOrdinaryFunctionCreate(%GeneratorFunction.prototype%,sourceText,FormalParameters,GeneratorBody,non-lexical-this,funcEnv,privateEnv).
  9. PerformSetFunctionName(closure,name).
  10. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
  11. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  12. Perform ! funcEnv.InitializeBinding(name,closure).
  13. Returnclosure.
Note

TheBindingIdentifier in aGeneratorExpression can be referenced from inside theGeneratorExpression'sFunctionBody to allow the generator code to call itself recursively. However, unlike in aGeneratorDeclaration, theBindingIdentifier in aGeneratorExpression cannot be referenced from and does not affect the scope enclosing theGeneratorExpression.

15.5.5 Runtime Semantics: Evaluation

GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}
  1. ReturnInstantiateGeneratorFunctionExpression ofGeneratorExpression.
YieldExpression:yield
  1. Return ? Yield(undefined).
YieldExpression:yieldAssignmentExpression
  1. LetexprRef be ? Evaluation ofAssignmentExpression.
  2. Letvalue be ? GetValue(exprRef).
  3. Return ? Yield(value).
YieldExpression:yield*AssignmentExpression
  1. LetgeneratorKind beGetGeneratorKind().
  2. LetexprRef be ? Evaluation ofAssignmentExpression.
  3. Letvalue be ? GetValue(exprRef).
  4. LetiteratorRecord be ? GetIterator(value,generatorKind).
  5. Letiterator beiteratorRecord.[[Iterator]].
  6. Letreceived beNormalCompletion(undefined).
  7. Repeat,
    1. Ifreceived is anormal completion, then
      1. LetinnerResult be ? Call(iteratorRecord.[[NextMethod]],iteratorRecord.[[Iterator]], «received.[[Value]] »).
      2. IfgeneratorKind isasync, setinnerResult to ? Await(innerResult).
      3. IfinnerResultis not an Object, throw aTypeError exception.
      4. Letdone be ? IteratorComplete(innerResult).
      5. Ifdone istrue, then
        1. Return ? IteratorValue(innerResult).
      6. IfgeneratorKind isasync, setreceived toCompletion(AsyncGeneratorYield(?IteratorValue(innerResult))).
      7. Else, setreceived toCompletion(GeneratorYield(innerResult)).
    2. Else ifreceived is athrow completion, then
      1. Letthrow be ? GetMethod(iterator,"throw").
      2. Ifthrow is notundefined, then
        1. LetinnerResult be ? Call(throw,iterator, «received.[[Value]] »).
        2. IfgeneratorKind isasync, setinnerResult to ? Await(innerResult).
        3. NOTE: Exceptions from the inner iteratorthrow method are propagated.Normal completions from an innerthrow method are processed similarly to an innernext.
        4. IfinnerResultis not an Object, throw aTypeError exception.
        5. Letdone be ? IteratorComplete(innerResult).
        6. Ifdone istrue, then
          1. Return ? IteratorValue(innerResult).
        7. IfgeneratorKind isasync, setreceived toCompletion(AsyncGeneratorYield(?IteratorValue(innerResult))).
        8. Else, setreceived toCompletion(GeneratorYield(innerResult)).
      3. Else,
        1. NOTE: Ifiterator does not have athrow method, this throw is going to terminate theyield* loop. But first we need to giveiterator a chance to clean up.
        2. LetcloseCompletion beCompletion Record {[[Type]]:normal,[[Value]]:empty,[[Target]]:empty }.
        3. IfgeneratorKind isasync, perform ? AsyncIteratorClose(iteratorRecord,closeCompletion).
        4. Else, perform ? IteratorClose(iteratorRecord,closeCompletion).
        5. NOTE: The next step throws aTypeError to indicate that there was ayield* protocol violation:iterator does not have athrow method.
        6. Throw aTypeError exception.
    3. Else,
      1. Assert:received is areturn completion.
      2. Letreturn be ? GetMethod(iterator,"return").
      3. Ifreturn isundefined, then
        1. Setvalue toreceived.[[Value]].
        2. IfgeneratorKind isasync, then
          1. Setvalue to ? Await(value).
        3. ReturnCompletion Record {[[Type]]:return,[[Value]]:value,[[Target]]:empty }.
      4. LetinnerReturnResult be ? Call(return,iterator, «received.[[Value]] »).
      5. IfgeneratorKind isasync, setinnerReturnResult to ? Await(innerReturnResult).
      6. IfinnerReturnResultis not an Object, throw aTypeError exception.
      7. Letdone be ? IteratorComplete(innerReturnResult).
      8. Ifdone istrue, then
        1. Setvalue to ? IteratorValue(innerReturnResult).
        2. ReturnCompletion Record {[[Type]]:return,[[Value]]:value,[[Target]]:empty }.
      9. IfgeneratorKind isasync, setreceived toCompletion(AsyncGeneratorYield(?IteratorValue(innerReturnResult))).
      10. Else, setreceived toCompletion(GeneratorYield(innerReturnResult)).

15.6 Async Generator Function Definitions

Syntax

AsyncGeneratorDeclaration[Yield, Await, Default]:async[noLineTerminator here]function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, +Await]){AsyncGeneratorBody}[+Default]async[noLineTerminator here]function*(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorExpression:async[noLineTerminator here]function*BindingIdentifier[+Yield, +Await]opt(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorMethod[Yield, Await]:async[noLineTerminator here]*ClassElementName[?Yield, ?Await](UniqueFormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorBody:FunctionBody[+Yield, +Await]Note 1

YieldExpression andAwaitExpression cannot be used within theFormalParameters of an async generator function because any expressions that are part ofFormalParameters are evaluated before the resulting AsyncGenerator is in a resumable state.

Note 2

Abstract operations relating to AsyncGenerators are defined in27.6.3.

15.6.1 Static Semantics: Early Errors

AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}

15.6.2 Runtime Semantics: EvaluateAsyncGeneratorBody

Thesyntax-directed operation EvaluateAsyncGeneratorBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns athrow completion or areturn completion. It is defined piecewise over the following productions:

AsyncGeneratorBody:FunctionBody
  1. Perform ? FunctionDeclarationInstantiation(functionObject,argumentsList).
  2. Letgenerator be ? OrdinaryCreateFromConstructor(functionObject,"%AsyncGeneratorFunction.prototype.prototype%", «[[AsyncGeneratorState]],[[AsyncGeneratorContext]],[[AsyncGeneratorQueue]],[[GeneratorBrand]] »).
  3. Setgenerator.[[GeneratorBrand]] toempty.
  4. PerformAsyncGeneratorStart(generator,FunctionBody).
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:generator,[[Target]]:empty }.

15.6.3 Runtime Semantics: InstantiateAsyncGeneratorFunctionObject

Thesyntax-directed operation InstantiateAsyncGeneratorFunctionObject takes argumentsenv (anEnvironment Record) andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byAsyncGeneratorDeclaration.
  3. LetF beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,env,privateEnv).
  4. PerformSetFunctionName(F,name).
  5. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  6. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  7. ReturnF.
AsyncGeneratorDeclaration:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. LetsourceText be thesource text matched byAsyncGeneratorDeclaration.
  2. LetF beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,env,privateEnv).
  3. PerformSetFunctionName(F,"default").
  4. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  5. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  6. ReturnF.
Note

An anonymousAsyncGeneratorDeclaration can only occur as part of anexport default declaration.

15.6.4 Runtime Semantics: InstantiateAsyncGeneratorFunctionExpression

Thesyntax-directed operation InstantiateAsyncGeneratorFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

AsyncGeneratorExpression:asyncfunction*(FormalParameters){AsyncGeneratorBody}
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncGeneratorExpression.
  5. Letclosure beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,env,privateEnv).
  6. PerformSetFunctionName(closure,name).
  7. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  8. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  9. Returnclosure.
AsyncGeneratorExpression:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. LetouterEnv be therunning execution context's LexicalEnvironment.
  4. LetfuncEnv beNewDeclarativeEnvironment(outerEnv).
  5. Perform ! funcEnv.CreateImmutableBinding(name,false).
  6. LetprivateEnv be therunning execution context's PrivateEnvironment.
  7. LetsourceText be thesource text matched byAsyncGeneratorExpression.
  8. Letclosure beOrdinaryFunctionCreate(%AsyncGeneratorFunction.prototype%,sourceText,FormalParameters,AsyncGeneratorBody,non-lexical-this,funcEnv,privateEnv).
  9. PerformSetFunctionName(closure,name).
  10. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
  11. Perform ! DefinePropertyOrThrow(closure,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  12. Perform ! funcEnv.InitializeBinding(name,closure).
  13. Returnclosure.
Note

TheBindingIdentifier in anAsyncGeneratorExpression can be referenced from inside theAsyncGeneratorExpression'sAsyncGeneratorBody to allow the generator code to call itself recursively. However, unlike in anAsyncGeneratorDeclaration, theBindingIdentifier in anAsyncGeneratorExpression cannot be referenced from and does not affect the scope enclosing theAsyncGeneratorExpression.

15.6.5 Runtime Semantics: Evaluation

AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}
  1. ReturnInstantiateAsyncGeneratorFunctionExpression ofAsyncGeneratorExpression.

15.7 Class Definitions

Syntax

ClassDeclaration[Yield, Await, Default]:classBindingIdentifier[?Yield, ?Await]ClassTail[?Yield, ?Await][+Default]classClassTail[?Yield, ?Await]ClassExpression[Yield, Await]:classBindingIdentifier[?Yield, ?Await]optClassTail[?Yield, ?Await]ClassTail[Yield, Await]:ClassHeritage[?Yield, ?Await]opt{ClassBody[?Yield, ?Await]opt}ClassHeritage[Yield, Await]:extendsLeftHandSideExpression[?Yield, ?Await]ClassBody[Yield, Await]:ClassElementList[?Yield, ?Await]ClassElementList[Yield, Await]:ClassElement[?Yield, ?Await]ClassElementList[?Yield, ?Await]ClassElement[?Yield, ?Await]ClassElement[Yield, Await]:MethodDefinition[?Yield, ?Await]staticMethodDefinition[?Yield, ?Await]FieldDefinition[?Yield, ?Await];staticFieldDefinition[?Yield, ?Await];ClassStaticBlock;FieldDefinition[Yield, Await]:ClassElementName[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optClassElementName[Yield, Await]:PropertyName[?Yield, ?Await]PrivateIdentifierClassStaticBlock:static{ClassStaticBlockBody}ClassStaticBlockBody:ClassStaticBlockStatementListClassStaticBlockStatementList:StatementList[~Yield, +Await, ~Return]optNote

A class definition is alwaysstrict mode code.

15.7.1 Static Semantics: Early Errors

ClassTail:ClassHeritageopt{ClassBody}ClassBody:ClassElementListClassElement:MethodDefinitionClassElement:staticMethodDefinitionClassElement:FieldDefinition;ClassElement:staticFieldDefinition;FieldDefinition:ClassElementNameInitializeroptClassElementName:PrivateIdentifierClassStaticBlockBody:ClassStaticBlockStatementList

15.7.2 Static Semantics: ClassElementKind

Thesyntax-directed operation ClassElementKind takes no arguments and returnsconstructor-method,non-constructor-method, orempty. It is defined piecewise over the following productions:

ClassElement:MethodDefinition
  1. IfPropName ofMethodDefinition is"constructor", returnconstructor-method.
  2. Returnnon-constructor-method.
ClassElement:staticMethodDefinitionFieldDefinition;staticFieldDefinition;
  1. Returnnon-constructor-method.
ClassElement:ClassStaticBlock
  1. Returnnon-constructor-method.
ClassElement:;
  1. Returnempty.

15.7.3 Static Semantics: ConstructorMethod

Thesyntax-directed operation ConstructorMethod takes no arguments and returns aClassElementParse Node orempty. It is defined piecewise over the following productions:

ClassElementList:ClassElement
  1. IfClassElementKind ofClassElement isconstructor-method, returnClassElement.
  2. Returnempty.
ClassElementList:ClassElementListClassElement
  1. Lethead beConstructorMethod ofClassElementList.
  2. Ifhead is notempty, returnhead.
  3. IfClassElementKind ofClassElement isconstructor-method, returnClassElement.
  4. Returnempty.
Note

Early Error rules ensure that there is only one method definition named"constructor" and that it is not anaccessor property or generator definition.

15.7.4 Static Semantics: IsStatic

Thesyntax-directed operation IsStatic takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

ClassElement:MethodDefinition
  1. Returnfalse.
ClassElement:staticMethodDefinition
  1. Returntrue.
ClassElement:FieldDefinition;
  1. Returnfalse.
ClassElement:staticFieldDefinition;
  1. Returntrue.
ClassElement:ClassStaticBlock
  1. Returntrue.
ClassElement:;
  1. Returnfalse.

15.7.5 Static Semantics: NonConstructorElements

Thesyntax-directed operation NonConstructorElements takes no arguments and returns aList ofClassElementParse Nodes. It is defined piecewise over the following productions:

ClassElementList:ClassElement
  1. IfClassElementKind ofClassElement isnon-constructor-method, then
    1. Return «ClassElement ».
  2. Return a new emptyList.
ClassElementList:ClassElementListClassElement
  1. Letlist beNonConstructorElements ofClassElementList.
  2. IfClassElementKind ofClassElement isnon-constructor-method, then
    1. AppendClassElement to the end oflist.
  3. Returnlist.

15.7.6 Static Semantics: PrototypePropertyNameList

Thesyntax-directed operation PrototypePropertyNameList takes no arguments and returns aList ofproperty keys. It is defined piecewise over the following productions:

ClassElementList:ClassElement
  1. LetpropName bePropName ofClassElement.
  2. IfpropName isempty, return a new emptyList.
  3. IfIsStatic ofClassElement istrue, return a new emptyList.
  4. Return «propName ».
ClassElementList:ClassElementListClassElement
  1. Letlist bePrototypePropertyNameList ofClassElementList.
  2. LetpropName bePropName ofClassElement.
  3. IfpropName isempty, returnlist.
  4. IfIsStatic ofClassElement istrue, returnlist.
  5. Return thelist-concatenation oflist and «propName ».

15.7.7 Static Semantics: AllPrivateIdentifiersValid

Thesyntax-directed operation AllPrivateIdentifiersValid takes argumentnames (aList of Strings) and returns a Boolean.

Every grammar production alternative in this specification which is not listed below implicitly has the following default definition of AllPrivateIdentifiersValid:

  1. For each child nodechild of thisParse Node, do
    1. Ifchild is an instance of a nonterminal, then
      1. IfAllPrivateIdentifiersValid ofchild with argumentnames isfalse, returnfalse.
  2. Returntrue.
MemberExpression:MemberExpression.PrivateIdentifier
  1. Ifnames contains theStringValue ofPrivateIdentifier, then
    1. ReturnAllPrivateIdentifiersValid ofMemberExpression with argumentnames.
  2. Returnfalse.
CallExpression:CallExpression.PrivateIdentifier
  1. Ifnames contains theStringValue ofPrivateIdentifier, then
    1. ReturnAllPrivateIdentifiersValid ofCallExpression with argumentnames.
  2. Returnfalse.
OptionalChain:?.PrivateIdentifier
  1. Ifnames contains theStringValue ofPrivateIdentifier, returntrue.
  2. Returnfalse.
OptionalChain:OptionalChain.PrivateIdentifier
  1. Ifnames contains theStringValue ofPrivateIdentifier, then
    1. ReturnAllPrivateIdentifiersValid ofOptionalChain with argumentnames.
  2. Returnfalse.
ClassBody:ClassElementList
  1. LetnewNames be thelist-concatenation ofnames andPrivateBoundIdentifiers ofClassBody.
  2. ReturnAllPrivateIdentifiersValid ofClassElementList with argumentnewNames.
RelationalExpression:PrivateIdentifierinShiftExpression
  1. Ifnames contains theStringValue ofPrivateIdentifier, then
    1. ReturnAllPrivateIdentifiersValid ofShiftExpression with argumentnames.
  2. Returnfalse.

15.7.8 Static Semantics: PrivateBoundIdentifiers

Thesyntax-directed operation PrivateBoundIdentifiers takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

FieldDefinition:ClassElementNameInitializeropt
  1. ReturnPrivateBoundIdentifiers ofClassElementName.
ClassElementName:PrivateIdentifier
  1. Return aList whose sole element is theStringValue ofPrivateIdentifier.
ClassElementName:PropertyNameClassElement:ClassStaticBlock;
  1. Return a new emptyList.
ClassElementList:ClassElementListClassElement
  1. Letnames1 bePrivateBoundIdentifiers ofClassElementList.
  2. Letnames2 bePrivateBoundIdentifiers ofClassElement.
  3. Return thelist-concatenation ofnames1 andnames2.
MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}getClassElementName(){FunctionBody}setClassElementName(PropertySetParameterList){FunctionBody}GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}
  1. ReturnPrivateBoundIdentifiers ofClassElementName.

15.7.9 Static Semantics: ContainsArguments

Thesyntax-directed operation ContainsArguments takes no arguments and returns a Boolean.

Every grammar production alternative in this specification which is not listed below implicitly has the following default definition of ContainsArguments:

  1. For each child nodechild of thisParse Node, do
    1. Ifchild is an instance of a nonterminal, then
      1. IfContainsArguments ofchild istrue, returntrue.
  2. Returnfalse.
IdentifierReference:Identifier
  1. If theStringValue ofIdentifier is"arguments", returntrue.
  2. Returnfalse.
FunctionDeclaration:functionBindingIdentifier(FormalParameters){FunctionBody}function(FormalParameters){FunctionBody}FunctionExpression:functionBindingIdentifieropt(FormalParameters){FunctionBody}GeneratorDeclaration:function*BindingIdentifier(FormalParameters){GeneratorBody}function*(FormalParameters){GeneratorBody}GeneratorExpression:function*BindingIdentifieropt(FormalParameters){GeneratorBody}AsyncGeneratorDeclaration:asyncfunction*BindingIdentifier(FormalParameters){AsyncGeneratorBody}asyncfunction*(FormalParameters){AsyncGeneratorBody}AsyncGeneratorExpression:asyncfunction*BindingIdentifieropt(FormalParameters){AsyncGeneratorBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}
  1. Returnfalse.
MethodDefinition:ClassElementName(UniqueFormalParameters){FunctionBody}getClassElementName(){FunctionBody}setClassElementName(PropertySetParameterList){FunctionBody}GeneratorMethod:*ClassElementName(UniqueFormalParameters){GeneratorBody}AsyncGeneratorMethod:async*ClassElementName(UniqueFormalParameters){AsyncGeneratorBody}AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}
  1. ReturnContainsArguments ofClassElementName.

15.7.10 Runtime Semantics: ClassFieldDefinitionEvaluation

Thesyntax-directed operation ClassFieldDefinitionEvaluation takes argumenthomeObject (an Object) and returns either anormal completion containing aClassFieldDefinition Record or anabrupt completion. It is defined piecewise over the following productions:

FieldDefinition:ClassElementNameInitializeropt
  1. Letname be ? Evaluation ofClassElementName.
  2. IfInitializer is present, then
    1. LetformalParameterList be an instance of the productionFormalParameters:[empty].
    2. Letenv be the LexicalEnvironment of therunning execution context.
    3. LetprivateEnv be therunning execution context's PrivateEnvironment.
    4. LetsourceText be the empty sequence of Unicode code points.
    5. Letinitializer beOrdinaryFunctionCreate(%Function.prototype%,sourceText,formalParameterList,Initializer,non-lexical-this,env,privateEnv).
    6. PerformMakeMethod(initializer,homeObject).
    7. Setinitializer.[[ClassFieldInitializerName]] toname.
  3. Else,
    1. Letinitializer beempty.
  4. Return theClassFieldDefinition Record {[[Name]]:name,[[Initializer]]:initializer }.
Note
The function created forinitializer is never directly accessible to ECMAScript code.

15.7.11 Runtime Semantics: ClassStaticBlockDefinitionEvaluation

Thesyntax-directed operation ClassStaticBlockDefinitionEvaluation takes argumenthomeObject (an Object) and returns aClassStaticBlockDefinition Record. It is defined piecewise over the following productions:

ClassStaticBlock:static{ClassStaticBlockBody}
  1. Letlex be therunning execution context's LexicalEnvironment.
  2. LetprivateEnv be therunning execution context's PrivateEnvironment.
  3. LetsourceText be the empty sequence of Unicode code points.
  4. LetformalParameters be an instance of the productionFormalParameters:[empty].
  5. LetbodyFunction beOrdinaryFunctionCreate(%Function.prototype%,sourceText,formalParameters,ClassStaticBlockBody,non-lexical-this,lex,privateEnv).
  6. PerformMakeMethod(bodyFunction,homeObject).
  7. Return theClassStaticBlockDefinition Record {[[BodyFunction]]:bodyFunction }.
Note
The functionbodyFunction is never directly accessible to ECMAScript code.

15.7.12 Runtime Semantics: EvaluateClassStaticBlockBody

Thesyntax-directed operation EvaluateClassStaticBlockBody takes argumentfunctionObject (an ECMAScriptfunction object) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It is defined piecewise over the following productions:

ClassStaticBlockBody:ClassStaticBlockStatementList
  1. Assert:functionObject is a synthetic function created byClassStaticBlockDefinitionEvaluation step5.
  2. Perform ! FunctionDeclarationInstantiation(functionObject, « »).
  3. Return ? Evaluation ofClassStaticBlockStatementList.

15.7.13 Runtime Semantics: ClassElementEvaluation

Thesyntax-directed operation ClassElementEvaluation takes argumentobject (an Object) and returns either anormal completion containing either aClassFieldDefinition Record, aClassStaticBlockDefinition Record, aPrivateElement, orunused, or anabrupt completion. It is defined piecewise over the following productions:

ClassElement:FieldDefinition;staticFieldDefinition;
  1. Return ? ClassFieldDefinitionEvaluation ofFieldDefinition with argumentobject.
ClassElement:MethodDefinitionstaticMethodDefinition
  1. Return ? MethodDefinitionEvaluation ofMethodDefinition with argumentsobject andfalse.
ClassElement:ClassStaticBlock
  1. ReturnClassStaticBlockDefinitionEvaluation ofClassStaticBlock with argumentobject.
ClassElement:;
  1. Returnunused.

15.7.14 Runtime Semantics: ClassDefinitionEvaluation

Thesyntax-directed operation ClassDefinitionEvaluation takes argumentsclassBinding (a String orundefined) andclassName (aproperty key or aPrivate Name) and returns either anormal completion containing afunction object or anabrupt completion.

Note

For ease of specification, private methods and accessors are included alongside private fields in the[[PrivateElements]] slot of class instances. However, any given object has either all or none of the private methods and accessors defined by a given class. This feature has been designed so that implementations may choose to implement private methods and accessors using a strategy which does not require tracking each method or accessor individually.

For example, an implementation could directly associate instance private methods with their correspondingPrivate Name and track, for each object, which classconstructors have run with that object as theirthis value. Looking up an instance private method on an object then consists of checking that the classconstructor which defines the method has been used to initialize the object, then returning the method associated with thePrivate Name.

This differs from private fields: because field initializers can throw during class instantiation, an individual object may have some proper subset of the private fields of a given class, and so private fields must in general be tracked individually.

It is defined piecewise over the following productions:

ClassTail:ClassHeritageopt{ClassBodyopt}
  1. Letenv be the LexicalEnvironment of therunning execution context.
  2. LetclassEnv beNewDeclarativeEnvironment(env).
  3. IfclassBinding is notundefined, then
    1. Perform ! classEnv.CreateImmutableBinding(classBinding,true).
  4. LetouterPrivateEnvironment be therunning execution context's PrivateEnvironment.
  5. LetclassPrivateEnvironment beNewPrivateEnvironment(outerPrivateEnvironment).
  6. IfClassBody is present, then
    1. For each Stringdn of thePrivateBoundIdentifiers ofClassBody, do
      1. IfclassPrivateEnvironment.[[Names]] contains aPrivate Namepn such thatpn.[[Description]] isdn, then
        1. Assert: This is only possible for getter/setter pairs.
      2. Else,
        1. Letname be a newPrivate Name whose[[Description]] isdn.
        2. Appendname toclassPrivateEnvironment.[[Names]].
  7. IfClassHeritage is not present, then
    1. LetprotoParent be%Object.prototype%.
    2. LetconstructorParent be%Function.prototype%.
  8. Else,
    1. Set therunning execution context's LexicalEnvironment toclassEnv.
    2. NOTE: Therunning execution context's PrivateEnvironment isouterPrivateEnvironment when evaluatingClassHeritage.
    3. LetsuperclassRef beCompletion(Evaluation ofClassHeritage).
    4. Set therunning execution context's LexicalEnvironment toenv.
    5. Letsuperclass be ? GetValue(?superclassRef).
    6. Ifsuperclass isnull, then
      1. LetprotoParent benull.
      2. LetconstructorParent be%Function.prototype%.
    7. Else ifIsConstructor(superclass) isfalse, then
      1. Throw aTypeError exception.
    8. Else,
      1. LetprotoParent be ? Get(superclass,"prototype").
      2. IfprotoParentis not an Object andprotoParent is notnull, throw aTypeError exception.
      3. LetconstructorParent besuperclass.
  9. Letproto beOrdinaryObjectCreate(protoParent).
  10. IfClassBody is not present, letconstructor beempty.
  11. Else, letconstructor beConstructorMethod ofClassBody.
  12. Set therunning execution context's LexicalEnvironment toclassEnv.
  13. Set therunning execution context's PrivateEnvironment toclassPrivateEnvironment.
  14. Ifconstructor isempty, then
    1. LetdefaultConstructor be a newAbstract Closure with no parameters that captures nothing and performs the following steps when called:
      1. Letargs be theList of arguments that was passed to this function by[[Call]] or[[Construct]].
      2. If NewTarget isundefined, throw aTypeError exception.
      3. LetF be theactive function object.
      4. IfF.[[ConstructorKind]] isderived, then
        1. NOTE: This branch behaves similarly toconstructor(...args) { super(...args); }. The most notable distinction is that while the aforementionedECMAScript source text observably calls the@@iterator method on%Array.prototype%, this function does not.
        2. Letfunc be ! F.[[GetPrototypeOf]]().
        3. IfIsConstructor(func) isfalse, throw aTypeError exception.
        4. Letresult be ? Construct(func,args, NewTarget).
      5. Else,
        1. NOTE: This branch behaves similarly toconstructor() {}.
        2. Letresult be ? OrdinaryCreateFromConstructor(NewTarget,"%Object.prototype%").
      6. Perform ? InitializeInstanceElements(result,F).
      7. Returnresult.
    2. LetF beCreateBuiltinFunction(defaultConstructor, 0,className, «[[ConstructorKind]],[[SourceText]] »,the current Realm Record,constructorParent).
  15. Else,
    1. LetconstructorInfo be ! DefineMethod ofconstructor with argumentsproto andconstructorParent.
    2. LetF beconstructorInfo.[[Closure]].
    3. PerformMakeClassConstructor(F).
    4. PerformSetFunctionName(F,className).
  16. PerformMakeConstructor(F,false,proto).
  17. IfClassHeritage is present, setF.[[ConstructorKind]] toderived.
  18. Perform ! DefineMethodProperty(proto,"constructor",F,false).
  19. IfClassBody is not present, letelements be a new emptyList.
  20. Else, letelements beNonConstructorElements ofClassBody.
  21. LetinstancePrivateMethods be a new emptyList.
  22. LetstaticPrivateMethods be a new emptyList.
  23. LetinstanceFields be a new emptyList.
  24. LetstaticElements be a new emptyList.
  25. For eachClassElemente ofelements, do
    1. IfIsStatic ofe isfalse, then
      1. Letelement beCompletion(ClassElementEvaluation ofe with argumentproto).
    2. Else,
      1. Letelement beCompletion(ClassElementEvaluation ofe with argumentF).
    3. Ifelement is anabrupt completion, then
      1. Set therunning execution context's LexicalEnvironment toenv.
      2. Set therunning execution context's PrivateEnvironment toouterPrivateEnvironment.
      3. Return ? element.
    4. Setelement to ! element.
    5. Ifelement is aPrivateElement, then
      1. Assert:element.[[Kind]] is eithermethod oraccessor.
      2. IfIsStatic ofe isfalse, letcontainer beinstancePrivateMethods.
      3. Else, letcontainer bestaticPrivateMethods.
      4. Ifcontainer contains aPrivateElementpe such thatpe.[[Key]] iselement.[[Key]], then
        1. Assert:element.[[Kind]] andpe.[[Kind]] are bothaccessor.
        2. Ifelement.[[Get]] isundefined, then
          1. Letcombined bePrivateElement {[[Key]]:element.[[Key]],[[Kind]]:accessor,[[Get]]:pe.[[Get]],[[Set]]:element.[[Set]] }.
        3. Else,
          1. Letcombined bePrivateElement {[[Key]]:element.[[Key]],[[Kind]]:accessor,[[Get]]:element.[[Get]],[[Set]]:pe.[[Set]] }.
        4. Replacepe incontainer withcombined.
      5. Else,
        1. Appendelement tocontainer.
    6. Else ifelement is aClassFieldDefinition Record, then
      1. IfIsStatic ofe isfalse, appendelement toinstanceFields.
      2. Else, appendelement tostaticElements.
    7. Else ifelement is aClassStaticBlockDefinition Record, then
      1. Appendelement tostaticElements.
  26. Set therunning execution context's LexicalEnvironment toenv.
  27. IfclassBinding is notundefined, then
    1. Perform ! classEnv.InitializeBinding(classBinding,F).
  28. SetF.[[PrivateMethods]] toinstancePrivateMethods.
  29. SetF.[[Fields]] toinstanceFields.
  30. For eachPrivateElementmethod ofstaticPrivateMethods, do
    1. Perform ! PrivateMethodOrAccessorAdd(F,method).
  31. For each elementelementRecord ofstaticElements, do
    1. IfelementRecord is aClassFieldDefinition Record, then
      1. Letresult beCompletion(DefineField(F,elementRecord)).
    2. Else,
      1. Assert:elementRecord is aClassStaticBlockDefinition Record.
      2. Letresult beCompletion(Call(elementRecord.[[BodyFunction]],F)).
    3. Ifresult is anabrupt completion, then
      1. Set therunning execution context's PrivateEnvironment toouterPrivateEnvironment.
      2. Return ? result.
  32. Set therunning execution context's PrivateEnvironment toouterPrivateEnvironment.
  33. ReturnF.

15.7.15 Runtime Semantics: BindingClassDeclarationEvaluation

Thesyntax-directed operation BindingClassDeclarationEvaluation takes no arguments and returns either anormal completion containing afunction object or anabrupt completion. It is defined piecewise over the following productions:

ClassDeclaration:classBindingIdentifierClassTail
  1. LetclassName beStringValue ofBindingIdentifier.
  2. Letvalue be ? ClassDefinitionEvaluation ofClassTail with argumentsclassName andclassName.
  3. Setvalue.[[SourceText]] to thesource text matched byClassDeclaration.
  4. Letenv be therunning execution context's LexicalEnvironment.
  5. Perform ? InitializeBoundName(className,value,env).
  6. Returnvalue.
ClassDeclaration:classClassTail
  1. Letvalue be ? ClassDefinitionEvaluation ofClassTail with argumentsundefined and"default".
  2. Setvalue.[[SourceText]] to thesource text matched byClassDeclaration.
  3. Returnvalue.
Note

ClassDeclaration:classClassTail only occurs as part of anExportDeclaration and establishing its binding is handled as part of the evaluation action for that production. See16.2.3.7.

15.7.16 Runtime Semantics: Evaluation

ClassDeclaration:classBindingIdentifierClassTail
  1. Perform ? BindingClassDeclarationEvaluation of thisClassDeclaration.
  2. Returnempty.
Note

ClassDeclaration:classClassTail only occurs as part of anExportDeclaration and is never directly evaluated.

ClassExpression:classClassTail
  1. Letvalue be ? ClassDefinitionEvaluation ofClassTail with argumentsundefined and"".
  2. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  3. Returnvalue.
ClassExpression:classBindingIdentifierClassTail
  1. LetclassName beStringValue ofBindingIdentifier.
  2. Letvalue be ? ClassDefinitionEvaluation ofClassTail with argumentsclassName andclassName.
  3. Setvalue.[[SourceText]] to thesource text matched byClassExpression.
  4. Returnvalue.
ClassElementName:PrivateIdentifier
  1. LetprivateIdentifier beStringValue ofPrivateIdentifier.
  2. LetprivateEnvRec be therunning execution context's PrivateEnvironment.
  3. Letnames beprivateEnvRec.[[Names]].
  4. Assert: Exactly one element ofnames is aPrivate Name whose[[Description]] isprivateIdentifier.
  5. LetprivateName be thePrivate Name innames whose[[Description]] isprivateIdentifier.
  6. ReturnprivateName.
ClassStaticBlockStatementList:[empty]
  1. Returnundefined.

15.8 Async Function Definitions

Syntax

AsyncFunctionDeclaration[Yield, Await, Default]:async[noLineTerminator here]functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, +Await]){AsyncFunctionBody}[+Default]async[noLineTerminator here]function(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionExpression:async[noLineTerminator here]functionBindingIdentifier[~Yield, +Await]opt(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncMethod[Yield, Await]:async[noLineTerminator here]ClassElementName[?Yield, ?Await](UniqueFormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionBody:FunctionBody[~Yield, +Await]AwaitExpression[Yield]:awaitUnaryExpression[?Yield, +Await]Note 1

await is parsed as akeyword of anAwaitExpression when the[Await] parameter is present. The[Await] parameter is present in the top level of the following contexts, although the parameter may be absent in some contexts depending on the nonterminals, such asFunctionBody:

WhenScript is the syntacticgoal symbol,await may be parsed as an identifier when the[Await] parameter is absent. This includes the following contexts:

Note 2

UnlikeYieldExpression, it is a Syntax Error to omit the operand of anAwaitExpression. You must await something.

15.8.1 Static Semantics: Early Errors

AsyncMethod:asyncClassElementName(UniqueFormalParameters){AsyncFunctionBody}AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}asyncfunction(FormalParameters){AsyncFunctionBody}AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}

15.8.2 Runtime Semantics: InstantiateAsyncFunctionObject

Thesyntax-directed operation InstantiateAsyncFunctionObject takes argumentsenv (anEnvironment Record) andprivateEnv (aPrivateEnvironment Record ornull) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

AsyncFunctionDeclaration:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Letname beStringValue ofBindingIdentifier.
  2. LetsourceText be thesource text matched byAsyncFunctionDeclaration.
  3. LetF beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,env,privateEnv).
  4. PerformSetFunctionName(F,name).
  5. ReturnF.
AsyncFunctionDeclaration:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. LetsourceText be thesource text matched byAsyncFunctionDeclaration.
  2. LetF beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,env,privateEnv).
  3. PerformSetFunctionName(F,"default").
  4. ReturnF.

15.8.3 Runtime Semantics: InstantiateAsyncFunctionExpression

Thesyntax-directed operation InstantiateAsyncFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

AsyncFunctionExpression:asyncfunction(FormalParameters){AsyncFunctionBody}
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncFunctionExpression.
  5. Letclosure beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,env,privateEnv).
  6. PerformSetFunctionName(closure,name).
  7. Returnclosure.
AsyncFunctionExpression:asyncfunctionBindingIdentifier(FormalParameters){AsyncFunctionBody}
  1. Assert:name is not present.
  2. Setname toStringValue ofBindingIdentifier.
  3. LetouterEnv be the LexicalEnvironment of therunning execution context.
  4. LetfuncEnv beNewDeclarativeEnvironment(outerEnv).
  5. Perform ! funcEnv.CreateImmutableBinding(name,false).
  6. LetprivateEnv be therunning execution context's PrivateEnvironment.
  7. LetsourceText be thesource text matched byAsyncFunctionExpression.
  8. Letclosure beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,FormalParameters,AsyncFunctionBody,non-lexical-this,funcEnv,privateEnv).
  9. PerformSetFunctionName(closure,name).
  10. Perform ! funcEnv.InitializeBinding(name,closure).
  11. Returnclosure.
Note

TheBindingIdentifier in anAsyncFunctionExpression can be referenced from inside theAsyncFunctionExpression'sAsyncFunctionBody to allow the function to call itself recursively. However, unlike in aFunctionDeclaration, theBindingIdentifier in aAsyncFunctionExpression cannot be referenced from and does not affect the scope enclosing theAsyncFunctionExpression.

15.8.4 Runtime Semantics: EvaluateAsyncFunctionBody

Thesyntax-directed operation EvaluateAsyncFunctionBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns areturn completion. It is defined piecewise over the following productions:

AsyncFunctionBody:FunctionBody
  1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  2. LetdeclResult beCompletion(FunctionDeclarationInstantiation(functionObject,argumentsList)).
  3. IfdeclResult is anabrupt completion, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «declResult.[[Value]] »).
  4. Else,
    1. PerformAsyncFunctionStart(promiseCapability,FunctionBody).
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:promiseCapability.[[Promise]],[[Target]]:empty }.

15.8.5 Runtime Semantics: Evaluation

AsyncFunctionExpression:asyncfunctionBindingIdentifieropt(FormalParameters){AsyncFunctionBody}
  1. ReturnInstantiateAsyncFunctionExpression ofAsyncFunctionExpression.
AwaitExpression:awaitUnaryExpression
  1. LetexprRef be ? Evaluation ofUnaryExpression.
  2. Letvalue be ? GetValue(exprRef).
  3. Return ? Await(value).

15.9 Async Arrow Function Definitions

Syntax

AsyncArrowFunction[In, Yield, Await]:async[noLineTerminator here]AsyncArrowBindingIdentifier[?Yield][noLineTerminator here]=>AsyncConciseBody[?In]CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]AsyncConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, +Await]{AsyncFunctionBody}AsyncArrowBindingIdentifier[Yield]:BindingIdentifier[?Yield, +Await]CoverCallExpressionAndAsyncArrowHead[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

Supplemental Syntax

When processing an instance of the production
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

AsyncArrowHead:async[noLineTerminator here]ArrowFormalParameters[~Yield, +Await]

15.9.1 Static Semantics: Early Errors

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyAsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody

15.9.2 Static Semantics: AsyncConciseBodyContainsUseStrict

Thesyntax-directed operation AsyncConciseBodyContainsUseStrict takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

AsyncConciseBody:ExpressionBody
  1. Returnfalse.
AsyncConciseBody:{AsyncFunctionBody}
  1. ReturnFunctionBodyContainsUseStrict ofAsyncFunctionBody.

15.9.3 Runtime Semantics: EvaluateAsyncConciseBody

Thesyntax-directed operation EvaluateAsyncConciseBody takes argumentsfunctionObject (an ECMAScriptfunction object) andargumentsList (aList ofECMAScript language values) and returns areturn completion. It is defined piecewise over the following productions:

AsyncConciseBody:ExpressionBody
  1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  2. LetdeclResult beCompletion(FunctionDeclarationInstantiation(functionObject,argumentsList)).
  3. IfdeclResult is anabrupt completion, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «declResult.[[Value]] »).
  4. Else,
    1. PerformAsyncFunctionStart(promiseCapability,ExpressionBody).
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:promiseCapability.[[Promise]],[[Target]]:empty }.

15.9.4 Runtime Semantics: InstantiateAsyncArrowFunctionExpression

Thesyntax-directed operation InstantiateAsyncArrowFunctionExpression takes optional argumentname (aproperty key or aPrivate Name) and returns an ECMAScriptfunction object. It is defined piecewise over the following productions:

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBody
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncArrowFunction.
  5. Letparameters beAsyncArrowBindingIdentifier.
  6. Letclosure beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,parameters,AsyncConciseBody,lexical-this,env,privateEnv).
  7. PerformSetFunctionName(closure,name).
  8. Returnclosure.
AsyncArrowFunction:CoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. Ifname is not present, setname to"".
  2. Letenv be the LexicalEnvironment of therunning execution context.
  3. LetprivateEnv be therunning execution context's PrivateEnvironment.
  4. LetsourceText be thesource text matched byAsyncArrowFunction.
  5. Lethead be theAsyncArrowHead that iscovered byCoverCallExpressionAndAsyncArrowHead.
  6. Letparameters be theArrowFormalParameters ofhead.
  7. Letclosure beOrdinaryFunctionCreate(%AsyncFunction.prototype%,sourceText,parameters,AsyncConciseBody,lexical-this,env,privateEnv).
  8. PerformSetFunctionName(closure,name).
  9. Returnclosure.

15.9.5 Runtime Semantics: Evaluation

AsyncArrowFunction:asyncAsyncArrowBindingIdentifier=>AsyncConciseBodyCoverCallExpressionAndAsyncArrowHead=>AsyncConciseBody
  1. ReturnInstantiateAsyncArrowFunctionExpression ofAsyncArrowFunction.

15.10 Tail Position Calls

15.10.1 Static Semantics: IsInTailPosition (call )

The abstract operation IsInTailPosition takes argumentcall (aCallExpressionParse Node, aMemberExpressionParse Node, or anOptionalChainParse Node) and returns a Boolean. It performs the following steps when called:

  1. If thesource text matched bycall isnon-strict code, returnfalse.
  2. Ifcall is not contained within aFunctionBody, aConciseBody, or anAsyncConciseBody, returnfalse.
  3. Letbody be theFunctionBody,ConciseBody, orAsyncConciseBody that most closely containscall.
  4. Ifbody is theFunctionBody of aGeneratorBody, returnfalse.
  5. Ifbody is theFunctionBody of anAsyncFunctionBody, returnfalse.
  6. Ifbody is theFunctionBody of anAsyncGeneratorBody, returnfalse.
  7. Ifbody is anAsyncConciseBody, returnfalse.
  8. Return the result ofHasCallInTailPosition ofbody with argumentcall.
Note

Tail Position calls are only defined instrict mode code because of a common non-standard language extension (see10.2.4) that enables observation of the chain of caller contexts.

15.10.2 Static Semantics: HasCallInTailPosition

Thesyntax-directed operation HasCallInTailPosition takes argumentcall (aCallExpressionParse Node, aMemberExpressionParse Node, or anOptionalChainParse Node) and returns a Boolean.

Note 1

call is aParse Node that represents a specific range of source text. When the following algorithms comparecall to anotherParse Node, it is a test of whether they represent the same source text.

Note 2

A potential tail position call that is immediately followed by returnGetValue of the call result is also a possible tail position call. A function call cannot return aReference Record, so such aGetValue operation will always return the same value as the actual function call result.

It is defined piecewise over the following productions:

StatementList:StatementListStatementListItem
  1. Lethas beHasCallInTailPosition ofStatementList with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition ofStatementListItem with argumentcall.
FunctionStatementList:[empty]StatementListItem:DeclarationStatement:VariableStatementEmptyStatementExpressionStatementContinueStatementBreakStatementThrowStatementDebuggerStatementBlock:{}ReturnStatement:return;LabelledItem:FunctionDeclarationForInOfStatement:for(LeftHandSideExpressionofAssignmentExpression)Statementfor(varForBindingofAssignmentExpression)Statementfor(ForDeclarationofAssignmentExpression)StatementCaseBlock:{}
  1. Returnfalse.
IfStatement:if(Expression)StatementelseStatement
  1. Lethas beHasCallInTailPosition of the firstStatement with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition of the secondStatement with argumentcall.
IfStatement:if(Expression)StatementDoWhileStatement:doStatementwhile(Expression);WhileStatement:while(Expression)StatementForStatement:for(Expressionopt;Expressionopt;Expressionopt)Statementfor(varVariableDeclarationList;Expressionopt;Expressionopt)Statementfor(LexicalDeclarationExpressionopt;Expressionopt)StatementForInOfStatement:for(LeftHandSideExpressioninExpression)Statementfor(varForBindinginExpression)Statementfor(ForDeclarationinExpression)StatementWithStatement:with(Expression)Statement
  1. ReturnHasCallInTailPosition ofStatement with argumentcall.
LabelledStatement:LabelIdentifier:LabelledItem
  1. ReturnHasCallInTailPosition ofLabelledItem with argumentcall.
ReturnStatement:returnExpression;
  1. ReturnHasCallInTailPosition ofExpression with argumentcall.
SwitchStatement:switch(Expression)CaseBlock
  1. ReturnHasCallInTailPosition ofCaseBlock with argumentcall.
CaseBlock:{CaseClausesoptDefaultClauseCaseClausesopt}
  1. Lethas befalse.
  2. If the firstCaseClauses is present, sethas toHasCallInTailPosition of the firstCaseClauses with argumentcall.
  3. Ifhas istrue, returntrue.
  4. Sethas toHasCallInTailPosition ofDefaultClause with argumentcall.
  5. Ifhas istrue, returntrue.
  6. If the secondCaseClauses is present, sethas toHasCallInTailPosition of the secondCaseClauses with argumentcall.
  7. Returnhas.
CaseClauses:CaseClausesCaseClause
  1. Lethas beHasCallInTailPosition ofCaseClauses with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition ofCaseClause with argumentcall.
CaseClause:caseExpression:StatementListoptDefaultClause:default:StatementListopt
  1. IfStatementList is present, returnHasCallInTailPosition ofStatementList with argumentcall.
  2. Returnfalse.
TryStatement:tryBlockCatch
  1. ReturnHasCallInTailPosition ofCatch with argumentcall.
TryStatement:tryBlockFinallytryBlockCatchFinally
  1. ReturnHasCallInTailPosition ofFinally with argumentcall.
Catch:catch(CatchParameter)Block
  1. ReturnHasCallInTailPosition ofBlock with argumentcall.
AssignmentExpression:YieldExpressionArrowFunctionAsyncArrowFunctionLeftHandSideExpression=AssignmentExpressionLeftHandSideExpressionAssignmentOperatorAssignmentExpressionLeftHandSideExpression&&=AssignmentExpressionLeftHandSideExpression||=AssignmentExpressionLeftHandSideExpression??=AssignmentExpressionBitwiseANDExpression:BitwiseANDExpression&EqualityExpressionBitwiseXORExpression:BitwiseXORExpression^BitwiseANDExpressionBitwiseORExpression:BitwiseORExpression|BitwiseXORExpressionEqualityExpression:EqualityExpression==RelationalExpressionEqualityExpression!=RelationalExpressionEqualityExpression===RelationalExpressionEqualityExpression!==RelationalExpressionRelationalExpression:RelationalExpression<ShiftExpressionRelationalExpression>ShiftExpressionRelationalExpression<=ShiftExpressionRelationalExpression>=ShiftExpressionRelationalExpressioninstanceofShiftExpressionRelationalExpressioninShiftExpressionPrivateIdentifierinShiftExpressionShiftExpression:ShiftExpression<<AdditiveExpressionShiftExpression>>AdditiveExpressionShiftExpression>>>AdditiveExpressionAdditiveExpression:AdditiveExpression+MultiplicativeExpressionAdditiveExpression-MultiplicativeExpressionMultiplicativeExpression:MultiplicativeExpressionMultiplicativeOperatorExponentiationExpressionExponentiationExpression:UpdateExpression**ExponentiationExpressionUpdateExpression:LeftHandSideExpression++LeftHandSideExpression--++UnaryExpression--UnaryExpressionUnaryExpression:deleteUnaryExpressionvoidUnaryExpressiontypeofUnaryExpression+UnaryExpression-UnaryExpression~UnaryExpression!UnaryExpressionAwaitExpressionCallExpression:SuperCallImportCallCallExpression[Expression]CallExpression.IdentifierNameCallExpression.PrivateIdentifierNewExpression:newNewExpressionMemberExpression:MemberExpression[Expression]MemberExpression.IdentifierNameSuperPropertyMetaPropertynewMemberExpressionArgumentsMemberExpression.PrivateIdentifierPrimaryExpression:thisIdentifierReferenceLiteralArrayLiteralObjectLiteralFunctionExpressionClassExpressionGeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral
  1. Returnfalse.
Expression:AssignmentExpressionExpression,AssignmentExpression
  1. ReturnHasCallInTailPosition ofAssignmentExpression with argumentcall.
ConditionalExpression:ShortCircuitExpression?AssignmentExpression:AssignmentExpression
  1. Lethas beHasCallInTailPosition of the firstAssignmentExpression with argumentcall.
  2. Ifhas istrue, returntrue.
  3. ReturnHasCallInTailPosition of the secondAssignmentExpression with argumentcall.
LogicalANDExpression:LogicalANDExpression&&BitwiseORExpression
  1. ReturnHasCallInTailPosition ofBitwiseORExpression with argumentcall.
LogicalORExpression:LogicalORExpression||LogicalANDExpression
  1. ReturnHasCallInTailPosition ofLogicalANDExpression with argumentcall.
CoalesceExpression:CoalesceExpressionHead??BitwiseORExpression
  1. ReturnHasCallInTailPosition ofBitwiseORExpression with argumentcall.
CallExpression:CoverCallExpressionAndAsyncArrowHeadCallExpressionArgumentsCallExpressionTemplateLiteral
  1. If thisCallExpression iscall, returntrue.
  2. Returnfalse.
OptionalExpression:MemberExpressionOptionalChainCallExpressionOptionalChainOptionalExpressionOptionalChain
  1. ReturnHasCallInTailPosition ofOptionalChain with argumentcall.
OptionalChain:?.[Expression]?.IdentifierName?.PrivateIdentifierOptionalChain[Expression]OptionalChain.IdentifierNameOptionalChain.PrivateIdentifier
  1. Returnfalse.
OptionalChain:?.ArgumentsOptionalChainArguments
  1. If thisOptionalChain iscall, returntrue.
  2. Returnfalse.
MemberExpression:MemberExpressionTemplateLiteral
  1. If thisMemberExpression iscall, returntrue.
  2. Returnfalse.
PrimaryExpression:CoverParenthesizedExpressionAndArrowParameterList
  1. Letexpr be theParenthesizedExpression that iscovered byCoverParenthesizedExpressionAndArrowParameterList.
  2. ReturnHasCallInTailPosition ofexpr with argumentcall.
ParenthesizedExpression:(Expression)
  1. ReturnHasCallInTailPosition ofExpression with argumentcall.

15.10.3 PrepareForTailCall ( )

The abstract operation PrepareForTailCall takes no arguments and returnsunused. It performs the following steps when called:

  1. Assert: The currentexecution context will not subsequently be used for the evaluation of any ECMAScript code or built-in functions. The invocation of Call subsequent to the invocation of this abstract operation will create and push a newexecution context before performing any such evaluation.
  2. Discard all resources associated with the currentexecution context.
  3. Returnunused.

A tail position call must either release any transient internal resources associated with the currently executing functionexecution context before invoking the target function or reuse those resources in support of the target function.

Note

For example, a tail position call should only grow an implementation's activation record stack by the amount that the size of the target function's activation record exceeds the size of the calling function's activation record. If the target function's activation record is smaller, then the total size of the stack should decrease.

16 ECMAScript Language: Scripts and Modules

16.1 Scripts

Syntax

Script:ScriptBodyoptScriptBody:StatementList[~Yield, ~Await, ~Return]

16.1.1 Static Semantics: Early Errors

Script:ScriptBodyScriptBody:StatementList

16.1.2 Static Semantics: IsStrict

Thesyntax-directed operation IsStrict takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

Script:ScriptBodyopt
  1. IfScriptBody is present and theDirective Prologue ofScriptBody contains aUse Strict Directive, returntrue; otherwise, returnfalse.

16.1.3 Runtime Semantics: Evaluation

Script:[empty]
  1. Returnundefined.

16.1.4 Script Records

AScript Record encapsulates information about a script being evaluated. Each script record contains the fields listed inTable 40.

Table 40:Script Record Fields
Field Name Value Type Meaning
[[Realm]] aRealm Record orundefined Therealm within which this script was created.undefined if not yet assigned.
[[ECMAScriptCode]] aScriptParse Node The result of parsing the source text of this script.
[[LoadedModules]] aList ofRecords with fields[[Specifier]] (a String) and[[Module]] (aModule Record) A map from the specifier strings imported by this script to the resolvedModule Record. The list does not contain two differentRecords with the same[[Specifier]].
[[HostDefined]] anything (default value isempty) Field reserved for use byhost environments that need to associate additional information with a script.

16.1.5 ParseScript (sourceText,realm,hostDefined )

The abstract operation ParseScript takes argumentssourceText (ECMAScript source text),realm (aRealm Record orundefined), andhostDefined (anything) and returns aScript Record or a non-emptyList ofSyntaxError objects. It creates aScript Record based upon the result of parsingsourceText as aScript. It performs the following steps when called:

  1. Letscript beParseText(sourceText,Script).
  2. Ifscript is aList of errors, returnscript.
  3. ReturnScript Record {[[Realm]]:realm,[[ECMAScriptCode]]:script,[[LoadedModules]]: « »,[[HostDefined]]:hostDefined }.
Note

An implementation may parse script source text and analyse it for Early Error conditions prior to evaluation of ParseScript for that script source text. However, the reporting of any errors must be deferred until the point where this specification actually performs ParseScript upon that source text.

16.1.6 ScriptEvaluation (scriptRecord )

The abstract operation ScriptEvaluation takes argumentscriptRecord (aScript Record) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. LetglobalEnv bescriptRecord.[[Realm]].[[GlobalEnv]].
  2. LetscriptContext be a newECMAScript code execution context.
  3. Set the Function ofscriptContext tonull.
  4. Set theRealm ofscriptContext toscriptRecord.[[Realm]].
  5. Set the ScriptOrModule ofscriptContext toscriptRecord.
  6. Set the VariableEnvironment ofscriptContext toglobalEnv.
  7. Set the LexicalEnvironment ofscriptContext toglobalEnv.
  8. Set the PrivateEnvironment ofscriptContext tonull.
  9. Suspend therunning execution context.
  10. PushscriptContext onto theexecution context stack;scriptContext is now therunning execution context.
  11. Letscript bescriptRecord.[[ECMAScriptCode]].
  12. Letresult beCompletion(GlobalDeclarationInstantiation(script,globalEnv)).
  13. Ifresult is anormal completion, then
    1. Setresult toCompletion(Evaluation ofscript).
    2. Ifresult is anormal completion andresult.[[Value]] isempty, then
      1. Setresult toNormalCompletion(undefined).
  14. SuspendscriptContext and remove it from theexecution context stack.
  15. Assert: Theexecution context stack is not empty.
  16. Resume the context that is now on the top of theexecution context stack as therunning execution context.
  17. Return ? result.

16.1.7 GlobalDeclarationInstantiation (script,env )

The abstract operation GlobalDeclarationInstantiation takes argumentsscript (aScriptParse Node) andenv (aGlobal Environment Record) and returns either anormal completion containingunused or athrow completion.script is theScript for which theexecution context is being established.env is the global environment in which bindings are to be created.

Note 1

When anexecution context is established for evaluating scripts, declarations are instantiated in the current global environment. Each global binding declared in the code is instantiated.

It performs the following steps when called:

  1. LetlexNames be theLexicallyDeclaredNames ofscript.
  2. LetvarNames be theVarDeclaredNames ofscript.
  3. For each elementname oflexNames, do
    1. Ifenv.HasVarDeclaration(name) istrue, throw aSyntaxError exception.
    2. Ifenv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
    3. LethasRestrictedGlobal be ? env.HasRestrictedGlobalProperty(name).
    4. IfhasRestrictedGlobal istrue, throw aSyntaxError exception.
  4. For each elementname ofvarNames, do
    1. Ifenv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
  5. LetvarDeclarations be theVarScopedDeclarations ofscript.
  6. LetfunctionsToInitialize be a new emptyList.
  7. LetdeclaredFunctionNames be a new emptyList.
  8. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is not either aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
      3. Letfn be the sole element of theBoundNames ofd.
      4. IfdeclaredFunctionNames does not containfn, then
        1. LetfnDefinable be ? env.CanDeclareGlobalFunction(fn).
        2. IffnDefinable isfalse, throw aTypeError exception.
        3. Appendfn todeclaredFunctionNames.
        4. Insertd as the first element offunctionsToInitialize.
  9. LetdeclaredVarNames be a new emptyList.
  10. For each elementd ofvarDeclarations, do
    1. Ifd is either aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. For each Stringvn of theBoundNames ofd, do
        1. IfdeclaredFunctionNames does not containvn, then
          1. LetvnDefinable be ? env.CanDeclareGlobalVar(vn).
          2. IfvnDefinable isfalse, throw aTypeError exception.
          3. IfdeclaredVarNames does not containvn, then
            1. Appendvn todeclaredVarNames.
  11. NOTE: No abnormal terminations occur after this algorithm step if theglobal object is anordinary object. However, if theglobal object is aProxy exotic object it may exhibit behaviours that cause abnormal terminations in some of the following steps.
  12. NOTE: AnnexB.3.2.2 adds additional steps at this point.
  13. LetlexDeclarations be theLexicallyScopedDeclarations ofscript.
  14. LetprivateEnv benull.
  15. For each elementd oflexDeclarations, do
    1. NOTE: Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ? env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ? env.CreateMutableBinding(dn,false).
  16. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentsenv andprivateEnv.
    3. Perform ? env.CreateGlobalFunctionBinding(fn,fo,false).
  17. For each Stringvn ofdeclaredVarNames, do
    1. Perform ? env.CreateGlobalVarBinding(vn,false).
  18. Returnunused.
Note 2

Early errors specified in16.1.1 prevent name conflicts between function/var declarations and let/const/class declarations as well as redeclaration of let/const/class bindings for declaration contained within a singleScript. However, such conflicts and redeclarations that span more than oneScript are detected as runtime errors during GlobalDeclarationInstantiation. If any such errors are detected, no bindings are instantiated for the script. However, if theglobal object is defined usingProxy exotic objects then the runtime tests for conflicting declarations may be unreliable resulting in anabrupt completion and some global declarations not being instantiated. If this occurs, the code for theScript is not evaluated.

Unlike explicit var or function declarations, properties that are directly created on theglobal object result in global bindings that may be shadowed by let/const/class declarations.

16.2 Modules

Syntax

Module:ModuleBodyoptModuleBody:ModuleItemListModuleItemList:ModuleItemModuleItemListModuleItemModuleItem:ImportDeclarationExportDeclarationStatementListItem[~Yield, +Await, ~Return]ModuleExportName:IdentifierNameStringLiteral

16.2.1 Module Semantics

16.2.1.1 Static Semantics: Early Errors

ModuleBody:ModuleItemListNote

The duplicateExportedNames rule implies that multipleexport defaultExportDeclaration items within aModuleBody is a Syntax Error. Additional error conditions relating to conflicting or duplicate declarations are checked during module linking prior to evaluation of aModule. If any such errors are detected theModule is not evaluated.

ModuleExportName:StringLiteral

16.2.1.2 Static Semantics: ImportedLocalNames (importEntries )

The abstract operation ImportedLocalNames takes argumentimportEntries (aList ofImportEntry Records) and returns aList of Strings. It creates aList of all of the local name bindings defined byimportEntries. It performs the following steps when called:

  1. LetlocalNames be a new emptyList.
  2. For eachImportEntry Recordi ofimportEntries, do
    1. Appendi.[[LocalName]] tolocalNames.
  3. ReturnlocalNames.

16.2.1.3 Static Semantics: ModuleRequests

Thesyntax-directed operation ModuleRequests takes no arguments and returns aList of Strings. It is defined piecewise over the following productions:

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItem
  1. ReturnModuleRequests ofModuleItem.
ModuleItemList:ModuleItemListModuleItem
  1. LetmoduleNames beModuleRequests ofModuleItemList.
  2. LetadditionalNames beModuleRequests ofModuleItem.
  3. For each Stringname ofadditionalNames, do
    1. IfmoduleNames does not containname, then
      1. Appendname tomoduleNames.
  4. ReturnmoduleNames.
ModuleItem:StatementListItem
  1. Return a new emptyList.
ImportDeclaration:importImportClauseFromClause;
  1. ReturnModuleRequests ofFromClause.
ModuleSpecifier:StringLiteral
  1. Return aList whose sole element is theSV ofStringLiteral.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return theModuleRequests ofFromClause.
ExportDeclaration:exportNamedExports;exportVariableStatementexportDeclarationexportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return a new emptyList.

16.2.1.4 Abstract Module Records

AModule Record encapsulates structural information about the imports and exports of a single module. This information is used to link the imports and exports of sets of connected modules. A Module Record includes four fields that are only used when evaluating a module.

For specification purposes Module Record values are values of theRecord specification type and can be thought of as existing in a simple object-oriented hierarchy where Module Record is an abstract class with both abstract and concrete subclasses. This specification defines the abstract subclass namedCyclic Module Record and its concrete subclass namedSource Text Module Record. Other specifications and implementations may define additional Module Record subclasses corresponding to alternative module definition facilities that they defined.

Module Record defines the fields listed inTable 41. All Module Definition subclasses include at least those fields. Module Record also defines the abstract method list inTable 42. All Module definition subclasses must provide concrete implementations of these abstract methods.

Table 41:Module Record Fields
Field Name Value Type Meaning
[[Realm]] aRealm Record TheRealm within which this module was created.
[[Environment]] aModule Environment Record orempty TheEnvironment Record containing the top level bindings for this module. This field is set when the module is linked.
[[Namespace]] an Object orempty The Module Namespace Object (28.3) if one has been created for this module.
[[HostDefined]] anything (default value isundefined) Field reserved for use byhost environments that need to associate additional information with a module.
Table 42: Abstract Methods ofModule Records
Method Purpose
LoadRequestedModules( [hostDefined ] )

Prepares the module for linking by recursively loading all its dependencies, and returns a promise.

GetExportedNames([exportStarSet])

Return a list of all names that are either directly or indirectly exported from this module.

LoadRequestedModules must have completed successfully prior to invoking this method.

ResolveExport(exportName [,resolveSet])

Return the binding of a name exported by this module. Bindings are represented by aResolvedBinding Record, of the form {[[Module]]:Module Record,[[BindingName]]: String |namespace }. If the export is a Module Namespace Object without a direct binding in any module,[[BindingName]] will be set tonamespace. Returnnull if the name cannot be resolved, orambiguous if multiple bindings were found.

Each time this operation is called with a specificexportName,resolveSet pair as arguments it must return the same result.

LoadRequestedModules must have completed successfully prior to invoking this method.

Link()

Prepare the module for evaluation by transitively resolving all module dependencies and creating aModule Environment Record.

LoadRequestedModules must have completed successfully prior to invoking this method.

Evaluate()

Returns a promise for the evaluation of this module and its dependencies, resolving on successful evaluation or if it has already been evaluated successfully, and rejecting for an evaluation error or if it has already been evaluated unsuccessfully. If the promise is rejected,hosts are expected to handle the promise rejection and rethrow the evaluation error.

Link must have completed successfully prior to invoking this method.

16.2.1.5 Cyclic Module Records

ACyclic Module Record is used to represent information about a module that can participate in dependency cycles with other modules that are subclasses of theCyclic Module Record type.Module Records that are not subclasses of theCyclic Module Record type must not participate in dependency cycles withSource Text Module Records.

In addition to the fields defined inTable 41Cyclic Module Records have the additional fields listed inTable 43

Table 43: Additional Fields ofCyclic Module Records
Field Name Value Type Meaning
[[Status]]new,unlinked,linking,linked,evaluating,evaluating-async, orevaluated Initiallynew. Transitions tounlinked,linking,linked,evaluating, possiblyevaluating-async,evaluated (in that order) as the module progresses throughout its lifecycle.evaluating-async indicates this module is queued to execute on completion of its asynchronous dependencies or it is a module whose[[HasTLA]] field istrue that has been executed and is pending top-level completion.
[[EvaluationError]] athrow completion orempty Athrow completion representing the exception that occurred during evaluation.undefined if no exception occurred or if[[Status]] is notevaluated.
[[DFSIndex]] aninteger orempty Auxiliary field used during Link and Evaluate only. If[[Status]] is eitherlinking orevaluating, this non-negative number records the point at which the module was first visited during the depth-first traversal of the dependency graph.
[[DFSAncestorIndex]] aninteger orempty Auxiliary field used during Link and Evaluate only. If[[Status]] is eitherlinking orevaluating, this is either the module's own[[DFSIndex]] or that of an "earlier" module in the same strongly connected component.
[[RequestedModules]] aList of Strings AList of all theModuleSpecifier strings used by the module represented by this record to request the importation of a module. TheList is in source text occurrence order.
[[LoadedModules]] aList ofRecords with fields[[Specifier]] (a String) and[[Module]] (aModule Record) A map from the specifier strings used by the module represented by this record to request the importation of a module to the resolvedModule Record. The list does not contain two differentRecords with the same[[Specifier]].
[[CycleRoot]] aCyclic Module Record orempty The first visited module of the cycle, the root DFS ancestor of the strongly connected component. For a module not in a cycle, this would be the module itself. Once Evaluate has completed, a module's[[DFSAncestorIndex]] is the[[DFSIndex]] of its[[CycleRoot]].
[[HasTLA]] a Boolean Whether this module is individually asynchronous (for example, if it's aSource Text Module Record containing a top-level await). Having an asynchronous dependency does not mean this field istrue. This field must not change after the module is parsed.
[[AsyncEvaluation]] a Boolean Whether this module is either itself asynchronous or has an asynchronous dependency. Note: The order in which this field is set is used to order queued executions, see16.2.1.5.3.4.
[[TopLevelCapability]] aPromiseCapability Record orempty If this module is the[[CycleRoot]] of some cycle, and Evaluate() was called on some module in that cycle, this field contains thePromiseCapability Record for that entire evaluation. It is used to settle the Promise object that is returned from the Evaluate() abstract method. This field will beempty for any dependencies of that module, unless a top-level Evaluate() has been initiated for some of those dependencies.
[[AsyncParentModules]] aList ofCyclic Module Records If this module or a dependency has[[HasTLA]]true, and execution is in progress, this tracks the parent importers of this module for the top-level execution job. These parent modules will not start executing before this module has successfully completed execution.
[[PendingAsyncDependencies]] aninteger orempty If this module has any asynchronous dependencies, this tracks the number of asynchronous dependency modules remaining to execute for this module. A module with asynchronous dependencies will be executed when this field reaches 0 and there are no execution errors.

In addition to the methods defined inTable 42Cyclic Module Records have the additional methods listed inTable 44

Table 44: Additional Abstract Methods ofCyclic Module Records
Method Purpose
InitializeEnvironment() Initialize theEnvironment Record of the module, including resolving all imported bindings, and create the module'sexecution context.
ExecuteModule( [promiseCapability ] ) Evaluate the module's code within itsexecution context. If this module hastrue in[[HasTLA]], then aPromiseCapability Record is passed as an argument, and the method is expected to resolve or reject the given capability. In this case, the method must not throw an exception, but instead reject thePromiseCapability Record if necessary.

AGraphLoadingState Record is aRecord that contains information about the loading process of a module graph. It's used to continue loading after a call toHostLoadImportedModule. EachGraphLoadingState Record has the fields defined inTable 45:

Table 45:GraphLoadingState Record Fields
Field Name Value Type Meaning
[[PromiseCapability]] aPromiseCapability Record The promise to resolve when the loading process finishes.
[[IsLoading]] a Boolean It is true if the loading process has not finished yet, neither successfully nor with an error.
[[PendingModulesCount]] a non-negativeinteger It tracks the number of pendingHostLoadImportedModule calls.
[[Visited]] aList ofCyclic Module Records It is a list of theCyclic Module Records that have been already loaded by the current loading process, to avoid infinite loops with circular dependencies.
[[HostDefined]] anything (default value isempty) It containshost-defined data to pass from the LoadRequestedModules caller toHostLoadImportedModule.

16.2.1.5.1 LoadRequestedModules ( [hostDefined ] )

The LoadRequestedModules concrete method of aCyclic Module Recordmodule takes optional argumenthostDefined (anything) and returns a Promise. It populates the[[LoadedModules]] of all theModule Records in the dependency graph ofmodule (most of the work is done by the auxiliary functionInnerModuleLoading). It takes an optionalhostDefined parameter that is passed to theHostLoadImportedModule hook. It performs the following steps when called:

  1. IfhostDefined is not present, lethostDefined beempty.
  2. Letpc be ! NewPromiseCapability(%Promise%).
  3. Letstate be theGraphLoadingState Record {[[IsLoading]]:true,[[PendingModulesCount]]: 1,[[Visited]]: « »,[[PromiseCapability]]:pc,[[HostDefined]]:hostDefined }.
  4. PerformInnerModuleLoading(state,module).
  5. Returnpc.[[Promise]].
Note
ThehostDefined parameter can be used to pass additional information necessary to fetch the imported modules. It is used, for example, by HTML to set the correct fetch destination for<link rel="preload" as="..."> tags.import() expressions never set thehostDefined parameter.

16.2.1.5.1.1 InnerModuleLoading (state,module )

The abstract operation InnerModuleLoading takes argumentsstate (aGraphLoadingState Record) andmodule (aModule Record) and returnsunused. It is used by LoadRequestedModules to recursively perform the actual loading process formodule's dependency graph. It performs the following steps when called:

  1. Assert:state.[[IsLoading]] istrue.
  2. Ifmodule is aCyclic Module Record,module.[[Status]] isnew, andstate.[[Visited]] does not containmodule, then
    1. Appendmodule tostate.[[Visited]].
    2. LetrequestedModulesCount be the number of elements inmodule.[[RequestedModules]].
    3. Setstate.[[PendingModulesCount]] tostate.[[PendingModulesCount]] +requestedModulesCount.
    4. For each Stringrequired ofmodule.[[RequestedModules]], do
      1. Ifmodule.[[LoadedModules]] contains aRecord whose[[Specifier]] isrequired, then
        1. Letrecord be thatRecord.
        2. PerformInnerModuleLoading(state,record.[[Module]]).
      2. Else,
        1. PerformHostLoadImportedModule(module,required,state.[[HostDefined]],state).
        2. NOTE:HostLoadImportedModule will callFinishLoadingImportedModule, which re-enters the graph loading process throughContinueModuleLoading.
      3. Ifstate.[[IsLoading]] isfalse, returnunused.
  3. Assert:state.[[PendingModulesCount]] ≥ 1.
  4. Setstate.[[PendingModulesCount]] tostate.[[PendingModulesCount]] - 1.
  5. Ifstate.[[PendingModulesCount]] = 0, then
    1. Setstate.[[IsLoading]] tofalse.
    2. For eachCyclic Module Recordloaded ofstate.[[Visited]], do
      1. Ifloaded.[[Status]] isnew, setloaded.[[Status]] tounlinked.
    3. Perform ! Call(state.[[PromiseCapability]].[[Resolve]],undefined, «undefined »).
  6. Returnunused.

16.2.1.5.1.2 ContinueModuleLoading (state,moduleCompletion )

The abstract operation ContinueModuleLoading takes argumentsstate (aGraphLoadingState Record) andmoduleCompletion (either anormal completion containing aModule Record or athrow completion) and returnsunused. It is used to re-enter the loading process after a call toHostLoadImportedModule. It performs the following steps when called:

  1. Ifstate.[[IsLoading]] isfalse, returnunused.
  2. IfmoduleCompletion is anormal completion, then
    1. PerformInnerModuleLoading(state,moduleCompletion.[[Value]]).
  3. Else,
    1. Setstate.[[IsLoading]] tofalse.
    2. Perform ! Call(state.[[PromiseCapability]].[[Reject]],undefined, «moduleCompletion.[[Value]] »).
  4. Returnunused.

16.2.1.5.2 Link ( )

The Link concrete method of aCyclic Module Recordmodule takes no arguments and returns either anormal completion containingunused or athrow completion. On success, Link transitions this module's[[Status]] fromunlinked tolinked. On failure, an exception is thrown and this module's[[Status]] remainsunlinked. (Most of the work is done by the auxiliary functionInnerModuleLinking.) It performs the following steps when called:

  1. Assert:module.[[Status]] is one ofunlinked,linked,evaluating-async, orevaluated.
  2. Letstack be a new emptyList.
  3. Letresult beCompletion(InnerModuleLinking(module,stack, 0)).
  4. Ifresult is anabrupt completion, then
    1. For eachCyclic Module Recordm ofstack, do
      1. Assert:m.[[Status]] islinking.
      2. Setm.[[Status]] tounlinked.
    2. Assert:module.[[Status]] isunlinked.
    3. Return ? result.
  5. Assert:module.[[Status]] is one oflinked,evaluating-async, orevaluated.
  6. Assert:stack is empty.
  7. Returnunused.

16.2.1.5.2.1 InnerModuleLinking (module,stack,index )

The abstract operation InnerModuleLinking takes argumentsmodule (aModule Record),stack (aList ofCyclic Module Records), andindex (a non-negativeinteger) and returns either anormal completion containing a non-negativeinteger or athrow completion. It is used by Link to perform the actual linking process formodule, as well as recursively on all other modules in the dependency graph. Thestack andindex parameters, as well as a module's[[DFSIndex]] and[[DFSAncestorIndex]] fields, keep track of the depth-first search (DFS) traversal. In particular,[[DFSAncestorIndex]] is used to discover strongly connected components (SCCs), such that all modules in an SCC transition tolinked together. It performs the following steps when called:

  1. Ifmodule is not aCyclic Module Record, then
    1. Perform ? module.Link().
    2. Returnindex.
  2. Ifmodule.[[Status]] is one oflinking,linked,evaluating-async, orevaluated, then
    1. Returnindex.
  3. Assert:module.[[Status]] isunlinked.
  4. Setmodule.[[Status]] tolinking.
  5. Setmodule.[[DFSIndex]] toindex.
  6. Setmodule.[[DFSAncestorIndex]] toindex.
  7. Setindex toindex + 1.
  8. Appendmodule tostack.
  9. For each Stringrequired ofmodule.[[RequestedModules]], do
    1. LetrequiredModule beGetImportedModule(module,required).
    2. Setindex to ? InnerModuleLinking(requiredModule,stack,index).
    3. IfrequiredModule is aCyclic Module Record, then
      1. Assert:requiredModule.[[Status]] is one oflinking,linked,evaluating-async, orevaluated.
      2. Assert:requiredModule.[[Status]] islinking if and only ifstack containsrequiredModule.
      3. IfrequiredModule.[[Status]] islinking, then
        1. Setmodule.[[DFSAncestorIndex]] tomin(module.[[DFSAncestorIndex]],requiredModule.[[DFSAncestorIndex]]).
  10. Perform ? module.InitializeEnvironment().
  11. Assert:module occurs exactly once instack.
  12. Assert:module.[[DFSAncestorIndex]]module.[[DFSIndex]].
  13. Ifmodule.[[DFSAncestorIndex]] =module.[[DFSIndex]], then
    1. Letdone befalse.
    2. Repeat, whiledone isfalse,
      1. LetrequiredModule be the last element ofstack.
      2. Remove the last element ofstack.
      3. Assert:requiredModule is aCyclic Module Record.
      4. SetrequiredModule.[[Status]] tolinked.
      5. IfrequiredModule andmodule are the sameModule Record, setdone totrue.
  14. Returnindex.

16.2.1.5.3 Evaluate ( )

The Evaluate concrete method of aCyclic Module Recordmodule takes no arguments and returns a Promise. Evaluate transitions this module's[[Status]] fromlinked to eitherevaluating-async orevaluated. The first time it is called on a module in a given strongly connected component, Evaluate creates and returns a Promise which resolves when the module has finished evaluating. This Promise is stored in the[[TopLevelCapability]] field of the[[CycleRoot]] for the component. Future invocations of Evaluate on any module in the component return the same Promise. (Most of the work is done by the auxiliary functionInnerModuleEvaluation.) It performs the following steps when called:

  1. Assert: This call to Evaluate is not happening at the same time as another call to Evaluate within thesurrounding agent.
  2. Assert:module.[[Status]] is one oflinked,evaluating-async, orevaluated.
  3. Ifmodule.[[Status]] is eitherevaluating-async orevaluated, setmodule tomodule.[[CycleRoot]].
  4. Ifmodule.[[TopLevelCapability]] is notempty, then
    1. Returnmodule.[[TopLevelCapability]].[[Promise]].
  5. Letstack be a new emptyList.
  6. Letcapability be ! NewPromiseCapability(%Promise%).
  7. Setmodule.[[TopLevelCapability]] tocapability.
  8. Letresult beCompletion(InnerModuleEvaluation(module,stack, 0)).
  9. Ifresult is anabrupt completion, then
    1. For eachCyclic Module Recordm ofstack, do
      1. Assert:m.[[Status]] isevaluating.
      2. Setm.[[Status]] toevaluated.
      3. Setm.[[EvaluationError]] toresult.
    2. Assert:module.[[Status]] isevaluated.
    3. Assert:module.[[EvaluationError]] isresult.
    4. Perform ! Call(capability.[[Reject]],undefined, «result.[[Value]] »).
  10. Else,
    1. Assert:module.[[Status]] is eitherevaluating-async orevaluated.
    2. Assert:module.[[EvaluationError]] isempty.
    3. Ifmodule.[[AsyncEvaluation]] isfalse, then
      1. Assert:module.[[Status]] isevaluated.
      2. Perform ! Call(capability.[[Resolve]],undefined, «undefined »).
    4. Assert:stack is empty.
  11. Returncapability.[[Promise]].

16.2.1.5.3.1 InnerModuleEvaluation (module,stack,index )

The abstract operation InnerModuleEvaluation takes argumentsmodule (aModule Record),stack (aList ofCyclic Module Records), andindex (a non-negativeinteger) and returns either anormal completion containing a non-negativeinteger or athrow completion. It is used by Evaluate to perform the actual evaluation process formodule, as well as recursively on all other modules in the dependency graph. Thestack andindex parameters, as well asmodule's[[DFSIndex]] and[[DFSAncestorIndex]] fields, are used the same way as inInnerModuleLinking. It performs the following steps when called:

  1. Ifmodule is not aCyclic Module Record, then
    1. Letpromise be ! module.Evaluate().
    2. Assert:promise.[[PromiseState]] is notpending.
    3. Ifpromise.[[PromiseState]] isrejected, then
      1. ReturnThrowCompletion(promise.[[PromiseResult]]).
    4. Returnindex.
  2. Ifmodule.[[Status]] is eitherevaluating-async orevaluated, then
    1. Ifmodule.[[EvaluationError]] isempty, returnindex.
    2. Otherwise, return ? module.[[EvaluationError]].
  3. Ifmodule.[[Status]] isevaluating, returnindex.
  4. Assert:module.[[Status]] islinked.
  5. Setmodule.[[Status]] toevaluating.
  6. Setmodule.[[DFSIndex]] toindex.
  7. Setmodule.[[DFSAncestorIndex]] toindex.
  8. Setmodule.[[PendingAsyncDependencies]] to 0.
  9. Setindex toindex + 1.
  10. Appendmodule tostack.
  11. For each Stringrequired ofmodule.[[RequestedModules]], do
    1. LetrequiredModule beGetImportedModule(module,required).
    2. Setindex to ? InnerModuleEvaluation(requiredModule,stack,index).
    3. IfrequiredModule is aCyclic Module Record, then
      1. Assert:requiredModule.[[Status]] is one ofevaluating,evaluating-async, orevaluated.
      2. Assert:requiredModule.[[Status]] isevaluating if and only ifstack containsrequiredModule.
      3. IfrequiredModule.[[Status]] isevaluating, then
        1. Setmodule.[[DFSAncestorIndex]] tomin(module.[[DFSAncestorIndex]],requiredModule.[[DFSAncestorIndex]]).
      4. Else,
        1. SetrequiredModule torequiredModule.[[CycleRoot]].
        2. Assert:requiredModule.[[Status]] is eitherevaluating-async orevaluated.
        3. IfrequiredModule.[[EvaluationError]] is notempty, return ? requiredModule.[[EvaluationError]].
      5. IfrequiredModule.[[AsyncEvaluation]] istrue, then
        1. Setmodule.[[PendingAsyncDependencies]] tomodule.[[PendingAsyncDependencies]] + 1.
        2. Appendmodule torequiredModule.[[AsyncParentModules]].
  12. Ifmodule.[[PendingAsyncDependencies]] > 0 ormodule.[[HasTLA]] istrue, then
    1. Assert:module.[[AsyncEvaluation]] isfalse and was never previously set totrue.
    2. Setmodule.[[AsyncEvaluation]] totrue.
    3. NOTE: The order in which module records have their[[AsyncEvaluation]] fields transition totrue is significant. (See16.2.1.5.3.4.)
    4. Ifmodule.[[PendingAsyncDependencies]] = 0, performExecuteAsyncModule(module).
  13. Else,
    1. Perform ? module.ExecuteModule().
  14. Assert:module occurs exactly once instack.
  15. Assert:module.[[DFSAncestorIndex]]module.[[DFSIndex]].
  16. Ifmodule.[[DFSAncestorIndex]] =module.[[DFSIndex]], then
    1. Letdone befalse.
    2. Repeat, whiledone isfalse,
      1. LetrequiredModule be the last element ofstack.
      2. Remove the last element ofstack.
      3. Assert:requiredModule is aCyclic Module Record.
      4. IfrequiredModule.[[AsyncEvaluation]] isfalse, setrequiredModule.[[Status]] toevaluated.
      5. Otherwise, setrequiredModule.[[Status]] toevaluating-async.
      6. IfrequiredModule andmodule are the sameModule Record, setdone totrue.
      7. SetrequiredModule.[[CycleRoot]] tomodule.
  17. Returnindex.
Note 1

A module isevaluating while it is being traversed by InnerModuleEvaluation. A module isevaluated on execution completion orevaluating-async during execution if its[[HasTLA]] field istrue or if it has asynchronous dependencies.

Note 2

Any modules depending on a module of an asynchronous cycle when that cycle is notevaluating will instead depend on the execution of the root of the cycle via[[CycleRoot]]. This ensures that the cycle state can be treated as a single strongly connected component through its root module state.

16.2.1.5.3.2 ExecuteAsyncModule (module )

The abstract operation ExecuteAsyncModule takes argumentmodule (aCyclic Module Record) and returnsunused. It performs the following steps when called:

  1. Assert:module.[[Status]] is eitherevaluating orevaluating-async.
  2. Assert:module.[[HasTLA]] istrue.
  3. Letcapability be ! NewPromiseCapability(%Promise%).
  4. LetfulfilledClosure be a newAbstract Closure with no parameters that capturesmodule and performs the following steps when called:
    1. PerformAsyncModuleExecutionFulfilled(module).
    2. Returnundefined.
  5. LetonFulfilled beCreateBuiltinFunction(fulfilledClosure, 0,"", « »).
  6. LetrejectedClosure be a newAbstract Closure with parameters (error) that capturesmodule and performs the following steps when called:
    1. PerformAsyncModuleExecutionRejected(module,error).
    2. Returnundefined.
  7. LetonRejected beCreateBuiltinFunction(rejectedClosure, 0,"", « »).
  8. PerformPerformPromiseThen(capability.[[Promise]],onFulfilled,onRejected).
  9. Perform ! module.ExecuteModule(capability).
  10. Returnunused.

16.2.1.5.3.3 GatherAvailableAncestors (module,execList )

The abstract operation GatherAvailableAncestors takes argumentsmodule (aCyclic Module Record) andexecList (aList ofCyclic Module Records) and returnsunused. It performs the following steps when called:

  1. For eachCyclic Module Recordm ofmodule.[[AsyncParentModules]], do
    1. IfexecList does not containm andm.[[CycleRoot]].[[EvaluationError]] isempty, then
      1. Assert:m.[[Status]] isevaluating-async.
      2. Assert:m.[[EvaluationError]] isempty.
      3. Assert:m.[[AsyncEvaluation]] istrue.
      4. Assert:m.[[PendingAsyncDependencies]] > 0.
      5. Setm.[[PendingAsyncDependencies]] tom.[[PendingAsyncDependencies]] - 1.
      6. Ifm.[[PendingAsyncDependencies]] = 0, then
        1. Appendm toexecList.
        2. Ifm.[[HasTLA]] isfalse, performGatherAvailableAncestors(m,execList).
  2. Returnunused.
Note

When an asynchronous execution for a rootmodule is fulfilled, this function determines the list of modules which are able to synchronously execute together on this completion, populating them inexecList.

16.2.1.5.3.4 AsyncModuleExecutionFulfilled (module )

The abstract operation AsyncModuleExecutionFulfilled takes argumentmodule (aCyclic Module Record) and returnsunused. It performs the following steps when called:

  1. Ifmodule.[[Status]] isevaluated, then
    1. Assert:module.[[EvaluationError]] is notempty.
    2. Returnunused.
  2. Assert:module.[[Status]] isevaluating-async.
  3. Assert:module.[[AsyncEvaluation]] istrue.
  4. Assert:module.[[EvaluationError]] isempty.
  5. Setmodule.[[AsyncEvaluation]] tofalse.
  6. Setmodule.[[Status]] toevaluated.
  7. Ifmodule.[[TopLevelCapability]] is notempty, then
    1. Assert:module.[[CycleRoot]] ismodule.
    2. Perform ! Call(module.[[TopLevelCapability]].[[Resolve]],undefined, «undefined »).
  8. LetexecList be a new emptyList.
  9. PerformGatherAvailableAncestors(module,execList).
  10. LetsortedExecList be aList whose elements are the elements ofexecList, in the order in which they had their[[AsyncEvaluation]] fields set totrue inInnerModuleEvaluation.
  11. Assert: All elements ofsortedExecList have their[[AsyncEvaluation]] field set totrue,[[PendingAsyncDependencies]] field set to 0, and[[EvaluationError]] field set toempty.
  12. For eachCyclic Module Recordm ofsortedExecList, do
    1. Ifm.[[Status]] isevaluated, then
      1. Assert:m.[[EvaluationError]] is notempty.
    2. Else ifm.[[HasTLA]] istrue, then
      1. PerformExecuteAsyncModule(m).
    3. Else,
      1. Letresult bem.ExecuteModule().
      2. Ifresult is anabrupt completion, then
        1. PerformAsyncModuleExecutionRejected(m,result.[[Value]]).
      3. Else,
        1. Setm.[[Status]] toevaluated.
        2. Ifm.[[TopLevelCapability]] is notempty, then
          1. Assert:m.[[CycleRoot]] ism.
          2. Perform ! Call(m.[[TopLevelCapability]].[[Resolve]],undefined, «undefined »).
  13. Returnunused.

16.2.1.5.3.5 AsyncModuleExecutionRejected (module,error )

The abstract operation AsyncModuleExecutionRejected takes argumentsmodule (aCyclic Module Record) anderror (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. Ifmodule.[[Status]] isevaluated, then
    1. Assert:module.[[EvaluationError]] is notempty.
    2. Returnunused.
  2. Assert:module.[[Status]] isevaluating-async.
  3. Assert:module.[[AsyncEvaluation]] istrue.
  4. Assert:module.[[EvaluationError]] isempty.
  5. Setmodule.[[EvaluationError]] toThrowCompletion(error).
  6. Setmodule.[[Status]] toevaluated.
  7. For eachCyclic Module Recordm ofmodule.[[AsyncParentModules]], do
    1. PerformAsyncModuleExecutionRejected(m,error).
  8. Ifmodule.[[TopLevelCapability]] is notempty, then
    1. Assert:module.[[CycleRoot]] ismodule.
    2. Perform ! Call(module.[[TopLevelCapability]].[[Reject]],undefined, «error »).
  9. Returnunused.

16.2.1.5.4 Example Cyclic Module Record Graphs

This non-normative section gives a series of examples of the linking and evaluation of a few common module graphs, with a specific focus on how errors can occur.

First consider the following simple module graph:

Figure 2: A simple module graph
A module graph in which module A depends on module B, and module B depends on module C

Let's first assume that there are no error conditions. When ahost first callsA.LoadRequestedModules(), this will complete successfully by assumption, and recursively load the dependencies ofB andC as well (respectively,C and none), and then setA.[[Status]] =B.[[Status]] =C.[[Status]] =unlinked. Then, when thehost callsA.Link(), it will complete successfully (again by assumption) such thatA.[[Status]] =B.[[Status]] =C.[[Status]] = linked. These preparatory steps can be performed at any time. Later, when thehost is ready to incur any possible side effects of the modules, it can callA.Evaluate(), which will complete successfully, returning a Promise resolving toundefined (again by assumption), recursively having evaluated firstC and thenB. Each module's[[Status]] at this point will beevaluated.

Consider then cases involving linking errors, after a successful call toA.LoadRequestedModules(). IfInnerModuleLinking ofC succeeds but, thereafter, fails forB, for example because it imports something thatC does not provide, then the originalA.Link() will fail, and bothA andB's[[Status]] remainunlinked.C's[[Status]] has becomelinked, though.

Finally, consider a case involving evaluation errors after a successful call to Link(). IfInnerModuleEvaluation ofC succeeds but, thereafter, fails forB, for example becauseB contains code that throws an exception, then the originalA.Evaluate() will fail, returning a rejected Promise. The resulting exception will be recorded in bothA andB's[[EvaluationError]] fields, and their[[Status]] will becomeevaluated.C will also becomeevaluated but, in contrast toA andB, will remain without an[[EvaluationError]], as it successfully completed evaluation. Storing the exception ensures that any time ahost tries to reuseA orB by calling their Evaluate() method, it will encounter the same exception. (Hosts are not required to reuseCyclic Module Records; similarly,hosts are not required to expose the exception objects thrown by these methods. However, the specification enables such uses.)

Now consider a different type of error condition:

Figure 3: A module graph with an unresolvable module
A module graph in which module A depends on a missing (unresolvable) module, represented by ???

In this scenario, moduleA declares a dependency on some other module, but noModule Record exists for that module, i.e.HostLoadImportedModule callsFinishLoadingImportedModule with an exception when asked for it. This could occur for a variety of reasons, such as the corresponding resource not existing, or the resource existing butParseModule returning some errors when trying to parse the resulting source text.Hosts can choose to expose the cause of failure via the completion they pass toFinishLoadingImportedModule. In any case, this exception causes a loading failure, which results inA's[[Status]] remainingnew.

The difference here between loading, linking and evaluation errors is due to the following characteristic:

  • Evaluation must be only performed once, as it can cause side effects; it is thus important to remember whether evaluation has already been performed, even if unsuccessfully. (In the error case, it makes sense to also remember the exception because otherwise subsequent Evaluate() calls would have to synthesize a new one.)
  • Linking, on the other hand, is side-effect-free, and thus even if it fails, it can be retried at a later time with no issues.
  • Loading closely interacts with thehost, and it may be desiderable for some of them to allow users to retry failed loads (for example, if the failure is caused by temporarily bad network conditions).

Now, consider a module graph with a cycle:

Figure 4: A cyclic module graph
A module graph in which module A depends on module B and C, but module B also depends on module A

Here we assume that the entry point is moduleA, so that thehost proceeds by callingA.LoadRequestedModules(), which performsInnerModuleLoading onA. This in turn callsInnerModuleLoading onB andC. Because of the cycle, this again triggersInnerModuleLoading onA, but at this point it is a no-op sinceA's dependencies loading has already been triggered during this LoadRequestedModules process. When all the modules in the graph have been successfully loaded, their[[Status]] transitions fromnew tounlinked at the same time.

Then thehost proceeds by callingA.Link(), which performsInnerModuleLinking onA. This in turn callsInnerModuleLinking onB. Because of the cycle, this again triggersInnerModuleLinking onA, but at this point it is a no-op sinceA.[[Status]] is alreadylinking.B.[[Status]] itself remainslinking when control gets back toA andInnerModuleLinking is triggered onC. After this returns withC.[[Status]] beinglinked, bothA andB transition fromlinking tolinked together; this is by design, since they form a strongly connected component. It's possible to transition the status of modules in the same SCC at the same time because during this phase the module graph is traversed with a depth-first search.

An analogous story occurs for the evaluation phase of a cyclic module graph, in the success case.

Now consider a case whereA has a linking error; for example, it tries to import a binding fromC that does not exist. In that case, the above steps still occur, including the early return from the second call toInnerModuleLinking onA. However, once we unwind back to the originalInnerModuleLinking onA, it fails during InitializeEnvironment, namely right afterC.ResolveExport(). The thrownSyntaxError exception propagates up toA.Link, which resets all modules that are currently on itsstack (these are always exactly the modules that are stilllinking). Hence bothA andB becomeunlinked. Note thatC is left aslinked.

Alternatively, consider a case whereA has an evaluation error; for example, its source code throws an exception. In that case, the evaluation-time analog of the above steps still occurs, including the early return from the second call toInnerModuleEvaluation onA. However, once we unwind back to the originalInnerModuleEvaluation onA, it fails by assumption. The exception thrown propagates up toA.Evaluate(), which records the error in all modules that are currently on itsstack (i.e., the modules that are stillevaluating) as well as via[[AsyncParentModules]], which form a chain for modules which contain or depend on top-levelawait through the whole dependency graph through theAsyncModuleExecutionRejected algorithm. Hence bothA andB becomeevaluated and the exception is recorded in bothA andB's[[EvaluationError]] fields, whileC is left asevaluated with no[[EvaluationError]].

Lastly, consider a module graph with a cycle, where all modules complete asynchronously:

Figure 5: An asynchronous cyclic module graph
A module graph in which module A depends on module B and C, module B depends on module D, module C depends on module D and E, and module D depends on module A

Loading and linking happen as before, and all modules end up with[[Status]] set tolinked.

CallingA.Evaluate() callsInnerModuleEvaluation onA,B, andD, which all transition toevaluating. ThenInnerModuleEvaluation is called onA again, which is a no-op because it is alreadyevaluating. At this point,D.[[PendingAsyncDependencies]] is 0, soExecuteAsyncModule(D) is called and we callD.ExecuteModule with a new PromiseCapability tracking the asynchronous execution ofD. We unwind back to theInnerModuleEvaluation onB, settingB.[[PendingAsyncDependencies]] to 1 andB.[[AsyncEvaluation]] totrue. We unwind back to the originalInnerModuleEvaluation onA, settingA.[[PendingAsyncDependencies]] to 1. In the next iteration of the loop overA's dependencies, we callInnerModuleEvaluation onC and thus onD (again a no-op) andE. AsE has no dependencies and is not part of a cycle, we callExecuteAsyncModule(E) in the same manner asD andE is immediately removed from the stack. We unwind once more to the originalInnerModuleEvaluation onA, settingC.[[AsyncEvaluation]] totrue. Now we finish the loop overA's dependencies, setA.[[AsyncEvaluation]] totrue, and remove the entire strongly connected component from the stack, transitioning all of the modules toevaluating-async at once. At this point, the fields of the modules are as given inTable 46.

Table 46: Module fields after the initial Evaluate() call
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
A00evaluating-asynctrue« »2 (B andC)
B10evaluating-asynctrue«A »1 (D)
C20evaluating-asynctrue«A »2 (D andE)
D30evaluating-asynctrue«B,C »0
E44evaluating-asynctrue«C »0

Let us assume thatE finishes executing first. When that happens,AsyncModuleExecutionFulfilled is called,E.[[Status]] is set toevaluated andC.[[PendingAsyncDependencies]] is decremented to become 1. The fields of the updated modules are as given inTable 47.

Table 47: Module fields after moduleE finishes executing
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
C20evaluating-asynctrue«A »1 (D)
E44evaluatedtrue«C »0

D is next to finish (as it was the only module that was still executing). When that happens,AsyncModuleExecutionFulfilled is called again andD.[[Status]] is set toevaluated. ThenB.[[PendingAsyncDependencies]] is decremented to become 0,ExecuteAsyncModule is called onB, and it starts executing.C.[[PendingAsyncDependencies]] is also decremented to become 0, andC starts executing (potentially in parallel toB ifB contains anawait). The fields of the updated modules are as given inTable 48.

Table 48: Module fields after moduleD finishes executing
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
B10evaluating-asynctrue«A »0
C20evaluating-asynctrue«A »0
D30evaluatedtrue«B,C »0

Let us assume thatC finishes executing next. When that happens,AsyncModuleExecutionFulfilled is called again,C.[[Status]] is set toevaluated andA.[[PendingAsyncDependencies]] is decremented to become 1. The fields of the updated modules are as given inTable 49.

Table 49: Module fields after moduleC finishes executing
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
A00evaluating-asynctrue« »1 (B)
C20evaluatedtrue«A »0

Then,B finishes executing. When that happens,AsyncModuleExecutionFulfilled is called again andB.[[Status]] is set toevaluated.A.[[PendingAsyncDependencies]] is decremented to become 0, soExecuteAsyncModule is called and it starts executing. The fields of the updated modules are as given inTable 50.

Table 50: Module fields after moduleB finishes executing
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
A00evaluating-asynctrue« »0
B10evaluatedtrue«A »0

Finally,A finishes executing. When that happens,AsyncModuleExecutionFulfilled is called again andA.[[Status]] is set toevaluated. At this point, the Promise inA.[[TopLevelCapability]] (which was returned fromA.Evaluate()) is resolved, and this concludes the handling of this module graph. The fields of the updated module are as given inTable 51.

Table 51: Module fields after moduleA finishes executing
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]]
A00evaluatedtrue« »0

Alternatively, consider a failure case whereC fails execution and returns an error beforeB has finished executing. When that happens,AsyncModuleExecutionRejected is called, which setsC.[[Status]] toevaluated andC.[[EvaluationError]] to the error. It then propagates this error to all of the AsyncParentModules by performingAsyncModuleExecutionRejected on each of them. The fields of the updated modules are as given inTable 52.

Table 52: Module fields after moduleC finishes with an error
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]][[EvaluationError]]
A00evaluatedtrue« »1 (B)empty
C21evaluatedtrue«A »0C's evaluation error

A will be rejected with the same error asC sinceC will callAsyncModuleExecutionRejected onA withC's error.A.[[Status]] is set toevaluated. At this point the Promise inA.[[TopLevelCapability]] (which was returned fromA.Evaluate()) is rejected. The fields of the updated module are as given inTable 53.

Table 53: Module fields after moduleA is rejected
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]][[EvaluationError]]
A00evaluatedtrue« »0C'sEvaluation Error

Then,B finishes executing without an error. When that happens,AsyncModuleExecutionFulfilled is called again andB.[[Status]] is set toevaluated.GatherAvailableAncestors is called onB. However,A.[[CycleRoot]] isA which has an evaluation error, so it will not be added to the returnedsortedExecList andAsyncModuleExecutionFulfilled will return without further processing. Any future importer ofB will resolve the rejection ofB.[[CycleRoot]].[[EvaluationError]] from the evaluation error fromC that was set on the cycle rootA. The fields of the updated modules are as given inTable 54.

Table 54: Module fields after moduleB finishes executing in an erroring graph
Module[[DFSIndex]][[DFSAncestorIndex]][[Status]][[AsyncEvaluation]][[AsyncParentModules]][[PendingAsyncDependencies]][[EvaluationError]]
A00evaluatedtrue« »0C'sEvaluation Error
B10evaluatedtrue«A »0empty

16.2.1.6 Source Text Module Records

ASource Text Module Record is used to represent information about a module that was defined fromECMAScript source text (11) that was parsed using thegoal symbolModule. Its fields contain digested information about the names that are imported and exported by the module, and its concrete methods use these digests to link and evaluate the module.

ASource Text Module Record can exist in a module graph with other subclasses of the abstractModule Record type, and can participate in cycles with other subclasses of theCyclic Module Record type.

In addition to the fields defined inTable 43,Source Text Module Records have the additional fields listed inTable 55. Each of these fields is initially set inParseModule.

Table 55: Additional Fields ofSource Text Module Records
Field Name Value Type Meaning
[[ECMAScriptCode]] aParse Node The result of parsing the source text of this module usingModule as thegoal symbol.
[[Context]] anECMAScript code execution context orempty Theexecution context associated with this module. It isempty until the module's environment has been initialized.
[[ImportMeta]] an Object orempty An object exposed through theimport.meta meta property. It isempty until it is accessed by ECMAScript code.
[[ImportEntries]] aList ofImportEntry Records AList of ImportEntry records derived from the code of this module.
[[LocalExportEntries]] aList ofExportEntry Records AList of ExportEntry records derived from the code of this module that correspond to declarations that occur within the module.
[[IndirectExportEntries]] aList ofExportEntry Records AList of ExportEntry records derived from the code of this module that correspond to reexported imports that occur within the module or exports fromexport * as namespace declarations.
[[StarExportEntries]] aList ofExportEntry Records AList of ExportEntry records derived from the code of this module that correspond toexport * declarations that occur within the module, not includingexport * as namespace declarations.

AnImportEntry Record is aRecord that digests information about a single declarative import. EachImportEntry Record has the fields defined inTable 56:

Table 56:ImportEntry Record Fields
Field Name Value Type Meaning
[[ModuleRequest]] a String String value of theModuleSpecifier of theImportDeclaration.
[[ImportName]] a String ornamespace-object The name under which the desired binding is exported by the module identified by[[ModuleRequest]]. The valuenamespace-object indicates that the import request is for the target module's namespace object.
[[LocalName]] a String The name that is used to locally access the imported value from within the importing module.
Note 1

Table 57 gives examples of ImportEntry records fields used to represent the syntactic import forms:

Table 57 (Informative): Import Forms Mappings toImportEntry Records
Import Statement Form[[ModuleRequest]][[ImportName]][[LocalName]]
import v from "mod";"mod""default""v"
import * as ns from "mod";"mod"namespace-object"ns"
import {x} from "mod";"mod""x""x"
import {x as v} from "mod";"mod""x""v"
import "mod"; AnImportEntry Record is not created.

AnExportEntry Record is aRecord that digests information about a single declarative export. EachExportEntry Record has the fields defined inTable 58:

Table 58:ExportEntry Record Fields
Field Name Value Type Meaning
[[ExportName]] a String ornull The name used to export this binding by this module.
[[ModuleRequest]] a String ornull The String value of theModuleSpecifier of theExportDeclaration.null if theExportDeclaration does not have aModuleSpecifier.
[[ImportName]] a String,null,all, orall-but-default The name under which the desired binding is exported by the module identified by[[ModuleRequest]].null if theExportDeclaration does not have aModuleSpecifier.all is used forexport * as ns from "mod" declarations.all-but-default is used forexport * from "mod" declarations.
[[LocalName]] a String ornull The name that is used to locally access the exported value from within the importing module.null if the exported value is not locally accessible from within the module.
Note 2

Table 59 gives examples of the ExportEntry record fields used to represent the syntactic export forms:

Table 59 (Informative): Export Forms Mappings toExportEntry Records
Export Statement Form[[ExportName]][[ModuleRequest]][[ImportName]][[LocalName]]
export var v;"v"nullnull"v"
export default function f() {}"default"nullnull"f"
export default function () {}"default"nullnull"*default*"
export default 42;"default"nullnull"*default*"
export {x};"x"nullnull"x"
export {v as x};"x"nullnull"v"
export {x} from "mod";"x""mod""x"null
export {v as x} from "mod";"x""mod""v"null
export * from "mod";null"mod"all-but-defaultnull
export * as ns from "mod";"ns""mod"allnull

The following definitions specify the required concrete methods and otherabstract operations forSource Text Module Records

16.2.1.6.1 ParseModule (sourceText,realm,hostDefined )

The abstract operation ParseModule takes argumentssourceText (ECMAScript source text),realm (aRealm Record), andhostDefined (anything) and returns aSource Text Module Record or a non-emptyList ofSyntaxError objects. It creates aSource Text Module Record based upon the result of parsingsourceText as aModule. It performs the following steps when called:

  1. Letbody beParseText(sourceText,Module).
  2. Ifbody is aList of errors, returnbody.
  3. LetrequestedModules be theModuleRequests ofbody.
  4. LetimportEntries beImportEntries ofbody.
  5. LetimportedBoundNames beImportedLocalNames(importEntries).
  6. LetindirectExportEntries be a new emptyList.
  7. LetlocalExportEntries be a new emptyList.
  8. LetstarExportEntries be a new emptyList.
  9. LetexportEntries beExportEntries ofbody.
  10. For eachExportEntry Recordee ofexportEntries, do
    1. Ifee.[[ModuleRequest]] isnull, then
      1. IfimportedBoundNames does not containee.[[LocalName]], then
        1. Appendee tolocalExportEntries.
      2. Else,
        1. Letie be the element ofimportEntries whose[[LocalName]] isee.[[LocalName]].
        2. Ifie.[[ImportName]] isnamespace-object, then
          1. NOTE: This is a re-export of an imported module namespace object.
          2. Appendee tolocalExportEntries.
        3. Else,
          1. NOTE: This is a re-export of a single name.
          2. Append theExportEntry Record {[[ModuleRequest]]:ie.[[ModuleRequest]],[[ImportName]]:ie.[[ImportName]],[[LocalName]]:null,[[ExportName]]:ee.[[ExportName]] } toindirectExportEntries.
    2. Else ifee.[[ImportName]] isall-but-default, then
      1. Assert:ee.[[ExportName]] isnull.
      2. Appendee tostarExportEntries.
    3. Else,
      1. Appendee toindirectExportEntries.
  11. Letasync bebodyContainsawait.
  12. ReturnSource Text Module Record {[[Realm]]:realm,[[Environment]]:empty,[[Namespace]]:empty,[[CycleRoot]]:empty,[[HasTLA]]:async,[[AsyncEvaluation]]:false,[[TopLevelCapability]]:empty,[[AsyncParentModules]]: « »,[[PendingAsyncDependencies]]:empty,[[Status]]:new,[[EvaluationError]]:empty,[[HostDefined]]:hostDefined,[[ECMAScriptCode]]:body,[[Context]]:empty,[[ImportMeta]]:empty,[[RequestedModules]]:requestedModules,[[LoadedModules]]: « »,[[ImportEntries]]:importEntries,[[LocalExportEntries]]:localExportEntries,[[IndirectExportEntries]]:indirectExportEntries,[[StarExportEntries]]:starExportEntries,[[DFSIndex]]:empty,[[DFSAncestorIndex]]:empty }.
Note

An implementation may parse module source text and analyse it for Early Error conditions prior to the evaluation of ParseModule for that module source text. However, the reporting of any errors must be deferred until the point where this specification actually performs ParseModule upon that source text.

16.2.1.6.2 GetExportedNames ( [exportStarSet ] )

The GetExportedNames concrete method of aSource Text Module Recordmodule takes optional argumentexportStarSet (aList ofSource Text Module Records) and returns aList of Strings. It performs the following steps when called:

  1. Assert:module.[[Status]] is notnew.
  2. IfexportStarSet is not present, setexportStarSet to a new emptyList.
  3. IfexportStarSet containsmodule, then
    1. Assert: We've reached the starting point of anexport * circularity.
    2. Return a new emptyList.
  4. Appendmodule toexportStarSet.
  5. LetexportedNames be a new emptyList.
  6. For eachExportEntry Recorde ofmodule.[[LocalExportEntries]], do
    1. Assert:module provides the direct binding for this export.
    2. Assert:e.[[ExportName]] is notnull.
    3. Appende.[[ExportName]] toexportedNames.
  7. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. Assert:module imports a specific binding for this export.
    2. Assert:e.[[ExportName]] is notnull.
    3. Appende.[[ExportName]] toexportedNames.
  8. For eachExportEntry Recorde ofmodule.[[StarExportEntries]], do
    1. Assert:e.[[ModuleRequest]] is notnull.
    2. LetrequestedModule beGetImportedModule(module,e.[[ModuleRequest]]).
    3. LetstarNames berequestedModule.GetExportedNames(exportStarSet).
    4. For each elementn ofstarNames, do
      1. IfSameValue(n,"default") isfalse, then
        1. IfexportedNames does not containn, then
          1. Appendn toexportedNames.
  9. ReturnexportedNames.
Note

GetExportedNames does not filter out or throw an exception for names that have ambiguous star export bindings.

16.2.1.6.3 ResolveExport (exportName [ ,resolveSet ] )

The ResolveExport concrete method of aSource Text Module Recordmodule takes argumentexportName (a String) and optional argumentresolveSet (aList ofRecords with fields[[Module]] (aModule Record) and[[ExportName]] (a String)) and returns aResolvedBinding Record,null, orambiguous.

ResolveExport attempts to resolve an imported binding to the actual defining module and local binding name. The defining module may be the module represented by theModule Record this method was invoked on or some other module that is imported by that module. The parameterresolveSet is used to detect unresolved circular import/export paths. If a pair consisting of specificModule Record andexportName is reached that is already inresolveSet, an import circularity has been encountered. Before recursively calling ResolveExport, a pair consisting ofmodule andexportName is added toresolveSet.

If a defining module is found, aResolvedBinding Record {[[Module]],[[BindingName]] } is returned. This record identifies the resolved binding of the originally requested export, unless this is the export of a namespace with no local binding. In this case,[[BindingName]] will be set tonamespace. If no definition was found or the request is found to be circular,null is returned. If the request is found to be ambiguous,ambiguous is returned.

It performs the following steps when called:

  1. Assert:module.[[Status]] is notnew.
  2. IfresolveSet is not present, setresolveSet to a new emptyList.
  3. For eachRecord {[[Module]],[[ExportName]] }r ofresolveSet, do
    1. Ifmodule andr.[[Module]] are the sameModule Record andSameValue(exportName,r.[[ExportName]]) istrue, then
      1. Assert: This is a circular import request.
      2. Returnnull.
  4. Append theRecord {[[Module]]:module,[[ExportName]]:exportName } toresolveSet.
  5. For eachExportEntry Recorde ofmodule.[[LocalExportEntries]], do
    1. IfSameValue(exportName,e.[[ExportName]]) istrue, then
      1. Assert:module provides the direct binding for this export.
      2. ReturnResolvedBinding Record {[[Module]]:module,[[BindingName]]:e.[[LocalName]] }.
  6. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. IfSameValue(exportName,e.[[ExportName]]) istrue, then
      1. Assert:e.[[ModuleRequest]] is notnull.
      2. LetimportedModule beGetImportedModule(module,e.[[ModuleRequest]]).
      3. Ife.[[ImportName]] isall, then
        1. Assert:module does not provide the direct binding for this export.
        2. ReturnResolvedBinding Record {[[Module]]:importedModule,[[BindingName]]:namespace }.
      4. Else,
        1. Assert:module imports a specific binding for this export.
        2. ReturnimportedModule.ResolveExport(e.[[ImportName]],resolveSet).
  7. IfSameValue(exportName,"default") istrue, then
    1. Assert: Adefault export was not explicitly defined by this module.
    2. Returnnull.
    3. NOTE: Adefault export cannot be provided by anexport * from "mod" declaration.
  8. LetstarResolution benull.
  9. For eachExportEntry Recorde ofmodule.[[StarExportEntries]], do
    1. Assert:e.[[ModuleRequest]] is notnull.
    2. LetimportedModule beGetImportedModule(module,e.[[ModuleRequest]]).
    3. Letresolution beimportedModule.ResolveExport(exportName,resolveSet).
    4. Ifresolution isambiguous, returnambiguous.
    5. Ifresolution is notnull, then
      1. Assert:resolution is aResolvedBinding Record.
      2. IfstarResolution isnull, then
        1. SetstarResolution toresolution.
      3. Else,
        1. Assert: There is more than one* import that includes the requested name.
        2. Ifresolution.[[Module]] andstarResolution.[[Module]] are not the sameModule Record, returnambiguous.
        3. Ifresolution.[[BindingName]] is notstarResolution.[[BindingName]] and eitherresolution.[[BindingName]] orstarResolution.[[BindingName]] isnamespace, returnambiguous.
        4. Ifresolution.[[BindingName]]is a String,starResolution.[[BindingName]]is a String, andSameValue(resolution.[[BindingName]],starResolution.[[BindingName]]) isfalse, returnambiguous.
  10. ReturnstarResolution.

16.2.1.6.4 InitializeEnvironment ( )

The InitializeEnvironment concrete method of aSource Text Module Recordmodule takes no arguments and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. For eachExportEntry Recorde ofmodule.[[IndirectExportEntries]], do
    1. Assert:e.[[ExportName]] is notnull.
    2. Letresolution bemodule.ResolveExport(e.[[ExportName]]).
    3. Ifresolution is eithernull orambiguous, throw aSyntaxError exception.
    4. Assert:resolution is aResolvedBinding Record.
  2. Assert: All named exports frommodule are resolvable.
  3. Letrealm bemodule.[[Realm]].
  4. Assert:realm is notundefined.
  5. Letenv beNewModuleEnvironment(realm.[[GlobalEnv]]).
  6. Setmodule.[[Environment]] toenv.
  7. For eachImportEntry Recordin ofmodule.[[ImportEntries]], do
    1. LetimportedModule beGetImportedModule(module,in.[[ModuleRequest]]).
    2. Ifin.[[ImportName]] isnamespace-object, then
      1. Letnamespace beGetModuleNamespace(importedModule).
      2. Perform ! env.CreateImmutableBinding(in.[[LocalName]],true).
      3. Perform ! env.InitializeBinding(in.[[LocalName]],namespace).
    3. Else,
      1. Letresolution beimportedModule.ResolveExport(in.[[ImportName]]).
      2. Ifresolution is eithernull orambiguous, throw aSyntaxError exception.
      3. Ifresolution.[[BindingName]] isnamespace, then
        1. Letnamespace beGetModuleNamespace(resolution.[[Module]]).
        2. Perform ! env.CreateImmutableBinding(in.[[LocalName]],true).
        3. Perform ! env.InitializeBinding(in.[[LocalName]],namespace).
      4. Else,
        1. Performenv.CreateImportBinding(in.[[LocalName]],resolution.[[Module]],resolution.[[BindingName]]).
  8. LetmoduleContext be a newECMAScript code execution context.
  9. Set the Function ofmoduleContext tonull.
  10. Assert:module.[[Realm]] is notundefined.
  11. Set theRealm ofmoduleContext tomodule.[[Realm]].
  12. Set the ScriptOrModule ofmoduleContext tomodule.
  13. Set the VariableEnvironment ofmoduleContext tomodule.[[Environment]].
  14. Set the LexicalEnvironment ofmoduleContext tomodule.[[Environment]].
  15. Set the PrivateEnvironment ofmoduleContext tonull.
  16. Setmodule.[[Context]] tomoduleContext.
  17. PushmoduleContext onto theexecution context stack;moduleContext is now therunning execution context.
  18. Letcode bemodule.[[ECMAScriptCode]].
  19. LetvarDeclarations be theVarScopedDeclarations ofcode.
  20. LetdeclaredVarNames be a new emptyList.
  21. For each elementd ofvarDeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. IfdeclaredVarNames does not containdn, then
        1. Perform ! env.CreateMutableBinding(dn,false).
        2. Perform ! env.InitializeBinding(dn,undefined).
        3. Appenddn todeclaredVarNames.
  22. LetlexDeclarations be theLexicallyScopedDeclarations ofcode.
  23. LetprivateEnv benull.
  24. For each elementd oflexDeclarations, do
    1. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ! env.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ! env.CreateMutableBinding(dn,false).
      3. Ifd is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration, then
        1. Letfo beInstantiateFunctionObject ofd with argumentsenv andprivateEnv.
        2. Perform ! env.InitializeBinding(dn,fo).
  25. RemovemoduleContext from theexecution context stack.
  26. Returnunused.

16.2.1.6.5 ExecuteModule ( [capability ] )

The ExecuteModule concrete method of aSource Text Module Recordmodule takes optional argumentcapability (aPromiseCapability Record) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. LetmoduleContext be a newECMAScript code execution context.
  2. Set the Function ofmoduleContext tonull.
  3. Set theRealm ofmoduleContext tomodule.[[Realm]].
  4. Set the ScriptOrModule ofmoduleContext tomodule.
  5. Assert:module has been linked and declarations in its module environment have been instantiated.
  6. Set the VariableEnvironment ofmoduleContext tomodule.[[Environment]].
  7. Set the LexicalEnvironment ofmoduleContext tomodule.[[Environment]].
  8. Suspend therunning execution context.
  9. Ifmodule.[[HasTLA]] isfalse, then
    1. Assert:capability is not present.
    2. PushmoduleContext onto theexecution context stack;moduleContext is now therunning execution context.
    3. Letresult beCompletion(Evaluation ofmodule.[[ECMAScriptCode]]).
    4. SuspendmoduleContext and remove it from theexecution context stack.
    5. Resume the context that is now on the top of theexecution context stack as therunning execution context.
    6. Ifresult is anabrupt completion, then
      1. Return ? result.
  10. Else,
    1. Assert:capability is aPromiseCapability Record.
    2. PerformAsyncBlockStart(capability,module.[[ECMAScriptCode]],moduleContext).
  11. Returnunused.

16.2.1.7 GetImportedModule (referrer,specifier )

The abstract operation GetImportedModule takes argumentsreferrer (aCyclic Module Record) andspecifier (a String) and returns aModule Record. It performs the following steps when called:

  1. Assert: Exactly one element ofreferrer.[[LoadedModules]] is aRecord whose[[Specifier]] isspecifier, since LoadRequestedModules has completed successfully onreferrer prior to invoking this abstract operation.
  2. Letrecord be theRecord inreferrer.[[LoadedModules]] whose[[Specifier]] isspecifier.
  3. Returnrecord.[[Module]].

16.2.1.8 HostLoadImportedModule (referrer,specifier,hostDefined,payload )

Thehost-defined abstract operation HostLoadImportedModule takes argumentsreferrer (aScript Record, aCyclic Module Record, or aRealm Record),specifier (a String),hostDefined (anything), andpayload (aGraphLoadingState Record or aPromiseCapability Record) and returnsunused.

Note

An example of whenreferrer can be aRealm Record is in a web browserhost. There, if a user clicks on a control given by

<buttontype="button"onclick="import('./foo.mjs')">Click me</button>

there will be noactive script or module at the time theimport() expression runs. More generally, this can happen in any situation where thehost pushesexecution contexts withnull ScriptOrModule components onto theexecution context stack.

An implementation of HostLoadImportedModule must conform to the following requirements:

The actual process performed ishost-defined, but typically consists of performing whatever I/O operations are necessary to load the appropriateModule Record. Multiple different (referrer,specifier) pairs may map to the sameModule Record instance. The actual mapping semantics ishost-defined but typically a normalization process is applied tospecifier as part of the mapping process. A typical normalization process would include actions such as expansion of relative and abbreviated path specifiers.

16.2.1.9 FinishLoadingImportedModule (referrer,specifier,payload,result )

The abstract operation FinishLoadingImportedModule takes argumentsreferrer (aScript Record, aCyclic Module Record, or aRealm Record),specifier (a String),payload (aGraphLoadingState Record or aPromiseCapability Record), andresult (either anormal completion containing aModule Record or athrow completion) and returnsunused. It performs the following steps when called:

  1. Ifresult is anormal completion, then
    1. Ifreferrer.[[LoadedModules]] contains aRecord whose[[Specifier]] isspecifier, then
      1. Assert: ThatRecord's[[Module]] isresult.[[Value]].
    2. Else,
      1. Append theRecord {[[Specifier]]:specifier,[[Module]]:result.[[Value]] } toreferrer.[[LoadedModules]].
  2. Ifpayload is aGraphLoadingState Record, then
    1. PerformContinueModuleLoading(payload,result).
  3. Else,
    1. PerformContinueDynamicImport(payload,result).
  4. Returnunused.

16.2.1.10 GetModuleNamespace (module )

The abstract operation GetModuleNamespace takes argumentmodule (an instance of a concrete subclass ofModule Record) and returns a Module Namespace Object orempty. It retrieves the Module Namespace Object representingmodule's exports, lazily creating it the first time it was requested, and storing it inmodule.[[Namespace]] for future retrieval. It performs the following steps when called:

  1. Assert: Ifmodule is aCyclic Module Record, thenmodule.[[Status]] is notnew orunlinked.
  2. Letnamespace bemodule.[[Namespace]].
  3. Ifnamespace isempty, then
    1. LetexportedNames bemodule.GetExportedNames().
    2. LetunambiguousNames be a new emptyList.
    3. For each elementname ofexportedNames, do
      1. Letresolution bemodule.ResolveExport(name).
      2. Ifresolution is aResolvedBinding Record, appendname tounambiguousNames.
    4. Setnamespace toModuleNamespaceCreate(module,unambiguousNames).
  4. Returnnamespace.
Note

GetModuleNamespace never throws. Instead, unresolvable names are simply excluded from the namespace at this point. They will lead to a real linking error later unless they are all ambiguous star exports that are not explicitly requested anywhere.

16.2.1.11 Runtime Semantics: Evaluation

Module:[empty]
  1. Returnundefined.
ModuleBody:ModuleItemList
  1. Letresult beCompletion(Evaluation ofModuleItemList).
  2. Ifresult is anormal completion andresult.[[Value]] isempty, then
    1. Returnundefined.
  3. Return ? result.
ModuleItemList:ModuleItemListModuleItem
  1. Letsl be ? Evaluation ofModuleItemList.
  2. Lets beCompletion(Evaluation ofModuleItem).
  3. Return ? UpdateEmpty(s,sl).
Note

The value of aModuleItemList is the value of the last value-producing item in theModuleItemList.

ModuleItem:ImportDeclaration
  1. Returnempty.

16.2.2 Imports

Syntax

ImportDeclaration:importImportClauseFromClause;importModuleSpecifier;ImportClause:ImportedDefaultBindingNameSpaceImportNamedImportsImportedDefaultBinding,NameSpaceImportImportedDefaultBinding,NamedImportsImportedDefaultBinding:ImportedBindingNameSpaceImport:*asImportedBindingNamedImports:{}{ImportsList}{ImportsList,}FromClause:fromModuleSpecifierImportsList:ImportSpecifierImportsList,ImportSpecifierImportSpecifier:ImportedBindingModuleExportNameasImportedBindingModuleSpecifier:StringLiteralImportedBinding:BindingIdentifier[~Yield, +Await]

16.2.2.1 Static Semantics: Early Errors

ModuleItem:ImportDeclaration

16.2.2.2 Static Semantics: ImportEntries

Thesyntax-directed operation ImportEntries takes no arguments and returns aList ofImportEntry Records. It is defined piecewise over the following productions:

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letentries1 beImportEntries ofModuleItemList.
  2. Letentries2 beImportEntries ofModuleItem.
  3. Return thelist-concatenation ofentries1 andentries2.
ModuleItem:ExportDeclarationStatementListItem
  1. Return a new emptyList.
ImportDeclaration:importImportClauseFromClause;
  1. Letmodule be the sole element ofModuleRequests ofFromClause.
  2. ReturnImportEntriesForModule ofImportClause with argumentmodule.
ImportDeclaration:importModuleSpecifier;
  1. Return a new emptyList.

16.2.2.3 Static Semantics: ImportEntriesForModule

Thesyntax-directed operation ImportEntriesForModule takes argumentmodule (a String) and returns aList ofImportEntry Records. It is defined piecewise over the following productions:

ImportClause:ImportedDefaultBinding,NameSpaceImport
  1. Letentries1 beImportEntriesForModule ofImportedDefaultBinding with argumentmodule.
  2. Letentries2 beImportEntriesForModule ofNameSpaceImport with argumentmodule.
  3. Return thelist-concatenation ofentries1 andentries2.
ImportClause:ImportedDefaultBinding,NamedImports
  1. Letentries1 beImportEntriesForModule ofImportedDefaultBinding with argumentmodule.
  2. Letentries2 beImportEntriesForModule ofNamedImports with argumentmodule.
  3. Return thelist-concatenation ofentries1 andentries2.
ImportedDefaultBinding:ImportedBinding
  1. LetlocalName be the sole element ofBoundNames ofImportedBinding.
  2. LetdefaultEntry be theImportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:"default",[[LocalName]]:localName }.
  3. Return «defaultEntry ».
NameSpaceImport:*asImportedBinding
  1. LetlocalName be theStringValue ofImportedBinding.
  2. Letentry be theImportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:namespace-object,[[LocalName]]:localName }.
  3. Return «entry ».
NamedImports:{}
  1. Return a new emptyList.
ImportsList:ImportsList,ImportSpecifier
  1. Letspecs1 be theImportEntriesForModule ofImportsList with argumentmodule.
  2. Letspecs2 be theImportEntriesForModule ofImportSpecifier with argumentmodule.
  3. Return thelist-concatenation ofspecs1 andspecs2.
ImportSpecifier:ImportedBinding
  1. LetlocalName be the sole element ofBoundNames ofImportedBinding.
  2. Letentry be theImportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:localName,[[LocalName]]:localName }.
  3. Return «entry ».
ImportSpecifier:ModuleExportNameasImportedBinding
  1. LetimportName be theStringValue ofModuleExportName.
  2. LetlocalName be theStringValue ofImportedBinding.
  3. Letentry be theImportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:importName,[[LocalName]]:localName }.
  4. Return «entry ».

16.2.3 Exports

Syntax

ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement[~Yield, +Await]exportDeclaration[~Yield, +Await]exportdefaultHoistableDeclaration[~Yield, +Await, +Default]exportdefaultClassDeclaration[~Yield, +Await, +Default]exportdefault[lookahead ∉ {function,async[noLineTerminator here]function,class }]AssignmentExpression[+In, ~Yield, +Await];ExportFromClause:**asModuleExportNameNamedExportsNamedExports:{}{ExportsList}{ExportsList,}ExportsList:ExportSpecifierExportsList,ExportSpecifierExportSpecifier:ModuleExportNameModuleExportNameasModuleExportName

16.2.3.1 Static Semantics: Early Errors

ExportDeclaration:exportNamedExports;Note

The above rule means that eachReferencedBindings ofNamedExports is treated as anIdentifierReference.

16.2.3.2 Static Semantics: ExportedBindings

Thesyntax-directed operation ExportedBindings takes no arguments and returns aList of Strings.

Note

ExportedBindings are the locally bound names that are explicitly associated with aModule'sExportedNames.

It is defined piecewise over the following productions:

ModuleItemList:ModuleItemListModuleItem
  1. Letnames1 beExportedBindings ofModuleItemList.
  2. Letnames2 beExportedBindings ofModuleItem.
  3. Return thelist-concatenation ofnames1 andnames2.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return a new emptyList.
ExportDeclaration:exportNamedExports;
  1. Return theExportedBindings ofNamedExports.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return theBoundNames of thisExportDeclaration.
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames1 be theExportedBindings ofExportsList.
  2. Letnames2 be theExportedBindings ofExportSpecifier.
  3. Return thelist-concatenation ofnames1 andnames2.
ExportSpecifier:ModuleExportName
  1. Return aList whose sole element is theStringValue ofModuleExportName.
ExportSpecifier:ModuleExportNameasModuleExportName
  1. Return aList whose sole element is theStringValue of the firstModuleExportName.

16.2.3.3 Static Semantics: ExportedNames

Thesyntax-directed operation ExportedNames takes no arguments and returns aList of Strings.

Note

ExportedNames are the externally visible names that aModule explicitly maps to one of its local name bindings.

It is defined piecewise over the following productions:

ModuleItemList:ModuleItemListModuleItem
  1. Letnames1 beExportedNames ofModuleItemList.
  2. Letnames2 beExportedNames ofModuleItem.
  3. Return thelist-concatenation ofnames1 andnames2.
ModuleItem:ExportDeclaration
  1. Return theExportedNames ofExportDeclaration.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Return theExportedNames ofExportFromClause.
ExportFromClause:*
  1. Return a new emptyList.
ExportFromClause:*asModuleExportName
  1. Return aList whose sole element is theStringValue ofModuleExportName.
ExportFromClause:NamedExports
  1. Return theExportedNames ofNamedExports.
ExportDeclaration:exportVariableStatement
  1. Return theBoundNames ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return theBoundNames ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclarationexportdefaultClassDeclarationexportdefaultAssignmentExpression;
  1. Return «"default" ».
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames1 be theExportedNames ofExportsList.
  2. Letnames2 be theExportedNames ofExportSpecifier.
  3. Return thelist-concatenation ofnames1 andnames2.
ExportSpecifier:ModuleExportName
  1. Return aList whose sole element is theStringValue ofModuleExportName.
ExportSpecifier:ModuleExportNameasModuleExportName
  1. Return aList whose sole element is theStringValue of the secondModuleExportName.

16.2.3.4 Static Semantics: ExportEntries

Thesyntax-directed operation ExportEntries takes no arguments and returns aList ofExportEntry Records. It is defined piecewise over the following productions:

Module:[empty]
  1. Return a new emptyList.
ModuleItemList:ModuleItemListModuleItem
  1. Letentries1 beExportEntries ofModuleItemList.
  2. Letentries2 beExportEntries ofModuleItem.
  3. Return thelist-concatenation ofentries1 andentries2.
ModuleItem:ImportDeclarationStatementListItem
  1. Return a new emptyList.
ExportDeclaration:exportExportFromClauseFromClause;
  1. Letmodule be the sole element ofModuleRequests ofFromClause.
  2. ReturnExportEntriesForModule ofExportFromClause with argumentmodule.
ExportDeclaration:exportNamedExports;
  1. ReturnExportEntriesForModule ofNamedExports with argumentnull.
ExportDeclaration:exportVariableStatement
  1. Letentries be a new emptyList.
  2. Letnames be theBoundNames ofVariableStatement.
  3. For each elementname ofnames, do
    1. Append theExportEntry Record {[[ModuleRequest]]:null,[[ImportName]]:null,[[LocalName]]:name,[[ExportName]]:name } toentries.
  4. Returnentries.
ExportDeclaration:exportDeclaration
  1. Letentries be a new emptyList.
  2. Letnames be theBoundNames ofDeclaration.
  3. For each elementname ofnames, do
    1. Append theExportEntry Record {[[ModuleRequest]]:null,[[ImportName]]:null,[[LocalName]]:name,[[ExportName]]:name } toentries.
  4. Returnentries.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Letnames beBoundNames ofHoistableDeclaration.
  2. LetlocalName be the sole element ofnames.
  3. Return aList whose sole element is a newExportEntry Record {[[ModuleRequest]]:null,[[ImportName]]:null,[[LocalName]]:localName,[[ExportName]]:"default" }.
ExportDeclaration:exportdefaultClassDeclaration
  1. Letnames beBoundNames ofClassDeclaration.
  2. LetlocalName be the sole element ofnames.
  3. Return aList whose sole element is a newExportEntry Record {[[ModuleRequest]]:null,[[ImportName]]:null,[[LocalName]]:localName,[[ExportName]]:"default" }.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. Letentry be theExportEntry Record {[[ModuleRequest]]:null,[[ImportName]]:null,[[LocalName]]:"*default*",[[ExportName]]:"default" }.
  2. Return «entry ».
Note

"*default*" is used within this specification as a synthetic name for anonymous default export values. Seethis note for more details.

16.2.3.5 Static Semantics: ExportEntriesForModule

Thesyntax-directed operation ExportEntriesForModule takes argumentmodule (a String ornull) and returns aList ofExportEntry Records. It is defined piecewise over the following productions:

ExportFromClause:*
  1. Letentry be theExportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:all-but-default,[[LocalName]]:null,[[ExportName]]:null }.
  2. Return «entry ».
ExportFromClause:*asModuleExportName
  1. LetexportName be theStringValue ofModuleExportName.
  2. Letentry be theExportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:all,[[LocalName]]:null,[[ExportName]]:exportName }.
  3. Return «entry ».
NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letspecs1 be theExportEntriesForModule ofExportsList with argumentmodule.
  2. Letspecs2 be theExportEntriesForModule ofExportSpecifier with argumentmodule.
  3. Return thelist-concatenation ofspecs1 andspecs2.
ExportSpecifier:ModuleExportName
  1. LetsourceName be theStringValue ofModuleExportName.
  2. Ifmodule isnull, then
    1. LetlocalName besourceName.
    2. LetimportName benull.
  3. Else,
    1. LetlocalName benull.
    2. LetimportName besourceName.
  4. Return aList whose sole element is a newExportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:importName,[[LocalName]]:localName,[[ExportName]]:sourceName }.
ExportSpecifier:ModuleExportNameasModuleExportName
  1. LetsourceName be theStringValue of the firstModuleExportName.
  2. LetexportName be theStringValue of the secondModuleExportName.
  3. Ifmodule isnull, then
    1. LetlocalName besourceName.
    2. LetimportName benull.
  4. Else,
    1. LetlocalName benull.
    2. LetimportName besourceName.
  5. Return aList whose sole element is a newExportEntry Record {[[ModuleRequest]]:module,[[ImportName]]:importName,[[LocalName]]:localName,[[ExportName]]:exportName }.

16.2.3.6 Static Semantics: ReferencedBindings

Thesyntax-directed operation ReferencedBindings takes no arguments and returns aList ofParse Nodes. It is defined piecewise over the following productions:

NamedExports:{}
  1. Return a new emptyList.
ExportsList:ExportsList,ExportSpecifier
  1. Letnames1 be theReferencedBindings ofExportsList.
  2. Letnames2 be theReferencedBindings ofExportSpecifier.
  3. Return thelist-concatenation ofnames1 andnames2.
ExportSpecifier:ModuleExportNameasModuleExportName
  1. Return theReferencedBindings of the firstModuleExportName.
ModuleExportName:IdentifierName
  1. Return aList whose sole element is theIdentifierName.
ModuleExportName:StringLiteral
  1. Return aList whose sole element is theStringLiteral.

16.2.3.7 Runtime Semantics: Evaluation

ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;
  1. Returnempty.
ExportDeclaration:exportVariableStatement
  1. Return ? Evaluation ofVariableStatement.
ExportDeclaration:exportDeclaration
  1. Return ? Evaluation ofDeclaration.
ExportDeclaration:exportdefaultHoistableDeclaration
  1. Return ? Evaluation ofHoistableDeclaration.
ExportDeclaration:exportdefaultClassDeclaration
  1. Letvalue be ? BindingClassDeclarationEvaluation ofClassDeclaration.
  2. LetclassName be the sole element ofBoundNames ofClassDeclaration.
  3. IfclassName is"*default*", then
    1. Letenv be therunning execution context's LexicalEnvironment.
    2. Perform ? InitializeBoundName("*default*",value,env).
  4. Returnempty.
ExportDeclaration:exportdefaultAssignmentExpression;
  1. IfIsAnonymousFunctionDefinition(AssignmentExpression) istrue, then
    1. Letvalue be ? NamedEvaluation ofAssignmentExpression with argument"default".
  2. Else,
    1. Letrhs be ? Evaluation ofAssignmentExpression.
    2. Letvalue be ? GetValue(rhs).
  3. Letenv be therunning execution context's LexicalEnvironment.
  4. Perform ? InitializeBoundName("*default*",value,env).
  5. Returnempty.

17 Error Handling and Language Extensions

An implementation must report most errors at the time the relevant ECMAScript language construct is evaluated. Anearly error is an error that can be detected and reported prior to the evaluation of any construct in theScript containing the error. The presence of anearly error prevents the evaluation of the construct. An implementation must reportearly errors in aScript as part of parsing thatScript inParseScript.Early errors in aModule are reported at the point when theModule would be evaluated and theModule is never initialized.Early errors ineval code are reported at the timeeval is called and prevent evaluation of theeval code. All errors that are notearly errors are runtime errors.

An implementation must report as anearly error any occurrence of a condition that is listed in a “Static Semantics: Early Errors” subclause of this specification.

An implementation shall not treat other kinds of errors asearly errors even if the compiler can prove that a construct cannot execute without error under any circumstances. An implementation may issue an early warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

17.1 Forbidden Extensions

An implementation must not extend this specification in the following ways:

18 ECMAScript Standard Built-in Objects

There are certain built-in objects available whenever an ECMAScriptScript orModule begins execution. One, theglobal object, is part of the global environment of the executing program. Others are accessible as initial properties of theglobal object or indirectly as properties of accessible built-in objects.

Unless specified otherwise, a built-in object that is callable as a function is a built-infunction object with the characteristics described in10.3. Unless specified otherwise, the[[Extensible]] internal slot of a built-in object initially has the valuetrue. Every built-infunction object has a[[Realm]] internal slot whose value is theRealm Record of therealm for which the object was initially created.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore areconstructors: they are functions intended for use with thenew operator. For each built-in function, this specification describes the arguments required by that function and the properties of thatfunction object. For each built-inconstructor, this specification furthermore describes properties of the prototype object of thatconstructor and properties of specific object instances returned by anew expression that invokes thatconstructor.

Unless otherwise specified in the description of a particular function, if a built-in function orconstructor is given fewer arguments than the function is specified to require, the function orconstructor shall behave exactly as if it had been given sufficient additional arguments, each such argument being theundefined value. Such missing arguments are considered to be “not present” and may be identified in that manner by specification algorithms. In the description of a particular function, the terms “this value” and “NewTarget” have the meanings given in10.3.

Unless otherwise specified in the description of a particular function, if a built-in function orconstructor described is given more arguments than the function is specified to allow, the extra arguments are evaluated by the call and then ignored by the function. However, an implementation may define implementation specific behaviour relating to such arguments as long as the behaviour is not the throwing of aTypeError exception that is predicated simply on the presence of an extra argument.

Note 1

Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by adding new functions rather than adding new parameters to existing functions.

Unless otherwise specified every built-in function and every built-inconstructor has theFunction prototype object, which is the initial value of the expressionFunction.prototype (20.2.3), as the value of its[[Prototype]] internal slot.

Unless otherwise specified every built-in prototype object has theObject prototype object, which is the initial value of the expressionObject.prototype (20.1.3), as the value of its[[Prototype]] internal slot, except theObject prototype object itself.

If this specification defines a built-inconstructor's behaviour via algorithm steps, then that is its behaviour for the purposes of both[[Call]] and[[Construct]]. If such an algorithm needs to distinguish the two cases, it checks whether NewTarget isundefined, which indicates a[[Call]] invocation.

Built-infunction objects that are not identified asconstructors do not implement the[[Construct]] internal method unless otherwise specified in the description of a particular function.

Built-infunction objects that are notconstructors do not have a"prototype" property unless otherwise specified in the description of a particular function.

Each built-in function defined in this specification is created by calling theCreateBuiltinFunction abstract operation (10.3.4). The values of thelength andname parameters are the initial values of the"length" and"name" properties as discussed below. The values of theprefix parameter are similarly discussed below.

Every built-infunction object, includingconstructors, has a"length" property whose value is a non-negativeintegral Number. Unless otherwise specified, this value is the number of required parameters shown in the subclause heading for the function description. Optional parameters and rest parameters are not included in the parameter count.

Note 2

For example, thefunction object that is the initial value of the"map" property of theArray prototype object is described under the subclause heading «Array.prototype.map (callbackFn [ , thisArg])» which shows the two named arguments callbackFn and thisArg, the latter being optional; therefore the value of the"length" property of thatfunction object is1𝔽.

Unless otherwise specified, the"length" property of a built-infunction object has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

Every built-infunction object, includingconstructors, has a"name" property whose valueis a String. Unless otherwise specified, this value is the name that is given to the function in this specification. Functions that are identified as anonymous functions use the empty String as the value of the"name" property. For functions that are specified as properties of objects, the name value is theproperty name string used to access the function. Functions that are specified as get or set accessor functions of built-in properties have"get" or"set" (respectively) passed to theprefix parameter when callingCreateBuiltinFunction.

The value of the"name" property is explicitly specified for each built-in functions whoseproperty keyis a Symbol value. If such an explicitly specified value starts with the prefix"get " or"set " and the function for which it is specified is a get or set accessor function of a built-in property, the value without the prefix is passed to thename parameter, and the value"get" or"set" (respectively) is passed to theprefix parameter when callingCreateBuiltinFunction.

Unless otherwise specified, the"name" property of a built-infunction object has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

Every otherdata property described in clauses19 through28 and in AnnexB.2 has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true } unless otherwise specified.

Everyaccessor property described in clauses19 through28 and in AnnexB.2 has the attributes {[[Enumerable]]:false,[[Configurable]]:true } unless otherwise specified. If only a get accessor function is described, the set accessor function is the default value,undefined. If only a set accessor is described the get accessor is the default value,undefined.

19 The Global Object

Theglobal object:

19.1 Value Properties of the Global Object

19.1.1 globalThis

The initial value of the"globalThis" property of theglobal object in aRealm Recordrealm isrealm.[[GlobalEnv]].[[GlobalThisValue]].

This property has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:true }.

19.1.2 Infinity

The value ofInfinity is+∞𝔽 (see6.1.6.1). This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

19.1.3 NaN

The value ofNaN isNaN (see6.1.6.1). This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

19.1.4 undefined

The value ofundefined isundefined (see6.1.1). This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

19.2 Function Properties of the Global Object

19.2.1 eval (x )

This function is the%eval% intrinsic object.

It performs the following steps when called:

  1. Return ? PerformEval(x,false,false).

19.2.1.1 PerformEval (x,strictCaller,direct )

The abstract operation PerformEval takes argumentsx (anECMAScript language value),strictCaller (a Boolean), anddirect (a Boolean) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Assert: Ifdirect isfalse, thenstrictCaller is alsofalse.
  2. Ifxis not a String, returnx.
  3. LetevalRealm bethe current Realm Record.
  4. NOTE: In the case of adirect eval,evalRealm is therealm of both the caller ofeval and of theeval function itself.
  5. Perform ? HostEnsureCanCompileStrings(evalRealm, « »,x,direct).
  6. LetinFunction befalse.
  7. LetinMethod befalse.
  8. LetinDerivedConstructor befalse.
  9. LetinClassFieldInitializer befalse.
  10. Ifdirect istrue, then
    1. LetthisEnvRec beGetThisEnvironment().
    2. IfthisEnvRec is aFunction Environment Record, then
      1. LetF bethisEnvRec.[[FunctionObject]].
      2. SetinFunction totrue.
      3. SetinMethod tothisEnvRec.HasSuperBinding().
      4. IfF.[[ConstructorKind]] isderived, setinDerivedConstructor totrue.
      5. LetclassFieldInitializerName beF.[[ClassFieldInitializerName]].
      6. IfclassFieldInitializerName is notempty, setinClassFieldInitializer totrue.
  11. Perform the following substeps in animplementation-defined order, possibly interleaving parsing and error detection:
    1. Letscript beParseText(StringToCodePoints(x),Script).
    2. Ifscript is aList of errors, throw aSyntaxError exception.
    3. IfscriptContainsScriptBody isfalse, returnundefined.
    4. Letbody be theScriptBody ofscript.
    5. IfinFunction isfalse andbodyContainsNewTarget, throw aSyntaxError exception.
    6. IfinMethod isfalse andbodyContainsSuperProperty, throw aSyntaxError exception.
    7. IfinDerivedConstructor isfalse andbodyContainsSuperCall, throw aSyntaxError exception.
    8. IfinClassFieldInitializer istrue andContainsArguments ofbody istrue, throw aSyntaxError exception.
  12. IfstrictCaller istrue, letstrictEval betrue.
  13. Else, letstrictEval beIsStrict ofscript.
  14. LetrunningContext be therunning execution context.
  15. NOTE: Ifdirect istrue,runningContext will be theexecution context that performed thedirect eval. Ifdirect isfalse,runningContext will be theexecution context for the invocation of theeval function.
  16. Ifdirect istrue, then
    1. LetlexEnv beNewDeclarativeEnvironment(runningContext's LexicalEnvironment).
    2. LetvarEnv berunningContext's VariableEnvironment.
    3. LetprivateEnv berunningContext's PrivateEnvironment.
  17. Else,
    1. LetlexEnv beNewDeclarativeEnvironment(evalRealm.[[GlobalEnv]]).
    2. LetvarEnv beevalRealm.[[GlobalEnv]].
    3. LetprivateEnv benull.
  18. IfstrictEval istrue, setvarEnv tolexEnv.
  19. IfrunningContext is not already suspended, suspendrunningContext.
  20. LetevalContext be a newECMAScript code execution context.
  21. SetevalContext's Function tonull.
  22. SetevalContext'sRealm toevalRealm.
  23. SetevalContext's ScriptOrModule torunningContext's ScriptOrModule.
  24. SetevalContext's VariableEnvironment tovarEnv.
  25. SetevalContext's LexicalEnvironment tolexEnv.
  26. SetevalContext's PrivateEnvironment toprivateEnv.
  27. PushevalContext onto theexecution context stack;evalContext is now therunning execution context.
  28. Letresult beCompletion(EvalDeclarationInstantiation(body,varEnv,lexEnv,privateEnv,strictEval)).
  29. Ifresult is anormal completion, then
    1. Setresult toCompletion(Evaluation ofbody).
  30. Ifresult is anormal completion andresult.[[Value]] isempty, then
    1. Setresult toNormalCompletion(undefined).
  31. SuspendevalContext and remove it from theexecution context stack.
  32. Resume the context that is now on the top of theexecution context stack as therunning execution context.
  33. Return ? result.
Note

The eval code cannot instantiate variable or function bindings in the variable environment of the calling context that invoked the eval if either the code of the calling context or the eval code isstrict mode code. Instead such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code. Bindings introduced bylet,const, orclass declarations are always instantiated in a new LexicalEnvironment.

19.2.1.2 HostEnsureCanCompileStrings (calleeRealm,parameterStrings,bodyString,direct )

Thehost-defined abstract operation HostEnsureCanCompileStrings takes argumentscalleeRealm (aRealm Record),parameterStrings (aList of Strings),bodyString (a String), anddirect (a Boolean) and returns either anormal completion containingunused or athrow completion. It allowshost environments to block certain ECMAScript functions which allow developers to interpret and evaluate strings as ECMAScript code.

parameterStrings represents the strings that, when using one of the functionconstructors, will be concatenated together to build the parameters list.bodyString represents the function body or the string passed to aneval call.direct signifies whether the evaluation is adirect eval.

The default implementation of HostEnsureCanCompileStrings is to returnNormalCompletion(unused).

19.2.1.3 EvalDeclarationInstantiation (body,varEnv,lexEnv,privateEnv,strict )

The abstract operation EvalDeclarationInstantiation takes argumentsbody (aScriptBodyParse Node),varEnv (anEnvironment Record),lexEnv (aDeclarative Environment Record),privateEnv (aPrivateEnvironment Record ornull), andstrict (a Boolean) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. LetvarNames be theVarDeclaredNames ofbody.
  2. LetvarDeclarations be theVarScopedDeclarations ofbody.
  3. Ifstrict isfalse, then
    1. IfvarEnv is aGlobal Environment Record, then
      1. For each elementname ofvarNames, do
        1. IfvarEnv.HasLexicalDeclaration(name) istrue, throw aSyntaxError exception.
        2. NOTE:eval will not create a global var declaration that would be shadowed by a global lexical declaration.
    2. LetthisEnv belexEnv.
    3. Assert: The following loop will terminate.
    4. Repeat, whilethisEnv is notvarEnv,
      1. IfthisEnvis not an ObjectEnvironment Record, then
        1. NOTE: The environment of with statements cannot contain any lexical declaration so it doesn't need to be checked for var/let hoisting conflicts.
        2. For each elementname ofvarNames, do
          1. If ! thisEnv.HasBinding(name) istrue, then
            1. Throw aSyntaxError exception.
            2. NOTE: AnnexB.3.4 defines alternate semantics for the above step.
          2. NOTE: Adirect eval will not hoist var declaration over a like-named lexical declaration.
      2. SetthisEnv tothisEnv.[[OuterEnv]].
  4. LetprivateIdentifiers be a new emptyList.
  5. Letpointer beprivateEnv.
  6. Repeat, whilepointer is notnull,
    1. For eachPrivate Namebinding ofpointer.[[Names]], do
      1. IfprivateIdentifiers does not containbinding.[[Description]], appendbinding.[[Description]] toprivateIdentifiers.
    2. Setpointer topointer.[[OuterPrivateEnvironment]].
  7. IfAllPrivateIdentifiersValid ofbody with argumentprivateIdentifiers isfalse, throw aSyntaxError exception.
  8. LetfunctionsToInitialize be a new emptyList.
  9. LetdeclaredFunctionNames be a new emptyList.
  10. For each elementd ofvarDeclarations, in reverseList order, do
    1. Ifd is not either aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. Assert:d is either aFunctionDeclaration, aGeneratorDeclaration, anAsyncFunctionDeclaration, or anAsyncGeneratorDeclaration.
      2. NOTE: If there are multiple function declarations for the same name, the last declaration is used.
      3. Letfn be the sole element of theBoundNames ofd.
      4. IfdeclaredFunctionNames does not containfn, then
        1. IfvarEnv is aGlobal Environment Record, then
          1. LetfnDefinable be ? varEnv.CanDeclareGlobalFunction(fn).
          2. IffnDefinable isfalse, throw aTypeError exception.
        2. Appendfn todeclaredFunctionNames.
        3. Insertd as the first element offunctionsToInitialize.
  11. LetdeclaredVarNames be a new emptyList.
  12. For each elementd ofvarDeclarations, do
    1. Ifd is either aVariableDeclaration, aForBinding, or aBindingIdentifier, then
      1. For each Stringvn of theBoundNames ofd, do
        1. IfdeclaredFunctionNames does not containvn, then
          1. IfvarEnv is aGlobal Environment Record, then
            1. LetvnDefinable be ? varEnv.CanDeclareGlobalVar(vn).
            2. IfvnDefinable isfalse, throw aTypeError exception.
          2. IfdeclaredVarNames does not containvn, then
            1. Appendvn todeclaredVarNames.
  13. NOTE: AnnexB.3.2.3 adds additional steps at this point.
  14. NOTE: No abnormal terminations occur after this algorithm step unlessvarEnv is aGlobal Environment Record and theglobal object is aProxy exotic object.
  15. LetlexDeclarations be theLexicallyScopedDeclarations ofbody.
  16. For each elementd oflexDeclarations, do
    1. NOTE: Lexically declared names are only instantiated here but not initialized.
    2. For each elementdn of theBoundNames ofd, do
      1. IfIsConstantDeclaration ofd istrue, then
        1. Perform ? lexEnv.CreateImmutableBinding(dn,true).
      2. Else,
        1. Perform ? lexEnv.CreateMutableBinding(dn,false).
  17. For eachParse Nodef offunctionsToInitialize, do
    1. Letfn be the sole element of theBoundNames off.
    2. Letfo beInstantiateFunctionObject off with argumentslexEnv andprivateEnv.
    3. IfvarEnv is aGlobal Environment Record, then
      1. Perform ? varEnv.CreateGlobalFunctionBinding(fn,fo,true).
    4. Else,
      1. LetbindingExists be ! varEnv.HasBinding(fn).
      2. IfbindingExists isfalse, then
        1. NOTE: The following invocation cannot return anabrupt completion because of the validation preceding step14.
        2. Perform ! varEnv.CreateMutableBinding(fn,true).
        3. Perform ! varEnv.InitializeBinding(fn,fo).
      3. Else,
        1. Perform ! varEnv.SetMutableBinding(fn,fo,false).
  18. For each Stringvn ofdeclaredVarNames, do
    1. IfvarEnv is aGlobal Environment Record, then
      1. Perform ? varEnv.CreateGlobalVarBinding(vn,true).
    2. Else,
      1. LetbindingExists be ! varEnv.HasBinding(vn).
      2. IfbindingExists isfalse, then
        1. NOTE: The following invocation cannot return anabrupt completion because of the validation preceding step14.
        2. Perform ! varEnv.CreateMutableBinding(vn,true).
        3. Perform ! varEnv.InitializeBinding(vn,undefined).
  19. Returnunused.
Note

An alternative version of this algorithm is described inB.3.4.

19.2.2 isFinite (number )

This function is the%isFinite% intrinsic object.

It performs the following steps when called:

  1. Letnum be ? ToNumber(number).
  2. Ifnum is notfinite, returnfalse.
  3. Otherwise, returntrue.

19.2.3 isNaN (number )

This function is the%isNaN% intrinsic object.

It performs the following steps when called:

  1. Letnum be ? ToNumber(number).
  2. Ifnum isNaN, returntrue.
  3. Otherwise, returnfalse.
Note

A reliable way for ECMAScript code to test if a valueX isNaN is an expression of the formX !== X. The result will betrue if and only ifX isNaN.

19.2.4 parseFloat (string )

This function produces a Number value dictated by interpretation of the contents of thestring argument as a decimal literal.

It is the%parseFloat% intrinsic object.

It performs the following steps when called:

  1. LetinputString be ? ToString(string).
  2. LettrimmedString be ! TrimString(inputString,start).
  3. Lettrimmed beStringToCodePoints(trimmedString).
  4. LettrimmedPrefix be the longest prefix oftrimmed that satisfies the syntax of aStrDecimalLiteral, which might betrimmed itself. If there is no such prefix, returnNaN.
  5. LetparsedNumber beParseText(trimmedPrefix,StrDecimalLiteral).
  6. Assert:parsedNumber is aParse Node.
  7. ReturnStringNumericValue ofparsedNumber.
Note

This function may interpret only a leading portion ofstring as a Number value; it ignores any code units that cannot be interpreted as part of the notation of a decimal literal, and no indication is given that any such code units were ignored.

19.2.5 parseInt (string,radix )

This function produces anintegral Number dictated by interpretation of the contents ofstring according to the specifiedradix. Leading white space instring is ignored. Ifradix coerces to 0 (such as when it isundefined), it is assumed to be 10 except when the number representation begins with"0x" or"0X", in which case it is assumed to be 16. Ifradix is 16, the number representation may optionally begin with"0x" or"0X".

It is the%parseInt% intrinsic object.

It performs the following steps when called:

  1. LetinputString be ? ToString(string).
  2. LetS be ! TrimString(inputString,start).
  3. Letsign be 1.
  4. IfS is not empty and the first code unit ofS is the code unit 0x002D (HYPHEN-MINUS), setsign to -1.
  5. IfS is not empty and the first code unit ofS is either the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS), setS to thesubstring ofS from index 1.
  6. LetR be(?ToInt32(radix)).
  7. LetstripPrefix betrue.
  8. IfR ≠ 0, then
    1. IfR < 2 orR > 36, returnNaN.
    2. IfR ≠ 16, setstripPrefix tofalse.
  9. Else,
    1. SetR to 10.
  10. IfstripPrefix istrue, then
    1. If the length ofS is at least 2 and the first two code units ofS are either"0x" or"0X", then
      1. SetS to thesubstring ofS from index 2.
      2. SetR to 16.
  11. IfS contains a code unit that is not a radix-R digit, letend be the index withinS of the first such code unit; otherwise, letend be the length ofS.
  12. LetZ be thesubstring ofS from 0 toend.
  13. IfZ is empty, returnNaN.
  14. LetmathInt be theinteger value that is represented byZ in radix-R notation, using the lettersA throughZ anda throughz for digits with values 10 through 35. (However, ifR = 10 andZ contains more than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; and ifR is not one of 2, 4, 8, 10, 16, or 32, thenmathInt may be animplementation-approximatedinteger representing theinteger value denoted byZ in radix-R notation.)
  15. IfmathInt = 0, then
    1. Ifsign = -1, return-0𝔽.
    2. Return+0𝔽.
  16. Return𝔽(sign ×mathInt).
Note

This function may interpret only a leading portion ofstring as aninteger value; it ignores any code units that cannot be interpreted as part of the notation of aninteger, and no indication is given that any such code units were ignored.

19.2.6 URI Handling Functions

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMAScript language itself does not provide any support for using URIs except for functions that encode and decode URIs as described in this section.encodeURI anddecodeURI are intended to work with complete URIs; they assume that any reserved characters are intended to have special meaning (e.g., as delimiters) and so are not encoded.encodeURIComponent anddecodeURIComponent are intended to work with the individual components of a URI; they assume that any reserved characters represent text and must be encoded to avoid special meaning when the component is part of a complete URI.

Note 1

The set of reserved characters is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC 3986.

Note 2

Many implementations of ECMAScript provide additional functions and methods that manipulate web pages; these functions are beyond the scope of this standard.

19.2.6.1 decodeURI (encodedURI )

This function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by theencodeURI function is replaced with the UTF-16 encoding of the code point that it represents. Escape sequences that could not have been introduced byencodeURI are not replaced.

It is the%decodeURI% intrinsic object.

It performs the following steps when called:

  1. LeturiString be ? ToString(encodedURI).
  2. LetpreserveEscapeSet be";/?:@&=+$,#".
  3. Return ? Decode(uriString,preserveEscapeSet).

19.2.6.2 decodeURIComponent (encodedURIComponent )

This function computes a new version of a URI in which each escape sequence and UTF-8 encoding of the sort that might be introduced by theencodeURIComponent function is replaced with the UTF-16 encoding of the code point that it represents.

It is the%decodeURIComponent% intrinsic object.

It performs the following steps when called:

  1. LetcomponentString be ? ToString(encodedURIComponent).
  2. LetpreserveEscapeSet be the empty String.
  3. Return ? Decode(componentString,preserveEscapeSet).

19.2.6.3 encodeURI (uri )

This function computes a new version of a UTF-16 encoded (6.1.4) URI in which each instance of certain code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the code point.

It is the%encodeURI% intrinsic object.

It performs the following steps when called:

  1. LeturiString be ? ToString(uri).
  2. LetextraUnescaped be";/?:@&=+$,#".
  3. Return ? Encode(uriString,extraUnescaped).

19.2.6.4 encodeURIComponent (uriComponent )

This function computes a new version of a UTF-16 encoded (6.1.4) URI in which each instance of certain code points is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the code point.

It is the%encodeURIComponent% intrinsic object.

It performs the following steps when called:

  1. LetcomponentString be ? ToString(uriComponent).
  2. LetextraUnescaped be the empty String.
  3. Return ? Encode(componentString,extraUnescaped).

19.2.6.5 Encode (string,extraUnescaped )

The abstract operation Encode takes argumentsstring (a String) andextraUnescaped (a String) and returns either anormal completion containing a String or athrow completion. It performs URI encoding and escaping, interpretingstring as a sequence of UTF-16 encoded code points as described in6.1.4. If a character is identified as unreserved in RFC 2396 or appears inextraUnescaped, it is not escaped. It performs the following steps when called:

  1. Letlen be the length ofstring.
  2. LetR be the empty String.
  3. LetalwaysUnescaped be thestring-concatenation ofthe ASCII word characters and"-.!~*'()".
  4. LetunescapedSet be thestring-concatenation ofalwaysUnescaped andextraUnescaped.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetC be the code unit at indexk withinstring.
    2. IfunescapedSet containsC, then
      1. Setk tok + 1.
      2. SetR to thestring-concatenation ofR andC.
    3. Else,
      1. Letcp beCodePointAt(string,k).
      2. Ifcp.[[IsUnpairedSurrogate]] istrue, throw aURIError exception.
      3. Setk tok +cp.[[CodeUnitCount]].
      4. LetOctets be theList of octets resulting by applying the UTF-8 transformation tocp.[[CodePoint]].
      5. For each elementoctet ofOctets, do
        1. Lethex be the String representation ofoctet, formatted as an uppercase hexadecimal number.
        2. SetR to thestring-concatenation ofR,"%", andStringPad(hex, 2,"0",start).
  7. ReturnR.
Note

Because percent-encoding is used to represent individual octets, a single code point may be expressed as multiple consecutive escape sequences (one for each of its 8-bit UTF-8 code units).

19.2.6.6 Decode (string,preserveEscapeSet )

The abstract operation Decode takes argumentsstring (a String) andpreserveEscapeSet (a String) and returns either anormal completion containing a String or athrow completion. It performs URI unescaping and decoding, preserving any escape sequences that correspond to Basic Latin characters inpreserveEscapeSet. It performs the following steps when called:

  1. Letlen be the length ofstring.
  2. LetR be the empty String.
  3. Letk be 0.
  4. Repeat, whilek <len,
    1. LetC be the code unit at indexk withinstring.
    2. LetS beC.
    3. IfC is the code unit 0x0025 (PERCENT SIGN), then
      1. Ifk + 3 >len, throw aURIError exception.
      2. Letescape be thesubstring ofstring fromk tok + 3.
      3. LetB beParseHexOctet(string,k + 1).
      4. IfB is not aninteger, throw aURIError exception.
      5. Setk tok + 2.
      6. Letn be the number of leading 1 bits inB.
      7. Ifn = 0, then
        1. LetasciiChar be the code unit whose numeric value isB.
        2. IfpreserveEscapeSet containsasciiChar, setS toescape. Otherwise, setS toasciiChar.
      8. Else,
        1. Ifn = 1 orn > 4, throw aURIError exception.
        2. LetOctets be «B ».
        3. Letj be 1.
        4. Repeat, whilej <n,
          1. Setk tok + 1.
          2. Ifk + 3 >len, throw aURIError exception.
          3. If the code unit at indexk withinstring is not the code unit 0x0025 (PERCENT SIGN), throw aURIError exception.
          4. LetcontinuationByte beParseHexOctet(string,k + 1).
          5. IfcontinuationByte is not aninteger, throw aURIError exception.
          6. AppendcontinuationByte toOctets.
          7. Setk tok + 2.
          8. Setj toj + 1.
        5. Assert: The length ofOctets isn.
        6. IfOctets does not contain a valid UTF-8 encoding of a Unicode code point, throw aURIError exception.
        7. LetV be the code point obtained by applying the UTF-8 transformation toOctets, that is, from aList of octets into a 21-bit value.
        8. SetS toUTF16EncodeCodePoint(V).
    4. SetR to thestring-concatenation ofR andS.
    5. Setk tok + 1.
  5. ReturnR.
Note

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence 0xC0 0x80 must not decode into the code unit 0x0000. Implementations of the Decode algorithm are required to throw aURIError when encountering such invalid sequences.

19.2.6.7 ParseHexOctet (string,position )

The abstract operation ParseHexOctet takes argumentsstring (a String) andposition (a non-negativeinteger) and returns either a non-negativeinteger or a non-emptyList ofSyntaxError objects. It parses a sequence of two hexadecimal characters at the specifiedposition instring into an unsigned 8-bitinteger. It performs the following steps when called:

  1. Letlen be the length ofstring.
  2. Assert:position + 2 ≤len.
  3. LethexDigits be thesubstring ofstring fromposition toposition + 2.
  4. LetparseResult beParseText(StringToCodePoints(hexDigits),HexDigits[~Sep]).
  5. IfparseResult is not aParse Node, returnparseResult.
  6. Letn be the MV ofparseResult.
  7. Assert:n is in theinclusive interval from 0 to 255.
  8. Returnn.

19.3 Constructor Properties of the Global Object

19.3.1 AggregateError ( . . . )

See20.5.7.1.

19.3.2 Array ( . . . )

See23.1.1.

19.3.3 ArrayBuffer ( . . . )

See25.1.4.

19.3.4 BigInt ( . . . )

See21.2.1.

19.3.5 BigInt64Array ( . . . )

See23.2.5.

19.3.6 BigUint64Array ( . . . )

See23.2.5.

19.3.7 Boolean ( . . . )

See20.3.1.

19.3.8 DataView ( . . . )

See25.3.2.

19.3.9 Date ( . . . )

See21.4.2.

19.3.10 Error ( . . . )

See20.5.1.

19.3.11 EvalError ( . . . )

See20.5.5.1.

19.3.12 FinalizationRegistry ( . . . )

See26.2.1.

19.3.13 Float32Array ( . . . )

See23.2.5.

19.3.14 Float64Array ( . . . )

See23.2.5.

19.3.15 Function ( . . . )

See20.2.1.

19.3.16 Int8Array ( . . . )

See23.2.5.

19.3.17 Int16Array ( . . . )

See23.2.5.

19.3.18 Int32Array ( . . . )

See23.2.5.

19.3.19 Map ( . . . )

See24.1.1.

19.3.20 Number ( . . . )

See21.1.1.

19.3.21 Object ( . . . )

See20.1.1.

19.3.22 Promise ( . . . )

See27.2.3.

19.3.23 Proxy ( . . . )

See28.2.1.

19.3.24 RangeError ( . . . )

See20.5.5.2.

19.3.25 ReferenceError ( . . . )

See20.5.5.3.

19.3.26 RegExp ( . . . )

See22.2.4.

19.3.27 Set ( . . . )

See24.2.1.

19.3.28 SharedArrayBuffer ( . . . )

See25.2.3.

19.3.29 String ( . . . )

See22.1.1.

19.3.30 Symbol ( . . . )

See20.4.1.

19.3.31 SyntaxError ( . . . )

See20.5.5.4.

19.3.32 TypeError ( . . . )

See20.5.5.5.

19.3.33 Uint8Array ( . . . )

See23.2.5.

19.3.34 Uint8ClampedArray ( . . . )

See23.2.5.

19.3.35 Uint16Array ( . . . )

See23.2.5.

19.3.36 Uint32Array ( . . . )

See23.2.5.

19.3.37 URIError ( . . . )

See20.5.5.6.

19.3.38 WeakMap ( . . . )

See24.3.1.

19.3.39 WeakRef ( . . . )

See26.1.1.

19.3.40 WeakSet ( . . . )

See24.4.

19.4 Other Properties of the Global Object

19.4.1 Atomics

See25.4.

19.4.2 JSON

See25.5.

19.4.3 Math

See21.3.

19.4.4 Reflect

See28.1.

20 Fundamental Objects

20.1 Object Objects

20.1.1 The Object Constructor

The Objectconstructor:

  • is%Object%.
  • is the initial value of the"Object" property of theglobal object.
  • creates a newordinary object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • may be used as the value of anextends clause of a class definition.

20.1.1.1 Object ( [value ] )

This function performs the following steps when called:

  1. If NewTarget is neitherundefined nor theactive function object, then
    1. Return ? OrdinaryCreateFromConstructor(NewTarget,"%Object.prototype%").
  2. Ifvalue is eitherundefined ornull, returnOrdinaryObjectCreate(%Object.prototype%).
  3. Return ! ToObject(value).

20.1.2 Properties of the Object Constructor

The Objectconstructor:

  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"length" property whose value is1𝔽.
  • has the following additional properties:

20.1.2.1 Object.assign (target, ...sources )

This function copies the values of all of the enumerable own properties from one or more source objects to atarget object.

It performs the following steps when called:

  1. Letto be ? ToObject(target).
  2. If only one argument was passed, returnto.
  3. For each elementnextSource ofsources, do
    1. IfnextSource is neitherundefined nornull, then
      1. Letfrom be ! ToObject(nextSource).
      2. Letkeys be ? from.[[OwnPropertyKeys]]().
      3. For each elementnextKey ofkeys, do
        1. Letdesc be ? from.[[GetOwnProperty]](nextKey).
        2. Ifdesc is notundefined anddesc.[[Enumerable]] istrue, then
          1. LetpropValue be ? Get(from,nextKey).
          2. Perform ? Set(to,nextKey,propValue,true).
  4. Returnto.

The"length" property of this function is2𝔽.

20.1.2.2 Object.create (O,Properties )

This function creates a new object with a specified prototype.

It performs the following steps when called:

  1. IfOis not an Object andO is notnull, throw aTypeError exception.
  2. Letobj beOrdinaryObjectCreate(O).
  3. IfProperties is notundefined, then
    1. Return ? ObjectDefineProperties(obj,Properties).
  4. Returnobj.

20.1.2.3 Object.defineProperties (O,Properties )

This function adds own properties and/or updates the attributes of existing own properties of an object.

It performs the following steps when called:

  1. IfOis not an Object, throw aTypeError exception.
  2. Return ? ObjectDefineProperties(O,Properties).

20.1.2.3.1 ObjectDefineProperties (O,Properties )

The abstract operation ObjectDefineProperties takes argumentsO (an Object) andProperties (anECMAScript language value) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Letprops be ? ToObject(Properties).
  2. Letkeys be ? props.[[OwnPropertyKeys]]().
  3. Letdescriptors be a new emptyList.
  4. For each elementnextKey ofkeys, do
    1. LetpropDesc be ? props.[[GetOwnProperty]](nextKey).
    2. IfpropDesc is notundefined andpropDesc.[[Enumerable]] istrue, then
      1. LetdescObj be ? Get(props,nextKey).
      2. Letdesc be ? ToPropertyDescriptor(descObj).
      3. Append theRecord {[[Key]]:nextKey,[[Descriptor]]:desc } todescriptors.
  5. For each elementproperty ofdescriptors, do
    1. Perform ? DefinePropertyOrThrow(O,property.[[Key]],property.[[Descriptor]]).
  6. ReturnO.

20.1.2.4 Object.defineProperty (O,P,Attributes )

This function adds an own property and/or updates the attributes of an existing own property of an object.

It performs the following steps when called:

  1. IfOis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(P).
  3. Letdesc be ? ToPropertyDescriptor(Attributes).
  4. Perform ? DefinePropertyOrThrow(O,key,desc).
  5. ReturnO.

20.1.2.5 Object.entries (O )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. LetentryList be ? EnumerableOwnProperties(obj,key+value).
  3. ReturnCreateArrayFromList(entryList).

20.1.2.6 Object.freeze (O )

This function performs the following steps when called:

  1. IfOis not an Object, returnO.
  2. Letstatus be ? SetIntegrityLevel(O,frozen).
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.7 Object.fromEntries (iterable )

This function performs the following steps when called:

  1. Perform ? RequireObjectCoercible(iterable).
  2. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  3. Assert:obj is an extensibleordinary object with no own properties.
  4. Letclosure be a newAbstract Closure with parameters (key,value) that capturesobj and performs the following steps when called:
    1. LetpropertyKey be ? ToPropertyKey(key).
    2. Perform ! CreateDataPropertyOrThrow(obj,propertyKey,value).
    3. Returnundefined.
  5. Letadder beCreateBuiltinFunction(closure, 2,"", « »).
  6. Return ? AddEntriesFromIterable(obj,iterable,adder).
Note
The function created foradder is never directly accessible to ECMAScript code.

20.1.2.8 Object.getOwnPropertyDescriptor (O,P )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. Letkey be ? ToPropertyKey(P).
  3. Letdesc be ? obj.[[GetOwnProperty]](key).
  4. ReturnFromPropertyDescriptor(desc).

20.1.2.9 Object.getOwnPropertyDescriptors (O )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. LetownKeys be ? obj.[[OwnPropertyKeys]]().
  3. Letdescriptors beOrdinaryObjectCreate(%Object.prototype%).
  4. For each elementkey ofownKeys, do
    1. Letdesc be ? obj.[[GetOwnProperty]](key).
    2. Letdescriptor beFromPropertyDescriptor(desc).
    3. Ifdescriptor is notundefined, perform ! CreateDataPropertyOrThrow(descriptors,key,descriptor).
  5. Returndescriptors.

20.1.2.10 Object.getOwnPropertyNames (O )

This function performs the following steps when called:

  1. ReturnCreateArrayFromList(?GetOwnPropertyKeys(O,string)).

20.1.2.11 Object.getOwnPropertySymbols (O )

This function performs the following steps when called:

  1. ReturnCreateArrayFromList(?GetOwnPropertyKeys(O,symbol)).

20.1.2.11.1 GetOwnPropertyKeys (O,type )

The abstract operation GetOwnPropertyKeys takes argumentsO (anECMAScript language value) andtype (string orsymbol) and returns either anormal completion containing aList ofproperty keys or athrow completion. It performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. Letkeys be ? obj.[[OwnPropertyKeys]]().
  3. LetnameList be a new emptyList.
  4. For each elementnextKey ofkeys, do
    1. IfnextKeyis a Symbol andtype issymbol, or ifnextKeyis a String andtype isstring, then
      1. AppendnextKey tonameList.
  5. ReturnnameList.

20.1.2.12 Object.getPrototypeOf (O )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. Return ? obj.[[GetPrototypeOf]]().

20.1.2.13 Object.groupBy (items,callbackfn )

Note

callbackfn should be a function that accepts two arguments.groupBy callscallbackfn once for each element initems, in ascending order, and constructs a new object. Each value returned bycallbackfn is coerced to aproperty key. For each suchproperty key, the result object has a property whose key is thatproperty key and whose value is an array containing all the elements for which thecallbackfn return value coerced to that key.

callbackfn is called with two arguments: the value of the element and the index of the element.

The return value ofgroupBy is an object that does not inherit from%Object.prototype%.

This function performs the following steps when called:

  1. Letgroups be ? GroupBy(items,callbackfn,property).
  2. Letobj beOrdinaryObjectCreate(null).
  3. For eachRecord {[[Key]],[[Elements]] }g ofgroups, do
    1. Letelements beCreateArrayFromList(g.[[Elements]]).
    2. Perform ! CreateDataPropertyOrThrow(obj,g.[[Key]],elements).
  4. Returnobj.

20.1.2.14 Object.hasOwn (O,P )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. Letkey be ? ToPropertyKey(P).
  3. Return ? HasOwnProperty(obj,key).

20.1.2.15 Object.is (value1,value2 )

This function performs the following steps when called:

  1. ReturnSameValue(value1,value2).

20.1.2.16 Object.isExtensible (O )

This function performs the following steps when called:

  1. IfOis not an Object, returnfalse.
  2. Return ? IsExtensible(O).

20.1.2.17 Object.isFrozen (O )

This function performs the following steps when called:

  1. IfOis not an Object, returntrue.
  2. Return ? TestIntegrityLevel(O,frozen).

20.1.2.18 Object.isSealed (O )

This function performs the following steps when called:

  1. IfOis not an Object, returntrue.
  2. Return ? TestIntegrityLevel(O,sealed).

20.1.2.19 Object.keys (O )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. LetkeyList be ? EnumerableOwnProperties(obj,key).
  3. ReturnCreateArrayFromList(keyList).

20.1.2.20 Object.preventExtensions (O )

This function performs the following steps when called:

  1. IfOis not an Object, returnO.
  2. Letstatus be ? O.[[PreventExtensions]]().
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.21 Object.prototype

The initial value ofObject.prototype is theObject prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.1.2.22 Object.seal (O )

This function performs the following steps when called:

  1. IfOis not an Object, returnO.
  2. Letstatus be ? SetIntegrityLevel(O,sealed).
  3. Ifstatus isfalse, throw aTypeError exception.
  4. ReturnO.

20.1.2.23 Object.setPrototypeOf (O,proto )

This function performs the following steps when called:

  1. SetO to ? RequireObjectCoercible(O).
  2. Ifprotois not an Object andproto is notnull, throw aTypeError exception.
  3. IfOis not an Object, returnO.
  4. Letstatus be ? O.[[SetPrototypeOf]](proto).
  5. Ifstatus isfalse, throw aTypeError exception.
  6. ReturnO.

20.1.2.24 Object.values (O )

This function performs the following steps when called:

  1. Letobj be ? ToObject(O).
  2. LetvalueList be ? EnumerableOwnProperties(obj,value).
  3. ReturnCreateArrayFromList(valueList).

20.1.3 Properties of the Object Prototype Object

TheObject prototype object:

  • is%Object.prototype%.
  • has an[[Extensible]] internal slot whose value istrue.
  • has the internal methods defined forordinary objects, except for the[[SetPrototypeOf]] method, which is as defined in10.4.7.1. (Thus, it is animmutable prototype exotic object.)
  • has a[[Prototype]] internal slot whose value isnull.

20.1.3.1 Object.prototype.constructor

The initial value ofObject.prototype.constructor is%Object%.

20.1.3.2 Object.prototype.hasOwnProperty (V )

This method performs the following steps when called:

  1. LetP be ? ToPropertyKey(V).
  2. LetO be ? ToObject(this value).
  3. Return ? HasOwnProperty(O,P).
Note

The ordering of steps1 and2 is chosen to ensure that any exception that would have been thrown by step1 in previous editions of this specification will continue to be thrown even if thethis value isundefined ornull.

20.1.3.3 Object.prototype.isPrototypeOf (V )

This method performs the following steps when called:

  1. IfVis not an Object, returnfalse.
  2. LetO be ? ToObject(this value).
  3. Repeat,
    1. SetV to ? V.[[GetPrototypeOf]]().
    2. IfV isnull, returnfalse.
    3. IfSameValue(O,V) istrue, returntrue.
Note

The ordering of steps1 and2 preserves the behaviour specified by previous editions of this specification for the case whereV is not an object and thethis value isundefined ornull.

20.1.3.4 Object.prototype.propertyIsEnumerable (V )

This method performs the following steps when called:

  1. LetP be ? ToPropertyKey(V).
  2. LetO be ? ToObject(this value).
  3. Letdesc be ? O.[[GetOwnProperty]](P).
  4. Ifdesc isundefined, returnfalse.
  5. Returndesc.[[Enumerable]].
Note 1

This method does not consider objects in the prototype chain.

Note 2

The ordering of steps1 and2 is chosen to ensure that any exception that would have been thrown by step1 in previous editions of this specification will continue to be thrown even if thethis value isundefined ornull.

20.1.3.5 Object.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Return ? Invoke(O,"toString").

The optional parameters to this method are not used but are intended to correspond to the parameter pattern used by ECMA-402toLocaleString methods. Implementations that do not include ECMA-402 support must not use those parameter positions for other purposes.

Note 1

This method provides a generictoLocaleString implementation for objects that have no locale-sensitivetoString behaviour.Array,Number,Date, and%TypedArray% provide their own locale-sensitivetoLocaleString methods.

Note 2

ECMA-402 intentionally does not provide an alternative to this default implementation.

20.1.3.6 Object.prototype.toString ( )

This method performs the following steps when called:

  1. If thethis value isundefined, return"[object Undefined]".
  2. If thethis value isnull, return"[object Null]".
  3. LetO be ! ToObject(this value).
  4. LetisArray be ? IsArray(O).
  5. IfisArray istrue, letbuiltinTag be"Array".
  6. Else ifO has a[[ParameterMap]] internal slot, letbuiltinTag be"Arguments".
  7. Else ifO has a[[Call]] internal method, letbuiltinTag be"Function".
  8. Else ifO has an[[ErrorData]] internal slot, letbuiltinTag be"Error".
  9. Else ifO has a[[BooleanData]] internal slot, letbuiltinTag be"Boolean".
  10. Else ifO has a[[NumberData]] internal slot, letbuiltinTag be"Number".
  11. Else ifO has a[[StringData]] internal slot, letbuiltinTag be"String".
  12. Else ifO has a[[DateValue]] internal slot, letbuiltinTag be"Date".
  13. Else ifO has a[[RegExpMatcher]] internal slot, letbuiltinTag be"RegExp".
  14. Else, letbuiltinTag be"Object".
  15. Lettag be ? Get(O,@@toStringTag).
  16. Iftagis not a String, settag tobuiltinTag.
  17. Return thestring-concatenation of"[object ",tag, and"]".
Note

Historically, this method was occasionally used to access the String value of the[[Class]] internal slot that was used in previous editions of this specification as a nominal type tag for various built-in objects. The above definition oftoString preserves compatibility for legacy code that usestoString as a test for those specific kinds of built-in objects. It does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects. In addition, programs can use@@toStringTag in ways that will invalidate the reliability of such legacy type tests.

20.1.3.7 Object.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? ToObject(this value).

20.1.3.8 Object.prototype.__proto__

Object.prototype.__proto__ is anaccessor property with attributes {[[Enumerable]]:false,[[Configurable]]:true }. The[[Get]] and[[Set]] attributes are defined as follows:

20.1.3.8.1 get Object.prototype.__proto__

The value of the[[Get]] attribute is a built-in function that requires no arguments. It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Return ? O.[[GetPrototypeOf]]().

20.1.3.8.2 set Object.prototype.__proto__

The value of the[[Set]] attribute is a built-in function that takes an argumentproto. It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifprotois not an Object andproto is notnull, returnundefined.
  3. IfOis not an Object, returnundefined.
  4. Letstatus be ? O.[[SetPrototypeOf]](proto).
  5. Ifstatus isfalse, throw aTypeError exception.
  6. Returnundefined.

20.1.3.9 Legacy Object.prototype Accessor Methods

20.1.3.9.1 Object.prototype.__defineGetter__ (P,getter )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. IfIsCallable(getter) isfalse, throw aTypeError exception.
  3. Letdesc be PropertyDescriptor {[[Get]]:getter,[[Enumerable]]:true,[[Configurable]]:true }.
  4. Letkey be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O,key,desc).
  6. Returnundefined.

20.1.3.9.2 Object.prototype.__defineSetter__ (P,setter )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. IfIsCallable(setter) isfalse, throw aTypeError exception.
  3. Letdesc be PropertyDescriptor {[[Set]]:setter,[[Enumerable]]:true,[[Configurable]]:true }.
  4. Letkey be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O,key,desc).
  6. Returnundefined.

20.1.3.9.3 Object.prototype.__lookupGetter__ (P )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letkey be ? ToPropertyKey(P).
  3. Repeat,
    1. Letdesc be ? O.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined, then
      1. IfIsAccessorDescriptor(desc) istrue, returndesc.[[Get]].
      2. Returnundefined.
    3. SetO to ? O.[[GetPrototypeOf]]().
    4. IfO isnull, returnundefined.

20.1.3.9.4 Object.prototype.__lookupSetter__ (P )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letkey be ? ToPropertyKey(P).
  3. Repeat,
    1. Letdesc be ? O.[[GetOwnProperty]](key).
    2. Ifdesc is notundefined, then
      1. IfIsAccessorDescriptor(desc) istrue, returndesc.[[Set]].
      2. Returnundefined.
    3. SetO to ? O.[[GetPrototypeOf]]().
    4. IfO isnull, returnundefined.

20.1.4 Properties of Object Instances

Object instances have no special properties beyond those inherited from theObject prototype object.

20.2 Function Objects

20.2.1 The Function Constructor

The Functionconstructor:

  • is%Function%.
  • is the initial value of the"Function" property of theglobal object.
  • creates and initializes a newfunction object when called as a function rather than as aconstructor. Thus the function callFunction(…) is equivalent to the object creation expressionnew Function(…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Function behaviour must include asuper call to the Functionconstructor to create and initialize a subclass instance with the internal slots necessary for built-in function behaviour. All ECMAScript syntactic forms for definingfunction objects create instances of Function. There is no syntactic means to create instances of Function subclasses except for the built-in GeneratorFunction, AsyncFunction, and AsyncGeneratorFunction subclasses.

20.2.1.1 Function ( ...parameterArgs,bodyArg )

The last argument (if any) specifies the body (executable code) of a function; any preceding arguments specify formal parameters.

This function performs the following steps when called:

  1. LetC be theactive function object.
  2. IfbodyArg is not present, setbodyArg to the empty String.
  3. Return ? CreateDynamicFunction(C, NewTarget,normal,parameterArgs,bodyArg).
Note

It is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three of the following expressions produce the same result:

newFunction("a","b","c","return a+b+c")newFunction("a, b, c","return a+b+c")newFunction("a,b","c","return a+b+c")

20.2.1.1.1 CreateDynamicFunction (constructor,newTarget,kind,parameterArgs,bodyArg )

The abstract operation CreateDynamicFunction takes argumentsconstructor (aconstructor),newTarget (aconstructor),kind (normal,generator,async, orasync-generator),parameterArgs (aList ofECMAScript language values), andbodyArg (anECMAScript language value) and returns either anormal completion containing an ECMAScriptfunction object or athrow completion.constructor is theconstructor function that is performing this action.newTarget is theconstructor thatnew was initially applied to.parameterArgs andbodyArg reflect the argument values that were passed toconstructor. It performs the following steps when called:

  1. IfnewTarget isundefined, setnewTarget toconstructor.
  2. Ifkind isnormal, then
    1. Letprefix be"function".
    2. LetexprSym be the grammar symbolFunctionExpression.
    3. LetbodySym be the grammar symbolFunctionBody[~Yield, ~Await].
    4. LetparameterSym be the grammar symbolFormalParameters[~Yield, ~Await].
    5. LetfallbackProto be"%Function.prototype%".
  3. Else ifkind isgenerator, then
    1. Letprefix be"function*".
    2. LetexprSym be the grammar symbolGeneratorExpression.
    3. LetbodySym be the grammar symbolGeneratorBody.
    4. LetparameterSym be the grammar symbolFormalParameters[+Yield, ~Await].
    5. LetfallbackProto be"%GeneratorFunction.prototype%".
  4. Else ifkind isasync, then
    1. Letprefix be"async function".
    2. LetexprSym be the grammar symbolAsyncFunctionExpression.
    3. LetbodySym be the grammar symbolAsyncFunctionBody.
    4. LetparameterSym be the grammar symbolFormalParameters[~Yield, +Await].
    5. LetfallbackProto be"%AsyncFunction.prototype%".
  5. Else,
    1. Assert:kind isasync-generator.
    2. Letprefix be"async function*".
    3. LetexprSym be the grammar symbolAsyncGeneratorExpression.
    4. LetbodySym be the grammar symbolAsyncGeneratorBody.
    5. LetparameterSym be the grammar symbolFormalParameters[+Yield, +Await].
    6. LetfallbackProto be"%AsyncGeneratorFunction.prototype%".
  6. LetargCount be the number of elements inparameterArgs.
  7. LetbodyString be ? ToString(bodyArg).
  8. LetparameterStrings be a new emptyList.
  9. For each elementarg ofparameterArgs, do
    1. Append ? ToString(arg) toparameterStrings.
  10. LetcurrentRealm bethe current Realm Record.
  11. Perform ? HostEnsureCanCompileStrings(currentRealm,parameterStrings,bodyString,false).
  12. LetP be the empty String.
  13. IfargCount > 0, then
    1. SetP toparameterStrings[0].
    2. Letk be 1.
    3. Repeat, whilek <argCount,
      1. LetnextArgString beparameterStrings[k].
      2. SetP to thestring-concatenation ofP,"," (a comma), andnextArgString.
      3. Setk tok + 1.
  14. LetbodyParseString be thestring-concatenation of 0x000A (LINE FEED),bodyString, and 0x000A (LINE FEED).
  15. LetsourceString be thestring-concatenation ofprefix," anonymous(",P, 0x000A (LINE FEED),") {",bodyParseString, and"}".
  16. LetsourceText beStringToCodePoints(sourceString).
  17. Letparameters beParseText(StringToCodePoints(P),parameterSym).
  18. Ifparameters is aList of errors, throw aSyntaxError exception.
  19. Letbody beParseText(StringToCodePoints(bodyParseString),bodySym).
  20. Ifbody is aList of errors, throw aSyntaxError exception.
  21. NOTE: The parameters and body are parsed separately to ensure that each is valid alone. For example,new Function("/*", "*/ ) {") does not evaluate to a function.
  22. NOTE: If this step is reached,sourceText must have the syntax ofexprSym (although the reverse implication does not hold). The purpose of the next two steps is to enforce any Early Error rules which apply toexprSym directly.
  23. Letexpr beParseText(sourceText,exprSym).
  24. Ifexpr is aList of errors, throw aSyntaxError exception.
  25. Letproto be ? GetPrototypeFromConstructor(newTarget,fallbackProto).
  26. Letenv becurrentRealm.[[GlobalEnv]].
  27. LetprivateEnv benull.
  28. LetF beOrdinaryFunctionCreate(proto,sourceText,parameters,body,non-lexical-this,env,privateEnv).
  29. PerformSetFunctionName(F,"anonymous").
  30. Ifkind isgenerator, then
    1. Letprototype beOrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
    2. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  31. Else ifkind isasync-generator, then
    1. Letprototype beOrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
    2. Perform ! DefinePropertyOrThrow(F,"prototype", PropertyDescriptor {[[Value]]:prototype,[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  32. Else ifkind isnormal, then
    1. PerformMakeConstructor(F).
  33. NOTE: Functions whosekind isasync are not constructible and do not have a[[Construct]] internal method or a"prototype" property.
  34. ReturnF.
Note

CreateDynamicFunction defines a"prototype" property on any function it creates whosekind is notasync to provide for the possibility that the function will be used as aconstructor.

20.2.2 Properties of the Function Constructor

The Functionconstructor:

  • is itself a built-infunction object.
  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"length" property whose value is1𝔽.
  • has the following properties:

20.2.2.1 Function.prototype

The value ofFunction.prototype is theFunction prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.2.3 Properties of the Function Prototype Object

TheFunction prototype object:

  • is%Function.prototype%.
  • is itself a built-infunction object.
  • accepts any arguments and returnsundefined when invoked.
  • does not have a[[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a"prototype" property.
  • has a"length" property whose value is+0𝔽.
  • has a"name" property whose value is the empty String.
Note

The Function prototype object is specified to be afunction object to ensure compatibility with ECMAScript code that was created prior to the ECMAScript 2015 specification.

20.2.3.1 Function.prototype.apply (thisArg,argArray )

This method performs the following steps when called:

  1. Letfunc be thethis value.
  2. IfIsCallable(func) isfalse, throw aTypeError exception.
  3. IfargArray is eitherundefined ornull, then
    1. PerformPrepareForTailCall().
    2. Return ? Call(func,thisArg).
  4. LetargList be ? CreateListFromArrayLike(argArray).
  5. PerformPrepareForTailCall().
  6. Return ? Call(func,thisArg,argList).
Note 1

ThethisArg value is passed without modification as thethis value. This is a change from Edition 3, where anundefined ornullthisArg is replaced with theglobal object andToObject is applied to all other values and that result is passed as thethis value. Even though thethisArg is passed without modification,non-strict functions still perform these transformations upon entry to the function.

Note 2

Iffunc is either an arrow function or abound function exotic object, then thethisArg will be ignored by the function[[Call]] in step6.

20.2.3.2 Function.prototype.bind (thisArg, ...args )

This method performs the following steps when called:

  1. LetTarget be thethis value.
  2. IfIsCallable(Target) isfalse, throw aTypeError exception.
  3. LetF be ? BoundFunctionCreate(Target,thisArg,args).
  4. LetL be 0.
  5. LettargetHasLength be ? HasOwnProperty(Target,"length").
  6. IftargetHasLength istrue, then
    1. LettargetLen be ? Get(Target,"length").
    2. IftargetLenis a Number, then
      1. IftargetLen is+∞𝔽, then
        1. SetL to +∞.
      2. Else iftargetLen is-∞𝔽, then
        1. SetL to 0.
      3. Else,
        1. LettargetLenAsInt be ! ToIntegerOrInfinity(targetLen).
        2. Assert:targetLenAsInt isfinite.
        3. LetargCount be the number of elements inargs.
        4. SetL tomax(targetLenAsInt -argCount, 0).
  7. PerformSetFunctionLength(F,L).
  8. LettargetName be ? Get(Target,"name").
  9. IftargetNameis not a String, settargetName to the empty String.
  10. PerformSetFunctionName(F,targetName,"bound").
  11. ReturnF.
Note 1

Function objects created usingFunction.prototype.bind areexotic objects. They also do not have a"prototype" property.

Note 2

IfTarget is either an arrow function or abound function exotic object, then thethisArg passed to this method will not be used by subsequent calls toF.

20.2.3.3 Function.prototype.call (thisArg, ...args )

This method performs the following steps when called:

  1. Letfunc be thethis value.
  2. IfIsCallable(func) isfalse, throw aTypeError exception.
  3. PerformPrepareForTailCall().
  4. Return ? Call(func,thisArg,args).
Note 1

ThethisArg value is passed without modification as thethis value. This is a change from Edition 3, where anundefined ornullthisArg is replaced with theglobal object andToObject is applied to all other values and that result is passed as thethis value. Even though thethisArg is passed without modification,non-strict functions still perform these transformations upon entry to the function.

Note 2

Iffunc is either an arrow function or abound function exotic object, then thethisArg will be ignored by the function[[Call]] in step4.

20.2.3.4 Function.prototype.constructor

The initial value ofFunction.prototype.constructor is%Function%.

20.2.3.5 Function.prototype.toString ( )

This method performs the following steps when called:

  1. Letfunc be thethis value.
  2. Iffuncis an Object,func has a[[SourceText]] internal slot,func.[[SourceText]] is a sequence of Unicode code points, andHostHasSourceTextAvailable(func) istrue, then
    1. ReturnCodePointsToString(func.[[SourceText]]).
  3. Iffunc is abuilt-in function object, return animplementation-defined String source code representation offunc. The representation must have the syntax of aNativeFunction. Additionally, iffunc has an[[InitialName]] internal slot andfunc.[[InitialName]]is a String, the portion of the returned String that would be matched byNativeFunctionAccessoroptPropertyName must be the value offunc.[[InitialName]].
  4. Iffuncis an Object andIsCallable(func) istrue, return animplementation-defined String source code representation offunc. The representation must have the syntax of aNativeFunction.
  5. Throw aTypeError exception.
NativeFunction:functionNativeFunctionAccessoroptPropertyName[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){[nativecode]}NativeFunctionAccessor:getset

20.2.3.6 Function.prototype [ @@hasInstance ] (V )

This method performs the following steps when called:

  1. LetF be thethis value.
  2. Return ? OrdinaryHasInstance(F,V).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

Note

This is the default implementation of@@hasInstance that most functions inherit.@@hasInstance is called by theinstanceof operator to determine whether a value is an instance of a specificconstructor. An expression such as

vinstanceof F

evaluates as

F[@@hasInstance](v)

Aconstructor function can control which objects are recognized as its instances byinstanceof by exposing a different@@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the target function of a bound function.

The value of the"name" property of this method is"[Symbol.hasInstance]".

20.2.4 Function Instances

Every Function instance is an ECMAScriptfunction object and has the internal slots listed inTable 30.Function objects created using theFunction.prototype.bind method (20.2.3.2) have the internal slots listed inTable 31.

Function instances have the following properties:

20.2.4.1 length

The value of the"length" property is anintegral Number that indicates the typical number of arguments expected by the function. However, the language permits the function to be invoked with some other number of arguments. The behaviour of a function when invoked on a number of arguments other than the number specified by its"length" property depends on the function. This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

20.2.4.2 name

The value of the"name" propertyis a String that is descriptive of the function. The name has no semantic significance but is typically a variable orproperty name that is used to refer to the function at its point of definition inECMAScript source text. This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

Anonymous functions objects that do not have a contextual name associated with them by this specification use the empty String as the value of the"name" property.

20.2.4.3 prototype

Function instances that can be used as aconstructor have a"prototype" property. Whenever such a Function instance is created anotherordinary object is also created and is the initial value of the function's"prototype" property. Unless otherwise specified, the value of the"prototype" property is used to initialize the[[Prototype]] internal slot of the object created when that function is invoked as aconstructor.

This property has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.

Note

Function objects created usingFunction.prototype.bind, or by evaluating aMethodDefinition (that is not aGeneratorMethod orAsyncGeneratorMethod) or anArrowFunction do not have a"prototype" property.

20.2.5 HostHasSourceTextAvailable (func )

Thehost-defined abstract operation HostHasSourceTextAvailable takes argumentfunc (afunction object) and returns a Boolean. It allowshost environments to prevent the source text from being provided forfunc.

An implementation of HostHasSourceTextAvailable must conform to the following requirements:

  • It must be deterministic with respect to its parameters. Each time it is called with a specificfunc as its argument, it must return the same result.

The default implementation of HostHasSourceTextAvailable is to returntrue.

20.3 Boolean Objects

20.3.1 The Boolean Constructor

The Booleanconstructor:

  • is%Boolean%.
  • is the initial value of the"Boolean" property of theglobal object.
  • creates and initializes a new Boolean object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Boolean behaviour must include asuper call to the Booleanconstructor to create and initialize the subclass instance with a[[BooleanData]] internal slot.

20.3.1.1 Boolean (value )

This function performs the following steps when called:

  1. Letb beToBoolean(value).
  2. If NewTarget isundefined, returnb.
  3. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Boolean.prototype%", «[[BooleanData]] »).
  4. SetO.[[BooleanData]] tob.
  5. ReturnO.

20.3.2 Properties of the Boolean Constructor

The Booleanconstructor:

20.3.2.1 Boolean.prototype

The initial value ofBoolean.prototype is theBoolean prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.3.3 Properties of the Boolean Prototype Object

TheBoolean prototype object:

  • is%Boolean.prototype%.
  • is anordinary object.
  • is itself a Boolean object; it has a[[BooleanData]] internal slot with the valuefalse.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.

20.3.3.1 Boolean.prototype.constructor

The initial value ofBoolean.prototype.constructor is%Boolean%.

20.3.3.2 Boolean.prototype.toString ( )

This method performs the following steps when called:

  1. Letb be ? ThisBooleanValue(this value).
  2. Ifb istrue, return"true"; else return"false".

20.3.3.3 Boolean.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? ThisBooleanValue(this value).

20.3.3.3.1 ThisBooleanValue (value )

The abstract operation ThisBooleanValue takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. Ifvalueis a Boolean, returnvalue.
  2. Ifvalueis an Object andvalue has a[[BooleanData]] internal slot, then
    1. Letb bevalue.[[BooleanData]].
    2. Assert:bis a Boolean.
    3. Returnb.
  3. Throw aTypeError exception.

20.3.4 Properties of Boolean Instances

Boolean instances areordinary objects that inherit properties from theBoolean prototype object. Boolean instances have a[[BooleanData]] internal slot. The[[BooleanData]] internal slot is the Boolean value represented by this Boolean object.

20.4 Symbol Objects

20.4.1 The Symbol Constructor

The Symbolconstructor:

  • is%Symbol%.
  • is the initial value of the"Symbol" property of theglobal object.
  • returns a new Symbol value when called as a function.
  • is not intended to be used with thenew operator.
  • is not intended to be subclassed.
  • may be used as the value of anextends clause of a class definition but asuper call to it will cause an exception.

20.4.1.1 Symbol ( [description ] )

This function performs the following steps when called:

  1. If NewTarget is notundefined, throw aTypeError exception.
  2. Ifdescription isundefined, letdescString beundefined.
  3. Else, letdescString be ? ToString(description).
  4. Return a new Symbol whose[[Description]] isdescString.

20.4.2 Properties of the Symbol Constructor

The Symbolconstructor:

20.4.2.1 Symbol.asyncIterator

The initial value ofSymbol.asyncIterator is the well known symbol@@asyncIterator (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.2 Symbol.for (key )

This function performs the following steps when called:

  1. LetstringKey be ? ToString(key).
  2. For each elemente of the GlobalSymbolRegistryList, do
    1. IfSameValue(e.[[Key]],stringKey) istrue, returne.[[Symbol]].
  3. Assert: GlobalSymbolRegistry does not currently contain an entry forstringKey.
  4. LetnewSymbol be a new Symbol whose[[Description]] isstringKey.
  5. Append theRecord {[[Key]]:stringKey,[[Symbol]]:newSymbol } to the GlobalSymbolRegistryList.
  6. ReturnnewSymbol.

The GlobalSymbolRegistry is an append-onlyList that is globally available. It is shared by allrealms. Prior to the evaluation of any ECMAScript code, it is initialized as a new emptyList. Elements of the GlobalSymbolRegistry areRecords with the structure defined inTable 60.

Table 60: GlobalSymbolRegistryRecord Fields
Field Name Value Usage
[[Key]] a String A string key used to globally identify a Symbol.
[[Symbol]] a Symbol A symbol that can be retrieved from anyrealm.

20.4.2.3 Symbol.hasInstance

The initial value ofSymbol.hasInstance is the well-known symbol@@hasInstance (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.4 Symbol.isConcatSpreadable

The initial value ofSymbol.isConcatSpreadable is the well-known symbol@@isConcatSpreadable (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.5 Symbol.iterator

The initial value ofSymbol.iterator is the well-known symbol@@iterator (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.6 Symbol.keyFor (sym )

This function performs the following steps when called:

  1. Ifsymis not a Symbol, throw aTypeError exception.
  2. ReturnKeyForSymbol(sym).

20.4.2.7 Symbol.match

The initial value ofSymbol.match is the well-known symbol@@match (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.8 Symbol.matchAll

The initial value ofSymbol.matchAll is the well-known symbol@@matchAll (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.9 Symbol.prototype

The initial value ofSymbol.prototype is theSymbol prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.10 Symbol.replace

The initial value ofSymbol.replace is the well-known symbol@@replace (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.11 Symbol.search

The initial value ofSymbol.search is the well-known symbol@@search (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.12 Symbol.species

The initial value ofSymbol.species is the well-known symbol@@species (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.13 Symbol.split

The initial value ofSymbol.split is the well-known symbol@@split (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.14 Symbol.toPrimitive

The initial value ofSymbol.toPrimitive is the well-known symbol@@toPrimitive (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.15 Symbol.toStringTag

The initial value ofSymbol.toStringTag is the well-known symbol@@toStringTag (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.2.16 Symbol.unscopables

The initial value ofSymbol.unscopables is the well-known symbol@@unscopables (Table 1).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.4.3 Properties of the Symbol Prototype Object

TheSymbol prototype object:

20.4.3.1 Symbol.prototype.constructor

The initial value ofSymbol.prototype.constructor is%Symbol%.

20.4.3.2 get Symbol.prototype.description

Symbol.prototype.description is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Lets be thethis value.
  2. Letsym be ? ThisSymbolValue(s).
  3. Returnsym.[[Description]].

20.4.3.3 Symbol.prototype.toString ( )

This method performs the following steps when called:

  1. Letsym be ? ThisSymbolValue(this value).
  2. ReturnSymbolDescriptiveString(sym).

20.4.3.3.1 SymbolDescriptiveString (sym )

The abstract operation SymbolDescriptiveString takes argumentsym (a Symbol) and returns a String. It performs the following steps when called:

  1. Letdesc besym's[[Description]] value.
  2. Ifdesc isundefined, setdesc to the empty String.
  3. Assert:descis a String.
  4. Return thestring-concatenation of"Symbol(",desc, and")".

20.4.3.4 Symbol.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? ThisSymbolValue(this value).

20.4.3.4.1 ThisSymbolValue (value )

The abstract operation ThisSymbolValue takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a Symbol or athrow completion. It performs the following steps when called:

  1. Ifvalueis a Symbol, returnvalue.
  2. Ifvalueis an Object andvalue has a[[SymbolData]] internal slot, then
    1. Lets bevalue.[[SymbolData]].
    2. Assert:sis a Symbol.
    3. Returns.
  3. Throw aTypeError exception.

20.4.3.5 Symbol.prototype [ @@toPrimitive ] (hint )

This method is called by ECMAScript language operators to convert a Symbol object to a primitive value.

It performs the following steps when called:

  1. Return ? ThisSymbolValue(this value).
Note

The argument is ignored.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

The value of the"name" property of this method is"[Symbol.toPrimitive]".

20.4.3.6 Symbol.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Symbol".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

20.4.4 Properties of Symbol Instances

Symbol instances areordinary objects that inherit properties from theSymbol prototype object. Symbol instances have a[[SymbolData]] internal slot. The[[SymbolData]] internal slot is the Symbol value represented by this Symbol object.

20.4.5 Abstract Operations for Symbols

20.4.5.1 KeyForSymbol (sym )

The abstract operation KeyForSymbol takes argumentsym (a Symbol) and returns a String orundefined. Ifsym is in the GlobalSymbolRegistry (see20.4.2.2) the String used to registersym will be returned. It performs the following steps when called:

  1. For each elemente of the GlobalSymbolRegistryList, do
    1. IfSameValue(e.[[Symbol]],sym) istrue, returne.[[Key]].
  2. Assert: GlobalSymbolRegistry does not currently contain an entry forsym.
  3. Returnundefined.

20.5 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also serve as base objects for user-defined exception classes.

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of theNativeError objects defined in20.5.5 or a new instance of AggregateError object defined in20.5.7. Each of these objects has the structure described below, differing only in the name used as theconstructor name instead ofNativeError, in the"name" property of the prototype object, in theimplementation-defined"message" property of the prototype object, and in the presence of the%AggregateError%-specific"errors" property.

20.5.1 The Error Constructor

The Errorconstructor:

  • is%Error%.
  • is the initial value of the"Error" property of theglobal object.
  • creates and initializes a new Error object when called as a function rather than as aconstructor. Thus the function callError(…) is equivalent to the object creation expressionnew Error(…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Error behaviour must include asuper call to the Errorconstructor to create and initialize subclass instances with an[[ErrorData]] internal slot.

20.5.1.1 Error (message [ ,options ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%Error.prototype%", «[[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. PerformCreateNonEnumerableDataPropertyOrThrow(O,"message",msg).
  4. Perform ? InstallErrorCause(O,options).
  5. ReturnO.

20.5.2 Properties of the Error Constructor

The Errorconstructor:

20.5.2.1 Error.prototype

The initial value ofError.prototype is theError prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.5.3 Properties of the Error Prototype Object

TheError prototype object:

  • is%Error.prototype%.
  • is anordinary object.
  • is not an Error instance and does not have an[[ErrorData]] internal slot.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.

20.5.3.1 Error.prototype.constructor

The initial value ofError.prototype.constructor is%Error%.

20.5.3.2 Error.prototype.message

The initial value ofError.prototype.message is the empty String.

20.5.3.3 Error.prototype.name

The initial value ofError.prototype.name is"Error".

20.5.3.4 Error.prototype.toString ( )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. IfOis not an Object, throw aTypeError exception.
  3. Letname be ? Get(O,"name").
  4. Ifname isundefined, setname to"Error"; otherwise setname to ? ToString(name).
  5. Letmsg be ? Get(O,"message").
  6. Ifmsg isundefined, setmsg to the empty String; otherwise setmsg to ? ToString(msg).
  7. Ifname is the empty String, returnmsg.
  8. Ifmsg is the empty String, returnname.
  9. Return thestring-concatenation ofname, the code unit 0x003A (COLON), the code unit 0x0020 (SPACE), andmsg.

20.5.4 Properties of Error Instances

Error instances areordinary objects that inherit properties from theError prototype object and have an[[ErrorData]] internal slot whose value isundefined. The only specified uses of[[ErrorData]] is to identify Error, AggregateError, andNativeError instances as Error objects withinObject.prototype.toString.

20.5.5 Native Error Types Used in This Standard

A new instance of one of theNativeError objects below or of the AggregateError object is thrown when a runtime error is detected. AllNativeError objects share the same structure, as described in20.5.6.

20.5.5.1 EvalError

The EvalErrorconstructor is%EvalError%.

This exception is not currently used within this specification. This object remains for compatibility with previous editions of this specification.

20.5.5.2 RangeError

The RangeErrorconstructor is%RangeError%.

Indicates a value that is not in the set or range of allowable values.

20.5.5.3 ReferenceError

The ReferenceErrorconstructor is%ReferenceError%.

Indicate that an invalid reference has been detected.

20.5.5.4 SyntaxError

The SyntaxErrorconstructor is%SyntaxError%.

Indicates that a parsing error has occurred.

20.5.5.5 TypeError

The TypeErrorconstructor is%TypeError%.

TypeError is used to indicate an unsuccessful operation when none of the otherNativeError objects are an appropriate indication of the failure cause.

20.5.5.6 URIError

The URIErrorconstructor is%URIError%.

Indicates that one of the global URI handling functions was used in a way that is incompatible with its definition.

20.5.6NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of theNativeError objects defined in20.5.5. Each of these objects has the structure described below, differing only in the name used as theconstructor name instead ofNativeError, in the"name" property of the prototype object, and in theimplementation-defined"message" property of the prototype object.

For each error object, references toNativeError in the definition should be replaced with the appropriate error object name from20.5.5.

20.5.6.1 TheNativeError Constructors

EachNativeErrorconstructor:

  • creates and initializes a newNativeError object when called as a function rather than as aconstructor. A call of the object as a function is equivalent to calling it as aconstructor with the same arguments. Thus the function callNativeError(…) is equivalent to the object creation expressionnewNativeError(…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specifiedNativeError behaviour must include asuper call to theNativeErrorconstructor to create and initialize subclass instances with an[[ErrorData]] internal slot.

20.5.6.1.1NativeError (message [ ,options ] )

EachNativeError function performs the following steps when called:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%NativeError.prototype%", «[[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. PerformCreateNonEnumerableDataPropertyOrThrow(O,"message",msg).
  4. Perform ? InstallErrorCause(O,options).
  5. ReturnO.

The actual value of the string passed in step2 is either"%EvalError.prototype%","%RangeError.prototype%","%ReferenceError.prototype%","%SyntaxError.prototype%","%TypeError.prototype%", or"%URIError.prototype%" corresponding to whichNativeErrorconstructor is being defined.

20.5.6.2 Properties of theNativeError Constructors

EachNativeErrorconstructor:

  • has a[[Prototype]] internal slot whose value is%Error%.
  • has a"name" property whose value is the String value"NativeError".
  • has the following properties:

20.5.6.2.1NativeError.prototype

The initial value ofNativeError.prototype is aNativeError prototype object (20.5.6.3). EachNativeErrorconstructor has a distinct prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.5.6.3 Properties of theNativeError Prototype Objects

EachNativeError prototype object:

20.5.6.3.1NativeError.prototype.constructor

The initial value of the"constructor" property of the prototype for a givenNativeErrorconstructor is theconstructor itself.

20.5.6.3.2NativeError.prototype.message

The initial value of the"message" property of the prototype for a givenNativeErrorconstructor is the empty String.

20.5.6.3.3NativeError.prototype.name

The initial value of the"name" property of the prototype for a givenNativeErrorconstructor is the String value consisting of the name of theconstructor (the name used instead ofNativeError).

20.5.6.4 Properties ofNativeError Instances

NativeError instances areordinary objects that inherit properties from theirNativeError prototype object and have an[[ErrorData]] internal slot whose value isundefined. The only specified use of[[ErrorData]] is byObject.prototype.toString (20.1.3.6) to identify Error, AggregateError, orNativeError instances.

20.5.7 AggregateError Objects

20.5.7.1 The AggregateError Constructor

The AggregateErrorconstructor:

  • is%AggregateError%.
  • is the initial value of the"AggregateError" property of theglobal object.
  • creates and initializes a new AggregateError object when called as a function rather than as aconstructor. Thus the function callAggregateError(…) is equivalent to the object creation expressionnew AggregateError(…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified AggregateError behaviour must include asuper call to the AggregateErrorconstructor to create and initialize subclass instances with an[[ErrorData]] internal slot.

20.5.7.1.1 AggregateError (errors,message [ ,options ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. LetO be ? OrdinaryCreateFromConstructor(newTarget,"%AggregateError.prototype%", «[[ErrorData]] »).
  3. Ifmessage is notundefined, then
    1. Letmsg be ? ToString(message).
    2. PerformCreateNonEnumerableDataPropertyOrThrow(O,"message",msg).
  4. Perform ? InstallErrorCause(O,options).
  5. LeterrorsList be ? IteratorToList(?GetIterator(errors,sync)).
  6. Perform ! DefinePropertyOrThrow(O,"errors", PropertyDescriptor {[[Configurable]]:true,[[Enumerable]]:false,[[Writable]]:true,[[Value]]:CreateArrayFromList(errorsList) }).
  7. ReturnO.

20.5.7.2 Properties of the AggregateError Constructor

The AggregateErrorconstructor:

  • has a[[Prototype]] internal slot whose value is%Error%.
  • has the following properties:

20.5.7.2.1 AggregateError.prototype

The initial value ofAggregateError.prototype is%AggregateError.prototype%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

20.5.7.3 Properties of the AggregateError Prototype Object

TheAggregateError prototype object:

  • is%AggregateError.prototype%.
  • is anordinary object.
  • is not an Error instance or an AggregateError instance and does not have an[[ErrorData]] internal slot.
  • has a[[Prototype]] internal slot whose value is%Error.prototype%.

20.5.7.3.1 AggregateError.prototype.constructor

The initial value ofAggregateError.prototype.constructor is%AggregateError%.

20.5.7.3.2 AggregateError.prototype.message

The initial value ofAggregateError.prototype.message is the empty String.

20.5.7.3.3 AggregateError.prototype.name

The initial value ofAggregateError.prototype.name is"AggregateError".

20.5.7.4 Properties of AggregateError Instances

AggregateError instances areordinary objects that inherit properties from theirAggregateError prototype object and have an[[ErrorData]] internal slot whose value isundefined. The only specified use of[[ErrorData]] is byObject.prototype.toString (20.1.3.6) to identify Error, AggregateError, orNativeError instances.

20.5.8 Abstract Operations for Error Objects

20.5.8.1 InstallErrorCause (O,options )

The abstract operation InstallErrorCause takes argumentsO (an Object) andoptions (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It is used to create a"cause" property onO when a"cause" property is present onoptions. It performs the following steps when called:

  1. Ifoptionsis an Object and ? HasProperty(options,"cause") istrue, then
    1. Letcause be ? Get(options,"cause").
    2. PerformCreateNonEnumerableDataPropertyOrThrow(O,"cause",cause).
  2. Returnunused.

21 Numbers and Dates

21.1 Number Objects

21.1.1 The Number Constructor

The Numberconstructor:

  • is%Number%.
  • is the initial value of the"Number" property of theglobal object.
  • creates and initializes a new Number object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Number behaviour must include asuper call to the Numberconstructor to create and initialize the subclass instance with a[[NumberData]] internal slot.

21.1.1.1 Number (value )

This function performs the following steps when called:

  1. Ifvalue is present, then
    1. Letprim be ? ToNumeric(value).
    2. Ifprimis a BigInt, letn be𝔽((prim)).
    3. Otherwise, letn beprim.
  2. Else,
    1. Letn be+0𝔽.
  3. If NewTarget isundefined, returnn.
  4. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Number.prototype%", «[[NumberData]] »).
  5. SetO.[[NumberData]] ton.
  6. ReturnO.

21.1.2 Properties of the Number Constructor

The Numberconstructor:

21.1.2.1 Number.EPSILON

The value ofNumber.EPSILON is theNumber value for the magnitude of the difference between 1 and the smallest value greater than 1 that is representable as a Number value, which is approximately 2.2204460492503130808472633361816 × 10-16.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.2 Number.isFinite (number )

This function performs the following steps when called:

  1. Ifnumberis not a Number, returnfalse.
  2. Ifnumber is notfinite, returnfalse.
  3. Otherwise, returntrue.

21.1.2.3 Number.isInteger (number )

This function performs the following steps when called:

  1. ReturnIsIntegralNumber(number).

21.1.2.4 Number.isNaN (number )

This function performs the following steps when called:

  1. Ifnumberis not a Number, returnfalse.
  2. Ifnumber isNaN, returntrue.
  3. Otherwise, returnfalse.
Note

This function differs from the global isNaN function (19.2.3) in that it does not convert its argument to a Number before determining whether it isNaN.

21.1.2.5 Number.isSafeInteger (number )

Note

Anintegern is a "safe integer" if and only if theNumber value forn is not theNumber value for any otherinteger.

This function performs the following steps when called:

  1. IfIsIntegralNumber(number) istrue, then
    1. Ifabs((number)) ≤ 253 - 1, returntrue.
  2. Returnfalse.

21.1.2.6 Number.MAX_SAFE_INTEGER

Note

Due to rounding behaviour necessitated by precision limitations ofIEEE 754-2019, theNumber value for everyinteger greater thanNumber.MAX_SAFE_INTEGER is shared with at least one otherinteger. Such large-magnitudeintegers are therefore notsafe, and are not guaranteed to be exactly representable as Number values or even to be distinguishable from each other. For example, both9007199254740992 and9007199254740993 evaluate to the Number value9007199254740992𝔽.

The value ofNumber.MAX_SAFE_INTEGER is9007199254740991𝔽 (𝔽(253 - 1)).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.7 Number.MAX_VALUE

The value ofNumber.MAX_VALUE is the largest positivefinite value of theNumber type, which is approximately1.7976931348623157 × 10308.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.8 Number.MIN_SAFE_INTEGER

Note

Due to rounding behaviour necessitated by precision limitations ofIEEE 754-2019, theNumber value for everyinteger less thanNumber.MIN_SAFE_INTEGER is shared with at least one otherinteger. Such large-magnitudeintegers are therefore notsafe, and are not guaranteed to be exactly representable as Number values or even to be distinguishable from each other. For example, both-9007199254740992 and-9007199254740993 evaluate to the Number value-9007199254740992𝔽.

The value ofNumber.MIN_SAFE_INTEGER is-9007199254740991𝔽 (𝔽(-(253 - 1))).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.9 Number.MIN_VALUE

The value ofNumber.MIN_VALUE is the smallest positive value of theNumber type, which is approximately5 × 10-324.

In theIEEE 754-2019 double precision binary representation, the smallest possible value is a denormalized number. If an implementation does not support denormalized values, the value ofNumber.MIN_VALUE must be the smallest non-zero positive value that can actually be represented by the implementation.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.10 Number.NaN

The value ofNumber.NaN isNaN.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.11 Number.NEGATIVE_INFINITY

The value ofNumber.NEGATIVE_INFINITY is-∞𝔽.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.12 Number.parseFloat (string )

The initial value of the"parseFloat" property is%parseFloat%.

21.1.2.13 Number.parseInt (string,radix )

The initial value of the"parseInt" property is%parseInt%.

21.1.2.14 Number.POSITIVE_INFINITY

The value ofNumber.POSITIVE_INFINITY is+∞𝔽.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.2.15 Number.prototype

The initial value ofNumber.prototype is theNumber prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.1.3 Properties of the Number Prototype Object

TheNumber prototype object:

  • is%Number.prototype%.
  • is anordinary object.
  • is itself a Number object; it has a[[NumberData]] internal slot with the value+0𝔽.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly stated otherwise, the methods of the Number prototype object defined below are not generic and thethis value passed to them must be either a Number value or an object that has a[[NumberData]] internal slot that has been initialized to a Number value.

The phrase “this Number value” within the specification of a method refers to the result returned by calling the abstract operationThisNumberValue with thethis value of the method invocation passed as the argument.

21.1.3.1 Number.prototype.constructor

The initial value ofNumber.prototype.constructor is%Number%.

21.1.3.2 Number.prototype.toExponential (fractionDigits )

This method returns a String containing this Number value represented in decimal exponential notation with one digit before the significand's decimal point andfractionDigits digits after the significand's decimal point. IffractionDigits isundefined, it includes as many significand digits as necessary to uniquely specify the Number (just like inToString except that in this case the Number is always output in exponential notation).

It performs the following steps when called:

  1. Letx be ? ThisNumberValue(this value).
  2. Letf be ? ToIntegerOrInfinity(fractionDigits).
  3. Assert: IffractionDigits isundefined, thenf is 0.
  4. Ifx is notfinite, returnNumber::toString(x, 10).
  5. Iff < 0 orf > 100, throw aRangeError exception.
  6. Setx to(x).
  7. Lets be the empty String.
  8. Ifx < 0, then
    1. Sets to"-".
    2. Setx to -x.
  9. Ifx = 0, then
    1. Letm be the String value consisting off + 1 occurrences of the code unit 0x0030 (DIGIT ZERO).
    2. Lete be 0.
  10. Else,
    1. IffractionDigits is notundefined, then
      1. Lete andn beintegers such that 10fn < 10f + 1 and for whichn × 10e -f -x is as close to zero as possible. If there are two such sets ofe andn, pick thee andn for whichn × 10e -f is larger.
    2. Else,
      1. Lete,n, andff beintegers such thatff ≥ 0, 10ffn < 10ff + 1,𝔽(n × 10e -ff) is𝔽(x), andff is as small as possible. Note that the decimal representation ofn hasff + 1 digits,n is not divisible by 10, and the least significant digit ofn is not necessarily uniquely determined by these criteria.
      2. Setf toff.
    3. Letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
  11. Iff ≠ 0, then
    1. Leta be the first code unit ofm.
    2. Letb be the otherf code units ofm.
    3. Setm to thestring-concatenation ofa,".", andb.
  12. Ife = 0, then
    1. Letc be"+".
    2. Letd be"0".
  13. Else,
    1. Ife > 0, then
      1. Letc be"+".
    2. Else,
      1. Assert:e < 0.
      2. Letc be"-".
      3. Sete to -e.
    3. Letd be the String value consisting of the digits of the decimal representation ofe (in order, with no leading zeroes).
  14. Setm to thestring-concatenation ofm,"e",c, andd.
  15. Return thestring-concatenation ofs andm.
Note

For implementations that provide more accurate conversions than required by the rules above, it is recommended that the following alternative version of step10.b.i be used as a guideline:

  1. Lete,n, andf beintegers such thatf ≥ 0, 10fn < 10f + 1,𝔽(n × 10e -f) is𝔽(x), andf is as small as possible. If there are multiple possibilities forn, choose the value ofn for which𝔽(n × 10e -f) is closest in value to𝔽(x). If there are two such possible values ofn, choose the one that is even.

21.1.3.3 Number.prototype.toFixed (fractionDigits )

Note 1

This method returns a String containing this Number value represented in decimal fixed-point notation withfractionDigits digits after the decimal point. IffractionDigits isundefined, 0 is assumed.

It performs the following steps when called:

  1. Letx be ? ThisNumberValue(this value).
  2. Letf be ? ToIntegerOrInfinity(fractionDigits).
  3. Assert: IffractionDigits isundefined, thenf is 0.
  4. Iff is notfinite, throw aRangeError exception.
  5. Iff < 0 orf > 100, throw aRangeError exception.
  6. Ifx is notfinite, returnNumber::toString(x, 10).
  7. Setx to(x).
  8. Lets be the empty String.
  9. Ifx < 0, then
    1. Sets to"-".
    2. Setx to -x.
  10. Ifx ≥ 1021, then
    1. Letm be ! ToString(𝔽(x)).
  11. Else,
    1. Letn be aninteger for whichn / 10f -x is as close to zero as possible. If there are two suchn, pick the largern.
    2. Ifn = 0, letm be"0". Otherwise, letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
    3. Iff ≠ 0, then
      1. Letk be the length ofm.
      2. Ifkf, then
        1. Letz be the String value consisting off + 1 -k occurrences of the code unit 0x0030 (DIGIT ZERO).
        2. Setm to thestring-concatenation ofz andm.
        3. Setk tof + 1.
      3. Leta be the firstk -f code units ofm.
      4. Letb be the otherf code units ofm.
      5. Setm to thestring-concatenation ofa,".", andb.
  12. Return thestring-concatenation ofs andm.
Note 2

The output oftoFixed may be more precise thantoString for some values because toString only prints enough significant digits to distinguish the number from adjacent Number values. For example,

(1000000000000000128).toString() returns"1000000000000000100", while
(1000000000000000128).toFixed(0) returns"1000000000000000128".

21.1.3.4 Number.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method produces a String value that represents this Number value formatted according to the conventions of thehost environment's current locale. This method isimplementation-defined, and it is permissible, but not encouraged, for it to return the same thing astoString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.1.3.5 Number.prototype.toPrecision (precision )

This method returns a String containing this Number value represented either in decimal exponential notation with one digit before the significand's decimal point andprecision - 1 digits after the significand's decimal point or in decimal fixed notation withprecision significant digits. Ifprecision isundefined, it callsToString instead.

It performs the following steps when called:

  1. Letx be ? ThisNumberValue(this value).
  2. Ifprecision isundefined, return ! ToString(x).
  3. Letp be ? ToIntegerOrInfinity(precision).
  4. Ifx is notfinite, returnNumber::toString(x, 10).
  5. Ifp < 1 orp > 100, throw aRangeError exception.
  6. Setx to(x).
  7. Lets be the empty String.
  8. Ifx < 0, then
    1. Sets to the code unit 0x002D (HYPHEN-MINUS).
    2. Setx to -x.
  9. Ifx = 0, then
    1. Letm be the String value consisting ofp occurrences of the code unit 0x0030 (DIGIT ZERO).
    2. Lete be 0.
  10. Else,
    1. Lete andn beintegers such that 10p - 1n < 10p and for whichn × 10e -p + 1 -x is as close to zero as possible. If there are two such sets ofe andn, pick thee andn for whichn × 10e -p + 1 is larger.
    2. Letm be the String value consisting of the digits of the decimal representation ofn (in order, with no leading zeroes).
    3. Ife < -6 orep, then
      1. Assert:e ≠ 0.
      2. Ifp ≠ 1, then
        1. Leta be the first code unit ofm.
        2. Letb be the otherp - 1 code units ofm.
        3. Setm to thestring-concatenation ofa,".", andb.
      3. Ife > 0, then
        1. Letc be the code unit 0x002B (PLUS SIGN).
      4. Else,
        1. Assert:e < 0.
        2. Letc be the code unit 0x002D (HYPHEN-MINUS).
        3. Sete to -e.
      5. Letd be the String value consisting of the digits of the decimal representation ofe (in order, with no leading zeroes).
      6. Return thestring-concatenation ofs,m, the code unit 0x0065 (LATIN SMALL LETTER E),c, andd.
  11. Ife =p - 1, return thestring-concatenation ofs andm.
  12. Ife ≥ 0, then
    1. Setm to thestring-concatenation of the firste + 1 code units ofm, the code unit 0x002E (FULL STOP), and the remainingp - (e + 1) code units ofm.
  13. Else,
    1. Setm to thestring-concatenation of the code unit 0x0030 (DIGIT ZERO), the code unit 0x002E (FULL STOP), -(e + 1) occurrences of the code unit 0x0030 (DIGIT ZERO), and the Stringm.
  14. Return thestring-concatenation ofs andm.

21.1.3.6 Number.prototype.toString ( [radix ] )

Note

The optionalradix should be anintegral Number value in theinclusive interval from2𝔽 to36𝔽. Ifradix isundefined then10𝔽 is used as the value ofradix.

This method performs the following steps when called:

  1. Letx be ? ThisNumberValue(this value).
  2. Ifradix isundefined, letradixMV be 10.
  3. Else, letradixMV be ? ToIntegerOrInfinity(radix).
  4. IfradixMV is not in theinclusive interval from 2 to 36, throw aRangeError exception.
  5. ReturnNumber::toString(x,radixMV).

This method is not generic; it throws aTypeError exception if itsthis valueis not a Number or a Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

The"length" property of this method is1𝔽.

21.1.3.7 Number.prototype.valueOf ( )

  1. Return ? ThisNumberValue(this value).

21.1.3.7.1 ThisNumberValue (value )

The abstract operation ThisNumberValue takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a Number or athrow completion. It performs the following steps when called:

  1. Ifvalueis a Number, returnvalue.
  2. Ifvalueis an Object andvalue has a[[NumberData]] internal slot, then
    1. Letn bevalue.[[NumberData]].
    2. Assert:nis a Number.
    3. Returnn.
  3. Throw aTypeError exception.

21.1.4 Properties of Number Instances

Number instances areordinary objects that inherit properties from theNumber prototype object. Number instances also have a[[NumberData]] internal slot. The[[NumberData]] internal slot is the Number value represented by this Number object.

21.2 BigInt Objects

21.2.1 The BigInt Constructor

The BigIntconstructor:

  • is%BigInt%.
  • is the initial value of the"BigInt" property of theglobal object.
  • performs a type conversion when called as a function rather than as aconstructor.
  • is not intended to be used with thenew operator or to be subclassed. It may be used as the value of anextends clause of a class definition but asuper call to the BigIntconstructor will cause an exception.

21.2.1.1 BigInt (value )

This function performs the following steps when called:

  1. If NewTarget is notundefined, throw aTypeError exception.
  2. Letprim be ? ToPrimitive(value,number).
  3. Ifprimis a Number, return ? NumberToBigInt(prim).
  4. Otherwise, return ? ToBigInt(prim).

21.2.1.1.1 NumberToBigInt (number )

The abstract operation NumberToBigInt takes argumentnumber (a Number) and returns either anormal completion containing a BigInt or athrow completion. It performs the following steps when called:

  1. IfIsIntegralNumber(number) isfalse, throw aRangeError exception.
  2. Return((number)).

21.2.2 Properties of the BigInt Constructor

The BigIntconstructor:

21.2.2.1 BigInt.asIntN (bits,bigint )

This function performs the following steps when called:

  1. Setbits to ? ToIndex(bits).
  2. Setbigint to ? ToBigInt(bigint).
  3. Letmod be(bigint)modulo 2bits.
  4. Ifmod ≥ 2bits - 1, return(mod - 2bits); otherwise, return(mod).

21.2.2.2 BigInt.asUintN (bits,bigint )

This function performs the following steps when called:

  1. Setbits to ? ToIndex(bits).
  2. Setbigint to ? ToBigInt(bigint).
  3. Return((bigint)modulo 2bits).

21.2.2.3 BigInt.prototype

The initial value ofBigInt.prototype is theBigInt prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.2.3 Properties of the BigInt Prototype Object

TheBigInt prototype object:

The phrase “this BigInt value” within the specification of a method refers to the result returned by calling the abstract operationThisBigIntValue with thethis value of the method invocation passed as the argument.

21.2.3.1 BigInt.prototype.constructor

The initial value ofBigInt.prototype.constructor is%BigInt%.

21.2.3.2 BigInt.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method produces a String value that represents this BigInt value formatted according to the conventions of thehost environment's current locale. This method isimplementation-defined, and it is permissible, but not encouraged, for it to return the same thing astoString.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.2.3.3 BigInt.prototype.toString ( [radix ] )

Note

The optionalradix should be anintegral Number value in theinclusive interval from2𝔽 to36𝔽. Ifradix isundefined then10𝔽 is used as the value ofradix.

This method performs the following steps when called:

  1. Letx be ? ThisBigIntValue(this value).
  2. Ifradix isundefined, letradixMV be 10.
  3. Else, letradixMV be ? ToIntegerOrInfinity(radix).
  4. IfradixMV is not in theinclusive interval from 2 to 36, throw aRangeError exception.
  5. ReturnBigInt::toString(x,radixMV).

This method is not generic; it throws aTypeError exception if itsthis valueis not a BigInt or a BigInt object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

21.2.3.4 BigInt.prototype.valueOf ( )

  1. Return ? ThisBigIntValue(this value).

21.2.3.4.1 ThisBigIntValue (value )

The abstract operation ThisBigIntValue takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a BigInt or athrow completion. It performs the following steps when called:

  1. Ifvalueis a BigInt, returnvalue.
  2. Ifvalueis an Object andvalue has a[[BigIntData]] internal slot, then
    1. Assert:value.[[BigIntData]]is a BigInt.
    2. Returnvalue.[[BigIntData]].
  3. Throw aTypeError exception.

21.2.3.5 BigInt.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"BigInt".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

21.2.4 Properties of BigInt Instances

BigInt instances areordinary objects that inherit properties from theBigInt prototype object. BigInt instances also have a[[BigIntData]] internal slot. The[[BigIntData]] internal slot is the BigInt value represented by this BigInt object.

21.3 The Math Object

The Math object:

  • is%Math%.
  • is the initial value of the"Math" property of theglobal object.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is not afunction object.
  • does not have a[[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a[[Call]] internal method; it cannot be invoked as a function.
Note

In this specification, the phrase “theNumber value forx” has a technical meaning defined in6.1.6.1.

21.3.1 Value Properties of the Math Object

21.3.1.1 Math.E

TheNumber value fore, the base of the natural logarithms, which is approximately 2.7182818284590452354.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.3.1.2 Math.LN10

TheNumber value for the natural logarithm of 10, which is approximately 2.302585092994046.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.3.1.3 Math.LN2

TheNumber value for the natural logarithm of 2, which is approximately 0.6931471805599453.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.3.1.4 Math.LOG10E

TheNumber value for the base-10 logarithm ofe, the base of the natural logarithms; this value is approximately 0.4342944819032518.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

Note

The value ofMath.LOG10E is approximately the reciprocal of the value ofMath.LN10.

21.3.1.5 Math.LOG2E

TheNumber value for the base-2 logarithm ofe, the base of the natural logarithms; this value is approximately 1.4426950408889634.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

Note

The value ofMath.LOG2E is approximately the reciprocal of the value ofMath.LN2.

21.3.1.6 Math.PI

TheNumber value for π, the ratio of the circumference of a circle to its diameter, which is approximately 3.1415926535897932.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.3.1.7 Math.SQRT1_2

TheNumber value for the square root of ½, which is approximately 0.7071067811865476.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

Note

The value ofMath.SQRT1_2 is approximately the reciprocal of the value ofMath.SQRT2.

21.3.1.8 Math.SQRT2

TheNumber value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.3.1.9 Math [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Math".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

21.3.2 Function Properties of the Math Object

Note

The behaviour of the functionsacos,acosh,asin,asinh,atan,atanh,atan2,cbrt,cos,cosh,exp,expm1,hypot,log,log1p,log2,log10,pow,random,sin,sinh,sqrt,tan, andtanh is not precisely specified here except to require specific results for certain argument values that represent boundary cases of interest. For other argument values, these functions are intended to compute approximations to the results of familiar mathematical functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that an implementer should be able to use the same mathematical library for ECMAScript on a given hardware platform that is available to C programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by this standard) that implementations use the approximation algorithms forIEEE 754-2019 arithmetic contained infdlibm, the freely distributable mathematical library from Sun Microsystems (http://www.netlib.org/fdlibm).

21.3.2.1 Math.abs (x )

This function returns the absolute value ofx; the result has the same magnitude asx but has positive sign.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN, returnNaN.
  3. Ifn is-0𝔽, return+0𝔽.
  4. Ifn is-∞𝔽, return+∞𝔽.
  5. Ifn <-0𝔽, return -n.
  6. Returnn.

21.3.2.2 Math.acos (x )

This function returns the inverse cosine ofx. The result is expressed in radians and is in theinclusive interval from+0𝔽 to𝔽(π).

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN,n >1𝔽, orn <-1𝔽, returnNaN.
  3. Ifn is1𝔽, return+0𝔽.
  4. Return animplementation-approximated Number value representing the result of the inverse cosine of(n).

21.3.2.3 Math.acosh (x )

This function returns the inverse hyperbolic cosine ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is eitherNaN or+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn <1𝔽, returnNaN.
  5. Return animplementation-approximated Number value representing the result of the inverse hyperbolic cosine of(n).

21.3.2.4 Math.asin (x )

This function returns the inverse sine ofx. The result is expressed in radians and is in theinclusive interval from𝔽(-π / 2) to𝔽(π / 2).

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn >1𝔽 orn <-1𝔽, returnNaN.
  4. Return animplementation-approximated Number value representing the result of the inverse sine of(n).

21.3.2.5 Math.asinh (x )

This function returns the inverse hyperbolic sine ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Return animplementation-approximated Number value representing the result of the inverse hyperbolic sine of(n).

21.3.2.6 Math.atan (x )

This function returns the inverse tangent ofx. The result is expressed in radians and is in theinclusive interval from𝔽(-π / 2) to𝔽(π / 2).

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn is+∞𝔽, return animplementation-approximated Number value representing π / 2.
  4. Ifn is-∞𝔽, return animplementation-approximated Number value representing -π / 2.
  5. Return animplementation-approximated Number value representing the result of the inverse tangent of(n).

21.3.2.7 Math.atanh (x )

This function returns the inverse hyperbolic tangent ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn >1𝔽 orn <-1𝔽, returnNaN.
  4. Ifn is1𝔽, return+∞𝔽.
  5. Ifn is-1𝔽, return-∞𝔽.
  6. Return animplementation-approximated Number value representing the result of the inverse hyperbolic tangent of(n).

21.3.2.8 Math.atan2 (y,x )

This function returns the inverse tangent of the quotienty /x of the argumentsy andx, where the signs ofy andx are used to determine the quadrant of the result. Note that it is intentional and traditional for the two-argument inverse tangent function that the argument namedy be first and the argument namedx be second. The result is expressed in radians and is in theinclusive interval from -π to +π.

It performs the following steps when called:

  1. Letny be ? ToNumber(y).
  2. Letnx be ? ToNumber(x).
  3. Ifny isNaN ornx isNaN, returnNaN.
  4. Ifny is+∞𝔽, then
    1. Ifnx is+∞𝔽, return animplementation-approximated Number value representing π / 4.
    2. Ifnx is-∞𝔽, return animplementation-approximated Number value representing 3π / 4.
    3. Return animplementation-approximated Number value representing π / 2.
  5. Ifny is-∞𝔽, then
    1. Ifnx is+∞𝔽, return animplementation-approximated Number value representing -π / 4.
    2. Ifnx is-∞𝔽, return animplementation-approximated Number value representing -3π / 4.
    3. Return animplementation-approximated Number value representing -π / 2.
  6. Ifny is+0𝔽, then
    1. Ifnx >+0𝔽 ornx is+0𝔽, return+0𝔽.
    2. Return animplementation-approximated Number value representing π.
  7. Ifny is-0𝔽, then
    1. Ifnx >+0𝔽 ornx is+0𝔽, return-0𝔽.
    2. Return animplementation-approximated Number value representing -π.
  8. Assert:ny isfinite and is neither+0𝔽 nor-0𝔽.
  9. Ifny >+0𝔽, then
    1. Ifnx is+∞𝔽, return+0𝔽.
    2. Ifnx is-∞𝔽, return animplementation-approximated Number value representing π.
    3. Ifnx is either+0𝔽 or-0𝔽, return animplementation-approximated Number value representing π / 2.
  10. Ifny <-0𝔽, then
    1. Ifnx is+∞𝔽, return-0𝔽.
    2. Ifnx is-∞𝔽, return animplementation-approximated Number value representing -π.
    3. Ifnx is either+0𝔽 or-0𝔽, return animplementation-approximated Number value representing -π / 2.
  11. Assert:nx isfinite and is neither+0𝔽 nor-0𝔽.
  12. Letr be the inverse tangent ofabs((ny) /(nx)).
  13. Ifnx <-0𝔽, then
    1. Ifny >+0𝔽, setr to π -r.
    2. Else, setr to -π +r.
  14. Else,
    1. Ifny <-0𝔽, setr to -r.
  15. Return animplementation-approximated Number value representingr.

21.3.2.9 Math.cbrt (x )

This function returns the cube root ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Return animplementation-approximated Number value representing the result of the cube root of(n).

21.3.2.10 Math.ceil (x )

This function returns the smallest (closest to -∞)integral Number value that is not less thanx. Ifx is already anintegral Number, the result isx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Ifn <-0𝔽 andn >-1𝔽, return-0𝔽.
  4. Ifn is anintegral Number, returnn.
  5. Return the smallest (closest to -∞)integral Number value that is not less thann.
Note

The value ofMath.ceil(x) is the same as the value of-Math.floor(-x).

21.3.2.11 Math.clz32 (x )

This function performs the following steps when called:

  1. Letn be ? ToUint32(x).
  2. Letp be the number of leading zero bits in the unsigned 32-bit binary representation ofn.
  3. Return𝔽(p).
Note

Ifn is either+0𝔽 or-0𝔽, this method returns32𝔽. If the most significant bit of the 32-bit binary encoding ofn is 1, this method returns+0𝔽.

21.3.2.12 Math.cos (x )

This function returns the cosine ofx. The argument is expressed in radians.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite, returnNaN.
  3. Ifn is either+0𝔽 or-0𝔽, return1𝔽.
  4. Return animplementation-approximated Number value representing the result of the cosine of(n).

21.3.2.13 Math.cosh (x )

This function returns the hyperbolic cosine ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN, returnNaN.
  3. Ifn is either+∞𝔽 or-∞𝔽, return+∞𝔽.
  4. Ifn is either+0𝔽 or-0𝔽, return1𝔽.
  5. Return animplementation-approximated Number value representing the result of the hyperbolic cosine of(n).
Note

The value ofMath.cosh(x) is the same as the value of(Math.exp(x) + Math.exp(-x)) / 2.

21.3.2.14 Math.exp (x )

This function returns the exponential function ofx (e raised to the power ofx, wheree is the base of the natural logarithms).

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is eitherNaN or+∞𝔽, returnn.
  3. Ifn is either+0𝔽 or-0𝔽, return1𝔽.
  4. Ifn is-∞𝔽, return+0𝔽.
  5. Return animplementation-approximated Number value representing the result of the exponential function of(n).

21.3.2.15 Math.expm1 (x )

This function returns the result of subtracting 1 from the exponential function ofx (e raised to the power ofx, wheree is the base of the natural logarithms). The result is computed in a way that is accurate even when the value ofx is close to 0.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽,-0𝔽, or+∞𝔽, returnn.
  3. Ifn is-∞𝔽, return-1𝔽.
  4. Return animplementation-approximated Number value representing the result of subtracting 1 from the exponential function of(n).

21.3.2.16 Math.floor (x )

This function returns the greatest (closest to +∞)integral Number value that is not greater thanx. Ifx is already anintegral Number, the result isx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Ifn <1𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn is anintegral Number, returnn.
  5. Return the greatest (closest to +∞)integral Number value that is not greater thann.
Note

The value ofMath.floor(x) is the same as the value of-Math.ceil(-x).

21.3.2.17 Math.fround (x )

This function performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn isNaN, returnNaN.
  3. Ifn is one of+0𝔽,-0𝔽,+∞𝔽, or-∞𝔽, returnn.
  4. Letn32 be the result of convertingn toIEEE 754-2019 binary32 format using roundTiesToEven mode.
  5. Letn64 be the result of convertingn32 toIEEE 754-2019 binary64 format.
  6. Return the ECMAScript Number value corresponding ton64.

21.3.2.18 Math.hypot ( ...args )

Given zero or more arguments, this function returns the square root of the sum of squares of its arguments.

It performs the following steps when called:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. For each elementnumber ofcoerced, do
    1. Ifnumber is either+∞𝔽 or-∞𝔽, return+∞𝔽.
  4. LetonlyZero betrue.
  5. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN, returnNaN.
    2. Ifnumber is neither+0𝔽 nor-0𝔽, setonlyZero tofalse.
  6. IfonlyZero istrue, return+0𝔽.
  7. Return animplementation-approximated Number value representing the square root of the sum of squares of themathematical values of the elements ofcoerced.

The"length" property of this function is2𝔽.

Note

Implementations should take care to avoid the loss of precision from overflows and underflows that are prone to occur in naive implementations when this function is called with two or more arguments.

21.3.2.19 Math.imul (x,y )

This function performs the following steps when called:

  1. Leta be(?ToUint32(x)).
  2. Letb be(?ToUint32(y)).
  3. Letproduct be (a ×b)modulo 232.
  4. Ifproduct ≥ 231, return𝔽(product - 232); otherwise return𝔽(product).

21.3.2.20 Math.log (x )

This function returns the natural logarithm ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is eitherNaN or+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is either+0𝔽 or-0𝔽, return-∞𝔽.
  5. Ifn <-0𝔽, returnNaN.
  6. Return animplementation-approximated Number value representing the result of the natural logarithm of(n).

21.3.2.21 Math.log1p (x )

This function returns the natural logarithm of 1 +x. The result is computed in a way that is accurate even when the value of x is close to zero.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽,-0𝔽, or+∞𝔽, returnn.
  3. Ifn is-1𝔽, return-∞𝔽.
  4. Ifn <-1𝔽, returnNaN.
  5. Return animplementation-approximated Number value representing the result of the natural logarithm of 1 +(n).

21.3.2.22 Math.log10 (x )

This function returns the base 10 logarithm ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is eitherNaN or+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is either+0𝔽 or-0𝔽, return-∞𝔽.
  5. Ifn <-0𝔽, returnNaN.
  6. Return animplementation-approximated Number value representing the result of the base 10 logarithm of(n).

21.3.2.23 Math.log2 (x )

This function returns the base 2 logarithm ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is eitherNaN or+∞𝔽, returnn.
  3. Ifn is1𝔽, return+0𝔽.
  4. Ifn is either+0𝔽 or-0𝔽, return-∞𝔽.
  5. Ifn <-0𝔽, returnNaN.
  6. Return animplementation-approximated Number value representing the result of the base 2 logarithm of(n).

21.3.2.24 Math.max ( ...args )

Given zero or more arguments, this function callsToNumber on each of the arguments and returns the largest of the resulting values.

It performs the following steps when called:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. Lethighest be-∞𝔽.
  4. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN, returnNaN.
    2. Ifnumber is+0𝔽 andhighest is-0𝔽, sethighest to+0𝔽.
    3. Ifnumber >highest, sethighest tonumber.
  5. Returnhighest.
Note

The comparison of values to determine the largest value is done using theIsLessThan algorithm except that+0𝔽 is considered to be larger than-0𝔽.

The"length" property of this function is2𝔽.

21.3.2.25 Math.min ( ...args )

Given zero or more arguments, this function callsToNumber on each of the arguments and returns the smallest of the resulting values.

It performs the following steps when called:

  1. Letcoerced be a new emptyList.
  2. For each elementarg ofargs, do
    1. Letn be ? ToNumber(arg).
    2. Appendn tocoerced.
  3. Letlowest be+∞𝔽.
  4. For each elementnumber ofcoerced, do
    1. Ifnumber isNaN, returnNaN.
    2. Ifnumber is-0𝔽 andlowest is+0𝔽, setlowest to-0𝔽.
    3. Ifnumber <lowest, setlowest tonumber.
  5. Returnlowest.
Note

The comparison of values to determine the largest value is done using theIsLessThan algorithm except that+0𝔽 is considered to be larger than-0𝔽.

The"length" property of this function is2𝔽.

21.3.2.26 Math.pow (base,exponent )

This function performs the following steps when called:

  1. Setbase to ? ToNumber(base).
  2. Setexponent to ? ToNumber(exponent).
  3. ReturnNumber::exponentiate(base,exponent).

21.3.2.27 Math.random ( )

This function returns a Number value with positive sign, greater than or equal to+0𝔽 but strictly less than1𝔽, chosen randomly or pseudo randomly with approximately uniform distribution over that range, using animplementation-defined algorithm or strategy.

EachMath.random function created for distinctrealms must produce a distinct sequence of values from successive calls.

21.3.2.28 Math.round (x )

This function returns the Number value that is closest tox and is integral. If twointegral Numbers are equally close tox, then the result is the Number value that is closer to +∞. Ifx is already integral, the result isx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is anintegral Number, returnn.
  3. Ifn <0.5𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn <-0𝔽 andn-0.5𝔽, return-0𝔽.
  5. Return theintegral Number closest ton, preferring the Number closer to +∞ in the case of a tie.
Note 1

Math.round(3.5) returns 4, butMath.round(-3.5) returns -3.

Note 2

The value ofMath.round(x) is not always the same as the value ofMath.floor(x + 0.5). Whenx is-0𝔽 orx is less than+0𝔽 but greater than or equal to-0.5𝔽,Math.round(x) returns-0𝔽, butMath.floor(x + 0.5) returns+0𝔽.Math.round(x) may also differ from the value ofMath.floor(x + 0.5)because of internal rounding when computingx + 0.5.

21.3.2.29 Math.sign (x )

This function returns the sign ofx, indicating whetherx is positive, negative, or zero.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn <-0𝔽, return-1𝔽.
  4. Return1𝔽.

21.3.2.30 Math.sin (x )

This function returns the sine ofx. The argument is expressed in radians.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn is either+∞𝔽 or-∞𝔽, returnNaN.
  4. Return animplementation-approximated Number value representing the result of the sine of(n).

21.3.2.31 Math.sinh (x )

This function returns the hyperbolic sine ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Return animplementation-approximated Number value representing the result of the hyperbolic sine of(n).
Note

The value ofMath.sinh(x) is the same as the value of(Math.exp(x) - Math.exp(-x)) / 2.

21.3.2.32 Math.sqrt (x )

This function returns the square root ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽,-0𝔽, or+∞𝔽, returnn.
  3. Ifn <-0𝔽, returnNaN.
  4. Return animplementation-approximated Number value representing the result of the square root of(n).

21.3.2.33 Math.tan (x )

This function returns the tangent ofx. The argument is expressed in radians.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn is either+∞𝔽 or-∞𝔽, returnNaN.
  4. Return animplementation-approximated Number value representing the result of the tangent of(n).

21.3.2.34 Math.tanh (x )

This function returns the hyperbolic tangent ofx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is one ofNaN,+0𝔽, or-0𝔽, returnn.
  3. Ifn is+∞𝔽, return1𝔽.
  4. Ifn is-∞𝔽, return-1𝔽.
  5. Return animplementation-approximated Number value representing the result of the hyperbolic tangent of(n).
Note

The value ofMath.tanh(x) is the same as the value of(Math.exp(x) - Math.exp(-x)) / (Math.exp(x) + Math.exp(-x)).

21.3.2.35 Math.trunc (x )

This function returns the integral part of the numberx, removing any fractional digits. Ifx is already integral, the result isx.

It performs the following steps when called:

  1. Letn be ? ToNumber(x).
  2. Ifn is notfinite orn is either+0𝔽 or-0𝔽, returnn.
  3. Ifn <1𝔽 andn >+0𝔽, return+0𝔽.
  4. Ifn <-0𝔽 andn >-1𝔽, return-0𝔽.
  5. Return theintegral Number nearestn in the direction of+0𝔽.

21.4 Date Objects

21.4.1 Overview of Date Objects and Definitions of Abstract Operations

The followingabstract operations operate ontime values (defined in21.4.1.1). Note that, in every case, if any argument to one of these functions isNaN, the result will beNaN.

21.4.1.1 Time Values and Time Range

Time measurement in ECMAScript is analogous to time measurement in POSIX, in particular sharing definition in terms of the proleptic Gregorian calendar, anepoch of midnight at the beginning of 1 January 1970 UTC, and an accounting of every day as comprising exactly 86,400 seconds (each of which is 1000 milliseconds long).

An ECMAScripttime valueis a Number, either afiniteintegral Number representing an instant in time to millisecond precision orNaN representing no specific instant. A time value that is a multiple of24 × 60 × 60 × 1000 = 86,400,000 (i.e., is 86,400,000 ×d for someintegerd) represents the instant at the start of the UTC day that follows theepoch byd whole UTC days (preceding theepoch for negatived). Every otherfinite time valuet is defined relative to the greatest preceding time values that is such a multiple, and represents the instant that occurs within the same UTC day ass but follows it by (t -s) milliseconds.

Time values do not account for UTC leap seconds—there are no time values representing instants within positive leap seconds, and there are time values representing instants removed from the UTC timeline by negative leap seconds. However, the definition of time values nonetheless yields piecewise alignment with UTC, with discontinuities only at leap second boundaries and zero difference outside of leap seconds.

A Number can exactly represent allintegers from -9,007,199,254,740,992 to 9,007,199,254,740,992 (21.1.2.8 and21.1.2.6). A time value supports a slightly smaller range of -8,640,000,000,000,000 to 8,640,000,000,000,000 milliseconds. This yields a supported time value range of exactly -100,000,000 days to 100,000,000 days relative to midnight at the beginning of 1 January 1970 UTC.

The exact moment of midnight at the beginning of 1 January 1970 UTC is represented by the time value+0𝔽.

Note

In the proleptic Gregorian calendar, leap years are precisely those which are both divisible by 4 and either divisible by 400 or not divisible by 100.

The 400 year cycle of the proleptic Gregorian calendar contains 97 leap years. This yields an average of 365.2425 days per year, which is 31,556,952,000 milliseconds. Therefore, the maximum range a Number could represent exactly with millisecond precision is approximately -285,426 to 285,426 years relative to 1970. The smaller range supported by a time value as specified in this section is approximately -273,790 to 273,790 years relative to 1970.

21.4.1.2 Time-related Constants

These constants are referenced by algorithms in the following sections.

HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond =1000𝔽
msPerMinute =60000𝔽 =msPerSecond ×𝔽(SecondsPerMinute)
msPerHour =3600000𝔽 =msPerMinute ×𝔽(MinutesPerHour)
msPerDay =86400000𝔽 =msPerHour ×𝔽(HoursPerDay)

21.4.1.3 Day (t )

The abstract operation Day takes argumentt (afinitetime value) and returns anintegral Number. It returns the day number of the day in whicht falls. It performs the following steps when called:

  1. Return𝔽(floor((t /msPerDay))).

21.4.1.4 TimeWithinDay (t )

The abstract operation TimeWithinDay takes argumentt (afinitetime value) and returns anintegral Number in theinterval from+0𝔽 (inclusive) tomsPerDay (exclusive). It returns the number of milliseconds since the start of the day in whicht falls. It performs the following steps when called:

  1. Return𝔽((t)modulo(msPerDay)).

21.4.1.5 DaysInYear (y )

The abstract operation DaysInYear takes argumenty (anintegral Number) and returns365𝔽 or366𝔽. It returns the number of days in yeary. Leap years have 366 days; all other years have 365. It performs the following steps when called:

  1. Letry be(y).
  2. If (rymodulo 400) = 0, return366𝔽.
  3. If (rymodulo 100) = 0, return365𝔽.
  4. If (rymodulo 4) = 0, return366𝔽.
  5. Return365𝔽.

21.4.1.6 DayFromYear (y )

The abstract operation DayFromYear takes argumenty (anintegral Number) and returns anintegral Number. It returns the day number of the first day of yeary. It performs the following steps when called:

  1. Letry be(y).
  2. NOTE: In the following steps,numYears1,numYears4,numYears100, andnumYears400 represent the number of years divisible by 1, 4, 100, and 400, respectively, that occur between theepoch and the start of yeary. The number is negative ify is before theepoch.
  3. LetnumYears1 be (ry - 1970).
  4. LetnumYears4 befloor((ry - 1969) / 4).
  5. LetnumYears100 befloor((ry - 1901) / 100).
  6. LetnumYears400 befloor((ry - 1601) / 400).
  7. Return𝔽(365 ×numYears1 +numYears4 -numYears100 +numYears400).

21.4.1.7 TimeFromYear (y )

The abstract operation TimeFromYear takes argumenty (anintegral Number) and returns atime value. It returns thetime value of the start of yeary. It performs the following steps when called:

  1. ReturnmsPerDay ×DayFromYear(y).

21.4.1.8 YearFromTime (t )

The abstract operation YearFromTime takes argumentt (afinitetime value) and returns anintegral Number. It returns the year in whicht falls. It performs the following steps when called:

  1. Return the largestintegral Numbery (closest to +∞) such thatTimeFromYear(y) ≤t.

21.4.1.9 DayWithinYear (t )

The abstract operation DayWithinYear takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to365𝔽. It performs the following steps when called:

  1. ReturnDay(t) -DayFromYear(YearFromTime(t)).

21.4.1.10 InLeapYear (t )

The abstract operation InLeapYear takes argumentt (afinitetime value) and returns+0𝔽 or1𝔽. It returns1𝔽 ift is within a leap year and+0𝔽 otherwise. It performs the following steps when called:

  1. IfDaysInYear(YearFromTime(t)) is366𝔽, return1𝔽; else return+0𝔽.

21.4.1.11 MonthFromTime (t )

The abstract operation MonthFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to11𝔽. It returns a Number identifying the month in whicht falls. A month value of+0𝔽 specifies January;1𝔽 specifies February;2𝔽 specifies March;3𝔽 specifies April;4𝔽 specifies May;5𝔽 specifies June;6𝔽 specifies July;7𝔽 specifies August;8𝔽 specifies September;9𝔽 specifies October;10𝔽 specifies November; and11𝔽 specifies December. Note thatMonthFromTime(+0𝔽) =+0𝔽, corresponding to Thursday, 1 January 1970. It performs the following steps when called:

  1. LetinLeapYear beInLeapYear(t).
  2. LetdayWithinYear beDayWithinYear(t).
  3. IfdayWithinYear <31𝔽, return+0𝔽.
  4. IfdayWithinYear <59𝔽 +inLeapYear, return1𝔽.
  5. IfdayWithinYear <90𝔽 +inLeapYear, return2𝔽.
  6. IfdayWithinYear <120𝔽 +inLeapYear, return3𝔽.
  7. IfdayWithinYear <151𝔽 +inLeapYear, return4𝔽.
  8. IfdayWithinYear <181𝔽 +inLeapYear, return5𝔽.
  9. IfdayWithinYear <212𝔽 +inLeapYear, return6𝔽.
  10. IfdayWithinYear <243𝔽 +inLeapYear, return7𝔽.
  11. IfdayWithinYear <273𝔽 +inLeapYear, return8𝔽.
  12. IfdayWithinYear <304𝔽 +inLeapYear, return9𝔽.
  13. IfdayWithinYear <334𝔽 +inLeapYear, return10𝔽.
  14. Assert:dayWithinYear <365𝔽 +inLeapYear.
  15. Return11𝔽.

21.4.1.12 DateFromTime (t )

The abstract operation DateFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from1𝔽 to31𝔽. It returns the day of the month in whicht falls. It performs the following steps when called:

  1. LetinLeapYear beInLeapYear(t).
  2. LetdayWithinYear beDayWithinYear(t).
  3. Letmonth beMonthFromTime(t).
  4. Ifmonth is+0𝔽, returndayWithinYear +1𝔽.
  5. Ifmonth is1𝔽, returndayWithinYear -30𝔽.
  6. Ifmonth is2𝔽, returndayWithinYear -58𝔽 -inLeapYear.
  7. Ifmonth is3𝔽, returndayWithinYear -89𝔽 -inLeapYear.
  8. Ifmonth is4𝔽, returndayWithinYear -119𝔽 -inLeapYear.
  9. Ifmonth is5𝔽, returndayWithinYear -150𝔽 -inLeapYear.
  10. Ifmonth is6𝔽, returndayWithinYear -180𝔽 -inLeapYear.
  11. Ifmonth is7𝔽, returndayWithinYear -211𝔽 -inLeapYear.
  12. Ifmonth is8𝔽, returndayWithinYear -242𝔽 -inLeapYear.
  13. Ifmonth is9𝔽, returndayWithinYear -272𝔽 -inLeapYear.
  14. Ifmonth is10𝔽, returndayWithinYear -303𝔽 -inLeapYear.
  15. Assert:month is11𝔽.
  16. ReturndayWithinYear -333𝔽 -inLeapYear.

21.4.1.13 WeekDay (t )

The abstract operation WeekDay takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to6𝔽. It returns a Number identifying the day of the week in whicht falls. A weekday value of+0𝔽 specifies Sunday;1𝔽 specifies Monday;2𝔽 specifies Tuesday;3𝔽 specifies Wednesday;4𝔽 specifies Thursday;5𝔽 specifies Friday; and6𝔽 specifies Saturday. Note thatWeekDay(+0𝔽) =4𝔽, corresponding to Thursday, 1 January 1970. It performs the following steps when called:

  1. Return𝔽((Day(t) +4𝔽)modulo 7).

21.4.1.14 HourFromTime (t )

The abstract operation HourFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to23𝔽. It returns the hour of the day in whicht falls. It performs the following steps when called:

  1. Return𝔽(floor((t /msPerHour))moduloHoursPerDay).

21.4.1.15 MinFromTime (t )

The abstract operation MinFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to59𝔽. It returns the minute of the hour in whicht falls. It performs the following steps when called:

  1. Return𝔽(floor((t /msPerMinute))moduloMinutesPerHour).

21.4.1.16 SecFromTime (t )

The abstract operation SecFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to59𝔽. It returns the second of the minute in whicht falls. It performs the following steps when called:

  1. Return𝔽(floor((t /msPerSecond))moduloSecondsPerMinute).

21.4.1.17 msFromTime (t )

The abstract operation msFromTime takes argumentt (afinitetime value) and returns anintegral Number in theinclusive interval from+0𝔽 to999𝔽. It returns the millisecond of the second in whicht falls. It performs the following steps when called:

  1. Return𝔽((t)modulo(msPerSecond)).

21.4.1.18 GetUTCEpochNanoseconds (year,month,day,hour,minute,second,millisecond,microsecond,nanosecond )

The abstract operation GetUTCEpochNanoseconds takes argumentsyear (aninteger),month (aninteger in theinclusive interval from 1 to 12),day (aninteger in theinclusive interval from 1 to 31),hour (aninteger in theinclusive interval from 0 to 23),minute (aninteger in theinclusive interval from 0 to 59),second (aninteger in theinclusive interval from 0 to 59),millisecond (aninteger in theinclusive interval from 0 to 999),microsecond (aninteger in theinclusive interval from 0 to 999), andnanosecond (aninteger in theinclusive interval from 0 to 999) and returns a BigInt. The returned value represents a number of nanoseconds since theepoch that corresponds to the given ISO 8601 calendar date and wall-clock time in UTC. It performs the following steps when called:

  1. Letdate beMakeDay(𝔽(year),𝔽(month - 1),𝔽(day)).
  2. Lettime beMakeTime(𝔽(hour),𝔽(minute),𝔽(second),𝔽(millisecond)).
  3. Letms beMakeDate(date,time).
  4. Assert:ms is anintegral Number.
  5. Return((ms) × 106 +microsecond × 103 +nanosecond).

21.4.1.19 Time Zone Identifiers

Time zones in ECMAScript are represented bytime zone identifiers, which are Strings composed entirely of code units in theinclusive interval from 0x0000 to 0x007F. Time zones supported by an ECMAScript implementation may beavailable named time zones, represented by the[[Identifier]] field of theTime Zone Identifier Records returned byAvailableNamedTimeZoneIdentifiers, oroffset time zones, represented by Strings for whichIsTimeZoneOffsetString returnstrue.

Aprimary time zone identifier is the preferred identifier for an available named time zone. Anon-primary time zone identifier is an identifier for an available named time zone that is not a primary time zone identifier. Anavailable named time zone identifier is either a primary time zone identifier or a non-primary time zone identifier. Each available named time zone identifier is associated with exactly one available named time zone. Each available named time zone is associated with exactly one primary time zone identifier and zero or more non-primary time zone identifiers.

ECMAScript implementations must support an available named time zone with the identifier"UTC", which must be the primary time zone identifier for the UTC time zone. In addition, implementations may support any number of other available named time zones.

Implementations that follow the requirements for time zones as described in the ECMA-402 Internationalization API specification are calledtime zone aware. Time zone aware implementations must support available named time zones corresponding to the Zone and Link names of the IANA Time Zone Database, and only such names. In time zone aware implementations, a primary time zone identifier is a Zone name, and a non-primary time zone identifier is a Link name, respectively, in the IANA Time Zone Database except as specifically overridden byAvailableNamedTimeZoneIdentifiers as specified in the ECMA-402 specification. Implementations that do not support the entire IANA Time Zone Database are still recommended to use IANA Time Zone Database names as identifiers to represent time zones.

21.4.1.20 GetNamedTimeZoneEpochNanoseconds (timeZoneIdentifier,year,month,day,hour,minute,second,millisecond,microsecond,nanosecond )

Theimplementation-defined abstract operation GetNamedTimeZoneEpochNanoseconds takes argumentstimeZoneIdentifier (a String),year (aninteger),month (aninteger in theinclusive interval from 1 to 12),day (aninteger in theinclusive interval from 1 to 31),hour (aninteger in theinclusive interval from 0 to 23),minute (aninteger in theinclusive interval from 0 to 59),second (aninteger in theinclusive interval from 0 to 59),millisecond (aninteger in theinclusive interval from 0 to 999),microsecond (aninteger in theinclusive interval from 0 to 999), andnanosecond (aninteger in theinclusive interval from 0 to 999) and returns aList of BigInts. Each value in the returnedList represents a number of nanoseconds since theepoch that corresponds to the given ISO 8601 calendar date and wall-clock time in the named time zone identified bytimeZoneIdentifier.

When the input represents a local time occurring more than once because of a negative time zone transition (e.g. when daylight saving time ends or the time zone offset is decreased due to a time zone rule change), the returnedList will have more than one element and will be sorted by ascending numerical value. When the input represents a local time skipped because of a positive time zone transition (e.g. when daylight saving time begins or the time zone offset is increased due to a time zone rule change), the returnedList will be empty. Otherwise, the returnedList will have one element.

The default implementation of GetNamedTimeZoneEpochNanoseconds, to be used for ECMAScript implementations that do not include local political rules for any time zones, performs the following steps when called:

  1. Assert:timeZoneIdentifier is"UTC".
  2. LetepochNanoseconds beGetUTCEpochNanoseconds(year,month,day,hour,minute,second,millisecond,microsecond,nanosecond).
  3. Return «epochNanoseconds ».
Note

It is required fortime zone aware implementations (and recommended for all others) to use the time zone information of the IANA Time Zone Databasehttps://www.iana.org/time-zones/.

1:30 AM on 5 November 2017 in America/New_York is repeated twice, so GetNamedTimeZoneEpochNanoseconds("America/New_York", 2017, 11, 5, 1, 30, 0, 0, 0, 0) would return aList of length 2 in which the first element represents 05:30 UTC (corresponding with 01:30 US Eastern Daylight Time at UTC offset -04:00) and the second element represents 06:30 UTC (corresponding with 01:30 US Eastern Standard Time at UTC offset -05:00).

2:30 AM on 12 March 2017 in America/New_York does not exist, so GetNamedTimeZoneEpochNanoseconds("America/New_York", 2017, 3, 12, 2, 30, 0, 0, 0, 0) would return an emptyList.

21.4.1.21 GetNamedTimeZoneOffsetNanoseconds (timeZoneIdentifier,epochNanoseconds )

Theimplementation-defined abstract operation GetNamedTimeZoneOffsetNanoseconds takes argumentstimeZoneIdentifier (a String) andepochNanoseconds (a BigInt) and returns aninteger.

The returnedinteger represents the offset from UTC of the named time zone identified bytimeZoneIdentifier, at the instant corresponding withepochNanoseconds relative to theepoch, both in nanoseconds.

The default implementation of GetNamedTimeZoneOffsetNanoseconds, to be used for ECMAScript implementations that do not include local political rules for any time zones, performs the following steps when called:

  1. Assert:timeZoneIdentifier is"UTC".
  2. Return 0.
Note

Time zone offset values may be positive or negative.

21.4.1.22 Time Zone Identifier Record

ATime Zone Identifier Record is aRecord used to describe anavailable named time zone identifier and its correspondingprimary time zone identifier.

Time Zone Identifier Records have the fields listed inTable 61.

Table 61:Time Zone Identifier Record Fields
Field NameValueMeaning
[[Identifier]]a StringAnavailable named time zone identifier that is supported by the implementation.
[[PrimaryIdentifier]]a StringTheprimary time zone identifier that[[Identifier]] resolves to.
Note

If[[Identifier]] is aprimary time zone identifier, then[[Identifier]] is[[PrimaryIdentifier]].

21.4.1.23 AvailableNamedTimeZoneIdentifiers ( )

Theimplementation-defined abstract operation AvailableNamedTimeZoneIdentifiers takes no arguments and returns aList ofTime Zone Identifier Records. Its result describes allavailable named time zone identifiers in this implementation, as well as theprimary time zone identifier corresponding to eachavailable named time zone identifier. TheList is ordered according to the[[Identifier]] field of eachTime Zone Identifier Record.

Time zone aware implementations, including all implementations that implement the ECMA-402 Internationalization API, must implement the AvailableNamedTimeZoneIdentifiers abstract operation as specified in the ECMA-402 specification. For implementations that are nottime zone aware, AvailableNamedTimeZoneIdentifiers performs the following steps when called:

  1. If the implementation does not include local political rules for any time zones, then
    1. Return « theTime Zone Identifier Record {[[Identifier]]:"UTC",[[PrimaryIdentifier]]:"UTC" } ».
  2. Letidentifiers be theList of uniqueavailable named time zone identifiers.
  3. Sortidentifiers into the same order as if an Array of the same values had been sorted using %Array.prototype.sort% withundefined ascomparefn.
  4. Letresult be a new emptyList.
  5. For each elementidentifier ofidentifiers, do
    1. Letprimary beidentifier.
    2. Ifidentifier is anon-primary time zone identifier in this implementation andidentifier is not"UTC", then
      1. Setprimary to theprimary time zone identifier associated withidentifier.
      2. NOTE: An implementation may need to resolveidentifier iteratively to obtain theprimary time zone identifier.
    3. Letrecord be theTime Zone Identifier Record {[[Identifier]]:identifier,[[PrimaryIdentifier]]:primary }.
    4. Appendrecord toresult.
  6. Assert:result contains aTime Zone Identifier Recordr such thatr.[[Identifier]] is"UTC" andr.[[PrimaryIdentifier]] is"UTC".
  7. Returnresult.

21.4.1.24 SystemTimeZoneIdentifier ( )

Theimplementation-defined abstract operation SystemTimeZoneIdentifier takes no arguments and returns a String. It returns a String representing thehost environment's current time zone, which is either a String representing a UTC offset for whichIsTimeZoneOffsetString returnstrue, or aprimary time zone identifier. It performs the following steps when called:

  1. If the implementation only supports the UTC time zone, return"UTC".
  2. LetsystemTimeZoneString be the String representing thehost environment's current time zone, either aprimary time zone identifier or anoffset time zone identifier.
  3. ReturnsystemTimeZoneString.
Note

To ensure the level of functionality that implementations commonly provide in the methods of the Date object, it is recommended that SystemTimeZoneIdentifier return an IANA time zone name corresponding to thehost environment's time zone setting, if such a thing exists.GetNamedTimeZoneEpochNanoseconds andGetNamedTimeZoneOffsetNanoseconds must reflect the local political rules for standard time and daylight saving time in that time zone, if such rules exist.

For example, if thehost environment is a browser on a system where the user has chosen US Eastern Time as their time zone, SystemTimeZoneIdentifier returns"America/New_York".

21.4.1.25 LocalTime (t )

The abstract operation LocalTime takes argumentt (afinitetime value) and returns anintegral Number. It convertst from UTC to local time. The local political rules for standard time and daylight saving time in effect att should be used to determine the result in the way specified in this section. It performs the following steps when called:

  1. LetsystemTimeZoneIdentifier beSystemTimeZoneIdentifier().
  2. IfIsTimeZoneOffsetString(systemTimeZoneIdentifier) istrue, then
    1. LetoffsetNs beParseTimeZoneOffsetString(systemTimeZoneIdentifier).
  3. Else,
    1. LetoffsetNs beGetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier,((t) × 106)).
  4. LetoffsetMs betruncate(offsetNs / 106).
  5. Returnt +𝔽(offsetMs).
Note 1

If political rules for the local timet are not available within the implementation, the result ist becauseSystemTimeZoneIdentifier returns"UTC" andGetNamedTimeZoneOffsetNanoseconds returns 0.

Note 2

It is required fortime zone aware implementations (and recommended for all others) to use the time zone information of the IANA Time Zone Databasehttps://www.iana.org/time-zones/.

Note 3

Two different inputtime valuestUTC are converted to the same local timetlocal at a negative time zone transition when there are repeated times (e.g. the daylight saving time ends or the time zone adjustment is decreased.).

LocalTime(UTC(tlocal)) is not necessarily always equal totlocal. Correspondingly,UTC(LocalTime(tUTC)) is not necessarily always equal totUTC.

21.4.1.26 UTC (t )

The abstract operation UTC takes argumentt (a Number) and returns atime value. It convertst from local time to a UTCtime value. The local political rules for standard time and daylight saving time in effect att should be used to determine the result in the way specified in this section. It performs the following steps when called:

  1. Ift is notfinite, returnNaN.
  2. LetsystemTimeZoneIdentifier beSystemTimeZoneIdentifier().
  3. IfIsTimeZoneOffsetString(systemTimeZoneIdentifier) istrue, then
    1. LetoffsetNs beParseTimeZoneOffsetString(systemTimeZoneIdentifier).
  4. Else,
    1. LetpossibleInstants beGetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier,(YearFromTime(t)),(MonthFromTime(t)) + 1,(DateFromTime(t)),(HourFromTime(t)),(MinFromTime(t)),(SecFromTime(t)),(msFromTime(t)), 0, 0).
    2. NOTE: The following steps ensure that whent represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change),t is interpreted using the time zone offset before the transition.
    3. IfpossibleInstants is not empty, then
      1. LetdisambiguatedInstant bepossibleInstants[0].
    4. Else,
      1. NOTE:t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset).
      2. LetpossibleInstantsBefore beGetNamedTimeZoneEpochNanoseconds(systemTimeZoneIdentifier,(YearFromTime(tBefore)),(MonthFromTime(tBefore)) + 1,(DateFromTime(tBefore)),(HourFromTime(tBefore)),(MinFromTime(tBefore)),(SecFromTime(tBefore)),(msFromTime(tBefore)), 0, 0), wheretBefore is the largestintegral Number <t for whichpossibleInstantsBefore is not empty (i.e.,tBefore represents the last local time before the transition).
      3. LetdisambiguatedInstant be the last element ofpossibleInstantsBefore.
    5. LetoffsetNs beGetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier,disambiguatedInstant).
  5. LetoffsetMs betruncate(offsetNs / 106).
  6. Returnt -𝔽(offsetMs).

Inputt is nominally atime value but may be any Number value. The algorithm must not limitt to thetime value range, so that inputs corresponding with a boundary of thetime value range can be supported regardless of local UTC offset. For example, the maximumtime value is 8.64 × 1015, corresponding with"+275760-09-13T00:00:00Z". In an environment where the local time zone offset is ahead of UTC by 1 hour at that instant, it is represented by the larger input of 8.64 × 1015 + 3.6 × 106, corresponding with"+275760-09-13T01:00:00+01:00".

If political rules for the local timet are not available within the implementation, the result ist becauseSystemTimeZoneIdentifier returns"UTC" andGetNamedTimeZoneOffsetNanoseconds returns 0.

Note 1

It is required fortime zone aware implementations (and recommended for all others) to use the time zone information of the IANA Time Zone Databasehttps://www.iana.org/time-zones/.

1:30 AM on 5 November 2017 in America/New_York is repeated twice (fall backward), but it must be interpreted as 1:30 AM UTC-04 instead of 1:30 AM UTC-05. In UTC(TimeClip(MakeDate(MakeDay(2017, 10, 5),MakeTime(1, 30, 0, 0)))), the value ofoffsetMs is-4 ×msPerHour.

2:30 AM on 12 March 2017 in America/New_York does not exist, but it must be interpreted as 2:30 AM UTC-05 (equivalent to 3:30 AM UTC-04). In UTC(TimeClip(MakeDate(MakeDay(2017, 2, 12),MakeTime(2, 30, 0, 0)))), the value ofoffsetMs is-5 ×msPerHour.

Note 2

UTC(LocalTime(tUTC)) is not necessarily always equal totUTC. Correspondingly,LocalTime(UTC(tlocal)) is not necessarily always equal totlocal.

21.4.1.27 MakeTime (hour,min,sec,ms )

The abstract operation MakeTime takes argumentshour (a Number),min (a Number),sec (a Number), andms (a Number) and returns a Number. It calculates a number of milliseconds. It performs the following steps when called:

  1. Ifhour is notfinite,min is notfinite,sec is notfinite, orms is notfinite, returnNaN.
  2. Leth be𝔽(!ToIntegerOrInfinity(hour)).
  3. Letm be𝔽(!ToIntegerOrInfinity(min)).
  4. Lets be𝔽(!ToIntegerOrInfinity(sec)).
  5. Letmilli be𝔽(!ToIntegerOrInfinity(ms)).
  6. Return ((h ×msPerHour +m ×msPerMinute) +s ×msPerSecond) +milli.
Note

The arithmetic in MakeTime is floating-point arithmetic, which is not associative, so the operations must be performed in the correct order.

21.4.1.28 MakeDay (year,month,date )

The abstract operation MakeDay takes argumentsyear (a Number),month (a Number), anddate (a Number) and returns a Number. It calculates a number of days. It performs the following steps when called:

  1. Ifyear is notfinite,month is notfinite, ordate is notfinite, returnNaN.
  2. Lety be𝔽(!ToIntegerOrInfinity(year)).
  3. Letm be𝔽(!ToIntegerOrInfinity(month)).
  4. Letdt be𝔽(!ToIntegerOrInfinity(date)).
  5. Letym bey +𝔽(floor((m) / 12)).
  6. Ifym is notfinite, returnNaN.
  7. Letmn be𝔽((m)modulo 12).
  8. Find afinitetime valuet such thatYearFromTime(t) isym,MonthFromTime(t) ismn, andDateFromTime(t) is1𝔽; but if this is not possible (because some argument is out of range), returnNaN.
  9. ReturnDay(t) +dt -1𝔽.

21.4.1.29 MakeDate (day,time )

The abstract operation MakeDate takes argumentsday (a Number) andtime (a Number) and returns a Number. It calculates a number of milliseconds. It performs the following steps when called:

  1. Ifday is notfinite ortime is notfinite, returnNaN.
  2. Lettv beday ×msPerDay +time.
  3. Iftv is notfinite, returnNaN.
  4. Returntv.

21.4.1.30 MakeFullYear (year )

The abstract operation MakeFullYear takes argumentyear (a Number) and returns anintegral Number orNaN. It returns the full year associated with theinteger part ofyear, interpreting any value in theinclusive interval from 0 to 99 as a count of years since the start of 1900. For alignment with the proleptic Gregorian calendar, "full year" is defined as the signed count of complete years since the start of year 0 (1 B.C.). It performs the following steps when called:

  1. Ifyear isNaN, returnNaN.
  2. Lettruncated be ! ToIntegerOrInfinity(year).
  3. Iftruncated is in theinclusive interval from 0 to 99, return1900𝔽 +𝔽(truncated).
  4. Return𝔽(truncated).

21.4.1.31 TimeClip (time )

The abstract operation TimeClip takes argumenttime (a Number) and returns a Number. It calculates a number of milliseconds. It performs the following steps when called:

  1. Iftime is notfinite, returnNaN.
  2. Ifabs((time)) > 8.64 × 1015, returnNaN.
  3. Return𝔽(!ToIntegerOrInfinity(time)).

21.4.1.32 Date Time String Format

ECMAScript defines a string interchange format for date-times based upon a simplification of the ISO 8601 calendar date extended format. The format is as follows:YYYY-MM-DDTHH:mm:ss.sssZ

Where the elements are as follows:

YYYY is the year in the proleptic Gregorian calendar as four decimal digits from 0000 to 9999, or as anexpanded year of"+" or"-" followed by six decimal digits.
-"-" (hyphen) appears literally twice in the string.
MM is the month of the year as two decimal digits from 01 (January) to 12 (December).
DD is the day of the month as two decimal digits from 01 to 31.
T"T" appears literally in the string, to indicate the beginning of the time element.
HH is the number of complete hours that have passed since midnight as two decimal digits from 00 to 24.
:":" (colon) appears literally twice in the string.
mm is the number of complete minutes since the start of the hour as two decimal digits from 00 to 59.
ss is the number of complete seconds since the start of the minute as two decimal digits from 00 to 59.
."." (dot) appears literally in the string.
sss is the number of complete milliseconds since the start of the second as three decimal digits.
Z is the UTC offset representation specified as"Z" (for UTC with no offset) or as either"+" or"-" followed by a time expressionHH:mm (a subset of thetime zone offset string format for indicating local time ahead of or behind UTC, respectively)

This format includes date-only forms:

YYYYYYYY-MMYYYY-MM-DD

It also includes “date-time” forms that consist of one of the above date-only forms immediately followed by one of the following time forms with an optional UTC offset representation appended:

THH:mmTHH:mm:ssTHH:mm:ss.sss

A string containing out-of-bounds or nonconforming elements is not a valid instance of this format.

Note 1

As every day both starts and ends with midnight, the two notations00:00 and24:00 are available to distinguish the two midnights that can be associated with one date. This means that the following two notations refer to exactly the same point in time:1995-02-04T24:00 and1995-02-05T00:00. This interpretation of the latter form as "end of a calendar day" is consistent with ISO 8601, even though that specification reserves it for describing time intervals and does not permit it within representations of single points in time.

Note 2

There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and sometimes the same abbreviation is even used for two very different time zones. For this reason, both ISO 8601 and this format specify numeric representations of time zone offsets.

21.4.1.32.1 Expanded Years

Covering the fulltime value range of approximately 273,790 years forward or backward from 1 January 1970 (21.4.1.1) requires representing years before 0 or after 9999. ISO 8601 permits expansion of the year representation, but only by mutual agreement of the partners in information interchange. In the simplified ECMAScript format, such an expanded year representation shall have 6 digits and is always prefixed with a + or - sign. The year 0 is considered positive and must be prefixed with a + sign. The representation of the year 0 as -000000 is invalid. Strings matching theDate Time String Format with expanded years representing instants in time outside the range of atime value are treated as unrecognizable byDate.parse and cause that function to returnNaN without falling back to implementation-specific behaviour or heuristics.

Note

Examples of date-time values with expanded years:

-271821-04-20T00:00:00Z271822 B.C.
-000001-01-01T00:00:00Z2 B.C.
+000000-01-01T00:00:00Z1 B.C.
+000001-01-01T00:00:00Z1 A.D.
+001970-01-01T00:00:00Z1970 A.D.
+002009-12-15T00:00:00Z2009 A.D.
+275760-09-13T00:00:00Z275760 A.D.

21.4.1.33 Time Zone Offset String Format

ECMAScript defines a string interchange format for UTC offsets, derived from ISO 8601. The format is described by the following grammar. The usage of Unicode code points in this grammar is listed inTable 62.

Table 62: Time Zone Offset String Code Points
Code Point Unicode Name Abbreviation
U+2212 MINUS SIGN <MINUS>

Syntax

UTCOffset:::TemporalSignHourTemporalSignHourHourSubcomponents[+Extended]TemporalSignHourHourSubcomponents[~Extended]TemporalSign:::ASCIISign<MINUS>ASCIISign:::one of+-Hour:::0DecimalDigit1DecimalDigit20212223HourSubcomponents[Extended]:::TimeSeparator[?Extended]MinuteSecondTimeSeparator[?Extended]MinuteSecondTimeSeparator[?Extended]MinuteSecondTemporalDecimalFractionoptTimeSeparator[Extended]:::[+Extended]:[~Extended][empty]MinuteSecond:::0DecimalDigit1DecimalDigit2DecimalDigit3DecimalDigit4DecimalDigit5DecimalDigitTemporalDecimalFraction:::TemporalDecimalSeparatorDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparator:::one of.,

21.4.1.33.1 IsTimeZoneOffsetString (offsetString )

The abstract operation IsTimeZoneOffsetString takes argumentoffsetString (a String) and returns a Boolean. The return value indicates whetheroffsetString conforms to the grammar given byUTCOffset. It performs the following steps when called:

  1. LetparseResult beParseText(StringToCodePoints(offsetString),UTCOffset).
  2. IfparseResult is aList of errors, returnfalse.
  3. Returntrue.

21.4.1.33.2 ParseTimeZoneOffsetString (offsetString )

The abstract operation ParseTimeZoneOffsetString takes argumentoffsetString (a String) and returns aninteger. The return value is the UTC offset, as a number of nanoseconds, that corresponds to the StringoffsetString. It performs the following steps when called:

  1. LetparseResult beParseText(StringToCodePoints(offsetString),UTCOffset).
  2. Assert:parseResult is not aList of errors.
  3. Assert:parseResult contains aTemporalSignParse Node.
  4. LetparsedSign be thesource text matched by theTemporalSignParse Node contained withinparseResult.
  5. IfparsedSign is the single code point U+002D (HYPHEN-MINUS) or U+2212 (MINUS SIGN), then
    1. Letsign be -1.
  6. Else,
    1. Letsign be 1.
  7. NOTE: Applications ofStringToNumber below do not lose precision, since each of the parsed values is guaranteed to be a sufficiently short string of decimal digits.
  8. Assert:parseResult contains anHourParse Node.
  9. LetparsedHours be thesource text matched by theHourParse Node contained withinparseResult.
  10. Lethours be(StringToNumber(CodePointsToString(parsedHours))).
  11. IfparseResult does not contain aMinuteSecondParse Node, then
    1. Letminutes be 0.
  12. Else,
    1. LetparsedMinutes be thesource text matched by the firstMinuteSecondParse Node contained withinparseResult.
    2. Letminutes be(StringToNumber(CodePointsToString(parsedMinutes))).
  13. IfparseResult does not contain twoMinuteSecondParse Nodes, then
    1. Letseconds be 0.
  14. Else,
    1. LetparsedSeconds be thesource text matched by the secondMinuteSecondParse Node contained withinparseResult.
    2. Letseconds be(StringToNumber(CodePointsToString(parsedSeconds))).
  15. IfparseResult does not contain aTemporalDecimalFractionParse Node, then
    1. Letnanoseconds be 0.
  16. Else,
    1. LetparsedFraction be thesource text matched by theTemporalDecimalFractionParse Node contained withinparseResult.
    2. Letfraction be thestring-concatenation ofCodePointsToString(parsedFraction) and"000000000".
    3. LetnanosecondsString be thesubstring offraction from 1 to 10.
    4. Letnanoseconds be(StringToNumber(nanosecondsString)).
  17. Returnsign × (((hours × 60 +minutes) × 60 +seconds) × 109 +nanoseconds).

21.4.2 The Date Constructor

The Dateconstructor:

  • is%Date%.
  • is the initial value of the"Date" property of theglobal object.
  • creates and initializes a new Date when called as aconstructor.
  • returns a String representing the current time (UTC) when called as a function rather than as aconstructor.
  • is a function whose behaviour differs based upon the number and types of its arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Date behaviour must include asuper call to the Dateconstructor to create and initialize the subclass instance with a[[DateValue]] internal slot.

21.4.2.1 Date ( ...values )

This function performs the following steps when called:

  1. If NewTarget isundefined, then
    1. Letnow be thetime value (UTC) identifying the current time.
    2. ReturnToDateString(now).
  2. LetnumberOfArgs be the number of elements invalues.
  3. IfnumberOfArgs = 0, then
    1. Letdv be thetime value (UTC) identifying the current time.
  4. Else ifnumberOfArgs = 1, then
    1. Letvalue bevalues[0].
    2. Ifvalueis an Object andvalue has a[[DateValue]] internal slot, then
      1. Lettv bevalue.[[DateValue]].
    3. Else,
      1. Letv be ? ToPrimitive(value).
      2. Ifvis a String, then
        1. Assert: The next step never returns anabrupt completion becausevis a String.
        2. Lettv be the result of parsingv as a date, in exactly the same manner as for theparse method (21.4.3.2).
      3. Else,
        1. Lettv be ? ToNumber(v).
    4. Letdv beTimeClip(tv).
  5. Else,
    1. Assert:numberOfArgs ≥ 2.
    2. Lety be ? ToNumber(values[0]).
    3. Letm be ? ToNumber(values[1]).
    4. IfnumberOfArgs > 2, letdt be ? ToNumber(values[2]); else letdt be1𝔽.
    5. IfnumberOfArgs > 3, leth be ? ToNumber(values[3]); else leth be+0𝔽.
    6. IfnumberOfArgs > 4, letmin be ? ToNumber(values[4]); else letmin be+0𝔽.
    7. IfnumberOfArgs > 5, lets be ? ToNumber(values[5]); else lets be+0𝔽.
    8. IfnumberOfArgs > 6, letmilli be ? ToNumber(values[6]); else letmilli be+0𝔽.
    9. Letyr beMakeFullYear(y).
    10. LetfinalDate beMakeDate(MakeDay(yr,m,dt),MakeTime(h,min,s,milli)).
    11. Letdv beTimeClip(UTC(finalDate)).
  6. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%Date.prototype%", «[[DateValue]] »).
  7. SetO.[[DateValue]] todv.
  8. ReturnO.

21.4.3 Properties of the Date Constructor

The Dateconstructor:

  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"length" property whose value is7𝔽.
  • has the following properties:

21.4.3.1 Date.now ( )

This function returns thetime value designating the UTC date and time of the occurrence of the call to it.

21.4.3.2 Date.parse (string )

This function applies theToString operator to its argument. IfToString results in anabrupt completion theCompletion Record is immediately returned. Otherwise, this function interprets the resulting String as a date and time; it returns a Number, the UTCtime value corresponding to the date and time. The String may be interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents of the String. The function first attempts to parse the String according to the format described in Date Time String Format (21.4.1.32), including expanded years. If the String does not conform to that format the function may fall back to any implementation-specific heuristics or implementation-specific date formats. Strings that are unrecognizable or contain out-of-bounds format element values shall cause this function to returnNaN.

If the String conforms to theDate Time String Format, substitute values take the place of absent format elements. When theMM orDD elements are absent,"01" is used. When theHH,mm, orss elements are absent,"00" is used. When thesss element is absent,"000" is used. When the UTC offset representation is absent, date-only forms are interpreted as a UTC time and date-time forms are interpreted as a local time.

Ifx is any Date whose milliseconds amount is zero within a particular implementation of ECMAScript, then all of the following expressions should produce the same numeric value in that implementation, if all the properties referenced have their initial values:

x.valueOf()Date.parse(x.toString())Date.parse(x.toUTCString())Date.parse(x.toISOString())

However, the expression

Date.parse(x.toLocaleString())

is not required to produce the same Number value as the preceding three expressions and, in general, the value produced by this function isimplementation-defined when given any String value that does not conform to the Date Time String Format (21.4.1.32) and that could not be produced in that implementation by thetoString ortoUTCString method.

21.4.3.3 Date.prototype

The initial value ofDate.prototype is theDate prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

21.4.3.4 Date.UTC (year [ ,month [ ,date [ ,hours [ ,minutes [ ,seconds [ ,ms ] ] ] ] ] ] )

This function performs the following steps when called:

  1. Lety be ? ToNumber(year).
  2. Ifmonth is present, letm be ? ToNumber(month); else letm be+0𝔽.
  3. Ifdate is present, letdt be ? ToNumber(date); else letdt be1𝔽.
  4. Ifhours is present, leth be ? ToNumber(hours); else leth be+0𝔽.
  5. Ifminutes is present, letmin be ? ToNumber(minutes); else letmin be+0𝔽.
  6. Ifseconds is present, lets be ? ToNumber(seconds); else lets be+0𝔽.
  7. Ifms is present, letmilli be ? ToNumber(ms); else letmilli be+0𝔽.
  8. Letyr beMakeFullYear(y).
  9. ReturnTimeClip(MakeDate(MakeDay(yr,m,dt),MakeTime(h,min,s,milli))).

The"length" property of this function is7𝔽.

Note

This function differs from the Dateconstructor in two ways: it returns atime value as a Number, rather than creating a Date, and it interprets the arguments in UTC rather than as local time.

21.4.4 Properties of the Date Prototype Object

TheDate prototype object:

  • is%Date.prototype%.
  • is itself anordinary object.
  • is not a Date instance and does not have a[[DateValue]] internal slot.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly defined otherwise, the methods of the Date prototype object defined below are not generic and thethis value passed to them must be an object that has a[[DateValue]] internal slot that has been initialized to atime value.

21.4.4.1 Date.prototype.constructor

The initial value ofDate.prototype.constructor is%Date%.

21.4.4.2 Date.prototype.getDate ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnDateFromTime(LocalTime(t)).

21.4.4.3 Date.prototype.getDay ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnWeekDay(LocalTime(t)).

21.4.4.4 Date.prototype.getFullYear ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnYearFromTime(LocalTime(t)).

21.4.4.5 Date.prototype.getHours ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnHourFromTime(LocalTime(t)).

21.4.4.6 Date.prototype.getMilliseconds ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnmsFromTime(LocalTime(t)).

21.4.4.7 Date.prototype.getMinutes ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnMinFromTime(LocalTime(t)).

21.4.4.8 Date.prototype.getMonth ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnMonthFromTime(LocalTime(t)).

21.4.4.9 Date.prototype.getSeconds ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnSecFromTime(LocalTime(t)).

21.4.4.10 Date.prototype.getTime ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. ReturndateObject.[[DateValue]].

21.4.4.11 Date.prototype.getTimezoneOffset ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. Return (t -LocalTime(t)) /msPerMinute.

21.4.4.12 Date.prototype.getUTCDate ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnDateFromTime(t).

21.4.4.13 Date.prototype.getUTCDay ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnWeekDay(t).

21.4.4.14 Date.prototype.getUTCFullYear ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnYearFromTime(t).

21.4.4.15 Date.prototype.getUTCHours ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnHourFromTime(t).

21.4.4.16 Date.prototype.getUTCMilliseconds ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnmsFromTime(t).

21.4.4.17 Date.prototype.getUTCMinutes ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnMinFromTime(t).

21.4.4.18 Date.prototype.getUTCMonth ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnMonthFromTime(t).

21.4.4.19 Date.prototype.getUTCSeconds ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnSecFromTime(t).

21.4.4.20 Date.prototype.setDate (date )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letdt be ? ToNumber(date).
  5. Ift isNaN, returnNaN.
  6. Sett toLocalTime(t).
  7. LetnewDate beMakeDate(MakeDay(YearFromTime(t),MonthFromTime(t),dt),TimeWithinDay(t)).
  8. Letu beTimeClip(UTC(newDate)).
  9. SetdateObject.[[DateValue]] tou.
  10. Returnu.

21.4.4.21 Date.prototype.setFullYear (year [ ,month [ ,date ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Lety be ? ToNumber(year).
  5. Ift isNaN, sett to+0𝔽; otherwise, sett toLocalTime(t).
  6. Ifmonth is not present, letm beMonthFromTime(t); otherwise, letm be ? ToNumber(month).
  7. Ifdate is not present, letdt beDateFromTime(t); otherwise, letdt be ? ToNumber(date).
  8. LetnewDate beMakeDate(MakeDay(y,m,dt),TimeWithinDay(t)).
  9. Letu beTimeClip(UTC(newDate)).
  10. SetdateObject.[[DateValue]] tou.
  11. Returnu.

The"length" property of this method is3𝔽.

Note

Ifmonth is not present, this method behaves as ifmonth was present with the valuegetMonth(). Ifdate is not present, it behaves as ifdate was present with the valuegetDate().

21.4.4.22 Date.prototype.setHours (hour [ ,min [ ,sec [ ,ms ] ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Leth be ? ToNumber(hour).
  5. Ifmin is present, letm be ? ToNumber(min).
  6. Ifsec is present, lets be ? ToNumber(sec).
  7. Ifms is present, letmilli be ? ToNumber(ms).
  8. Ift isNaN, returnNaN.
  9. Sett toLocalTime(t).
  10. Ifmin is not present, letm beMinFromTime(t).
  11. Ifsec is not present, lets beSecFromTime(t).
  12. Ifms is not present, letmilli bemsFromTime(t).
  13. Letdate beMakeDate(Day(t),MakeTime(h,m,s,milli)).
  14. Letu beTimeClip(UTC(date)).
  15. SetdateObject.[[DateValue]] tou.
  16. Returnu.

The"length" property of this method is4𝔽.

Note

Ifmin is not present, this method behaves as ifmin was present with the valuegetMinutes(). Ifsec is not present, it behaves as ifsec was present with the valuegetSeconds(). Ifms is not present, it behaves as ifms was present with the valuegetMilliseconds().

21.4.4.23 Date.prototype.setMilliseconds (ms )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Setms to ? ToNumber(ms).
  5. Ift isNaN, returnNaN.
  6. Sett toLocalTime(t).
  7. Lettime beMakeTime(HourFromTime(t),MinFromTime(t),SecFromTime(t),ms).
  8. Letu beTimeClip(UTC(MakeDate(Day(t),time))).
  9. SetdateObject.[[DateValue]] tou.
  10. Returnu.

21.4.4.24 Date.prototype.setMinutes (min [ ,sec [ ,ms ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letm be ? ToNumber(min).
  5. Ifsec is present, lets be ? ToNumber(sec).
  6. Ifms is present, letmilli be ? ToNumber(ms).
  7. Ift isNaN, returnNaN.
  8. Sett toLocalTime(t).
  9. Ifsec is not present, lets beSecFromTime(t).
  10. Ifms is not present, letmilli bemsFromTime(t).
  11. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),m,s,milli)).
  12. Letu beTimeClip(UTC(date)).
  13. SetdateObject.[[DateValue]] tou.
  14. Returnu.

The"length" property of this method is3𝔽.

Note

Ifsec is not present, this method behaves as ifsec was present with the valuegetSeconds(). Ifms is not present, this behaves as ifms was present with the valuegetMilliseconds().

21.4.4.25 Date.prototype.setMonth (month [ ,date ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letm be ? ToNumber(month).
  5. Ifdate is present, letdt be ? ToNumber(date).
  6. Ift isNaN, returnNaN.
  7. Sett toLocalTime(t).
  8. Ifdate is not present, letdt beDateFromTime(t).
  9. LetnewDate beMakeDate(MakeDay(YearFromTime(t),m,dt),TimeWithinDay(t)).
  10. Letu beTimeClip(UTC(newDate)).
  11. SetdateObject.[[DateValue]] tou.
  12. Returnu.

The"length" property of this method is2𝔽.

Note

Ifdate is not present, this method behaves as ifdate was present with the valuegetDate().

21.4.4.26 Date.prototype.setSeconds (sec [ ,ms ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Lets be ? ToNumber(sec).
  5. Ifms is present, letmilli be ? ToNumber(ms).
  6. Ift isNaN, returnNaN.
  7. Sett toLocalTime(t).
  8. Ifms is not present, letmilli bemsFromTime(t).
  9. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),MinFromTime(t),s,milli)).
  10. Letu beTimeClip(UTC(date)).
  11. SetdateObject.[[DateValue]] tou.
  12. Returnu.

The"length" property of this method is2𝔽.

Note

Ifms is not present, this method behaves as ifms was present with the valuegetMilliseconds().

21.4.4.27 Date.prototype.setTime (time )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett be ? ToNumber(time).
  4. Letv beTimeClip(t).
  5. SetdateObject.[[DateValue]] tov.
  6. Returnv.

21.4.4.28 Date.prototype.setUTCDate (date )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letdt be ? ToNumber(date).
  5. Ift isNaN, returnNaN.
  6. LetnewDate beMakeDate(MakeDay(YearFromTime(t),MonthFromTime(t),dt),TimeWithinDay(t)).
  7. Letv beTimeClip(newDate).
  8. SetdateObject.[[DateValue]] tov.
  9. Returnv.

21.4.4.29 Date.prototype.setUTCFullYear (year [ ,month [ ,date ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, sett to+0𝔽.
  5. Lety be ? ToNumber(year).
  6. Ifmonth is not present, letm beMonthFromTime(t); otherwise, letm be ? ToNumber(month).
  7. Ifdate is not present, letdt beDateFromTime(t); otherwise, letdt be ? ToNumber(date).
  8. LetnewDate beMakeDate(MakeDay(y,m,dt),TimeWithinDay(t)).
  9. Letv beTimeClip(newDate).
  10. SetdateObject.[[DateValue]] tov.
  11. Returnv.

The"length" property of this method is3𝔽.

Note

Ifmonth is not present, this method behaves as ifmonth was present with the valuegetUTCMonth(). Ifdate is not present, it behaves as ifdate was present with the valuegetUTCDate().

21.4.4.30 Date.prototype.setUTCHours (hour [ ,min [ ,sec [ ,ms ] ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Leth be ? ToNumber(hour).
  5. Ifmin is present, letm be ? ToNumber(min).
  6. Ifsec is present, lets be ? ToNumber(sec).
  7. Ifms is present, letmilli be ? ToNumber(ms).
  8. Ift isNaN, returnNaN.
  9. Ifmin is not present, letm beMinFromTime(t).
  10. Ifsec is not present, lets beSecFromTime(t).
  11. Ifms is not present, letmilli bemsFromTime(t).
  12. Letdate beMakeDate(Day(t),MakeTime(h,m,s,milli)).
  13. Letv beTimeClip(date).
  14. SetdateObject.[[DateValue]] tov.
  15. Returnv.

The"length" property of this method is4𝔽.

Note

Ifmin is not present, this method behaves as ifmin was present with the valuegetUTCMinutes(). Ifsec is not present, it behaves as ifsec was present with the valuegetUTCSeconds(). Ifms is not present, it behaves as ifms was present with the valuegetUTCMilliseconds().

21.4.4.31 Date.prototype.setUTCMilliseconds (ms )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Setms to ? ToNumber(ms).
  5. Ift isNaN, returnNaN.
  6. Lettime beMakeTime(HourFromTime(t),MinFromTime(t),SecFromTime(t),ms).
  7. Letv beTimeClip(MakeDate(Day(t),time)).
  8. SetdateObject.[[DateValue]] tov.
  9. Returnv.

21.4.4.32 Date.prototype.setUTCMinutes (min [ ,sec [ ,ms ] ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letm be ? ToNumber(min).
  5. Ifsec is present, lets be ? ToNumber(sec).
  6. Ifms is present, letmilli be ? ToNumber(ms).
  7. Ift isNaN, returnNaN.
  8. Ifsec is not present, lets beSecFromTime(t).
  9. Ifms is not present, letmilli bemsFromTime(t).
  10. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),m,s,milli)).
  11. Letv beTimeClip(date).
  12. SetdateObject.[[DateValue]] tov.
  13. Returnv.

The"length" property of this method is3𝔽.

Note

Ifsec is not present, this method behaves as ifsec was present with the valuegetUTCSeconds(). Ifms is not present, it behaves as ifms was present with the value return bygetUTCMilliseconds().

21.4.4.33 Date.prototype.setUTCMonth (month [ ,date ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Letm be ? ToNumber(month).
  5. Ifdate is present, letdt be ? ToNumber(date).
  6. Ift isNaN, returnNaN.
  7. Ifdate is not present, letdt beDateFromTime(t).
  8. LetnewDate beMakeDate(MakeDay(YearFromTime(t),m,dt),TimeWithinDay(t)).
  9. Letv beTimeClip(newDate).
  10. SetdateObject.[[DateValue]] tov.
  11. Returnv.

The"length" property of this method is2𝔽.

Note

Ifdate is not present, this method behaves as ifdate was present with the valuegetUTCDate().

21.4.4.34 Date.prototype.setUTCSeconds (sec [ ,ms ] )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Lets be ? ToNumber(sec).
  5. Ifms is present, letmilli be ? ToNumber(ms).
  6. Ift isNaN, returnNaN.
  7. Ifms is not present, letmilli bemsFromTime(t).
  8. Letdate beMakeDate(Day(t),MakeTime(HourFromTime(t),MinFromTime(t),s,milli)).
  9. Letv beTimeClip(date).
  10. SetdateObject.[[DateValue]] tov.
  11. Returnv.

The"length" property of this method is2𝔽.

Note

Ifms is not present, this method behaves as ifms was present with the valuegetUTCMilliseconds().

21.4.4.35 Date.prototype.toDateString ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lettv bedateObject.[[DateValue]].
  4. Iftv isNaN, return"Invalid Date".
  5. Lett beLocalTime(tv).
  6. ReturnDateString(t).

21.4.4.36 Date.prototype.toISOString ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lettv bedateObject.[[DateValue]].
  4. Iftv is notfinite, throw aRangeError exception.
  5. Iftv corresponds with a year that cannot be represented in theDate Time String Format, throw aRangeError exception.
  6. Return a String representation oftv in theDate Time String Format on the UTC time scale, including all format elements and the UTC offset representation"Z".

21.4.4.37 Date.prototype.toJSON (key )

This method provides a String representation of a Date for use byJSON.stringify (25.5.2).

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Lettv be ? ToPrimitive(O,number).
  3. Iftvis a Number andtv is notfinite, returnnull.
  4. Return ? Invoke(O,"toISOString").
Note 1

The argument is ignored.

Note 2

This method is intentionally generic; it does not require that itsthis value be a Date. Therefore, it can be transferred to other kinds of objects for use as a method. However, it does require that any such object have atoISOString method.

21.4.4.38 Date.prototype.toLocaleDateString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method returns a String value. The contents of the String areimplementation-defined, but are intended to represent the “date” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.39 Date.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method returns a String value. The contents of the String areimplementation-defined, but are intended to represent the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.40 Date.prototype.toLocaleTimeString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method returns a String value. The contents of the String areimplementation-defined, but are intended to represent the “time” portion of the Date in the current time zone in a convenient, human-readable form that corresponds to the conventions of thehost environment's current locale.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

21.4.4.41 Date.prototype.toString ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lettv bedateObject.[[DateValue]].
  4. ReturnToDateString(tv).
Note 1

For any Dated such thatd.[[DateValue]] is evenly divisible by 1000, the result ofDate.parse(d.toString()) =d.valueOf(). See21.4.3.2.

Note 2

This method is not generic; it throws aTypeError exception if itsthis value is not a Date. Therefore, it cannot be transferred to other kinds of objects for use as a method.

21.4.4.41.1 TimeString (tv )

The abstract operation TimeString takes argumenttv (a Number, but notNaN) and returns a String. It performs the following steps when called:

  1. Lethour beToZeroPaddedDecimalString((HourFromTime(tv)), 2).
  2. Letminute beToZeroPaddedDecimalString((MinFromTime(tv)), 2).
  3. Letsecond beToZeroPaddedDecimalString((SecFromTime(tv)), 2).
  4. Return thestring-concatenation ofhour,":",minute,":",second, the code unit 0x0020 (SPACE), and"GMT".

21.4.4.41.2 DateString (tv )

The abstract operation DateString takes argumenttv (a Number, but notNaN) and returns a String. It performs the following steps when called:

  1. Letweekday be the Name of the entry inTable 63 with the NumberWeekDay(tv).
  2. Letmonth be the Name of the entry inTable 64 with the NumberMonthFromTime(tv).
  3. Letday beToZeroPaddedDecimalString((DateFromTime(tv)), 2).
  4. Letyv beYearFromTime(tv).
  5. Ifyv is+0𝔽 oryv >+0𝔽, letyearSign be the empty String; otherwise, letyearSign be"-".
  6. LetpaddedYear beToZeroPaddedDecimalString(abs((yv)), 4).
  7. Return thestring-concatenation ofweekday, the code unit 0x0020 (SPACE),month, the code unit 0x0020 (SPACE),day, the code unit 0x0020 (SPACE),yearSign, andpaddedYear.
Table 63: Names of days of the week
Number Name
+0𝔽"Sun"
1𝔽"Mon"
2𝔽"Tue"
3𝔽"Wed"
4𝔽"Thu"
5𝔽"Fri"
6𝔽"Sat"
Table 64: Names of months of the year
Number Name
+0𝔽"Jan"
1𝔽"Feb"
2𝔽"Mar"
3𝔽"Apr"
4𝔽"May"
5𝔽"Jun"
6𝔽"Jul"
7𝔽"Aug"
8𝔽"Sep"
9𝔽"Oct"
10𝔽"Nov"
11𝔽"Dec"

21.4.4.41.3 TimeZoneString (tv )

The abstract operation TimeZoneString takes argumenttv (anintegral Number) and returns a String. It performs the following steps when called:

  1. LetsystemTimeZoneIdentifier beSystemTimeZoneIdentifier().
  2. IfIsTimeZoneOffsetString(systemTimeZoneIdentifier) istrue, then
    1. LetoffsetNs beParseTimeZoneOffsetString(systemTimeZoneIdentifier).
  3. Else,
    1. LetoffsetNs beGetNamedTimeZoneOffsetNanoseconds(systemTimeZoneIdentifier,((tv) × 106)).
  4. Letoffset be𝔽(truncate(offsetNs / 106)).
  5. Ifoffset is+0𝔽 oroffset >+0𝔽, then
    1. LetoffsetSign be"+".
    2. LetabsOffset beoffset.
  6. Else,
    1. LetoffsetSign be"-".
    2. LetabsOffset be -offset.
  7. LetoffsetMin beToZeroPaddedDecimalString((MinFromTime(absOffset)), 2).
  8. LetoffsetHour beToZeroPaddedDecimalString((HourFromTime(absOffset)), 2).
  9. LettzName be animplementation-defined string that is either the empty String or thestring-concatenation of the code unit 0x0020 (SPACE), the code unit 0x0028 (LEFT PARENTHESIS), animplementation-defined timezone name, and the code unit 0x0029 (RIGHT PARENTHESIS).
  10. Return thestring-concatenation ofoffsetSign,offsetHour,offsetMin, andtzName.

21.4.4.41.4 ToDateString (tv )

The abstract operation ToDateString takes argumenttv (anintegral Number orNaN) and returns a String. It performs the following steps when called:

  1. Iftv isNaN, return"Invalid Date".
  2. Lett beLocalTime(tv).
  3. Return thestring-concatenation ofDateString(t), the code unit 0x0020 (SPACE),TimeString(t), andTimeZoneString(tv).

21.4.4.42 Date.prototype.toTimeString ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lettv bedateObject.[[DateValue]].
  4. Iftv isNaN, return"Invalid Date".
  5. Lett beLocalTime(tv).
  6. Return thestring-concatenation ofTimeString(t) andTimeZoneString(tv).

21.4.4.43 Date.prototype.toUTCString ( )

This method returns a String value representing the instant in time corresponding to thethis value. The format of the String is based upon "HTTP-date" from RFC 7231, generalized to support the full range of times supported by ECMAScript Dates.

It performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lettv bedateObject.[[DateValue]].
  4. Iftv isNaN, return"Invalid Date".
  5. Letweekday be the Name of the entry inTable 63 with the NumberWeekDay(tv).
  6. Letmonth be the Name of the entry inTable 64 with the NumberMonthFromTime(tv).
  7. Letday beToZeroPaddedDecimalString((DateFromTime(tv)), 2).
  8. Letyv beYearFromTime(tv).
  9. Ifyv is+0𝔽 oryv >+0𝔽, letyearSign be the empty String; otherwise, letyearSign be"-".
  10. LetpaddedYear beToZeroPaddedDecimalString(abs((yv)), 4).
  11. Return thestring-concatenation ofweekday,",", the code unit 0x0020 (SPACE),day, the code unit 0x0020 (SPACE),month, the code unit 0x0020 (SPACE),yearSign,paddedYear, the code unit 0x0020 (SPACE), andTimeString(tv).

21.4.4.44 Date.prototype.valueOf ( )

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. ReturndateObject.[[DateValue]].

21.4.4.45 Date.prototype [ @@toPrimitive ] (hint )

This method is called by ECMAScript language operators to convert a Date to a primitive value. The allowed values forhint are"default","number", and"string". Dates are unique among built-in ECMAScript object in that they treat"default" as being equivalent to"string", All other built-in ECMAScript objects treat"default" as being equivalent to"number".

It performs the following steps when called:

  1. LetO be thethis value.
  2. IfOis not an Object, throw aTypeError exception.
  3. Ifhint is either"string" or"default", then
    1. LettryFirst bestring.
  4. Else ifhint is"number", then
    1. LettryFirst benumber.
  5. Else,
    1. Throw aTypeError exception.
  6. Return ? OrdinaryToPrimitive(O,tryFirst).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

The value of the"name" property of this method is"[Symbol.toPrimitive]".

21.4.5 Properties of Date Instances

Date instances areordinary objects that inherit properties from theDate prototype object. Date instances also have a[[DateValue]] internal slot. The[[DateValue]] internal slot is thetime value represented by this Date.

22 Text Processing

22.1 String Objects

22.1.1 The String Constructor

The Stringconstructor:

  • is%String%.
  • is the initial value of the"String" property of theglobal object.
  • creates and initializes a new String object when called as aconstructor.
  • performs a type conversion when called as a function rather than as aconstructor.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified String behaviour must include asuper call to the Stringconstructor to create and initialize the subclass instance with a[[StringData]] internal slot.

22.1.1.1 String (value )

This function performs the following steps when called:

  1. Ifvalue is not present, then
    1. Lets be the empty String.
  2. Else,
    1. If NewTarget isundefined andvalueis a Symbol, returnSymbolDescriptiveString(value).
    2. Lets be ? ToString(value).
  3. If NewTarget isundefined, returns.
  4. ReturnStringCreate(s, ? GetPrototypeFromConstructor(NewTarget,"%String.prototype%")).

22.1.2 Properties of the String Constructor

The Stringconstructor:

22.1.2.1 String.fromCharCode ( ...codeUnits )

This function may be called with any number of arguments which form the rest parametercodeUnits.

It performs the following steps when called:

  1. Letresult be the empty String.
  2. For each elementnext ofcodeUnits, do
    1. LetnextCU be the code unit whose numeric value is(?ToUint16(next)).
    2. Setresult to thestring-concatenation ofresult andnextCU.
  3. Returnresult.

The"length" property of this function is1𝔽.

22.1.2.2 String.fromCodePoint ( ...codePoints )

This function may be called with any number of arguments which form the rest parametercodePoints.

It performs the following steps when called:

  1. Letresult be the empty String.
  2. For each elementnext ofcodePoints, do
    1. LetnextCP be ? ToNumber(next).
    2. IfIsIntegralNumber(nextCP) isfalse, throw aRangeError exception.
    3. If(nextCP) < 0 or(nextCP) > 0x10FFFF, throw aRangeError exception.
    4. Setresult to thestring-concatenation ofresult andUTF16EncodeCodePoint((nextCP)).
  3. Assert: IfcodePoints is empty, thenresult is the empty String.
  4. Returnresult.

The"length" property of this function is1𝔽.

22.1.2.3 String.prototype

The initial value ofString.prototype is theString prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

22.1.2.4 String.raw (template, ...substitutions )

This function may be called with a variable number of arguments. The first argument istemplate and the remainder of the arguments form theListsubstitutions.

It performs the following steps when called:

  1. LetsubstitutionCount be the number of elements insubstitutions.
  2. Letcooked be ? ToObject(template).
  3. Letliterals be ? ToObject(?Get(cooked,"raw")).
  4. LetliteralCount be ? LengthOfArrayLike(literals).
  5. IfliteralCount ≤ 0, return the empty String.
  6. LetR be the empty String.
  7. LetnextIndex be 0.
  8. Repeat,
    1. LetnextLiteralVal be ? Get(literals, ! ToString(𝔽(nextIndex))).
    2. LetnextLiteral be ? ToString(nextLiteralVal).
    3. SetR to thestring-concatenation ofR andnextLiteral.
    4. IfnextIndex + 1 =literalCount, returnR.
    5. IfnextIndex <substitutionCount, then
      1. LetnextSubVal besubstitutions[nextIndex].
      2. LetnextSub be ? ToString(nextSubVal).
      3. SetR to thestring-concatenation ofR andnextSub.
    6. SetnextIndex tonextIndex + 1.
Note

This function is intended for use as a tag function of a Tagged Template (13.3.11). When called as such, the first argument will be a well formed template object and the rest parameter will contain the substitution values.

22.1.3 Properties of the String Prototype Object

TheString prototype object:

  • is%String.prototype%.
  • is a Stringexotic object and has the internal methods specified for such objects.
  • has a[[StringData]] internal slot whose value is the empty String.
  • has a"length" property whose initial value is+0𝔽 and whose attributes are {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.

Unless explicitly stated otherwise, the methods of the String prototype object defined below are not generic and thethis value passed to them must be either a String value or an object that has a[[StringData]] internal slot that has been initialized to a String value.

22.1.3.1 String.prototype.at (index )

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letlen be the length ofS.
  4. LetrelativeIndex be ? ToIntegerOrInfinity(index).
  5. IfrelativeIndex ≥ 0, then
    1. Letk berelativeIndex.
  6. Else,
    1. Letk belen +relativeIndex.
  7. Ifk < 0 orklen, returnundefined.
  8. Return thesubstring ofS fromk tok + 1.

22.1.3.2 String.prototype.charAt (pos )

Note 1

This method returns a single element String containing the code unit at indexpos within the String value resulting from converting this object to a String. If there is no element at that index, the result is the empty String. The resultis a String value, not a String object.

Ifpos is anintegral Number, then the result ofx.charAt(pos) is equivalent to the result ofx.substring(pos, pos + 1).

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, return the empty String.
  6. Return thesubstring ofS fromposition toposition + 1.
Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.3 String.prototype.charCodeAt (pos )

Note 1

This method returns a Number (a non-negativeintegral Number less than 216) that is the numeric value of the code unit at indexpos within the String resulting from converting this object to a String. If there is no element at that index, the result isNaN.

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, returnNaN.
  6. Return theNumber value for the numeric value of the code unit at indexposition within the StringS.
Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.4 String.prototype.codePointAt (pos )

Note 1

This method returns a non-negativeintegral Number less than or equal to0x10FFFF𝔽 that is the numeric value of the UTF-16 encoded code point (6.1.4) starting at the string element at indexpos within the String resulting from converting this object to a String. If there is no element at that index, the result isundefined. If a valid UTF-16surrogate pair does not begin atpos, the result is the code unit atpos.

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letposition be ? ToIntegerOrInfinity(pos).
  4. Letsize be the length ofS.
  5. Ifposition < 0 orpositionsize, returnundefined.
  6. Letcp beCodePointAt(S,position).
  7. Return𝔽(cp.[[CodePoint]]).
Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.5 String.prototype.concat ( ...args )

Note 1

When this method is called it returns the String value consisting of the code units of thethis value (converted to a String) followed by the code units of each of the arguments converted to a String. The resultis a String value, not a String object.

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetR beS.
  4. For each elementnext ofargs, do
    1. LetnextString be ? ToString(next).
    2. SetR to thestring-concatenation ofR andnextString.
  5. ReturnR.

The"length" property of this method is1𝔽.

Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.6 String.prototype.constructor

The initial value ofString.prototype.constructor is%String%.

22.1.3.7 String.prototype.endsWith (searchString [ ,endPosition ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letlen be the length ofS.
  7. IfendPosition isundefined, letpos belen; else letpos be ? ToIntegerOrInfinity(endPosition).
  8. Letend be the result ofclampingpos between 0 andlen.
  9. LetsearchLength be the length ofsearchStr.
  10. IfsearchLength = 0, returntrue.
  11. Letstart beend -searchLength.
  12. Ifstart < 0, returnfalse.
  13. Letsubstring be thesubstring ofS fromstart toend.
  14. Ifsubstring issearchStr, returntrue.
  15. Returnfalse.
Note 1

This method returnstrue if the sequence of code units ofsearchString converted to a String is the same as the corresponding code units of this object (converted to a String) starting atendPosition - length(this). Otherwise it returnsfalse.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.8 String.prototype.includes (searchString [ ,position ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letpos be ? ToIntegerOrInfinity(position).
  7. Assert: Ifposition isundefined, thenpos is 0.
  8. Letlen be the length ofS.
  9. Letstart be the result ofclampingpos between 0 andlen.
  10. Letindex beStringIndexOf(S,searchStr,start).
  11. Ifindex ≠ -1, returntrue.
  12. Returnfalse.
Note 1

IfsearchString appears as asubstring of the result of converting this object to a String, at one or more indices that are greater than or equal toposition, this function returnstrue; otherwise, it returnsfalse. Ifposition isundefined, 0 is assumed, so as to search all of the String.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.9 String.prototype.indexOf (searchString [ ,position ] )

Note 1

IfsearchString appears as asubstring of the result of converting this object to a String, at one or more indices that are greater than or equal toposition, then the smallest such index is returned; otherwise,-1𝔽 is returned. Ifposition isundefined,+0𝔽 is assumed, so as to search all of the String.

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsearchStr be ? ToString(searchString).
  4. Letpos be ? ToIntegerOrInfinity(position).
  5. Assert: Ifposition isundefined, thenpos is 0.
  6. Letlen be the length ofS.
  7. Letstart be the result ofclampingpos between 0 andlen.
  8. Return𝔽(StringIndexOf(S,searchStr,start)).
Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.10 String.prototype.isWellFormed ( )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. ReturnIsStringWellFormedUnicode(S).

22.1.3.11 String.prototype.lastIndexOf (searchString [ ,position ] )

Note 1

IfsearchString appears as asubstring of the result of converting this object to a String at one or more indices that are smaller than or equal toposition, then the greatest such index is returned; otherwise,-1𝔽 is returned. Ifposition isundefined, the length of the String value is assumed, so as to search all of the String.

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsearchStr be ? ToString(searchString).
  4. LetnumPos be ? ToNumber(position).
  5. Assert: Ifposition isundefined, thennumPos isNaN.
  6. IfnumPos isNaN, letpos be +∞; otherwise, letpos be ! ToIntegerOrInfinity(numPos).
  7. Letlen be the length ofS.
  8. LetsearchLen be the length ofsearchStr.
  9. Letstart be the result ofclampingpos between 0 andlen -searchLen.
  10. IfsearchStr is the empty String, return𝔽(start).
  11. For eachintegeri such that 0 ≤istart, in descending order, do
    1. Letcandidate be thesubstring ofS fromi toi +searchLen.
    2. Ifcandidate issearchStr, return𝔽(i).
  12. Return-1𝔽.
Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.12 String.prototype.localeCompare (that [ ,reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method returns a Number other thanNaN representing the result of animplementation-defined locale-sensitive String comparison of thethis value (converted to a StringS) withthat (converted to a StringthatValue). The result is intended to correspond with asort order of String values according to conventions of thehost environment's current locale, and will be negative whenS is ordered beforethatValue, positive whenS is ordered afterthatValue, and zero in all other cases (representing no relative ordering betweenS andthatValue).

Before performing the comparisons, this method performs the following steps to prepare the Strings:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetthatValue be ? ToString(that).

The meaning of the optional second and third parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not assign any other interpretation to those parameter positions.

The actual return values areimplementation-defined to permit encoding additional information in them, but this method, when considered as a method of two arguments, is required to be aconsistent comparator defining a total ordering on the set of all Strings. This method is also required to recognize and honour canonical equivalence according to the Unicode Standard, including returning+0𝔽 when comparing distinguishable Strings that are canonically equivalent.

Note 1

This method itself is not directly suitable as an argument toArray.prototype.sort because the latter requires a function of two arguments.

Note 2

This method may rely on whatever language- and/or locale-sensitive comparison functionality is available to the ECMAScript environment from thehost environment, and is intended to compare according to the conventions of thehost environment's current locale. However, regardless of comparison capabilities, this method must recognize and honour canonical equivalence according to the Unicode Standard—for example, the following comparisons must all return+0𝔽:

// Å ANGSTROM SIGN vs.// Å LATIN CAPITAL LETTER A + COMBINING RING ABOVE"\u212B".localeCompare("A\u030A")// Ω OHM SIGN vs.// Ω GREEK CAPITAL LETTER OMEGA"\u2126".localeCompare("\u03A9")// ṩ LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE vs.// ṩ LATIN SMALL LETTER S + COMBINING DOT ABOVE + COMBINING DOT BELOW"\u1E69".localeCompare("s\u0307\u0323")// ḍ̇ LATIN SMALL LETTER D WITH DOT ABOVE + COMBINING DOT BELOW vs.// ḍ̇ LATIN SMALL LETTER D WITH DOT BELOW + COMBINING DOT ABOVE"\u1E0B\u0323".localeCompare("\u1E0D\u0307")// 가 HANGUL CHOSEONG KIYEOK + HANGUL JUNGSEONG A vs.// 가 HANGUL SYLLABLE GA"\u1100\u1161".localeCompare("\uAC00")

For a definition and discussion of canonical equivalence see the Unicode Standard, chapters 2 and 3, as well asUnicode Standard Annex #15, Unicode Normalization Forms andUnicode Technical Note #5, Canonical Equivalence in Applications. Also seeUnicode Technical Standard #10, Unicode Collation Algorithm.

It is recommended that this method should not honour Unicode compatibility equivalents or compatibility decompositions as defined in the Unicode Standard, chapter 3, section 3.7.

Note 3

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.13 String.prototype.match (regexp )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. Letmatcher be ? GetMethod(regexp,@@match).
    2. Ifmatcher is notundefined, then
      1. Return ? Call(matcher,regexp, «O »).
  3. LetS be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,undefined).
  5. Return ? Invoke(rx,@@match, «S »).
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.14 String.prototype.matchAll (regexp )

This method performs a regular expression match of the String representing thethis value againstregexp and returns an iterator. Each iteration result's value is an Array containing the results of the match, ornull if the String did not match.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. LetisRegExp be ? IsRegExp(regexp).
    2. IfisRegExp istrue, then
      1. Letflags be ? Get(regexp,"flags").
      2. Perform ? RequireObjectCoercible(flags).
      3. If ? ToString(flags) does not contain"g", throw aTypeError exception.
    3. Letmatcher be ? GetMethod(regexp,@@matchAll).
    4. Ifmatcher is notundefined, then
      1. Return ? Call(matcher,regexp, «O »).
  3. LetS be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,"g").
  5. Return ? Invoke(rx,@@matchAll, «S »).
Note 1
This method is intentionally generic, it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.
Note 2
Similarly toString.prototype.split,String.prototype.matchAll is designed to typically act without mutating its inputs.

22.1.3.15 String.prototype.normalize ( [form ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Ifform isundefined, letf be"NFC".
  4. Else, letf be ? ToString(form).
  5. Iff is not one of"NFC","NFD","NFKC", or"NFKD", throw aRangeError exception.
  6. Letns be the String value that is the result of normalizingS into the normalization form named byf as specified inthe latest Unicode Standard, Normalization Forms.
  7. Returnns.
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.16 String.prototype.padEnd (maxLength [ ,fillString ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Return ? StringPaddingBuiltinsImpl(O,maxLength,fillString,end).

22.1.3.17 String.prototype.padStart (maxLength [ ,fillString ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Return ? StringPaddingBuiltinsImpl(O,maxLength,fillString,start).

22.1.3.17.1 StringPaddingBuiltinsImpl (O,maxLength,fillString,placement )

The abstract operation StringPaddingBuiltinsImpl takes argumentsO (anECMAScript language value),maxLength (anECMAScript language value),fillString (anECMAScript language value), andplacement (start orend) and returns either anormal completion containing a String or athrow completion. It performs the following steps when called:

  1. LetS be ? ToString(O).
  2. LetintMaxLength be(?ToLength(maxLength)).
  3. LetstringLength be the length ofS.
  4. IfintMaxLengthstringLength, returnS.
  5. IffillString isundefined, setfillString to the String value consisting solely of the code unit 0x0020 (SPACE).
  6. Else, setfillString to ? ToString(fillString).
  7. ReturnStringPad(S,intMaxLength,fillString,placement).

22.1.3.17.2 StringPad (S,maxLength,fillString,placement )

The abstract operation StringPad takes argumentsS (a String),maxLength (a non-negativeinteger),fillString (a String), andplacement (start orend) and returns a String. It performs the following steps when called:

  1. LetstringLength be the length ofS.
  2. IfmaxLengthstringLength, returnS.
  3. IffillString is the empty String, returnS.
  4. LetfillLen bemaxLength -stringLength.
  5. LettruncatedStringFiller be the String value consisting of repeated concatenations offillString truncated to lengthfillLen.
  6. Ifplacement isstart, return thestring-concatenation oftruncatedStringFiller andS.
  7. Else, return thestring-concatenation ofS andtruncatedStringFiller.
Note 1

The argumentmaxLength will be clamped such that it can be no smaller than the length ofS.

Note 2

The argumentfillString defaults to" " (the String value consisting of the code unit 0x0020 SPACE).

22.1.3.17.3 ToZeroPaddedDecimalString (n,minLength )

The abstract operation ToZeroPaddedDecimalString takes argumentsn (a non-negativeinteger) andminLength (a non-negativeinteger) and returns a String. It performs the following steps when called:

  1. LetS be the String representation ofn, formatted as a decimal number.
  2. ReturnStringPad(S,minLength,"0",start).

22.1.3.18 String.prototype.repeat (count )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letn be ? ToIntegerOrInfinity(count).
  4. Ifn < 0 orn = +∞, throw aRangeError exception.
  5. Ifn = 0, return the empty String.
  6. Return the String value that is made fromn copies ofS appended together.
Note 1

This method creates the String value consisting of the code units of thethis value (converted to String) repeatedcount times.

Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.19 String.prototype.replace (searchValue,replaceValue )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. IfsearchValue is neitherundefined nornull, then
    1. Letreplacer be ? GetMethod(searchValue,@@replace).
    2. Ifreplacer is notundefined, then
      1. Return ? Call(replacer,searchValue, «O,replaceValue »).
  3. Letstring be ? ToString(O).
  4. LetsearchString be ? ToString(searchValue).
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. LetsearchLength be the length ofsearchString.
  8. Letposition beStringIndexOf(string,searchString, 0).
  9. Ifposition = -1, returnstring.
  10. Letpreceding be thesubstring ofstring from 0 toposition.
  11. Letfollowing be thesubstring ofstring fromposition +searchLength.
  12. IffunctionalReplace istrue, then
    1. Letreplacement be ? ToString(?Call(replaceValue,undefined, «searchString,𝔽(position),string »)).
  13. Else,
    1. Assert:replaceValueis a String.
    2. Letcaptures be a new emptyList.
    3. Letreplacement be ! GetSubstitution(searchString,string,position,captures,undefined,replaceValue).
  14. Return thestring-concatenation ofpreceding,replacement, andfollowing.
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.19.1 GetSubstitution (matched,str,position,captures,namedCaptures,replacementTemplate )

The abstract operation GetSubstitution takes argumentsmatched (a String),str (a String),position (a non-negativeinteger),captures (aList of either Strings orundefined),namedCaptures (an Object orundefined), andreplacementTemplate (a String) and returns either anormal completion containing a String or athrow completion. For the purposes of this abstract operation, adecimal digit is a code unit in theinclusive interval from 0x0030 (DIGIT ZERO) to 0x0039 (DIGIT NINE). It performs the following steps when called:

  1. LetstringLength be the length ofstr.
  2. Assert:positionstringLength.
  3. Letresult be the empty String.
  4. LettemplateRemainder bereplacementTemplate.
  5. Repeat, whiletemplateRemainder is not the empty String,
    1. NOTE: The following steps isolateref (a prefix oftemplateRemainder), determinerefReplacement (its replacement), and then append that replacement toresult.
    2. IftemplateRemainder starts with"$$", then
      1. Letref be"$$".
      2. LetrefReplacement be"$".
    3. Else iftemplateRemainder starts with"$`", then
      1. Letref be"$`".
      2. LetrefReplacement be thesubstring ofstr from 0 toposition.
    4. Else iftemplateRemainder starts with"$&", then
      1. Letref be"$&".
      2. LetrefReplacement bematched.
    5. Else iftemplateRemainder starts with"$'" (0x0024 (DOLLAR SIGN) followed by 0x0027 (APOSTROPHE)), then
      1. Letref be"$'".
      2. LetmatchLength be the length ofmatched.
      3. LettailPos beposition +matchLength.
      4. LetrefReplacement be thesubstring ofstr frommin(tailPos,stringLength).
      5. NOTE:tailPos can exceedstringLength only if this abstract operation was invoked by a call to the intrinsic@@replace method of%RegExp.prototype% on an object whose"exec" property is not the intrinsic %RegExp.prototype.exec%.
    6. Else iftemplateRemainder starts with"$" followed by 1 or more decimal digits, then
      1. IftemplateRemainder starts with"$" followed by 2 or more decimal digits, letdigitCount be 2. Otherwise, letdigitCount be 1.
      2. Letdigits be thesubstring oftemplateRemainder from 1 to 1 +digitCount.
      3. Letindex be(StringToNumber(digits)).
      4. Assert: 0 ≤index ≤ 99.
      5. LetcaptureLen be the number of elements incaptures.
      6. Ifindex >captureLen anddigitCount = 2, then
        1. NOTE: When a two-digit replacement pattern specifies an index exceeding the count of capturing groups, it is treated as a one-digit replacement pattern followed by a literal digit.
        2. SetdigitCount to 1.
        3. Setdigits to thesubstring ofdigits from 0 to 1.
        4. Setindex to(StringToNumber(digits)).
      7. Letref be thesubstring oftemplateRemainder from 0 to 1 +digitCount.
      8. If 1 ≤indexcaptureLen, then
        1. Letcapture becaptures[index - 1].
        2. Ifcapture isundefined, then
          1. LetrefReplacement be the empty String.
        3. Else,
          1. LetrefReplacement becapture.
      9. Else,
        1. LetrefReplacement beref.
    7. Else iftemplateRemainder starts with"$<", then
      1. LetgtPos beStringIndexOf(templateRemainder,">", 0).
      2. IfgtPos = -1 ornamedCaptures isundefined, then
        1. Letref be"$<".
        2. LetrefReplacement beref.
      3. Else,
        1. Letref be thesubstring oftemplateRemainder from 0 togtPos + 1.
        2. LetgroupName be thesubstring oftemplateRemainder from 2 togtPos.
        3. Assert:namedCapturesis an Object.
        4. Letcapture be ? Get(namedCaptures,groupName).
        5. Ifcapture isundefined, then
          1. LetrefReplacement be the empty String.
        6. Else,
          1. LetrefReplacement be ? ToString(capture).
    8. Else,
      1. Letref be thesubstring oftemplateRemainder from 0 to 1.
      2. LetrefReplacement beref.
    9. LetrefLength be the length ofref.
    10. SettemplateRemainder to thesubstring oftemplateRemainder fromrefLength.
    11. Setresult to thestring-concatenation ofresult andrefReplacement.
  6. Returnresult.

22.1.3.20 String.prototype.replaceAll (searchValue,replaceValue )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. IfsearchValue is neitherundefined nornull, then
    1. LetisRegExp be ? IsRegExp(searchValue).
    2. IfisRegExp istrue, then
      1. Letflags be ? Get(searchValue,"flags").
      2. Perform ? RequireObjectCoercible(flags).
      3. If ? ToString(flags) does not contain"g", throw aTypeError exception.
    3. Letreplacer be ? GetMethod(searchValue,@@replace).
    4. Ifreplacer is notundefined, then
      1. Return ? Call(replacer,searchValue, «O,replaceValue »).
  3. Letstring be ? ToString(O).
  4. LetsearchString be ? ToString(searchValue).
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. LetsearchLength be the length ofsearchString.
  8. LetadvanceBy bemax(1,searchLength).
  9. LetmatchPositions be a new emptyList.
  10. Letposition beStringIndexOf(string,searchString, 0).
  11. Repeat, whileposition ≠ -1,
    1. Appendposition tomatchPositions.
    2. Setposition toStringIndexOf(string,searchString,position +advanceBy).
  12. LetendOfLastMatch be 0.
  13. Letresult be the empty String.
  14. For each elementp ofmatchPositions, do
    1. Letpreserved be thesubstring ofstring fromendOfLastMatch top.
    2. IffunctionalReplace istrue, then
      1. Letreplacement be ? ToString(?Call(replaceValue,undefined, «searchString,𝔽(p),string »)).
    3. Else,
      1. Assert:replaceValueis a String.
      2. Letcaptures be a new emptyList.
      3. Letreplacement be ! GetSubstitution(searchString,string,p,captures,undefined,replaceValue).
    4. Setresult to thestring-concatenation ofresult,preserved, andreplacement.
    5. SetendOfLastMatch top +searchLength.
  15. IfendOfLastMatch < the length ofstring, then
    1. Setresult to thestring-concatenation ofresult and thesubstring ofstring fromendOfLastMatch.
  16. Returnresult.

22.1.3.21 String.prototype.search (regexp )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifregexp is neitherundefined nornull, then
    1. Letsearcher be ? GetMethod(regexp,@@search).
    2. Ifsearcher is notundefined, then
      1. Return ? Call(searcher,regexp, «O »).
  3. Letstring be ? ToString(O).
  4. Letrx be ? RegExpCreate(regexp,undefined).
  5. Return ? Invoke(rx,@@search, «string »).
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.22 String.prototype.slice (start,end )

This method returns asubstring of the result of converting this object to a String, starting from indexstart and running to, but not including, indexend (or through the end of the String ifend isundefined). Ifstart is negative, it is treated assourceLength +start wheresourceLength is the length of the String. Ifend is negative, it is treated assourceLength +end wheresourceLength is the length of the String. The resultis a String value, not a String object.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letlen be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. IfintStart = -∞, letfrom be 0.
  6. Else ifintStart < 0, letfrom bemax(len +intStart, 0).
  7. Else, letfrom bemin(intStart,len).
  8. Ifend isundefined, letintEnd belen; else letintEnd be ? ToIntegerOrInfinity(end).
  9. IfintEnd = -∞, letto be 0.
  10. Else ifintEnd < 0, letto bemax(len +intEnd, 0).
  11. Else, letto bemin(intEnd,len).
  12. Iffromto, return the empty String.
  13. Return thesubstring ofS fromfrom toto.
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

22.1.3.23 String.prototype.split (separator,limit )

This method returns an Array into which substrings of the result of converting this object to a String have been stored. The substrings are determined by searching from left to right for occurrences ofseparator; these occurrences are not part of any String in the returned array, but serve to divide up the String value. The value ofseparator may be a String of any length or it may be an object, such as a RegExp, that has a@@split method.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Ifseparator is neitherundefined nornull, then
    1. Letsplitter be ? GetMethod(separator,@@split).
    2. Ifsplitter is notundefined, then
      1. Return ? Call(splitter,separator, «O,limit »).
  3. LetS be ? ToString(O).
  4. Iflimit isundefined, letlim be 232 - 1; else letlim be(?ToUint32(limit)).
  5. LetR be ? ToString(separator).
  6. Iflim = 0, then
    1. ReturnCreateArrayFromList(« »).
  7. Ifseparator isundefined, then
    1. ReturnCreateArrayFromListS »).
  8. LetseparatorLength be the length ofR.
  9. IfseparatorLength = 0, then
    1. Lethead be thesubstring ofS from 0 tolim.
    2. LetcodeUnits be aList consisting of the sequence of code units that are the elements ofhead.
    3. ReturnCreateArrayFromList(codeUnits).
  10. IfS is the empty String, returnCreateArrayFromListS »).
  11. Letsubstrings be a new emptyList.
  12. Leti be 0.
  13. Letj beStringIndexOf(S,R, 0).
  14. Repeat, whilej ≠ -1,
    1. LetT be thesubstring ofS fromi toj.
    2. AppendT tosubstrings.
    3. If the number of elements insubstrings islim, returnCreateArrayFromList(substrings).
    4. Seti toj +separatorLength.
    5. Setj toStringIndexOf(S,R,i).
  15. LetT be thesubstring ofS fromi.
  16. AppendT tosubstrings.
  17. ReturnCreateArrayFromList(substrings).
Note 1

The value ofseparator may be an empty String. In this case,separator does not match the emptysubstring at the beginning or end of the input String, nor does it match the emptysubstring at the end of the previous separator match. Ifseparator is the empty String, the String is split up into individual code unit elements; the length of the result array equals the length of the String, and eachsubstring contains one code unit.

If thethis value is (or converts to) the empty String, the result depends on whetherseparator can match the empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the empty String.

Ifseparator isundefined, then the result array contains just one String, which is thethis value (converted to a String). Iflimit is notundefined, then the output array is truncated so that it contains no more thanlimit elements.

Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.24 String.prototype.startsWith (searchString [ ,position ] )

This method performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetisRegExp be ? IsRegExp(searchString).
  4. IfisRegExp istrue, throw aTypeError exception.
  5. LetsearchStr be ? ToString(searchString).
  6. Letlen be the length ofS.
  7. Ifposition isundefined, letpos be 0; else letpos be ? ToIntegerOrInfinity(position).
  8. Letstart be the result ofclampingpos between 0 andlen.
  9. LetsearchLength be the length ofsearchStr.
  10. IfsearchLength = 0, returntrue.
  11. Letend bestart +searchLength.
  12. Ifend >len, returnfalse.
  13. Letsubstring be thesubstring ofS fromstart toend.
  14. Ifsubstring issearchStr, returntrue.
  15. Returnfalse.
Note 1

This method returnstrue if the sequence of code units ofsearchString converted to a String is the same as the corresponding code units of this object (converted to a String) starting at indexposition. Otherwise it returnsfalse.

Note 2

Throwing an exception if the first argument is a RegExp is specified in order to allow future editions to define extensions that allow such argument values.

Note 3

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.25 String.prototype.substring (start,end )

This method returns asubstring of the result of converting this object to a String, starting from indexstart and running to, but not including, indexend of the String (or through the end of the String ifend isundefined). The resultis a String value, not a String object.

If either argument isNaN or negative, it is replaced with zero; if either argument is strictly greater than the length of the String, it is replaced with the length of the String.

Ifstart is strictly greater thanend, they are swapped.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letlen be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. Ifend isundefined, letintEnd belen; else letintEnd be ? ToIntegerOrInfinity(end).
  6. LetfinalStart be the result ofclampingintStart between 0 andlen.
  7. LetfinalEnd be the result ofclampingintEnd between 0 andlen.
  8. Letfrom bemin(finalStart,finalEnd).
  9. Letto bemax(finalStart,finalEnd).
  10. Return thesubstring ofS fromfrom toto.
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.26 String.prototype.toLocaleLowerCase ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It works exactly the same astoLowerCase except that it is intended to yield a locale-sensitive result corresponding with conventions of thehost environment's current locale. There will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.27 String.prototype.toLocaleUpperCase ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used:

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It works exactly the same astoUpperCase except that it is intended to yield a locale-sensitive result corresponding with conventions of thehost environment's current locale. There will only be a difference in the few cases (such as Turkish) where the rules for that language conflict with the regular Unicode case mappings.

The meaning of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.28 String.prototype.toLowerCase ( )

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetsText beStringToCodePoints(S).
  4. LetlowerText be the result of toLowercase(sText), according to the Unicode Default Case Conversion algorithm.
  5. LetL beCodePointsToString(lowerText).
  6. ReturnL.

The result must be derived according to the locale-insensitive case mappings in the Unicode Character Database (this explicitly includes not only the fileUnicodeData.txt, but also all locale-insensitive mappings in the fileSpecialCasing.txt that accompanies it).

Note 1

The case mapping of some code points may produce multiple code points. In this case the result String may not be the same length as the source String. Because bothtoUpperCase andtoLowerCase have context-sensitive behaviour, the methods are not symmetrical. In other words,s.toUpperCase().toLowerCase() is not necessarily equal tos.toLowerCase().

Note 2

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.29 String.prototype.toString ( )

This method performs the following steps when called:

  1. Return ? ThisStringValue(this value).
Note

For a String object, this method happens to return the same thing as thevalueOf method.

22.1.3.30 String.prototype.toUpperCase ( )

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It behaves in exactly the same way asString.prototype.toLowerCase, except that the String is mapped using the toUppercase algorithm of the Unicode Default Case Conversion.

Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.31 String.prototype.toWellFormed ( )

This method returns a String representation of this object with allleading surrogates andtrailing surrogates that are not part of asurrogate pair replaced with U+FFFD (REPLACEMENT CHARACTER).

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. LetstrLen be the length ofS.
  4. Letk be 0.
  5. Letresult be the empty String.
  6. Repeat, whilek <strLen,
    1. Letcp beCodePointAt(S,k).
    2. Ifcp.[[IsUnpairedSurrogate]] istrue, then
      1. Setresult to thestring-concatenation ofresult and 0xFFFD (REPLACEMENT CHARACTER).
    3. Else,
      1. Setresult to thestring-concatenation ofresult andUTF16EncodeCodePoint(cp.[[CodePoint]]).
    4. Setk tok +cp.[[CodeUnitCount]].
  7. Returnresult.

22.1.3.32 String.prototype.trim ( )

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? TrimString(S,start+end).
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.32.1 TrimString (string,where )

The abstract operation TrimString takes argumentsstring (anECMAScript language value) andwhere (start,end, orstart+end) and returns either anormal completion containing a String or athrow completion. It interpretsstring as a sequence of UTF-16 encoded code points, as described in6.1.4. It performs the following steps when called:

  1. Letstr be ? RequireObjectCoercible(string).
  2. LetS be ? ToString(str).
  3. Ifwhere isstart, then
    1. LetT be the String value that is a copy ofS with leading white space removed.
  4. Else ifwhere isend, then
    1. LetT be the String value that is a copy ofS with trailing white space removed.
  5. Else,
    1. Assert:where isstart+end.
    2. LetT be the String value that is a copy ofS with both leading and trailing white space removed.
  6. ReturnT.

The definition of white space is the union ofWhiteSpace andLineTerminator. When determining whether a Unicode code point is in Unicode general category “Space_Separator” (“Zs”), code unit sequences are interpreted as UTF-16 encoded code point sequences as specified in6.1.4.

22.1.3.33 String.prototype.trimEnd ( )

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? TrimString(S,end).
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.34 String.prototype.trimStart ( )

This method interprets a String value as a sequence of UTF-16 encoded code points, as described in6.1.4.

It performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? TrimString(S,start).
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

22.1.3.35 String.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? ThisStringValue(this value).

22.1.3.35.1 ThisStringValue (value )

The abstract operation ThisStringValue takes argumentvalue (anECMAScript language value) and returns either anormal completion containing a String or athrow completion. It performs the following steps when called:

  1. Ifvalueis a String, returnvalue.
  2. Ifvalueis an Object andvalue has a[[StringData]] internal slot, then
    1. Lets bevalue.[[StringData]].
    2. Assert:sis a String.
    3. Returns.
  3. Throw aTypeError exception.

22.1.3.36 String.prototype [ @@iterator ] ( )

This method returns an Iterator object (27.1.1.2) that iterates over the code points of a String value, returning each code point as a String value.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. Lets be ? ToString(O).
  3. Letclosure be a newAbstract Closure with no parameters that capturess and performs the following steps when called:
    1. Letlen be the length ofs.
    2. Letposition be 0.
    3. Repeat, whileposition <len,
      1. Letcp beCodePointAt(s,position).
      2. LetnextIndex beposition +cp.[[CodeUnitCount]].
      3. LetresultString be thesubstring ofs fromposition tonextIndex.
      4. Setposition tonextIndex.
      5. Perform ? GeneratorYield(CreateIterResultObject(resultString,false)).
    4. Returnundefined.
  4. ReturnCreateIteratorFromClosure(closure,"%StringIteratorPrototype%",%StringIteratorPrototype%).

The value of the"name" property of this method is"[Symbol.iterator]".

22.1.4 Properties of String Instances

String instances areString exotic objects and have the internal methods specified for such objects. String instances inherit properties from theString prototype object. String instances also have a[[StringData]] internal slot. The[[StringData]] internal slot is the String value represented by this String object.

String instances have a"length" property, and a set of enumerable properties withinteger-indexed names.

22.1.4.1 length

The number of elements in the String value represented by this String object.

Once a String object is initialized, this property is unchanging. It has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

22.1.5 String Iterator Objects

A String Iterator is an object, that represents a specific iteration over some specific String instance object. There is not a namedconstructor for String Iterator objects. Instead, String iterator objects are created by calling certain methods of String instance objects.

22.1.5.1 The %StringIteratorPrototype% Object

The%StringIteratorPrototype% object:

  • has properties that are inherited by all String Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

22.1.5.1.1 %StringIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%StringIteratorPrototype%").

22.1.5.1.2 %StringIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"String Iterator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

22.2 RegExp (Regular Expression) Objects

A RegExp object contains a regular expression and the associated flags.

Note

The form and functionality of regular expressions is modelled after the regular expression facility in the Perl 5 programming language.

22.2.1 Patterns

The RegExpconstructor applies the following grammar to the input pattern String. An error occurs if the grammar cannot interpret the String as an expansion ofPattern.

Syntax

Pattern[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Disjunction[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]|Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Alternative[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::[empty]Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Term[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Term[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Assertion[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Atom[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Atom[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]QuantifierAssertion[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::^$\b\B(?=Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?!Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?<=Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?<!Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])Quantifier::QuantifierPrefixQuantifierPrefix?QuantifierPrefix::*+?{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}Atom[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::PatternCharacter.\AtomEscape[?UnicodeMode, ?NamedCaptureGroups]CharacterClass[?UnicodeMode, ?UnicodeSetsMode](GroupSpecifier[?UnicodeMode]optDisjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?:Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])SyntaxCharacter::one of^$\.*+?()[]{}|PatternCharacter::SourceCharacterbut notSyntaxCharacterAtomEscape[UnicodeMode, NamedCaptureGroups]::DecimalEscapeCharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode][+NamedCaptureGroups]kGroupName[?UnicodeMode]CharacterEscape[UnicodeMode]::ControlEscapecAsciiLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?UnicodeMode]IdentityEscape[?UnicodeMode]ControlEscape::one offnrtvGroupSpecifier[UnicodeMode]::?GroupName[?UnicodeMode]GroupName[UnicodeMode]::<RegExpIdentifierName[?UnicodeMode]>RegExpIdentifierName[UnicodeMode]::RegExpIdentifierStart[?UnicodeMode]RegExpIdentifierName[?UnicodeMode]RegExpIdentifierPart[?UnicodeMode]RegExpIdentifierStart[UnicodeMode]::IdentifierStartChar\RegExpUnicodeEscapeSequence[+UnicodeMode][~UnicodeMode]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart[UnicodeMode]::IdentifierPartChar\RegExpUnicodeEscapeSequence[+UnicodeMode][~UnicodeMode]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpUnicodeEscapeSequence[UnicodeMode]::[+UnicodeMode]uHexLeadSurrogate\uHexTrailSurrogate[+UnicodeMode]uHexLeadSurrogate[+UnicodeMode]uHexTrailSurrogate[+UnicodeMode]uHexNonSurrogate[~UnicodeMode]uHex4Digits[+UnicodeMode]u{CodePoint}UnicodeLeadSurrogate::any Unicode code point in the inclusive interval from U+D800 to U+DBFFUnicodeTrailSurrogate::any Unicode code point in the inclusive interval from U+DC00 to U+DFFF

Each\uHexTrailSurrogate for which the choice of associateduHexLeadSurrogate is ambiguous shall be associated with the nearest possibleuHexLeadSurrogate that would otherwise have no corresponding\uHexTrailSurrogate.

HexLeadSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in theinclusive interval from 0xD800 to 0xDBFFHexTrailSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in theinclusive interval from 0xDC00 to 0xDFFFHexNonSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is not in theinclusive interval from 0xD800 to 0xDFFFIdentityEscape[UnicodeMode]::[+UnicodeMode]SyntaxCharacter[+UnicodeMode]/[~UnicodeMode]SourceCharacterbut notUnicodeIDContinueDecimalEscape::NonZeroDigitDecimalDigits[~Sep]opt[lookahead ∉DecimalDigit]CharacterClassEscape[UnicodeMode]::dDsSwW[+UnicodeMode]p{UnicodePropertyValueExpression}[+UnicodeMode]P{UnicodePropertyValueExpression}UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueLoneUnicodePropertyNameOrValueUnicodePropertyName::UnicodePropertyNameCharactersUnicodePropertyNameCharacters::UnicodePropertyNameCharacterUnicodePropertyNameCharactersoptUnicodePropertyValue::UnicodePropertyValueCharactersLoneUnicodePropertyNameOrValue::UnicodePropertyValueCharactersUnicodePropertyValueCharacters::UnicodePropertyValueCharacterUnicodePropertyValueCharactersoptUnicodePropertyValueCharacter::UnicodePropertyNameCharacterDecimalDigitUnicodePropertyNameCharacter::AsciiLetter_CharacterClass[UnicodeMode, UnicodeSetsMode]::[[lookahead ≠^]ClassContents[?UnicodeMode, ?UnicodeSetsMode]][^ClassContents[?UnicodeMode, ?UnicodeSetsMode]]ClassContents[UnicodeMode, UnicodeSetsMode]::[empty][~UnicodeSetsMode]NonemptyClassRanges[?UnicodeMode][+UnicodeSetsMode]ClassSetExpressionNonemptyClassRanges[UnicodeMode]::ClassAtom[?UnicodeMode]ClassAtom[?UnicodeMode]NonemptyClassRangesNoDash[?UnicodeMode]ClassAtom[?UnicodeMode]-ClassAtom[?UnicodeMode]ClassContents[?UnicodeMode, ~UnicodeSetsMode]NonemptyClassRangesNoDash[UnicodeMode]::ClassAtom[?UnicodeMode]ClassAtomNoDash[?UnicodeMode]NonemptyClassRangesNoDash[?UnicodeMode]ClassAtomNoDash[?UnicodeMode]-ClassAtom[?UnicodeMode]ClassContents[?UnicodeMode, ~UnicodeSetsMode]ClassAtom[UnicodeMode]::-ClassAtomNoDash[?UnicodeMode]ClassAtomNoDash[UnicodeMode]::SourceCharacterbut not one of\ or] or-\ClassEscape[?UnicodeMode]ClassEscape[UnicodeMode]::b[+UnicodeMode]-CharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode]ClassSetExpression::ClassUnionClassIntersectionClassSubtractionClassUnion::ClassSetRangeClassUnionoptClassSetOperandClassUnionoptClassIntersection::ClassSetOperand&&[lookahead ≠&]ClassSetOperandClassIntersection&&[lookahead ≠&]ClassSetOperandClassSubtraction::ClassSetOperand--ClassSetOperandClassSubtraction--ClassSetOperandClassSetRange::ClassSetCharacter-ClassSetCharacterClassSetOperand::NestedClassClassStringDisjunctionClassSetCharacterNestedClass::[[lookahead ≠^]ClassContents[+UnicodeMode, +UnicodeSetsMode]][^ClassContents[+UnicodeMode, +UnicodeSetsMode]]\CharacterClassEscape[+UnicodeMode]Note 1

The first two lines here are equivalent to CharacterClass.

ClassStringDisjunction::\q{ClassStringDisjunctionContents}ClassStringDisjunctionContents::ClassStringClassString|ClassStringDisjunctionContentsClassString::[empty]NonEmptyClassStringNonEmptyClassString::ClassSetCharacterNonEmptyClassStringoptClassSetCharacter::[lookahead ∉ClassSetReservedDoublePunctuator]SourceCharacterbut notClassSetSyntaxCharacter\CharacterEscape[+UnicodeMode]\ClassSetReservedPunctuator\bClassSetReservedDoublePunctuator::one of&&!!##$$%%**++,,..::;;<<==>>??@@^^``~~ClassSetSyntaxCharacter::one of()[]{}/-\|ClassSetReservedPunctuator::one of&-!#%,:;<=>@`~Note 2

A number of productions in this section are given alternative definitions in sectionB.1.2.

22.2.1.1 Static Semantics: Early Errors

Note

This section is amended inB.1.2.1.

Pattern::DisjunctionQuantifierPrefix::{DecimalDigits,DecimalDigits}AtomEscape::kGroupNameAtomEscape::DecimalEscapeNonemptyClassRanges::ClassAtom-ClassAtomClassContentsNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassContentsRegExpIdentifierStart::\RegExpUnicodeEscapeSequenceRegExpIdentifierStart::UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart::\RegExpUnicodeEscapeSequenceRegExpIdentifierPart::UnicodeLeadSurrogateUnicodeTrailSurrogateUnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueUnicodePropertyValueExpression::LoneUnicodePropertyNameOrValueCharacterClassEscape::P{UnicodePropertyValueExpression}CharacterClass::[^ClassContents]NestedClass::[^ClassContents]ClassSetRange::ClassSetCharacter-ClassSetCharacter

22.2.1.2 Static Semantics: CountLeftCapturingParensWithin (node )

The abstract operation CountLeftCapturingParensWithin takes argumentnode (aParse Node) and returns a non-negativeinteger. It returns the number of left-capturing parentheses innode. Aleft-capturing parenthesis is any( pattern character that is matched by the( terminal of theAtom::(GroupSpecifieroptDisjunction) production.

Note

This section is amended inB.1.2.2.

It performs the following steps when called:

  1. Assert:node is an instance of a production inthe RegExp Pattern grammar.
  2. Return the number ofAtom::(GroupSpecifieroptDisjunction)Parse Nodes contained withinnode.

22.2.1.3 Static Semantics: CountLeftCapturingParensBefore (node )

The abstract operation CountLeftCapturingParensBefore takes argumentnode (aParse Node) and returns a non-negativeinteger. It returns the number ofleft-capturing parentheses within the enclosing pattern that occur to the left ofnode.

Note

This section is amended inB.1.2.2.

It performs the following steps when called:

  1. Assert:node is an instance of a production inthe RegExp Pattern grammar.
  2. Letpattern be thePattern containingnode.
  3. Return the number ofAtom::(GroupSpecifieroptDisjunction)Parse Nodes contained withinpattern that either occur beforenode or containnode.

22.2.1.4 Static Semantics: CapturingGroupNumber

Thesyntax-directed operation CapturingGroupNumber takes no arguments and returns a positiveinteger.

Note

This section is amended inB.1.2.1.

It is defined piecewise over the following productions:

DecimalEscape::NonZeroDigit
  1. Return the MV ofNonZeroDigit.
DecimalEscape::NonZeroDigitDecimalDigits
  1. Letn be the number of code points inDecimalDigits.
  2. Return (the MV ofNonZeroDigit × 10n plus the MV ofDecimalDigits).

The definitions of “the MV ofNonZeroDigit” and “the MV ofDecimalDigits” are in12.9.3.

22.2.1.5 Static Semantics: IsCharacterClass

Thesyntax-directed operation IsCharacterClass takes no arguments and returns a Boolean.

Note

This section is amended inB.1.2.3.

It is defined piecewise over the following productions:

ClassAtom::-ClassAtomNoDash::SourceCharacterbut not one of\ or] or-ClassEscape::b-CharacterEscape
  1. Returnfalse.
ClassEscape::CharacterClassEscape
  1. Returntrue.

22.2.1.6 Static Semantics: CharacterValue

Thesyntax-directed operation CharacterValue takes no arguments and returns a non-negativeinteger.

Note 1

This section is amended inB.1.2.4.

It is defined piecewise over the following productions:

ClassAtom::-
  1. Return the numeric value of U+002D (HYPHEN-MINUS).
ClassAtomNoDash::SourceCharacterbut not one of\ or] or-
  1. Letch be the code point matched bySourceCharacter.
  2. Return the numeric value ofch.
ClassEscape::b
  1. Return the numeric value of U+0008 (BACKSPACE).
ClassEscape::-
  1. Return the numeric value of U+002D (HYPHEN-MINUS).
CharacterEscape::ControlEscape
  1. Return the numeric value according toTable 65.
Table 65: ControlEscape Code Point Values
ControlEscape Numeric Value Code Point Unicode Name Symbol
t 9U+0009 CHARACTER TABULATION <HT>
n 10U+000A LINE FEED (LF) <LF>
v 11U+000B LINE TABULATION <VT>
f 12U+000C FORM FEED (FF) <FF>
r 13U+000D CARRIAGE RETURN (CR) <CR>
CharacterEscape::cAsciiLetter
  1. Letch be the code point matched byAsciiLetter.
  2. Leti be the numeric value ofch.
  3. Return the remainder of dividingi by 32.
CharacterEscape::0[lookahead ∉DecimalDigit]
  1. Return the numeric value of U+0000 (NULL).
Note 2

\0 represents the <NUL> character and cannot be followed by a decimal digit.

CharacterEscape::HexEscapeSequence
  1. Return the MV ofHexEscapeSequence.
RegExpUnicodeEscapeSequence::uHexLeadSurrogate\uHexTrailSurrogate
  1. Letlead be theCharacterValue ofHexLeadSurrogate.
  2. Lettrail be theCharacterValue ofHexTrailSurrogate.
  3. Letcp beUTF16SurrogatePairToCodePoint(lead,trail).
  4. Return the numeric value ofcp.
RegExpUnicodeEscapeSequence::uHex4Digits
  1. Return the MV ofHex4Digits.
RegExpUnicodeEscapeSequence::u{CodePoint}
  1. Return the MV ofCodePoint.
HexLeadSurrogate::Hex4DigitsHexTrailSurrogate::Hex4DigitsHexNonSurrogate::Hex4Digits
  1. Return the MV ofHex4Digits.
CharacterEscape::IdentityEscape
  1. Letch be the code point matched byIdentityEscape.
  2. Return the numeric value ofch.
ClassSetCharacter::SourceCharacterbut notClassSetSyntaxCharacter
  1. Letch be the code point matched bySourceCharacter.
  2. Return the numeric value ofch.
ClassSetCharacter::\ClassSetReservedPunctuator
  1. Letch be the code point matched byClassSetReservedPunctuator.
  2. Return the numeric value ofch.
ClassSetCharacter::\b
  1. Return the numeric value of U+0008 (BACKSPACE).

22.2.1.7 Static Semantics: MayContainStrings

Thesyntax-directed operation MayContainStrings takes no arguments and returns a Boolean. It is defined piecewise over the following productions:

CharacterClassEscape::dDsSwWP{UnicodePropertyValueExpression}UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueNestedClass::[^ClassContents]ClassContents::[empty]NonemptyClassRangesClassSetOperand::ClassSetCharacter
  1. Returnfalse.
UnicodePropertyValueExpression::LoneUnicodePropertyNameOrValue
  1. If thesource text matched byLoneUnicodePropertyNameOrValue is a binary property of strings listed in the “Property name” column ofTable 69, returntrue.
  2. Returnfalse.
ClassUnion::ClassSetRangeClassUnionopt
  1. If theClassUnion is present, returnMayContainStrings of theClassUnion.
  2. Returnfalse.
ClassUnion::ClassSetOperandClassUnionopt
  1. IfMayContainStrings of theClassSetOperand istrue, returntrue.
  2. IfClassUnion is present, returnMayContainStrings of theClassUnion.
  3. Returnfalse.
ClassIntersection::ClassSetOperand&&ClassSetOperand
  1. IfMayContainStrings of the firstClassSetOperand isfalse, returnfalse.
  2. IfMayContainStrings of the secondClassSetOperand isfalse, returnfalse.
  3. Returntrue.
ClassIntersection::ClassIntersection&&ClassSetOperand
  1. IfMayContainStrings of theClassIntersection isfalse, returnfalse.
  2. IfMayContainStrings of theClassSetOperand isfalse, returnfalse.
  3. Returntrue.
ClassSubtraction::ClassSetOperand--ClassSetOperand
  1. ReturnMayContainStrings of the firstClassSetOperand.
ClassSubtraction::ClassSubtraction--ClassSetOperand
  1. ReturnMayContainStrings of theClassSubtraction.
ClassStringDisjunctionContents::ClassString|ClassStringDisjunctionContents
  1. IfMayContainStrings of theClassString istrue, returntrue.
  2. ReturnMayContainStrings of theClassStringDisjunctionContents.
ClassString::[empty]
  1. Returntrue.
ClassString::NonEmptyClassString
  1. ReturnMayContainStrings of theNonEmptyClassString.
NonEmptyClassString::ClassSetCharacterNonEmptyClassStringopt
  1. IfNonEmptyClassString is present, returntrue.
  2. Returnfalse.

22.2.1.8 Static Semantics: GroupSpecifiersThatMatch (thisGroupName )

The abstract operation GroupSpecifiersThatMatch takes argumentthisGroupName (aGroupNameParse Node) and returns aList ofGroupSpecifierParse Nodes. It performs the following steps when called:

  1. Letname be theCapturingGroupName ofthisGroupName.
  2. Letpattern be thePattern containingthisGroupName.
  3. Letresult be a new emptyList.
  4. For eachGroupSpecifiergs thatpattern contains, do
    1. If theCapturingGroupName ofgs isname, then
      1. Appendgs toresult.
  5. Returnresult.

22.2.1.9 Static Semantics: CapturingGroupName

Thesyntax-directed operation CapturingGroupName takes no arguments and returns a String. It is defined piecewise over the following productions:

GroupName::<RegExpIdentifierName>
  1. LetidTextUnescaped beRegExpIdentifierCodePoints ofRegExpIdentifierName.
  2. ReturnCodePointsToString(idTextUnescaped).

22.2.1.10 Static Semantics: RegExpIdentifierCodePoints

Thesyntax-directed operation RegExpIdentifierCodePoints takes no arguments and returns aList of code points. It is defined piecewise over the following productions:

RegExpIdentifierName::RegExpIdentifierStart
  1. Letcp beRegExpIdentifierCodePoint ofRegExpIdentifierStart.
  2. Return «cp ».
RegExpIdentifierName::RegExpIdentifierNameRegExpIdentifierPart
  1. Letcps beRegExpIdentifierCodePoints of the derivedRegExpIdentifierName.
  2. Letcp beRegExpIdentifierCodePoint ofRegExpIdentifierPart.
  3. Return thelist-concatenation ofcps and «cp ».

22.2.1.11 Static Semantics: RegExpIdentifierCodePoint

Thesyntax-directed operation RegExpIdentifierCodePoint takes no arguments and returns a code point. It is defined piecewise over the following productions:

RegExpIdentifierStart::IdentifierStartChar
  1. Return the code point matched byIdentifierStartChar.
RegExpIdentifierPart::IdentifierPartChar
  1. Return the code point matched byIdentifierPartChar.
RegExpIdentifierStart::\RegExpUnicodeEscapeSequenceRegExpIdentifierPart::\RegExpUnicodeEscapeSequence
  1. Return the code point whose numeric value is theCharacterValue ofRegExpUnicodeEscapeSequence.
RegExpIdentifierStart::UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart::UnicodeLeadSurrogateUnicodeTrailSurrogate
  1. Letlead be the code unit whose numeric value is the numeric value of the code point matched byUnicodeLeadSurrogate.
  2. Lettrail be the code unit whose numeric value is the numeric value of the code point matched byUnicodeTrailSurrogate.
  3. ReturnUTF16SurrogatePairToCodePoint(lead,trail).

22.2.2 Pattern Semantics

A regular expression pattern is converted into anAbstract Closure using the process described below. An implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the results are the same. TheAbstract Closure is used as the value of a RegExp object's[[RegExpMatcher]] internal slot.

APattern is a BMP pattern if its associated flags contain neither au nor av. Otherwise, it is a Unicode pattern. A BMP pattern matches against a String interpreted as consisting of a sequence of 16-bit values that are Unicode code points in the range of the Basic Multilingual Plane. A Unicode pattern matches against a String interpreted as consisting of Unicode code points encoded using UTF-16. In the context of describing the behaviour of a BMP pattern “character” means a single 16-bit Unicode BMP code point. In the context of describing the behaviour of a Unicode pattern “character” means a UTF-16 encoded code point (6.1.4). In either context, “character value” means the numeric value of the corresponding non-encoded code point.

The syntax and semantics ofPattern is defined as if the source text for thePattern was aList ofSourceCharacter values where eachSourceCharacter corresponds to a Unicode code point. If a BMP pattern contains a non-BMPSourceCharacter the entire pattern is encoded using UTF-16 and the individual code units of that encoding are used as the elements of theList.

Note

For example, consider a pattern expressed in source text as the single non-BMP character U+1D11E (MUSICAL SYMBOL G CLEF). Interpreted as a Unicode pattern, it would be a single element (character)List consisting of the single code point U+1D11E. However, interpreted as a BMP pattern, it is first UTF-16 encoded to produce a two elementList consisting of the code units 0xD834 and 0xDD1E.

Patterns are passed to the RegExpconstructor as ECMAScript String values in which non-BMP characters are UTF-16 encoded. For example, the single character MUSICAL SYMBOL G CLEF pattern, expressed as a String value,is a String of length 2 whose elements were the code units 0xD834 and 0xDD1E. So no further translation of the string would be necessary to process it as a BMP pattern consisting of two pattern characters. However, to process it as a Unicode patternUTF16SurrogatePairToCodePoint must be used in producing aList whose sole element is a single pattern character, the code point U+1D11E.

An implementation may not actually perform such translations to or from UTF-16, but the semantics of this specification requires that the result of pattern matching be as if such translations were performed.

22.2.2.1 Notation

The descriptions below use the following internal data structures:

  • ACharSetElement is one of the two following entities:
    • Ifrer.[[UnicodeSets]] isfalse, then a CharSetElement is a character in the sense of the Pattern Semantics above.
    • Ifrer.[[UnicodeSets]] istrue, then a CharSetElement is a sequence whose elements are characters in the sense of the Pattern Semantics above. This includes the empty sequence, sequences of one character, and sequences of more than one character. For convenience, when working with CharSetElements of this kind, an individual character is treated interchangeably with a sequence of one character.
  • ACharSet is a mathematical set of CharSetElements.
  • ACaptureRange is aRecord {[[StartIndex]],[[EndIndex]] } that represents the range of characters included in a capture, where[[StartIndex]] is aninteger representing the start index (inclusive) of the range withinInput, and[[EndIndex]] is aninteger representing the end index (exclusive) of the range withinInput. For anyCaptureRange, these indices must satisfy the invariant that[[StartIndex]][[EndIndex]].
  • AMatchState is aRecord {[[Input]],[[EndIndex]],[[Captures]] } where[[Input]] is aList of characters representing the String being matched,[[EndIndex]] is aninteger, and[[Captures]] is aList of values, one for eachleft-capturing parenthesis in the pattern. States are used to represent partial match states in the regular expression matching algorithms. The[[EndIndex]] is one plus the index of the last input character matched so far by the pattern, while[[Captures]] holds the results of capturing parentheses. Thenth element of[[Captures]] is either aCaptureRange representing the range of characters captured by thenth set of capturing parentheses, orundefined if thenth set of capturing parentheses hasn't been reached yet. Due to backtracking, many States may be in use at any time during the matching process.
  • AMatchResult is either aMatchState or the special tokenfailure that indicates that the match failed.
  • AMatcherContinuation is anAbstract Closure that takes oneMatchState argument and returns aMatchResult result. TheMatcherContinuation attempts to match the remaining portion (specified by the closure's captured values) of the pattern againstInput, starting at the intermediate state given by itsMatchState argument. If the match succeeds, theMatcherContinuation returns the finalMatchState that it reached; if the match fails, theMatcherContinuation returnsfailure.
  • AMatcher is anAbstract Closure that takes two arguments—aMatchState and aMatcherContinuation—and returns aMatchResult result. AMatcher attempts to match a middle subpattern (specified by the closure's captured values) of the pattern against theMatchState's[[Input]], starting at the intermediate state given by itsMatchState argument. TheMatcherContinuation argument should be a closure that matches the rest of the pattern. After matching the subpattern of a pattern to obtain a newMatchState, theMatcher then callsMatcherContinuation on that newMatchState to test if the rest of the pattern can match as well. If it can, theMatcher returns theMatchState returned byMatcherContinuation; if not, theMatcher may try different choices at its choice points, repeatedly callingMatcherContinuation until it either succeeds or all possibilities have been exhausted.

22.2.2.1.1 RegExp Records

ARegExp Record is aRecord value used to store information about a RegExp that is needed during compilation and possibly during matching.

It has the following fields:

Table 66:RegExp Record Fields
Field NameValueMeaning
[[IgnoreCase]]a Booleanindicates whether"i" appears in the RegExp's flags
[[Multiline]]a Booleanindicates whether"m" appears in the RegExp's flags
[[DotAll]]a Booleanindicates whether"s" appears in the RegExp's flags
[[Unicode]]a Booleanindicates whether"u" appears in the RegExp's flags
[[UnicodeSets]]a Booleanindicates whether"v" appears in the RegExp's flags
[[CapturingGroupsCount]]a non-negativeintegerthe number ofleft-capturing parentheses in the RegExp's pattern

22.2.2.2 Runtime Semantics: CompilePattern

Thesyntax-directed operation CompilePattern takes argumentrer (aRegExp Record) and returns anAbstract Closure that takes aList of characters and a non-negativeinteger and returns aMatchResult. It is defined piecewise over the following productions:

Pattern::Disjunction
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer andforward.
  2. Return a newAbstract Closure with parameters (Input,index) that capturesrer andm and performs the following steps when called:
    1. Assert:Input is aList of characters.
    2. Assert: 0 ≤index ≤ the number of elements inInput.
    3. Letc be a newMatcherContinuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Returny.
    4. Letcap be aList ofrer.[[CapturingGroupsCount]]undefined values, indexed 1 throughrer.[[CapturingGroupsCount]].
    5. Letx be theMatchState {[[Input]]:Input,[[EndIndex]]:index,[[Captures]]:cap }.
    6. Returnm(x,c).
Note

A Pattern compiles to anAbstract Closure value.RegExpBuiltinExec can then apply this procedure to aList of characters and an offset within thatList to determine whether the pattern would match starting at exactly that offset within theList, and, if it does match, what the values of the capturing parentheses would be. The algorithms in22.2.2 are designed so that compiling a pattern may throw aSyntaxError exception; on the other hand, once the pattern is successfully compiled, applying the resultingAbstract Closure to find a match in aList of characters cannot throw an exception (except for anyimplementation-defined exceptions that can occur anywhere such as out-of-memory).

22.2.2.3 Runtime Semantics: CompileSubpattern

Thesyntax-directed operation CompileSubpattern takes argumentsrer (aRegExp Record) anddirection (forward orbackward) and returns aMatcher.

Note 1

This section is amended inB.1.2.5.

It is defined piecewise over the following productions:

Disjunction::Alternative|Disjunction
  1. Letm1 beCompileSubpattern ofAlternative with argumentsrer anddirection.
  2. Letm2 beCompileSubpattern ofDisjunction with argumentsrer anddirection.
  3. ReturnMatchTwoAlternatives(m1,m2).
Note 2

The| regular expression operator separates two alternatives. The pattern first tries to match the leftAlternative (followed by the sequel of the regular expression); if it fails, it tries to match the rightDisjunction (followed by the sequel of the regular expression). If the leftAlternative, the rightDisjunction, and the sequel all have choice points, all choices in the sequel are tried before moving on to the next choice in the leftAlternative. If choices in the leftAlternative are exhausted, the rightDisjunction is tried instead of the leftAlternative. Any capturing parentheses inside a portion of the pattern skipped by| produceundefined values instead of Strings. Thus, for example,

/a|ab/.exec("abc")

returns the result"a" and not"ab". Moreover,

/((a)|(ab))((c)|(bc))/.exec("abc")

returns the array

["abc","a","a",undefined,"bc",undefined,"bc"]

and not

["abc","ab",undefined,"ab","c","c",undefined]

The order in which the two alternatives are tried is independent of the value ofdirection.

Alternative::[empty]
  1. ReturnEmptyMatcher().
Alternative::AlternativeTerm
  1. Letm1 beCompileSubpattern ofAlternative with argumentsrer anddirection.
  2. Letm2 beCompileSubpattern ofTerm with argumentsrer anddirection.
  3. ReturnMatchSequence(m1,m2,direction).
Note 3

ConsecutiveTerms try to simultaneously match consecutive portions ofInput. Whendirection isforward, if the leftAlternative, the rightTerm, and the sequel of the regular expression all have choice points, all choices in the sequel are tried before moving on to the next choice in the rightTerm, and all choices in the rightTerm are tried before moving on to the next choice in the leftAlternative. Whendirection isbackward, the evaluation order ofAlternative andTerm are reversed.

Term::Assertion
  1. ReturnCompileAssertion ofAssertion with argumentrer.
Note 4

The resultingMatcher is independent ofdirection.

Term::Atom
  1. ReturnCompileAtom ofAtom with argumentsrer anddirection.
Term::AtomQuantifier
  1. Letm beCompileAtom ofAtom with argumentsrer anddirection.
  2. Letq beCompileQuantifier ofQuantifier.
  3. Assert:q.[[Min]]q.[[Max]].
  4. LetparenIndex beCountLeftCapturingParensBefore(Term).
  5. LetparenCount beCountLeftCapturingParensWithin(Atom).
  6. Return a newMatcher with parameters (x,c) that capturesm,q,parenIndex, andparenCount and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. ReturnRepeatMatcher(m,q.[[Min]],q.[[Max]],q.[[Greedy]],x,c,parenIndex,parenCount).

22.2.2.3.1 RepeatMatcher (m,min,max,greedy,x,c,parenIndex,parenCount )

The abstract operation RepeatMatcher takes argumentsm (aMatcher),min (a non-negativeinteger),max (a non-negativeinteger or +∞),greedy (a Boolean),x (aMatchState),c (aMatcherContinuation),parenIndex (a non-negativeinteger), andparenCount (a non-negativeinteger) and returns aMatchResult. It performs the following steps when called:

  1. Ifmax = 0, returnc(x).
  2. Letd be a newMatcherContinuation with parameters (y) that capturesm,min,max,greedy,x,c,parenIndex, andparenCount and performs the following steps when called:
    1. Assert:y is aMatchState.
    2. Ifmin = 0 andy.[[EndIndex]] =x.[[EndIndex]], returnfailure.
    3. Ifmin = 0, letmin2 be 0; otherwise letmin2 bemin - 1.
    4. Ifmax = +∞, letmax2 be +∞; otherwise letmax2 bemax - 1.
    5. ReturnRepeatMatcher(m,min2,max2,greedy,y,c,parenIndex,parenCount).
  3. Letcap be a copy ofx.[[Captures]].
  4. For eachintegerk in theinclusive interval fromparenIndex + 1 toparenIndex +parenCount, setcap[k] toundefined.
  5. LetInput bex.[[Input]].
  6. Lete bex.[[EndIndex]].
  7. Letxr be theMatchState {[[Input]]:Input,[[EndIndex]]:e,[[Captures]]:cap }.
  8. Ifmin ≠ 0, returnm(xr,d).
  9. Ifgreedy isfalse, then
    1. Letz bec(x).
    2. Ifz is notfailure, returnz.
    3. Returnm(xr,d).
  10. Letz bem(xr,d).
  11. Ifz is notfailure, returnz.
  12. Returnc(x).
Note 1

AnAtom followed by aQuantifier is repeated the number of times specified by theQuantifier. AQuantifier can be non-greedy, in which case theAtom pattern is repeated as few times as possible while still matching the sequel, or it can be greedy, in which case theAtom pattern is repeated as many times as possible while still matching the sequel. TheAtom pattern is repeated rather than the input character sequence that it matches, so different repetitions of theAtom can match different input substrings.

Note 2

If theAtom and the sequel of the regular expression all have choice points, theAtom is first matched as many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving on to the next choice in the last repetition ofAtom. All choices in the last (nth) repetition ofAtom are tried before moving on to the next choice in the next-to-last (n - 1)st repetition ofAtom; at which point it may turn out that more or fewer repetitions ofAtom are now possible; these are exhausted (again, starting with either as few or as many as possible) before moving on to the next choice in the (n - 1)st repetition ofAtom and so on.

Compare

/a[a-z]{2,4}/.exec("abcdefghi")

which returns"abcde" with

/a[a-z]{2,4}?/.exec("abcdefghi")

which returns"abc".

Consider also

/(aa|aabaac|ba|b|c)*/.exec("aabaac")

which, by the choice point ordering above, returns the array

["aaba","ba"]

and not any of:

["aabaac","aabaac"]["aabaac","c"]

The above ordering of choice points can be used to write a regular expression that calculates the greatest common divisor of two numbers (represented in unary notation). The following example calculates the gcd of 10 and 15:

"aaaaaaaaaa,aaaaaaaaaaaaaaa".replace(/^(a+)\1*,\1+$/,"$1")

which returns the gcd in unary notation"aaaaa".

Note 3

Step4 of the RepeatMatcher clearsAtom's captures each timeAtom is repeated. We can see its behaviour in the regular expression

/(z)((a+)?(b+)?(c))*/.exec("zaacbbbcac")

which returns the array

["zaacbbbcac","z","ac","a",undefined,"c"]

and not

["zaacbbbcac","z","ac","a","bbb","c"]

because each iteration of the outermost* clears all captured Strings contained in the quantifiedAtom, which in this case includes capture Strings numbered 2, 3, 4, and 5.

Note 4

Step2.b of the RepeatMatcher states that once the minimum number of repetitions has been satisfied, any more expansions ofAtom that match the empty character sequence are not considered for further repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns such as:

/(a*)*/.exec("b")

or the slightly more complicated:

/(a*)b\1+/.exec("baaaac")

which returns the array

["b",""]

22.2.2.3.2 EmptyMatcher ( )

The abstract operation EmptyMatcher takes no arguments and returns aMatcher. It performs the following steps when called:

  1. Return a newMatcher with parameters (x,c) that captures nothing and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Returnc(x).

22.2.2.3.3 MatchTwoAlternatives (m1,m2 )

The abstract operation MatchTwoAlternatives takes argumentsm1 (aMatcher) andm2 (aMatcher) and returns aMatcher. It performs the following steps when called:

  1. Return a newMatcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letr bem1(x,c).
    4. Ifr is notfailure, returnr.
    5. Returnm2(x,c).

22.2.2.3.4 MatchSequence (m1,m2,direction )

The abstract operation MatchSequence takes argumentsm1 (aMatcher),m2 (aMatcher), anddirection (forward orbackward) and returns aMatcher. It performs the following steps when called:

  1. Ifdirection isforward, then
    1. Return a newMatcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
      1. Assert:x is aMatchState.
      2. Assert:c is aMatcherContinuation.
      3. Letd be a newMatcherContinuation with parameters (y) that capturesc andm2 and performs the following steps when called:
        1. Assert:y is aMatchState.
        2. Returnm2(y,c).
      4. Returnm1(x,d).
  2. Else,
    1. Assert:direction isbackward.
    2. Return a newMatcher with parameters (x,c) that capturesm1 andm2 and performs the following steps when called:
      1. Assert:x is aMatchState.
      2. Assert:c is aMatcherContinuation.
      3. Letd be a newMatcherContinuation with parameters (y) that capturesc andm1 and performs the following steps when called:
        1. Assert:y is aMatchState.
        2. Returnm1(y,c).
      4. Returnm2(x,d).

22.2.2.4 Runtime Semantics: CompileAssertion

Thesyntax-directed operation CompileAssertion takes argumentrer (aRegExp Record) and returns aMatcher.

Note 1

This section is amended inB.1.2.6.

It is defined piecewise over the following productions:

Assertion::^
  1. Return a newMatcher with parameters (x,c) that capturesrer and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Lete bex.[[EndIndex]].
    5. Ife = 0, or ifrer.[[Multiline]] istrue and the characterInput[e - 1] is matched byLineTerminator, then
      1. Returnc(x).
    6. Returnfailure.
Note 2

Even when they flag is used with a pattern,^ always matches only at the beginning ofInput, or (ifrer.[[Multiline]] istrue) at the beginning of a line.

Assertion::$
  1. Return a newMatcher with parameters (x,c) that capturesrer and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Lete bex.[[EndIndex]].
    5. LetInputLength be the number of elements inInput.
    6. Ife =InputLength, or ifrer.[[Multiline]] istrue and the characterInput[e] is matched byLineTerminator, then
      1. Returnc(x).
    7. Returnfailure.
Assertion::\b
  1. Return a newMatcher with parameters (x,c) that capturesrer and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Lete bex.[[EndIndex]].
    5. Leta beIsWordChar(rer,Input,e - 1).
    6. Letb beIsWordChar(rer,Input,e).
    7. Ifa istrue andb isfalse, or ifa isfalse andb istrue, returnc(x).
    8. Returnfailure.
Assertion::\B
  1. Return a newMatcher with parameters (x,c) that capturesrer and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Lete bex.[[EndIndex]].
    5. Leta beIsWordChar(rer,Input,e - 1).
    6. Letb beIsWordChar(rer,Input,e).
    7. Ifa istrue andb istrue, or ifa isfalse andb isfalse, returnc(x).
    8. Returnfailure.
Assertion::(?=Disjunction)
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer andforward.
  2. Return a newMatcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letd be a newMatcherContinuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr isfailure, returnfailure.
    6. Assert:r is aMatchState.
    7. Letcap ber.[[Captures]].
    8. LetInput bex.[[Input]].
    9. Letxe bex.[[EndIndex]].
    10. Letz be theMatchState {[[Input]]:Input,[[EndIndex]]:xe,[[Captures]]:cap }.
    11. Returnc(z).
Note 3

The form(?=Disjunction) specifies a zero-width positive lookahead. In order for it to succeed, the pattern insideDisjunction must match at the current position, but the current position is not advanced before matching the sequel. IfDisjunction can match at the current position in several ways, only the first one is tried. Unlike other regular expression operators, there is no backtracking into a(?= form (this unusual behaviour is inherited from Perl). This only matters when theDisjunction contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,

/(?=(a+))/.exec("baaabac")

matches the empty String immediately after the firstb and therefore returns the array:

["","aaa"]

To illustrate the lack of backtracking into the lookahead, consider:

/(?=(a+))a*b\1/.exec("baaabac")

This expression returns

["aba","a"]

and not:

["aaaba","a"]
Assertion::(?!Disjunction)
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer andforward.
  2. Return a newMatcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letd be a newMatcherContinuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr is notfailure, returnfailure.
    6. Returnc(x).
Note 4

The form(?!Disjunction) specifies a zero-width negative lookahead. In order for it to succeed, the pattern insideDisjunction must fail to match at the current position. The current position is not advanced before matching the sequel.Disjunction can contain capturing parentheses, but backreferences to them only make sense from withinDisjunction itself. Backreferences to these capturing parentheses from elsewhere in the pattern always returnundefined because the negative lookahead must fail for the pattern to succeed. For example,

/(.*?)a(?!(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for ana not immediately followed by some positive number n ofa's, ab, another na's (specified by the first\2) and ac. The second\2 is outside the negative lookahead, so it matches againstundefined and therefore always succeeds. The whole expression returns the array:

["baaabaac","ba",undefined,"abaac"]
Assertion::(?<=Disjunction)
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer andbackward.
  2. Return a newMatcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letd be a newMatcherContinuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr isfailure, returnfailure.
    6. Assert:r is aMatchState.
    7. Letcap ber.[[Captures]].
    8. LetInput bex.[[Input]].
    9. Letxe bex.[[EndIndex]].
    10. Letz be theMatchState {[[Input]]:Input,[[EndIndex]]:xe,[[Captures]]:cap }.
    11. Returnc(z).
Assertion::(?<!Disjunction)
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer andbackward.
  2. Return a newMatcher with parameters (x,c) that capturesm and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letd be a newMatcherContinuation with parameters (y) that captures nothing and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Returny.
    4. Letr bem(x,d).
    5. Ifr is notfailure, returnfailure.
    6. Returnc(x).

22.2.2.4.1 IsWordChar (rer,Input,e )

The abstract operation IsWordChar takes argumentsrer (aRegExp Record),Input (aList of characters), ande (aninteger) and returns a Boolean. It performs the following steps when called:

  1. LetInputLength be the number of elements inInput.
  2. Ife = -1 ore =InputLength, returnfalse.
  3. Letc be the characterInput[e].
  4. IfWordCharacters(rer) containsc, returntrue.
  5. Returnfalse.

22.2.2.5 Runtime Semantics: CompileQuantifier

Thesyntax-directed operation CompileQuantifier takes no arguments and returns aRecord with fields[[Min]] (a non-negativeinteger),[[Max]] (a non-negativeinteger or +∞), and[[Greedy]] (a Boolean). It is defined piecewise over the following productions:

Quantifier::QuantifierPrefix
  1. Letqp beCompileQuantifierPrefix ofQuantifierPrefix.
  2. Return theRecord {[[Min]]:qp.[[Min]],[[Max]]:qp.[[Max]],[[Greedy]]:true }.
Quantifier::QuantifierPrefix?
  1. Letqp beCompileQuantifierPrefix ofQuantifierPrefix.
  2. Return theRecord {[[Min]]:qp.[[Min]],[[Max]]:qp.[[Max]],[[Greedy]]:false }.

22.2.2.6 Runtime Semantics: CompileQuantifierPrefix

Thesyntax-directed operation CompileQuantifierPrefix takes no arguments and returns aRecord with fields[[Min]] (a non-negativeinteger) and[[Max]] (a non-negativeinteger or +∞). It is defined piecewise over the following productions:

QuantifierPrefix::*
  1. Return theRecord {[[Min]]: 0,[[Max]]: +∞ }.
QuantifierPrefix::+
  1. Return theRecord {[[Min]]: 1,[[Max]]: +∞ }.
QuantifierPrefix::?
  1. Return theRecord {[[Min]]: 0,[[Max]]: 1 }.
QuantifierPrefix::{DecimalDigits}
  1. Leti be the MV ofDecimalDigits (see12.9.3).
  2. Return theRecord {[[Min]]:i,[[Max]]:i }.
QuantifierPrefix::{DecimalDigits,}
  1. Leti be the MV ofDecimalDigits.
  2. Return theRecord {[[Min]]:i,[[Max]]: +∞ }.
QuantifierPrefix::{DecimalDigits,DecimalDigits}
  1. Leti be the MV of the firstDecimalDigits.
  2. Letj be the MV of the secondDecimalDigits.
  3. Return theRecord {[[Min]]:i,[[Max]]:j }.

22.2.2.7 Runtime Semantics: CompileAtom

Thesyntax-directed operation CompileAtom takes argumentsrer (aRegExp Record) anddirection (forward orbackward) and returns aMatcher.

Note 1

This section is amended inB.1.2.7.

It is defined piecewise over the following productions:

Atom::PatternCharacter
  1. Letch be the character matched byPatternCharacter.
  2. LetA be a one-elementCharSet containing the characterch.
  3. ReturnCharacterSetMatcher(rer,A,false,direction).
Atom::.
  1. LetA beAllCharacters(rer).
  2. Ifrer.[[DotAll]] is nottrue, then
    1. Remove fromA all characters corresponding to a code point on the right-hand side of theLineTerminator production.
  3. ReturnCharacterSetMatcher(rer,A,false,direction).
Atom::CharacterClass
  1. Letcc beCompileCharacterClass ofCharacterClass with argumentrer.
  2. Letcs becc.[[CharSet]].
  3. Ifrer.[[UnicodeSets]] isfalse, or if everyCharSetElement ofcs consists of a single character (including ifcs is empty), returnCharacterSetMatcher(rer,cs,cc.[[Invert]],direction).
  4. Assert:cc.[[Invert]] isfalse.
  5. Letlm be an emptyList ofMatchers.
  6. For eachCharSetElements incs containing more than 1 character, iterating in descending order of length, do
    1. Letcs2 be a one-elementCharSet containing the last code point ofs.
    2. Letm2 beCharacterSetMatcher(rer,cs2,false,direction).
    3. For each code pointc1 ins, iterating backwards from its second-to-last code point, do
      1. Letcs1 be a one-elementCharSet containingc1.
      2. Letm1 beCharacterSetMatcher(rer,cs1,false,direction).
      3. Setm2 toMatchSequence(m1,m2,direction).
    4. Appendm2 tolm.
  7. Letsingles be theCharSet containing everyCharSetElement ofcs that consists of a single character.
  8. AppendCharacterSetMatcher(rer,singles,false,direction) tolm.
  9. Ifcs contains the empty sequence of characters, appendEmptyMatcher() tolm.
  10. Letm2 be the lastMatcher inlm.
  11. For eachMatcherm1 oflm, iterating backwards from its second-to-last element, do
    1. Setm2 toMatchTwoAlternatives(m1,m2).
  12. Returnm2.
Atom::(GroupSpecifieroptDisjunction)
  1. Letm beCompileSubpattern ofDisjunction with argumentsrer anddirection.
  2. LetparenIndex beCountLeftCapturingParensBefore(Atom).
  3. Return a newMatcher with parameters (x,c) that capturesdirection,m, andparenIndex and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. Letd be a newMatcherContinuation with parameters (y) that capturesx,c,direction, andparenIndex and performs the following steps when called:
      1. Assert:y is aMatchState.
      2. Letcap be a copy ofy.[[Captures]].
      3. LetInput bex.[[Input]].
      4. Letxe bex.[[EndIndex]].
      5. Letye bey.[[EndIndex]].
      6. Ifdirection isforward, then
        1. Assert:xeye.
        2. Letr be theCaptureRange {[[StartIndex]]:xe,[[EndIndex]]:ye }.
      7. Else,
        1. Assert:direction isbackward.
        2. Assert:yexe.
        3. Letr be theCaptureRange {[[StartIndex]]:ye,[[EndIndex]]:xe }.
      8. Setcap[parenIndex + 1] tor.
      9. Letz be theMatchState {[[Input]]:Input,[[EndIndex]]:ye,[[Captures]]:cap }.
      10. Returnc(z).
    4. Returnm(x,d).
Note 2

Parentheses of the form(Disjunction) serve both to group the components of theDisjunction pattern together and to save the result of the match. The result can be used either in a backreference (\ followed by a non-zero decimal number), referenced in a replace String, or returned as part of an array from the regular expression matchingAbstract Closure. To inhibit the capturing behaviour of parentheses, use the form(?:Disjunction) instead.

Atom::(?:Disjunction)
  1. ReturnCompileSubpattern ofDisjunction with argumentsrer anddirection.
AtomEscape::DecimalEscape
  1. Letn be theCapturingGroupNumber ofDecimalEscape.
  2. Assert:nrer.[[CapturingGroupsCount]].
  3. ReturnBackreferenceMatcher(rer,n,direction).
Note 3

An escape sequence of the form\ followed by a non-zero decimal numbern matches the result of thenth set of capturing parentheses (22.2.2.1). It is an error if the regular expression has fewer thann capturing parentheses. If the regular expression hasn or more capturing parentheses but thenth one isundefined because it has not captured anything, then the backreference always succeeds.

AtomEscape::CharacterEscape
  1. Letcv be theCharacterValue ofCharacterEscape.
  2. Letch be the character whose character value iscv.
  3. LetA be a one-elementCharSet containing the characterch.
  4. ReturnCharacterSetMatcher(rer,A,false,direction).
AtomEscape::CharacterClassEscape
  1. Letcs beCompileToCharSet ofCharacterClassEscape with argumentrer.
  2. Ifrer.[[UnicodeSets]] isfalse, or if everyCharSetElement ofcs consists of a single character (including ifcs is empty), returnCharacterSetMatcher(rer,cs,false,direction).
  3. Letlm be an emptyList ofMatchers.
  4. For eachCharSetElements incs containing more than 1 character, iterating in descending order of length, do
    1. Letcs2 be a one-elementCharSet containing the last code point ofs.
    2. Letm2 beCharacterSetMatcher(rer,cs2,false,direction).
    3. For each code pointc1 ins, iterating backwards from its second-to-last code point, do
      1. Letcs1 be a one-elementCharSet containingc1.
      2. Letm1 beCharacterSetMatcher(rer,cs1,false,direction).
      3. Setm2 toMatchSequence(m1,m2,direction).
    4. Appendm2 tolm.
  5. Letsingles be theCharSet containing everyCharSetElement ofcs that consists of a single character.
  6. AppendCharacterSetMatcher(rer,singles,false,direction) tolm.
  7. Ifcs contains the empty sequence of characters, appendEmptyMatcher() tolm.
  8. Letm2 be the lastMatcher inlm.
  9. For eachMatcherm1 oflm, iterating backwards from its second-to-last element, do
    1. Setm2 toMatchTwoAlternatives(m1,m2).
  10. Returnm2.
AtomEscape::kGroupName
  1. LetmatchingGroupSpecifiers beGroupSpecifiersThatMatch(GroupName).
  2. Assert:matchingGroupSpecifiers contains a singleGroupSpecifier.
  3. LetgroupSpecifier be the sole element ofmatchingGroupSpecifiers.
  4. LetparenIndex beCountLeftCapturingParensBefore(groupSpecifier).
  5. ReturnBackreferenceMatcher(rer,parenIndex,direction).

22.2.2.7.1 CharacterSetMatcher (rer,A,invert,direction )

The abstract operation CharacterSetMatcher takes argumentsrer (aRegExp Record),A (aCharSet),invert (a Boolean), anddirection (forward orbackward) and returns aMatcher. It performs the following steps when called:

  1. Ifrer.[[UnicodeSets]] istrue, then
    1. Assert:invert isfalse.
    2. Assert: EveryCharSetElement ofA consists of a single character.
  2. Return a newMatcher with parameters (x,c) that capturesrer,A,invert, anddirection and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Lete bex.[[EndIndex]].
    5. Ifdirection isforward, letf bee + 1.
    6. Else, letf bee - 1.
    7. LetInputLength be the number of elements inInput.
    8. Iff < 0 orf >InputLength, returnfailure.
    9. Letindex bemin(e,f).
    10. Letch be the characterInput[index].
    11. Letcc beCanonicalize(rer,ch).
    12. If there exists aCharSetElement inA containing exactly one charactera such thatCanonicalize(rer,a) iscc, letfound betrue. Otherwise, letfound befalse.
    13. Ifinvert isfalse andfound isfalse, returnfailure.
    14. Ifinvert istrue andfound istrue, returnfailure.
    15. Letcap bex.[[Captures]].
    16. Lety be theMatchState {[[Input]]:Input,[[EndIndex]]:f,[[Captures]]:cap }.
    17. Returnc(y).

22.2.2.7.2 BackreferenceMatcher (rer,n,direction )

The abstract operation BackreferenceMatcher takes argumentsrer (aRegExp Record),n (a positiveinteger), anddirection (forward orbackward) and returns aMatcher. It performs the following steps when called:

  1. Assert:n ≥ 1.
  2. Return a newMatcher with parameters (x,c) that capturesrer,n, anddirection and performs the following steps when called:
    1. Assert:x is aMatchState.
    2. Assert:c is aMatcherContinuation.
    3. LetInput bex.[[Input]].
    4. Letcap bex.[[Captures]].
    5. Letr becap[n].
    6. Ifr isundefined, returnc(x).
    7. Lete bex.[[EndIndex]].
    8. Letrs ber.[[StartIndex]].
    9. Letre ber.[[EndIndex]].
    10. Letlen bere -rs.
    11. Ifdirection isforward, letf bee +len.
    12. Else, letf bee -len.
    13. LetInputLength be the number of elements inInput.
    14. Iff < 0 orf >InputLength, returnfailure.
    15. Letg bemin(e,f).
    16. If there exists anintegeri in theinterval from 0 (inclusive) tolen (exclusive) such thatCanonicalize(rer,Input[rs +i]) is notCanonicalize(rer,Input[g +i]), returnfailure.
    17. Lety be theMatchState {[[Input]]:Input,[[EndIndex]]:f,[[Captures]]:cap }.
    18. Returnc(y).

22.2.2.7.3 Canonicalize (rer,ch )

The abstract operation Canonicalize takes argumentsrer (aRegExp Record) andch (a character) and returns a character. It performs the following steps when called:

  1. IfHasEitherUnicodeFlag(rer) istrue andrer.[[IgnoreCase]] istrue, then
    1. If the fileCaseFolding.txt of the Unicode Character Database provides a simple or common case folding mapping forch, return the result of applying that mapping toch.
    2. Returnch.
  2. Ifrer.[[IgnoreCase]] isfalse, returnch.
  3. Assert:ch is a UTF-16 code unit.
  4. Letcp be the code point whose numeric value is the numeric value ofch.
  5. Letu be the result of toUppercase(«cp »), according to the Unicode Default Case Conversion algorithm.
  6. LetuStr beCodePointsToString(u).
  7. If the length ofuStr ≠ 1, returnch.
  8. Letcu beuStr's single code unit element.
  9. If the numeric value ofch ≥ 128 and the numeric value ofcu < 128, returnch.
  10. Returncu.
Note

In case-insignificant matches whenHasEitherUnicodeFlag(rer) istrue, all characters are implicitly case-folded using the simple mapping provided by the Unicode Standard immediately before they are compared. The simple mapping always maps to a single code point, so it does not map, for example,ß (U+00DF LATIN SMALL LETTER SHARP S) toss orSS. It may however map code points outside the Basic Latin block to code points within it—for example,ſ (U+017F LATIN SMALL LETTER LONG S) case-folds tos (U+0073 LATIN SMALL LETTER S) and (U+212A KELVIN SIGN) case-folds tok (U+006B LATIN SMALL LETTER K). Strings containing those code points are matched by regular expressions such as/[a-z]/ui.

In case-insignificant matches whenHasEitherUnicodeFlag(rer) isfalse, the mapping is based on Unicode Default Case Conversion algorithm toUppercase rather than toCasefold, which results in some subtle differences. For example, (U+2126 OHM SIGN) is mapped by toUppercase to itself but by toCasefold toω (U+03C9 GREEK SMALL LETTER OMEGA) along withΩ (U+03A9 GREEK CAPITAL LETTER OMEGA), so"\u2126" is matched by/[ω]/ui and/[\u03A9]/ui but not by/[ω]/i or/[\u03A9]/i. Also, no code point outside the Basic Latin block is mapped to a code point within it, so strings such as"\u017F ſ" and"\u212A K" are not matched by/[a-z]/i.

22.2.2.8 Runtime Semantics: CompileCharacterClass

Thesyntax-directed operation CompileCharacterClass takes argumentrer (aRegExp Record) and returns aRecord with fields[[CharSet]] (aCharSet) and[[Invert]] (a Boolean). It is defined piecewise over the following productions:

CharacterClass::[ClassContents]
  1. LetA beCompileToCharSet ofClassContents with argumentrer.
  2. Return theRecord {[[CharSet]]:A,[[Invert]]:false }.
CharacterClass::[^ClassContents]
  1. LetA beCompileToCharSet ofClassContents with argumentrer.
  2. Ifrer.[[UnicodeSets]] istrue, then
    1. Return theRecord {[[CharSet]]:CharacterComplement(rer,A),[[Invert]]:false }.
  3. Return theRecord {[[CharSet]]:A,[[Invert]]:true }.

22.2.2.9 Runtime Semantics: CompileToCharSet

Thesyntax-directed operation CompileToCharSet takes argumentrer (aRegExp Record) and returns aCharSet.

Note 1

This section is amended inB.1.2.8.

It is defined piecewise over the following productions:

ClassContents::[empty]
  1. Return the emptyCharSet.
NonemptyClassRanges::ClassAtomNonemptyClassRangesNoDash
  1. LetA beCompileToCharSet ofClassAtom with argumentrer.
  2. LetB beCompileToCharSet ofNonemptyClassRangesNoDash with argumentrer.
  3. Return the union ofCharSetsA andB.
NonemptyClassRanges::ClassAtom-ClassAtomClassContents
  1. LetA beCompileToCharSet of the firstClassAtom with argumentrer.
  2. LetB beCompileToCharSet of the secondClassAtom with argumentrer.
  3. LetC beCompileToCharSet ofClassContents with argumentrer.
  4. LetD beCharacterRange(A,B).
  5. Return the union ofD andC.
NonemptyClassRangesNoDash::ClassAtomNoDashNonemptyClassRangesNoDash
  1. LetA beCompileToCharSet ofClassAtomNoDash with argumentrer.
  2. LetB beCompileToCharSet ofNonemptyClassRangesNoDash with argumentrer.
  3. Return the union ofCharSetsA andB.
NonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassContents
  1. LetA beCompileToCharSet ofClassAtomNoDash with argumentrer.
  2. LetB beCompileToCharSet ofClassAtom with argumentrer.
  3. LetC beCompileToCharSet ofClassContents with argumentrer.
  4. LetD beCharacterRange(A,B).
  5. Return the union ofD andC.
Note 2

ClassContents can expand into a singleClassAtom and/or ranges of twoClassAtom separated by dashes. In the latter case theClassContents includes all characters between the firstClassAtom and the secondClassAtom, inclusive; an error occurs if eitherClassAtom does not represent a single character (for example, if one is \w) or if the firstClassAtom's character value is strictly greater than the secondClassAtom's character value.

Note 3

Even if the pattern ignores case, the case of the two ends of a range is significant in determining which characters belong to the range. Thus, for example, the pattern/[E-F]/i matches only the lettersE,F,e, andf, while the pattern/[E-f]/i matches all uppercase and lowercase letters in the Unicode Basic Latin block as well as the symbols[,\,],^,_, and`.

Note 4

A- character can be treated literally or it can denote a range. It is treated literally if it is the first or last character ofClassContents, the beginning or end limit of a range specification, or immediately follows a range specification.

ClassAtom::-
  1. Return theCharSet containing the single character- U+002D (HYPHEN-MINUS).
ClassAtomNoDash::SourceCharacterbut not one of\ or] or-
  1. Return theCharSet containing the character matched bySourceCharacter.
ClassEscape::b-CharacterEscape
  1. Letcv be theCharacterValue of thisClassEscape.
  2. Letc be the character whose character value iscv.
  3. Return theCharSet containing the single characterc.
Note 5

AClassAtom can use any of the escape sequences that are allowed in the rest of the regular expression except for\b,\B, and backreferences. Inside aCharacterClass,\b means the backspace character, while\B and backreferences raise errors. Using a backreference inside aClassAtom causes an error.

CharacterClassEscape::d
  1. Return the ten-elementCharSet containing the characters0,1,2,3,4,5,6,7,8, and9.
CharacterClassEscape::D
  1. LetS be theCharSet returned byCharacterClassEscape::d.
  2. ReturnCharacterComplement(rer,S).
CharacterClassEscape::s
  1. Return theCharSet containing all characters corresponding to a code point on the right-hand side of theWhiteSpace orLineTerminator productions.
CharacterClassEscape::S
  1. LetS be theCharSet returned byCharacterClassEscape::s.
  2. ReturnCharacterComplement(rer,S).
CharacterClassEscape::w
  1. ReturnMaybeSimpleCaseFolding(rer,WordCharacters(rer)).
CharacterClassEscape::W
  1. LetS be theCharSet returned byCharacterClassEscape::w.
  2. ReturnCharacterComplement(rer,S).
CharacterClassEscape::p{UnicodePropertyValueExpression}
  1. ReturnCompileToCharSet ofUnicodePropertyValueExpression with argumentrer.
CharacterClassEscape::P{UnicodePropertyValueExpression}
  1. LetS beCompileToCharSet ofUnicodePropertyValueExpression with argumentrer.
  2. Assert:S contains only single code points.
  3. ReturnCharacterComplement(rer,S).
UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValue
  1. Letps be thesource text matched byUnicodePropertyName.
  2. Letp beUnicodeMatchProperty(rer,ps).
  3. Assert:p is a Unicodeproperty name or property alias listed in the “Property name and aliases” column ofTable 67.
  4. Letvs be thesource text matched byUnicodePropertyValue.
  5. Letv beUnicodeMatchPropertyValue(p,vs).
  6. LetA be theCharSet containing all Unicode code points whose character database definition includes the propertyp with valuev.
  7. ReturnMaybeSimpleCaseFolding(rer,A).
UnicodePropertyValueExpression::LoneUnicodePropertyNameOrValue
  1. Lets be thesource text matched byLoneUnicodePropertyNameOrValue.
  2. IfUnicodeMatchPropertyValue(General_Category,s) is a Unicode property value or property value alias for the General_Category (gc) property listed inPropertyValueAliases.txt, then
    1. Return theCharSet containing all Unicode code points whose character database definition includes the property “General_Category” with values.
  3. Letp beUnicodeMatchProperty(rer,s).
  4. Assert:p is a binary Unicode property or binary property alias listed in the “Property name and aliases” column ofTable 68, or a binary Unicode property of strings listed in the “Property name” column ofTable 69.
  5. LetA be theCharSet containing all CharSetElements whose character database definition includes the propertyp with value “True”.
  6. ReturnMaybeSimpleCaseFolding(rer,A).
ClassUnion::ClassSetRangeClassUnionopt
  1. LetA beCompileToCharSet ofClassSetRange with argumentrer.
  2. IfClassUnion is present, then
    1. LetB beCompileToCharSet ofClassUnion with argumentrer.
    2. Return the union ofCharSetsA andB.
  3. ReturnA.
ClassUnion::ClassSetOperandClassUnionopt
  1. LetA beCompileToCharSet ofClassSetOperand with argumentrer.
  2. IfClassUnion is present, then
    1. LetB beCompileToCharSet ofClassUnion with argumentrer.
    2. Return the union ofCharSetsA andB.
  3. ReturnA.
ClassIntersection::ClassSetOperand&&ClassSetOperand
  1. LetA beCompileToCharSet of the firstClassSetOperand with argumentrer.
  2. LetB beCompileToCharSet of the secondClassSetOperand with argumentrer.
  3. Return the intersection ofCharSetsA andB.
ClassIntersection::ClassIntersection&&ClassSetOperand
  1. LetA beCompileToCharSet of theClassIntersection with argumentrer.
  2. LetB beCompileToCharSet of theClassSetOperand with argumentrer.
  3. Return the intersection ofCharSetsA andB.
ClassSubtraction::ClassSetOperand--ClassSetOperand
  1. LetA beCompileToCharSet of the firstClassSetOperand with argumentrer.
  2. LetB beCompileToCharSet of the secondClassSetOperand with argumentrer.
  3. Return theCharSet containing the CharSetElements ofA which are not also CharSetElements ofB.
ClassSubtraction::ClassSubtraction--ClassSetOperand
  1. LetA beCompileToCharSet of theClassSubtraction with argumentrer.
  2. LetB beCompileToCharSet of theClassSetOperand with argumentrer.
  3. Return theCharSet containing the CharSetElements ofA which are not also CharSetElements ofB.
ClassSetRange::ClassSetCharacter-ClassSetCharacter
  1. LetA beCompileToCharSet of the firstClassSetCharacter with argumentrer.
  2. LetB beCompileToCharSet of the secondClassSetCharacter with argumentrer.
  3. ReturnMaybeSimpleCaseFolding(rer,CharacterRange(A,B)).
Note 6

The result will often consist of two or more ranges. When UnicodeSets istrue and IgnoreCase istrue, thenMaybeSimpleCaseFolding(rer, [Ā-č]) will include only the odd-numbered code points of that range.

ClassSetOperand::ClassSetCharacter
  1. LetA beCompileToCharSet ofClassSetCharacter with argumentrer.
  2. ReturnMaybeSimpleCaseFolding(rer,A).
ClassSetOperand::ClassStringDisjunction
  1. LetA beCompileToCharSet ofClassStringDisjunction with argumentrer.
  2. ReturnMaybeSimpleCaseFolding(rer,A).
ClassSetOperand::NestedClass
  1. ReturnCompileToCharSet ofNestedClass with argumentrer.
NestedClass::[ClassContents]
  1. ReturnCompileToCharSet ofClassContents with argumentrer.
NestedClass::[^ClassContents]
  1. LetA beCompileToCharSet ofClassContents with argumentrer.
  2. ReturnCharacterComplement(rer,A).
NestedClass::\CharacterClassEscape
  1. ReturnCompileToCharSet ofCharacterClassEscape with argumentrer.
ClassStringDisjunction::\q{ClassStringDisjunctionContents}
  1. ReturnCompileToCharSet ofClassStringDisjunctionContents with argumentrer.
ClassStringDisjunctionContents::ClassString
  1. Lets beCompileClassSetString ofClassString with argumentrer.
  2. Return theCharSet containing the one strings.
ClassStringDisjunctionContents::ClassString|ClassStringDisjunctionContents
  1. Lets beCompileClassSetString ofClassString with argumentrer.
  2. LetA be theCharSet containing the one strings.
  3. LetB beCompileToCharSet ofClassStringDisjunctionContents with argumentrer.
  4. Return the union ofCharSetsA andB.
ClassSetCharacter::SourceCharacterbut notClassSetSyntaxCharacter\CharacterEscape\ClassSetReservedPunctuator
  1. Letcv be theCharacterValue of thisClassSetCharacter.
  2. Letc be the character whose character value iscv.
  3. Return theCharSet containing the single characterc.
ClassSetCharacter::\b
  1. Return theCharSet containing the single character U+0008 (BACKSPACE).

22.2.2.9.1 CharacterRange (A,B )

The abstract operation CharacterRange takes argumentsA (aCharSet) andB (aCharSet) and returns aCharSet. It performs the following steps when called:

  1. Assert:A andB each contain exactly one character.
  2. Leta be the one character inCharSetA.
  3. Letb be the one character inCharSetB.
  4. Leti be the character value of charactera.
  5. Letj be the character value of characterb.
  6. Assert:ij.
  7. Return theCharSet containing all characters with a character value in theinclusive interval fromi toj.

22.2.2.9.2 HasEitherUnicodeFlag (rer )

The abstract operation HasEitherUnicodeFlag takes argumentrer (aRegExp Record) and returns a Boolean. It performs the following steps when called:

  1. Ifrer.[[Unicode]] istrue orrer.[[UnicodeSets]] istrue, then
    1. Returntrue.
  2. Returnfalse.

22.2.2.9.3 WordCharacters (rer )

The abstract operation WordCharacters takes argumentrer (aRegExp Record) and returns aCharSet. Returns aCharSet containing the characters considered "word characters" for the purposes of\b,\B,\w, and\W It performs the following steps when called:

  1. LetbasicWordChars be theCharSet containing every character inthe ASCII word characters.
  2. LetextraWordChars be theCharSet containing all charactersc such thatc is not inbasicWordChars butCanonicalize(rer,c) is inbasicWordChars.
  3. Assert:extraWordChars is empty unlessHasEitherUnicodeFlag(rer) istrue andrer.[[IgnoreCase]] istrue.
  4. Return the union ofbasicWordChars andextraWordChars.

22.2.2.9.4 AllCharacters (rer )

The abstract operation AllCharacters takes argumentrer (aRegExp Record) and returns aCharSet. Returns the set of “all characters” according to the regular expression flags. It performs the following steps when called:

  1. Ifrer.[[UnicodeSets]] istrue andrer.[[IgnoreCase]] istrue, then
    1. Return theCharSet containing all Unicode code pointsc that do not have aSimple Case Folding mapping (that is,scf(c)=c).
  2. Else ifHasEitherUnicodeFlag(rer) istrue, then
    1. Return theCharSet containing all code point values.
  3. Else,
    1. Return theCharSet containing all code unit values.

22.2.2.9.5 MaybeSimpleCaseFolding (rer,A )

The abstract operation MaybeSimpleCaseFolding takes argumentsrer (aRegExp Record) andA (aCharSet) and returns aCharSet. Ifrer.[[UnicodeSets]] isfalse orrer.[[IgnoreCase]] isfalse, it returnsA. Otherwise, it uses theSimple Case Folding (scf(cp)) definitions in the fileCaseFolding.txt of the Unicode Character Database (each of which maps a single code point to another single code point) to map eachCharSetElement ofA character-by-character into a canonical form and returns the resultingCharSet. It performs the following steps when called:

  1. Ifrer.[[UnicodeSets]] isfalse orrer.[[IgnoreCase]] isfalse, returnA.
  2. LetB be a new emptyCharSet.
  3. For eachCharSetElements ofA, do
    1. Lett be an empty sequence of characters.
    2. For each single code pointcp ins, do
      1. Appendscf(cp) tot.
    3. Addt toB.
  4. ReturnB.

22.2.2.9.6 CharacterComplement (rer,S )

The abstract operation CharacterComplement takes argumentsrer (aRegExp Record) andS (aCharSet) and returns aCharSet. It performs the following steps when called:

  1. LetA beAllCharacters(rer).
  2. Return theCharSet containing the CharSetElements ofA which are not also CharSetElements ofS.

22.2.2.9.7 UnicodeMatchProperty (rer,p )

The abstract operation UnicodeMatchProperty takes argumentsrer (aRegExp Record) andp (ECMAScript source text) and returns a Unicodeproperty name. It performs the following steps when called:

  1. Ifrer.[[UnicodeSets]] istrue andp is a Unicodeproperty name listed in the “Property name” column ofTable 69, then
    1. Return theList of Unicode code pointsp.
  2. Assert:p is a Unicodeproperty name or property alias listed in the “Property name and aliases” column ofTable 67 orTable 68.
  3. Letc be the canonicalproperty name ofp as given in the “Canonicalproperty name” column of the corresponding row.
  4. Return theList of Unicode code pointsc.

Implementations must support the Unicode property names and aliases listed inTable 67,Table 68, andTable 69. To ensure interoperability, implementations must not support any other property names or aliases.

Note 1

For example,Script_Extensions (property name) andscx (property alias) are valid, butscript_extensions orScx aren't.

Note 2

The listed properties form a superset of whatUTS18 RL1.2 requires.

Note 3

The spellings of entries in these tables (including casing) match the spellings used in the filePropertyAliases.txt in the Unicode Character Database. The precise spellings in that file areguaranteed to be stable.

Table 67: Non-binary Unicode property aliases and their canonical property names
Property name and aliasesCanonicalproperty name
General_CategoryGeneral_Category
gc
ScriptScript
sc
Script_ExtensionsScript_Extensions
scx
Table 68: Binary Unicode property aliases and their canonical property names
Property name and aliasesCanonicalproperty name
ASCIIASCII
ASCII_Hex_DigitASCII_Hex_Digit
AHex
AlphabeticAlphabetic
Alpha
AnyAny
AssignedAssigned
Bidi_ControlBidi_Control
Bidi_C
Bidi_MirroredBidi_Mirrored
Bidi_M
Case_IgnorableCase_Ignorable
CI
CasedCased
Changes_When_CasefoldedChanges_When_Casefolded
CWCF
Changes_When_CasemappedChanges_When_Casemapped
CWCM
Changes_When_LowercasedChanges_When_Lowercased
CWL
Changes_When_NFKC_CasefoldedChanges_When_NFKC_Casefolded
CWKCF
Changes_When_TitlecasedChanges_When_Titlecased
CWT
Changes_When_UppercasedChanges_When_Uppercased
CWU
DashDash
Default_Ignorable_Code_PointDefault_Ignorable_Code_Point
DI
DeprecatedDeprecated
Dep
DiacriticDiacritic
Dia
EmojiEmoji
Emoji_ComponentEmoji_Component
EComp
Emoji_ModifierEmoji_Modifier
EMod
Emoji_Modifier_BaseEmoji_Modifier_Base
EBase
Emoji_PresentationEmoji_Presentation
EPres
Extended_PictographicExtended_Pictographic
ExtPict
ExtenderExtender
Ext
Grapheme_BaseGrapheme_Base
Gr_Base
Grapheme_ExtendGrapheme_Extend
Gr_Ext
Hex_DigitHex_Digit
Hex
IDS_Binary_OperatorIDS_Binary_Operator
IDSB
IDS_Trinary_OperatorIDS_Trinary_Operator
IDST
ID_ContinueID_Continue
IDC
ID_StartID_Start
IDS
IdeographicIdeographic
Ideo
Join_ControlJoin_Control
Join_C
Logical_Order_ExceptionLogical_Order_Exception
LOE
LowercaseLowercase
Lower
MathMath
Noncharacter_Code_PointNoncharacter_Code_Point
NChar
Pattern_SyntaxPattern_Syntax
Pat_Syn
Pattern_White_SpacePattern_White_Space
Pat_WS
Quotation_MarkQuotation_Mark
QMark
RadicalRadical
Regional_IndicatorRegional_Indicator
RI
Sentence_TerminalSentence_Terminal
STerm
Soft_DottedSoft_Dotted
SD
Terminal_PunctuationTerminal_Punctuation
Term
Unified_IdeographUnified_Ideograph
UIdeo
UppercaseUppercase
Upper
Variation_SelectorVariation_Selector
VS
White_SpaceWhite_Space
space
XID_ContinueXID_Continue
XIDC
XID_StartXID_Start
XIDS
Table 69: Binary Unicode properties of strings
Property name
Basic_Emoji
Emoji_Keycap_Sequence
RGI_Emoji_Modifier_Sequence
RGI_Emoji_Flag_Sequence
RGI_Emoji_Tag_Sequence
RGI_Emoji_ZWJ_Sequence
RGI_Emoji

22.2.2.9.8 UnicodeMatchPropertyValue (p,v )

The abstract operation UnicodeMatchPropertyValue takes argumentsp (ECMAScript source text) andv (ECMAScript source text) and returns a Unicode property value. It performs the following steps when called:

  1. Assert:p is a canonical, unaliased Unicodeproperty name listed in the “Canonicalproperty name” column ofTable 67.
  2. Assert:v is a property value or property value alias for the Unicode propertyp listed inPropertyValueAliases.txt.
  3. Letvalue be the canonical property value ofv as given in the “Canonical property value” column of the corresponding row.
  4. Return theList of Unicode code pointsvalue.

Implementations must support the Unicode property values and property value aliases listed inPropertyValueAliases.txt for the properties listed inTable 67. To ensure interoperability, implementations must not support any other property values or property value aliases.

Note 1

For example,Xpeo andOld_Persian are validScript_Extensions values, butxpeo andOld Persian aren't.

Note 2

This algorithm differs fromthe matching rules for symbolic values listed in UAX44: case,white space, U+002D (HYPHEN-MINUS), and U+005F (LOW LINE) are not ignored, and theIs prefix is not supported.

22.2.2.10 Runtime Semantics: CompileClassSetString

Thesyntax-directed operation CompileClassSetString takes argumentrer (aRegExp Record) and returns a sequence of characters. It is defined piecewise over the following productions:

ClassString::[empty]
  1. Return an empty sequence of characters.
ClassString::NonEmptyClassString
  1. ReturnCompileClassSetString ofNonEmptyClassString with argumentrer.
NonEmptyClassString::ClassSetCharacterNonEmptyClassStringopt
  1. Letcs beCompileToCharSet ofClassSetCharacter with argumentrer.
  2. Lets1 be the sequence of characters that is the singleCharSetElement ofcs.
  3. IfNonEmptyClassString is present, then
    1. Lets2 beCompileClassSetString ofNonEmptyClassString with argumentrer.
    2. Return the concatenation ofs1 ands2.
  4. Returns1.

22.2.3 Abstract Operations for RegExp Creation

22.2.3.1 RegExpCreate (P,F )

The abstract operation RegExpCreate takes argumentsP (anECMAScript language value) andF (a String orundefined) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Letobj be ! RegExpAlloc(%RegExp%).
  2. Return ? RegExpInitialize(obj,P,F).

22.2.3.2 RegExpAlloc (newTarget )

The abstract operation RegExpAlloc takes argumentnewTarget (aconstructor) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Letobj be ? OrdinaryCreateFromConstructor(newTarget,"%RegExp.prototype%", «[[OriginalSource]],[[OriginalFlags]],[[RegExpRecord]],[[RegExpMatcher]] »).
  2. Perform ! DefinePropertyOrThrow(obj,"lastIndex", PropertyDescriptor {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }).
  3. Returnobj.

22.2.3.3 RegExpInitialize (obj,pattern,flags )

The abstract operation RegExpInitialize takes argumentsobj (an Object),pattern (anECMAScript language value), andflags (anECMAScript language value) and returns either anormal completion containing an Object or athrow completion. It performs the following steps when called:

  1. Ifpattern isundefined, letP be the empty String.
  2. Else, letP be ? ToString(pattern).
  3. Ifflags isundefined, letF be the empty String.
  4. Else, letF be ? ToString(flags).
  5. IfF contains any code unit other than"d","g","i","m","s","u","v", or"y", or ifF contains any code unit more than once, throw aSyntaxError exception.
  6. IfF contains"i", leti betrue; else leti befalse.
  7. IfF contains"m", letm betrue; else letm befalse.
  8. IfF contains"s", lets betrue; else lets befalse.
  9. IfF contains"u", letu betrue; else letu befalse.
  10. IfF contains"v", letv betrue; else letv befalse.
  11. Ifu istrue orv istrue, then
    1. LetpatternText beStringToCodePoints(P).
  12. Else,
    1. LetpatternText be the result of interpreting each ofP's 16-bit elements as a Unicode BMP code point. UTF-16 decoding is not applied to the elements.
  13. LetparseResult beParsePattern(patternText,u,v).
  14. IfparseResult is a non-emptyList ofSyntaxError objects, throw aSyntaxError exception.
  15. Assert:parseResult is aPatternParse Node.
  16. Setobj.[[OriginalSource]] toP.
  17. Setobj.[[OriginalFlags]] toF.
  18. LetcapturingGroupsCount beCountLeftCapturingParensWithin(parseResult).
  19. Letrer be theRegExp Record {[[IgnoreCase]]:i,[[Multiline]]:m,[[DotAll]]:s,[[Unicode]]:u,[[UnicodeSets]]:v,[[CapturingGroupsCount]]:capturingGroupsCount }.
  20. Setobj.[[RegExpRecord]] torer.
  21. Setobj.[[RegExpMatcher]] toCompilePattern ofparseResult with argumentrer.
  22. Perform ? Set(obj,"lastIndex",+0𝔽,true).
  23. Returnobj.

22.2.3.4 Static Semantics: ParsePattern (patternText,u,v )

The abstract operation ParsePattern takes argumentspatternText (a sequence of Unicode code points),u (a Boolean), andv (a Boolean) and returns aParse Node or a non-emptyList ofSyntaxError objects.

Note

This section is amended inB.1.2.9.

It performs the following steps when called:

  1. Ifv istrue andu istrue, then
    1. LetparseResult be aList containing one or moreSyntaxError objects.
  2. Else ifv istrue, then
    1. LetparseResult beParseText(patternText,Pattern[+UnicodeMode, +UnicodeSetsMode, +NamedCaptureGroups]).
  3. Else ifu istrue, then
    1. LetparseResult beParseText(patternText,Pattern[+UnicodeMode, ~UnicodeSetsMode, +NamedCaptureGroups]).
  4. Else,
    1. LetparseResult beParseText(patternText,Pattern[~UnicodeMode, ~UnicodeSetsMode, +NamedCaptureGroups]).
  5. ReturnparseResult.

22.2.4 The RegExp Constructor

The RegExpconstructor:

  • is%RegExp%.
  • is the initial value of the"RegExp" property of theglobal object.
  • creates and initializes a new RegExp object when called as aconstructor.
  • when called as a function rather than as aconstructor, returns either a new RegExp object, or the argument itself if the only argument is a RegExp object.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified RegExp behaviour must include asuper call to the RegExpconstructor to create and initialize subclass instances with the necessary internal slots.

22.2.4.1 RegExp (pattern,flags )

This function performs the following steps when called:

  1. LetpatternIsRegExp be ? IsRegExp(pattern).
  2. If NewTarget isundefined, then
    1. LetnewTarget be theactive function object.
    2. IfpatternIsRegExp istrue andflags isundefined, then
      1. LetpatternConstructor be ? Get(pattern,"constructor").
      2. IfSameValue(newTarget,patternConstructor) istrue, returnpattern.
  3. Else,
    1. LetnewTarget be NewTarget.
  4. Ifpatternis an Object andpattern has a[[RegExpMatcher]] internal slot, then
    1. LetP bepattern.[[OriginalSource]].
    2. Ifflags isundefined, letF bepattern.[[OriginalFlags]].
    3. Else, letF beflags.
  5. Else ifpatternIsRegExp istrue, then
    1. LetP be ? Get(pattern,"source").
    2. Ifflags isundefined, then
      1. LetF be ? Get(pattern,"flags").
    3. Else,
      1. LetF beflags.
  6. Else,
    1. LetP bepattern.
    2. LetF beflags.
  7. LetO be ? RegExpAlloc(newTarget).
  8. Return ? RegExpInitialize(O,P,F).
Note

If pattern is supplied using aStringLiteral, the usual escape sequence substitutions are performed before the String is processed by this function. If pattern must contain an escape sequence to be recognized by this function, any U+005C (REVERSE SOLIDUS) code points must be escaped within theStringLiteral to prevent them being removed when the contents of theStringLiteral are formed.

22.2.5 Properties of the RegExp Constructor

The RegExpconstructor:

22.2.5.1 RegExp.prototype

The initial value ofRegExp.prototype is theRegExp prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

22.2.5.2 get RegExp [ @@species ]

RegExp[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

RegExp prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

22.2.6 Properties of the RegExp Prototype Object

TheRegExp prototype object:

  • is%RegExp.prototype%.
  • is anordinary object.
  • is not a RegExp instance and does not have a[[RegExpMatcher]] internal slot or any of the other internal slots of RegExp instance objects.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
Note

The RegExp prototype object does not have a"valueOf" property of its own; however, it inherits the"valueOf" property from theObject prototype object.

22.2.6.1 RegExp.prototype.constructor

The initial value ofRegExp.prototype.constructor is%RegExp%.

22.2.6.2 RegExp.prototype.exec (string )

This method searchesstring for an occurrence of the regular expression pattern and returns an Array containing the results of the match, ornull ifstring did not match.

It performs the following steps when called:

  1. LetR be thethis value.
  2. Perform ? RequireInternalSlot(R,[[RegExpMatcher]]).
  3. LetS be ? ToString(string).
  4. Return ? RegExpBuiltinExec(R,S).

22.2.6.3 get RegExp.prototype.dotAll

RegExp.prototype.dotAll is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0073 (LATIN SMALL LETTER S).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.4 get RegExp.prototype.flags

RegExp.prototype.flags is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. IfRis not an Object, throw aTypeError exception.
  3. LetcodeUnits be a new emptyList.
  4. LethasIndices beToBoolean(?Get(R,"hasIndices")).
  5. IfhasIndices istrue, append the code unit 0x0064 (LATIN SMALL LETTER D) tocodeUnits.
  6. Letglobal beToBoolean(?Get(R,"global")).
  7. Ifglobal istrue, append the code unit 0x0067 (LATIN SMALL LETTER G) tocodeUnits.
  8. LetignoreCase beToBoolean(?Get(R,"ignoreCase")).
  9. IfignoreCase istrue, append the code unit 0x0069 (LATIN SMALL LETTER I) tocodeUnits.
  10. Letmultiline beToBoolean(?Get(R,"multiline")).
  11. Ifmultiline istrue, append the code unit 0x006D (LATIN SMALL LETTER M) tocodeUnits.
  12. LetdotAll beToBoolean(?Get(R,"dotAll")).
  13. IfdotAll istrue, append the code unit 0x0073 (LATIN SMALL LETTER S) tocodeUnits.
  14. Letunicode beToBoolean(?Get(R,"unicode")).
  15. Ifunicode istrue, append the code unit 0x0075 (LATIN SMALL LETTER U) tocodeUnits.
  16. LetunicodeSets beToBoolean(?Get(R,"unicodeSets")).
  17. IfunicodeSets istrue, append the code unit 0x0076 (LATIN SMALL LETTER V) tocodeUnits.
  18. Letsticky beToBoolean(?Get(R,"sticky")).
  19. Ifsticky istrue, append the code unit 0x0079 (LATIN SMALL LETTER Y) tocodeUnits.
  20. Return the String value whose code units are the elements of theListcodeUnits. IfcodeUnits has no elements, the empty String is returned.

22.2.6.4.1 RegExpHasFlag (R,codeUnit )

The abstract operation RegExpHasFlag takes argumentsR (anECMAScript language value) andcodeUnit (a code unit) and returns either anormal completion containing either a Boolean orundefined, or athrow completion. It performs the following steps when called:

  1. IfRis not an Object, throw aTypeError exception.
  2. IfR does not have an[[OriginalFlags]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, returnundefined.
    2. Otherwise, throw aTypeError exception.
  3. Letflags beR.[[OriginalFlags]].
  4. Ifflags containscodeUnit, returntrue.
  5. Returnfalse.

22.2.6.5 get RegExp.prototype.global

RegExp.prototype.global is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0067 (LATIN SMALL LETTER G).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.6 get RegExp.prototype.hasIndices

RegExp.prototype.hasIndices is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0064 (LATIN SMALL LETTER D).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.7 get RegExp.prototype.ignoreCase

RegExp.prototype.ignoreCase is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0069 (LATIN SMALL LETTER I).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.8 RegExp.prototype [ @@match ] (string )

This method performs the following steps when called:

  1. Letrx be thethis value.
  2. Ifrxis not an Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. Letflags be ? ToString(?Get(rx,"flags")).
  5. Ifflags does not contain"g", then
    1. Return ? RegExpExec(rx,S).
  6. Else,
    1. Ifflags contains"u" orflags contains"v", letfullUnicode betrue. Otherwise, letfullUnicode befalse.
    2. Perform ? Set(rx,"lastIndex",+0𝔽,true).
    3. LetA be ! ArrayCreate(0).
    4. Letn be 0.
    5. Repeat,
      1. Letresult be ? RegExpExec(rx,S).
      2. Ifresult isnull, then
        1. Ifn = 0, returnnull.
        2. ReturnA.
      3. Else,
        1. LetmatchStr be ? ToString(?Get(result,"0")).
        2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),matchStr).
        3. IfmatchStr is the empty String, then
          1. LetthisIndex be(?ToLength(?Get(rx,"lastIndex"))).
          2. LetnextIndex beAdvanceStringIndex(S,thisIndex,fullUnicode).
          3. Perform ? Set(rx,"lastIndex",𝔽(nextIndex),true).
        4. Setn ton + 1.

The value of the"name" property of this method is"[Symbol.match]".

Note

The@@match property is used by theIsRegExp abstract operation to identify objects that have the basic behaviour of regular expressions. The absence of a@@match property or the existence of such a property whose value does not Boolean coerce totrue indicates that the object is not intended to be used as a regular expression object.

22.2.6.9 RegExp.prototype [ @@matchAll ] (string )

This method performs the following steps when called:

  1. LetR be thethis value.
  2. IfRis not an Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetC be ? SpeciesConstructor(R,%RegExp%).
  5. Letflags be ? ToString(?Get(R,"flags")).
  6. Letmatcher be ? Construct(C, «R,flags »).
  7. LetlastIndex be ? ToLength(?Get(R,"lastIndex")).
  8. Perform ? Set(matcher,"lastIndex",lastIndex,true).
  9. Ifflags contains"g", letglobal betrue.
  10. Else, letglobal befalse.
  11. Ifflags contains"u" orflags contains"v", letfullUnicode betrue.
  12. Else, letfullUnicode befalse.
  13. ReturnCreateRegExpStringIterator(matcher,S,global,fullUnicode).

The value of the"name" property of this method is"[Symbol.matchAll]".

22.2.6.10 get RegExp.prototype.multiline

RegExp.prototype.multiline is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x006D (LATIN SMALL LETTER M).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.11 RegExp.prototype [ @@replace ] (string,replaceValue )

This method performs the following steps when called:

  1. Letrx be thethis value.
  2. Ifrxis not an Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetlengthS be the length ofS.
  5. LetfunctionalReplace beIsCallable(replaceValue).
  6. IffunctionalReplace isfalse, then
    1. SetreplaceValue to ? ToString(replaceValue).
  7. Letflags be ? ToString(?Get(rx,"flags")).
  8. Ifflags contains"g", letglobal betrue. Otherwise, letglobal befalse.
  9. Ifglobal istrue, then
    1. Perform ? Set(rx,"lastIndex",+0𝔽,true).
  10. Letresults be a new emptyList.
  11. Letdone befalse.
  12. Repeat, whiledone isfalse,
    1. Letresult be ? RegExpExec(rx,S).
    2. Ifresult isnull, then
      1. Setdone totrue.
    3. Else,
      1. Appendresult toresults.
      2. Ifglobal isfalse, then
        1. Setdone totrue.
      3. Else,
        1. LetmatchStr be ? ToString(?Get(result,"0")).
        2. IfmatchStr is the empty String, then
          1. LetthisIndex be(?ToLength(?Get(rx,"lastIndex"))).
          2. Ifflags contains"u" orflags contains"v", letfullUnicode betrue. Otherwise, letfullUnicode befalse.
          3. LetnextIndex beAdvanceStringIndex(S,thisIndex,fullUnicode).
          4. Perform ? Set(rx,"lastIndex",𝔽(nextIndex),true).
  13. LetaccumulatedResult be the empty String.
  14. LetnextSourcePosition be 0.
  15. For each elementresult ofresults, do
    1. LetresultLength be ? LengthOfArrayLike(result).
    2. LetnCaptures bemax(resultLength - 1, 0).
    3. Letmatched be ? ToString(?Get(result,"0")).
    4. LetmatchLength be the length ofmatched.
    5. Letposition be ? ToIntegerOrInfinity(?Get(result,"index")).
    6. Setposition to the result ofclampingposition between 0 andlengthS.
    7. Letcaptures be a new emptyList.
    8. Letn be 1.
    9. Repeat, whilennCaptures,
      1. LetcapN be ? Get(result, ! ToString(𝔽(n))).
      2. IfcapN is notundefined, then
        1. SetcapN to ? ToString(capN).
      3. AppendcapN tocaptures.
      4. NOTE: Whenn = 1, the preceding step puts the first element intocaptures (at index 0). More generally, thenth capture (the characters captured by thenth set of capturing parentheses) is atcaptures[n - 1].
      5. Setn ton + 1.
    10. LetnamedCaptures be ? Get(result,"groups").
    11. IffunctionalReplace istrue, then
      1. LetreplacerArgs be thelist-concatenation of «matched »,captures, and «𝔽(position),S ».
      2. IfnamedCaptures is notundefined, then
        1. AppendnamedCaptures toreplacerArgs.
      3. LetreplValue be ? Call(replaceValue,undefined,replacerArgs).
      4. Letreplacement be ? ToString(replValue).
    12. Else,
      1. IfnamedCaptures is notundefined, then
        1. SetnamedCaptures to ? ToObject(namedCaptures).
      2. Letreplacement be ? GetSubstitution(matched,S,position,captures,namedCaptures,replaceValue).
    13. IfpositionnextSourcePosition, then
      1. NOTE:position should not normally move backwards. If it does, it is an indication of an ill-behaving RegExp subclass or use of an access triggered side-effect to change the global flag or other characteristics ofrx. In such cases, the corresponding substitution is ignored.
      2. SetaccumulatedResult to thestring-concatenation ofaccumulatedResult, thesubstring ofS fromnextSourcePosition toposition, andreplacement.
      3. SetnextSourcePosition toposition +matchLength.
  16. IfnextSourcePositionlengthS, returnaccumulatedResult.
  17. Return thestring-concatenation ofaccumulatedResult and thesubstring ofS fromnextSourcePosition.

The value of the"name" property of this method is"[Symbol.replace]".

22.2.6.12 RegExp.prototype [ @@search ] (string )

This method performs the following steps when called:

  1. Letrx be thethis value.
  2. Ifrxis not an Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetpreviousLastIndex be ? Get(rx,"lastIndex").
  5. IfSameValue(previousLastIndex,+0𝔽) isfalse, then
    1. Perform ? Set(rx,"lastIndex",+0𝔽,true).
  6. Letresult be ? RegExpExec(rx,S).
  7. LetcurrentLastIndex be ? Get(rx,"lastIndex").
  8. IfSameValue(currentLastIndex,previousLastIndex) isfalse, then
    1. Perform ? Set(rx,"lastIndex",previousLastIndex,true).
  9. Ifresult isnull, return-1𝔽.
  10. Return ? Get(result,"index").

The value of the"name" property of this method is"[Symbol.search]".

Note

The"lastIndex" and"global" properties of this RegExp object are ignored when performing the search. The"lastIndex" property is left unchanged.

22.2.6.13 get RegExp.prototype.source

RegExp.prototype.source is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. IfRis not an Object, throw aTypeError exception.
  3. IfR does not have an[[OriginalSource]] internal slot, then
    1. IfSameValue(R,%RegExp.prototype%) istrue, return"(?:)".
    2. Otherwise, throw aTypeError exception.
  4. Assert:R has an[[OriginalFlags]] internal slot.
  5. Letsrc beR.[[OriginalSource]].
  6. Letflags beR.[[OriginalFlags]].
  7. ReturnEscapeRegExpPattern(src,flags).

22.2.6.13.1 EscapeRegExpPattern (P,F )

The abstract operation EscapeRegExpPattern takes argumentsP (a String) andF (a String) and returns a String. It performs the following steps when called:

  1. IfF contains"v", then
    1. LetpatternSymbol bePattern[+UnicodeMode, +UnicodeSetsMode].
  2. Else ifF contains"u", then
    1. LetpatternSymbol bePattern[+UnicodeMode, ~UnicodeSetsMode].
  3. Else,
    1. LetpatternSymbol bePattern[~UnicodeMode, ~UnicodeSetsMode].
  4. LetS be a String in the form of apatternSymbol equivalent toP interpreted as UTF-16 encoded Unicode code points (6.1.4), in which certain code points are escaped as described below.S may or may not differ fromP; however, theAbstract Closure that would result from evaluatingS as apatternSymbol must behave identically to theAbstract Closure given by the constructed object's[[RegExpMatcher]] internal slot. Multiple calls to this abstract operation using the same values forP andF must produce identical results.
  5. The code points/ or anyLineTerminator occurring in the pattern shall be escaped inS as necessary to ensure that thestring-concatenation of"/",S,"/", andF can be parsed (in an appropriate lexical context) as aRegularExpressionLiteral that behaves identically to the constructed regular expression. For example, ifP is"/", thenS could be"\/" or"\u002F", among other possibilities, but not"/", because/// followed byF would be parsed as aSingleLineComment rather than aRegularExpressionLiteral. IfP is the empty String, this specification can be met by lettingS be"(?:)".
  6. ReturnS.

22.2.6.14 RegExp.prototype [ @@split ] (string,limit )

Note 1

This method returns an Array into which substrings of the result of convertingstring to a String have been stored. The substrings are determined by searching from left to right for matches of thethis value regular expression; these occurrences are not part of any String in the returned array, but serve to divide up the String value.

Thethis value may be an empty regular expression or a regular expression that can match an empty String. In this case, the regular expression does not match the emptysubstring at the beginning or end of the input String, nor does it match the emptysubstring at the end of the previous separator match. (For example, if the regular expression matches the empty String, the String is split up into individual code unit elements; the length of the result array equals the length of the String, and eachsubstring contains one code unit.) Only the first match at a given index of the String is considered, even if backtracking could yield a non-emptysubstring match at that index. (For example,/a*?/[Symbol.split]("ab") evaluates to the array["a", "b"], while/a*/[Symbol.split]("ab") evaluates to the array["","b"].)

Ifstring is (or converts to) the empty String, the result depends on whether the regular expression can match the empty String. If it can, the result array contains no elements. Otherwise, the result array contains one element, which is the empty String.

If the regular expression contains capturing parentheses, then each timeseparator is matched the results (including anyundefined results) of the capturing parentheses are spliced into the output array. For example,

/<(\/)?([^<>]+)>/[Symbol.split]("A<B>bold</B>and<CODE>coded</CODE>")

evaluates to the array

["A",undefined,"B","bold","/","B","and",undefined,"CODE","coded","/","CODE",""]

Iflimit is notundefined, then the output array is truncated so that it contains no more thanlimit elements.

This method performs the following steps when called:

  1. Letrx be thethis value.
  2. Ifrxis not an Object, throw aTypeError exception.
  3. LetS be ? ToString(string).
  4. LetC be ? SpeciesConstructor(rx,%RegExp%).
  5. Letflags be ? ToString(?Get(rx,"flags")).
  6. Ifflags contains"u" orflags contains"v", letunicodeMatching betrue.
  7. Else, letunicodeMatching befalse.
  8. Ifflags contains"y", letnewFlags beflags.
  9. Else, letnewFlags be thestring-concatenation offlags and"y".
  10. Letsplitter be ? Construct(C, «rx,newFlags »).
  11. LetA be ! ArrayCreate(0).
  12. LetlengthA be 0.
  13. Iflimit isundefined, letlim be 232 - 1; else letlim be(?ToUint32(limit)).
  14. Iflim = 0, returnA.
  15. IfS is the empty String, then
    1. Letz be ? RegExpExec(splitter,S).
    2. Ifz is notnull, returnA.
    3. Perform ! CreateDataPropertyOrThrow(A,"0",S).
    4. ReturnA.
  16. Letsize be the length ofS.
  17. Letp be 0.
  18. Letq bep.
  19. Repeat, whileq <size,
    1. Perform ? Set(splitter,"lastIndex",𝔽(q),true).
    2. Letz be ? RegExpExec(splitter,S).
    3. Ifz isnull, then
      1. Setq toAdvanceStringIndex(S,q,unicodeMatching).
    4. Else,
      1. Lete be(?ToLength(?Get(splitter,"lastIndex"))).
      2. Sete tomin(e,size).
      3. Ife =p, then
        1. Setq toAdvanceStringIndex(S,q,unicodeMatching).
      4. Else,
        1. LetT be thesubstring ofS fromp toq.
        2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
        3. SetlengthA tolengthA + 1.
        4. IflengthA =lim, returnA.
        5. Setp toe.
        6. LetnumberOfCaptures be ? LengthOfArrayLike(z).
        7. SetnumberOfCaptures tomax(numberOfCaptures - 1, 0).
        8. Leti be 1.
        9. Repeat, whileinumberOfCaptures,
          1. LetnextCapture be ? Get(z, ! ToString(𝔽(i))).
          2. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),nextCapture).
          3. Seti toi + 1.
          4. SetlengthA tolengthA + 1.
          5. IflengthA =lim, returnA.
        10. Setq top.
  20. LetT be thesubstring ofS fromp tosize.
  21. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(lengthA)),T).
  22. ReturnA.

The value of the"name" property of this method is"[Symbol.split]".

Note 2

This method ignores the value of the"global" and"sticky" properties of this RegExp object.

22.2.6.15 get RegExp.prototype.sticky

RegExp.prototype.sticky is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0079 (LATIN SMALL LETTER Y).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.16 RegExp.prototype.test (S )

This method performs the following steps when called:

  1. LetR be thethis value.
  2. IfRis not an Object, throw aTypeError exception.
  3. Letstring be ? ToString(S).
  4. Letmatch be ? RegExpExec(R,string).
  5. Ifmatch is notnull, returntrue; else returnfalse.

22.2.6.17 RegExp.prototype.toString ( )

  1. LetR be thethis value.
  2. IfRis not an Object, throw aTypeError exception.
  3. Letpattern be ? ToString(?Get(R,"source")).
  4. Letflags be ? ToString(?Get(R,"flags")).
  5. Letresult be thestring-concatenation of"/",pattern,"/", andflags.
  6. Returnresult.
Note

The returned String has the form of aRegularExpressionLiteral that evaluates to another RegExp object with the same behaviour as this object.

22.2.6.18 get RegExp.prototype.unicode

RegExp.prototype.unicode is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0075 (LATIN SMALL LETTER U).
  3. Return ? RegExpHasFlag(R,cu).

22.2.6.19 get RegExp.prototype.unicodeSets

RegExp.prototype.unicodeSets is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetR be thethis value.
  2. Letcu be the code unit 0x0076 (LATIN SMALL LETTER V).
  3. Return ? RegExpHasFlag(R,cu).

22.2.7 Abstract Operations for RegExp Matching

22.2.7.1 RegExpExec (R,S )

The abstract operation RegExpExec takes argumentsR (an Object) andS (a String) and returns either anormal completion containing either an Object ornull, or athrow completion. It performs the following steps when called:

  1. Letexec be ? Get(R,"exec").
  2. IfIsCallable(exec) istrue, then
    1. Letresult be ? Call(exec,R, «S »).
    2. Ifresultis not an Object andresult is notnull, throw aTypeError exception.
    3. Returnresult.
  3. Perform ? RequireInternalSlot(R,[[RegExpMatcher]]).
  4. Return ? RegExpBuiltinExec(R,S).
Note

If a callable"exec" property is not found this algorithm falls back to attempting to use the built-in RegExp matching algorithm. This provides compatible behaviour for code written for prior editions where most built-in algorithms that use regular expressions did not perform a dynamic property lookup of"exec".

22.2.7.2 RegExpBuiltinExec (R,S )

The abstract operation RegExpBuiltinExec takes argumentsR (an initialized RegExp instance) andS (a String) and returns either anormal completion containing either anArray exotic object ornull, or athrow completion. It performs the following steps when called:

  1. Letlength be the length ofS.
  2. LetlastIndex be(?ToLength(?Get(R,"lastIndex"))).
  3. Letflags beR.[[OriginalFlags]].
  4. Ifflags contains"g", letglobal betrue; else letglobal befalse.
  5. Ifflags contains"y", letsticky betrue; else letsticky befalse.
  6. Ifflags contains"d", lethasIndices betrue; else lethasIndices befalse.
  7. Ifglobal isfalse andsticky isfalse, setlastIndex to 0.
  8. Letmatcher beR.[[RegExpMatcher]].
  9. Ifflags contains"u" orflags contains"v", letfullUnicode betrue; else letfullUnicode befalse.
  10. LetmatchSucceeded befalse.
  11. IffullUnicode istrue, letinput beStringToCodePoints(S). Otherwise, letinput be aList whose elements are the code units that are the elements ofS.
  12. NOTE: Each element ofinput is considered to be a character.
  13. Repeat, whilematchSucceeded isfalse,
    1. IflastIndex >length, then
      1. Ifglobal istrue orsticky istrue, then
        1. Perform ? Set(R,"lastIndex",+0𝔽,true).
      2. Returnnull.
    2. LetinputIndex be the index intoinput of the character that was obtained from elementlastIndex ofS.
    3. Letr bematcher(input,inputIndex).
    4. Ifr isfailure, then
      1. Ifsticky istrue, then
        1. Perform ? Set(R,"lastIndex",+0𝔽,true).
        2. Returnnull.
      2. SetlastIndex toAdvanceStringIndex(S,lastIndex,fullUnicode).
    5. Else,
      1. Assert:r is aMatchState.
      2. SetmatchSucceeded totrue.
  14. Lete ber.[[EndIndex]].
  15. IffullUnicode istrue, sete toGetStringIndex(S,e).
  16. Ifglobal istrue orsticky istrue, then
    1. Perform ? Set(R,"lastIndex",𝔽(e),true).
  17. Letn be the number of elements inr.[[Captures]].
  18. Assert:n =R.[[RegExpRecord]].[[CapturingGroupsCount]].
  19. Assert:n < 232 - 1.
  20. LetA be ! ArrayCreate(n + 1).
  21. Assert: Themathematical value ofA's"length" property isn + 1.
  22. Perform ! CreateDataPropertyOrThrow(A,"index",𝔽(lastIndex)).
  23. Perform ! CreateDataPropertyOrThrow(A,"input",S).
  24. Letmatch be theMatch Record {[[StartIndex]]:lastIndex,[[EndIndex]]:e }.
  25. Letindices be a new emptyList.
  26. LetgroupNames be a new emptyList.
  27. Appendmatch toindices.
  28. LetmatchedSubstr beGetMatchString(S,match).
  29. Perform ! CreateDataPropertyOrThrow(A,"0",matchedSubstr).
  30. IfR contains anyGroupName, then
    1. Letgroups beOrdinaryObjectCreate(null).
    2. LethasGroups betrue.
  31. Else,
    1. Letgroups beundefined.
    2. LethasGroups befalse.
  32. Perform ! CreateDataPropertyOrThrow(A,"groups",groups).
  33. For eachintegeri such that 1 ≤in, in ascending order, do
    1. LetcaptureI beith element ofr.[[Captures]].
    2. IfcaptureI isundefined, then
      1. LetcapturedValue beundefined.
      2. Appendundefined toindices.
    3. Else,
      1. LetcaptureStart becaptureI.[[StartIndex]].
      2. LetcaptureEnd becaptureI.[[EndIndex]].
      3. IffullUnicode istrue, then
        1. SetcaptureStart toGetStringIndex(S,captureStart).
        2. SetcaptureEnd toGetStringIndex(S,captureEnd).
      4. Letcapture be theMatch Record {[[StartIndex]]:captureStart,[[EndIndex]]:captureEnd }.
      5. LetcapturedValue beGetMatchString(S,capture).
      6. Appendcapture toindices.
    4. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(i)),capturedValue).
    5. If theith capture ofR was defined with aGroupName, then
      1. Lets be theCapturingGroupName of thatGroupName.
      2. Perform ! CreateDataPropertyOrThrow(groups,s,capturedValue).
      3. Appends togroupNames.
    6. Else,
      1. Appendundefined togroupNames.
  34. IfhasIndices istrue, then
    1. LetindicesArray beMakeMatchIndicesIndexPairArray(S,indices,groupNames,hasGroups).
    2. Perform ! CreateDataPropertyOrThrow(A,"indices",indicesArray).
  35. ReturnA.

22.2.7.3 AdvanceStringIndex (S,index,unicode )

The abstract operation AdvanceStringIndex takes argumentsS (a String),index (a non-negativeinteger), andunicode (a Boolean) and returns aninteger. It performs the following steps when called:

  1. Assert:index ≤ 253 - 1.
  2. Ifunicode isfalse, returnindex + 1.
  3. Letlength be the length ofS.
  4. Ifindex + 1 ≥length, returnindex + 1.
  5. Letcp beCodePointAt(S,index).
  6. Returnindex +cp.[[CodeUnitCount]].

22.2.7.4 GetStringIndex (S,codePointIndex )

The abstract operation GetStringIndex takes argumentsS (a String) andcodePointIndex (a non-negativeinteger) and returns a non-negativeinteger. It interpretsS as a sequence of UTF-16 encoded code points, as described in6.1.4, and returns the code unit index corresponding to code point indexcodePointIndex when such an index exists. Otherwise, it returns the length ofS. It performs the following steps when called:

  1. IfS is the empty String, return 0.
  2. Letlen be the length ofS.
  3. LetcodeUnitCount be 0.
  4. LetcodePointCount be 0.
  5. Repeat, whilecodeUnitCount <len,
    1. IfcodePointCount =codePointIndex, returncodeUnitCount.
    2. Letcp beCodePointAt(S,codeUnitCount).
    3. SetcodeUnitCount tocodeUnitCount +cp.[[CodeUnitCount]].
    4. SetcodePointCount tocodePointCount + 1.
  6. Returnlen.

22.2.7.5 Match Records

AMatch Record is aRecord value used to encapsulate the start and end indices of a regular expression match or capture.

Match Records have the fields listed inTable 70.

Table 70:Match Record Fields
Field NameValueMeaning
[[StartIndex]]a non-negativeintegerThe number of code units from the start of a string at which the match begins (inclusive).
[[EndIndex]]aninteger[[StartIndex]]The number of code units from the start of a string at which the match ends (exclusive).

22.2.7.6 GetMatchString (S,match )

The abstract operation GetMatchString takes argumentsS (a String) andmatch (aMatch Record) and returns a String. It performs the following steps when called:

  1. Assert:match.[[StartIndex]]match.[[EndIndex]] ≤ the length ofS.
  2. Return thesubstring ofS frommatch.[[StartIndex]] tomatch.[[EndIndex]].

22.2.7.7 GetMatchIndexPair (S,match )

The abstract operation GetMatchIndexPair takes argumentsS (a String) andmatch (aMatch Record) and returns an Array. It performs the following steps when called:

  1. Assert:match.[[StartIndex]]match.[[EndIndex]] ≤ the length ofS.
  2. ReturnCreateArrayFromList𝔽(match.[[StartIndex]]),𝔽(match.[[EndIndex]]) »).

22.2.7.8 MakeMatchIndicesIndexPairArray (S,indices,groupNames,hasGroups )

The abstract operation MakeMatchIndicesIndexPairArray takes argumentsS (a String),indices (aList of eitherMatch Records orundefined),groupNames (aList of either Strings orundefined), andhasGroups (a Boolean) and returns an Array. It performs the following steps when called:

  1. Letn be the number of elements inindices.
  2. Assert:n < 232 - 1.
  3. Assert:groupNames hasn - 1 elements.
  4. NOTE: ThegroupNamesList contains elements aligned with theindicesList starting atindices[1].
  5. LetA be ! ArrayCreate(n).
  6. IfhasGroups istrue, then
    1. Letgroups beOrdinaryObjectCreate(null).
  7. Else,
    1. Letgroups beundefined.
  8. Perform ! CreateDataPropertyOrThrow(A,"groups",groups).
  9. For eachintegeri such that 0 ≤i <n, in ascending order, do
    1. LetmatchIndices beindices[i].
    2. IfmatchIndices is notundefined, then
      1. LetmatchIndexPair beGetMatchIndexPair(S,matchIndices).
    3. Else,
      1. LetmatchIndexPair beundefined.
    4. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(i)),matchIndexPair).
    5. Ifi > 0 andgroupNames[i - 1] is notundefined, then
      1. Assert:groups is notundefined.
      2. Perform ! CreateDataPropertyOrThrow(groups,groupNames[i - 1],matchIndexPair).
  10. ReturnA.

22.2.8 Properties of RegExp Instances

RegExp instances areordinary objects that inherit properties from theRegExp prototype object. RegExp instances have internal slots[[OriginalSource]],[[OriginalFlags]],[[RegExpRecord]], and[[RegExpMatcher]]. The value of the[[RegExpMatcher]] internal slot is anAbstract Closure representation of thePattern of the RegExp object.

Note

Prior to ECMAScript 2015, RegExp instances were specified as having the owndata properties"source","global","ignoreCase", and"multiline". Those properties are now specified asaccessor properties ofRegExp.prototype.

RegExp instances also have the following property:

22.2.8.1 lastIndex

The value of the"lastIndex" property specifies the String index at which to start the next match. It is coerced to anintegral Number when used (see22.2.7.2). This property shall have the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.

22.2.9 RegExp String Iterator Objects

A RegExp String Iterator is an object, that represents a specific iteration over some specific String instance object, matching against some specific RegExp instance object. There is not a namedconstructor for RegExp String Iterator objects. Instead, RegExp String Iterator objects are created by calling certain methods of RegExp instance objects.

22.2.9.1 CreateRegExpStringIterator (R,S,global,fullUnicode )

The abstract operation CreateRegExpStringIterator takes argumentsR (an Object),S (a String),global (a Boolean), andfullUnicode (a Boolean) and returns a Generator. It performs the following steps when called:

  1. Letclosure be a newAbstract Closure with no parameters that capturesR,S,global, andfullUnicode and performs the following steps when called:
    1. Repeat,
      1. Letmatch be ? RegExpExec(R,S).
      2. Ifmatch isnull, returnundefined.
      3. Ifglobal isfalse, then
        1. Perform ? GeneratorYield(CreateIterResultObject(match,false)).
        2. Returnundefined.
      4. LetmatchStr be ? ToString(?Get(match,"0")).
      5. IfmatchStr is the empty String, then
        1. LetthisIndex be(?ToLength(?Get(R,"lastIndex"))).
        2. LetnextIndex beAdvanceStringIndex(S,thisIndex,fullUnicode).
        3. Perform ? Set(R,"lastIndex",𝔽(nextIndex),true).
      6. Perform ? GeneratorYield(CreateIterResultObject(match,false)).
  2. ReturnCreateIteratorFromClosure(closure,"%RegExpStringIteratorPrototype%",%RegExpStringIteratorPrototype%).

22.2.9.2 The %RegExpStringIteratorPrototype% Object

The%RegExpStringIteratorPrototype% object:

  • has properties that are inherited by all RegExp String Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

22.2.9.2.1 %RegExpStringIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%RegExpStringIteratorPrototype%").

22.2.9.2.2 %RegExpStringIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"RegExp String Iterator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

23 Indexed Collections

23.1 Array Objects

Arrays areexotic objects that give special treatment to a certain class of property names. See10.4.2 for a definition of this special treatment.

23.1.1 The Array Constructor

The Arrayconstructor:

  • is%Array%.
  • is the initial value of the"Array" property of theglobal object.
  • creates and initializes a new Array when called as aconstructor.
  • also creates and initializes a new Array when called as a function rather than as aconstructor. Thus the function callArray(…) is equivalent to the object creation expressionnew Array(…) with the same arguments.
  • is a function whose behaviour differs based upon the number and types of its arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the exotic Array behaviour must include asuper call to the Arrayconstructor to initialize subclass instances that areArray exotic objects. However, most of theArray.prototype methods are generic methods that are not dependent upon theirthis value being anArray exotic object.

23.1.1.1 Array ( ...values )

This function performs the following steps when called:

  1. If NewTarget isundefined, letnewTarget be theactive function object; else letnewTarget be NewTarget.
  2. Letproto be ? GetPrototypeFromConstructor(newTarget,"%Array.prototype%").
  3. LetnumberOfArgs be the number of elements invalues.
  4. IfnumberOfArgs = 0, then
    1. Return ! ArrayCreate(0,proto).
  5. Else ifnumberOfArgs = 1, then
    1. Letlen bevalues[0].
    2. Letarray be ! ArrayCreate(0,proto).
    3. Iflenis not a Number, then
      1. Perform ! CreateDataPropertyOrThrow(array,"0",len).
      2. LetintLen be1𝔽.
    4. Else,
      1. LetintLen be ! ToUint32(len).
      2. IfSameValueZero(intLen,len) isfalse, throw aRangeError exception.
    5. Perform ! Set(array,"length",intLen,true).
    6. Returnarray.
  6. Else,
    1. Assert:numberOfArgs ≥ 2.
    2. Letarray be ? ArrayCreate(numberOfArgs,proto).
    3. Letk be 0.
    4. Repeat, whilek <numberOfArgs,
      1. LetPk be ! ToString(𝔽(k)).
      2. LetitemK bevalues[k].
      3. Perform ! CreateDataPropertyOrThrow(array,Pk,itemK).
      4. Setk tok + 1.
    5. Assert: Themathematical value ofarray's"length" property isnumberOfArgs.
    6. Returnarray.

23.1.2 Properties of the Array Constructor

The Arrayconstructor:

  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"length" property whose value is1𝔽.
  • has the following properties:

23.1.2.1 Array.from (items [ ,mapfn [ ,thisArg ] ] )

This method performs the following steps when called:

  1. LetC be thethis value.
  2. Ifmapfn isundefined, then
    1. Letmapping befalse.
  3. Else,
    1. IfIsCallable(mapfn) isfalse, throw aTypeError exception.
    2. Letmapping betrue.
  4. LetusingIterator be ? GetMethod(items,@@iterator).
  5. IfusingIterator is notundefined, then
    1. IfIsConstructor(C) istrue, then
      1. LetA be ? Construct(C).
    2. Else,
      1. LetA be ! ArrayCreate(0).
    3. LetiteratorRecord be ? GetIteratorFromMethod(items,usingIterator).
    4. Letk be 0.
    5. Repeat,
      1. Ifk ≥ 253 - 1, then
        1. Leterror beThrowCompletion(a newly createdTypeError object).
        2. Return ? IteratorClose(iteratorRecord,error).
      2. LetPk be ! ToString(𝔽(k)).
      3. Letnext be ? IteratorStepValue(iteratorRecord).
      4. Ifnext isdone, then
        1. Perform ? Set(A,"length",𝔽(k),true).
        2. ReturnA.
      5. Ifmapping istrue, then
        1. LetmappedValue beCompletion(Call(mapfn,thisArg, «next,𝔽(k) »)).
        2. IfAbruptCloseIterator(mappedValue,iteratorRecord).
      6. Else,
        1. LetmappedValue benext.
      7. LetdefineStatus beCompletion(CreateDataPropertyOrThrow(A,Pk,mappedValue)).
      8. IfAbruptCloseIterator(defineStatus,iteratorRecord).
      9. Setk tok + 1.
  6. NOTE:items is not an Iterable so assume it is anarray-like object.
  7. LetarrayLike be ! ToObject(items).
  8. Letlen be ? LengthOfArrayLike(arrayLike).
  9. IfIsConstructor(C) istrue, then
    1. LetA be ? Construct(C, «𝔽(len) »).
  10. Else,
    1. LetA be ? ArrayCreate(len).
  11. Letk be 0.
  12. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Ifmapping istrue, then
      1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
    4. Else,
      1. LetmappedValue bekValue.
    5. Perform ? CreateDataPropertyOrThrow(A,Pk,mappedValue).
    6. Setk tok + 1.
  13. Perform ? Set(A,"length",𝔽(len),true).
  14. ReturnA.
Note

This method is an intentionally generic factory method; it does not require that itsthis value be the Arrayconstructor. Therefore it can be transferred to or inherited by any otherconstructors that may be called with a single numeric argument.

23.1.2.2 Array.isArray (arg )

This function performs the following steps when called:

  1. Return ? IsArray(arg).

23.1.2.3 Array.of ( ...items )

This method performs the following steps when called:

  1. Letlen be the number of elements initems.
  2. LetlenNumber be𝔽(len).
  3. LetC be thethis value.
  4. IfIsConstructor(C) istrue, then
    1. LetA be ? Construct(C, «lenNumber »).
  5. Else,
    1. LetA be ? ArrayCreate(len).
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. LetkValue beitems[k].
    2. LetPk be ! ToString(𝔽(k)).
    3. Perform ? CreateDataPropertyOrThrow(A,Pk,kValue).
    4. Setk tok + 1.
  8. Perform ? Set(A,"length",lenNumber,true).
  9. ReturnA.
Note

This method is an intentionally generic factory method; it does not require that itsthis value be the Arrayconstructor. Therefore it can be transferred to or inherited by otherconstructors that may be called with a single numeric argument.

23.1.2.4 Array.prototype

The value ofArray.prototype is theArray prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

23.1.2.5 get Array [ @@species ]

Array[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Array prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

23.1.3 Properties of the Array Prototype Object

TheArray prototype object:

  • is%Array.prototype%.
  • is anArray exotic object and has the internal methods specified for such objects.
  • has a"length" property whose initial value is+0𝔽 and whose attributes are {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
Note

The Array prototype object is specified to be anArray exotic object to ensure compatibility with ECMAScript code that was created prior to the ECMAScript 2015 specification.

23.1.3.1 Array.prototype.at (index )

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeIndex be ? ToIntegerOrInfinity(index).
  4. IfrelativeIndex ≥ 0, then
    1. Letk berelativeIndex.
  5. Else,
    1. Letk belen +relativeIndex.
  6. Ifk < 0 orklen, returnundefined.
  7. Return ? Get(O, ! ToString(𝔽(k))).

23.1.3.2 Array.prototype.concat ( ...items )

This method returns an array containing the array elements of the object followed by the array elements of each argument.

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. LetA be ? ArraySpeciesCreate(O, 0).
  3. Letn be 0.
  4. PrependO toitems.
  5. For each elementE ofitems, do
    1. Letspreadable be ? IsConcatSpreadable(E).
    2. Ifspreadable istrue, then
      1. Letlen be ? LengthOfArrayLike(E).
      2. Ifn +len > 253 - 1, throw aTypeError exception.
      3. Letk be 0.
      4. Repeat, whilek <len,
        1. LetPk be ! ToString(𝔽(k)).
        2. Letexists be ? HasProperty(E,Pk).
        3. Ifexists istrue, then
          1. LetsubElement be ? Get(E,Pk).
          2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),subElement).
        4. Setn ton + 1.
        5. Setk tok + 1.
    3. Else,
      1. NOTE:E is added as a single item rather than spread.
      2. Ifn ≥ 253 - 1, throw aTypeError exception.
      3. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),E).
      4. Setn ton + 1.
  6. Perform ? Set(A,"length",𝔽(n),true).
  7. ReturnA.

The"length" property of this method is1𝔽.

Note 1

The explicit setting of the"length" property in step6 is intended to ensure the length is correct when the final non-empty element ofitems has trailing holes or whenA is not a built-in Array.

Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.2.1 IsConcatSpreadable (O )

The abstract operation IsConcatSpreadable takes argumentO (anECMAScript language value) and returns either anormal completion containing a Boolean or athrow completion. It performs the following steps when called:

  1. IfOis not an Object, returnfalse.
  2. Letspreadable be ? Get(O,@@isConcatSpreadable).
  3. Ifspreadable is notundefined, returnToBoolean(spreadable).
  4. Return ? IsArray(O).

23.1.3.3 Array.prototype.constructor

The initial value ofArray.prototype.constructor is%Array%.

23.1.3.4 Array.prototype.copyWithin (target,start [ ,end ] )

Note 1

Theend argument is optional. If it is not provided, the length of thethis value is used.

Note 2

Iftarget is negative, it is treated aslength +target wherelength is the length of the array. Ifstart is negative, it is treated aslength +start. Ifend is negative, it is treated aslength +end.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeTarget be ? ToIntegerOrInfinity(target).
  4. IfrelativeTarget = -∞, letto be 0.
  5. Else ifrelativeTarget < 0, letto bemax(len +relativeTarget, 0).
  6. Else, letto bemin(relativeTarget,len).
  7. LetrelativeStart be ? ToIntegerOrInfinity(start).
  8. IfrelativeStart = -∞, letfrom be 0.
  9. Else ifrelativeStart < 0, letfrom bemax(len +relativeStart, 0).
  10. Else, letfrom bemin(relativeStart,len).
  11. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  12. IfrelativeEnd = -∞, letfinal be 0.
  13. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  14. Else, letfinal bemin(relativeEnd,len).
  15. Letcount bemin(final -from,len -to).
  16. Iffrom <to andto <from +count, then
    1. Letdirection be -1.
    2. Setfrom tofrom +count - 1.
    3. Setto toto +count - 1.
  17. Else,
    1. Letdirection be 1.
  18. Repeat, whilecount > 0,
    1. LetfromKey be ! ToString(𝔽(from)).
    2. LettoKey be ! ToString(𝔽(to)).
    3. LetfromPresent be ? HasProperty(O,fromKey).
    4. IffromPresent istrue, then
      1. LetfromVal be ? Get(O,fromKey).
      2. Perform ? Set(O,toKey,fromVal,true).
    5. Else,
      1. Assert:fromPresent isfalse.
      2. Perform ? DeletePropertyOrThrow(O,toKey).
    6. Setfrom tofrom +direction.
    7. Setto toto +direction.
    8. Setcount tocount - 1.
  19. ReturnO.
Note 3

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.5 Array.prototype.entries ( )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,key+value).

23.1.3.6 Array.prototype.every (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.every callscallbackfn once for each element present in the array, in ascending order, until it finds one wherecallbackfn returnsfalse. If such an element is found,every immediately returnsfalse. Otherwise, ifcallbackfn returnedtrue for all elements,every will returntrue.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byevery is set before the first call tocallbackfn. Elements which are appended to the array after the call toevery begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timeevery visits them; elements that are deleted after the call toevery begins and before being visited are not visited.every acts like the "for all" quantifier in mathematics. In particular, for an empty array, it returnstrue.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LettestResult beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. IftestResult isfalse, returnfalse.
    4. Setk tok + 1.
  6. Returntrue.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.7 Array.prototype.fill (value [ ,start [ ,end ] ] )

Note 1

Thestart argument is optional. If it is not provided,+0𝔽 is used.

Theend argument is optional. If it is not provided, the length of thethis value is used.

Note 2

Ifstart is negative, it is treated aslength +start wherelength is the length of the array. Ifend is negative, it is treated aslength +end.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart = -∞, letk be 0.
  5. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  6. Else, letk bemin(relativeStart,len).
  7. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  8. IfrelativeEnd = -∞, letfinal be 0.
  9. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  10. Else, letfinal bemin(relativeEnd,len).
  11. Repeat, whilek <final,
    1. LetPk be ! ToString(𝔽(k)).
    2. Perform ? Set(O,Pk,value,true).
    3. Setk tok + 1.
  12. ReturnO.
Note 3

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.8 Array.prototype.filter (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.filter callscallbackfn once for each element in the array, in ascending order, and constructs a new array of all the values for whichcallbackfn returnstrue.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byfilter is set before the first call tocallbackfn. Elements which are appended to the array after the call tofilter begins will not be visited bycallbackfn. If existing elements of the array are changed their value as passed tocallbackfn will be the value at the timefilter visits them; elements that are deleted after the call tofilter begins and before being visited are not visited.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O, 0).
  5. Letk be 0.
  6. Letto be 0.
  7. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Letselected beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. Ifselected istrue, then
        1. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(to)),kValue).
        2. Setto toto + 1.
    4. Setk tok + 1.
  8. ReturnA.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.9 Array.prototype.find (predicate [ ,thisArg ] )

Note 1

This method callspredicate once for each element of the array, in ascending index order, until it finds one wherepredicate returns a value that coerces totrue. If such an element is found,find immediately returns that element value. Otherwise,find returnsundefined.

SeeFindViaPredicate for additional information.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetfindRec be ? FindViaPredicate(O,len,ascending,predicate,thisArg).
  4. ReturnfindRec.[[Value]].
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.10 Array.prototype.findIndex (predicate [ ,thisArg ] )

Note 1

This method callspredicate once for each element of the array, in ascending index order, until it finds one wherepredicate returns a value that coerces totrue. If such an element is found,findIndex immediately returns the index of that element value. Otherwise,findIndex returns -1.

SeeFindViaPredicate for additional information.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetfindRec be ? FindViaPredicate(O,len,ascending,predicate,thisArg).
  4. ReturnfindRec.[[Index]].
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.11 Array.prototype.findLast (predicate [ ,thisArg ] )

Note 1

This method callspredicate once for each element of the array, in descending index order, until it finds one wherepredicate returns a value that coerces totrue. If such an element is found,findLast immediately returns that element value. Otherwise,findLast returnsundefined.

SeeFindViaPredicate for additional information.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetfindRec be ? FindViaPredicate(O,len,descending,predicate,thisArg).
  4. ReturnfindRec.[[Value]].
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.12 Array.prototype.findLastIndex (predicate [ ,thisArg ] )

Note 1

This method callspredicate once for each element of the array, in descending index order, until it finds one wherepredicate returns a value that coerces totrue. If such an element is found,findLastIndex immediately returns the index of that element value. Otherwise,findLastIndex returns -1.

SeeFindViaPredicate for additional information.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetfindRec be ? FindViaPredicate(O,len,descending,predicate,thisArg).
  4. ReturnfindRec.[[Index]].
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array object. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.12.1 FindViaPredicate (O,len,direction,predicate,thisArg )

The abstract operation FindViaPredicate takes argumentsO (an Object),len (a non-negativeinteger),direction (ascending ordescending),predicate (anECMAScript language value), andthisArg (anECMAScript language value) and returns either anormal completion containing aRecord with fields[[Index]] (anintegral Number) and[[Value]] (anECMAScript language value) or athrow completion.

O should be anarray-like object or aTypedArray. This operation callspredicate once for each element ofO, in either ascending index order or descending index order (as indicated bydirection), until it finds one wherepredicate returns a value that coerces totrue. At that point, this operation returns aRecord that gives the index and value of the element found. If no such element is found, this operation returns aRecord that specifies-1𝔽 for the index andundefined for the value.

predicate should be a function. When called for an element of the array, it is passed three arguments: the value of the element, the index of the element, and the object being traversed. Its return value will be coerced to a Boolean value.

thisArg will be used as thethis value for each invocation ofpredicate.

This operation does not directly mutate the object on which it is called, but the object may be mutated by the calls topredicate.

The range of elements processed is set before the first call topredicate, just before the traversal begins. Elements that are appended to the array after this will not be visited bypredicate. If existing elements of the array are changed, their value as passed topredicate will be the value at the time that this operation visits them. Elements that are deleted after traversal begins and before being visited are still visited and are either looked up from the prototype or areundefined.

It performs the following steps when called:

  1. IfIsCallable(predicate) isfalse, throw aTypeError exception.
  2. Ifdirection isascending, then
    1. Letindices be aList of theintegers in theinterval from 0 (inclusive) tolen (exclusive), in ascending order.
  3. Else,
    1. Letindices be aList of theintegers in theinterval from 0 (inclusive) tolen (exclusive), in descending order.
  4. For eachintegerk ofindices, do
    1. LetPk be ! ToString(𝔽(k)).
    2. NOTE: IfO is aTypedArray, the following invocation ofGet will return anormal completion.
    3. LetkValue be ? Get(O,Pk).
    4. LettestResult be ? Call(predicate,thisArg, «kValue,𝔽(k),O »).
    5. IfToBoolean(testResult) istrue, return theRecord {[[Index]]:𝔽(k),[[Value]]:kValue }.
  5. Return theRecord {[[Index]]:-1𝔽,[[Value]]:undefined }.

23.1.3.13 Array.prototype.flat ( [depth ] )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. LetsourceLen be ? LengthOfArrayLike(O).
  3. LetdepthNum be 1.
  4. Ifdepth is notundefined, then
    1. SetdepthNum to ? ToIntegerOrInfinity(depth).
    2. IfdepthNum < 0, setdepthNum to 0.
  5. LetA be ? ArraySpeciesCreate(O, 0).
  6. Perform ? FlattenIntoArray(A,O,sourceLen, 0,depthNum).
  7. ReturnA.

23.1.3.13.1 FlattenIntoArray (target,source,sourceLen,start,depth [ ,mapperFunction [ ,thisArg ] ] )

The abstract operation FlattenIntoArray takes argumentstarget (an Object),source (an Object),sourceLen (a non-negativeinteger),start (a non-negativeinteger), anddepth (a non-negativeinteger or +∞) and optional argumentsmapperFunction (afunction object) andthisArg (anECMAScript language value) and returns either anormal completion containing a non-negativeinteger or athrow completion. It performs the following steps when called:

  1. Assert: IfmapperFunction is present, thenIsCallable(mapperFunction) istrue,thisArg is present, anddepth is 1.
  2. LettargetIndex bestart.
  3. LetsourceIndex be+0𝔽.
  4. Repeat, while(sourceIndex) <sourceLen,
    1. LetP be ! ToString(sourceIndex).
    2. Letexists be ? HasProperty(source,P).
    3. Ifexists istrue, then
      1. Letelement be ? Get(source,P).
      2. IfmapperFunction is present, then
        1. Setelement to ? Call(mapperFunction,thisArg, «element,sourceIndex,source »).
      3. LetshouldFlatten befalse.
      4. Ifdepth > 0, then
        1. SetshouldFlatten to ? IsArray(element).
      5. IfshouldFlatten istrue, then
        1. Ifdepth = +∞, letnewDepth be +∞.
        2. Else, letnewDepth bedepth - 1.
        3. LetelementLen be ? LengthOfArrayLike(element).
        4. SettargetIndex to ? FlattenIntoArray(target,element,elementLen,targetIndex,newDepth).
      6. Else,
        1. IftargetIndex ≥ 253 - 1, throw aTypeError exception.
        2. Perform ? CreateDataPropertyOrThrow(target, ! ToString(𝔽(targetIndex)),element).
        3. SettargetIndex totargetIndex + 1.
    4. SetsourceIndex tosourceIndex +1𝔽.
  5. ReturntargetIndex.

23.1.3.14 Array.prototype.flatMap (mapperFunction [ ,thisArg ] )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. LetsourceLen be ? LengthOfArrayLike(O).
  3. IfIsCallable(mapperFunction) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O, 0).
  5. Perform ? FlattenIntoArray(A,O,sourceLen, 0, 1,mapperFunction,thisArg).
  6. ReturnA.

23.1.3.15 Array.prototype.forEach (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each element present in the array, in ascending order.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byforEach is set before the first call tocallbackfn. Elements which are appended to the array after the call toforEach begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timeforEach visits them; elements that are deleted after the call toforEach begins and before being visited are not visited.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Perform ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Setk tok + 1.
  6. Returnundefined.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.16 Array.prototype.includes (searchElement [ ,fromIndex ] )

Note 1

This method comparessearchElement to the elements of the array, in ascending order, using theSameValueZero algorithm, and if found at any position, returnstrue; otherwise, it returnsfalse.

The optional second argumentfromIndex defaults to+0𝔽 (i.e. the whole array is searched). If it is greater than or equal to the length of the array,false is returned, i.e. the array will not be searched. If it is less than-0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than or equal to+0𝔽, the whole array will be searched.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, returnfalse.
  4. Letn be ? ToIntegerOrInfinity(fromIndex).
  5. Assert: IffromIndex isundefined, thenn is 0.
  6. Ifn = +∞, returnfalse.
  7. Else ifn = -∞, setn to 0.
  8. Ifn ≥ 0, then
    1. Letk ben.
  9. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  10. Repeat, whilek <len,
    1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
    2. IfSameValueZero(searchElement,elementK) istrue, returntrue.
    3. Setk tok + 1.
  11. Returnfalse.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

Note 3

This method intentionally differs from the similarindexOf method in two ways. First, it uses theSameValueZero algorithm, instead ofIsStrictlyEqual, allowing it to detectNaN array elements. Second, it does not skip missing array elements, instead treating them asundefined.

23.1.3.17 Array.prototype.indexOf (searchElement [ ,fromIndex ] )

This method comparessearchElement to the elements of the array, in ascending order, using theIsStrictlyEqual algorithm, and if found at one or more indices, returns the smallest such index; otherwise, it returns-1𝔽.

Note 1

The optional second argumentfromIndex defaults to+0𝔽 (i.e. the whole array is searched). If it is greater than or equal to the length of the array,-1𝔽 is returned, i.e. the array will not be searched. If it is less than-0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than or equal to+0𝔽, the whole array will be searched.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, return-1𝔽.
  4. Letn be ? ToIntegerOrInfinity(fromIndex).
  5. Assert: IffromIndex isundefined, thenn is 0.
  6. Ifn = +∞, return-1𝔽.
  7. Else ifn = -∞, setn to 0.
  8. Ifn ≥ 0, then
    1. Letk ben.
  9. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  10. Repeat, whilek <len,
    1. LetkPresent be ? HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
      2. IfIsStrictlyEqual(searchElement,elementK) istrue, return𝔽(k).
    3. Setk tok + 1.
  11. Return-1𝔽.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.18 Array.prototype.join (separator )

This method converts the elements of the array to Strings, and then concatenates these Strings, separated by occurrences of theseparator. If no separator is provided, a single comma is used as the separator.

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Ifseparator isundefined, letsep be",".
  4. Else, letsep be ? ToString(separator).
  5. LetR be the empty String.
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. Ifk > 0, setR to thestring-concatenation ofR andsep.
    2. Letelement be ? Get(O, ! ToString(𝔽(k))).
    3. Ifelement is eitherundefined ornull, letnext be the empty String; otherwise, letnext be ? ToString(element).
    4. SetR to thestring-concatenation ofR andnext.
    5. Setk tok + 1.
  8. ReturnR.
Note

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.19 Array.prototype.keys ( )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,key).

23.1.3.20 Array.prototype.lastIndexOf (searchElement [ ,fromIndex ] )

Note 1

This method comparessearchElement to the elements of the array in descending order using theIsStrictlyEqual algorithm, and if found at one or more indices, returns the largest such index; otherwise, it returns-1𝔽.

The optional second argumentfromIndex defaults to the array's length minus one (i.e. the whole array is searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is less than-0𝔽, it is used as the offset from the end of the array to computefromIndex. If the computed index is less than or equal to+0𝔽,-1𝔽 is returned.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, return-1𝔽.
  4. IffromIndex is present, letn be ? ToIntegerOrInfinity(fromIndex); else letn belen - 1.
  5. Ifn = -∞, return-1𝔽.
  6. Ifn ≥ 0, then
    1. Letk bemin(n,len - 1).
  7. Else,
    1. Letk belen +n.
  8. Repeat, whilek ≥ 0,
    1. LetkPresent be ? HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ? Get(O, ! ToString(𝔽(k))).
      2. IfIsStrictlyEqual(searchElement,elementK) istrue, return𝔽(k).
    3. Setk tok - 1.
  9. Return-1𝔽.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.21 Array.prototype.map (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments.map callscallbackfn once for each element in the array, in ascending order, and constructs a new Array from the results.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed bymap is set before the first call tocallbackfn. Elements which are appended to the array after the call tomap begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timemap visits them; elements that are deleted after the call tomap begins and before being visited are not visited.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. LetA be ? ArraySpeciesCreate(O,len).
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LetmappedValue be ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
      3. Perform ? CreateDataPropertyOrThrow(A,Pk,mappedValue).
    4. Setk tok + 1.
  7. ReturnA.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.22 Array.prototype.pop ( )

Note 1

This method removes the last element of the array and returns it.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, then
    1. Perform ? Set(O,"length",+0𝔽,true).
    2. Returnundefined.
  4. Else,
    1. Assert:len > 0.
    2. LetnewLen be𝔽(len - 1).
    3. Letindex be ! ToString(newLen).
    4. Letelement be ? Get(O,index).
    5. Perform ? DeletePropertyOrThrow(O,index).
    6. Perform ? Set(O,"length",newLen,true).
    7. Returnelement.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.23 Array.prototype.push ( ...items )

Note 1

This method appends the arguments to the end of the array, in the order in which they appear. It returns the new length of the array.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetargCount be the number of elements initems.
  4. Iflen +argCount > 253 - 1, throw aTypeError exception.
  5. For each elementE ofitems, do
    1. Perform ? Set(O, ! ToString(𝔽(len)),E,true).
    2. Setlen tolen + 1.
  6. Perform ? Set(O,"length",𝔽(len),true).
  7. Return𝔽(len).

The"length" property of this method is1𝔽.

Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.24 Array.prototype.reduce (callbackfn [ ,initialValue ] )

Note 1

callbackfn should be a function that takes four arguments.reduce calls the callback, as a function, once for each element after the first element present in the array, in ascending order.

callbackfn is called with four arguments: thepreviousValue (value from the previous call tocallbackfn), thecurrentValue (value of the current element), thecurrentIndex, and the object being traversed. The first time that callback is called, thepreviousValue andcurrentValue can be one of two values. If aninitialValue was supplied in the call toreduce, thenpreviousValue will beinitialValue andcurrentValue will be the first value in the array. If noinitialValue was supplied, thenpreviousValue will be the first value in the array andcurrentValue will be the second. It is aTypeError if the array contains no elements andinitialValue is not provided.

reduce does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byreduce is set before the first call tocallbackfn. Elements that are appended to the array after the call toreduce begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the timereduce visits them; elements that are deleted after the call toreduce begins and before being visited are not visited.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  5. Letk be 0.
  6. Letaccumulator beundefined.
  7. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  8. Else,
    1. LetkPresent befalse.
    2. Repeat, whilekPresent isfalse andk <len,
      1. LetPk be ! ToString(𝔽(k)).
      2. SetkPresent to ? HasProperty(O,Pk).
      3. IfkPresent istrue, then
        1. Setaccumulator to ? Get(O,Pk).
      4. Setk tok + 1.
    3. IfkPresent isfalse, throw aTypeError exception.
  9. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok + 1.
  10. Returnaccumulator.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.25 Array.prototype.reduceRight (callbackfn [ ,initialValue ] )

Note 1

callbackfn should be a function that takes four arguments.reduceRight calls the callback, as a function, once for each element after the first element present in the array, in descending order.

callbackfn is called with four arguments: thepreviousValue (value from the previous call tocallbackfn), thecurrentValue (value of the current element), thecurrentIndex, and the object being traversed. The first time the function is called, thepreviousValue andcurrentValue can be one of two values. If aninitialValue was supplied in the call toreduceRight, thenpreviousValue will beinitialValue andcurrentValue will be the last value in the array. If noinitialValue was supplied, thenpreviousValue will be the last value in the array andcurrentValue will be the second-to-last value. It is aTypeError if the array contains no elements andinitialValue is not provided.

reduceRight does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed byreduceRight is set before the first call tocallbackfn. Elements that are appended to the array after the call toreduceRight begins will not be visited bycallbackfn. If existing elements of the array are changed bycallbackfn, their value as passed tocallbackfn will be the value at the timereduceRight visits them; elements that are deleted after the call toreduceRight begins and before being visited are not visited.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  5. Letk belen - 1.
  6. Letaccumulator beundefined.
  7. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  8. Else,
    1. LetkPresent befalse.
    2. Repeat, whilekPresent isfalse andk ≥ 0,
      1. LetPk be ! ToString(𝔽(k)).
      2. SetkPresent to ? HasProperty(O,Pk).
      3. IfkPresent istrue, then
        1. Setaccumulator to ? Get(O,Pk).
      4. Setk tok - 1.
    3. IfkPresent isfalse, throw aTypeError exception.
  9. Repeat, whilek ≥ 0,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok - 1.
  10. Returnaccumulator.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.26 Array.prototype.reverse ( )

Note 1

This method rearranges the elements of the array so as to reverse their order. It returns the object as the result of the call.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Letmiddle befloor(len / 2).
  4. Letlower be 0.
  5. Repeat, whilelowermiddle,
    1. Letupper belen -lower - 1.
    2. LetupperP be ! ToString(𝔽(upper)).
    3. LetlowerP be ! ToString(𝔽(lower)).
    4. LetlowerExists be ? HasProperty(O,lowerP).
    5. IflowerExists istrue, then
      1. LetlowerValue be ? Get(O,lowerP).
    6. LetupperExists be ? HasProperty(O,upperP).
    7. IfupperExists istrue, then
      1. LetupperValue be ? Get(O,upperP).
    8. IflowerExists istrue andupperExists istrue, then
      1. Perform ? Set(O,lowerP,upperValue,true).
      2. Perform ? Set(O,upperP,lowerValue,true).
    9. Else iflowerExists isfalse andupperExists istrue, then
      1. Perform ? Set(O,lowerP,upperValue,true).
      2. Perform ? DeletePropertyOrThrow(O,upperP).
    10. Else iflowerExists istrue andupperExists isfalse, then
      1. Perform ? DeletePropertyOrThrow(O,lowerP).
      2. Perform ? Set(O,upperP,lowerValue,true).
    11. Else,
      1. Assert:lowerExists andupperExists are bothfalse.
      2. NOTE: No action is required.
    12. Setlower tolower + 1.
  6. ReturnO.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.27 Array.prototype.shift ( )

This method removes the first element of the array and returns it.

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. Iflen = 0, then
    1. Perform ? Set(O,"length",+0𝔽,true).
    2. Returnundefined.
  4. Letfirst be ? Get(O,"0").
  5. Letk be 1.
  6. Repeat, whilek <len,
    1. Letfrom be ! ToString(𝔽(k)).
    2. Letto be ! ToString(𝔽(k - 1)).
    3. LetfromPresent be ? HasProperty(O,from).
    4. IffromPresent istrue, then
      1. LetfromVal be ? Get(O,from).
      2. Perform ? Set(O,to,fromVal,true).
    5. Else,
      1. Assert:fromPresent isfalse.
      2. Perform ? DeletePropertyOrThrow(O,to).
    6. Setk tok + 1.
  7. Perform ? DeletePropertyOrThrow(O, ! ToString(𝔽(len - 1))).
  8. Perform ? Set(O,"length",𝔽(len - 1),true).
  9. Returnfirst.
Note

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.28 Array.prototype.slice (start,end )

This method returns an array containing the elements of the array from elementstart up to, but not including, elementend (or through the end of the array ifend isundefined). Ifstart is negative, it is treated aslength +start wherelength is the length of the array. Ifend is negative, it is treated aslength +end wherelength is the length of the array.

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart = -∞, letk be 0.
  5. Else ifrelativeStart < 0, letk bemax(len +relativeStart, 0).
  6. Else, letk bemin(relativeStart,len).
  7. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  8. IfrelativeEnd = -∞, letfinal be 0.
  9. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  10. Else, letfinal bemin(relativeEnd,len).
  11. Letcount bemax(final -k, 0).
  12. LetA be ? ArraySpeciesCreate(O,count).
  13. Letn be 0.
  14. Repeat, whilek <final,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(n)),kValue).
    4. Setk tok + 1.
    5. Setn ton + 1.
  15. Perform ? Set(A,"length",𝔽(n),true).
  16. ReturnA.
Note 1

The explicit setting of the"length" property in step15 is intended to ensure the length is correct even whenA is not a built-in Array.

Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.29 Array.prototype.some (callbackfn [ ,thisArg ] )

Note 1

callbackfn should be a function that accepts three arguments and returns a value that is coercible to a Boolean value.some callscallbackfn once for each element present in the array, in ascending order, until it finds one wherecallbackfn returnstrue. If such an element is found,some immediately returnstrue. Otherwise,some returnsfalse.callbackfn is called only for elements of the array which actually exist; it is not called for missing elements of the array.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

The range of elements processed bysome is set before the first call tocallbackfn. Elements that are appended to the array after the call tosome begins will not be visited bycallbackfn. If existing elements of the array are changed, their value as passed tocallbackfn will be the value at the time thatsome visits them; elements that are deleted after the call tosome begins and before being visited are not visited.some acts like the "exists" quantifier in mathematics. In particular, for an empty array, it returnsfalse.

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkPresent be ? HasProperty(O,Pk).
    3. IfkPresent istrue, then
      1. LetkValue be ? Get(O,Pk).
      2. LettestResult beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
      3. IftestResult istrue, returntrue.
    4. Setk tok + 1.
  6. Returnfalse.
Note 2

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.30 Array.prototype.sort (comparefn )

This method sorts the elements of this array. The sort must be stable (that is, elements that compare equal must remain in their original order). Ifcomparefn is notundefined, it should be a function that accepts two argumentsx andy and returns a negative Number ifx <y, a positive Number ifx >y, or a zero otherwise.

It performs the following steps when called:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. Letobj be ? ToObject(this value).
  3. Letlen be ? LengthOfArrayLike(obj).
  4. LetSortCompare be a newAbstract Closure with parameters (x,y) that capturescomparefn and performs the following steps when called:
    1. Return ? CompareArrayElements(x,y,comparefn).
  5. LetsortedList be ? SortIndexedProperties(obj,len,SortCompare,skip-holes).
  6. LetitemCount be the number of elements insortedList.
  7. Letj be 0.
  8. Repeat, whilej <itemCount,
    1. Perform ? Set(obj, ! ToString(𝔽(j)),sortedList[j],true).
    2. Setj toj + 1.
  9. NOTE: The call toSortIndexedProperties in step5 usesskip-holes. The remaining indices are deleted to preserve the number of holes that were detected and excluded from the sort.
  10. Repeat, whilej <len,
    1. Perform ? DeletePropertyOrThrow(obj, ! ToString(𝔽(j))).
    2. Setj toj + 1.
  11. Returnobj.
Note 1

Because non-existent property values always compare greater thanundefined property values, andundefined always compares greater than any other value (seeCompareArrayElements),undefined property values always sort to the end of the result, followed by non-existent property values.

Note 2

Method calls performed by theToStringabstract operations in steps5 and6 have the potential to causeSortCompare to not behave as aconsistent comparator.

Note 3

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore, it can be transferred to other kinds of objects for use as a method.

23.1.3.30.1 SortIndexedProperties (obj,len,SortCompare,holes )

The abstract operation SortIndexedProperties takes argumentsobj (an Object),len (a non-negativeinteger),SortCompare (anAbstract Closure with two parameters), andholes (skip-holes orread-through-holes) and returns either anormal completion containing aList ofECMAScript language values or athrow completion. It performs the following steps when called:

  1. Letitems be a new emptyList.
  2. Letk be 0.
  3. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. Ifholes isskip-holes, then
      1. LetkRead be ? HasProperty(obj,Pk).
    3. Else,
      1. Assert:holes isread-through-holes.
      2. LetkRead betrue.
    4. IfkRead istrue, then
      1. LetkValue be ? Get(obj,Pk).
      2. AppendkValue toitems.
    5. Setk tok + 1.
  4. Sortitems using animplementation-defined sequence ofcalls toSortCompare. If any such call returns anabrupt completion, stop before performing any further calls toSortCompare and return thatCompletion Record.
  5. Returnitems.

Thesort order is the ordering ofitems after completion of step4 of the algorithm above. Thesort order isimplementation-defined ifSortCompare is not aconsistent comparator for the elements ofitems. When SortIndexedProperties is invoked byArray.prototype.sort, thesort order is alsoimplementation-defined ifcomparefn isundefined, and all applications ofToString, to any specific value passed as an argument toSortCompare, do not produce the same result.

Unless thesort order is specified to beimplementation-defined, it must satisfy all of the following conditions:

  • There must be some mathematical permutation π of the non-negativeintegers less thanitemCount, such that for every non-negativeintegerj less thanitemCount, the elementold[j] is exactly the same asnew[π(j)].
  • Then for all non-negativeintegersj andk, each less thanitemCount, if(SortCompare(old[j], old[k])) < 0, thenπ(j) < π(k).

Here the notationold[j] is used to refer toitems[j] before step4 is executed, and the notationnew[j] to refer toitems[j] after step4 has been executed.

An abstract closure or functioncomparator is aconsistent comparator for a set of valuesS if all of the requirements below are met for all valuesa,b, andc (possibly the same value) in the setS: The notationa <Cb means(comparator(a,b)) < 0;a =Cb means(comparator(a,b)) = 0; anda >Cb means(comparator(a,b)) > 0.

  • Callingcomparator(a,b) always returns the same valuev when given a specific pair of valuesa andb as its two arguments. Furthermore,vis a Number, andv is notNaN. Note that this implies that exactly one ofa <Cb,a =Cb, anda >Cb will be true for a given pair ofa andb.
  • Callingcomparator(a,b) does not modifyobj or any object onobj's prototype chain.
  • a =Ca (reflexivity)
  • Ifa =Cb, thenb =Ca (symmetry)
  • Ifa =Cb andb =Cc, thena =Cc (transitivity of =C)
  • Ifa <Cb andb <Cc, thena <Cc (transitivity of <C)
  • Ifa >Cb andb >Cc, thena >Cc (transitivity of >C)
Note

The above conditions are necessary and sufficient to ensure thatcomparator divides the setS into equivalence classes and that these equivalence classes are totally ordered.

23.1.3.30.2 CompareArrayElements (x,y,comparefn )

The abstract operation CompareArrayElements takes argumentsx (anECMAScript language value),y (anECMAScript language value), andcomparefn (afunction object orundefined) and returns either anormal completion containing a Number or anabrupt completion. It performs the following steps when called:

  1. Ifx andy are bothundefined, return+0𝔽.
  2. Ifx isundefined, return1𝔽.
  3. Ify isundefined, return-1𝔽.
  4. Ifcomparefn is notundefined, then
    1. Letv be ? ToNumber(?Call(comparefn,undefined, «x,y »)).
    2. Ifv isNaN, return+0𝔽.
    3. Returnv.
  5. LetxString be ? ToString(x).
  6. LetyString be ? ToString(y).
  7. LetxSmaller be ! IsLessThan(xString,yString,true).
  8. IfxSmaller istrue, return-1𝔽.
  9. LetySmaller be ! IsLessThan(yString,xString,true).
  10. IfySmaller istrue, return1𝔽.
  11. Return+0𝔽.

23.1.3.31 Array.prototype.splice (start,deleteCount, ...items )

Note 1

This method deletes thedeleteCount elements of the array starting atinteger indexstart and replaces them with the elements ofitems. It returns an Array containing the deleted elements (if any).

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart = -∞, letactualStart be 0.
  5. Else ifrelativeStart < 0, letactualStart bemax(len +relativeStart, 0).
  6. Else, letactualStart bemin(relativeStart,len).
  7. LetitemCount be the number of elements initems.
  8. Ifstart is not present, then
    1. LetactualDeleteCount be 0.
  9. Else ifdeleteCount is not present, then
    1. LetactualDeleteCount belen -actualStart.
  10. Else,
    1. Letdc be ? ToIntegerOrInfinity(deleteCount).
    2. LetactualDeleteCount be the result ofclampingdc between 0 andlen -actualStart.
  11. Iflen +itemCount -actualDeleteCount > 253 - 1, throw aTypeError exception.
  12. LetA be ? ArraySpeciesCreate(O,actualDeleteCount).
  13. Letk be 0.
  14. Repeat, whilek <actualDeleteCount,
    1. Letfrom be ! ToString(𝔽(actualStart +k)).
    2. If ? HasProperty(O,from) istrue, then
      1. LetfromValue be ? Get(O,from).
      2. Perform ? CreateDataPropertyOrThrow(A, ! ToString(𝔽(k)),fromValue).
    3. Setk tok + 1.
  15. Perform ? Set(A,"length",𝔽(actualDeleteCount),true).
  16. IfitemCount <actualDeleteCount, then
    1. Setk toactualStart.
    2. Repeat, whilek < (len -actualDeleteCount),
      1. Letfrom be ! ToString(𝔽(k +actualDeleteCount)).
      2. Letto be ! ToString(𝔽(k +itemCount)).
      3. If ? HasProperty(O,from) istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      4. Else,
        1. Perform ? DeletePropertyOrThrow(O,to).
      5. Setk tok + 1.
    3. Setk tolen.
    4. Repeat, whilek > (len -actualDeleteCount +itemCount),
      1. Perform ? DeletePropertyOrThrow(O, ! ToString(𝔽(k - 1))).
      2. Setk tok - 1.
  17. Else ifitemCount >actualDeleteCount, then
    1. Setk to (len -actualDeleteCount).
    2. Repeat, whilek >actualStart,
      1. Letfrom be ! ToString(𝔽(k +actualDeleteCount - 1)).
      2. Letto be ! ToString(𝔽(k +itemCount - 1)).
      3. If ? HasProperty(O,from) istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      4. Else,
        1. Perform ? DeletePropertyOrThrow(O,to).
      5. Setk tok - 1.
  18. Setk toactualStart.
  19. For each elementE ofitems, do
    1. Perform ? Set(O, ! ToString(𝔽(k)),E,true).
    2. Setk tok + 1.
  20. Perform ? Set(O,"length",𝔽(len -actualDeleteCount +itemCount),true).
  21. ReturnA.
Note 2

The explicit setting of the"length" property in steps15 and20 is intended to ensure the lengths are correct even when the objects are not built-in Arrays.

Note 3

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.32 Array.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

An ECMAScript implementation that includes the ECMA-402 Internationalization API must implement this method as specified in the ECMA-402 specification. If an ECMAScript implementation does not include the ECMA-402 API the following specification of this method is used.

Note 1

The first edition of ECMA-402 did not include a replacement specification for this method.

The meanings of the optional parameters to this method are defined in the ECMA-402 specification; implementations that do not include ECMA-402 support must not use those parameter positions for anything else.

This method performs the following steps when called:

  1. Letarray be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(array).
  3. Letseparator be theimplementation-defined list-separator String value appropriate for thehost environment's current locale (such as", ").
  4. LetR be the empty String.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. Ifk > 0, then
      1. SetR to thestring-concatenation ofR andseparator.
    2. LetnextElement be ? Get(array, ! ToString(𝔽(k))).
    3. IfnextElement is neitherundefined nornull, then
      1. LetS be ? ToString(?Invoke(nextElement,"toLocaleString")).
      2. SetR to thestring-concatenation ofR andS.
    4. Setk tok + 1.
  7. ReturnR.
Note 2

This method converts the elements of the array to Strings using theirtoLocaleString methods, and then concatenates these Strings, separated by occurrences of animplementation-defined locale-sensitive separator String. This method is analogous totoString except that it is intended to yield a locale-sensitive result corresponding with conventions of thehost environment's current locale.

Note 3

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.33 Array.prototype.toReversed ( )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetA be ? ArrayCreate(len).
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. Letfrom be ! ToString(𝔽(len -k - 1)).
    2. LetPk be ! ToString(𝔽(k)).
    3. LetfromValue be ? Get(O,from).
    4. Perform ! CreateDataPropertyOrThrow(A,Pk,fromValue).
    5. Setk tok + 1.
  6. ReturnA.

23.1.3.34 Array.prototype.toSorted (comparefn )

This method performs the following steps when called:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. LetO be ? ToObject(this value).
  3. Letlen be ? LengthOfArrayLike(O).
  4. LetA be ? ArrayCreate(len).
  5. LetSortCompare be a newAbstract Closure with parameters (x,y) that capturescomparefn and performs the following steps when called:
    1. Return ? CompareArrayElements(x,y,comparefn).
  6. LetsortedList be ? SortIndexedProperties(O,len,SortCompare,read-through-holes).
  7. Letj be 0.
  8. Repeat, whilej <len,
    1. Perform ! CreateDataPropertyOrThrow(A, ! ToString(𝔽(j)),sortedList[j]).
    2. Setj toj + 1.
  9. ReturnA.

23.1.3.35 Array.prototype.toSpliced (start,skipCount, ...items )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeStart be ? ToIntegerOrInfinity(start).
  4. IfrelativeStart is -∞, letactualStart be 0.
  5. Else ifrelativeStart < 0, letactualStart bemax(len +relativeStart, 0).
  6. Else, letactualStart bemin(relativeStart,len).
  7. LetinsertCount be the number of elements initems.
  8. Ifstart is not present, then
    1. LetactualSkipCount be 0.
  9. Else ifskipCount is not present, then
    1. LetactualSkipCount belen -actualStart.
  10. Else,
    1. Letsc be ? ToIntegerOrInfinity(skipCount).
    2. LetactualSkipCount be the result ofclampingsc between 0 andlen -actualStart.
  11. LetnewLen belen +insertCount -actualSkipCount.
  12. IfnewLen > 253 - 1, throw aTypeError exception.
  13. LetA be ? ArrayCreate(newLen).
  14. Leti be 0.
  15. Letr beactualStart +actualSkipCount.
  16. Repeat, whilei <actualStart,
    1. LetPi be ! ToString(𝔽(i)).
    2. LetiValue be ? Get(O,Pi).
    3. Perform ! CreateDataPropertyOrThrow(A,Pi,iValue).
    4. Seti toi + 1.
  17. For each elementE ofitems, do
    1. LetPi be ! ToString(𝔽(i)).
    2. Perform ! CreateDataPropertyOrThrow(A,Pi,E).
    3. Seti toi + 1.
  18. Repeat, whilei <newLen,
    1. LetPi be ! ToString(𝔽(i)).
    2. Letfrom be ! ToString(𝔽(r)).
    3. LetfromValue be ? Get(O,from).
    4. Perform ! CreateDataPropertyOrThrow(A,Pi,fromValue).
    5. Seti toi + 1.
    6. Setr tor + 1.
  19. ReturnA.

23.1.3.36 Array.prototype.toString ( )

This method performs the following steps when called:

  1. Letarray be ? ToObject(this value).
  2. Letfunc be ? Get(array,"join").
  3. IfIsCallable(func) isfalse, setfunc to the intrinsic function %Object.prototype.toString%.
  4. Return ? Call(func,array).
Note

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.37 Array.prototype.unshift ( ...items )

This method prepends the arguments to the start of the array, such that their order within the array is the same as the order in which they appear in the argument list.

It performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetargCount be the number of elements initems.
  4. IfargCount > 0, then
    1. Iflen +argCount > 253 - 1, throw aTypeError exception.
    2. Letk belen.
    3. Repeat, whilek > 0,
      1. Letfrom be ! ToString(𝔽(k - 1)).
      2. Letto be ! ToString(𝔽(k +argCount - 1)).
      3. LetfromPresent be ? HasProperty(O,from).
      4. IffromPresent istrue, then
        1. LetfromValue be ? Get(O,from).
        2. Perform ? Set(O,to,fromValue,true).
      5. Else,
        1. Assert:fromPresent isfalse.
        2. Perform ? DeletePropertyOrThrow(O,to).
      6. Setk tok - 1.
    4. Letj be+0𝔽.
    5. For each elementE ofitems, do
      1. Perform ? Set(O, ! ToString(j),E,true).
      2. Setj toj +1𝔽.
  5. Perform ? Set(O,"length",𝔽(len +argCount),true).
  6. Return𝔽(len +argCount).

The"length" property of this method is1𝔽.

Note

This method is intentionally generic; it does not require that itsthis value be an Array. Therefore it can be transferred to other kinds of objects for use as a method.

23.1.3.38 Array.prototype.values ( )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. ReturnCreateArrayIterator(O,value).

23.1.3.39 Array.prototype.with (index,value )

This method performs the following steps when called:

  1. LetO be ? ToObject(this value).
  2. Letlen be ? LengthOfArrayLike(O).
  3. LetrelativeIndex be ? ToIntegerOrInfinity(index).
  4. IfrelativeIndex ≥ 0, letactualIndex berelativeIndex.
  5. Else, letactualIndex belen +relativeIndex.
  6. IfactualIndexlen oractualIndex < 0, throw aRangeError exception.
  7. LetA be ? ArrayCreate(len).
  8. Letk be 0.
  9. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. Ifk isactualIndex, letfromValue bevalue.
    3. Else, letfromValue be ? Get(O,Pk).
    4. Perform ! CreateDataPropertyOrThrow(A,Pk,fromValue).
    5. Setk tok + 1.
  10. ReturnA.

23.1.3.40 Array.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is %Array.prototype.values%, defined in23.1.3.38.

23.1.3.41 Array.prototype [ @@unscopables ]

The initial value of the@@unscopablesdata property is an object created by the following steps:

  1. LetunscopableList beOrdinaryObjectCreate(null).
  2. Perform ! CreateDataPropertyOrThrow(unscopableList,"at",true).
  3. Perform ! CreateDataPropertyOrThrow(unscopableList,"copyWithin",true).
  4. Perform ! CreateDataPropertyOrThrow(unscopableList,"entries",true).
  5. Perform ! CreateDataPropertyOrThrow(unscopableList,"fill",true).
  6. Perform ! CreateDataPropertyOrThrow(unscopableList,"find",true).
  7. Perform ! CreateDataPropertyOrThrow(unscopableList,"findIndex",true).
  8. Perform ! CreateDataPropertyOrThrow(unscopableList,"findLast",true).
  9. Perform ! CreateDataPropertyOrThrow(unscopableList,"findLastIndex",true).
  10. Perform ! CreateDataPropertyOrThrow(unscopableList,"flat",true).
  11. Perform ! CreateDataPropertyOrThrow(unscopableList,"flatMap",true).
  12. Perform ! CreateDataPropertyOrThrow(unscopableList,"includes",true).
  13. Perform ! CreateDataPropertyOrThrow(unscopableList,"keys",true).
  14. Perform ! CreateDataPropertyOrThrow(unscopableList,"toReversed",true).
  15. Perform ! CreateDataPropertyOrThrow(unscopableList,"toSorted",true).
  16. Perform ! CreateDataPropertyOrThrow(unscopableList,"toSpliced",true).
  17. Perform ! CreateDataPropertyOrThrow(unscopableList,"values",true).
  18. ReturnunscopableList.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

Note

The own property names of this object are property names that were not included as standard properties ofArray.prototype prior to the ECMAScript 2015 specification. These names are ignored forwith statement binding purposes in order to preserve the behaviour of existing code that might use one of these names as a binding in an outer scope that is shadowed by awith statement whose binding object is an Array.

The reason that"with" is not included in theunscopableList is because it is already areserved word.

23.1.4 Properties of Array Instances

Array instances areArray exotic objects and have the internal methods specified for such objects. Array instances inherit properties from theArray prototype object.

Array instances have a"length" property, and a set of enumerable properties witharray index names.

23.1.4.1 length

The"length" property of an Array instance is adata property whose value is always numerically greater than the name of every configurable own property whose name is anarray index.

The"length" property initially has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.

Note

Reducing the value of the"length" property has the side-effect of deleting own array elements whosearray index is between the old and new length values. However, non-configurable properties can not be deleted. Attempting to set the"length" property of an Array to a value that is numerically less than or equal to the largest numeric ownproperty name of an existing non-configurablearray-indexed property of the array will result in the length being set to a numeric value that is one greater than that non-configurable numeric ownproperty name. See10.4.2.1.

23.1.5 Array Iterator Objects

An Array Iterator is an object, that represents a specific iteration over some specific Array instance object. There is not a namedconstructor for Array Iterator objects. Instead, Array iterator objects are created by calling certain methods of Array instance objects.

23.1.5.1 CreateArrayIterator (array,kind )

The abstract operation CreateArrayIterator takes argumentsarray (an Object) andkind (key+value,key, orvalue) and returns a Generator. It is used to create iterator objects for Array methods that return such iterators. It performs the following steps when called:

  1. Letclosure be a newAbstract Closure with no parameters that captureskind andarray and performs the following steps when called:
    1. Letindex be 0.
    2. Repeat,
      1. Ifarray has a[[TypedArrayName]] internal slot, then
        1. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(array,seq-cst).
        2. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
        3. Letlen beTypedArrayLength(taRecord).
      2. Else,
        1. Letlen be ? LengthOfArrayLike(array).
      3. Ifindexlen, returnNormalCompletion(undefined).
      4. LetindexNumber be𝔽(index).
      5. Ifkind iskey, then
        1. Letresult beindexNumber.
      6. Else,
        1. LetelementKey be ! ToString(indexNumber).
        2. LetelementValue be ? Get(array,elementKey).
        3. Ifkind isvalue, then
          1. Letresult beelementValue.
        4. Else,
          1. Assert:kind iskey+value.
          2. Letresult beCreateArrayFromListindexNumber,elementValue »).
      7. Perform ? GeneratorYield(CreateIterResultObject(result,false)).
      8. Setindex toindex + 1.
  2. ReturnCreateIteratorFromClosure(closure,"%ArrayIteratorPrototype%",%ArrayIteratorPrototype%).

23.1.5.2 The %ArrayIteratorPrototype% Object

The%ArrayIteratorPrototype% object:

  • has properties that are inherited by all Array Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

23.1.5.2.1 %ArrayIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%ArrayIteratorPrototype%").

23.1.5.2.2 %ArrayIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Array Iterator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

23.2 TypedArray Objects

ATypedArray presents an array-like view of an underlying binary data buffer (25.1). ATypedArray element type is the underlying binary scalar data type that all elements of aTypedArray instance have. There is a distinctTypedArrayconstructor, listed inTable 71, for each of the supported element types. Eachconstructor inTable 71 has a corresponding distinct prototype object.

Table 71: TheTypedArrayConstructors
Constructor Name and Intrinsic Element Type Element Size Conversion Operation Description
Int8Array
%Int8Array%
int8 1ToInt8 8-bit two's complement signedinteger
Uint8Array
%Uint8Array%
uint8 1ToUint8 8-bit unsignedinteger
Uint8ClampedArray
%Uint8ClampedArray%
uint8clamped 1ToUint8Clamp 8-bit unsignedinteger (clamped conversion)
Int16Array
%Int16Array%
int16 2ToInt16 16-bit two's complement signedinteger
Uint16Array
%Uint16Array%
uint16 2ToUint16 16-bit unsignedinteger
Int32Array
%Int32Array%
int32 4ToInt32 32-bit two's complement signedinteger
Uint32Array
%Uint32Array%
uint32 4ToUint32 32-bit unsignedinteger
BigInt64Array
%BigInt64Array%
bigint64 8ToBigInt64 64-bit two's complement signedinteger
BigUint64Array
%BigUint64Array%
biguint64 8ToBigUint64 64-bit unsignedinteger
Float32Array
%Float32Array%
float32 4 32-bit IEEE floating point
Float64Array
%Float64Array%
float64 8 64-bit IEEE floating point

In the definitions below, references toTypedArray should be replaced with the appropriateconstructor name from the above table.

23.2.1 The %TypedArray% Intrinsic Object

The%TypedArray% intrinsic object:

  • is aconstructorfunction object that all of theTypedArrayconstructor objects inherit from.
  • along with its corresponding prototype object, provides common properties that are inherited by allTypedArrayconstructors and their instances.
  • does not have a global name or appear as a property of theglobal object.
  • acts as the abstract superclass of the variousTypedArrayconstructors.
  • will throw an error when invoked, because it is an abstract classconstructor. TheTypedArrayconstructors do not perform asuper call to it.

23.2.1.1 %TypedArray% ( )

This function performs the following steps when called:

  1. Throw aTypeError exception.

The"length" property of this function is+0𝔽.

23.2.2 Properties of the %TypedArray% Intrinsic Object

The%TypedArray% intrinsic object:

  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • has a"name" property whose value is"TypedArray".
  • has the following properties:

23.2.2.1 %TypedArray%.from (source [ ,mapfn [ ,thisArg ] ] )

This method performs the following steps when called:

  1. LetC be thethis value.
  2. IfIsConstructor(C) isfalse, throw aTypeError exception.
  3. Ifmapfn isundefined, then
    1. Letmapping befalse.
  4. Else,
    1. IfIsCallable(mapfn) isfalse, throw aTypeError exception.
    2. Letmapping betrue.
  5. LetusingIterator be ? GetMethod(source,@@iterator).
  6. IfusingIterator is notundefined, then
    1. Letvalues be ? IteratorToList(?GetIteratorFromMethod(source,usingIterator)).
    2. Letlen be the number of elements invalues.
    3. LettargetObj be ? TypedArrayCreateFromConstructor(C, «𝔽(len) »).
    4. Letk be 0.
    5. Repeat, whilek <len,
      1. LetPk be ! ToString(𝔽(k)).
      2. LetkValue be the first element ofvalues.
      3. Remove the first element fromvalues.
      4. Ifmapping istrue, then
        1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
      5. Else,
        1. LetmappedValue bekValue.
      6. Perform ? Set(targetObj,Pk,mappedValue,true).
      7. Setk tok + 1.
    6. Assert:values is now an emptyList.
    7. ReturntargetObj.
  7. NOTE:source is not an Iterable so assume it is already anarray-like object.
  8. LetarrayLike be ! ToObject(source).
  9. Letlen be ? LengthOfArrayLike(arrayLike).
  10. LettargetObj be ? TypedArrayCreateFromConstructor(C, «𝔽(len) »).
  11. Letk be 0.
  12. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Ifmapping istrue, then
      1. LetmappedValue be ? Call(mapfn,thisArg, «kValue,𝔽(k) »).
    4. Else,
      1. LetmappedValue bekValue.
    5. Perform ? Set(targetObj,Pk,mappedValue,true).
    6. Setk tok + 1.
  13. ReturntargetObj.

23.2.2.2 %TypedArray%.of ( ...items )

This method performs the following steps when called:

  1. Letlen be the number of elements initems.
  2. LetC be thethis value.
  3. IfIsConstructor(C) isfalse, throw aTypeError exception.
  4. LetnewObj be ? TypedArrayCreateFromConstructor(C, «𝔽(len) »).
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetkValue beitems[k].
    2. LetPk be ! ToString(𝔽(k)).
    3. Perform ? Set(newObj,Pk,kValue,true).
    4. Setk tok + 1.
  7. ReturnnewObj.

23.2.2.3 %TypedArray%.prototype

The initial value of%TypedArray%.prototype is the%TypedArray% prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

23.2.2.4 get %TypedArray% [ @@species ]

%TypedArray%[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

%TypedArray.prototype% methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

23.2.3 Properties of the %TypedArray% Prototype Object

The%TypedArray% prototype object:

  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is%TypedArray.prototype%.
  • is anordinary object.
  • does not have a[[ViewedArrayBuffer]] or any other of the internal slots that are specific toTypedArray instance objects.

23.2.3.1 %TypedArray%.prototype.at (index )

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetrelativeIndex be ? ToIntegerOrInfinity(index).
  5. IfrelativeIndex ≥ 0, then
    1. Letk berelativeIndex.
  6. Else,
    1. Letk belen +relativeIndex.
  7. Ifk < 0 orklen, returnundefined.
  8. Return ! Get(O, ! ToString(𝔽(k))).

23.2.3.2 get %TypedArray%.prototype.buffer

%TypedArray%.prototype.buffer is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. Returnbuffer.

23.2.3.3 get %TypedArray%.prototype.byteLength

%TypedArray%.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  5. Letsize beTypedArrayByteLength(taRecord).
  6. Return𝔽(size).

23.2.3.4 get %TypedArray%.prototype.byteOffset

%TypedArray%.prototype.byteOffset is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  5. IfIsTypedArrayOutOfBounds(taRecord) istrue, return+0𝔽.
  6. Letoffset beO.[[ByteOffset]].
  7. Return𝔽(offset).

23.2.3.5 %TypedArray%.prototype.constructor

The initial value of%TypedArray%.prototype.constructor is%TypedArray%.

23.2.3.6 %TypedArray%.prototype.copyWithin (target,start [ ,end ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.copyWithin as defined in23.1.3.4.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetrelativeTarget be ? ToIntegerOrInfinity(target).
  5. IfrelativeTarget = -∞, lettargetIndex be 0.
  6. Else ifrelativeTarget < 0, lettargetIndex bemax(len +relativeTarget, 0).
  7. Else, lettargetIndex bemin(relativeTarget,len).
  8. LetrelativeStart be ? ToIntegerOrInfinity(start).
  9. IfrelativeStart = -∞, letstartIndex be 0.
  10. Else ifrelativeStart < 0, letstartIndex bemax(len +relativeStart, 0).
  11. Else, letstartIndex bemin(relativeStart,len).
  12. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  13. IfrelativeEnd = -∞, letendIndex be 0.
  14. Else ifrelativeEnd < 0, letendIndex bemax(len +relativeEnd, 0).
  15. Else, letendIndex bemin(relativeEnd,len).
  16. Letcount bemin(endIndex -startIndex,len -targetIndex).
  17. Ifcount > 0, then
    1. NOTE: The copying must be performed in a manner that preserves the bit-level encoding of the source data.
    2. Letbuffer beO.[[ViewedArrayBuffer]].
    3. SettaRecord toMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
    4. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
    5. Setlen toTypedArrayLength(taRecord).
    6. LetelementSize beTypedArrayElementSize(O).
    7. LetbyteOffset beO.[[ByteOffset]].
    8. LetbufferByteLimit be (len ×elementSize) +byteOffset.
    9. LettoByteIndex be (targetIndex ×elementSize) +byteOffset.
    10. LetfromByteIndex be (startIndex ×elementSize) +byteOffset.
    11. LetcountBytes becount ×elementSize.
    12. IffromByteIndex <toByteIndex andtoByteIndex <fromByteIndex +countBytes, then
      1. Letdirection be -1.
      2. SetfromByteIndex tofromByteIndex +countBytes - 1.
      3. SettoByteIndex totoByteIndex +countBytes - 1.
    13. Else,
      1. Letdirection be 1.
    14. Repeat, whilecountBytes > 0,
      1. IffromByteIndex <bufferByteLimit andtoByteIndex <bufferByteLimit, then
        1. Letvalue beGetValueFromBuffer(buffer,fromByteIndex,uint8,true,unordered).
        2. PerformSetValueInBuffer(buffer,toByteIndex,uint8,value,true,unordered).
        3. SetfromByteIndex tofromByteIndex +direction.
        4. SettoByteIndex totoByteIndex +direction.
        5. SetcountBytes tocountBytes - 1.
      2. Else,
        1. SetcountBytes to 0.
  18. ReturnO.

23.2.3.7 %TypedArray%.prototype.entries ( )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O,seq-cst).
  3. ReturnCreateArrayIterator(O,key+value).

23.2.3.8 %TypedArray%.prototype.every (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.every as defined in23.1.3.6.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult isfalse, returnfalse.
    5. Setk tok + 1.
  7. Returntrue.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.9 %TypedArray%.prototype.fill (value [ ,start [ ,end ] ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.fill as defined in23.1.3.7.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfO.[[ContentType]] isbigint, setvalue to ? ToBigInt(value).
  5. Otherwise, setvalue to ? ToNumber(value).
  6. LetrelativeStart be ? ToIntegerOrInfinity(start).
  7. IfrelativeStart = -∞, letstartIndex be 0.
  8. Else ifrelativeStart < 0, letstartIndex bemax(len +relativeStart, 0).
  9. Else, letstartIndex bemin(relativeStart,len).
  10. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  11. IfrelativeEnd = -∞, letendIndex be 0.
  12. Else ifrelativeEnd < 0, letendIndex bemax(len +relativeEnd, 0).
  13. Else, letendIndex bemin(relativeEnd,len).
  14. SettaRecord toMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  15. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
  16. Setlen toTypedArrayLength(taRecord).
  17. SetendIndex tomin(endIndex,len).
  18. Letk bestartIndex.
  19. Repeat, whilek <endIndex,
    1. LetPk be ! ToString(𝔽(k)).
    2. Perform ! Set(O,Pk,value,true).
    3. Setk tok + 1.
  20. ReturnO.

23.2.3.10 %TypedArray%.prototype.filter (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.filter as defined in23.1.3.8.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letkept be a new emptyList.
  6. Letcaptured be 0.
  7. Letk be 0.
  8. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Letselected beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. Ifselected istrue, then
      1. AppendkValue tokept.
      2. Setcaptured tocaptured + 1.
    5. Setk tok + 1.
  9. LetA be ? TypedArraySpeciesCreate(O, «𝔽(captured) »).
  10. Letn be 0.
  11. For each elemente ofkept, do
    1. Perform ! Set(A, ! ToString(𝔽(n)),e,true).
    2. Setn ton + 1.
  12. ReturnA.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.11 %TypedArray%.prototype.find (predicate [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.find as defined in23.1.3.9.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetfindRec be ? FindViaPredicate(O,len,ascending,predicate,thisArg).
  5. ReturnfindRec.[[Value]].

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.12 %TypedArray%.prototype.findIndex (predicate [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.findIndex as defined in23.1.3.10.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetfindRec be ? FindViaPredicate(O,len,ascending,predicate,thisArg).
  5. ReturnfindRec.[[Index]].

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.13 %TypedArray%.prototype.findLast (predicate [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.findLast as defined in23.1.3.11.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetfindRec be ? FindViaPredicate(O,len,descending,predicate,thisArg).
  5. ReturnfindRec.[[Value]].

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.14 %TypedArray%.prototype.findLastIndex (predicate [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.findLastIndex as defined in23.1.3.12.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetfindRec be ? FindViaPredicate(O,len,descending,predicate,thisArg).
  5. ReturnfindRec.[[Index]].

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.15 %TypedArray%.prototype.forEach (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.forEach as defined in23.1.3.15.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Perform ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Setk tok + 1.
  7. Returnundefined.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.16 %TypedArray%.prototype.includes (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.includes as defined in23.1.3.16.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. Iflen = 0, returnfalse.
  5. Letn be ? ToIntegerOrInfinity(fromIndex).
  6. Assert: IffromIndex isundefined, thenn is 0.
  7. Ifn = +∞, returnfalse.
  8. Else ifn = -∞, setn to 0.
  9. Ifn ≥ 0, then
    1. Letk ben.
  10. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  11. Repeat, whilek <len,
    1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
    2. IfSameValueZero(searchElement,elementK) istrue, returntrue.
    3. Setk tok + 1.
  12. Returnfalse.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.17 %TypedArray%.prototype.indexOf (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.indexOf as defined in23.1.3.17.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. Iflen = 0, return-1𝔽.
  5. Letn be ? ToIntegerOrInfinity(fromIndex).
  6. Assert: IffromIndex isundefined, thenn is 0.
  7. Ifn = +∞, return-1𝔽.
  8. Else ifn = -∞, setn to 0.
  9. Ifn ≥ 0, then
    1. Letk ben.
  10. Else,
    1. Letk belen +n.
    2. Ifk < 0, setk to 0.
  11. Repeat, whilek <len,
    1. LetkPresent be ! HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
      2. IfIsStrictlyEqual(searchElement,elementK) istrue, return𝔽(k).
    3. Setk tok + 1.
  12. Return-1𝔽.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.18 %TypedArray%.prototype.join (separator )

The interpretation and use of the arguments of this method are the same as forArray.prototype.join as defined in23.1.3.18.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. Ifseparator isundefined, letsep be",".
  5. Else, letsep be ? ToString(separator).
  6. LetR be the empty String.
  7. Letk be 0.
  8. Repeat, whilek <len,
    1. Ifk > 0, setR to thestring-concatenation ofR andsep.
    2. Letelement be ! Get(O, ! ToString(𝔽(k))).
    3. Ifelement isundefined, letnext be the empty String; otherwise, letnext be ! ToString(element).
    4. SetR to thestring-concatenation ofR andnext.
    5. Setk tok + 1.
  9. ReturnR.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.19 %TypedArray%.prototype.keys ( )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O,seq-cst).
  3. ReturnCreateArrayIterator(O,key).

23.2.3.20 %TypedArray%.prototype.lastIndexOf (searchElement [ ,fromIndex ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.lastIndexOf as defined in23.1.3.20.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. Iflen = 0, return-1𝔽.
  5. IffromIndex is present, letn be ? ToIntegerOrInfinity(fromIndex); else letn belen - 1.
  6. Ifn = -∞, return-1𝔽.
  7. Ifn ≥ 0, then
    1. Letk bemin(n,len - 1).
  8. Else,
    1. Letk belen +n.
  9. Repeat, whilek ≥ 0,
    1. LetkPresent be ! HasProperty(O, ! ToString(𝔽(k))).
    2. IfkPresent istrue, then
      1. LetelementK be ! Get(O, ! ToString(𝔽(k))).
      2. IfIsStrictlyEqual(searchElement,elementK) istrue, return𝔽(k).
    3. Setk tok - 1.
  10. Return-1𝔽.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.21 get %TypedArray%.prototype.length

%TypedArray%.prototype.length is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  3. Assert:O has[[ViewedArrayBuffer]] and[[ArrayLength]] internal slots.
  4. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  5. IfIsTypedArrayOutOfBounds(taRecord) istrue, return+0𝔽.
  6. Letlength beTypedArrayLength(taRecord).
  7. Return𝔽(length).

This function is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.22 %TypedArray%.prototype.map (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.map as defined in23.1.3.21.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. LetA be ? TypedArraySpeciesCreate(O, «𝔽(len) »).
  6. Letk be 0.
  7. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LetmappedValue be ? Call(callbackfn,thisArg, «kValue,𝔽(k),O »).
    4. Perform ? Set(A,Pk,mappedValue,true).
    5. Setk tok + 1.
  8. ReturnA.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.23 %TypedArray%.prototype.reduce (callbackfn [ ,initialValue ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.reduce as defined in23.1.3.24.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  6. Letk be 0.
  7. Letaccumulator beundefined.
  8. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  9. Else,
    1. LetPk be ! ToString(𝔽(k)).
    2. Setaccumulator to ! Get(O,Pk).
    3. Setk tok + 1.
  10. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok + 1.
  11. Returnaccumulator.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.24 %TypedArray%.prototype.reduceRight (callbackfn [ ,initialValue ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.reduceRight as defined in23.1.3.25.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Iflen = 0 andinitialValue is not present, throw aTypeError exception.
  6. Letk belen - 1.
  7. Letaccumulator beundefined.
  8. IfinitialValue is present, then
    1. Setaccumulator toinitialValue.
  9. Else,
    1. LetPk be ! ToString(𝔽(k)).
    2. Setaccumulator to ! Get(O,Pk).
    3. Setk tok - 1.
  10. Repeat, whilek ≥ 0,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. Setaccumulator to ? Call(callbackfn,undefined, «accumulator,kValue,𝔽(k),O »).
    4. Setk tok - 1.
  11. Returnaccumulator.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.25 %TypedArray%.prototype.reverse ( )

The interpretation and use of the arguments of this method are the same as forArray.prototype.reverse as defined in23.1.3.26.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. Letmiddle befloor(len / 2).
  5. Letlower be 0.
  6. Repeat, whilelowermiddle,
    1. Letupper belen -lower - 1.
    2. LetupperP be ! ToString(𝔽(upper)).
    3. LetlowerP be ! ToString(𝔽(lower)).
    4. LetlowerValue be ! Get(O,lowerP).
    5. LetupperValue be ! Get(O,upperP).
    6. Perform ! Set(O,lowerP,upperValue,true).
    7. Perform ! Set(O,upperP,lowerValue,true).
    8. Setlower tolower + 1.
  7. ReturnO.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.26 %TypedArray%.prototype.set (source [ ,offset ] )

This method sets multiple values in thisTypedArray, reading the values fromsource. The details differ based upon the type ofsource. The optionaloffset value indicates the first element index in thisTypedArray where values are written. If omitted, it is assumed to be 0.

It performs the following steps when called:

  1. Lettarget be thethis value.
  2. Perform ? RequireInternalSlot(target,[[TypedArrayName]]).
  3. Assert:target has a[[ViewedArrayBuffer]] internal slot.
  4. LettargetOffset be ? ToIntegerOrInfinity(offset).
  5. IftargetOffset < 0, throw aRangeError exception.
  6. Ifsourceis an Object that has a[[TypedArrayName]] internal slot, then
    1. Perform ? SetTypedArrayFromTypedArray(target,targetOffset,source).
  7. Else,
    1. Perform ? SetTypedArrayFromArrayLike(target,targetOffset,source).
  8. Returnundefined.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.26.1 SetTypedArrayFromTypedArray (target,targetOffset,source )

The abstract operation SetTypedArrayFromTypedArray takes argumentstarget (aTypedArray),targetOffset (a non-negativeinteger or +∞), andsource (aTypedArray) and returns either anormal completion containingunused or athrow completion. It sets multiple values intarget, starting at indextargetOffset, reading the values fromsource. It performs the following steps when called:

  1. LettargetBuffer betarget.[[ViewedArrayBuffer]].
  2. LettargetRecord beMakeTypedArrayWithBufferWitnessRecord(target,seq-cst).
  3. IfIsTypedArrayOutOfBounds(targetRecord) istrue, throw aTypeError exception.
  4. LettargetLength beTypedArrayLength(targetRecord).
  5. LetsrcBuffer besource.[[ViewedArrayBuffer]].
  6. LetsrcRecord beMakeTypedArrayWithBufferWitnessRecord(source,seq-cst).
  7. IfIsTypedArrayOutOfBounds(srcRecord) istrue, throw aTypeError exception.
  8. LetsrcLength beTypedArrayLength(srcRecord).
  9. LettargetType beTypedArrayElementType(target).
  10. LettargetElementSize beTypedArrayElementSize(target).
  11. LettargetByteOffset betarget.[[ByteOffset]].
  12. LetsrcType beTypedArrayElementType(source).
  13. LetsrcElementSize beTypedArrayElementSize(source).
  14. LetsrcByteOffset besource.[[ByteOffset]].
  15. IftargetOffset = +∞, throw aRangeError exception.
  16. IfsrcLength +targetOffset >targetLength, throw aRangeError exception.
  17. Iftarget.[[ContentType]] is notsource.[[ContentType]], throw aTypeError exception.
  18. IfIsSharedArrayBuffer(srcBuffer) istrue,IsSharedArrayBuffer(targetBuffer) istrue, andsrcBuffer.[[ArrayBufferData]] istargetBuffer.[[ArrayBufferData]], letsameSharedArrayBuffer betrue; otherwise, letsameSharedArrayBuffer befalse.
  19. IfSameValue(srcBuffer,targetBuffer) istrue orsameSharedArrayBuffer istrue, then
    1. LetsrcByteLength beTypedArrayByteLength(srcRecord).
    2. SetsrcBuffer to ? CloneArrayBuffer(srcBuffer,srcByteOffset,srcByteLength).
    3. LetsrcByteIndex be 0.
  20. Else,
    1. LetsrcByteIndex besrcByteOffset.
  21. LettargetByteIndex be (targetOffset ×targetElementSize) +targetByteOffset.
  22. Letlimit betargetByteIndex + (targetElementSize ×srcLength).
  23. IfsrcType istargetType, then
    1. NOTE: The transfer must be performed in a manner that preserves the bit-level encoding of the source data.
    2. Repeat, whiletargetByteIndex <limit,
      1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,uint8,true,unordered).
      2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,uint8,value,true,unordered).
      3. SetsrcByteIndex tosrcByteIndex + 1.
      4. SettargetByteIndex totargetByteIndex + 1.
  24. Else,
    1. Repeat, whiletargetByteIndex <limit,
      1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,srcType,true,unordered).
      2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,targetType,value,true,unordered).
      3. SetsrcByteIndex tosrcByteIndex +srcElementSize.
      4. SettargetByteIndex totargetByteIndex +targetElementSize.
  25. Returnunused.

23.2.3.26.2 SetTypedArrayFromArrayLike (target,targetOffset,source )

The abstract operation SetTypedArrayFromArrayLike takes argumentstarget (aTypedArray),targetOffset (a non-negativeinteger or +∞), andsource (anECMAScript language value, but not aTypedArray) and returns either anormal completion containingunused or athrow completion. It sets multiple values intarget, starting at indextargetOffset, reading the values fromsource. It performs the following steps when called:

  1. LettargetRecord beMakeTypedArrayWithBufferWitnessRecord(target,seq-cst).
  2. IfIsTypedArrayOutOfBounds(targetRecord) istrue, throw aTypeError exception.
  3. LettargetLength beTypedArrayLength(targetRecord).
  4. Letsrc be ? ToObject(source).
  5. LetsrcLength be ? LengthOfArrayLike(src).
  6. IftargetOffset = +∞, throw aRangeError exception.
  7. IfsrcLength +targetOffset >targetLength, throw aRangeError exception.
  8. Letk be 0.
  9. Repeat, whilek <srcLength,
    1. LetPk be ! ToString(𝔽(k)).
    2. Letvalue be ? Get(src,Pk).
    3. LettargetIndex be𝔽(targetOffset +k).
    4. Perform ? TypedArraySetElement(target,targetIndex,value).
    5. Setk tok + 1.
  10. Returnunused.

23.2.3.27 %TypedArray%.prototype.slice (start,end )

The interpretation and use of the arguments of this method are the same as forArray.prototype.slice as defined in23.1.3.28.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. LetsrcArrayLength beTypedArrayLength(taRecord).
  4. LetrelativeStart be ? ToIntegerOrInfinity(start).
  5. IfrelativeStart = -∞, letstartIndex be 0.
  6. Else ifrelativeStart < 0, letstartIndex bemax(srcArrayLength +relativeStart, 0).
  7. Else, letstartIndex bemin(relativeStart,srcArrayLength).
  8. Ifend isundefined, letrelativeEnd besrcArrayLength; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  9. IfrelativeEnd = -∞, letendIndex be 0.
  10. Else ifrelativeEnd < 0, letendIndex bemax(srcArrayLength +relativeEnd, 0).
  11. Else, letendIndex bemin(relativeEnd,srcArrayLength).
  12. LetcountBytes bemax(endIndex -startIndex, 0).
  13. LetA be ? TypedArraySpeciesCreate(O, «𝔽(countBytes) »).
  14. IfcountBytes > 0, then
    1. SettaRecord toMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
    2. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
    3. SetendIndex tomin(endIndex,TypedArrayLength(taRecord)).
    4. SetcountBytes tomax(endIndex -startIndex, 0).
    5. LetsrcType beTypedArrayElementType(O).
    6. LettargetType beTypedArrayElementType(A).
    7. IfsrcType istargetType, then
      1. NOTE: The transfer must be performed in a manner that preserves the bit-level encoding of the source data.
      2. LetsrcBuffer beO.[[ViewedArrayBuffer]].
      3. LettargetBuffer beA.[[ViewedArrayBuffer]].
      4. LetelementSize beTypedArrayElementSize(O).
      5. LetsrcByteOffset beO.[[ByteOffset]].
      6. LetsrcByteIndex be (startIndex ×elementSize) +srcByteOffset.
      7. LettargetByteIndex beA.[[ByteOffset]].
      8. LetendByteIndex betargetByteIndex + (countBytes ×elementSize).
      9. Repeat, whiletargetByteIndex <endByteIndex,
        1. Letvalue beGetValueFromBuffer(srcBuffer,srcByteIndex,uint8,true,unordered).
        2. PerformSetValueInBuffer(targetBuffer,targetByteIndex,uint8,value,true,unordered).
        3. SetsrcByteIndex tosrcByteIndex + 1.
        4. SettargetByteIndex totargetByteIndex + 1.
    8. Else,
      1. Letn be 0.
      2. Letk bestartIndex.
      3. Repeat, whilek <endIndex,
        1. LetPk be ! ToString(𝔽(k)).
        2. LetkValue be ! Get(O,Pk).
        3. Perform ! Set(A, ! ToString(𝔽(n)),kValue,true).
        4. Setk tok + 1.
        5. Setn ton + 1.
  15. ReturnA.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.28 %TypedArray%.prototype.some (callbackfn [ ,thisArg ] )

The interpretation and use of the arguments of this method are the same as forArray.prototype.some as defined in23.1.3.29.

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ! Get(O,Pk).
    3. LettestResult beToBoolean(?Call(callbackfn,thisArg, «kValue,𝔽(k),O »)).
    4. IftestResult istrue, returntrue.
    5. Setk tok + 1.
  7. Returnfalse.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.29 %TypedArray%.prototype.sort (comparefn )

This is a distinct method that, except as described below, implements the same requirements as those ofArray.prototype.sort as defined in23.1.3.30. The implementation of this method may be optimized with the knowledge that thethis value is an object that has a fixed length and whoseinteger-indexed properties are not sparse.

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

It performs the following steps when called:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. Letobj be thethis value.
  3. LettaRecord be ? ValidateTypedArray(obj,seq-cst).
  4. Letlen beTypedArrayLength(taRecord).
  5. NOTE: The following closure performs a numeric comparison rather than the string comparison used in23.1.3.30.
  6. LetSortCompare be a newAbstract Closure with parameters (x,y) that capturescomparefn and performs the following steps when called:
    1. Return ? CompareTypedArrayElements(x,y,comparefn).
  7. LetsortedList be ? SortIndexedProperties(obj,len,SortCompare,read-through-holes).
  8. Letj be 0.
  9. Repeat, whilej <len,
    1. Perform ! Set(obj, ! ToString(𝔽(j)),sortedList[j],true).
    2. Setj toj + 1.
  10. Returnobj.
Note

BecauseNaN always compares greater than any other value (seeCompareTypedArrayElements),NaN property values always sort to the end of the result whencomparefn is not provided.

23.2.3.30 %TypedArray%.prototype.subarray (start,end )

This method returns a newTypedArray whose element type is the element type of thisTypedArray and whose ArrayBuffer is the ArrayBuffer of thisTypedArray, referencing the elements in theinterval fromstart (inclusive) toend (exclusive). If eitherstart orend is negative, it refers to an index from the end of the array, as opposed to from the beginning.

It performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. LetsrcRecord beMakeTypedArrayWithBufferWitnessRecord(O,seq-cst).
  6. IfIsTypedArrayOutOfBounds(srcRecord) istrue, then
    1. LetsrcLength be 0.
  7. Else,
    1. LetsrcLength beTypedArrayLength(srcRecord).
  8. LetrelativeStart be ? ToIntegerOrInfinity(start).
  9. IfrelativeStart = -∞, letstartIndex be 0.
  10. Else ifrelativeStart < 0, letstartIndex bemax(srcLength +relativeStart, 0).
  11. Else, letstartIndex bemin(relativeStart,srcLength).
  12. LetelementSize beTypedArrayElementSize(O).
  13. LetsrcByteOffset beO.[[ByteOffset]].
  14. LetbeginByteOffset besrcByteOffset + (startIndex ×elementSize).
  15. IfO.[[ArrayLength]] isauto andend isundefined, then
    1. LetargumentsList be «buffer,𝔽(beginByteOffset) ».
  16. Else,
    1. Ifend isundefined, letrelativeEnd besrcLength; else letrelativeEnd be ? ToIntegerOrInfinity(end).
    2. IfrelativeEnd = -∞, letendIndex be 0.
    3. Else ifrelativeEnd < 0, letendIndex bemax(srcLength +relativeEnd, 0).
    4. Else, letendIndex bemin(relativeEnd,srcLength).
    5. LetnewLength bemax(endIndex -startIndex, 0).
    6. LetargumentsList be «buffer,𝔽(beginByteOffset),𝔽(newLength) ».
  17. Return ? TypedArraySpeciesCreate(O,argumentsList).

This method is not generic. Thethis value must be an object with a[[TypedArrayName]] internal slot.

23.2.3.31 %TypedArray%.prototype.toLocaleString ( [reserved1 [ ,reserved2 ] ] )

This is a distinct method that implements the same algorithm asArray.prototype.toLocaleString as defined in23.1.3.32 except thatTypedArrayLength is called in place of performing a[[Get]] of"length". The implementation of the algorithm may be optimized with the knowledge that thethis value has a fixed length when the underlying buffer is not resizable and whoseinteger-indexed properties are not sparse. However, such optimization must not introduce any observable changes in the specified behaviour of the algorithm.

This method is not generic.ValidateTypedArray is called with thethis value andseq-cst as arguments prior to evaluating the algorithm. If its result is anabrupt completion that exception is thrown instead of evaluating the algorithm.

Note

If the ECMAScript implementation includes the ECMA-402 Internationalization API this method is based upon the algorithm forArray.prototype.toLocaleString that is in the ECMA-402 specification.

23.2.3.32 %TypedArray%.prototype.toReversed ( )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlength beTypedArrayLength(taRecord).
  4. LetA be ? TypedArrayCreateSameType(O, «𝔽(length) »).
  5. Letk be 0.
  6. Repeat, whilek <length,
    1. Letfrom be ! ToString(𝔽(length -k - 1)).
    2. LetPk be ! ToString(𝔽(k)).
    3. LetfromValue be ! Get(O,from).
    4. Perform ! Set(A,Pk,fromValue,true).
    5. Setk tok + 1.
  7. ReturnA.

23.2.3.33 %TypedArray%.prototype.toSorted (comparefn )

This method performs the following steps when called:

  1. Ifcomparefn is notundefined andIsCallable(comparefn) isfalse, throw aTypeError exception.
  2. LetO be thethis value.
  3. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  4. Letlen beTypedArrayLength(taRecord).
  5. LetA be ? TypedArrayCreateSameType(O, «𝔽(len) »).
  6. NOTE: The following closure performs a numeric comparison rather than the string comparison used in23.1.3.34.
  7. LetSortCompare be a newAbstract Closure with parameters (x,y) that capturescomparefn and performs the following steps when called:
    1. Return ? CompareTypedArrayElements(x,y,comparefn).
  8. LetsortedList be ? SortIndexedProperties(O,len,SortCompare,read-through-holes).
  9. Letj be 0.
  10. Repeat, whilej <len,
    1. Perform ! Set(A, ! ToString(𝔽(j)),sortedList[j],true).
    2. Setj toj + 1.
  11. ReturnA.

23.2.3.34 %TypedArray%.prototype.toString ( )

The initial value of the"toString" property is %Array.prototype.toString%, defined in23.1.3.36.

23.2.3.35 %TypedArray%.prototype.values ( )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? ValidateTypedArray(O,seq-cst).
  3. ReturnCreateArrayIterator(O,value).

23.2.3.36 %TypedArray%.prototype.with (index,value )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. LettaRecord be ? ValidateTypedArray(O,seq-cst).
  3. Letlen beTypedArrayLength(taRecord).
  4. LetrelativeIndex be ? ToIntegerOrInfinity(index).
  5. IfrelativeIndex ≥ 0, letactualIndex berelativeIndex.
  6. Else, letactualIndex belen +relativeIndex.
  7. IfO.[[ContentType]] isbigint, letnumericValue be ? ToBigInt(value).
  8. Else, letnumericValue be ? ToNumber(value).
  9. IfIsValidIntegerIndex(O,𝔽(actualIndex)) isfalse, throw aRangeError exception.
  10. LetA be ? TypedArrayCreateSameType(O, «𝔽(len) »).
  11. Letk be 0.
  12. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. Ifk isactualIndex, letfromValue benumericValue.
    3. Else, letfromValue be ! Get(O,Pk).
    4. Perform ! Set(A,Pk,fromValue,true).
    5. Setk tok + 1.
  13. ReturnA.

23.2.3.37 %TypedArray%.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is %TypedArray.prototype.values%, defined in23.2.3.35.

23.2.3.38 get %TypedArray%.prototype [ @@toStringTag ]

%TypedArray%.prototype[@@toStringTag] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. IfOis not an Object, returnundefined.
  3. IfO does not have a[[TypedArrayName]] internal slot, returnundefined.
  4. Letname beO.[[TypedArrayName]].
  5. Assert:nameis a String.
  6. Returnname.

This property has the attributes {[[Enumerable]]:false,[[Configurable]]:true }.

The initial value of the"name" property of this function is"get [Symbol.toStringTag]".

23.2.4 Abstract Operations for TypedArray Objects

23.2.4.1 TypedArraySpeciesCreate (exemplar,argumentList )

The abstract operation TypedArraySpeciesCreate takes argumentsexemplar (aTypedArray) andargumentList (aList ofECMAScript language values) and returns either anormal completion containing aTypedArray or athrow completion. It is used to specify the creation of a newTypedArray using aconstructor function that is derived fromexemplar. UnlikeArraySpeciesCreate, which can create non-Array objects through the use of@@species, this operation enforces that theconstructor function creates an actualTypedArray. It performs the following steps when called:

  1. LetdefaultConstructor be the intrinsic object associated with theconstructor nameexemplar.[[TypedArrayName]] inTable 71.
  2. Letconstructor be ? SpeciesConstructor(exemplar,defaultConstructor).
  3. Letresult be ? TypedArrayCreateFromConstructor(constructor,argumentList).
  4. Assert:result has[[TypedArrayName]] and[[ContentType]] internal slots.
  5. Ifresult.[[ContentType]] is notexemplar.[[ContentType]], throw aTypeError exception.
  6. Returnresult.

23.2.4.2 TypedArrayCreateFromConstructor (constructor,argumentList )

The abstract operation TypedArrayCreateFromConstructor takes argumentsconstructor (aconstructor) andargumentList (aList ofECMAScript language values) and returns either anormal completion containing aTypedArray or athrow completion. It is used to specify the creation of a newTypedArray using aconstructor function. It performs the following steps when called:

  1. LetnewTypedArray be ? Construct(constructor,argumentList).
  2. LettaRecord be ? ValidateTypedArray(newTypedArray,seq-cst).
  3. If the number of elements inargumentList is 1 andargumentList[0]is a Number, then
    1. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
    2. Letlength beTypedArrayLength(taRecord).
    3. Iflength <(argumentList[0]), throw aTypeError exception.
  4. ReturnnewTypedArray.

23.2.4.3 TypedArrayCreateSameType (exemplar,argumentList )

The abstract operation TypedArrayCreateSameType takes argumentsexemplar (aTypedArray) andargumentList (aList ofECMAScript language values) and returns either anormal completion containing aTypedArray or athrow completion. It is used to specify the creation of a newTypedArray using aconstructor function that is derived fromexemplar. UnlikeTypedArraySpeciesCreate, which can construct customTypedArray subclasses through the use of@@species, this operation always uses one of the built-inTypedArrayconstructors. It performs the following steps when called:

  1. Letconstructor be the intrinsic object associated with theconstructor nameexemplar.[[TypedArrayName]] inTable 71.
  2. Letresult be ? TypedArrayCreateFromConstructor(constructor,argumentList).
  3. Assert:result has[[TypedArrayName]] and[[ContentType]] internal slots.
  4. Assert:result.[[ContentType]] isexemplar.[[ContentType]].
  5. Returnresult.

23.2.4.4 ValidateTypedArray (O,order )

The abstract operation ValidateTypedArray takes argumentsO (anECMAScript language value) andorder (seq-cst orunordered) and returns either anormal completion containing aTypedArray With Buffer Witness Record or athrow completion. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(O,[[TypedArrayName]]).
  2. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  3. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(O,order).
  4. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
  5. ReturntaRecord.

23.2.4.5 TypedArrayElementSize (O )

The abstract operation TypedArrayElementSize takes argumentO (aTypedArray) and returns a non-negativeinteger. It performs the following steps when called:

  1. Return the Element Size value specified inTable 71 forO.[[TypedArrayName]].

23.2.4.6 TypedArrayElementType (O )

The abstract operation TypedArrayElementType takes argumentO (aTypedArray) and returns aTypedArray element type. It performs the following steps when called:

  1. Return the Element Type value specified inTable 71 forO.[[TypedArrayName]].

23.2.4.7 CompareTypedArrayElements (x,y,comparefn )

The abstract operation CompareTypedArrayElements takes argumentsx (a Number or a BigInt),y (a Number or a BigInt), andcomparefn (afunction object orundefined) and returns either anormal completion containing a Number or anabrupt completion. It performs the following steps when called:

  1. Assert:xis a Number andyis a Number, orxis a BigInt andyis a BigInt.
  2. Ifcomparefn is notundefined, then
    1. Letv be ? ToNumber(?Call(comparefn,undefined, «x,y »)).
    2. Ifv isNaN, return+0𝔽.
    3. Returnv.
  3. Ifx andy are bothNaN, return+0𝔽.
  4. Ifx isNaN, return1𝔽.
  5. Ify isNaN, return-1𝔽.
  6. Ifx <y, return-1𝔽.
  7. Ifx >y, return1𝔽.
  8. Ifx is-0𝔽 andy is+0𝔽, return-1𝔽.
  9. Ifx is+0𝔽 andy is-0𝔽, return1𝔽.
  10. Return+0𝔽.
Note
This performs a numeric comparison rather than the string comparison used in23.1.3.30.2.

23.2.5 TheTypedArray Constructors

EachTypedArrayconstructor:

  • is an intrinsic object that has the structure described below, differing only in the name used as theconstructor name instead ofTypedArray, inTable 71.
  • is a function whose behaviour differs based upon the number and types of its arguments. The actual behaviour of a call ofTypedArray depends upon the number and kind of arguments that are passed to it.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specifiedTypedArray behaviour must include asuper call to theTypedArrayconstructor to create and initialize the subclass instance with the internal state necessary to support the%TypedArray%.prototype built-in methods.

23.2.5.1TypedArray ( ...args )

EachTypedArrayconstructor performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetconstructorName be the String value of theConstructor Name value specified inTable 71 for thisTypedArrayconstructor.
  3. Letproto be"%TypedArray.prototype%".
  4. LetnumberOfArgs be the number of elements inargs.
  5. IfnumberOfArgs = 0, then
    1. Return ? AllocateTypedArray(constructorName, NewTarget,proto, 0).
  6. Else,
    1. LetfirstArgument beargs[0].
    2. IffirstArgumentis an Object, then
      1. LetO be ? AllocateTypedArray(constructorName, NewTarget,proto).
      2. IffirstArgument has a[[TypedArrayName]] internal slot, then
        1. Perform ? InitializeTypedArrayFromTypedArray(O,firstArgument).
      3. Else iffirstArgument has an[[ArrayBufferData]] internal slot, then
        1. IfnumberOfArgs > 1, letbyteOffset beargs[1]; else letbyteOffset beundefined.
        2. IfnumberOfArgs > 2, letlength beargs[2]; else letlength beundefined.
        3. Perform ? InitializeTypedArrayFromArrayBuffer(O,firstArgument,byteOffset,length).
      4. Else,
        1. Assert:firstArgumentis an Object andfirstArgument does not have either a[[TypedArrayName]] or an[[ArrayBufferData]] internal slot.
        2. LetusingIterator be ? GetMethod(firstArgument,@@iterator).
        3. IfusingIterator is notundefined, then
          1. Letvalues be ? IteratorToList(?GetIteratorFromMethod(firstArgument,usingIterator)).
          2. Perform ? InitializeTypedArrayFromList(O,values).
        4. Else,
          1. NOTE:firstArgument is not an Iterable so assume it is already anarray-like object.
          2. Perform ? InitializeTypedArrayFromArrayLike(O,firstArgument).
      5. ReturnO.
    3. Else,
      1. Assert:firstArgumentis not an Object.
      2. LetelementLength be ? ToIndex(firstArgument).
      3. Return ? AllocateTypedArray(constructorName, NewTarget,proto,elementLength).

23.2.5.1.1 AllocateTypedArray (constructorName,newTarget,defaultProto [ ,length ] )

The abstract operation AllocateTypedArray takes argumentsconstructorName (a String which is the name of aTypedArrayconstructor inTable 71),newTarget (aconstructor), anddefaultProto (a String) and optional argumentlength (a non-negativeinteger) and returns either anormal completion containing aTypedArray or athrow completion. It is used to validate and create an instance of aTypedArrayconstructor. If thelength argument is passed, an ArrayBuffer of that length is also allocated and associated with the newTypedArray instance. AllocateTypedArray provides common semantics that is used byTypedArray. It performs the following steps when called:

  1. Letproto be ? GetPrototypeFromConstructor(newTarget,defaultProto).
  2. Letobj beTypedArrayCreate(proto).
  3. Assert:obj.[[ViewedArrayBuffer]] isundefined.
  4. Setobj.[[TypedArrayName]] toconstructorName.
  5. IfconstructorName is either"BigInt64Array" or"BigUint64Array", setobj.[[ContentType]] tobigint.
  6. Otherwise, setobj.[[ContentType]] tonumber.
  7. Iflength is not present, then
    1. Setobj.[[ByteLength]] to 0.
    2. Setobj.[[ByteOffset]] to 0.
    3. Setobj.[[ArrayLength]] to 0.
  8. Else,
    1. Perform ? AllocateTypedArrayBuffer(obj,length).
  9. Returnobj.

23.2.5.1.2 InitializeTypedArrayFromTypedArray (O,srcArray )

The abstract operation InitializeTypedArrayFromTypedArray takes argumentsO (aTypedArray) andsrcArray (aTypedArray) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. LetsrcData besrcArray.[[ViewedArrayBuffer]].
  2. LetelementType beTypedArrayElementType(O).
  3. LetelementSize beTypedArrayElementSize(O).
  4. LetsrcType beTypedArrayElementType(srcArray).
  5. LetsrcElementSize beTypedArrayElementSize(srcArray).
  6. LetsrcByteOffset besrcArray.[[ByteOffset]].
  7. LetsrcRecord beMakeTypedArrayWithBufferWitnessRecord(srcArray,seq-cst).
  8. IfIsTypedArrayOutOfBounds(srcRecord) istrue, throw aTypeError exception.
  9. LetelementLength beTypedArrayLength(srcRecord).
  10. LetbyteLength beelementSize ×elementLength.
  11. IfelementType issrcType, then
    1. Letdata be ? CloneArrayBuffer(srcData,srcByteOffset,byteLength).
  12. Else,
    1. Letdata be ? AllocateArrayBuffer(%ArrayBuffer%,byteLength).
    2. IfsrcArray.[[ContentType]] is notO.[[ContentType]], throw aTypeError exception.
    3. LetsrcByteIndex besrcByteOffset.
    4. LettargetByteIndex be 0.
    5. Letcount beelementLength.
    6. Repeat, whilecount > 0,
      1. Letvalue beGetValueFromBuffer(srcData,srcByteIndex,srcType,true,unordered).
      2. PerformSetValueInBuffer(data,targetByteIndex,elementType,value,true,unordered).
      3. SetsrcByteIndex tosrcByteIndex +srcElementSize.
      4. SettargetByteIndex totargetByteIndex +elementSize.
      5. Setcount tocount - 1.
  13. SetO.[[ViewedArrayBuffer]] todata.
  14. SetO.[[ByteLength]] tobyteLength.
  15. SetO.[[ByteOffset]] to 0.
  16. SetO.[[ArrayLength]] toelementLength.
  17. Returnunused.

23.2.5.1.3 InitializeTypedArrayFromArrayBuffer (O,buffer,byteOffset,length )

The abstract operation InitializeTypedArrayFromArrayBuffer takes argumentsO (aTypedArray),buffer (an ArrayBuffer or a SharedArrayBuffer),byteOffset (anECMAScript language value), andlength (anECMAScript language value) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. LetelementSize beTypedArrayElementSize(O).
  2. Letoffset be ? ToIndex(byteOffset).
  3. IfoffsetmoduloelementSize ≠ 0, throw aRangeError exception.
  4. LetbufferIsFixedLength beIsFixedLengthArrayBuffer(buffer).
  5. Iflength is notundefined, then
    1. LetnewLength be ? ToIndex(length).
  6. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  7. LetbufferByteLength beArrayBufferByteLength(buffer,seq-cst).
  8. Iflength isundefined andbufferIsFixedLength isfalse, then
    1. Ifoffset >bufferByteLength, throw aRangeError exception.
    2. SetO.[[ByteLength]] toauto.
    3. SetO.[[ArrayLength]] toauto.
  9. Else,
    1. Iflength isundefined, then
      1. IfbufferByteLengthmoduloelementSize ≠ 0, throw aRangeError exception.
      2. LetnewByteLength bebufferByteLength -offset.
      3. IfnewByteLength < 0, throw aRangeError exception.
    2. Else,
      1. LetnewByteLength benewLength ×elementSize.
      2. Ifoffset +newByteLength >bufferByteLength, throw aRangeError exception.
    3. SetO.[[ByteLength]] tonewByteLength.
    4. SetO.[[ArrayLength]] tonewByteLength /elementSize.
  10. SetO.[[ViewedArrayBuffer]] tobuffer.
  11. SetO.[[ByteOffset]] tooffset.
  12. Returnunused.

23.2.5.1.4 InitializeTypedArrayFromList (O,values )

The abstract operation InitializeTypedArrayFromList takes argumentsO (aTypedArray) andvalues (aList ofECMAScript language values) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letlen be the number of elements invalues.
  2. Perform ? AllocateTypedArrayBuffer(O,len).
  3. Letk be 0.
  4. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be the first element ofvalues.
    3. Remove the first element fromvalues.
    4. Perform ? Set(O,Pk,kValue,true).
    5. Setk tok + 1.
  5. Assert:values is now an emptyList.
  6. Returnunused.

23.2.5.1.5 InitializeTypedArrayFromArrayLike (O,arrayLike )

The abstract operation InitializeTypedArrayFromArrayLike takes argumentsO (aTypedArray) andarrayLike (an Object, but not aTypedArray or an ArrayBuffer) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letlen be ? LengthOfArrayLike(arrayLike).
  2. Perform ? AllocateTypedArrayBuffer(O,len).
  3. Letk be 0.
  4. Repeat, whilek <len,
    1. LetPk be ! ToString(𝔽(k)).
    2. LetkValue be ? Get(arrayLike,Pk).
    3. Perform ? Set(O,Pk,kValue,true).
    4. Setk tok + 1.
  5. Returnunused.

23.2.5.1.6 AllocateTypedArrayBuffer (O,length )

The abstract operation AllocateTypedArrayBuffer takes argumentsO (aTypedArray) andlength (a non-negativeinteger) and returns either anormal completion containingunused or athrow completion. It allocates and associates an ArrayBuffer withO. It performs the following steps when called:

  1. Assert:O.[[ViewedArrayBuffer]] isundefined.
  2. LetelementSize beTypedArrayElementSize(O).
  3. LetbyteLength beelementSize ×length.
  4. Letdata be ? AllocateArrayBuffer(%ArrayBuffer%,byteLength).
  5. SetO.[[ViewedArrayBuffer]] todata.
  6. SetO.[[ByteLength]] tobyteLength.
  7. SetO.[[ByteOffset]] to 0.
  8. SetO.[[ArrayLength]] tolength.
  9. Returnunused.

23.2.6 Properties of theTypedArray Constructors

EachTypedArrayconstructor:

  • has a[[Prototype]] internal slot whose value is%TypedArray%.
  • has a"length" property whose value is3𝔽.
  • has a"name" property whose value is the String value of theconstructor name specified for it inTable 71.
  • has the following properties:

23.2.6.1TypedArray.BYTES_PER_ELEMENT

The value ofTypedArray.BYTES_PER_ELEMENT is the Element Size value specified inTable 71 forTypedArray.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

23.2.6.2TypedArray.prototype

The initial value ofTypedArray.prototype is the correspondingTypedArray prototype intrinsic object (23.2.7).

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

23.2.7 Properties of theTypedArray Prototype Objects

EachTypedArray prototype object:

  • has a[[Prototype]] internal slot whose value is%TypedArray.prototype%.
  • is anordinary object.
  • does not have a[[ViewedArrayBuffer]] or any other of the internal slots that are specific toTypedArray instance objects.

23.2.7.1TypedArray.prototype.BYTES_PER_ELEMENT

The value ofTypedArray.prototype.BYTES_PER_ELEMENT is the Element Size value specified inTable 71 forTypedArray.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

23.2.7.2TypedArray.prototype.constructor

The initial value of the"constructor" property of the prototype for a givenTypedArrayconstructor is theconstructor itself.

23.2.8 Properties ofTypedArray Instances

TypedArray instances areTypedArrays. EachTypedArray instance inherits properties from the correspondingTypedArray prototype object. EachTypedArray instance has the following internal slots:[[TypedArrayName]],[[ViewedArrayBuffer]],[[ByteLength]],[[ByteOffset]], and[[ArrayLength]].

24 Keyed Collections

24.1 Map Objects

Maps are collections of key/value pairs where both the keys and values may be arbitraryECMAScript language values. A distinct key value may only occur in one key/value pair within the Map's collection. Distinct key values are discriminated using theSameValueZero comparison algorithm.

Maps must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structure used in this specification is only intended to describe the required observable semantics of Maps. It is not intended to be a viable implementation model.

24.1.1 The Map Constructor

The Mapconstructor:

  • is%Map%.
  • is the initial value of the"Map" property of theglobal object.
  • creates and initializes a new Map when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Map behaviour must include asuper call to the Mapconstructor to create and initialize the subclass instance with the internal state necessary to support theMap.prototype built-in methods.

24.1.1.1 Map ( [iterable ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letmap be ? OrdinaryCreateFromConstructor(NewTarget,"%Map.prototype%", «[[MapData]] »).
  3. Setmap.[[MapData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnmap.
  5. Letadder be ? Get(map,"set").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. Return ? AddEntriesFromIterable(map,iterable,adder).
Note

If the parameteriterable is present, it is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a Map key and whose second element is the value to associate with that key.

24.1.1.2 AddEntriesFromIterable (target,iterable,adder )

The abstract operation AddEntriesFromIterable takes argumentstarget (an Object),iterable (anECMAScript language value, but notundefined ornull), andadder (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion.adder will be invoked, withtarget as the receiver. It performs the following steps when called:

  1. LetiteratorRecord be ? GetIterator(iterable,sync).
  2. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returntarget.
    3. Ifnextis not an Object, then
      1. Leterror beThrowCompletion(a newly createdTypeError object).
      2. Return ? IteratorClose(iteratorRecord,error).
    4. Letk beCompletion(Get(next,"0")).
    5. IfAbruptCloseIterator(k,iteratorRecord).
    6. Letv beCompletion(Get(next,"1")).
    7. IfAbruptCloseIterator(v,iteratorRecord).
    8. Letstatus beCompletion(Call(adder,target, «k,v »)).
    9. IfAbruptCloseIterator(status,iteratorRecord).
Note

The parameteriterable is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a Map key and whose second element is the value to associate with that key.

24.1.2 Properties of the Map Constructor

The Mapconstructor:

24.1.2.1 Map.groupBy (items,callbackfn )

Note

callbackfn should be a function that accepts two arguments.groupBy callscallbackfn once for each element initems, in ascending order, and constructs a new Map. Each value returned bycallbackfn is used as a key in the Map. For each such key, the result Map has an entry whose key is that key and whose value is an array containing all the elements for whichcallbackfn returned that key.

callbackfn is called with two arguments: the value of the element and the index of the element.

The return value ofgroupBy is a Map.

This function performs the following steps when called:

  1. Letgroups be ? GroupBy(items,callbackfn,zero).
  2. Letmap be ! Construct(%Map%).
  3. For eachRecord {[[Key]],[[Elements]] }g ofgroups, do
    1. Letelements beCreateArrayFromList(g.[[Elements]]).
    2. Letentry be theRecord {[[Key]]:g.[[Key]],[[Value]]:elements }.
    3. Appendentry tomap.[[MapData]].
  4. Returnmap.

24.1.2.2 Map.prototype

The initial value ofMap.prototype is theMap prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

24.1.2.3 get Map [ @@species ]

Map[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Methods that create derived collection objects should call@@species to determine theconstructor to use to create the derived objects. Subclassconstructor may over-ride@@species to change the defaultconstructor assignment.

24.1.3 Properties of the Map Prototype Object

TheMap prototype object:

24.1.3.1 Map.prototype.clear ( )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Setp.[[Key]] toempty.
    2. Setp.[[Value]] toempty.
  4. Returnundefined.
Note

The existing[[MapData]]List is preserved because there may be existing Map Iterator objects that are suspended midway through iterating over thatList.

24.1.3.2 Map.prototype.constructor

The initial value ofMap.prototype.constructor is%Map%.

24.1.3.3 Map.prototype.delete (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, then
      1. Setp.[[Key]] toempty.
      2. Setp.[[Value]] toempty.
      3. Returntrue.
  4. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.1.3.4 Map.prototype.entries ( )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,key+value).

24.1.3.5 Map.prototype.forEach (callbackfn [ ,thisArg ] )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letentries beM.[[MapData]].
  5. LetnumEntries be the number of elements inentries.
  6. Letindex be 0.
  7. Repeat, whileindex <numEntries,
    1. Lete beentries[index].
    2. Setindex toindex + 1.
    3. Ife.[[Key]] is notempty, then
      1. Perform ? Call(callbackfn,thisArg, «e.[[Value]],e.[[Key]],M »).
      2. NOTE: The number of elements inentries may have increased during execution ofcallbackfn.
      3. SetnumEntries to the number of elements inentries.
  8. Returnundefined.
Note

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each key/value pair present in the Map, in key insertion order.callbackfn is called only for keys of the Map which actually exist; it is not called for keys that have been deleted from the Map.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the value of the item, the key of the item, and the Map being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn. Each entry of a map's[[MapData]] is only visited once. New keys added after the call toforEach begins are visited. A key will be revisited if it is deleted after it has been visited and then re-added before theforEach call completes. Keys that are deleted after the call toforEach begins and before being visited are not visited unless the key is added again before theforEach call completes.

24.1.3.6 Map.prototype.get (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, returnp.[[Value]].
  4. Returnundefined.

24.1.3.7 Map.prototype.has (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, returntrue.
  4. Returnfalse.

24.1.3.8 Map.prototype.keys ( )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,key).

24.1.3.9 Map.prototype.set (key,value )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Ifp.[[Key]] is notempty andSameValueZero(p.[[Key]],key) istrue, then
      1. Setp.[[Value]] tovalue.
      2. ReturnM.
  4. Ifkey is-0𝔽, setkey to+0𝔽.
  5. Letp be theRecord {[[Key]]:key,[[Value]]:value }.
  6. Appendp toM.[[MapData]].
  7. ReturnM.

24.1.3.10 get Map.prototype.size

Map.prototype.size is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[MapData]]).
  3. Letcount be 0.
  4. For eachRecord {[[Key]],[[Value]] }p ofM.[[MapData]], do
    1. Ifp.[[Key]] is notempty, setcount tocount + 1.
  5. Return𝔽(count).

24.1.3.11 Map.prototype.values ( )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Return ? CreateMapIterator(M,value).

24.1.3.12 Map.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is %Map.prototype.entries%, defined in24.1.3.4.

24.1.3.13 Map.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Map".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.1.4 Properties of Map Instances

Map instances areordinary objects that inherit properties from the Map prototype. Map instances also have a[[MapData]] internal slot.

24.1.5 Map Iterator Objects

A Map Iterator is an object, that represents a specific iteration over some specific Map instance object. There is not a namedconstructor for Map Iterator objects. Instead, map iterator objects are created by calling certain methods of Map instance objects.

24.1.5.1 CreateMapIterator (map,kind )

The abstract operation CreateMapIterator takes argumentsmap (anECMAScript language value) andkind (key+value,key, orvalue) and returns either anormal completion containing a Generator or athrow completion. It is used to create iterator objects for Map methods that return such iterators. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(map,[[MapData]]).
  2. Letclosure be a newAbstract Closure with no parameters that capturesmap andkind and performs the following steps when called:
    1. Letentries bemap.[[MapData]].
    2. Letindex be 0.
    3. LetnumEntries be the number of elements inentries.
    4. Repeat, whileindex <numEntries,
      1. Lete beentries[index].
      2. Setindex toindex + 1.
      3. Ife.[[Key]] is notempty, then
        1. Ifkind iskey, then
          1. Letresult bee.[[Key]].
        2. Else ifkind isvalue, then
          1. Letresult bee.[[Value]].
        3. Else,
          1. Assert:kind iskey+value.
          2. Letresult beCreateArrayFromListe.[[Key]],e.[[Value]] »).
        4. Perform ? GeneratorYield(CreateIterResultObject(result,false)).
        5. NOTE: The number of elements inentries may have increased while execution of this abstract operation was paused byYield.
        6. SetnumEntries to the number of elements inentries.
    5. Returnundefined.
  3. ReturnCreateIteratorFromClosure(closure,"%MapIteratorPrototype%",%MapIteratorPrototype%).

24.1.5.2 The %MapIteratorPrototype% Object

The%MapIteratorPrototype% object:

  • has properties that are inherited by all Map Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

24.1.5.2.1 %MapIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%MapIteratorPrototype%").

24.1.5.2.2 %MapIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Map Iterator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.2 Set Objects

Set objects are collections ofECMAScript language values. A distinct value may only occur once as an element of a Set's collection. Distinct values are discriminated using theSameValueZero comparison algorithm.

Set objects must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structure used in this specification is only intended to describe the required observable semantics of Set objects. It is not intended to be a viable implementation model.

24.2.1 The Set Constructor

The Setconstructor:

  • is%Set%.
  • is the initial value of the"Set" property of theglobal object.
  • creates and initializes a new Set object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Set behaviour must include asuper call to the Setconstructor to create and initialize the subclass instance with the internal state necessary to support theSet.prototype built-in methods.

24.2.1.1 Set ( [iterable ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letset be ? OrdinaryCreateFromConstructor(NewTarget,"%Set.prototype%", «[[SetData]] »).
  3. Setset.[[SetData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnset.
  5. Letadder be ? Get(set,"add").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. LetiteratorRecord be ? GetIterator(iterable,sync).
  8. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returnset.
    3. Letstatus beCompletion(Call(adder,set, «next »)).
    4. IfAbruptCloseIterator(status,iteratorRecord).

24.2.2 Properties of the Set Constructor

The Setconstructor:

24.2.2.1 Set.prototype

The initial value ofSet.prototype is theSet prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

24.2.2.2 get Set [ @@species ]

Set[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Methods that create derived collection objects should call@@species to determine theconstructor to use to create the derived objects. Subclassconstructor may over-ride@@species to change the defaultconstructor assignment.

24.2.3 Properties of the Set Prototype Object

TheSet prototype object:

24.2.3.1 Set.prototype.add (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. For each elemente ofS.[[SetData]], do
    1. Ife is notempty andSameValueZero(e,value) istrue, then
      1. ReturnS.
  4. Ifvalue is-0𝔽, setvalue to+0𝔽.
  5. Appendvalue toS.[[SetData]].
  6. ReturnS.

24.2.3.2 Set.prototype.clear ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. For each elemente ofS.[[SetData]], do
    1. Replace the element ofS.[[SetData]] whose value ise with an element whose value isempty.
  4. Returnundefined.
Note

The existing[[SetData]]List is preserved because there may be existing Set Iterator objects that are suspended midway through iterating over thatList.

24.2.3.3 Set.prototype.constructor

The initial value ofSet.prototype.constructor is%Set%.

24.2.3.4 Set.prototype.delete (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. For each elemente ofS.[[SetData]], do
    1. Ife is notempty andSameValueZero(e,value) istrue, then
      1. Replace the element ofS.[[SetData]] whose value ise with an element whose value isempty.
      2. Returntrue.
  4. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.2.3.5 Set.prototype.entries ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateSetIterator(S,key+value).
Note

For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

24.2.3.6 Set.prototype.forEach (callbackfn [ ,thisArg ] )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. IfIsCallable(callbackfn) isfalse, throw aTypeError exception.
  4. Letentries beS.[[SetData]].
  5. LetnumEntries be the number of elements inentries.
  6. Letindex be 0.
  7. Repeat, whileindex <numEntries,
    1. Lete beentries[index].
    2. Setindex toindex + 1.
    3. Ife is notempty, then
      1. Perform ? Call(callbackfn,thisArg, «e,e,S »).
      2. NOTE: The number of elements inentries may have increased during execution ofcallbackfn.
      3. SetnumEntries to the number of elements inentries.
  8. Returnundefined.
Note

callbackfn should be a function that accepts three arguments.forEach callscallbackfn once for each value present in the Set object, in value insertion order.callbackfn is called only for values of the Set which actually exist; it is not called for keys that have been deleted from the set.

If athisArg parameter is provided, it will be used as thethis value for each invocation ofcallbackfn. If it is not provided,undefined is used instead.

callbackfn is called with three arguments: the first two arguments are a value contained in the Set. The same value is passed for both arguments. The Set object being traversed is passed as the third argument.

Thecallbackfn is called with three arguments to be consistent with the call back functions used byforEach methods for Map and Array. For Sets, each item value is considered to be both the key and the value.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls tocallbackfn.

Each value is normally visited only once. However, a value will be revisited if it is deleted after it has been visited and then re-added before theforEach call completes. Values that are deleted after the call toforEach begins and before being visited are not visited unless the value is added again before theforEach call completes. New values added after the call toforEach begins are visited.

24.2.3.7 Set.prototype.has (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. For each elemente ofS.[[SetData]], do
    1. Ife is notempty andSameValueZero(e,value) istrue, returntrue.
  4. Returnfalse.

24.2.3.8 Set.prototype.keys ( )

The initial value of the"keys" property is %Set.prototype.values%, defined in24.2.3.10.

Note

For iteration purposes, a Set appears similar to a Map where each entry has the same value for its key and value.

24.2.3.9 get Set.prototype.size

Set.prototype.size is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[SetData]]).
  3. Letcount be 0.
  4. For each elemente ofS.[[SetData]], do
    1. Ife is notempty, setcount tocount + 1.
  5. Return𝔽(count).

24.2.3.10 Set.prototype.values ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateSetIterator(S,value).

24.2.3.11 Set.prototype [ @@iterator ] ( )

The initial value of the@@iterator property is %Set.prototype.values%, defined in24.2.3.10.

24.2.3.12 Set.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Set".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.2.4 Properties of Set Instances

Set instances areordinary objects that inherit properties from the Set prototype. Set instances also have a[[SetData]] internal slot.

24.2.5 Set Iterator Objects

A Set Iterator is anordinary object, with the structure defined below, that represents a specific iteration over some specific Set instance object. There is not a namedconstructor for Set Iterator objects. Instead, set iterator objects are created by calling certain methods of Set instance objects.

24.2.5.1 CreateSetIterator (set,kind )

The abstract operation CreateSetIterator takes argumentsset (anECMAScript language value) andkind (key+value orvalue) and returns either anormal completion containing a Generator or athrow completion. It is used to create iterator objects for Set methods that return such iterators. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(set,[[SetData]]).
  2. Letclosure be a newAbstract Closure with no parameters that capturesset andkind and performs the following steps when called:
    1. Letindex be 0.
    2. Letentries beset.[[SetData]].
    3. LetnumEntries be the number of elements inentries.
    4. Repeat, whileindex <numEntries,
      1. Lete beentries[index].
      2. Setindex toindex + 1.
      3. Ife is notempty, then
        1. Ifkind iskey+value, then
          1. Letresult beCreateArrayFromListe,e »).
          2. Perform ? GeneratorYield(CreateIterResultObject(result,false)).
        2. Else,
          1. Assert:kind isvalue.
          2. Perform ? GeneratorYield(CreateIterResultObject(e,false)).
        3. NOTE: The number of elements inentries may have increased while execution of this abstract operation was paused byYield.
        4. SetnumEntries to the number of elements inentries.
    5. Returnundefined.
  3. ReturnCreateIteratorFromClosure(closure,"%SetIteratorPrototype%",%SetIteratorPrototype%).

24.2.5.2 The %SetIteratorPrototype% Object

The%SetIteratorPrototype% object:

  • has properties that are inherited by all Set Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has the following properties:

24.2.5.2.1 %SetIteratorPrototype%.next ( )

  1. Return ? GeneratorResume(this value,empty,"%SetIteratorPrototype%").

24.2.5.2.2 %SetIteratorPrototype% [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Set Iterator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.3 WeakMap Objects

WeakMaps are collections of key/value pairs where the keys are objects and/or symbols and values may be arbitraryECMAScript language values. A WeakMap may be queried to see if it contains a key/value pair with a specific key, but no mechanism is provided for enumerating the values it holds as keys. In certain conditions, values which are notlive are removed as WeakMap keys, as described in9.10.3.

An implementation may impose an arbitrarily determined latency between the time a key/value pair of a WeakMap becomes inaccessible and the time when the key/value pair is removed from the WeakMap. If this latency was observable to ECMAScript program, it would be a source of indeterminacy that could impact program execution. For that reason, an ECMAScript implementation must not provide any means to observe a key of a WeakMap that does not require the observer to present the observed key.

WeakMaps must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of key/value pairs in the collection. The data structure used in this specification is only intended to describe the required observable semantics of WeakMaps. It is not intended to be a viable implementation model.

Note

WeakMap and WeakSet are intended to provide mechanisms for dynamically associating state with an object or symbol in a manner that does not “leak” memory resources if, in the absence of the WeakMap or WeakSet instance, the object or symbol otherwise became inaccessible and subject to resource reclamation by the implementation's garbage collection mechanisms. This characteristic can be achieved by using an inverted per-object/symbol mapping of WeakMap or WeakSet instances to keys. Alternatively, each WeakMap or WeakSet instance may internally store its key and value data, but this approach requires coordination between the WeakMap or WeakSet implementation and the garbage collector. The following references describe mechanism that may be useful to implementations of WeakMap and WeakSet:

Barry Hayes. 1997. Ephemerons: a new finalization mechanism. InProceedings of the 12th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (OOPSLA '97), A. Michael Berman (Ed.). ACM, New York, NY, USA, 176-183,http://doi.acm.org/10.1145/263698.263733.

Alexandra Barros, Roberto Ierusalimschy, Eliminating Cycles in Weak Tables. Journal of Universal Computer Science - J.UCS, vol. 14, no. 21, pp. 3481-3497, 2008,http://www.jucs.org/jucs_14_21/eliminating_cycles_in_weak

24.3.1 The WeakMap Constructor

The WeakMapconstructor:

  • is%WeakMap%.
  • is the initial value of the"WeakMap" property of theglobal object.
  • creates and initializes a new WeakMap when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specified WeakMap behaviour must include asuper call to the WeakMapconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakMap.prototype built-in methods.

24.3.1.1 WeakMap ( [iterable ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letmap be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakMap.prototype%", «[[WeakMapData]] »).
  3. Setmap.[[WeakMapData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnmap.
  5. Letadder be ? Get(map,"set").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. Return ? AddEntriesFromIterable(map,iterable,adder).
Note

If the parameteriterable is present, it is expected to be an object that implements an@@iterator method that returns an iterator object that produces a two elementarray-like object whose first element is a value that will be used as a WeakMap key and whose second element is the value to associate with that key.

24.3.2 Properties of the WeakMap Constructor

The WeakMapconstructor:

24.3.2.1 WeakMap.prototype

The initial value ofWeakMap.prototype is theWeakMap prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

24.3.3 Properties of the WeakMap Prototype Object

TheWeakMap prototype object:

24.3.3.1 WeakMap.prototype.constructor

The initial value ofWeakMap.prototype.constructor is%WeakMap%.

24.3.3.2 WeakMap.prototype.delete (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[WeakMapData]]).
  3. IfCanBeHeldWeakly(key) isfalse, returnfalse.
  4. For eachRecord {[[Key]],[[Value]] }p ofM.[[WeakMapData]], do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, then
      1. Setp.[[Key]] toempty.
      2. Setp.[[Value]] toempty.
      3. Returntrue.
  5. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.3.3.3 WeakMap.prototype.get (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[WeakMapData]]).
  3. IfCanBeHeldWeakly(key) isfalse, returnundefined.
  4. For eachRecord {[[Key]],[[Value]] }p ofM.[[WeakMapData]], do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, returnp.[[Value]].
  5. Returnundefined.

24.3.3.4 WeakMap.prototype.has (key )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[WeakMapData]]).
  3. IfCanBeHeldWeakly(key) isfalse, returnfalse.
  4. For eachRecord {[[Key]],[[Value]] }p ofM.[[WeakMapData]], do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, returntrue.
  5. Returnfalse.

24.3.3.5 WeakMap.prototype.set (key,value )

This method performs the following steps when called:

  1. LetM be thethis value.
  2. Perform ? RequireInternalSlot(M,[[WeakMapData]]).
  3. IfCanBeHeldWeakly(key) isfalse, throw aTypeError exception.
  4. For eachRecord {[[Key]],[[Value]] }p ofM.[[WeakMapData]], do
    1. Ifp.[[Key]] is notempty andSameValue(p.[[Key]],key) istrue, then
      1. Setp.[[Value]] tovalue.
      2. ReturnM.
  5. Letp be theRecord {[[Key]]:key,[[Value]]:value }.
  6. Appendp toM.[[WeakMapData]].
  7. ReturnM.

24.3.3.6 WeakMap.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakMap".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.3.4 Properties of WeakMap Instances

WeakMap instances areordinary objects that inherit properties from the WeakMap prototype. WeakMap instances also have a[[WeakMapData]] internal slot.

24.4 WeakSet Objects

WeakSets are collections of objects and/or symbols. A distinct object or symbol may only occur once as an element of a WeakSet's collection. A WeakSet may be queried to see if it contains a specific value, but no mechanism is provided for enumerating the values it holds. In certain conditions, values which are notlive are removed as WeakSet elements, as described in9.10.3.

An implementation may impose an arbitrarily determined latency between the time a value contained in a WeakSet becomes inaccessible and the time when the value is removed from the WeakSet. If this latency was observable to ECMAScript program, it would be a source of indeterminacy that could impact program execution. For that reason, an ECMAScript implementation must not provide any means to determine if a WeakSet contains a particular value that does not require the observer to present the observed value.

WeakSets must be implemented using either hash tables or other mechanisms that, on average, provide access times that are sublinear on the number of elements in the collection. The data structure used in this specification is only intended to describe the required observable semantics of WeakSets. It is not intended to be a viable implementation model.

Note

See the NOTE in24.3.

24.4.1 The WeakSet Constructor

The WeakSetconstructor:

  • is%WeakSet%.
  • is the initial value of the"WeakSet" property of theglobal object.
  • creates and initializes a new WeakSet when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specified WeakSet behaviour must include asuper call to the WeakSetconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakSet.prototype built-in methods.

24.4.1.1 WeakSet ( [iterable ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Letset be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakSet.prototype%", «[[WeakSetData]] »).
  3. Setset.[[WeakSetData]] to a new emptyList.
  4. Ifiterable is eitherundefined ornull, returnset.
  5. Letadder be ? Get(set,"add").
  6. IfIsCallable(adder) isfalse, throw aTypeError exception.
  7. LetiteratorRecord be ? GetIterator(iterable,sync).
  8. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, returnset.
    3. Letstatus beCompletion(Call(adder,set, «next »)).
    4. IfAbruptCloseIterator(status,iteratorRecord).

24.4.2 Properties of the WeakSet Constructor

The WeakSetconstructor:

24.4.2.1 WeakSet.prototype

The initial value ofWeakSet.prototype is theWeakSet prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

24.4.3 Properties of the WeakSet Prototype Object

TheWeakSet prototype object:

24.4.3.1 WeakSet.prototype.add (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[WeakSetData]]).
  3. IfCanBeHeldWeakly(value) isfalse, throw aTypeError exception.
  4. For each elemente ofS.[[WeakSetData]], do
    1. Ife is notempty andSameValue(e,value) istrue, then
      1. ReturnS.
  5. Appendvalue toS.[[WeakSetData]].
  6. ReturnS.

24.4.3.2 WeakSet.prototype.constructor

The initial value ofWeakSet.prototype.constructor is%WeakSet%.

24.4.3.3 WeakSet.prototype.delete (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[WeakSetData]]).
  3. IfCanBeHeldWeakly(value) isfalse, returnfalse.
  4. For each elemente ofS.[[WeakSetData]], do
    1. Ife is notempty andSameValue(e,value) istrue, then
      1. Replace the element ofS.[[WeakSetData]] whose value ise with an element whose value isempty.
      2. Returntrue.
  5. Returnfalse.
Note

The valueempty is used as a specification device to indicate that an entry has been deleted. Actual implementations may take other actions such as physically removing the entry from internal data structures.

24.4.3.4 WeakSet.prototype.has (value )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Perform ? RequireInternalSlot(S,[[WeakSetData]]).
  3. IfCanBeHeldWeakly(value) isfalse, returnfalse.
  4. For each elemente ofS.[[WeakSetData]], do
    1. Ife is notempty andSameValue(e,value) istrue, returntrue.
  5. Returnfalse.

24.4.3.5 WeakSet.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakSet".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

24.4.4 Properties of WeakSet Instances

WeakSet instances areordinary objects that inherit properties from the WeakSet prototype. WeakSet instances also have a[[WeakSetData]] internal slot.

25 Structured Data

25.1 ArrayBuffer Objects

25.1.1 Notation

The descriptions below in this section,25.4, and29 use the read-modify-write modification function internal data structure.

Aread-modify-write modification function is a mathematical function that is notationally represented as an abstract closure that takes twoLists ofbyte values as arguments and returns aList ofbyte values. These abstract closures satisfy all of the following properties:

  • They perform all their algorithm steps atomically.
  • Their individual algorithm steps are not observable.
Note

To aid verifying that a read-modify-write modification function's algorithm steps constitute a pure, mathematical function, the following editorial conventions are recommended:

  • They do not access, directly or transitively via invokedabstract operations and abstract closures, any language or specification values except their parameters and captured values.
  • They do not returnCompletion Records.

25.1.2 Fixed-length and Resizable ArrayBuffer Objects

Afixed-length ArrayBuffer is an ArrayBuffer whose byte length cannot change after creation.

Aresizable ArrayBuffer is an ArrayBuffer whose byte length may change after creation via calls toArrayBuffer.prototype.resize (newLength ).

The kind of ArrayBuffer object that is created depends on the arguments passed toArrayBuffer (length [ ,options ] ).

25.1.3 Abstract Operations For ArrayBuffer Objects

25.1.3.1 AllocateArrayBuffer (constructor,byteLength [ ,maxByteLength ] )

The abstract operation AllocateArrayBuffer takes argumentsconstructor (aconstructor) andbyteLength (a non-negativeinteger) and optional argumentmaxByteLength (a non-negativeinteger orempty) and returns either anormal completion containing an ArrayBuffer or athrow completion. It is used to create an ArrayBuffer. It performs the following steps when called:

  1. Letslots be «[[ArrayBufferData]],[[ArrayBufferByteLength]],[[ArrayBufferDetachKey]] ».
  2. IfmaxByteLength is present andmaxByteLength is notempty, letallocatingResizableBuffer betrue; otherwise letallocatingResizableBuffer befalse.
  3. IfallocatingResizableBuffer istrue, then
    1. IfbyteLength >maxByteLength, throw aRangeError exception.
    2. Append[[ArrayBufferMaxByteLength]] toslots.
  4. Letobj be ? OrdinaryCreateFromConstructor(constructor,"%ArrayBuffer.prototype%",slots).
  5. Letblock be ? CreateByteDataBlock(byteLength).
  6. Setobj.[[ArrayBufferData]] toblock.
  7. Setobj.[[ArrayBufferByteLength]] tobyteLength.
  8. IfallocatingResizableBuffer istrue, then
    1. If it is not possible to create aData Blockblock consisting ofmaxByteLength bytes, throw aRangeError exception.
    2. NOTE: Resizable ArrayBuffers are designed to be implementable with in-place growth. Implementations may throw if, for example, virtual memory cannot be reserved up front.
    3. Setobj.[[ArrayBufferMaxByteLength]] tomaxByteLength.
  9. Returnobj.

25.1.3.2 ArrayBufferByteLength (arrayBuffer,order )

The abstract operation ArrayBufferByteLength takes argumentsarrayBuffer (an ArrayBuffer or SharedArrayBuffer) andorder (seq-cst orunordered) and returns a non-negativeinteger. It performs the following steps when called:

  1. IfIsSharedArrayBuffer(arrayBuffer) istrue andarrayBuffer has an[[ArrayBufferByteLengthData]] internal slot, then
    1. LetbufferByteLengthBlock bearrayBuffer.[[ArrayBufferByteLengthData]].
    2. LetrawLength beGetRawBytesFromSharedBlock(bufferByteLengthBlock, 0,biguint64,true,order).
    3. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
    4. Return(RawBytesToNumeric(biguint64,rawLength,isLittleEndian)).
  2. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  3. ReturnarrayBuffer.[[ArrayBufferByteLength]].

25.1.3.3 ArrayBufferCopyAndDetach (arrayBuffer,newLength,preserveResizability )

The abstract operation ArrayBufferCopyAndDetach takes argumentsarrayBuffer (anECMAScript language value),newLength (anECMAScript language value), andpreserveResizability (preserve-resizability orfixed-length) and returns either anormal completion containing an ArrayBuffer or athrow completion. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(arrayBuffer,[[ArrayBufferData]]).
  2. IfIsSharedArrayBuffer(arrayBuffer) istrue, throw aTypeError exception.
  3. IfnewLength isundefined, then
    1. LetnewByteLength bearrayBuffer.[[ArrayBufferByteLength]].
  4. Else,
    1. LetnewByteLength be ? ToIndex(newLength).
  5. IfIsDetachedBuffer(arrayBuffer) istrue, throw aTypeError exception.
  6. IfpreserveResizability ispreserve-resizability andIsFixedLengthArrayBuffer(arrayBuffer) isfalse, then
    1. LetnewMaxByteLength bearrayBuffer.[[ArrayBufferMaxByteLength]].
  7. Else,
    1. LetnewMaxByteLength beempty.
  8. IfarrayBuffer.[[ArrayBufferDetachKey]] is notundefined, throw aTypeError exception.
  9. LetnewBuffer be ? AllocateArrayBuffer(%ArrayBuffer%,newByteLength,newMaxByteLength).
  10. LetcopyLength bemin(newByteLength,arrayBuffer.[[ArrayBufferByteLength]]).
  11. LetfromBlock bearrayBuffer.[[ArrayBufferData]].
  12. LettoBlock benewBuffer.[[ArrayBufferData]].
  13. PerformCopyDataBlockBytes(toBlock, 0,fromBlock, 0,copyLength).
  14. NOTE: Neither creation of the newData Block nor copying from the oldData Block are observable. Implementations may implement this method as a zero-copy move or arealloc.
  15. Perform ! DetachArrayBuffer(arrayBuffer).
  16. ReturnnewBuffer.

25.1.3.4 IsDetachedBuffer (arrayBuffer )

The abstract operation IsDetachedBuffer takes argumentarrayBuffer (an ArrayBuffer or a SharedArrayBuffer) and returns a Boolean. It performs the following steps when called:

  1. IfarrayBuffer.[[ArrayBufferData]] isnull, returntrue.
  2. Returnfalse.

25.1.3.5 DetachArrayBuffer (arrayBuffer [ ,key ] )

The abstract operation DetachArrayBuffer takes argumentarrayBuffer (an ArrayBuffer) and optional argumentkey (anything) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Assert:IsSharedArrayBuffer(arrayBuffer) isfalse.
  2. Ifkey is not present, setkey toundefined.
  3. IfarrayBuffer.[[ArrayBufferDetachKey]] is notkey, throw aTypeError exception.
  4. SetarrayBuffer.[[ArrayBufferData]] tonull.
  5. SetarrayBuffer.[[ArrayBufferByteLength]] to 0.
  6. Returnunused.
Note

Detaching an ArrayBuffer instance disassociates theData Block used as its backing store from the instance and sets the byte length of the buffer to 0.

25.1.3.6 CloneArrayBuffer (srcBuffer,srcByteOffset,srcLength )

The abstract operation CloneArrayBuffer takes argumentssrcBuffer (an ArrayBuffer or a SharedArrayBuffer),srcByteOffset (a non-negativeinteger), andsrcLength (a non-negativeinteger) and returns either anormal completion containing an ArrayBuffer or athrow completion. It creates a new ArrayBuffer whose data is a copy ofsrcBuffer's data over the range starting atsrcByteOffset and continuing forsrcLength bytes. It performs the following steps when called:

  1. Assert:IsDetachedBuffer(srcBuffer) isfalse.
  2. LettargetBuffer be ? AllocateArrayBuffer(%ArrayBuffer%,srcLength).
  3. LetsrcBlock besrcBuffer.[[ArrayBufferData]].
  4. LettargetBlock betargetBuffer.[[ArrayBufferData]].
  5. PerformCopyDataBlockBytes(targetBlock, 0,srcBlock,srcByteOffset,srcLength).
  6. ReturntargetBuffer.

25.1.3.7 GetArrayBufferMaxByteLengthOption (options )

The abstract operation GetArrayBufferMaxByteLengthOption takes argumentoptions (anECMAScript language value) and returns either anormal completion containing either a non-negativeinteger orempty, or athrow completion. It performs the following steps when called:

  1. Ifoptionsis not an Object, returnempty.
  2. LetmaxByteLength be ? Get(options,"maxByteLength").
  3. IfmaxByteLength isundefined, returnempty.
  4. Return ? ToIndex(maxByteLength).

25.1.3.8 HostResizeArrayBuffer (buffer,newByteLength )

Thehost-defined abstract operation HostResizeArrayBuffer takes argumentsbuffer (an ArrayBuffer) andnewByteLength (a non-negativeinteger) and returns either anormal completion containing eitherhandled orunhandled, or athrow completion. It gives thehost an opportunity to performimplementation-defined resizing ofbuffer. If thehost chooses not to handle resizing ofbuffer, it may returnunhandled for the default behaviour.

The implementation of HostResizeArrayBuffer must conform to the following requirements:

  • The abstract operation does not detachbuffer.
  • If the abstract operation completes normally withhandled,buffer.[[ArrayBufferByteLength]] isnewByteLength.

The default implementation of HostResizeArrayBuffer is to returnNormalCompletion(unhandled).

25.1.3.9 IsFixedLengthArrayBuffer (arrayBuffer )

The abstract operation IsFixedLengthArrayBuffer takes argumentarrayBuffer (an ArrayBuffer or a SharedArrayBuffer) and returns a Boolean. It performs the following steps when called:

  1. IfarrayBuffer has an[[ArrayBufferMaxByteLength]] internal slot, returnfalse.
  2. Returntrue.

25.1.3.10 IsUnsignedElementType (type )

The abstract operation IsUnsignedElementType takes argumenttype (aTypedArray element type) and returns a Boolean. It verifies if the argumenttype is an unsignedTypedArray element type. It performs the following steps when called:

  1. Iftype is one ofuint8,uint8clamped,uint16,uint32, orbiguint64, returntrue.
  2. Returnfalse.

25.1.3.11 IsUnclampedIntegerElementType (type )

The abstract operation IsUnclampedIntegerElementType takes argumenttype (aTypedArray element type) and returns a Boolean. It verifies if the argumenttype is anIntegerTypedArray element type not includinguint8clamped. It performs the following steps when called:

  1. Iftype is one ofint8,uint8,int16,uint16,int32, oruint32, returntrue.
  2. Returnfalse.

25.1.3.12 IsBigIntElementType (type )

The abstract operation IsBigIntElementType takes argumenttype (aTypedArray element type) and returns a Boolean. It verifies if the argumenttypeis a BigIntTypedArray element type. It performs the following steps when called:

  1. Iftype is eitherbiguint64 orbigint64, returntrue.
  2. Returnfalse.

25.1.3.13 IsNoTearConfiguration (type,order )

The abstract operation IsNoTearConfiguration takes argumentstype (aTypedArray element type) andorder (seq-cst,unordered, orinit) and returns a Boolean. It performs the following steps when called:

  1. IfIsUnclampedIntegerElementType(type) istrue, returntrue.
  2. IfIsBigIntElementType(type) istrue andorder is neitherinit norunordered, returntrue.
  3. Returnfalse.

25.1.3.14 RawBytesToNumeric (type,rawBytes,isLittleEndian )

The abstract operation RawBytesToNumeric takes argumentstype (aTypedArray element type),rawBytes (aList ofbyte values), andisLittleEndian (a Boolean) and returns a Number or a BigInt. It performs the following steps when called:

  1. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  2. IfisLittleEndian isfalse, reverse the order of the elements ofrawBytes.
  3. Iftype isfloat32, then
    1. Letvalue be the byte elements ofrawBytes concatenated and interpreted as a little-endian bit string encoding of anIEEE 754-2019 binary32 value.
    2. Ifvalue is anIEEE 754-2019 binary32 NaN value, return theNaN Number value.
    3. Return the Number value that corresponds tovalue.
  4. Iftype isfloat64, then
    1. Letvalue be the byte elements ofrawBytes concatenated and interpreted as a little-endian bit string encoding of anIEEE 754-2019 binary64 value.
    2. Ifvalue is anIEEE 754-2019 binary64 NaN value, return theNaN Number value.
    3. Return the Number value that corresponds tovalue.
  5. IfIsUnsignedElementType(type) istrue, then
    1. LetintValue be the byte elements ofrawBytes concatenated and interpreted as a bit string encoding of an unsigned little-endian binary number.
  6. Else,
    1. LetintValue be the byte elements ofrawBytes concatenated and interpreted as a bit string encoding of a binary little-endian two's complement number of bit lengthelementSize × 8.
  7. IfIsBigIntElementType(type) istrue, return the BigInt value that corresponds tointValue.
  8. Otherwise, return the Number value that corresponds tointValue.

25.1.3.15 GetRawBytesFromSharedBlock (block,byteIndex,type,isTypedArray,order )

The abstract operation GetRawBytesFromSharedBlock takes argumentsblock (aShared Data Block),byteIndex (a non-negativeinteger),type (aTypedArray element type),isTypedArray (a Boolean), andorder (seq-cst orunordered) and returns aList ofbyte values. It performs the following steps when called:

  1. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  2. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
  3. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
  4. IfisTypedArray istrue andIsNoTearConfiguration(type,order) istrue, letnoTear betrue; otherwise letnoTear befalse.
  5. LetrawValue be aList of lengthelementSize whose elements are nondeterministically chosenbyte values.
  6. NOTE: In implementations,rawValue is the result of a non-atomic or atomic read instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
  7. LetreadEvent beReadSharedMemory {[[Order]]:order,[[NoTear]]:noTear,[[Block]]:block,[[ByteIndex]]:byteIndex,[[ElementSize]]:elementSize }.
  8. AppendreadEvent toeventsRecord.[[EventList]].
  9. AppendChosen Value Record {[[Event]]:readEvent,[[ChosenValue]]:rawValue } toexecution.[[ChosenValues]].
  10. ReturnrawValue.

25.1.3.16 GetValueFromBuffer (arrayBuffer,byteIndex,type,isTypedArray,order [ ,isLittleEndian ] )

The abstract operation GetValueFromBuffer takes argumentsarrayBuffer (an ArrayBuffer or SharedArrayBuffer),byteIndex (a non-negativeinteger),type (aTypedArray element type),isTypedArray (a Boolean), andorder (seq-cst orunordered) and optional argumentisLittleEndian (a Boolean) and returns a Number or a BigInt. It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Letblock bearrayBuffer.[[ArrayBufferData]].
  4. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  5. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Assert:block is aShared Data Block.
    2. LetrawValue beGetRawBytesFromSharedBlock(block,byteIndex,type,isTypedArray,order).
  6. Else,
    1. LetrawValue be aList whose elements are bytes fromblock at indices in theinterval frombyteIndex (inclusive) tobyteIndex +elementSize (exclusive).
  7. Assert: The number of elements inrawValue iselementSize.
  8. IfisLittleEndian is not present, setisLittleEndian to the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  9. ReturnRawBytesToNumeric(type,rawValue,isLittleEndian).

25.1.3.17 NumericToRawBytes (type,value,isLittleEndian )

The abstract operation NumericToRawBytes takes argumentstype (aTypedArray element type),value (a Number or a BigInt), andisLittleEndian (a Boolean) and returns aList ofbyte values. It performs the following steps when called:

  1. Iftype isfloat32, then
    1. LetrawBytes be aList whose elements are the 4 bytes that are the result of convertingvalue toIEEE 754-2019 binary32 format using roundTiesToEven mode. The bytes are arranged in little endian order. Ifvalue isNaN,rawBytes may be set to any implementation chosenIEEE 754-2019 binary32 format Not-a-Number encoding. An implementation must always choose the same encoding for each implementation distinguishableNaN value.
  2. Else iftype isfloat64, then
    1. LetrawBytes be aList whose elements are the 8 bytes that are theIEEE 754-2019 binary64 format encoding ofvalue. The bytes are arranged in little endian order. Ifvalue isNaN,rawBytes may be set to any implementation chosenIEEE 754-2019 binary64 format Not-a-Number encoding. An implementation must always choose the same encoding for each implementation distinguishableNaN value.
  3. Else,
    1. Letn be the Element Size value specified inTable 71 for Element Typetype.
    2. LetconvOp be the abstract operation named in the Conversion Operation column inTable 71 for Element Typetype.
    3. LetintValue be(convOp(value)).
    4. IfintValue ≥ 0, then
      1. LetrawBytes be aList whose elements are then-byte binary encoding ofintValue. The bytes are ordered in little endian order.
    5. Else,
      1. LetrawBytes be aList whose elements are then-byte binary two's complement encoding ofintValue. The bytes are ordered in little endian order.
  4. IfisLittleEndian isfalse, reverse the order of the elements ofrawBytes.
  5. ReturnrawBytes.

25.1.3.18 SetValueInBuffer (arrayBuffer,byteIndex,type,value,isTypedArray,order [ ,isLittleEndian ] )

The abstract operation SetValueInBuffer takes argumentsarrayBuffer (an ArrayBuffer or SharedArrayBuffer),byteIndex (a non-negativeinteger),type (aTypedArray element type),value (a Number or a BigInt),isTypedArray (a Boolean), andorder (seq-cst,unordered, orinit) and optional argumentisLittleEndian (a Boolean) and returnsunused. It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Assert:valueis a BigInt ifIsBigIntElementType(type) istrue; otherwise,valueis a Number.
  4. Letblock bearrayBuffer.[[ArrayBufferData]].
  5. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  6. IfisLittleEndian is not present, setisLittleEndian to the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  7. LetrawBytes beNumericToRawBytes(type,value,isLittleEndian).
  8. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
    3. IfisTypedArray istrue andIsNoTearConfiguration(type,order) istrue, letnoTear betrue; otherwise letnoTear befalse.
    4. AppendWriteSharedMemory {[[Order]]:order,[[NoTear]]:noTear,[[Block]]:block,[[ByteIndex]]:byteIndex,[[ElementSize]]:elementSize,[[Payload]]:rawBytes } toeventsRecord.[[EventList]].
  9. Else,
    1. Store the individual bytes ofrawBytes intoblock, starting atblock[byteIndex].
  10. Returnunused.

25.1.3.19 GetModifySetValueInBuffer (arrayBuffer,byteIndex,type,value,op )

The abstract operation GetModifySetValueInBuffer takes argumentsarrayBuffer (an ArrayBuffer or a SharedArrayBuffer),byteIndex (a non-negativeinteger),type (aTypedArray element type),value (a Number or a BigInt), andop (aread-modify-write modification function) and returns a Number or a BigInt. It performs the following steps when called:

  1. Assert:IsDetachedBuffer(arrayBuffer) isfalse.
  2. Assert: There are sufficient bytes inarrayBuffer starting atbyteIndex to represent a value oftype.
  3. Assert:valueis a BigInt ifIsBigIntElementType(type) istrue; otherwise,valueis a Number.
  4. Letblock bearrayBuffer.[[ArrayBufferData]].
  5. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  6. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  7. LetrawBytes beNumericToRawBytes(type,value,isLittleEndian).
  8. IfIsSharedArrayBuffer(arrayBuffer) istrue, then
    1. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    2. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
    3. LetrawBytesRead be aList of lengthelementSize whose elements are nondeterministically chosenbyte values.
    4. NOTE: In implementations,rawBytesRead is the result of a load-link, of a load-exclusive, or of an operand of a read-modify-write instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
    5. LetrmwEvent beReadModifyWriteSharedMemory {[[Order]]:seq-cst,[[NoTear]]:true,[[Block]]:block,[[ByteIndex]]:byteIndex,[[ElementSize]]:elementSize,[[Payload]]:rawBytes,[[ModifyOp]]:op }.
    6. AppendrmwEvent toeventsRecord.[[EventList]].
    7. AppendChosen Value Record {[[Event]]:rmwEvent,[[ChosenValue]]:rawBytesRead } toexecution.[[ChosenValues]].
  9. Else,
    1. LetrawBytesRead be aList of lengthelementSize whose elements are the sequence ofelementSize bytes starting withblock[byteIndex].
    2. LetrawBytesModified beop(rawBytesRead,rawBytes).
    3. Store the individual bytes ofrawBytesModified intoblock, starting atblock[byteIndex].
  10. ReturnRawBytesToNumeric(type,rawBytesRead,isLittleEndian).

25.1.4 The ArrayBuffer Constructor

The ArrayBufferconstructor:

  • is%ArrayBuffer%.
  • is the initial value of the"ArrayBuffer" property of theglobal object.
  • creates and initializes a new ArrayBuffer when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified ArrayBuffer behaviour must include asuper call to the ArrayBufferconstructor to create and initialize subclass instances with the internal state necessary to support theArrayBuffer.prototype built-in methods.

25.1.4.1 ArrayBuffer (length [ ,options ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetbyteLength be ? ToIndex(length).
  3. LetrequestedMaxByteLength be ? GetArrayBufferMaxByteLengthOption(options).
  4. Return ? AllocateArrayBuffer(NewTarget,byteLength,requestedMaxByteLength).

25.1.5 Properties of the ArrayBuffer Constructor

The ArrayBufferconstructor:

25.1.5.1 ArrayBuffer.isView (arg )

This function performs the following steps when called:

  1. Ifargis not an Object, returnfalse.
  2. Ifarg has a[[ViewedArrayBuffer]] internal slot, returntrue.
  3. Returnfalse.

25.1.5.2 ArrayBuffer.prototype

The initial value ofArrayBuffer.prototype is theArrayBuffer prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

25.1.5.3 get ArrayBuffer [ @@species ]

ArrayBuffer[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

ArrayBuffer.prototype.slice (start,end ) normally uses itsthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour for theArrayBuffer.prototype.slice (start,end ) method by redefining its@@species property.

25.1.6 Properties of the ArrayBuffer Prototype Object

TheArrayBuffer prototype object:

  • is%ArrayBuffer.prototype%.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have an[[ArrayBufferData]] or[[ArrayBufferByteLength]] internal slot.

25.1.6.1 get ArrayBuffer.prototype.byteLength

ArrayBuffer.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsDetachedBuffer(O) istrue, return+0𝔽.
  5. Letlength beO.[[ArrayBufferByteLength]].
  6. Return𝔽(length).

25.1.6.2 ArrayBuffer.prototype.constructor

The initial value ofArrayBuffer.prototype.constructor is%ArrayBuffer%.

25.1.6.3 get ArrayBuffer.prototype.detached

ArrayBuffer.prototype.detached is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. ReturnIsDetachedBuffer(O).

25.1.6.4 get ArrayBuffer.prototype.maxByteLength

ArrayBuffer.prototype.maxByteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsDetachedBuffer(O) istrue, return+0𝔽.
  5. IfIsFixedLengthArrayBuffer(O) istrue, then
    1. Letlength beO.[[ArrayBufferByteLength]].
  6. Else,
    1. Letlength beO.[[ArrayBufferMaxByteLength]].
  7. Return𝔽(length).

25.1.6.5 get ArrayBuffer.prototype.resizable

ArrayBuffer.prototype.resizable is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsFixedLengthArrayBuffer(O) isfalse, returntrue; otherwise returnfalse.

25.1.6.6 ArrayBuffer.prototype.resize (newLength )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferMaxByteLength]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. LetnewByteLength be ? ToIndex(newLength).
  5. IfIsDetachedBuffer(O) istrue, throw aTypeError exception.
  6. IfnewByteLength >O.[[ArrayBufferMaxByteLength]], throw aRangeError exception.
  7. LethostHandled be ? HostResizeArrayBuffer(O,newByteLength).
  8. IfhostHandled ishandled, returnundefined.
  9. LetoldBlock beO.[[ArrayBufferData]].
  10. LetnewBlock be ? CreateByteDataBlock(newByteLength).
  11. LetcopyLength bemin(newByteLength,O.[[ArrayBufferByteLength]]).
  12. PerformCopyDataBlockBytes(newBlock, 0,oldBlock, 0,copyLength).
  13. NOTE: Neither creation of the newData Block nor copying from the oldData Block are observable. Implementations may implement this method as in-place growth or shrinkage.
  14. SetO.[[ArrayBufferData]] tonewBlock.
  15. SetO.[[ArrayBufferByteLength]] tonewByteLength.
  16. Returnundefined.

25.1.6.7 ArrayBuffer.prototype.slice (start,end )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) istrue, throw aTypeError exception.
  4. IfIsDetachedBuffer(O) istrue, throw aTypeError exception.
  5. Letlen beO.[[ArrayBufferByteLength]].
  6. LetrelativeStart be ? ToIntegerOrInfinity(start).
  7. IfrelativeStart = -∞, letfirst be 0.
  8. Else ifrelativeStart < 0, letfirst bemax(len +relativeStart, 0).
  9. Else, letfirst bemin(relativeStart,len).
  10. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  11. IfrelativeEnd = -∞, letfinal be 0.
  12. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  13. Else, letfinal bemin(relativeEnd,len).
  14. LetnewLen bemax(final -first, 0).
  15. Letctor be ? SpeciesConstructor(O,%ArrayBuffer%).
  16. Letnew be ? Construct(ctor, «𝔽(newLen) »).
  17. Perform ? RequireInternalSlot(new,[[ArrayBufferData]]).
  18. IfIsSharedArrayBuffer(new) istrue, throw aTypeError exception.
  19. IfIsDetachedBuffer(new) istrue, throw aTypeError exception.
  20. IfSameValue(new,O) istrue, throw aTypeError exception.
  21. Ifnew.[[ArrayBufferByteLength]] <newLen, throw aTypeError exception.
  22. NOTE: Side-effects of the above steps may have detached or resizedO.
  23. IfIsDetachedBuffer(O) istrue, throw aTypeError exception.
  24. LetfromBuf beO.[[ArrayBufferData]].
  25. LettoBuf benew.[[ArrayBufferData]].
  26. LetcurrentLen beO.[[ArrayBufferByteLength]].
  27. Iffirst <currentLen, then
    1. Letcount bemin(newLen,currentLen -first).
    2. PerformCopyDataBlockBytes(toBuf, 0,fromBuf,first,count).
  28. Returnnew.

25.1.6.8 ArrayBuffer.prototype.transfer ( [newLength ] )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Return ? ArrayBufferCopyAndDetach(O,newLength,preserve-resizability).

25.1.6.9 ArrayBuffer.prototype.transferToFixedLength ( [newLength ] )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Return ? ArrayBufferCopyAndDetach(O,newLength,fixed-length).

25.1.6.10 ArrayBuffer.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"ArrayBuffer".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

25.1.7 Properties of ArrayBuffer Instances

ArrayBuffer instances inherit properties from theArrayBuffer prototype object. ArrayBuffer instances each have an[[ArrayBufferData]] internal slot, an[[ArrayBufferByteLength]] internal slot, and an[[ArrayBufferDetachKey]] internal slot. ArrayBuffer instances which are resizable each have an[[ArrayBufferMaxByteLength]] internal slot.

ArrayBuffer instances whose[[ArrayBufferData]] isnull are considered to be detached and all operators to access or modify data contained in the ArrayBuffer instance will fail.

ArrayBuffer instances whose[[ArrayBufferDetachKey]] is set to a value other thanundefined need to have allDetachArrayBuffer calls passing that same "detach key" as an argument, otherwise a TypeError will result. This internal slot is only ever set by certain embedding environments, not by algorithms in this specification.

25.1.8 Resizable ArrayBuffer Guidelines

Note 1

The following are guidelines for ECMAScript programmers working withresizable ArrayBuffer.

We recommend that programs be tested in their deployment environments where possible. The amount of available physical memory differs greatly between hardware devices. Similarly, virtual memory subsystems also differ greatly between hardware devices as well as operating systems. An application that runs without out-of-memory errors on a 64-bit desktop web browser could run out of memory on a 32-bit mobile web browser.

When choosing a value for the"maxByteLength" option forresizable ArrayBuffer, we recommend that the smallest possible size for the application be chosen. We recommend that"maxByteLength" does not exceed 1,073,741,824 (230 bytes or 1GiB).

Please note that successfully constructing aresizable ArrayBuffer for a particular maximum size does not guarantee that future resizes will succeed.

Note 2

The following are guidelines for ECMAScript implementers implementingresizable ArrayBuffer.

Resizable ArrayBuffer can be implemented as copying upon resize, as in-place growth via reserving virtual memory up front, or as a combination of both for different values of theconstructor's"maxByteLength" option.

If ahost is multi-tenanted (i.e. it runs many ECMAScript applications simultaneously), such as a web browser, and its implementations choose to implement in-place growth by reserving virtual memory, we recommend that both 32-bit and 64-bit implementations throw for values of"maxByteLength" ≥ 1GiB to 1.5GiB. This is to reduce the likelihood a single application can exhaust the virtual memory address space and to reduce interoperability risk.

If ahost does not have virtual memory, such as those running on embedded devices without an MMU, or if ahost only implements resizing by copying, it may accept anyNumber value for the"maxByteLength" option. However, we recommend aRangeError be thrown if a memory block of the requested size can never be allocated. For example, if the requested size is greater than the maximium amount of usable memory on the device.

25.2 SharedArrayBuffer Objects

25.2.1 Fixed-length and Growable SharedArrayBuffer Objects

Afixed-length SharedArrayBuffer is a SharedArrayBuffer whose byte length cannot change after creation.

Agrowable SharedArrayBuffer is a SharedArrayBuffer whose byte length may increase after creation via calls toSharedArrayBuffer.prototype.grow (newLength ).

The kind of SharedArrayBuffer object that is created depends on the arguments passed toSharedArrayBuffer (length [ ,options ] ).

25.2.2 Abstract Operations for SharedArrayBuffer Objects

25.2.2.1 AllocateSharedArrayBuffer (constructor,byteLength [ ,maxByteLength ] )

The abstract operation AllocateSharedArrayBuffer takes argumentsconstructor (aconstructor) andbyteLength (a non-negativeinteger) and optional argumentmaxByteLength (a non-negativeinteger orempty) and returns either anormal completion containing a SharedArrayBuffer or athrow completion. It is used to create a SharedArrayBuffer. It performs the following steps when called:

  1. Letslots be «[[ArrayBufferData]] ».
  2. IfmaxByteLength is present andmaxByteLength is notempty, letallocatingGrowableBuffer betrue; otherwise letallocatingGrowableBuffer befalse.
  3. IfallocatingGrowableBuffer istrue, then
    1. IfbyteLength >maxByteLength, throw aRangeError exception.
    2. Append[[ArrayBufferByteLengthData]] and[[ArrayBufferMaxByteLength]] toslots.
  4. Else,
    1. Append[[ArrayBufferByteLength]] toslots.
  5. Letobj be ? OrdinaryCreateFromConstructor(constructor,"%SharedArrayBuffer.prototype%",slots).
  6. IfallocatingGrowableBuffer istrue, letallocLength bemaxByteLength; otherwise letallocLength bebyteLength.
  7. Letblock be ? CreateSharedByteDataBlock(allocLength).
  8. Setobj.[[ArrayBufferData]] toblock.
  9. IfallocatingGrowableBuffer istrue, then
    1. Assert:byteLengthmaxByteLength.
    2. LetbyteLengthBlock be ? CreateSharedByteDataBlock(8).
    3. PerformSetValueInBuffer(byteLengthBlock, 0,biguint64,(byteLength),true,seq-cst).
    4. Setobj.[[ArrayBufferByteLengthData]] tobyteLengthBlock.
    5. Setobj.[[ArrayBufferMaxByteLength]] tomaxByteLength.
  10. Else,
    1. Setobj.[[ArrayBufferByteLength]] tobyteLength.
  11. Returnobj.

25.2.2.2 IsSharedArrayBuffer (obj )

The abstract operation IsSharedArrayBuffer takes argumentobj (an ArrayBuffer or a SharedArrayBuffer) and returns a Boolean. It tests whether an object is an ArrayBuffer, a SharedArrayBuffer, or a subtype of either. It performs the following steps when called:

  1. LetbufferData beobj.[[ArrayBufferData]].
  2. IfbufferData isnull, returnfalse.
  3. IfbufferData is aData Block, returnfalse.
  4. Assert:bufferData is aShared Data Block.
  5. Returntrue.

25.2.2.3 HostGrowSharedArrayBuffer (buffer,newByteLength )

Thehost-defined abstract operation HostGrowSharedArrayBuffer takes argumentsbuffer (a SharedArrayBuffer) andnewByteLength (a non-negativeinteger) and returns either anormal completion containing eitherhandled orunhandled, or athrow completion. It gives thehost an opportunity to performimplementation-defined growing ofbuffer. If thehost chooses not to handle growing ofbuffer, it may returnunhandled for the default behaviour.

The implementation of HostGrowSharedArrayBuffer must conform to the following requirements:

  • If the abstract operation does not complete normally withunhandled, andnewByteLength < the current byte length of thebuffer ornewByteLength >buffer.[[ArrayBufferMaxByteLength]], throw aRangeError exception.
  • LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record. If the abstract operation completes normally withhandled, aWriteSharedMemory orReadModifyWriteSharedMemory event whose[[Order]] isseq-cst,[[Payload]] isNumericToRawBytes(biguint64,newByteLength,isLittleEndian),[[Block]] isbuffer.[[ArrayBufferByteLengthData]],[[ByteIndex]] is 0, and[[ElementSize]] is 8 is added to thesurrounding agent'scandidate execution such that racing calls toSharedArrayBuffer.prototype.grow are not "lost", i.e. silently do nothing.
Note

The second requirement above is intentionally vague about how or when the current byte length ofbuffer is read. Because the byte length must be updated via an atomic read-modify-write operation on the underlying hardware, architectures that use load-link/store-conditional or load-exclusive/store-exclusive instruction pairs may wish to keep the paired instructions close in the instruction stream. As such, SharedArrayBuffer.prototype.grow itself does not perform bounds checking onnewByteLength before calling HostGrowSharedArrayBuffer, nor is there a requirement on when the current byte length is read.

This is in contrast withHostResizeArrayBuffer, which is guaranteed that the value ofnewByteLength is ≥ 0 and ≤buffer.[[ArrayBufferMaxByteLength]].

The default implementation of HostGrowSharedArrayBuffer is to returnNormalCompletion(unhandled).

25.2.3 The SharedArrayBuffer Constructor

The SharedArrayBufferconstructor:

  • is%SharedArrayBuffer%.
  • is the initial value of the"SharedArrayBuffer" property of theglobal object, if that property is present (see below).
  • creates and initializes a new SharedArrayBuffer when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified SharedArrayBuffer behaviour must include asuper call to the SharedArrayBufferconstructor to create and initialize subclass instances with the internal state necessary to support theSharedArrayBuffer.prototype built-in methods.

Whenever ahost does not provide concurrent access to SharedArrayBuffers it may omit the"SharedArrayBuffer" property of theglobal object.

Note

Unlike anArrayBuffer, aSharedArrayBuffer cannot become detached, and its internal[[ArrayBufferData]] slot is nevernull.

25.2.3.1 SharedArrayBuffer (length [ ,options ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. LetbyteLength be ? ToIndex(length).
  3. LetrequestedMaxByteLength be ? GetArrayBufferMaxByteLengthOption(options).
  4. Return ? AllocateSharedArrayBuffer(NewTarget,byteLength,requestedMaxByteLength).

25.2.4 Properties of the SharedArrayBuffer Constructor

The SharedArrayBufferconstructor:

25.2.4.1 SharedArrayBuffer.prototype

The initial value ofSharedArrayBuffer.prototype is theSharedArrayBuffer prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

25.2.4.2 get SharedArrayBuffer [ @@species ]

SharedArrayBuffer[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

25.2.5 Properties of the SharedArrayBuffer Prototype Object

TheSharedArrayBuffer prototype object:

  • is%SharedArrayBuffer.prototype%.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have an[[ArrayBufferData]] or[[ArrayBufferByteLength]] internal slot.

25.2.5.1 get SharedArrayBuffer.prototype.byteLength

SharedArrayBuffer.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. Letlength beArrayBufferByteLength(O,seq-cst).
  5. Return𝔽(length).

25.2.5.2 SharedArrayBuffer.prototype.constructor

The initial value ofSharedArrayBuffer.prototype.constructor is%SharedArrayBuffer%.

25.2.5.3 SharedArrayBuffer.prototype.grow (newLength )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferMaxByteLength]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. LetnewByteLength be ? ToIndex(newLength).
  5. LethostHandled be ? HostGrowSharedArrayBuffer(O,newByteLength).
  6. IfhostHandled ishandled, returnundefined.
  7. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  8. LetbyteLengthBlock beO.[[ArrayBufferByteLengthData]].
  9. LetcurrentByteLengthRawBytes beGetRawBytesFromSharedBlock(byteLengthBlock, 0,biguint64,true,seq-cst).
  10. LetnewByteLengthRawBytes beNumericToRawBytes(biguint64,(newByteLength),isLittleEndian).
  11. Repeat,
    1. NOTE: This is a compare-and-exchange loop to ensure that parallel, racing grows of the same buffer are totally ordered, are not lost, and do not silently do nothing. The loop exits if it was able to attempt to grow uncontended.
    2. LetcurrentByteLength be(RawBytesToNumeric(biguint64,currentByteLengthRawBytes,isLittleEndian)).
    3. IfnewByteLength =currentByteLength, returnundefined.
    4. IfnewByteLength <currentByteLength ornewByteLength >O.[[ArrayBufferMaxByteLength]], throw aRangeError exception.
    5. LetbyteLengthDelta benewByteLength -currentByteLength.
    6. If it is impossible to create a newShared Data Block value consisting ofbyteLengthDelta bytes, throw aRangeError exception.
    7. NOTE: No newShared Data Block is constructed and used here. The observable behaviour of growable SharedArrayBuffers is specified by allocating amax-sizedShared Data Block at construction time, and this step captures the requirement that implementations that run out of memory must throw aRangeError.
    8. LetreadByteLengthRawBytes beAtomicCompareExchangeInSharedBlock(byteLengthBlock, 0, 8,currentByteLengthRawBytes,newByteLengthRawBytes).
    9. IfByteListEqual(readByteLengthRawBytes,currentByteLengthRawBytes) istrue, returnundefined.
    10. SetcurrentByteLengthRawBytes toreadByteLengthRawBytes.
Note

Spurious failures of the compare-exchange to update the length are prohibited. If the bounds checking for the new length passes and the implementation is not out of memory, aReadModifyWriteSharedMemory event (i.e. a successful compare-exchange) is always added into thecandidate execution.

Parallel calls to SharedArrayBuffer.prototype.grow are totally ordered. For example, consider two racing calls:sab.grow(10) andsab.grow(20). One of the two calls is guaranteed to win the race. The call tosab.grow(10) will never shrinksab even ifsab.grow(20) happened first; in that case it will instead throw a RangeError.

25.2.5.4 get SharedArrayBuffer.prototype.growable

SharedArrayBuffer.prototype.growable is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. IfIsFixedLengthArrayBuffer(O) isfalse, returntrue; otherwise returnfalse.

25.2.5.5 get SharedArrayBuffer.prototype.maxByteLength

SharedArrayBuffer.prototype.maxByteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. IfIsFixedLengthArrayBuffer(O) istrue, then
    1. Letlength beO.[[ArrayBufferByteLength]].
  5. Else,
    1. Letlength beO.[[ArrayBufferMaxByteLength]].
  6. Return𝔽(length).

25.2.5.6 SharedArrayBuffer.prototype.slice (start,end )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[ArrayBufferData]]).
  3. IfIsSharedArrayBuffer(O) isfalse, throw aTypeError exception.
  4. Letlen beArrayBufferByteLength(O,seq-cst).
  5. LetrelativeStart be ? ToIntegerOrInfinity(start).
  6. IfrelativeStart = -∞, letfirst be 0.
  7. Else ifrelativeStart < 0, letfirst bemax(len +relativeStart, 0).
  8. Else, letfirst bemin(relativeStart,len).
  9. Ifend isundefined, letrelativeEnd belen; else letrelativeEnd be ? ToIntegerOrInfinity(end).
  10. IfrelativeEnd = -∞, letfinal be 0.
  11. Else ifrelativeEnd < 0, letfinal bemax(len +relativeEnd, 0).
  12. Else, letfinal bemin(relativeEnd,len).
  13. LetnewLen bemax(final -first, 0).
  14. Letctor be ? SpeciesConstructor(O,%SharedArrayBuffer%).
  15. Letnew be ? Construct(ctor, «𝔽(newLen) »).
  16. Perform ? RequireInternalSlot(new,[[ArrayBufferData]]).
  17. IfIsSharedArrayBuffer(new) isfalse, throw aTypeError exception.
  18. Ifnew.[[ArrayBufferData]] isO.[[ArrayBufferData]], throw aTypeError exception.
  19. IfArrayBufferByteLength(new,seq-cst) <newLen, throw aTypeError exception.
  20. LetfromBuf beO.[[ArrayBufferData]].
  21. LettoBuf benew.[[ArrayBufferData]].
  22. PerformCopyDataBlockBytes(toBuf, 0,fromBuf,first,newLen).
  23. Returnnew.

25.2.5.7 SharedArrayBuffer.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"SharedArrayBuffer".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

25.2.6 Properties of SharedArrayBuffer Instances

SharedArrayBuffer instances inherit properties from theSharedArrayBuffer prototype object. SharedArrayBuffer instances each have an[[ArrayBufferData]] internal slot. SharedArrayBuffer instances which are not growable each have an[[ArrayBufferByteLength]] internal slot. SharedArrayBuffer instances which are growable each have an[[ArrayBufferByteLengthData]] internal slot and an[[ArrayBufferMaxByteLength]] internal slot.

Note

SharedArrayBuffer instances, unlike ArrayBuffer instances, are never detached.

25.2.7 Growable SharedArrayBuffer Guidelines

Note 1

The following are guidelines for ECMAScript programmers working withgrowable SharedArrayBuffer.

We recommend that programs be tested in their deployment environments where possible. The amount of available physical memory differ greatly between hardware devices. Similarly, virtual memory subsystems also differ greatly between hardware devices as well as operating systems. An application that runs without out-of-memory errors on a 64-bit desktop web browser could run out of memory on a 32-bit mobile web browser.

When choosing a value for the"maxByteLength" option forgrowable SharedArrayBuffer, we recommend that the smallest possible size for the application be chosen. We recommend that"maxByteLength" does not exceed 1073741824, or 1GiB.

Please note that successfully constructing agrowable SharedArrayBuffer for a particular maximum size does not guarantee that future grows will succeed.

Not all loads of agrowable SharedArrayBuffer's length are synchronizingseq-cst loads. Loads of the length that are for bounds-checking of aninteger-indexed property access, e.g.u8[idx], are not synchronizing. In general, in the absence of explicit synchronization, one property access being in-bound does not imply a subsequent property access in the sameagent is also in-bound. In contrast, explicit loads of the length via thelength andbyteLength getters on SharedArrayBuffer,%TypedArray%.prototype, and DataView.prototype are synchronizing. Loads of the length that are performed by built-in methods to check if aTypedArray is entirely out-of-bounds are also synchronizing.

Note 2

The following are guidelines for ECMAScript implementers implementinggrowable SharedArrayBuffer.

We recommendgrowable SharedArrayBuffer be implemented as in-place growth via reserving virtual memory up front.

Because grow operations can happen in parallel with memory accesses on agrowable SharedArrayBuffer, the constraints of thememory model require that even unordered accesses do not "tear" (bits of their values will not be mixed). In practice, this means the underlying data block of agrowable SharedArrayBuffer cannot be grown by being copied without stopping the world. We do not recommend stopping the world as an implementation strategy because it introduces a serialization point and is slow.

Grown memory must appear zeroed from the moment of its creation, including to any racy accesses in parallel. This can be accomplished via zero-filled-on-demand virtual memory pages, or careful synchronization if manually zeroing memory.

Integer-indexed property access onTypedArray views of growable SharedArrayBuffers is intended to be optimizable similarly to access onTypedArray views of non-growable SharedArrayBuffers, becauseinteger-indexed property loads on are not synchronizing on the underlying buffer's length (see programmer guidelines above). For example, bounds checks for property accesses may still be hoisted out of loops.

In practice it is difficult to implementgrowable SharedArrayBuffer by copying onhosts that do not have virtual memory, such as those running on embedded devices without an MMU. Memory usage behaviour of growable SharedArrayBuffers on suchhosts may significantly differ from that ofhosts with virtual memory. Suchhosts should clearly communicate memory usage expectations to users.

25.3 DataView Objects

25.3.1 Abstract Operations For DataView Objects

25.3.1.1 DataView With Buffer Witness Records

ADataView With Buffer Witness Record is aRecord value used to encapsulate a DataView along with a cached byte length of the viewed buffer. It is used to help ensure there is a single shared memory read event of the byte length data block when the viewed buffer is a growable SharedArrayBuffers.

DataView With Buffer Witness Records have the fields listed inTable 72.

Table 72:DataView With Buffer Witness Record Fields
Field Name Value Meaning
[[Object]] a DataView The DataView object whose buffer's byte length is loaded.
[[CachedBufferByteLength]] a non-negativeinteger ordetached The byte length of the object's[[ViewedArrayBuffer]] when theRecord was created.

25.3.1.2 MakeDataViewWithBufferWitnessRecord (obj,order )

The abstract operation MakeDataViewWithBufferWitnessRecord takes argumentsobj (a DataView) andorder (seq-cst orunordered) and returns aDataView With Buffer Witness Record. It performs the following steps when called:

  1. Letbuffer beobj.[[ViewedArrayBuffer]].
  2. IfIsDetachedBuffer(buffer) istrue, then
    1. LetbyteLength bedetached.
  3. Else,
    1. LetbyteLength beArrayBufferByteLength(buffer,order).
  4. Return theDataView With Buffer Witness Record {[[Object]]:obj,[[CachedBufferByteLength]]:byteLength }.

25.3.1.3 GetViewByteLength (viewRecord )

The abstract operation GetViewByteLength takes argumentviewRecord (aDataView With Buffer Witness Record) and returns a non-negativeinteger. It performs the following steps when called:

  1. Assert:IsViewOutOfBounds(viewRecord) isfalse.
  2. Letview beviewRecord.[[Object]].
  3. Ifview.[[ByteLength]] is notauto, returnview.[[ByteLength]].
  4. Assert:IsFixedLengthArrayBuffer(view.[[ViewedArrayBuffer]]) isfalse.
  5. LetbyteOffset beview.[[ByteOffset]].
  6. LetbyteLength beviewRecord.[[CachedBufferByteLength]].
  7. Assert:byteLength is notdetached.
  8. ReturnbyteLength -byteOffset.

25.3.1.4 IsViewOutOfBounds (viewRecord )

The abstract operation IsViewOutOfBounds takes argumentviewRecord (aDataView With Buffer Witness Record) and returns a Boolean. It performs the following steps when called:

  1. Letview beviewRecord.[[Object]].
  2. LetbufferByteLength beviewRecord.[[CachedBufferByteLength]].
  3. Assert:IsDetachedBuffer(view.[[ViewedArrayBuffer]]) istrue if and only ifbufferByteLength isdetached.
  4. IfbufferByteLength isdetached, returntrue.
  5. LetbyteOffsetStart beview.[[ByteOffset]].
  6. Ifview.[[ByteLength]] isauto, then
    1. LetbyteOffsetEnd bebufferByteLength.
  7. Else,
    1. LetbyteOffsetEnd bebyteOffsetStart +view.[[ByteLength]].
  8. IfbyteOffsetStart >bufferByteLength orbyteOffsetEnd >bufferByteLength, returntrue.
  9. NOTE: 0-length DataViews are not considered out-of-bounds.
  10. Returnfalse.

25.3.1.5 GetViewValue (view,requestIndex,isLittleEndian,type )

The abstract operation GetViewValue takes argumentsview (anECMAScript language value),requestIndex (anECMAScript language value),isLittleEndian (anECMAScript language value), andtype (aTypedArray element type) and returns either anormal completion containing either a Number or a BigInt, or athrow completion. It is used by functions on DataView instances to retrieve values from the view's buffer. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(view,[[DataView]]).
  2. Assert:view has a[[ViewedArrayBuffer]] internal slot.
  3. LetgetIndex be ? ToIndex(requestIndex).
  4. SetisLittleEndian toToBoolean(isLittleEndian).
  5. LetviewOffset beview.[[ByteOffset]].
  6. LetviewRecord beMakeDataViewWithBufferWitnessRecord(view,unordered).
  7. NOTE: Bounds checking is not a synchronizing operation whenview's backing buffer is agrowable SharedArrayBuffer.
  8. IfIsViewOutOfBounds(viewRecord) istrue, throw aTypeError exception.
  9. LetviewSize beGetViewByteLength(viewRecord).
  10. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  11. IfgetIndex +elementSize >viewSize, throw aRangeError exception.
  12. LetbufferIndex begetIndex +viewOffset.
  13. ReturnGetValueFromBuffer(view.[[ViewedArrayBuffer]],bufferIndex,type,false,unordered,isLittleEndian).

25.3.1.6 SetViewValue (view,requestIndex,isLittleEndian,type,value )

The abstract operation SetViewValue takes argumentsview (anECMAScript language value),requestIndex (anECMAScript language value),isLittleEndian (anECMAScript language value),type (aTypedArray element type), andvalue (anECMAScript language value) and returns either anormal completion containingundefined or athrow completion. It is used by functions on DataView instances to store values into the view's buffer. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(view,[[DataView]]).
  2. Assert:view has a[[ViewedArrayBuffer]] internal slot.
  3. LetgetIndex be ? ToIndex(requestIndex).
  4. IfIsBigIntElementType(type) istrue, letnumberValue be ? ToBigInt(value).
  5. Otherwise, letnumberValue be ? ToNumber(value).
  6. SetisLittleEndian toToBoolean(isLittleEndian).
  7. LetviewOffset beview.[[ByteOffset]].
  8. LetviewRecord beMakeDataViewWithBufferWitnessRecord(view,unordered).
  9. NOTE: Bounds checking is not a synchronizing operation whenview's backing buffer is agrowable SharedArrayBuffer.
  10. IfIsViewOutOfBounds(viewRecord) istrue, throw aTypeError exception.
  11. LetviewSize beGetViewByteLength(viewRecord).
  12. LetelementSize be the Element Size value specified inTable 71 for Element Typetype.
  13. IfgetIndex +elementSize >viewSize, throw aRangeError exception.
  14. LetbufferIndex begetIndex +viewOffset.
  15. PerformSetValueInBuffer(view.[[ViewedArrayBuffer]],bufferIndex,type,numberValue,false,unordered,isLittleEndian).
  16. Returnundefined.

25.3.2 The DataView Constructor

The DataViewconstructor:

  • is%DataView%.
  • is the initial value of the"DataView" property of theglobal object.
  • creates and initializes a new DataView when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified DataView behaviour must include asuper call to the DataViewconstructor to create and initialize subclass instances with the internal state necessary to support theDataView.prototype built-in methods.

25.3.2.1 DataView (buffer [ ,byteOffset [ ,byteLength ] ] )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Perform ? RequireInternalSlot(buffer,[[ArrayBufferData]]).
  3. Letoffset be ? ToIndex(byteOffset).
  4. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  5. LetbufferByteLength beArrayBufferByteLength(buffer,seq-cst).
  6. Ifoffset >bufferByteLength, throw aRangeError exception.
  7. LetbufferIsFixedLength beIsFixedLengthArrayBuffer(buffer).
  8. IfbyteLength isundefined, then
    1. IfbufferIsFixedLength istrue, then
      1. LetviewByteLength bebufferByteLength -offset.
    2. Else,
      1. LetviewByteLength beauto.
  9. Else,
    1. LetviewByteLength be ? ToIndex(byteLength).
    2. Ifoffset +viewByteLength >bufferByteLength, throw aRangeError exception.
  10. LetO be ? OrdinaryCreateFromConstructor(NewTarget,"%DataView.prototype%", «[[DataView]],[[ViewedArrayBuffer]],[[ByteLength]],[[ByteOffset]] »).
  11. IfIsDetachedBuffer(buffer) istrue, throw aTypeError exception.
  12. SetbufferByteLength toArrayBufferByteLength(buffer,seq-cst).
  13. Ifoffset >bufferByteLength, throw aRangeError exception.
  14. IfbyteLength is notundefined, then
    1. Ifoffset +viewByteLength >bufferByteLength, throw aRangeError exception.
  15. SetO.[[ViewedArrayBuffer]] tobuffer.
  16. SetO.[[ByteLength]] toviewByteLength.
  17. SetO.[[ByteOffset]] tooffset.
  18. ReturnO.

25.3.3 Properties of the DataView Constructor

The DataViewconstructor:

25.3.3.1 DataView.prototype

The initial value ofDataView.prototype is theDataView prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

25.3.4 Properties of the DataView Prototype Object

TheDataView prototype object:

  • is%DataView.prototype%.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have a[[DataView]],[[ViewedArrayBuffer]],[[ByteLength]], or[[ByteOffset]] internal slot.

25.3.4.1 get DataView.prototype.buffer

DataView.prototype.buffer is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[DataView]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. Letbuffer beO.[[ViewedArrayBuffer]].
  5. Returnbuffer.

25.3.4.2 get DataView.prototype.byteLength

DataView.prototype.byteLength is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[DataView]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. LetviewRecord beMakeDataViewWithBufferWitnessRecord(O,seq-cst).
  5. IfIsViewOutOfBounds(viewRecord) istrue, throw aTypeError exception.
  6. Letsize beGetViewByteLength(viewRecord).
  7. Return𝔽(size).

25.3.4.3 get DataView.prototype.byteOffset

DataView.prototype.byteOffset is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[DataView]]).
  3. Assert:O has a[[ViewedArrayBuffer]] internal slot.
  4. LetviewRecord beMakeDataViewWithBufferWitnessRecord(O,seq-cst).
  5. IfIsViewOutOfBounds(viewRecord) istrue, throw aTypeError exception.
  6. Letoffset beO.[[ByteOffset]].
  7. Return𝔽(offset).

25.3.4.4 DataView.prototype.constructor

The initial value ofDataView.prototype.constructor is%DataView%.

25.3.4.5 DataView.prototype.getBigInt64 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,littleEndian,bigint64).

25.3.4.6 DataView.prototype.getBigUint64 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,littleEndian,biguint64).

25.3.4.7 DataView.prototype.getFloat32 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,float32).

25.3.4.8 DataView.prototype.getFloat64 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,float64).

25.3.4.9 DataView.prototype.getInt8 (byteOffset )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,true,int8).

25.3.4.10 DataView.prototype.getInt16 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,int16).

25.3.4.11 DataView.prototype.getInt32 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,int32).

25.3.4.12 DataView.prototype.getUint8 (byteOffset )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? GetViewValue(v,byteOffset,true,uint8).

25.3.4.13 DataView.prototype.getUint16 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,uint16).

25.3.4.14 DataView.prototype.getUint32 (byteOffset [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? GetViewValue(v,byteOffset,littleEndian,uint32).

25.3.4.15 DataView.prototype.setBigInt64 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,littleEndian,bigint64,value).

25.3.4.16 DataView.prototype.setBigUint64 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,littleEndian,biguint64,value).

25.3.4.17 DataView.prototype.setFloat32 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,float32,value).

25.3.4.18 DataView.prototype.setFloat64 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,float64,value).

25.3.4.19 DataView.prototype.setInt8 (byteOffset,value )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,true,int8,value).

25.3.4.20 DataView.prototype.setInt16 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,int16,value).

25.3.4.21 DataView.prototype.setInt32 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,int32,value).

25.3.4.22 DataView.prototype.setUint8 (byteOffset,value )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. Return ? SetViewValue(v,byteOffset,true,uint8,value).

25.3.4.23 DataView.prototype.setUint16 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,uint16,value).

25.3.4.24 DataView.prototype.setUint32 (byteOffset,value [ ,littleEndian ] )

This method performs the following steps when called:

  1. Letv be thethis value.
  2. IflittleEndian is not present, setlittleEndian tofalse.
  3. Return ? SetViewValue(v,byteOffset,littleEndian,uint32,value).

25.3.4.25 DataView.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"DataView".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

25.3.5 Properties of DataView Instances

DataView instances areordinary objects that inherit properties from theDataView prototype object. DataView instances each have[[DataView]],[[ViewedArrayBuffer]],[[ByteLength]], and[[ByteOffset]] internal slots.

Note

The value of the[[DataView]] internal slot is not used within this specification. The simple presence of that internal slot is used within the specification to identify objects created using the DataViewconstructor.

25.4 The Atomics Object

The Atomics object:

  • is%Atomics%.
  • is the initial value of the"Atomics" property of theglobal object.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a[[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a[[Call]] internal method; it cannot be invoked as a function.

The Atomics object provides functions that operate indivisibly (atomically) on shared memory array cells as well as functions that letagents wait for and dispatch primitive events. When used with discipline, the Atomics functions allow multi-agent programs that communicate through shared memory to execute in a well-understood order even on parallel CPUs. The rules that govern shared-memory communication are provided by thememory model, defined below.

Note

For informative guidelines for programming and implementing shared memory in ECMAScript, please see the notes at the end of thememory model section.

25.4.1 Waiter Record

AWaiter Record is aRecord value used to denote a particular call toAtomics.wait orAtomics.waitAsync.

A Waiter Record has fields listed inTable 73.

Table 73:Waiter Record Fields
Field Name Value Meaning
[[AgentSignifier]] anagent signifier Theagent that calledAtomics.wait orAtomics.waitAsync.
[[PromiseCapability]] aPromiseCapability Record orblocking If denoting a call toAtomics.waitAsync, the resulting promise, otherwiseblocking.
[[TimeoutTime]] a non-negativeextended mathematical value The earliest time by which timeout may be triggered; computed usingtime values.
[[Result]]"ok" or"timed-out" The return value of the call.

25.4.2 WaiterList Records

AWaiterList Record is used to explain waiting and notification ofagents viaAtomics.wait,Atomics.waitAsync, andAtomics.notify.

A WaiterList Record has fields listed inTable 74.

Table 74:WaiterList Record Fields
Field Name Value Meaning
[[Waiters]] aList ofWaiter Records The calls toAtomics.wait orAtomics.waitAsync that are waiting on the location with which this WaiterList is associated.
[[MostRecentLeaveEvent]] aSynchronize event orempty The event of the most recent leaving of itscritical section, orempty if itscritical section has never been entered.

There can be multipleWaiter Records in a WaiterList with the sameagent signifier.

Theagent cluster has a store of WaiterList Records; the store is indexed by (block,i), whereblock is aShared Data Block andi a byte offset into the memory ofblock. WaiterList Records areagent-independent: a lookup in the store of WaiterList Records by (block,i) will result in the same WaiterList Record in anyagent in theagent cluster.

Each WaiterList Record has acritical section that controls exclusive access to that WaiterList Record during evaluation. Only a singleagent may enter a WaiterList Record's critical section at one time. Entering and leaving a WaiterList Record's critical section is controlled by theabstract operationsEnterCriticalSection andLeaveCriticalSection. Operations on a WaiterList Record—adding and removing waitingagents, traversing the list ofagents, suspending and notifyingagents on the list, setting and retrieving theSynchronize event—may only be performed byagents that have entered the WaiterList Record's critical section.

25.4.3 Abstract Operations for Atomics

25.4.3.1 ValidateIntegerTypedArray (typedArray,waitable )

The abstract operation ValidateIntegerTypedArray takes argumentstypedArray (anECMAScript language value) andwaitable (a Boolean) and returns either anormal completion containing aTypedArray With Buffer Witness Record, or athrow completion. It performs the following steps when called:

  1. LettaRecord be ? ValidateTypedArray(typedArray,unordered).
  2. NOTE: Bounds checking is not a synchronizing operation whentypedArray's backing buffer is agrowable SharedArrayBuffer.
  3. Ifwaitable istrue, then
    1. IftypedArray.[[TypedArrayName]] is neither"Int32Array" nor"BigInt64Array", throw aTypeError exception.
  4. Else,
    1. Lettype beTypedArrayElementType(typedArray).
    2. IfIsUnclampedIntegerElementType(type) isfalse andIsBigIntElementType(type) isfalse, throw aTypeError exception.
  5. ReturntaRecord.

25.4.3.2 ValidateAtomicAccess (taRecord,requestIndex )

The abstract operation ValidateAtomicAccess takes argumentstaRecord (aTypedArray With Buffer Witness Record) andrequestIndex (anECMAScript language value) and returns either anormal completion containing aninteger or athrow completion. It performs the following steps when called:

  1. Letlength beTypedArrayLength(taRecord).
  2. LetaccessIndex be ? ToIndex(requestIndex).
  3. Assert:accessIndex ≥ 0.
  4. IfaccessIndexlength, throw aRangeError exception.
  5. LettypedArray betaRecord.[[Object]].
  6. LetelementSize beTypedArrayElementSize(typedArray).
  7. Letoffset betypedArray.[[ByteOffset]].
  8. Return (accessIndex ×elementSize) +offset.

25.4.3.3 ValidateAtomicAccessOnIntegerTypedArray (typedArray,requestIndex [ ,waitable ] )

The abstract operation ValidateAtomicAccessOnIntegerTypedArray takes argumentstypedArray (anECMAScript language value) andrequestIndex (anECMAScript language value) and optional argumentwaitable (a Boolean) and returns either anormal completion containing aninteger or athrow completion. It performs the following steps when called:

  1. Ifwaitable is not present, setwaitable tofalse.
  2. LettaRecord be ? ValidateIntegerTypedArray(typedArray,waitable).
  3. Return ? ValidateAtomicAccess(taRecord,requestIndex).

25.4.3.4 RevalidateAtomicAccess (typedArray,byteIndexInBuffer )

The abstract operation RevalidateAtomicAccess takes argumentstypedArray (aTypedArray) andbyteIndexInBuffer (aninteger) and returns either anormal completion containingunused or athrow completion. This operation revalidates the index within the backing buffer for atomic operations after all argument coercions are performed in Atomics methods, as argument coercions can have arbitrary side effects, which could cause the buffer to become out of bounds. This operation does not throw whentypedArray's backing buffer is a SharedArrayBuffer. It performs the following steps when called:

  1. LettaRecord beMakeTypedArrayWithBufferWitnessRecord(typedArray,unordered).
  2. NOTE: Bounds checking is not a synchronizing operation whentypedArray's backing buffer is agrowable SharedArrayBuffer.
  3. IfIsTypedArrayOutOfBounds(taRecord) istrue, throw aTypeError exception.
  4. Assert:byteIndexInBuffertypedArray.[[ByteOffset]].
  5. IfbyteIndexInBuffertaRecord.[[CachedBufferByteLength]], throw aRangeError exception.
  6. Returnunused.

25.4.3.5 GetWaiterList (block,i )

The abstract operation GetWaiterList takes argumentsblock (aShared Data Block) andi (a non-negativeinteger that is evenly divisible by 4) and returns aWaiterList Record. It performs the following steps when called:

  1. Assert:i andi + 3 are valid byte offsets within the memory ofblock.
  2. Return theWaiterList Record that is referenced by the pair (block,i).

25.4.3.6 EnterCriticalSection (WL )

The abstract operation EnterCriticalSection takes argumentWL (aWaiterList Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is not in thecritical section for anyWaiterList Record.
  2. Wait until noagent is in thecritical section forWL, then enter thecritical section forWL (without allowing any otheragent to enter).
  3. IfWL.[[MostRecentLeaveEvent]] is notempty, then
    1. NOTE: AWL whosecritical section has been entered at least once has aSynchronize event set byLeaveCriticalSection.
    2. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
    3. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
    4. LetenterEvent be a newSynchronize event.
    5. AppendenterEvent toeventsRecord.[[EventList]].
    6. Append (WL.[[MostRecentLeaveEvent]],enterEvent) toeventsRecord.[[AgentSynchronizesWith]].
  4. Returnunused.

EnterCriticalSection hascontention when anagent attempting to enter thecritical section must wait for anotheragent to leave it. When there is no contention, FIFO order of EnterCriticalSection calls is observable. When there is contention, an implementation may choose an arbitrary order but may not cause anagent to wait indefinitely.

25.4.3.7 LeaveCriticalSection (WL )

The abstract operation LeaveCriticalSection takes argumentWL (aWaiterList Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
  3. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
  4. LetleaveEvent be a newSynchronize event.
  5. AppendleaveEvent toeventsRecord.[[EventList]].
  6. SetWL.[[MostRecentLeaveEvent]] toleaveEvent.
  7. Leave thecritical section forWL.
  8. Returnunused.

25.4.3.8 AddWaiter (WL,waiterRecord )

The abstract operation AddWaiter takes argumentsWL (aWaiterList Record) andwaiterRecord (aWaiter Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. Assert: There is noWaiter Record inWL.[[Waiters]] whose[[PromiseCapability]] field iswaiterRecord.[[PromiseCapability]] and whose[[AgentSignifier]] field iswaiterRecord.[[AgentSignifier]].
  3. AppendwaiterRecord toWL.[[Waiters]].
  4. Returnunused.

25.4.3.9 RemoveWaiter (WL,waiterRecord )

The abstract operation RemoveWaiter takes argumentsWL (aWaiterList Record) andwaiterRecord (aWaiter Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. Assert:WL.[[Waiters]] containswaiterRecord.
  3. RemovewaiterRecord fromWL.[[Waiters]].
  4. Returnunused.

25.4.3.10 RemoveWaiters (WL,c )

The abstract operation RemoveWaiters takes argumentsWL (aWaiterList Record) andc (a non-negativeinteger or +∞) and returns aList ofWaiter Records. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. Letlen be the number of elements inWL.[[Waiters]].
  3. Letn bemin(c,len).
  4. LetL be aList whose elements are the firstn elements ofWL.[[Waiters]].
  5. Remove the firstn elements ofWL.[[Waiters]].
  6. ReturnL.

25.4.3.11 SuspendThisAgent (WL,waiterRecord )

The abstract operation SuspendThisAgent takes argumentsWL (aWaiterList Record) andwaiterRecord (aWaiter Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. Assert:WL.[[Waiters]] containswaiterRecord.
  3. LetthisAgent beAgentSignifier().
  4. Assert:waiterRecord.[[AgentSignifier]] isthisAgent.
  5. Assert:waiterRecord.[[PromiseCapability]] isblocking.
  6. Assert:AgentCanSuspend() istrue.
  7. PerformLeaveCriticalSection(WL) and suspend thesurrounding agent until the time iswaiterRecord.[[TimeoutTime]], performing the combined operation in such a way that a notification that arrives after thecritical section is exited but before the suspension takes effect is not lost. Thesurrounding agent can only wake from suspension due to a timeout or due to anotheragent callingNotifyWaiter with argumentsWL andthisAgent (i.e. via a call toAtomics.notify).
  8. PerformEnterCriticalSection(WL).
  9. Returnunused.

25.4.3.12 NotifyWaiter (WL,waiterRecord )

The abstract operation NotifyWaiter takes argumentsWL (aWaiterList Record) andwaiterRecord (aWaiter Record) and returnsunused. It performs the following steps when called:

  1. Assert: Thesurrounding agent is in thecritical section forWL.
  2. IfwaiterRecord.[[PromiseCapability]] isblocking, then
    1. Wake theagent whose signifier iswaiterRecord.[[AgentSignifier]] from suspension.
    2. NOTE: This causes theagent to resume execution inSuspendThisAgent.
  3. Else ifAgentSignifier() iswaiterRecord.[[AgentSignifier]], then
    1. LetpromiseCapability bewaiterRecord.[[PromiseCapability]].
    2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «waiterRecord.[[Result]] »).
  4. Else,
    1. PerformEnqueueResolveInAgentJob(waiterRecord.[[AgentSignifier]],waiterRecord.[[PromiseCapability]],waiterRecord.[[Result]]).
  5. Returnunused.
Note

Anagent must not access anotheragent's promise capability in any capacity beyond passing it to thehost.

25.4.3.13 EnqueueResolveInAgentJob (agentSignifier,promiseCapability,resolution )

The abstract operation EnqueueResolveInAgentJob takes argumentsagentSignifier (anagent signifier),promiseCapability (aPromiseCapability Record), andresolution (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. LetresolveJob be a newJobAbstract Closure with no parameters that capturesagentSignifier,promiseCapability, andresolution and performs the following steps when called:
    1. Assert:AgentSignifier() isagentSignifier.
    2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «resolution »).
    3. Returnunused.
  2. LetrealmInTargetAgent be ! GetFunctionRealm(promiseCapability.[[Resolve]]).
  3. Assert:agentSignifier isrealmInTargetAgent.[[AgentSignifier]].
  4. PerformHostEnqueueGenericJob(resolveJob,realmInTargetAgent).
  5. Returnunused.

25.4.3.14 DoWait (mode,typedArray,index,value,timeout )

The abstract operation DoWait takes argumentsmode (sync orasync),typedArray (anECMAScript language value),index (anECMAScript language value),value (anECMAScript language value), andtimeout (anECMAScript language value) and returns either anormal completion containing either an Object,"not-equal","timed-out", or"ok", or athrow completion. It performs the following steps when called:

  1. LettaRecord be ? ValidateIntegerTypedArray(typedArray,true).
  2. Letbuffer betaRecord.[[Object]].[[ViewedArrayBuffer]].
  3. IfIsSharedArrayBuffer(buffer) isfalse, throw aTypeError exception.
  4. Leti be ? ValidateAtomicAccess(taRecord,index).
  5. LetarrayTypeName betypedArray.[[TypedArrayName]].
  6. IfarrayTypeName is"BigInt64Array", letv be ? ToBigInt64(value).
  7. Else, letv be ? ToInt32(value).
  8. Letq be ? ToNumber(timeout).
  9. Ifq is eitherNaN or+∞𝔽, lett be +∞; else ifq is-∞𝔽, lett be 0; else lett bemax((q), 0).
  10. Ifmode issync andAgentCanSuspend() isfalse, throw aTypeError exception.
  11. Letblock bebuffer.[[ArrayBufferData]].
  12. Letoffset betypedArray.[[ByteOffset]].
  13. LetbyteIndexInBuffer be (i × 4) +offset.
  14. LetWL beGetWaiterList(block,byteIndexInBuffer).
  15. Ifmode issync, then
    1. LetpromiseCapability beblocking.
    2. LetresultObject beundefined.
  16. Else,
    1. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
    2. LetresultObject beOrdinaryObjectCreate(%Object.prototype%).
  17. PerformEnterCriticalSection(WL).
  18. LetelementType beTypedArrayElementType(typedArray).
  19. Letw beGetValueFromBuffer(buffer,byteIndexInBuffer,elementType,true,seq-cst).
  20. Ifvw, then
    1. PerformLeaveCriticalSection(WL).
    2. Ifmode issync, return"not-equal".
    3. Perform ! CreateDataPropertyOrThrow(resultObject,"async",false).
    4. Perform ! CreateDataPropertyOrThrow(resultObject,"value","not-equal").
    5. ReturnresultObject.
  21. Ift is 0 andmode isasync, then
    1. NOTE: There is no special handling of synchronous immediate timeouts. Asynchronous immediate timeouts have special handling in order to fail fast and avoid unnecessary Promise jobs.
    2. PerformLeaveCriticalSection(WL).
    3. Perform ! CreateDataPropertyOrThrow(resultObject,"async",false).
    4. Perform ! CreateDataPropertyOrThrow(resultObject,"value","timed-out").
    5. ReturnresultObject.
  22. LetthisAgent beAgentSignifier().
  23. Letnow be thetime value (UTC) identifying the current time.
  24. LetadditionalTimeout be animplementation-defined non-negativemathematical value.
  25. LettimeoutTime be(now) +t +additionalTimeout.
  26. NOTE: Whent is +∞,timeoutTime is also +∞.
  27. LetwaiterRecord be a newWaiter Record {[[AgentSignifier]]:thisAgent,[[PromiseCapability]]:promiseCapability,[[TimeoutTime]]:timeoutTime,[[Result]]:"ok" }.
  28. PerformAddWaiter(WL,waiterRecord).
  29. Ifmode issync, then
    1. PerformSuspendThisAgent(WL,waiterRecord).
  30. Else iftimeoutTime isfinite, then
    1. PerformEnqueueAtomicsWaitAsyncTimeoutJob(WL,waiterRecord).
  31. PerformLeaveCriticalSection(WL).
  32. Ifmode issync, returnwaiterRecord.[[Result]].
  33. Perform ! CreateDataPropertyOrThrow(resultObject,"async",true).
  34. Perform ! CreateDataPropertyOrThrow(resultObject,"value",promiseCapability.[[Promise]]).
  35. ReturnresultObject.
Note

additionalTimeout allows implementations to pad timeouts as necessary, such as for reducing power consumption or coarsening timer resolution to mitigate timing attacks. This value may differ from call to call of DoWait.

25.4.3.15 EnqueueAtomicsWaitAsyncTimeoutJob (WL,waiterRecord )

The abstract operation EnqueueAtomicsWaitAsyncTimeoutJob takes argumentsWL (aWaiterList Record) andwaiterRecord (aWaiter Record) and returnsunused. It performs the following steps when called:

  1. LettimeoutJob be a newJobAbstract Closure with no parameters that capturesWL andwaiterRecord and performs the following steps when called:
    1. PerformEnterCriticalSection(WL).
    2. IfWL.[[Waiters]] containswaiterRecord, then
      1. LettimeOfJobExecution be thetime value (UTC) identifying the current time.
      2. Assert:(timeOfJobExecution) ≥waiterRecord.[[TimeoutTime]] (ignoring potential non-monotonicity oftime values).
      3. SetwaiterRecord.[[Result]] to"timed-out".
      4. PerformRemoveWaiter(WL,waiterRecord).
      5. PerformNotifyWaiter(WL,waiterRecord).
    3. PerformLeaveCriticalSection(WL).
    4. Returnunused.
  2. Letnow be thetime value (UTC) identifying the current time.
  3. LetcurrentRealm bethe current Realm Record.
  4. PerformHostEnqueueTimeoutJob(timeoutJob,currentRealm,𝔽(waiterRecord.[[TimeoutTime]]) -now).
  5. Returnunused.

25.4.3.16 AtomicCompareExchangeInSharedBlock (block,byteIndexInBuffer,elementSize,expectedBytes,replacementBytes )

The abstract operation AtomicCompareExchangeInSharedBlock takes argumentsblock (aShared Data Block),byteIndexInBuffer (aninteger),elementSize (a non-negativeinteger),expectedBytes (aList ofbyte values), andreplacementBytes (aList ofbyte values) and returns aList ofbyte values. It performs the following steps when called:

  1. Letexecution be the[[CandidateExecution]] field of thesurrounding agent'sAgent Record.
  2. LeteventsRecord be theAgent Events Record ofexecution.[[EventsRecords]] whose[[AgentSignifier]] isAgentSignifier().
  3. LetrawBytesRead be aList of lengthelementSize whose elements are nondeterministically chosenbyte values.
  4. NOTE: In implementations,rawBytesRead is the result of a load-link, of a load-exclusive, or of an operand of a read-modify-write instruction on the underlying hardware. The nondeterminism is a semantic prescription of thememory model to describe observable behaviour of hardware with weak consistency.
  5. NOTE: The comparison of the expected value and the read value is performed outside of theread-modify-write modification function to avoid needlessly strong synchronization when the expected value is not equal to the read value.
  6. IfByteListEqual(rawBytesRead,expectedBytes) istrue, then
    1. Letsecond be a newread-modify-write modification function with parameters (oldBytes,newBytes) that captures nothing and performs the following steps atomically when called:
      1. ReturnnewBytes.
    2. Letevent beReadModifyWriteSharedMemory {[[Order]]:seq-cst,[[NoTear]]:true,[[Block]]:block,[[ByteIndex]]:byteIndexInBuffer,[[ElementSize]]:elementSize,[[Payload]]:replacementBytes,[[ModifyOp]]:second }.
  7. Else,
    1. Letevent beReadSharedMemory {[[Order]]:seq-cst,[[NoTear]]:true,[[Block]]:block,[[ByteIndex]]:byteIndexInBuffer,[[ElementSize]]:elementSize }.
  8. Appendevent toeventsRecord.[[EventList]].
  9. AppendChosen Value Record {[[Event]]:event,[[ChosenValue]]:rawBytesRead } toexecution.[[ChosenValues]].
  10. ReturnrawBytesRead.

25.4.3.17 AtomicReadModifyWrite (typedArray,index,value,op )

The abstract operation AtomicReadModifyWrite takes argumentstypedArray (anECMAScript language value),index (anECMAScript language value),value (anECMAScript language value), andop (aread-modify-write modification function) and returns either anormal completion containing either a Number or a BigInt, or athrow completion.op takes twoList ofbyte values arguments and returns aList ofbyte values. This operation atomically loads a value, combines it with another value, and stores the result of the combination. It returns the loaded value. It performs the following steps when called:

  1. LetbyteIndexInBuffer be ? ValidateAtomicAccessOnIntegerTypedArray(typedArray,index).
  2. IftypedArray.[[ContentType]] isbigint, letv be ? ToBigInt(value).
  3. Otherwise, letv be𝔽(?ToIntegerOrInfinity(value)).
  4. Perform ? RevalidateAtomicAccess(typedArray,byteIndexInBuffer).
  5. Letbuffer betypedArray.[[ViewedArrayBuffer]].
  6. LetelementType beTypedArrayElementType(typedArray).
  7. ReturnGetModifySetValueInBuffer(buffer,byteIndexInBuffer,elementType,v,op).

25.4.3.18 ByteListBitwiseOp (op,xBytes,yBytes )

The abstract operation ByteListBitwiseOp takes argumentsop (&,^, or|),xBytes (aList ofbyte values), andyBytes (aList ofbyte values) and returns aList ofbyte values. The operation atomically performs a bitwise operation on allbyte values of the arguments and returns aList ofbyte values. It performs the following steps when called:

  1. Assert:xBytes andyBytes have the same number of elements.
  2. Letresult be a new emptyList.
  3. Leti be 0.
  4. For each elementxByte ofxBytes, do
    1. LetyByte beyBytes[i].
    2. Ifop is&, then
      1. LetresultByte be the result of applying the bitwise AND operation toxByte andyByte.
    3. Else ifop is^, then
      1. LetresultByte be the result of applying the bitwise exclusive OR (XOR) operation toxByte andyByte.
    4. Else,
      1. Assert:op is|.
      2. LetresultByte be the result of applying the bitwise inclusive OR operation toxByte andyByte.
    5. Seti toi + 1.
    6. AppendresultByte toresult.
  5. Returnresult.

25.4.3.19 ByteListEqual (xBytes,yBytes )

The abstract operation ByteListEqual takes argumentsxBytes (aList ofbyte values) andyBytes (aList ofbyte values) and returns a Boolean. It performs the following steps when called:

  1. IfxBytes andyBytes do not have the same number of elements, returnfalse.
  2. Leti be 0.
  3. For each elementxByte ofxBytes, do
    1. LetyByte beyBytes[i].
    2. IfxByteyByte, returnfalse.
    3. Seti toi + 1.
  4. Returntrue.

25.4.4 Atomics.add (typedArray,index,value )

This function performs the following steps when called:

  1. Lettype beTypedArrayElementType(typedArray).
  2. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  3. Letadd be a newread-modify-write modification function with parameters (xBytes,yBytes) that capturestype andisLittleEndian and performs the following steps atomically when called:
    1. Letx beRawBytesToNumeric(type,xBytes,isLittleEndian).
    2. Lety beRawBytesToNumeric(type,yBytes,isLittleEndian).
    3. Ifxis a Number, then
      1. Letsum beNumber::add(x,y).
    4. Else,
      1. Assert:xis a BigInt.
      2. Letsum beBigInt::add(x,y).
    5. LetsumBytes beNumericToRawBytes(type,sum,isLittleEndian).
    6. Assert:sumBytes,xBytes, andyBytes have the same number of elements.
    7. ReturnsumBytes.
  4. Return ? AtomicReadModifyWrite(typedArray,index,value,add).

25.4.5 Atomics.and (typedArray,index,value )

This function performs the following steps when called:

  1. Letand be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(&,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,and).

25.4.6 Atomics.compareExchange (typedArray,index,expectedValue,replacementValue )

This function performs the following steps when called:

  1. LetbyteIndexInBuffer be ? ValidateAtomicAccessOnIntegerTypedArray(typedArray,index).
  2. Letbuffer betypedArray.[[ViewedArrayBuffer]].
  3. Letblock bebuffer.[[ArrayBufferData]].
  4. IftypedArray.[[ContentType]] isbigint, then
    1. Letexpected be ? ToBigInt(expectedValue).
    2. Letreplacement be ? ToBigInt(replacementValue).
  5. Else,
    1. Letexpected be𝔽(?ToIntegerOrInfinity(expectedValue)).
    2. Letreplacement be𝔽(?ToIntegerOrInfinity(replacementValue)).
  6. Perform ? RevalidateAtomicAccess(typedArray,byteIndexInBuffer).
  7. LetelementType beTypedArrayElementType(typedArray).
  8. LetelementSize beTypedArrayElementSize(typedArray).
  9. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  10. LetexpectedBytes beNumericToRawBytes(elementType,expected,isLittleEndian).
  11. LetreplacementBytes beNumericToRawBytes(elementType,replacement,isLittleEndian).
  12. IfIsSharedArrayBuffer(buffer) istrue, then
    1. LetrawBytesRead beAtomicCompareExchangeInSharedBlock(block,byteIndexInBuffer,elementSize,expectedBytes,replacementBytes).
  13. Else,
    1. LetrawBytesRead be aList of lengthelementSize whose elements are the sequence ofelementSize bytes starting withblock[byteIndexInBuffer].
    2. IfByteListEqual(rawBytesRead,expectedBytes) istrue, then
      1. Store the individual bytes ofreplacementBytes intoblock, starting atblock[byteIndexInBuffer].
  14. ReturnRawBytesToNumeric(elementType,rawBytesRead,isLittleEndian).

25.4.7 Atomics.exchange (typedArray,index,value )

This function performs the following steps when called:

  1. Letsecond be a newread-modify-write modification function with parameters (oldBytes,newBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnnewBytes.
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,second).

25.4.8 Atomics.isLockFree (size )

This function performs the following steps when called:

  1. Letn be ? ToIntegerOrInfinity(size).
  2. LetAR be theAgent Record of thesurrounding agent.
  3. Ifn = 1, returnAR.[[IsLockFree1]].
  4. Ifn = 2, returnAR.[[IsLockFree2]].
  5. Ifn = 4, returntrue.
  6. Ifn = 8, returnAR.[[IsLockFree8]].
  7. Returnfalse.
Note

This function is an optimization primitive. The intuition is that if the atomic step of an atomic primitive (compareExchange,load,store,add,sub,and,or,xor, orexchange) on a datum of sizen bytes will be performed without thesurrounding agent acquiring a lock outside then bytes comprising the datum, thenAtomics.isLockFree(n) will returntrue. High-performance algorithms will use this function to determine whether to use locks or atomic operations incritical sections. If an atomic primitive is not lock-free then it is often more efficient for an algorithm to provide its own locking.

Atomics.isLockFree(4) always returnstrue as that can be supported on all known relevant hardware. Being able to assume this will generally simplify programs.

Regardless of the value returned by this function, all atomic operations are guaranteed to be atomic. For example, they will never have a visible operation take place in the middle of the operation (e.g., "tearing").

25.4.9 Atomics.load (typedArray,index )

This function performs the following steps when called:

  1. LetbyteIndexInBuffer be ? ValidateAtomicAccessOnIntegerTypedArray(typedArray,index).
  2. Perform ? RevalidateAtomicAccess(typedArray,byteIndexInBuffer).
  3. Letbuffer betypedArray.[[ViewedArrayBuffer]].
  4. LetelementType beTypedArrayElementType(typedArray).
  5. ReturnGetValueFromBuffer(buffer,byteIndexInBuffer,elementType,true,seq-cst).

25.4.10 Atomics.or (typedArray,index,value )

This function performs the following steps when called:

  1. Letor be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(|,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,or).

25.4.11 Atomics.store (typedArray,index,value )

This function performs the following steps when called:

  1. LetbyteIndexInBuffer be ? ValidateAtomicAccessOnIntegerTypedArray(typedArray,index).
  2. IftypedArray.[[ContentType]] isbigint, letv be ? ToBigInt(value).
  3. Otherwise, letv be𝔽(?ToIntegerOrInfinity(value)).
  4. Perform ? RevalidateAtomicAccess(typedArray,byteIndexInBuffer).
  5. Letbuffer betypedArray.[[ViewedArrayBuffer]].
  6. LetelementType beTypedArrayElementType(typedArray).
  7. PerformSetValueInBuffer(buffer,byteIndexInBuffer,elementType,v,true,seq-cst).
  8. Returnv.

25.4.12 Atomics.sub (typedArray,index,value )

This function performs the following steps when called:

  1. Lettype beTypedArrayElementType(typedArray).
  2. LetisLittleEndian be the value of the[[LittleEndian]] field of thesurrounding agent'sAgent Record.
  3. Letsubtract be a newread-modify-write modification function with parameters (xBytes,yBytes) that capturestype andisLittleEndian and performs the following steps atomically when called:
    1. Letx beRawBytesToNumeric(type,xBytes,isLittleEndian).
    2. Lety beRawBytesToNumeric(type,yBytes,isLittleEndian).
    3. Ifxis a Number, then
      1. Letdifference beNumber::subtract(x,y).
    4. Else,
      1. Assert:xis a BigInt.
      2. Letdifference beBigInt::subtract(x,y).
    5. LetdifferenceBytes beNumericToRawBytes(type,difference,isLittleEndian).
    6. Assert:differenceBytes,xBytes, andyBytes have the same number of elements.
    7. ReturndifferenceBytes.
  4. Return ? AtomicReadModifyWrite(typedArray,index,value,subtract).

25.4.13 Atomics.wait (typedArray,index,value,timeout )

This function puts thesurrounding agent in a wait queue and suspends it until notified or until the wait times out, returning a String differentiating those cases.

It performs the following steps when called:

  1. Return ? DoWait(sync,typedArray,index,value,timeout).

25.4.14 Atomics.waitAsync (typedArray,index,value,timeout )

This function returns a Promise that is resolved when the callingagent is notified or the the timeout is reached.

It performs the following steps when called:

  1. Return ? DoWait(async,typedArray,index,value,timeout).

25.4.15 Atomics.notify (typedArray,index,count )

This function notifies someagents that are sleeping in the wait queue.

It performs the following steps when called:

  1. LetbyteIndexInBuffer be ? ValidateAtomicAccessOnIntegerTypedArray(typedArray,index,true).
  2. Ifcount isundefined, then
    1. Letc be +∞.
  3. Else,
    1. LetintCount be ? ToIntegerOrInfinity(count).
    2. Letc bemax(intCount, 0).
  4. Letbuffer betypedArray.[[ViewedArrayBuffer]].
  5. Letblock bebuffer.[[ArrayBufferData]].
  6. IfIsSharedArrayBuffer(buffer) isfalse, return+0𝔽.
  7. LetWL beGetWaiterList(block,byteIndexInBuffer).
  8. PerformEnterCriticalSection(WL).
  9. LetS beRemoveWaiters(WL,c).
  10. For each elementW ofS, do
    1. PerformNotifyWaiter(WL,W).
  11. PerformLeaveCriticalSection(WL).
  12. Letn be the number of elements inS.
  13. Return𝔽(n).

25.4.16 Atomics.xor (typedArray,index,value )

This function performs the following steps when called:

  1. Letxor be a newread-modify-write modification function with parameters (xBytes,yBytes) that captures nothing and performs the following steps atomically when called:
    1. ReturnByteListBitwiseOp(^,xBytes,yBytes).
  2. Return ? AtomicReadModifyWrite(typedArray,index,value,xor).

25.4.17 Atomics [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Atomics".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

25.5 The JSON Object

The JSON object:

  • is%JSON%.
  • is the initial value of the"JSON" property of theglobal object.
  • is anordinary object.
  • contains two functions,parse andstringify, that are used to parse and construct JSON texts.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • does not have a[[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a[[Call]] internal method; it cannot be invoked as a function.

The JSON Data Interchange Format is defined in ECMA-404. The JSON interchange format used in this specification is exactly that described by ECMA-404. Conforming implementations ofJSON.parse andJSON.stringify must support the exact interchange format described in the ECMA-404 specification without any deletions or extensions to the format.

25.5.1 JSON.parse (text [ ,reviver ] )

This function parses a JSON text (a JSON-formatted String) and produces anECMAScript language value. The JSON format represents literals, arrays, and objects with a syntax similar to the syntax for ECMAScript literals, Array Initializers, and Object Initializers. After parsing, JSON objects are realized as ECMAScript objects. JSON arrays are realized as ECMAScript Array instances. JSON strings, numbers, booleans, and null are realized as ECMAScript Strings, Numbers, Booleans, andnull.

The optionalreviver parameter is a function that takes two parameters,key andvalue. It can filter and transform the results. It is called with each of thekey/value pairs produced by the parse, and its return value is used instead of the original value. If it returns what it received, the structure is not modified. If it returnsundefined then the property is deleted from the result.

  1. LetjsonString be ? ToString(text).
  2. ParseStringToCodePoints(jsonString) as a JSON text as specified in ECMA-404. Throw aSyntaxError exception if it is not a valid JSON text as defined in that specification.
  3. LetscriptString be thestring-concatenation of"(",jsonString, and");".
  4. Letscript beParseText(StringToCodePoints(scriptString),Script).
  5. NOTE: Theearly error rules defined in13.2.5.1 have special handling for the above invocation ofParseText.
  6. Assert:script is aParse Node.
  7. Letcompletion beCompletion(Evaluation ofscript).
  8. NOTE: ThePropertyDefinitionEvaluation semantics defined in13.2.5.5 have special handling for the above evaluation.
  9. Letunfiltered becompletion.[[Value]].
  10. Assert:unfiltered is either a String, a Number, a Boolean, an Object that is defined by either anArrayLiteral or anObjectLiteral, ornull.
  11. IfIsCallable(reviver) istrue, then
    1. Letroot beOrdinaryObjectCreate(%Object.prototype%).
    2. LetrootName be the empty String.
    3. Perform ! CreateDataPropertyOrThrow(root,rootName,unfiltered).
    4. Return ? InternalizeJSONProperty(root,rootName,reviver).
  12. Else,
    1. Returnunfiltered.

The"length" property of this function is2𝔽.

Note

Valid JSON text is a subset of the ECMAScriptPrimaryExpression syntax. Step2 verifies thatjsonString conforms to that subset, and step10 asserts that that parsing and evaluation returns a value of an appropriate type.

However, because13.2.5.5 behaves differently duringJSON.parse, the same source text can produce different results when evaluated as aPrimaryExpression rather than as JSON. Furthermore, the Early Error for duplicate"__proto__" properties in object literals, which likewise does not apply duringJSON.parse, means that not all texts accepted byJSON.parse are valid as aPrimaryExpression, despite matching the grammar.

25.5.1.1 InternalizeJSONProperty (holder,name,reviver )

The abstract operation InternalizeJSONProperty takes argumentsholder (an Object),name (a String), andreviver (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion.

Note 1

This algorithm intentionally does not throw an exception if either[[Delete]] orCreateDataProperty returnfalse.

It performs the following steps when called:

  1. Letval be ? Get(holder,name).
  2. Ifvalis an Object, then
    1. LetisArray be ? IsArray(val).
    2. IfisArray istrue, then
      1. Letlen be ? LengthOfArrayLike(val).
      2. LetI be 0.
      3. Repeat, whileI <len,
        1. Letprop be ! ToString(𝔽(I)).
        2. LetnewElement be ? InternalizeJSONProperty(val,prop,reviver).
        3. IfnewElement isundefined, then
          1. Perform ? val.[[Delete]](prop).
        4. Else,
          1. Perform ? CreateDataProperty(val,prop,newElement).
        5. SetI toI + 1.
    3. Else,
      1. Letkeys be ? EnumerableOwnProperties(val,key).
      2. For each StringP ofkeys, do
        1. LetnewElement be ? InternalizeJSONProperty(val,P,reviver).
        2. IfnewElement isundefined, then
          1. Perform ? val.[[Delete]](P).
        3. Else,
          1. Perform ? CreateDataProperty(val,P,newElement).
  3. Return ? Call(reviver,holder, «name,val »).

It is not permitted for a conforming implementation ofJSON.parse to extend the JSON grammars. If an implementation wishes to support a modified or extended JSON interchange format it must do so by defining a different parse function.

Note 2

In the case where there are duplicate name Strings within an object, lexically preceding values for the same key shall be overwritten.

25.5.2 JSON.stringify (value [ ,replacer [ ,space ] ] )

This function returns a String in UTF-16 encoded JSON format representing anECMAScript language value, orundefined. It can take three parameters. Thevalue parameter is anECMAScript language value, which is usually an object or array, although it can also be a String, Boolean, Number ornull. The optionalreplacer parameter is either a function that alters the way objects and arrays are stringified, or an array of Strings and Numbers that acts as an inclusion list for selecting the object properties that will be stringified. The optionalspace parameteris a String or Number that allows the result to have white space injected into it to improve human readability.

It performs the following steps when called:

  1. Letstack be a new emptyList.
  2. Letindent be the empty String.
  3. LetPropertyList beundefined.
  4. LetReplacerFunction beundefined.
  5. Ifreplaceris an Object, then
    1. IfIsCallable(replacer) istrue, then
      1. SetReplacerFunction toreplacer.
    2. Else,
      1. LetisArray be ? IsArray(replacer).
      2. IfisArray istrue, then
        1. SetPropertyList to a new emptyList.
        2. Letlen be ? LengthOfArrayLike(replacer).
        3. Letk be 0.
        4. Repeat, whilek <len,
          1. Letprop be ! ToString(𝔽(k)).
          2. Letv be ? Get(replacer,prop).
          3. Letitem beundefined.
          4. Ifvis a String, then
            1. Setitem tov.
          5. Else ifvis a Number, then
            1. Setitem to ! ToString(v).
          6. Else ifvis an Object, then
            1. Ifv has a[[StringData]] or[[NumberData]] internal slot, setitem to ? ToString(v).
          7. Ifitem is notundefined andPropertyList does not containitem, then
            1. Appenditem toPropertyList.
          8. Setk tok + 1.
  6. Ifspaceis an Object, then
    1. Ifspace has a[[NumberData]] internal slot, then
      1. Setspace to ? ToNumber(space).
    2. Else ifspace has a[[StringData]] internal slot, then
      1. Setspace to ? ToString(space).
  7. Ifspaceis a Number, then
    1. LetspaceMV be ! ToIntegerOrInfinity(space).
    2. SetspaceMV tomin(10,spaceMV).
    3. IfspaceMV < 1, letgap be the empty String; otherwise letgap be the String value containingspaceMV occurrences of the code unit 0x0020 (SPACE).
  8. Else ifspaceis a String, then
    1. If the length ofspace ≤ 10, letgap bespace; otherwise letgap be thesubstring ofspace from 0 to 10.
  9. Else,
    1. Letgap be the empty String.
  10. Letwrapper beOrdinaryObjectCreate(%Object.prototype%).
  11. Perform ! CreateDataPropertyOrThrow(wrapper, the empty String,value).
  12. Letstate be theJSON Serialization Record {[[ReplacerFunction]]:ReplacerFunction,[[Stack]]:stack,[[Indent]]:indent,[[Gap]]:gap,[[PropertyList]]:PropertyList }.
  13. Return ? SerializeJSONProperty(state, the empty String,wrapper).

The"length" property of this function is3𝔽.

Note 1

JSON structures are allowed to be nested to any depth, but they must be acyclic. Ifvalue is or contains a cyclic structure, then this function must throw aTypeError exception. This is an example of a value that cannot be stringified:

a = [];a[0] = a;my_text =JSON.stringify(a);// This must throw a TypeError.
Note 2

Symbolic primitive values are rendered as follows:

  • Thenull value is rendered in JSON text as the String value"null".
  • Theundefined value is not rendered.
  • Thetrue value is rendered in JSON text as the String value"true".
  • Thefalse value is rendered in JSON text as the String value"false".
Note 3

String values are wrapped in QUOTATION MARK (") code units. The code units" and\ are escaped with\ prefixes. Control characters code units are replaced with escape sequences\uHHHH, or with the shorter forms,\b (BACKSPACE),\f (FORM FEED),\n (LINE FEED),\r (CARRIAGE RETURN),\t (CHARACTER TABULATION).

Note 4

Finite numbers are stringified as if by callingToString(number).NaN andInfinity regardless of sign are represented as the String value"null".

Note 5

Values that do not have a JSON representation (such asundefined and functions) do not produce a String. Instead they produce theundefined value. In arrays these values are represented as the String value"null". In objects an unrepresentable value causes the property to be excluded from stringification.

Note 6

An object is rendered as U+007B (LEFT CURLY BRACKET) followed by zero or more properties, separated with a U+002C (COMMA), closed with a U+007D (RIGHT CURLY BRACKET). A property is a quoted String representing theproperty name, a U+003A (COLON), and then the stringified property value. An array is rendered as an opening U+005B (LEFT SQUARE BRACKET) followed by zero or more values, separated with a U+002C (COMMA), closed with a U+005D (RIGHT SQUARE BRACKET).

25.5.2.1 JSON Serialization Record

AJSON Serialization Record is aRecord value used to enable serialization to the JSON format.

JSON Serialization Records have the fields listed inTable 75.

Table 75:JSON Serialization Record Fields
Field NameValueMeaning
[[ReplacerFunction]]afunction object orundefinedA function that can supply replacement values for object properties (from JSON.stringify'sreplacer parameter).
[[PropertyList]]either aList of Strings orundefinedThe names of properties to include when serializing a non-array object (from JSON.stringify'sreplacer parameter).
[[Gap]]a StringThe unit of indentation (from JSON.stringify'sspace parameter).
[[Stack]]aList of ObjectsThe set of nested objects that are in the process of being serialized. Used to detect cyclic structures.
[[Indent]]a StringThe current indentation.

25.5.2.2 SerializeJSONProperty (state,key,holder )

The abstract operation SerializeJSONProperty takes argumentsstate (aJSON Serialization Record),key (a String), andholder (an Object) and returns either anormal completion containing either a String orundefined, or athrow completion. It performs the following steps when called:

  1. Letvalue be ? Get(holder,key).
  2. Ifvalueis an Object orvalueis a BigInt, then
    1. LettoJSON be ? GetV(value,"toJSON").
    2. IfIsCallable(toJSON) istrue, then
      1. Setvalue to ? Call(toJSON,value, «key »).
  3. Ifstate.[[ReplacerFunction]] is notundefined, then
    1. Setvalue to ? Call(state.[[ReplacerFunction]],holder, «key,value »).
  4. Ifvalueis an Object, then
    1. Ifvalue has a[[NumberData]] internal slot, then
      1. Setvalue to ? ToNumber(value).
    2. Else ifvalue has a[[StringData]] internal slot, then
      1. Setvalue to ? ToString(value).
    3. Else ifvalue has a[[BooleanData]] internal slot, then
      1. Setvalue tovalue.[[BooleanData]].
    4. Else ifvalue has a[[BigIntData]] internal slot, then
      1. Setvalue tovalue.[[BigIntData]].
  5. Ifvalue isnull, return"null".
  6. Ifvalue istrue, return"true".
  7. Ifvalue isfalse, return"false".
  8. Ifvalueis a String, returnQuoteJSONString(value).
  9. Ifvalueis a Number, then
    1. Ifvalue isfinite, return ! ToString(value).
    2. Return"null".
  10. Ifvalueis a BigInt, throw aTypeError exception.
  11. Ifvalueis an Object andIsCallable(value) isfalse, then
    1. LetisArray be ? IsArray(value).
    2. IfisArray istrue, return ? SerializeJSONArray(state,value).
    3. Return ? SerializeJSONObject(state,value).
  12. Returnundefined.

25.5.2.3 QuoteJSONString (value )

The abstract operation QuoteJSONString takes argumentvalue (a String) and returns a String. It wrapsvalue in 0x0022 (QUOTATION MARK) code units and escapes certain other code units within it. This operation interpretsvalue as a sequence of UTF-16 encoded code points, as described in6.1.4. It performs the following steps when called:

  1. Letproduct be the String value consisting solely of the code unit 0x0022 (QUOTATION MARK).
  2. For each code pointC ofStringToCodePoints(value), do
    1. IfC is listed in the “Code Point” column ofTable 76, then
      1. Setproduct to thestring-concatenation ofproduct and the escape sequence forC as specified in the “Escape Sequence” column of the corresponding row.
    2. Else ifC has a numeric value less than 0x0020 (SPACE) orC has the same numeric value as aleading surrogate ortrailing surrogate, then
      1. Letunit be the code unit whose numeric value is the numeric value ofC.
      2. Setproduct to thestring-concatenation ofproduct andUnicodeEscape(unit).
    3. Else,
      1. Setproduct to thestring-concatenation ofproduct andUTF16EncodeCodePoint(C).
  3. Setproduct to thestring-concatenation ofproduct and the code unit 0x0022 (QUOTATION MARK).
  4. Returnproduct.
Table 76: JSON Single Character Escape Sequences
Code Point Unicode Character Name Escape Sequence
U+0008 BACKSPACE\b
U+0009 CHARACTER TABULATION\t
U+000A LINE FEED (LF)\n
U+000C FORM FEED (FF)\f
U+000D CARRIAGE RETURN (CR)\r
U+0022 QUOTATION MARK\"
U+005C REVERSE SOLIDUS\\

25.5.2.4 UnicodeEscape (C )

The abstract operation UnicodeEscape takes argumentC (a code unit) and returns a String. It representsC as a Unicode escape sequence. It performs the following steps when called:

  1. Letn be the numeric value ofC.
  2. Assert:n ≤ 0xFFFF.
  3. Lethex be the String representation ofn, formatted as a lowercase hexadecimal number.
  4. Return thestring-concatenation of the code unit 0x005C (REVERSE SOLIDUS),"u", andStringPad(hex, 4,"0",start).

25.5.2.5 SerializeJSONObject (state,value )

The abstract operation SerializeJSONObject takes argumentsstate (aJSON Serialization Record) andvalue (an Object) and returns either anormal completion containing a String or athrow completion. It serializes an object. It performs the following steps when called:

  1. Ifstate.[[Stack]] containsvalue, throw aTypeError exception because the structure is cyclical.
  2. Appendvalue tostate.[[Stack]].
  3. Letstepback bestate.[[Indent]].
  4. Setstate.[[Indent]] to thestring-concatenation ofstate.[[Indent]] andstate.[[Gap]].
  5. Ifstate.[[PropertyList]] is notundefined, then
    1. LetK bestate.[[PropertyList]].
  6. Else,
    1. LetK be ? EnumerableOwnProperties(value,key).
  7. Letpartial be a new emptyList.
  8. For each elementP ofK, do
    1. LetstrP be ? SerializeJSONProperty(state,P,value).
    2. IfstrP is notundefined, then
      1. Letmember beQuoteJSONString(P).
      2. Setmember to thestring-concatenation ofmember and":".
      3. Ifstate.[[Gap]] is not the empty String, then
        1. Setmember to thestring-concatenation ofmember and the code unit 0x0020 (SPACE).
      4. Setmember to thestring-concatenation ofmember andstrP.
      5. Appendmember topartial.
  9. Ifpartial is empty, then
    1. Letfinal be"{}".
  10. Else,
    1. Ifstate.[[Gap]] is the empty String, then
      1. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either before the first String or after the last String.
      2. Letfinal be thestring-concatenation of"{",properties, and"}".
    2. Else,
      1. Letseparator be thestring-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A (LINE FEED), andstate.[[Indent]].
      2. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated withseparator. Theseparator String is not inserted either before the first String or after the last String.
      3. Letfinal be thestring-concatenation of"{", the code unit 0x000A (LINE FEED),state.[[Indent]],properties, the code unit 0x000A (LINE FEED),stepback, and"}".
  11. Remove the last element ofstate.[[Stack]].
  12. Setstate.[[Indent]] tostepback.
  13. Returnfinal.

25.5.2.6 SerializeJSONArray (state,value )

The abstract operation SerializeJSONArray takes argumentsstate (aJSON Serialization Record) andvalue (anECMAScript language value) and returns either anormal completion containing a String or athrow completion. It serializes an array. It performs the following steps when called:

  1. Ifstate.[[Stack]] containsvalue, throw aTypeError exception because the structure is cyclical.
  2. Appendvalue tostate.[[Stack]].
  3. Letstepback bestate.[[Indent]].
  4. Setstate.[[Indent]] to thestring-concatenation ofstate.[[Indent]] andstate.[[Gap]].
  5. Letpartial be a new emptyList.
  6. Letlen be ? LengthOfArrayLike(value).
  7. Letindex be 0.
  8. Repeat, whileindex <len,
    1. LetstrP be ? SerializeJSONProperty(state, ! ToString(𝔽(index)),value).
    2. IfstrP isundefined, then
      1. Append"null" topartial.
    3. Else,
      1. AppendstrP topartial.
    4. Setindex toindex + 1.
  9. Ifpartial is empty, then
    1. Letfinal be"[]".
  10. Else,
    1. Ifstate.[[Gap]] is the empty String, then
      1. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated with the code unit 0x002C (COMMA). A comma is not inserted either before the first String or after the last String.
      2. Letfinal be thestring-concatenation of"[",properties, and"]".
    2. Else,
      1. Letseparator be thestring-concatenation of the code unit 0x002C (COMMA), the code unit 0x000A (LINE FEED), andstate.[[Indent]].
      2. Letproperties be the String value formed by concatenating all the element Strings ofpartial with each adjacent pair of Strings separated withseparator. Theseparator String is not inserted either before the first String or after the last String.
      3. Letfinal be thestring-concatenation of"[", the code unit 0x000A (LINE FEED),state.[[Indent]],properties, the code unit 0x000A (LINE FEED),stepback, and"]".
  11. Remove the last element ofstate.[[Stack]].
  12. Setstate.[[Indent]] tostepback.
  13. Returnfinal.
Note

The representation of arrays includes only the elements in theinterval from+0𝔽 (inclusive) toarray.length (exclusive). Properties whose keys are notarray indices are excluded from the stringification. An array is stringified as an opening LEFT SQUARE BRACKET, elements separated by COMMA, and a closing RIGHT SQUARE BRACKET.

25.5.3 JSON [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"JSON".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

26 Managing Memory

26.1 WeakRef Objects

AWeakRef is an object that is used to refer to a target object or symbol without preserving it from garbage collection.WeakRefs can be dereferenced to allow access to the target value, if the target hasn't been reclaimed by garbage collection.

26.1.1 The WeakRef Constructor

TheWeakRefconstructor:

  • is%WeakRef%.
  • is the initial value of the"WeakRef" property of theglobal object.
  • creates and initializes a new WeakRef when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specifiedWeakRef behaviour must include asuper call to theWeakRefconstructor to create and initialize the subclass instance with the internal state necessary to support theWeakRef.prototype built-in methods.

26.1.1.1 WeakRef (target )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfCanBeHeldWeakly(target) isfalse, throw aTypeError exception.
  3. LetweakRef be ? OrdinaryCreateFromConstructor(NewTarget,"%WeakRef.prototype%", «[[WeakRefTarget]] »).
  4. PerformAddToKeptObjects(target).
  5. SetweakRef.[[WeakRefTarget]] totarget.
  6. ReturnweakRef.

26.1.2 Properties of the WeakRef Constructor

TheWeakRefconstructor:

26.1.2.1 WeakRef.prototype

The initial value ofWeakRef.prototype is theWeakRef prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

26.1.3 Properties of the WeakRef Prototype Object

TheWeakRef prototype object:

26.1.3.1 WeakRef.prototype.constructor

The initial value ofWeakRef.prototype.constructor is%WeakRef%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

26.1.3.2 WeakRef.prototype.deref ( )

This method performs the following steps when called:

  1. LetweakRef be thethis value.
  2. Perform ? RequireInternalSlot(weakRef,[[WeakRefTarget]]).
  3. ReturnWeakRefDeref(weakRef).
Note

If theWeakRef returns atarget value that is notundefined, then thistarget value should not be garbage collected until the current execution of ECMAScript code has completed. TheAddToKeptObjects operation makes sure read consistency is maintained.

let target = {foo() {} };let weakRef =newWeakRef(target);// ... later ...if (weakRef.deref()) {  weakRef.deref().foo();}

In the above example, if the first deref does not evaluate toundefined then the second deref cannot either.

26.1.3.3 WeakRef.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"WeakRef".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

26.1.4 WeakRef Abstract Operations

26.1.4.1 WeakRefDeref (weakRef )

The abstract operation WeakRefDeref takes argumentweakRef (aWeakRef) and returns anECMAScript language value. It performs the following steps when called:

  1. Lettarget beweakRef.[[WeakRefTarget]].
  2. Iftarget is notempty, then
    1. PerformAddToKeptObjects(target).
    2. Returntarget.
  3. Returnundefined.
Note

This abstract operation is defined separately from WeakRef.prototype.deref strictly to make it possible to succinctly define liveness.

26.1.5 Properties of WeakRef Instances

WeakRef instances areordinary objects that inherit properties from theWeakRef prototype.WeakRef instances also have a[[WeakRefTarget]] internal slot.

26.2 FinalizationRegistry Objects

AFinalizationRegistry is an object that manages registration and unregistration of cleanup operations that are performed when target objects and symbols are garbage collected.

26.2.1 The FinalizationRegistry Constructor

TheFinalizationRegistryconstructor:

  • is%FinalizationRegistry%.
  • is the initial value of the"FinalizationRegistry" property of theglobal object.
  • creates and initializes a new FinalizationRegistry when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specifiedFinalizationRegistry behaviour must include asuper call to theFinalizationRegistryconstructor to create and initialize the subclass instance with the internal state necessary to support theFinalizationRegistry.prototype built-in methods.

26.2.1.1 FinalizationRegistry (cleanupCallback )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfIsCallable(cleanupCallback) isfalse, throw aTypeError exception.
  3. LetfinalizationRegistry be ? OrdinaryCreateFromConstructor(NewTarget,"%FinalizationRegistry.prototype%", «[[Realm]],[[CleanupCallback]],[[Cells]] »).
  4. Letfn be theactive function object.
  5. SetfinalizationRegistry.[[Realm]] tofn.[[Realm]].
  6. SetfinalizationRegistry.[[CleanupCallback]] toHostMakeJobCallback(cleanupCallback).
  7. SetfinalizationRegistry.[[Cells]] to a new emptyList.
  8. ReturnfinalizationRegistry.

26.2.2 Properties of the FinalizationRegistry Constructor

TheFinalizationRegistryconstructor:

26.2.2.1 FinalizationRegistry.prototype

The initial value ofFinalizationRegistry.prototype is theFinalizationRegistry prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

26.2.3 Properties of the FinalizationRegistry Prototype Object

TheFinalizationRegistry prototype object:

  • is%FinalizationRegistry.prototype%.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have[[Cells]] and[[CleanupCallback]] internal slots.

26.2.3.1 FinalizationRegistry.prototype.constructor

The initial value ofFinalizationRegistry.prototype.constructor is%FinalizationRegistry%.

26.2.3.2 FinalizationRegistry.prototype.register (target,heldValue [ ,unregisterToken ] )

This method performs the following steps when called:

  1. LetfinalizationRegistry be thethis value.
  2. Perform ? RequireInternalSlot(finalizationRegistry,[[Cells]]).
  3. IfCanBeHeldWeakly(target) isfalse, throw aTypeError exception.
  4. IfSameValue(target,heldValue) istrue, throw aTypeError exception.
  5. IfCanBeHeldWeakly(unregisterToken) isfalse, then
    1. IfunregisterToken is notundefined, throw aTypeError exception.
    2. SetunregisterToken toempty.
  6. Letcell be theRecord {[[WeakRefTarget]]:target,[[HeldValue]]:heldValue,[[UnregisterToken]]:unregisterToken }.
  7. Appendcell tofinalizationRegistry.[[Cells]].
  8. Returnundefined.
Note

Based on the algorithms and definitions in this specification,cell.[[HeldValue]] islive whenfinalizationRegistry.[[Cells]] containscell; however, this does not necessarily mean thatcell.[[UnregisterToken]] orcell.[[Target]] arelive. For example, registering an object with itself as its unregister token would not keep the object alive forever.

26.2.3.3 FinalizationRegistry.prototype.unregister (unregisterToken )

This method performs the following steps when called:

  1. LetfinalizationRegistry be thethis value.
  2. Perform ? RequireInternalSlot(finalizationRegistry,[[Cells]]).
  3. IfCanBeHeldWeakly(unregisterToken) isfalse, throw aTypeError exception.
  4. Letremoved befalse.
  5. For eachRecord {[[WeakRefTarget]],[[HeldValue]],[[UnregisterToken]] }cell offinalizationRegistry.[[Cells]], do
    1. Ifcell.[[UnregisterToken]] is notempty andSameValue(cell.[[UnregisterToken]],unregisterToken) istrue, then
      1. Removecell fromfinalizationRegistry.[[Cells]].
      2. Setremoved totrue.
  6. Returnremoved.

26.2.3.4 FinalizationRegistry.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"FinalizationRegistry".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

26.2.4 Properties of FinalizationRegistry Instances

FinalizationRegistry instances areordinary objects that inherit properties from theFinalizationRegistry prototype.FinalizationRegistry instances also have[[Cells]] and[[CleanupCallback]] internal slots.

27 Control Abstraction Objects

27.1 Iteration

27.1.1 Common Iteration Interfaces

An interface is a set ofproperty keys whose associated values match a specific specification. Any object that provides all the properties as described by an interface's specificationconforms to that interface. An interface is not represented by a distinct object. There may be many separately implemented objects that conform to any interface. An individual object may conform to multiple interfaces.

27.1.1.1 TheIterable Interface

TheIterable interface includes the property described inTable 77:

Table 77:Iterable Interface Required Properties
Property Value Requirements
@@iterator a function that returns anIterator object The returned object must conform to theIterator interface.

27.1.1.2 TheIterator Interface

An object that implements theIterator interface must include the property inTable 78. Such objects may also implement the properties inTable 79.

Table 78:Iterator Interface Required Properties
Property Value Requirements
"next" a function that returns anIteratorResult object The returned object must conform to theIteratorResult interface. If a previous call to thenext method of anIterator has returned anIteratorResult object whose"done" property istrue, then all subsequent calls to thenext method of that object should also return anIteratorResult object whose"done" property istrue. However, this requirement is not enforced.
Note 1

Arguments may be passed to thenext function but their interpretation and validity is dependent upon the targetIterator. The for-of statement and other common users ofIterators do not pass any arguments, soIterator objects that expect to be used in such a manner must be prepared to deal with being called with no arguments.

Table 79:Iterator Interface Optional Properties
Property Value Requirements
"return" a function that returns anIteratorResult object The returned object must conform to theIteratorResult interface. Invoking this method notifies theIterator object that the caller does not intend to make any morenext method calls to theIterator. The returnedIteratorResult object will typically have a"done" property whose value istrue, and a"value" property with the value passed as the argument of thereturn method. However, this requirement is not enforced.
"throw" a function that returns anIteratorResult object The returned object must conform to theIteratorResult interface. Invoking this method notifies theIterator object that the caller has detected an error condition. The argument may be used to identify the error condition and typically will be an exception object. A typical response is tothrow the value passed as the argument. If the method does notthrow, the returnedIteratorResult object will typically have a"done" property whose value istrue.
Note 2

Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language features includingfor-of,yield*, and array destructuring call these methods after performing an existence check. Most ECMAScript library functions that acceptIterable objects as arguments also conditionally call them.

27.1.1.3 TheAsyncIterable Interface

TheAsyncIterable interface includes the properties described inTable 80:

Table 80:AsyncIterable Interface Required Properties
PropertyValueRequirements
@@asyncIteratora function that returns anAsyncIterator objectThe returned object must conform to theAsyncIterator interface.

27.1.1.4 TheAsyncIterator Interface

An object that implements theAsyncIterator interface must include the properties inTable 81. Such objects may also implement the properties inTable 82.

Table 81:AsyncIterator Interface Required Properties
PropertyValueRequirements
"next"a function that returns a promise for anIteratorResult object

The returned promise, when fulfilled, must fulfill with an object that conforms to theIteratorResult interface. If a previous call to thenext method of anAsyncIterator has returned a promise for anIteratorResult object whose"done" property istrue, then all subsequent calls to thenext method of that object should also return a promise for anIteratorResult object whose"done" property istrue. However, this requirement is not enforced.

Additionally, theIteratorResult object that serves as a fulfillment value should have a"value" property whose value is not a promise (or "thenable"). However, this requirement is also not enforced.

Note 1

Arguments may be passed to thenext function but their interpretation and validity is dependent upon the targetAsyncIterator. Thefor-await-of statement and other common users ofAsyncIterators do not pass any arguments, soAsyncIterator objects that expect to be used in such a manner must be prepared to deal with being called with no arguments.

Table 82:AsyncIterator Interface Optional Properties
PropertyValueRequirements
"return"a function that returns a promise for anIteratorResult object

The returned promise, when fulfilled, must fulfill with an object that conforms to theIteratorResult interface. Invoking this method notifies theAsyncIterator object that the caller does not intend to make any morenext method calls to theAsyncIterator. The returned promise will fulfill with anIteratorResult object which will typically have a"done" property whose value istrue, and a"value" property with the value passed as the argument of thereturn method. However, this requirement is not enforced.

Additionally, theIteratorResult object that serves as a fulfillment value should have a"value" property whose value is not a promise (or "thenable"). If the argument value is used in the typical manner, then if it is a rejected promise, a promise rejected with the same reason should be returned; if it is a fulfilled promise, then its fulfillment value should be used as the"value" property of the returned promise'sIteratorResult object fulfillment value. However, these requirements are also not enforced.

"throw"a function that returns a promise for anIteratorResult object

The returned promise, when fulfilled, must fulfill with an object that conforms to theIteratorResult interface. Invoking this method notifies theAsyncIterator object that the caller has detected an error condition. The argument may be used to identify the error condition and typically will be an exception object. A typical response is to return a rejected promise which rejects with the value passed as the argument.

If the returned promise is fulfilled, theIteratorResult fulfillment value will typically have a"done" property whose value istrue. Additionally, it should have a"value" property whose value is not a promise (or "thenable"), but this requirement is not enforced.

Note 2

Typically callers of these methods should check for their existence before invoking them. Certain ECMAScript language features includingfor-await-of andyield* call these methods after performing an existence check.

27.1.1.5 TheIteratorResult Interface

TheIteratorResult interface includes the properties listed inTable 83:

Table 83:IteratorResult Interface Properties
Property Value Requirements
"done" a Boolean This is the result status of aniteratornext method call. If the end of the iterator was reached"done" istrue. If the end was not reached"done" isfalse and a value is available. If a"done" property (either own or inherited) does not exist, it is considered to have the valuefalse.
"value" anECMAScript language value If done isfalse, this is the current iteration element value. If done istrue, this is the return value of the iterator, if it supplied one. If the iterator does not have a return value,"value" isundefined. In that case, the"value" property may be absent from the conforming object if it does not inherit an explicit"value" property.

27.1.2 The %IteratorPrototype% Object

The%IteratorPrototype% object:

Note

All objects defined in this specification that implement the Iterator interface also inherit from %IteratorPrototype%. ECMAScript code may also define objects that inherit from %IteratorPrototype%. The %IteratorPrototype% object provides a place where additional methods that are applicable to all iterator objects may be added.

The following expression is one way that ECMAScript code can access the %IteratorPrototype% object:

Object.getPrototypeOf(Object.getPrototypeOf([][Symbol.iterator]()))

27.1.2.1 %IteratorPrototype% [ @@iterator ] ( )

This function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"[Symbol.iterator]".

27.1.3 The %AsyncIteratorPrototype% Object

The%AsyncIteratorPrototype% object:

Note

All objects defined in this specification that implement the AsyncIterator interface also inherit from %AsyncIteratorPrototype%. ECMAScript code may also define objects that inherit from %AsyncIteratorPrototype%. The %AsyncIteratorPrototype% object provides a place where additional methods that are applicable to all async iterator objects may be added.

27.1.3.1 %AsyncIteratorPrototype% [ @@asyncIterator ] ( )

This function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"[Symbol.asyncIterator]".

27.1.4 Async-from-Sync Iterator Objects

An Async-from-Sync Iterator object is an async iterator that adapts a specific synchronous iterator. There is not a namedconstructor for Async-from-Sync Iterator objects. Instead, Async-from-Sync iterator objects are created by theCreateAsyncFromSyncIterator abstract operation as needed.

27.1.4.1 CreateAsyncFromSyncIterator (syncIteratorRecord )

The abstract operation CreateAsyncFromSyncIterator takes argumentsyncIteratorRecord (anIterator Record) and returns anIterator Record. It is used to create an asyncIterator Record from a synchronousIterator Record. It performs the following steps when called:

  1. LetasyncIterator beOrdinaryObjectCreate(%AsyncFromSyncIteratorPrototype%, «[[SyncIteratorRecord]] »).
  2. SetasyncIterator.[[SyncIteratorRecord]] tosyncIteratorRecord.
  3. LetnextMethod be ! Get(asyncIterator,"next").
  4. LetiteratorRecord be theIterator Record {[[Iterator]]:asyncIterator,[[NextMethod]]:nextMethod,[[Done]]:false }.
  5. ReturniteratorRecord.

27.1.4.2 The %AsyncFromSyncIteratorPrototype% Object

The%AsyncFromSyncIteratorPrototype% object:

  • has properties that are inherited by all Async-from-Sync Iterator Objects.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%AsyncIteratorPrototype%.
  • has the following properties:

27.1.4.2.1 %AsyncFromSyncIteratorPrototype%.next ( [value ] )

  1. LetO be thethis value.
  2. Assert:Ois an Object that has a[[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIteratorRecord beO.[[SyncIteratorRecord]].
  5. Ifvalue is present, then
    1. Letresult beCompletion(IteratorNext(syncIteratorRecord,value)).
  6. Else,
    1. Letresult beCompletion(IteratorNext(syncIteratorRecord)).
  7. IfAbruptRejectPromise(result,promiseCapability).
  8. ReturnAsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.2.2 %AsyncFromSyncIteratorPrototype%.return ( [value ] )

  1. LetO be thethis value.
  2. Assert:Ois an Object that has a[[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIterator beO.[[SyncIteratorRecord]].[[Iterator]].
  5. Letreturn beCompletion(GetMethod(syncIterator,"return")).
  6. IfAbruptRejectPromise(return,promiseCapability).
  7. Ifreturn isundefined, then
    1. LetiterResult beCreateIterResultObject(value,true).
    2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «iterResult »).
    3. ReturnpromiseCapability.[[Promise]].
  8. Ifvalue is present, then
    1. Letresult beCompletion(Call(return,syncIterator, «value »)).
  9. Else,
    1. Letresult beCompletion(Call(return,syncIterator)).
  10. IfAbruptRejectPromise(result,promiseCapability).
  11. Ifresultis not an Object, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, « a newly createdTypeError object »).
    2. ReturnpromiseCapability.[[Promise]].
  12. ReturnAsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.2.3 %AsyncFromSyncIteratorPrototype%.throw ( [value ] )

Note
In this specification,value is always provided, but is left optional for consistency with%AsyncFromSyncIteratorPrototype%.return ( [value ] ).
  1. LetO be thethis value.
  2. Assert:Ois an Object that has a[[SyncIteratorRecord]] internal slot.
  3. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  4. LetsyncIterator beO.[[SyncIteratorRecord]].[[Iterator]].
  5. Letthrow beCompletion(GetMethod(syncIterator,"throw")).
  6. IfAbruptRejectPromise(throw,promiseCapability).
  7. Ifthrow isundefined, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «value »).
    2. ReturnpromiseCapability.[[Promise]].
  8. Ifvalue is present, then
    1. Letresult beCompletion(Call(throw,syncIterator, «value »)).
  9. Else,
    1. Letresult beCompletion(Call(throw,syncIterator)).
  10. IfAbruptRejectPromise(result,promiseCapability).
  11. Ifresultis not an Object, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, « a newly createdTypeError object »).
    2. ReturnpromiseCapability.[[Promise]].
  12. ReturnAsyncFromSyncIteratorContinuation(result,promiseCapability).

27.1.4.3 Properties of Async-from-Sync Iterator Instances

Async-from-Sync Iterator instances areordinary objects that inherit properties from the%AsyncFromSyncIteratorPrototype% intrinsic object. Async-from-Sync Iterator instances are initially created with the internal slots listed inTable 84. Async-from-Sync Iterator instances are not directly observable from ECMAScript code.

Table 84: Internal Slots of Async-from-Sync Iterator Instances
Internal Slot Type Description
[[SyncIteratorRecord]] anIterator Record Represents the original synchronous iterator which is being adapted.

27.1.4.4 AsyncFromSyncIteratorContinuation (result,promiseCapability )

The abstract operation AsyncFromSyncIteratorContinuation takes argumentsresult (an Object) andpromiseCapability (aPromiseCapability Record for an intrinsic%Promise%) and returns a Promise. It performs the following steps when called:

  1. NOTE: BecausepromiseCapability is derived from the intrinsic%Promise%, the calls topromiseCapability.[[Reject]] entailed by the useIfAbruptRejectPromise below are guaranteed not to throw.
  2. Letdone beCompletion(IteratorComplete(result)).
  3. IfAbruptRejectPromise(done,promiseCapability).
  4. Letvalue beCompletion(IteratorValue(result)).
  5. IfAbruptRejectPromise(value,promiseCapability).
  6. LetvalueWrapper beCompletion(PromiseResolve(%Promise%,value)).
  7. IfAbruptRejectPromise(valueWrapper,promiseCapability).
  8. Letunwrap be a newAbstract Closure with parameters (v) that capturesdone and performs the following steps when called:
    1. ReturnCreateIterResultObject(v,done).
  9. LetonFulfilled beCreateBuiltinFunction(unwrap, 1,"", « »).
  10. NOTE:onFulfilled is used when processing the"value" property of an IteratorResult object in order to wait for its value if it is a promise and re-package the result in a new "unwrapped" IteratorResult object.
  11. PerformPerformPromiseThen(valueWrapper,onFulfilled,undefined,promiseCapability).
  12. ReturnpromiseCapability.[[Promise]].

27.2 Promise Objects

A Promise is an object that is used as a placeholder for the eventual results of a deferred (and possibly asynchronous) computation.

Any Promise is in one of three mutually exclusive states:fulfilled,rejected, andpending:

  • A promisep is fulfilled ifp.then(f, r) will immediately enqueue aJob to call the functionf.
  • A promisep is rejected ifp.then(f, r) will immediately enqueue aJob to call the functionr.
  • A promise is pending if it is neither fulfilled nor rejected.

A promise is said to besettled if it is not pending, i.e. if it is either fulfilled or rejected.

A promise isresolved if it is settled or if it has been “locked in” to match the state of another promise. Attempting to resolve or reject a resolved promise has no effect. A promise isunresolved if it is not resolved. An unresolved promise is always in the pending state. A resolved promise may be pending, fulfilled or rejected.

27.2.1 Promise Abstract Operations

27.2.1.1 PromiseCapability Records

APromiseCapability Record is aRecord value used to encapsulate a Promise or promise-like object along with the functions that are capable of resolving or rejecting that promise. PromiseCapability Records are produced by theNewPromiseCapability abstract operation.

PromiseCapability Records have the fields listed inTable 85.

Table 85:PromiseCapability Record Fields
Field Name Value Meaning
[[Promise]] an Object An object that is usable as a promise.
[[Resolve]] afunction object The function that is used to resolve the given promise.
[[Reject]] afunction object The function that is used to reject the given promise.

27.2.1.1.1 IfAbruptRejectPromise (value,capability )

IfAbruptRejectPromise is a shorthand for a sequence of algorithm steps that use aPromiseCapability Record. An algorithm step of the form:

  1. IfAbruptRejectPromise(value,capability).

means the same thing as:

  1. Assert:value is aCompletion Record.
  2. Ifvalue is anabrupt completion, then
    1. Perform ? Call(capability.[[Reject]],undefined, «value.[[Value]] »).
    2. Returncapability.[[Promise]].
  3. Else,
    1. Setvalue to ! value.

27.2.1.2 PromiseReaction Records

APromiseReaction Record is aRecord value used to store information about how a promise should react when it becomes resolved or rejected with a given value. PromiseReaction Records are created by thePerformPromiseThen abstract operation, and are used by theAbstract Closure returned byNewPromiseReactionJob.

PromiseReaction Records have the fields listed inTable 86.

Table 86:PromiseReaction Record Fields
Field Name Value Meaning
[[Capability]] aPromiseCapability Record orundefined The capabilities of the promise for which this record provides a reaction handler.
[[Type]]fulfill orreject The[[Type]] is used when[[Handler]] isempty to allow for behaviour specific to the settlement type.
[[Handler]] aJobCallback Record orempty The function that should be applied to the incoming value, and whose return value will govern what happens to the derived promise. If[[Handler]] isempty, a function that depends on the value of[[Type]] will be used instead.

27.2.1.3 CreateResolvingFunctions (promise )

The abstract operation CreateResolvingFunctions takes argumentpromise (a Promise) and returns aRecord with fields[[Resolve]] (afunction object) and[[Reject]] (afunction object). It performs the following steps when called:

  1. LetalreadyResolved be theRecord {[[Value]]:false }.
  2. LetstepsResolve be the algorithm steps defined inPromise Resolve Functions.
  3. LetlengthResolve be the number of non-optional parameters of the function definition inPromise Resolve Functions.
  4. Letresolve beCreateBuiltinFunction(stepsResolve,lengthResolve,"", «[[Promise]],[[AlreadyResolved]] »).
  5. Setresolve.[[Promise]] topromise.
  6. Setresolve.[[AlreadyResolved]] toalreadyResolved.
  7. LetstepsReject be the algorithm steps defined inPromise Reject Functions.
  8. LetlengthReject be the number of non-optional parameters of the function definition inPromise Reject Functions.
  9. Letreject beCreateBuiltinFunction(stepsReject,lengthReject,"", «[[Promise]],[[AlreadyResolved]] »).
  10. Setreject.[[Promise]] topromise.
  11. Setreject.[[AlreadyResolved]] toalreadyResolved.
  12. Return theRecord {[[Resolve]]:resolve,[[Reject]]:reject }.

27.2.1.3.1 Promise Reject Functions

A promise reject function is an anonymous built-in function that has[[Promise]] and[[AlreadyResolved]] internal slots.

When a promise reject function is called with argumentreason, the following steps are taken:

  1. LetF be theactive function object.
  2. Assert:F has a[[Promise]] internal slot whose valueis an Object.
  3. Letpromise beF.[[Promise]].
  4. LetalreadyResolved beF.[[AlreadyResolved]].
  5. IfalreadyResolved.[[Value]] istrue, returnundefined.
  6. SetalreadyResolved.[[Value]] totrue.
  7. PerformRejectPromise(promise,reason).
  8. Returnundefined.

The"length" property of a promise reject function is1𝔽.

27.2.1.3.2 Promise Resolve Functions

A promise resolve function is an anonymous built-in function that has[[Promise]] and[[AlreadyResolved]] internal slots.

When a promise resolve function is called with argumentresolution, the following steps are taken:

  1. LetF be theactive function object.
  2. Assert:F has a[[Promise]] internal slot whose valueis an Object.
  3. Letpromise beF.[[Promise]].
  4. LetalreadyResolved beF.[[AlreadyResolved]].
  5. IfalreadyResolved.[[Value]] istrue, returnundefined.
  6. SetalreadyResolved.[[Value]] totrue.
  7. IfSameValue(resolution,promise) istrue, then
    1. LetselfResolutionError be a newly createdTypeError object.
    2. PerformRejectPromise(promise,selfResolutionError).
    3. Returnundefined.
  8. Ifresolutionis not an Object, then
    1. PerformFulfillPromise(promise,resolution).
    2. Returnundefined.
  9. Letthen beCompletion(Get(resolution,"then")).
  10. Ifthen is anabrupt completion, then
    1. PerformRejectPromise(promise,then.[[Value]]).
    2. Returnundefined.
  11. LetthenAction bethen.[[Value]].
  12. IfIsCallable(thenAction) isfalse, then
    1. PerformFulfillPromise(promise,resolution).
    2. Returnundefined.
  13. LetthenJobCallback beHostMakeJobCallback(thenAction).
  14. Letjob beNewPromiseResolveThenableJob(promise,resolution,thenJobCallback).
  15. PerformHostEnqueuePromiseJob(job.[[Job]],job.[[Realm]]).
  16. Returnundefined.

The"length" property of a promise resolve function is1𝔽.

27.2.1.4 FulfillPromise (promise,value )

The abstract operation FulfillPromise takes argumentspromise (a Promise) andvalue (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. Assert: The value ofpromise.[[PromiseState]] ispending.
  2. Letreactions bepromise.[[PromiseFulfillReactions]].
  3. Setpromise.[[PromiseResult]] tovalue.
  4. Setpromise.[[PromiseFulfillReactions]] toundefined.
  5. Setpromise.[[PromiseRejectReactions]] toundefined.
  6. Setpromise.[[PromiseState]] tofulfilled.
  7. PerformTriggerPromiseReactions(reactions,value).
  8. Returnunused.

27.2.1.5 NewPromiseCapability (C )

The abstract operation NewPromiseCapability takes argumentC (anECMAScript language value) and returns either anormal completion containing aPromiseCapability Record or athrow completion. It attempts to useC as aconstructor in the fashion of the built-in Promiseconstructor to create a promise and extract itsresolve andreject functions. The promise plus theresolve andreject functions are used to initialize a newPromiseCapability Record. It performs the following steps when called:

  1. IfIsConstructor(C) isfalse, throw aTypeError exception.
  2. NOTE:C is assumed to be aconstructor function that supports the parameter conventions of the Promiseconstructor (see27.2.3.1).
  3. LetresolvingFunctions be theRecord {[[Resolve]]:undefined,[[Reject]]:undefined }.
  4. LetexecutorClosure be a newAbstract Closure with parameters (resolve,reject) that capturesresolvingFunctions and performs the following steps when called:
    1. IfresolvingFunctions.[[Resolve]] is notundefined, throw aTypeError exception.
    2. IfresolvingFunctions.[[Reject]] is notundefined, throw aTypeError exception.
    3. SetresolvingFunctions.[[Resolve]] toresolve.
    4. SetresolvingFunctions.[[Reject]] toreject.
    5. Returnundefined.
  5. Letexecutor beCreateBuiltinFunction(executorClosure, 2,"", « »).
  6. Letpromise be ? Construct(C, «executor »).
  7. IfIsCallable(resolvingFunctions.[[Resolve]]) isfalse, throw aTypeError exception.
  8. IfIsCallable(resolvingFunctions.[[Reject]]) isfalse, throw aTypeError exception.
  9. Return thePromiseCapability Record {[[Promise]]:promise,[[Resolve]]:resolvingFunctions.[[Resolve]],[[Reject]]:resolvingFunctions.[[Reject]] }.
Note

This abstract operation supports Promise subclassing, as it is generic on anyconstructor that calls a passed executor function argument in the same way as the Promiseconstructor. It is used to generalize static methods of the Promiseconstructor to any subclass.

27.2.1.6 IsPromise (x )

The abstract operation IsPromise takes argumentx (anECMAScript language value) and returns a Boolean. It checks for the promise brand on an object. It performs the following steps when called:

  1. Ifxis not an Object, returnfalse.
  2. Ifx does not have a[[PromiseState]] internal slot, returnfalse.
  3. Returntrue.

27.2.1.7 RejectPromise (promise,reason )

The abstract operation RejectPromise takes argumentspromise (a Promise) andreason (anECMAScript language value) and returnsunused. It performs the following steps when called:

  1. Assert: The value ofpromise.[[PromiseState]] ispending.
  2. Letreactions bepromise.[[PromiseRejectReactions]].
  3. Setpromise.[[PromiseResult]] toreason.
  4. Setpromise.[[PromiseFulfillReactions]] toundefined.
  5. Setpromise.[[PromiseRejectReactions]] toundefined.
  6. Setpromise.[[PromiseState]] torejected.
  7. Ifpromise.[[PromiseIsHandled]] isfalse, performHostPromiseRejectionTracker(promise,"reject").
  8. PerformTriggerPromiseReactions(reactions,reason).
  9. Returnunused.

27.2.1.8 TriggerPromiseReactions (reactions,argument )

The abstract operation TriggerPromiseReactions takes argumentsreactions (aList ofPromiseReaction Records) andargument (anECMAScript language value) and returnsunused. It enqueues a newJob for each record inreactions. Each suchJob processes the[[Type]] and[[Handler]] of thePromiseReaction Record, and if the[[Handler]] is notempty, calls it passing the given argument. If the[[Handler]] isempty, the behaviour is determined by the[[Type]]. It performs the following steps when called:

  1. For each elementreaction ofreactions, do
    1. Letjob beNewPromiseReactionJob(reaction,argument).
    2. PerformHostEnqueuePromiseJob(job.[[Job]],job.[[Realm]]).
  2. Returnunused.

27.2.1.9 HostPromiseRejectionTracker (promise,operation )

Thehost-defined abstract operation HostPromiseRejectionTracker takes argumentspromise (a Promise) andoperation ("reject" or"handle") and returnsunused. It allowshost environments to track promise rejections.

The default implementation of HostPromiseRejectionTracker is to returnunused.

Note 1

HostPromiseRejectionTracker is called in two scenarios:

  • When a promise is rejected without any handlers, it is called with itsoperation argument set to"reject".
  • When a handler is added to a rejected promise for the first time, it is called with itsoperation argument set to"handle".

A typical implementation of HostPromiseRejectionTracker might try to notify developers of unhandled rejections, while also being careful to notify them if such previous notifications are later invalidated by new handlers being attached.

Note 2

Ifoperation is"handle", an implementation should not hold a reference topromise in a way that would interfere with garbage collection. An implementation may hold a reference topromise ifoperation is"reject", since it is expected that rejections will be rare and not on hot code paths.

27.2.2 Promise Jobs

27.2.2.1 NewPromiseReactionJob (reaction,argument )

The abstract operation NewPromiseReactionJob takes argumentsreaction (aPromiseReaction Record) andargument (anECMAScript language value) and returns aRecord with fields[[Job]] (aJobAbstract Closure) and[[Realm]] (aRealm Record ornull). It returns a newJobAbstract Closure that applies the appropriate handler to the incoming value, and uses the handler's return value to resolve or reject the derived promise associated with that handler. It performs the following steps when called:

  1. Letjob be a newJobAbstract Closure with no parameters that capturesreaction andargument and performs the following steps when called:
    1. LetpromiseCapability bereaction.[[Capability]].
    2. Lettype bereaction.[[Type]].
    3. Lethandler bereaction.[[Handler]].
    4. Ifhandler isempty, then
      1. Iftype isfulfill, then
        1. LethandlerResult beNormalCompletion(argument).
      2. Else,
        1. Assert:type isreject.
        2. LethandlerResult beThrowCompletion(argument).
    5. Else,
      1. LethandlerResult beCompletion(HostCallJobCallback(handler,undefined, «argument »)).
    6. IfpromiseCapability isundefined, then
      1. Assert:handlerResult is not anabrupt completion.
      2. Returnempty.
    7. Assert:promiseCapability is aPromiseCapability Record.
    8. IfhandlerResult is anabrupt completion, then
      1. Return ? Call(promiseCapability.[[Reject]],undefined, «handlerResult.[[Value]] »).
    9. Else,
      1. Return ? Call(promiseCapability.[[Resolve]],undefined, «handlerResult.[[Value]] »).
  2. LethandlerRealm benull.
  3. Ifreaction.[[Handler]] is notempty, then
    1. LetgetHandlerRealmResult beCompletion(GetFunctionRealm(reaction.[[Handler]].[[Callback]])).
    2. IfgetHandlerRealmResult is anormal completion, sethandlerRealm togetHandlerRealmResult.[[Value]].
    3. Else, sethandlerRealm tothe current Realm Record.
    4. NOTE:handlerRealm is nevernull unless the handler isundefined. When the handler is a revoked Proxy and no ECMAScript code runs,handlerRealm is used to create error objects.
  4. Return theRecord {[[Job]]:job,[[Realm]]:handlerRealm }.

27.2.2.2 NewPromiseResolveThenableJob (promiseToResolve,thenable,then )

The abstract operation NewPromiseResolveThenableJob takes argumentspromiseToResolve (a Promise),thenable (an Object), andthen (aJobCallback Record) and returns aRecord with fields[[Job]] (aJobAbstract Closure) and[[Realm]] (aRealm Record). It performs the following steps when called:

  1. Letjob be a newJobAbstract Closure with no parameters that capturespromiseToResolve,thenable, andthen and performs the following steps when called:
    1. LetresolvingFunctions beCreateResolvingFunctions(promiseToResolve).
    2. LetthenCallResult beCompletion(HostCallJobCallback(then,thenable, «resolvingFunctions.[[Resolve]],resolvingFunctions.[[Reject]] »)).
    3. IfthenCallResult is anabrupt completion, then
      1. Return ? Call(resolvingFunctions.[[Reject]],undefined, «thenCallResult.[[Value]] »).
    4. Return ? thenCallResult.
  2. LetgetThenRealmResult beCompletion(GetFunctionRealm(then.[[Callback]])).
  3. IfgetThenRealmResult is anormal completion, letthenRealm begetThenRealmResult.[[Value]].
  4. Else, letthenRealm bethe current Realm Record.
  5. NOTE:thenRealm is nevernull. Whenthen.[[Callback]] is a revoked Proxy and no code runs,thenRealm is used to create error objects.
  6. Return theRecord {[[Job]]:job,[[Realm]]:thenRealm }.
Note

ThisJob uses the supplied thenable and itsthen method to resolve the given promise. This process must take place as aJob to ensure that the evaluation of thethen method occurs after evaluation of any surrounding code has completed.

27.2.3 The Promise Constructor

The Promiseconstructor:

  • is%Promise%.
  • is the initial value of the"Promise" property of theglobal object.
  • creates and initializes a new Promise when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.
  • may be used as the value in anextends clause of a class definition. Subclassconstructors that intend to inherit the specified Promise behaviour must include asuper call to the Promiseconstructor to create and initialize the subclass instance with the internal state necessary to support thePromise andPromise.prototype built-in methods.

27.2.3.1 Promise (executor )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. IfIsCallable(executor) isfalse, throw aTypeError exception.
  3. Letpromise be ? OrdinaryCreateFromConstructor(NewTarget,"%Promise.prototype%", «[[PromiseState]],[[PromiseResult]],[[PromiseFulfillReactions]],[[PromiseRejectReactions]],[[PromiseIsHandled]] »).
  4. Setpromise.[[PromiseState]] topending.
  5. Setpromise.[[PromiseFulfillReactions]] to a new emptyList.
  6. Setpromise.[[PromiseRejectReactions]] to a new emptyList.
  7. Setpromise.[[PromiseIsHandled]] tofalse.
  8. LetresolvingFunctions beCreateResolvingFunctions(promise).
  9. Letcompletion beCompletion(Call(executor,undefined, «resolvingFunctions.[[Resolve]],resolvingFunctions.[[Reject]] »)).
  10. Ifcompletion is anabrupt completion, then
    1. Perform ? Call(resolvingFunctions.[[Reject]],undefined, «completion.[[Value]] »).
  11. Returnpromise.
Note

Theexecutor argument must be afunction object. It is called for initiating and reporting completion of the possibly deferred action represented by this Promise. The executor is called with two arguments:resolve andreject. These are functions that may be used by theexecutor function to report eventual completion or failure of the deferred computation. Returning from the executor function does not mean that the deferred action has been completed but only that the request to eventually perform the deferred action has been accepted.

Theresolve function that is passed to anexecutor function accepts a single argument. Theexecutor code may eventually call theresolve function to indicate that it wishes to resolve the associated Promise. The argument passed to theresolve function represents the eventual value of the deferred action and can be either the actual fulfillment value or another promise which will provide the value if it is fulfilled.

Thereject function that is passed to anexecutor function accepts a single argument. Theexecutor code may eventually call thereject function to indicate that the associated Promise is rejected and will never be fulfilled. The argument passed to thereject function is used as the rejection value of the promise. Typically it will be an Error object.

The resolve and reject functions passed to anexecutor function by the Promiseconstructor have the capability to actually resolve and reject the associated promise. Subclasses may have differentconstructor behaviour that passes in customized values for resolve and reject.

27.2.4 Properties of the Promise Constructor

The Promiseconstructor:

27.2.4.1 Promise.all (iterable )

This function returns a new promise which is fulfilled with an array of fulfillment values for the passed promises, or rejects with the reason of the first passed promise that rejects. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beCompletion(GetPromiseResolve(C)).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beCompletion(GetIterator(iterable,sync)).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult beCompletion(PerformPromiseAll(iteratorRecord,C,promiseCapability,promiseResolve)).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toCompletion(IteratorClose(iteratorRecord,result)).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. Return ? result.
Note

This function requires itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.1.1 GetPromiseResolve (promiseConstructor )

The abstract operation GetPromiseResolve takes argumentpromiseConstructor (aconstructor) and returns either anormal completion containing afunction object or athrow completion. It performs the following steps when called:

  1. LetpromiseResolve be ? Get(promiseConstructor,"resolve").
  2. IfIsCallable(promiseResolve) isfalse, throw aTypeError exception.
  3. ReturnpromiseResolve.

27.2.4.1.2 PerformPromiseAll (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAll takes argumentsiteratorRecord (anIterator Record),constructor (aconstructor),resultCapability (aPromiseCapability Record), andpromiseResolve (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letvalues be a new emptyList.
  2. LetremainingElementsCount be theRecord {[[Value]]: 1 }.
  3. Letindex be 0.
  4. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, then
      1. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      2. IfremainingElementsCount.[[Value]] = 0, then
        1. LetvaluesArray beCreateArrayFromList(values).
        2. Perform ? Call(resultCapability.[[Resolve]],undefined, «valuesArray »).
      3. ReturnresultCapability.[[Promise]].
    3. Appendundefined tovalues.
    4. LetnextPromise be ? Call(promiseResolve,constructor, «next »).
    5. Letsteps be the algorithm steps defined inPromise.all Resolve Element Functions.
    6. Letlength be the number of non-optional parameters of the function definition inPromise.all Resolve Element Functions.
    7. LetonFulfilled beCreateBuiltinFunction(steps,length,"", «[[AlreadyCalled]],[[Index]],[[Values]],[[Capability]],[[RemainingElements]] »).
    8. SetonFulfilled.[[AlreadyCalled]] tofalse.
    9. SetonFulfilled.[[Index]] toindex.
    10. SetonFulfilled.[[Values]] tovalues.
    11. SetonFulfilled.[[Capability]] toresultCapability.
    12. SetonFulfilled.[[RemainingElements]] toremainingElementsCount.
    13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    14. Perform ? Invoke(nextPromise,"then", «onFulfilled,resultCapability.[[Reject]] »).
    15. Setindex toindex + 1.

27.2.4.1.3Promise.all Resolve Element Functions

APromise.all resolve element function is an anonymous built-in function that is used to resolve a specificPromise.all element. EachPromise.all resolve element function has[[Index]],[[Values]],[[Capability]],[[RemainingElements]], and[[AlreadyCalled]] internal slots.

When aPromise.all resolve element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. IfF.[[AlreadyCalled]] istrue, returnundefined.
  3. SetF.[[AlreadyCalled]] totrue.
  4. Letindex beF.[[Index]].
  5. Letvalues beF.[[Values]].
  6. LetpromiseCapability beF.[[Capability]].
  7. LetremainingElementsCount beF.[[RemainingElements]].
  8. Setvalues[index] tox.
  9. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  10. IfremainingElementsCount.[[Value]] = 0, then
    1. LetvaluesArray beCreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  11. Returnundefined.

The"length" property of aPromise.all resolve element function is1𝔽.

27.2.4.2 Promise.allSettled (iterable )

This function returns a promise that is fulfilled with an array of promise state snapshots, but only after all the original promises have settled, i.e. become either fulfilled or rejected. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beCompletion(GetPromiseResolve(C)).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beCompletion(GetIterator(iterable,sync)).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult beCompletion(PerformPromiseAllSettled(iteratorRecord,C,promiseCapability,promiseResolve)).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toCompletion(IteratorClose(iteratorRecord,result)).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. Return ? result.
Note

This function requires itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.2.1 PerformPromiseAllSettled (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAllSettled takes argumentsiteratorRecord (anIterator Record),constructor (aconstructor),resultCapability (aPromiseCapability Record), andpromiseResolve (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letvalues be a new emptyList.
  2. LetremainingElementsCount be theRecord {[[Value]]: 1 }.
  3. Letindex be 0.
  4. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, then
      1. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      2. IfremainingElementsCount.[[Value]] = 0, then
        1. LetvaluesArray beCreateArrayFromList(values).
        2. Perform ? Call(resultCapability.[[Resolve]],undefined, «valuesArray »).
      3. ReturnresultCapability.[[Promise]].
    3. Appendundefined tovalues.
    4. LetnextPromise be ? Call(promiseResolve,constructor, «next »).
    5. LetstepsFulfilled be the algorithm steps defined inPromise.allSettled Resolve Element Functions.
    6. LetlengthFulfilled be the number of non-optional parameters of the function definition inPromise.allSettled Resolve Element Functions.
    7. LetonFulfilled beCreateBuiltinFunction(stepsFulfilled,lengthFulfilled,"", «[[AlreadyCalled]],[[Index]],[[Values]],[[Capability]],[[RemainingElements]] »).
    8. LetalreadyCalled be theRecord {[[Value]]:false }.
    9. SetonFulfilled.[[AlreadyCalled]] toalreadyCalled.
    10. SetonFulfilled.[[Index]] toindex.
    11. SetonFulfilled.[[Values]] tovalues.
    12. SetonFulfilled.[[Capability]] toresultCapability.
    13. SetonFulfilled.[[RemainingElements]] toremainingElementsCount.
    14. LetstepsRejected be the algorithm steps defined inPromise.allSettled Reject Element Functions.
    15. LetlengthRejected be the number of non-optional parameters of the function definition inPromise.allSettled Reject Element Functions.
    16. LetonRejected beCreateBuiltinFunction(stepsRejected,lengthRejected,"", «[[AlreadyCalled]],[[Index]],[[Values]],[[Capability]],[[RemainingElements]] »).
    17. SetonRejected.[[AlreadyCalled]] toalreadyCalled.
    18. SetonRejected.[[Index]] toindex.
    19. SetonRejected.[[Values]] tovalues.
    20. SetonRejected.[[Capability]] toresultCapability.
    21. SetonRejected.[[RemainingElements]] toremainingElementsCount.
    22. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    23. Perform ? Invoke(nextPromise,"then", «onFulfilled,onRejected »).
    24. Setindex toindex + 1.

27.2.4.2.2Promise.allSettled Resolve Element Functions

APromise.allSettled resolve element function is an anonymous built-in function that is used to resolve a specificPromise.allSettled element. EachPromise.allSettled resolve element function has[[Index]],[[Values]],[[Capability]],[[RemainingElements]], and[[AlreadyCalled]] internal slots.

When aPromise.allSettled resolve element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. LetalreadyCalled beF.[[AlreadyCalled]].
  3. IfalreadyCalled.[[Value]] istrue, returnundefined.
  4. SetalreadyCalled.[[Value]] totrue.
  5. Letindex beF.[[Index]].
  6. Letvalues beF.[[Values]].
  7. LetpromiseCapability beF.[[Capability]].
  8. LetremainingElementsCount beF.[[RemainingElements]].
  9. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  10. Perform ! CreateDataPropertyOrThrow(obj,"status","fulfilled").
  11. Perform ! CreateDataPropertyOrThrow(obj,"value",x).
  12. Setvalues[index] toobj.
  13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  14. IfremainingElementsCount.[[Value]] = 0, then
    1. LetvaluesArray beCreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  15. Returnundefined.

The"length" property of aPromise.allSettled resolve element function is1𝔽.

27.2.4.2.3Promise.allSettled Reject Element Functions

APromise.allSettled reject element function is an anonymous built-in function that is used to reject a specificPromise.allSettled element. EachPromise.allSettled reject element function has[[Index]],[[Values]],[[Capability]],[[RemainingElements]], and[[AlreadyCalled]] internal slots.

When aPromise.allSettled reject element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. LetalreadyCalled beF.[[AlreadyCalled]].
  3. IfalreadyCalled.[[Value]] istrue, returnundefined.
  4. SetalreadyCalled.[[Value]] totrue.
  5. Letindex beF.[[Index]].
  6. Letvalues beF.[[Values]].
  7. LetpromiseCapability beF.[[Capability]].
  8. LetremainingElementsCount beF.[[RemainingElements]].
  9. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  10. Perform ! CreateDataPropertyOrThrow(obj,"status","rejected").
  11. Perform ! CreateDataPropertyOrThrow(obj,"reason",x).
  12. Setvalues[index] toobj.
  13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  14. IfremainingElementsCount.[[Value]] = 0, then
    1. LetvaluesArray beCreateArrayFromList(values).
    2. Return ? Call(promiseCapability.[[Resolve]],undefined, «valuesArray »).
  15. Returnundefined.

The"length" property of aPromise.allSettled reject element function is1𝔽.

27.2.4.3 Promise.any (iterable )

This function returns a promise that is fulfilled by the first given promise to be fulfilled, or rejected with anAggregateError holding the rejection reasons if all of the given promises are rejected. It resolves all elements of the passed iterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beCompletion(GetPromiseResolve(C)).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beCompletion(GetIterator(iterable,sync)).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult beCompletion(PerformPromiseAny(iteratorRecord,C,promiseCapability,promiseResolve)).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toCompletion(IteratorClose(iteratorRecord,result)).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. Return ? result.
Note

This function requires itsthis value to be aconstructor function that supports the parameter conventions of thePromiseconstructor.

27.2.4.3.1 PerformPromiseAny (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseAny takes argumentsiteratorRecord (anIterator Record),constructor (aconstructor),resultCapability (aPromiseCapability Record), andpromiseResolve (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Leterrors be a new emptyList.
  2. LetremainingElementsCount be theRecord {[[Value]]: 1 }.
  3. Letindex be 0.
  4. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, then
      1. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
      2. IfremainingElementsCount.[[Value]] = 0, then
        1. Leterror be a newly createdAggregateError object.
        2. Perform ! DefinePropertyOrThrow(error,"errors", PropertyDescriptor {[[Configurable]]:true,[[Enumerable]]:false,[[Writable]]:true,[[Value]]:CreateArrayFromList(errors) }).
        3. ReturnThrowCompletion(error).
      3. ReturnresultCapability.[[Promise]].
    3. Appendundefined toerrors.
    4. LetnextPromise be ? Call(promiseResolve,constructor, «next »).
    5. LetstepsRejected be the algorithm steps defined inPromise.any Reject Element Functions.
    6. LetlengthRejected be the number of non-optional parameters of the function definition inPromise.any Reject Element Functions.
    7. LetonRejected beCreateBuiltinFunction(stepsRejected,lengthRejected,"", «[[AlreadyCalled]],[[Index]],[[Errors]],[[Capability]],[[RemainingElements]] »).
    8. SetonRejected.[[AlreadyCalled]] tofalse.
    9. SetonRejected.[[Index]] toindex.
    10. SetonRejected.[[Errors]] toerrors.
    11. SetonRejected.[[Capability]] toresultCapability.
    12. SetonRejected.[[RemainingElements]] toremainingElementsCount.
    13. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] + 1.
    14. Perform ? Invoke(nextPromise,"then", «resultCapability.[[Resolve]],onRejected »).
    15. Setindex toindex + 1.

27.2.4.3.2Promise.any Reject Element Functions

APromise.any reject element function is an anonymous built-in function that is used to reject a specificPromise.any element. EachPromise.any reject element function has[[Index]],[[Errors]],[[Capability]],[[RemainingElements]], and[[AlreadyCalled]] internal slots.

When aPromise.any reject element function is called with argumentx, the following steps are taken:

  1. LetF be theactive function object.
  2. IfF.[[AlreadyCalled]] istrue, returnundefined.
  3. SetF.[[AlreadyCalled]] totrue.
  4. Letindex beF.[[Index]].
  5. Leterrors beF.[[Errors]].
  6. LetpromiseCapability beF.[[Capability]].
  7. LetremainingElementsCount beF.[[RemainingElements]].
  8. Seterrors[index] tox.
  9. SetremainingElementsCount.[[Value]] toremainingElementsCount.[[Value]] - 1.
  10. IfremainingElementsCount.[[Value]] = 0, then
    1. Leterror be a newly createdAggregateError object.
    2. Perform ! DefinePropertyOrThrow(error,"errors", PropertyDescriptor {[[Configurable]]:true,[[Enumerable]]:false,[[Writable]]:true,[[Value]]:CreateArrayFromList(errors) }).
    3. Return ? Call(promiseCapability.[[Reject]],undefined, «error »).
  11. Returnundefined.

The"length" property of aPromise.any reject element function is1𝔽.

27.2.4.4 Promise.prototype

The initial value ofPromise.prototype is thePromise prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

27.2.4.5 Promise.race (iterable )

This function returns a new promise which is settled in the same way as the first passed promise to settle. It resolves all elements of the passediterable to promises as it runs this algorithm.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. LetpromiseResolve beCompletion(GetPromiseResolve(C)).
  4. IfAbruptRejectPromise(promiseResolve,promiseCapability).
  5. LetiteratorRecord beCompletion(GetIterator(iterable,sync)).
  6. IfAbruptRejectPromise(iteratorRecord,promiseCapability).
  7. Letresult beCompletion(PerformPromiseRace(iteratorRecord,C,promiseCapability,promiseResolve)).
  8. Ifresult is anabrupt completion, then
    1. IfiteratorRecord.[[Done]] isfalse, setresult toCompletion(IteratorClose(iteratorRecord,result)).
    2. IfAbruptRejectPromise(result,promiseCapability).
  9. Return ? result.
Note 1

If theiterable argument yields no values or if none of the promises yielded byiterable ever settle, then the pending promise returned by this method will never be settled.

Note 2

This function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor. It also expects that itsthis value provides aresolve method.

27.2.4.5.1 PerformPromiseRace (iteratorRecord,constructor,resultCapability,promiseResolve )

The abstract operation PerformPromiseRace takes argumentsiteratorRecord (anIterator Record),constructor (aconstructor),resultCapability (aPromiseCapability Record), andpromiseResolve (afunction object) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Repeat,
    1. Letnext be ? IteratorStepValue(iteratorRecord).
    2. Ifnext isdone, then
      1. ReturnresultCapability.[[Promise]].
    3. LetnextPromise be ? Call(promiseResolve,constructor, «next »).
    4. Perform ? Invoke(nextPromise,"then", «resultCapability.[[Resolve]],resultCapability.[[Reject]] »).

27.2.4.6 Promise.reject (r )

This function returns a new promise rejected with the passed argument.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. Perform ? Call(promiseCapability.[[Reject]],undefined, «r »).
  4. ReturnpromiseCapability.[[Promise]].
Note

This function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.7 Promise.resolve (x )

This function returns either a new promise resolved with the passed argument, or the argument itself if the argument is a promise produced by thisconstructor.

  1. LetC be thethis value.
  2. IfCis not an Object, throw aTypeError exception.
  3. Return ? PromiseResolve(C,x).
Note

This function expects itsthis value to be aconstructor function that supports the parameter conventions of the Promiseconstructor.

27.2.4.7.1 PromiseResolve (C,x )

The abstract operation PromiseResolve takes argumentsC (aconstructor) andx (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or athrow completion. It returns a new promise resolved withx. It performs the following steps when called:

  1. IfIsPromise(x) istrue, then
    1. LetxConstructor be ? Get(x,"constructor").
    2. IfSameValue(xConstructor,C) istrue, returnx.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. Perform ? Call(promiseCapability.[[Resolve]],undefined, «x »).
  4. ReturnpromiseCapability.[[Promise]].

27.2.4.8 Promise.withResolvers ( )

This function returns an object with three properties: a new promise together with theresolve andreject functions associated with it.

  1. LetC be thethis value.
  2. LetpromiseCapability be ? NewPromiseCapability(C).
  3. Letobj beOrdinaryObjectCreate(%Object.prototype%).
  4. Perform ! CreateDataPropertyOrThrow(obj,"promise",promiseCapability.[[Promise]]).
  5. Perform ! CreateDataPropertyOrThrow(obj,"resolve",promiseCapability.[[Resolve]]).
  6. Perform ! CreateDataPropertyOrThrow(obj,"reject",promiseCapability.[[Reject]]).
  7. Returnobj.

27.2.4.9 get Promise [ @@species ]

Promise[@@species] is anaccessor property whose set accessor function isundefined. Its get accessor function performs the following steps when called:

  1. Return thethis value.

The value of the"name" property of this function is"get [Symbol.species]".

Note

Promise prototype methods normally use theirthis value'sconstructor to create a derived object. However, a subclassconstructor may over-ride that default behaviour by redefining its@@species property.

27.2.5 Properties of the Promise Prototype Object

ThePromise prototype object:

  • is%Promise.prototype%.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is anordinary object.
  • does not have a[[PromiseState]] internal slot or any of the other internal slots of Promise instances.

27.2.5.1 Promise.prototype.catch (onRejected )

This method performs the following steps when called:

  1. Letpromise be thethis value.
  2. Return ? Invoke(promise,"then", «undefined,onRejected »).

27.2.5.2 Promise.prototype.constructor

The initial value ofPromise.prototype.constructor is%Promise%.

27.2.5.3 Promise.prototype.finally (onFinally )

This method performs the following steps when called:

  1. Letpromise be thethis value.
  2. Ifpromiseis not an Object, throw aTypeError exception.
  3. LetC be ? SpeciesConstructor(promise,%Promise%).
  4. Assert:IsConstructor(C) istrue.
  5. IfIsCallable(onFinally) isfalse, then
    1. LetthenFinally beonFinally.
    2. LetcatchFinally beonFinally.
  6. Else,
    1. LetthenFinallyClosure be a newAbstract Closure with parameters (value) that capturesonFinally andC and performs the following steps when called:
      1. Letresult be ? Call(onFinally,undefined).
      2. Letp be ? PromiseResolve(C,result).
      3. LetreturnValue be a newAbstract Closure with no parameters that capturesvalue and performs the following steps when called:
        1. Returnvalue.
      4. LetvalueThunk beCreateBuiltinFunction(returnValue, 0,"", « »).
      5. Return ? Invoke(p,"then", «valueThunk »).
    2. LetthenFinally beCreateBuiltinFunction(thenFinallyClosure, 1,"", « »).
    3. LetcatchFinallyClosure be a newAbstract Closure with parameters (reason) that capturesonFinally andC and performs the following steps when called:
      1. Letresult be ? Call(onFinally,undefined).
      2. Letp be ? PromiseResolve(C,result).
      3. LetthrowReason be a newAbstract Closure with no parameters that capturesreason and performs the following steps when called:
        1. ReturnThrowCompletion(reason).
      4. Letthrower beCreateBuiltinFunction(throwReason, 0,"", « »).
      5. Return ? Invoke(p,"then", «thrower »).
    4. LetcatchFinally beCreateBuiltinFunction(catchFinallyClosure, 1,"", « »).
  7. Return ? Invoke(promise,"then", «thenFinally,catchFinally »).

27.2.5.4 Promise.prototype.then (onFulfilled,onRejected )

This method performs the following steps when called:

  1. Letpromise be thethis value.
  2. IfIsPromise(promise) isfalse, throw aTypeError exception.
  3. LetC be ? SpeciesConstructor(promise,%Promise%).
  4. LetresultCapability be ? NewPromiseCapability(C).
  5. ReturnPerformPromiseThen(promise,onFulfilled,onRejected,resultCapability).

27.2.5.4.1 PerformPromiseThen (promise,onFulfilled,onRejected [ ,resultCapability ] )

The abstract operation PerformPromiseThen takes argumentspromise (a Promise),onFulfilled (anECMAScript language value), andonRejected (anECMAScript language value) and optional argumentresultCapability (aPromiseCapability Record) and returns anECMAScript language value. It performs the “then” operation onpromise usingonFulfilled andonRejected as its settlement actions. IfresultCapability is passed, the result is stored by updatingresultCapability's promise. If it is not passed, then PerformPromiseThen is being called by a specification-internal operation where the result does not matter. It performs the following steps when called:

  1. Assert:IsPromise(promise) istrue.
  2. IfresultCapability is not present, then
    1. SetresultCapability toundefined.
  3. IfIsCallable(onFulfilled) isfalse, then
    1. LetonFulfilledJobCallback beempty.
  4. Else,
    1. LetonFulfilledJobCallback beHostMakeJobCallback(onFulfilled).
  5. IfIsCallable(onRejected) isfalse, then
    1. LetonRejectedJobCallback beempty.
  6. Else,
    1. LetonRejectedJobCallback beHostMakeJobCallback(onRejected).
  7. LetfulfillReaction be thePromiseReaction Record {[[Capability]]:resultCapability,[[Type]]:fulfill,[[Handler]]:onFulfilledJobCallback }.
  8. LetrejectReaction be thePromiseReaction Record {[[Capability]]:resultCapability,[[Type]]:reject,[[Handler]]:onRejectedJobCallback }.
  9. Ifpromise.[[PromiseState]] ispending, then
    1. AppendfulfillReaction topromise.[[PromiseFulfillReactions]].
    2. AppendrejectReaction topromise.[[PromiseRejectReactions]].
  10. Else ifpromise.[[PromiseState]] isfulfilled, then
    1. Letvalue bepromise.[[PromiseResult]].
    2. LetfulfillJob beNewPromiseReactionJob(fulfillReaction,value).
    3. PerformHostEnqueuePromiseJob(fulfillJob.[[Job]],fulfillJob.[[Realm]]).
  11. Else,
    1. Assert: The value ofpromise.[[PromiseState]] isrejected.
    2. Letreason bepromise.[[PromiseResult]].
    3. Ifpromise.[[PromiseIsHandled]] isfalse, performHostPromiseRejectionTracker(promise,"handle").
    4. LetrejectJob beNewPromiseReactionJob(rejectReaction,reason).
    5. PerformHostEnqueuePromiseJob(rejectJob.[[Job]],rejectJob.[[Realm]]).
  12. Setpromise.[[PromiseIsHandled]] totrue.
  13. IfresultCapability isundefined, then
    1. Returnundefined.
  14. Else,
    1. ReturnresultCapability.[[Promise]].

27.2.5.5 Promise.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Promise".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.2.6 Properties of Promise Instances

Promise instances areordinary objects that inherit properties from thePromise prototype object (the intrinsic,%Promise.prototype%). Promise instances are initially created with the internal slots described inTable 87.

Table 87: Internal Slots of Promise Instances
Internal Slot Type Description
[[PromiseState]]pending,fulfilled, orrejected Governs how a promise will react to incoming calls to itsthen method.
[[PromiseResult]] anECMAScript language value The value with which the promise has been fulfilled or rejected, if any. Only meaningful if[[PromiseState]] is notpending.
[[PromiseFulfillReactions]] aList ofPromiseReaction RecordsRecords to be processed when/if the promise transitions from thepending state to thefulfilled state.
[[PromiseRejectReactions]] aList ofPromiseReaction RecordsRecords to be processed when/if the promise transitions from thepending state to therejected state.
[[PromiseIsHandled]] a Boolean Indicates whether the promise has ever had a fulfillment or rejection handler; used in unhandled rejection tracking.

27.3 GeneratorFunction Objects

GeneratorFunctions are functions that are usually created by evaluatingGeneratorDeclarations,GeneratorExpressions, andGeneratorMethods. They may also be created by calling the%GeneratorFunction% intrinsic.

Figure 6 (Informative): Generator Objects Relationships
A staggering variety of boxes and arrows.

27.3.1 The GeneratorFunction Constructor

The GeneratorFunctionconstructor:

  • is%GeneratorFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new GeneratorFunction when called as a function rather than as aconstructor. Thus the function callGeneratorFunction (…) is equivalent to the object creation expressionnew GeneratorFunction (…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified GeneratorFunction behaviour must include asuper call to the GeneratorFunctionconstructor to create and initialize subclass instances with the internal slots necessary for built-in GeneratorFunction behaviour. All ECMAScript syntactic forms for defining generatorfunction objects create direct instances of GeneratorFunction. There is no syntactic means to create instances of GeneratorFunction subclasses.

27.3.1.1 GeneratorFunction ( ...parameterArgs,bodyArg )

The last argument (if any) specifies the body (executable code) of a generator function; any preceding arguments specify formal parameters.

This function performs the following steps when called:

  1. LetC be theactive function object.
  2. IfbodyArg is not present, setbodyArg to the empty String.
  3. Return ? CreateDynamicFunction(C, NewTarget,generator,parameterArgs,bodyArg).
Note

See NOTE for20.2.1.1.

27.3.2 Properties of the GeneratorFunction Constructor

The GeneratorFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a[[Prototype]] internal slot whose value is%Function%.
  • has a"length" property whose value is1𝔽.
  • has a"name" property whose value is"GeneratorFunction".
  • has the following properties:

27.3.2.1 GeneratorFunction.prototype

The initial value ofGeneratorFunction.prototype is theGeneratorFunction prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

27.3.3 Properties of the GeneratorFunction Prototype Object

TheGeneratorFunction prototype object:

27.3.3.1 GeneratorFunction.prototype.constructor

The initial value ofGeneratorFunction.prototype.constructor is%GeneratorFunction%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.3.3.2 GeneratorFunction.prototype.prototype

The initial value ofGeneratorFunction.prototype.prototype is theGenerator prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.3.3.3 GeneratorFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"GeneratorFunction".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.3.4 GeneratorFunction Instances

Every GeneratorFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 30. The value of the[[IsClassConstructor]] internal slot for all such instances isfalse.

Each GeneratorFunction instance has the following own properties:

27.3.4.1 length

The specification for the"length" property of Function instances given in20.2.4.1 also applies to GeneratorFunction instances.

27.3.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to GeneratorFunction instances.

27.3.4.3 prototype

Whenever a GeneratorFunction instance is created anotherordinary object is also created and is the initial value of the generator function's"prototype" property. The value of the prototype property is used to initialize the[[Prototype]] internal slot of a newly created Generator when the generatorfunction object is invoked using[[Call]].

This property has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.

Note

Unlike Function instances, the object that is the value of a GeneratorFunction's"prototype" property does not have a"constructor" property whose value is the GeneratorFunction instance.

27.4 AsyncGeneratorFunction Objects

AsyncGeneratorFunctions are functions that are usually created by evaluatingAsyncGeneratorDeclaration,AsyncGeneratorExpression, andAsyncGeneratorMethod syntactic productions. They may also be created by calling the%AsyncGeneratorFunction% intrinsic.

27.4.1 The AsyncGeneratorFunction Constructor

The AsyncGeneratorFunctionconstructor:

  • is%AsyncGeneratorFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new AsyncGeneratorFunction when called as a function rather than as aconstructor. Thus the function callAsyncGeneratorFunction (...) is equivalent to the object creation expressionnew AsyncGeneratorFunction (...) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified AsyncGeneratorFunction behaviour must include asuper call to the AsyncGeneratorFunctionconstructor to create and initialize subclass instances with the internal slots necessary for built-in AsyncGeneratorFunction behaviour. All ECMAScript syntactic forms for defining async generatorfunction objects create direct instances of AsyncGeneratorFunction. There is no syntactic means to create instances of AsyncGeneratorFunction subclasses.

27.4.1.1 AsyncGeneratorFunction ( ...parameterArgs,bodyArg )

The last argument (if any) specifies the body (executable code) of an async generator function; any preceding arguments specify formal parameters.

This function performs the following steps when called:

  1. LetC be theactive function object.
  2. IfbodyArg is not present, setbodyArg to the empty String.
  3. Return ? CreateDynamicFunction(C, NewTarget,async-generator,parameterArgs,bodyArg).
Note

See NOTE for20.2.1.1.

27.4.2 Properties of the AsyncGeneratorFunction Constructor

The AsyncGeneratorFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a[[Prototype]] internal slot whose value is%Function%.
  • has a"length" property whose value is1𝔽.
  • has a"name" property whose value is"AsyncGeneratorFunction".
  • has the following properties:

27.4.2.1 AsyncGeneratorFunction.prototype

The initial value ofAsyncGeneratorFunction.prototype is theAsyncGeneratorFunction prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

27.4.3 Properties of the AsyncGeneratorFunction Prototype Object

TheAsyncGeneratorFunction prototype object:

27.4.3.1 AsyncGeneratorFunction.prototype.constructor

The initial value ofAsyncGeneratorFunction.prototype.constructor is%AsyncGeneratorFunction%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.4.3.2 AsyncGeneratorFunction.prototype.prototype

The initial value ofAsyncGeneratorFunction.prototype.prototype is theAsyncGenerator prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.4.3.3 AsyncGeneratorFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncGeneratorFunction".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.4.4 AsyncGeneratorFunction Instances

Every AsyncGeneratorFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 30. The value of the[[IsClassConstructor]] internal slot for all such instances isfalse.

Each AsyncGeneratorFunction instance has the following own properties:

27.4.4.1 length

The value of the"length" property is anintegral Number that indicates the typical number of arguments expected by the AsyncGeneratorFunction. However, the language permits the function to be invoked with some other number of arguments. The behaviour of an AsyncGeneratorFunction when invoked on a number of arguments other than the number specified by its"length" property depends on the function.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.4.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to AsyncGeneratorFunction instances.

27.4.4.3 prototype

Whenever an AsyncGeneratorFunction instance is created, anotherordinary object is also created and is the initial value of the async generator function's"prototype" property. The value of the prototype property is used to initialize the[[Prototype]] internal slot of a newly created AsyncGenerator when the generatorfunction object is invoked using[[Call]].

This property has the attributes {[[Writable]]:true,[[Enumerable]]:false,[[Configurable]]:false }.

Note

Unlike function instances, the object that is the value of an AsyncGeneratorFunction's"prototype" property does not have a"constructor" property whose value is the AsyncGeneratorFunction instance.

27.5 Generator Objects

A Generator is an instance of a generator function and conforms to both theIterator andIterable interfaces.

Generator instances directly inherit properties from the object that is the initial value of the"prototype" property of the Generator function that created the instance. Generator instances indirectly inherit properties from the Generator Prototype intrinsic,%GeneratorFunction.prototype.prototype%.

27.5.1 Properties of the Generator Prototype Object

TheGenerator prototype object:

  • is%GeneratorFunction.prototype.prototype%.
  • is anordinary object.
  • is not a Generator instance and does not have a[[GeneratorState]] internal slot.
  • has a[[Prototype]] internal slot whose value is%IteratorPrototype%.
  • has properties that are indirectly inherited by all Generator instances.

27.5.1.1 Generator.prototype.constructor

The initial value ofGenerator.prototype.constructor is%GeneratorFunction.prototype%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.5.1.2 Generator.prototype.next (value )

  1. Return ? GeneratorResume(this value,value,empty).

27.5.1.3 Generator.prototype.return (value )

This method performs the following steps when called:

  1. Letg be thethis value.
  2. LetC beCompletion Record {[[Type]]:return,[[Value]]:value,[[Target]]:empty }.
  3. Return ? GeneratorResumeAbrupt(g,C,empty).

27.5.1.4 Generator.prototype.throw (exception )

This method performs the following steps when called:

  1. Letg be thethis value.
  2. LetC beThrowCompletion(exception).
  3. Return ? GeneratorResumeAbrupt(g,C,empty).

27.5.1.5 Generator.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Generator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.5.2 Properties of Generator Instances

Generator instances are initially created with the internal slots described inTable 88.

Table 88: Internal Slots of Generator Instances
Internal Slot Type Description
[[GeneratorState]]undefined,suspended-start,suspended-yield,executing, orcompleted The current execution state of the generator.
[[GeneratorContext]] anexecution context Theexecution context that is used when executing the code of this generator.
[[GeneratorBrand]] a String orempty A brand used to distinguish different kinds of generators. The[[GeneratorBrand]] of generators declared byECMAScript source text is alwaysempty.

27.5.3 Generator Abstract Operations

27.5.3.1 GeneratorStart (generator,generatorBody )

The abstract operation GeneratorStart takes argumentsgenerator (a Generator) andgeneratorBody (aFunctionBodyParse Node or anAbstract Closure with no parameters) and returnsunused. It performs the following steps when called:

  1. Assert: The value ofgenerator.[[GeneratorState]] isundefined.
  2. LetgenContext be therunning execution context.
  3. Set the Generator component ofgenContext togenerator.
  4. Letclosure be a newAbstract Closure with no parameters that capturesgeneratorBody and performs the following steps when called:
    1. LetacGenContext be therunning execution context.
    2. LetacGenerator be the Generator component ofacGenContext.
    3. IfgeneratorBody is aParse Node, then
      1. Letresult beCompletion(Evaluation ofgeneratorBody).
    4. Else,
      1. Assert:generatorBody is anAbstract Closure with no parameters.
      2. Letresult begeneratorBody().
    5. Assert: If we return here, the generator either threw an exception or performed either an implicit or explicit return.
    6. RemoveacGenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    7. SetacGenerator.[[GeneratorState]] tocompleted.
    8. NOTE: Once a generator enters thecompleted state it never leaves it and its associatedexecution context is never resumed. Any execution state associated withacGenerator can be discarded at this point.
    9. Ifresult is anormal completion, then
      1. LetresultValue beundefined.
    10. Else ifresult is areturn completion, then
      1. LetresultValue beresult.[[Value]].
    11. Else,
      1. Assert:result is athrow completion.
      2. Return ? result.
    12. ReturnCreateIterResultObject(resultValue,true).
  5. Set the code evaluation state ofgenContext such that when evaluation is resumed for thatexecution context,closure will be called with no arguments.
  6. Setgenerator.[[GeneratorContext]] togenContext.
  7. Setgenerator.[[GeneratorState]] tosuspended-start.
  8. Returnunused.

27.5.3.2 GeneratorValidate (generator,generatorBrand )

The abstract operation GeneratorValidate takes argumentsgenerator (anECMAScript language value) andgeneratorBrand (a String orempty) and returns either anormal completion containing one ofsuspended-start,suspended-yield, orcompleted, or athrow completion. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(generator,[[GeneratorState]]).
  2. Perform ? RequireInternalSlot(generator,[[GeneratorBrand]]).
  3. Ifgenerator.[[GeneratorBrand]] is notgeneratorBrand, throw aTypeError exception.
  4. Assert:generator also has a[[GeneratorContext]] internal slot.
  5. Letstate begenerator.[[GeneratorState]].
  6. Ifstate isexecuting, throw aTypeError exception.
  7. Returnstate.

27.5.3.3 GeneratorResume (generator,value,generatorBrand )

The abstract operation GeneratorResume takes argumentsgenerator (anECMAScript language value),value (anECMAScript language value orempty), andgeneratorBrand (a String orempty) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letstate be ? GeneratorValidate(generator,generatorBrand).
  2. Ifstate iscompleted, returnCreateIterResultObject(undefined,true).
  3. Assert:state is eithersuspended-start orsuspended-yield.
  4. LetgenContext begenerator.[[GeneratorContext]].
  5. LetmethodContext be therunning execution context.
  6. SuspendmethodContext.
  7. Setgenerator.[[GeneratorState]] toexecuting.
  8. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  9. Resume the suspended evaluation ofgenContext usingNormalCompletion(value) as the result of the operation that suspended it. Letresult be the value returned by the resumed computation.
  10. Assert: When we return here,genContext has already been removed from theexecution context stack andmethodContext is the currentlyrunning execution context.
  11. Return ? result.

27.5.3.4 GeneratorResumeAbrupt (generator,abruptCompletion,generatorBrand )

The abstract operation GeneratorResumeAbrupt takes argumentsgenerator (anECMAScript language value),abruptCompletion (areturn completion or athrow completion), andgeneratorBrand (a String orempty) and returns either anormal completion containing anECMAScript language value or athrow completion. It performs the following steps when called:

  1. Letstate be ? GeneratorValidate(generator,generatorBrand).
  2. Ifstate issuspended-start, then
    1. Setgenerator.[[GeneratorState]] tocompleted.
    2. NOTE: Once a generator enters thecompleted state it never leaves it and its associatedexecution context is never resumed. Any execution state associated withgenerator can be discarded at this point.
    3. Setstate tocompleted.
  3. Ifstate iscompleted, then
    1. IfabruptCompletion is areturn completion, then
      1. ReturnCreateIterResultObject(abruptCompletion.[[Value]],true).
    2. Return ? abruptCompletion.
  4. Assert:state issuspended-yield.
  5. LetgenContext begenerator.[[GeneratorContext]].
  6. LetmethodContext be therunning execution context.
  7. SuspendmethodContext.
  8. Setgenerator.[[GeneratorState]] toexecuting.
  9. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  10. Resume the suspended evaluation ofgenContext usingabruptCompletion as the result of the operation that suspended it. Letresult be theCompletion Record returned by the resumed computation.
  11. Assert: When we return here,genContext has already been removed from theexecution context stack andmethodContext is the currentlyrunning execution context.
  12. Return ? result.

27.5.3.5 GetGeneratorKind ( )

The abstract operation GetGeneratorKind takes no arguments and returnsnon-generator,sync, orasync. It performs the following steps when called:

  1. LetgenContext be therunning execution context.
  2. IfgenContext does not have a Generator component, returnnon-generator.
  3. Letgenerator be the Generator component ofgenContext.
  4. Ifgenerator has an[[AsyncGeneratorState]] internal slot, returnasync.
  5. Else, returnsync.

27.5.3.6 GeneratorYield (iterNextObj )

The abstract operation GeneratorYield takes argumentiterNextObj (an Object that conforms to theIteratorResult interface) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. LetgenContext be therunning execution context.
  2. Assert:genContext is theexecution context of a generator.
  3. Letgenerator be the value of the Generator component ofgenContext.
  4. Assert:GetGeneratorKind() issync.
  5. Setgenerator.[[GeneratorState]] tosuspended-yield.
  6. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
  7. LetcallerContext be therunning execution context.
  8. ResumecallerContext passingNormalCompletion(iterNextObj). IfgenContext is ever resumed again, letresumptionValue be theCompletion Record with which it is resumed.
  9. Assert: If control reaches here, thengenContext is therunning execution context again.
  10. ReturnresumptionValue.

27.5.3.7 Yield (value )

The abstract operation Yield takes argumentvalue (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. LetgeneratorKind beGetGeneratorKind().
  2. IfgeneratorKind isasync, return ? AsyncGeneratorYield(?Await(value)).
  3. Otherwise, return ? GeneratorYield(CreateIterResultObject(value,false)).

27.5.3.8 CreateIteratorFromClosure (closure,generatorBrand,generatorPrototype )

The abstract operation CreateIteratorFromClosure takes argumentsclosure (anAbstract Closure with no parameters),generatorBrand (a String orempty), andgeneratorPrototype (an Object) and returns a Generator. It performs the following steps when called:

  1. NOTE:closure can contain uses of theYield operation to yield an IteratorResult object.
  2. LetinternalSlotsList be «[[GeneratorState]],[[GeneratorContext]],[[GeneratorBrand]] ».
  3. Letgenerator beOrdinaryObjectCreate(generatorPrototype,internalSlotsList).
  4. Setgenerator.[[GeneratorBrand]] togeneratorBrand.
  5. Setgenerator.[[GeneratorState]] toundefined.
  6. LetcallerContext be therunning execution context.
  7. LetcalleeContext be a newexecution context.
  8. Set the Function ofcalleeContext tonull.
  9. Set theRealm ofcalleeContext tothe current Realm Record.
  10. Set the ScriptOrModule ofcalleeContext tocallerContext's ScriptOrModule.
  11. IfcallerContext is not already suspended, suspendcallerContext.
  12. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  13. PerformGeneratorStart(generator,closure).
  14. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  15. Returngenerator.

27.6 AsyncGenerator Objects

An AsyncGenerator is an instance of an async generator function and conforms to both the AsyncIterator and AsyncIterable interfaces.

AsyncGenerator instances directly inherit properties from the object that is the initial value of the"prototype" property of the AsyncGenerator function that created the instance. AsyncGenerator instances indirectly inherit properties from the AsyncGenerator Prototype intrinsic,%AsyncGeneratorFunction.prototype.prototype%.

27.6.1 Properties of the AsyncGenerator Prototype Object

TheAsyncGenerator prototype object:

  • is%AsyncGeneratorFunction.prototype.prototype%.
  • is anordinary object.
  • is not an AsyncGenerator instance and does not have an[[AsyncGeneratorState]] internal slot.
  • has a[[Prototype]] internal slot whose value is%AsyncIteratorPrototype%.
  • has properties that are indirectly inherited by all AsyncGenerator instances.

27.6.1.1 AsyncGenerator.prototype.constructor

The initial value ofAsyncGenerator.prototype.constructor is%AsyncGeneratorFunction.prototype%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.6.1.2 AsyncGenerator.prototype.next (value )

  1. Letgenerator be thethis value.
  2. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  3. Letresult beCompletion(AsyncGeneratorValidate(generator,empty)).
  4. IfAbruptRejectPromise(result,promiseCapability).
  5. Letstate begenerator.[[AsyncGeneratorState]].
  6. Ifstate iscompleted, then
    1. LetiteratorResult beCreateIterResultObject(undefined,true).
    2. Perform ! Call(promiseCapability.[[Resolve]],undefined, «iteratorResult »).
    3. ReturnpromiseCapability.[[Promise]].
  7. Letcompletion beNormalCompletion(value).
  8. PerformAsyncGeneratorEnqueue(generator,completion,promiseCapability).
  9. Ifstate is eithersuspended-start orsuspended-yield, then
    1. PerformAsyncGeneratorResume(generator,completion).
  10. Else,
    1. Assert:state is eitherexecuting orawaiting-return.
  11. ReturnpromiseCapability.[[Promise]].

27.6.1.3 AsyncGenerator.prototype.return (value )

  1. Letgenerator be thethis value.
  2. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  3. Letresult beCompletion(AsyncGeneratorValidate(generator,empty)).
  4. IfAbruptRejectPromise(result,promiseCapability).
  5. Letcompletion beCompletion Record {[[Type]]:return,[[Value]]:value,[[Target]]:empty }.
  6. PerformAsyncGeneratorEnqueue(generator,completion,promiseCapability).
  7. Letstate begenerator.[[AsyncGeneratorState]].
  8. Ifstate is eithersuspended-start orcompleted, then
    1. Setgenerator.[[AsyncGeneratorState]] toawaiting-return.
    2. Perform ! AsyncGeneratorAwaitReturn(generator).
  9. Else ifstate issuspended-yield, then
    1. PerformAsyncGeneratorResume(generator,completion).
  10. Else,
    1. Assert:state is eitherexecuting orawaiting-return.
  11. ReturnpromiseCapability.[[Promise]].

27.6.1.4 AsyncGenerator.prototype.throw (exception )

  1. Letgenerator be thethis value.
  2. LetpromiseCapability be ! NewPromiseCapability(%Promise%).
  3. Letresult beCompletion(AsyncGeneratorValidate(generator,empty)).
  4. IfAbruptRejectPromise(result,promiseCapability).
  5. Letstate begenerator.[[AsyncGeneratorState]].
  6. Ifstate issuspended-start, then
    1. Setgenerator.[[AsyncGeneratorState]] tocompleted.
    2. Setstate tocompleted.
  7. Ifstate iscompleted, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «exception »).
    2. ReturnpromiseCapability.[[Promise]].
  8. Letcompletion beThrowCompletion(exception).
  9. PerformAsyncGeneratorEnqueue(generator,completion,promiseCapability).
  10. Ifstate issuspended-yield, then
    1. PerformAsyncGeneratorResume(generator,completion).
  11. Else,
    1. Assert:state is eitherexecuting orawaiting-return.
  12. ReturnpromiseCapability.[[Promise]].

27.6.1.5 AsyncGenerator.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncGenerator".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.6.2 Properties of AsyncGenerator Instances

AsyncGenerator instances are initially created with the internal slots described below:

Table 89: Internal Slots of AsyncGenerator Instances
Internal SlotTypeDescription
[[AsyncGeneratorState]]undefined,suspended-start,suspended-yield,executing,awaiting-return, orcompletedThe current execution state of the async generator.
[[AsyncGeneratorContext]]anexecution contextTheexecution context that is used when executing the code of this async generator.
[[AsyncGeneratorQueue]]aList ofAsyncGeneratorRequestRecordsRecords which represent requests to resume the async generator. Except during state transitions, it is non-empty if and only if[[AsyncGeneratorState]] is eitherexecuting orawaiting-return.
[[GeneratorBrand]]a String oremptyA brand used to distinguish different kinds of async generators. The[[GeneratorBrand]] of async generators declared byECMAScript source text is alwaysempty.

27.6.3 AsyncGenerator Abstract Operations

27.6.3.1 AsyncGeneratorRequest Records

AnAsyncGeneratorRequest is aRecord value used to store information about how an async generator should be resumed and contains capabilities for fulfilling or rejecting the corresponding promise.

They have the following fields:

Table 90: AsyncGeneratorRequestRecord Fields
Field NameValueMeaning
[[Completion]]aCompletion RecordTheCompletion Record which should be used to resume the async generator.
[[Capability]]aPromiseCapability RecordThe promise capabilities associated with this request.

27.6.3.2 AsyncGeneratorStart (generator,generatorBody )

The abstract operation AsyncGeneratorStart takes argumentsgenerator (an AsyncGenerator) andgeneratorBody (aFunctionBodyParse Node or anAbstract Closure with no parameters) and returnsunused. It performs the following steps when called:

  1. Assert:generator.[[AsyncGeneratorState]] isundefined.
  2. LetgenContext be therunning execution context.
  3. Set the Generator component ofgenContext togenerator.
  4. Letclosure be a newAbstract Closure with no parameters that capturesgeneratorBody and performs the following steps when called:
    1. LetacGenContext be therunning execution context.
    2. LetacGenerator be the Generator component ofacGenContext.
    3. IfgeneratorBody is aParse Node, then
      1. Letresult beCompletion(Evaluation ofgeneratorBody).
    4. Else,
      1. Assert:generatorBody is anAbstract Closure with no parameters.
      2. Letresult beCompletion(generatorBody()).
    5. Assert: If we return here, the async generator either threw an exception or performed either an implicit or explicit return.
    6. RemoveacGenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    7. SetacGenerator.[[AsyncGeneratorState]] tocompleted.
    8. Ifresult is anormal completion, setresult toNormalCompletion(undefined).
    9. Ifresult is areturn completion, setresult toNormalCompletion(result.[[Value]]).
    10. PerformAsyncGeneratorCompleteStep(acGenerator,result,true).
    11. PerformAsyncGeneratorDrainQueue(acGenerator).
    12. Returnundefined.
  5. Set the code evaluation state ofgenContext such that when evaluation is resumed for thatexecution context,closure will be called with no arguments.
  6. Setgenerator.[[AsyncGeneratorContext]] togenContext.
  7. Setgenerator.[[AsyncGeneratorState]] tosuspended-start.
  8. Setgenerator.[[AsyncGeneratorQueue]] to a new emptyList.
  9. Returnunused.

27.6.3.3 AsyncGeneratorValidate (generator,generatorBrand )

The abstract operation AsyncGeneratorValidate takes argumentsgenerator (anECMAScript language value) andgeneratorBrand (a String orempty) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Perform ? RequireInternalSlot(generator,[[AsyncGeneratorContext]]).
  2. Perform ? RequireInternalSlot(generator,[[AsyncGeneratorState]]).
  3. Perform ? RequireInternalSlot(generator,[[AsyncGeneratorQueue]]).
  4. Ifgenerator.[[GeneratorBrand]] is notgeneratorBrand, throw aTypeError exception.
  5. Returnunused.

27.6.3.4 AsyncGeneratorEnqueue (generator,completion,promiseCapability )

The abstract operation AsyncGeneratorEnqueue takes argumentsgenerator (an AsyncGenerator),completion (aCompletion Record), andpromiseCapability (aPromiseCapability Record) and returnsunused. It performs the following steps when called:

  1. Letrequest beAsyncGeneratorRequest {[[Completion]]:completion,[[Capability]]:promiseCapability }.
  2. Appendrequest togenerator.[[AsyncGeneratorQueue]].
  3. Returnunused.

27.6.3.5 AsyncGeneratorCompleteStep (generator,completion,done [ ,realm ] )

The abstract operation AsyncGeneratorCompleteStep takes argumentsgenerator (an AsyncGenerator),completion (aCompletion Record), anddone (a Boolean) and optional argumentrealm (aRealm Record) and returnsunused. It performs the following steps when called:

  1. Assert:generator.[[AsyncGeneratorQueue]] is not empty.
  2. Letnext be the first element ofgenerator.[[AsyncGeneratorQueue]].
  3. Remove the first element fromgenerator.[[AsyncGeneratorQueue]].
  4. LetpromiseCapability benext.[[Capability]].
  5. Letvalue becompletion.[[Value]].
  6. Ifcompletion is athrow completion, then
    1. Perform ! Call(promiseCapability.[[Reject]],undefined, «value »).
  7. Else,
    1. Assert:completion is anormal completion.
    2. Ifrealm is present, then
      1. LetoldRealm be therunning execution context'sRealm.
      2. Set therunning execution context'sRealm torealm.
      3. LetiteratorResult beCreateIterResultObject(value,done).
      4. Set therunning execution context'sRealm tooldRealm.
    3. Else,
      1. LetiteratorResult beCreateIterResultObject(value,done).
    4. Perform ! Call(promiseCapability.[[Resolve]],undefined, «iteratorResult »).
  8. Returnunused.

27.6.3.6 AsyncGeneratorResume (generator,completion )

The abstract operation AsyncGeneratorResume takes argumentsgenerator (an AsyncGenerator) andcompletion (aCompletion Record) and returnsunused. It performs the following steps when called:

  1. Assert:generator.[[AsyncGeneratorState]] is eithersuspended-start orsuspended-yield.
  2. LetgenContext begenerator.[[AsyncGeneratorContext]].
  3. LetcallerContext be therunning execution context.
  4. SuspendcallerContext.
  5. Setgenerator.[[AsyncGeneratorState]] toexecuting.
  6. PushgenContext onto theexecution context stack;genContext is now therunning execution context.
  7. Resume the suspended evaluation ofgenContext usingcompletion as the result of the operation that suspended it. Letresult be theCompletion Record returned by the resumed computation.
  8. Assert:result is never anabrupt completion.
  9. Assert: When we return here,genContext has already been removed from theexecution context stack andcallerContext is the currentlyrunning execution context.
  10. Returnunused.

27.6.3.7 AsyncGeneratorUnwrapYieldResumption (resumptionValue )

The abstract operation AsyncGeneratorUnwrapYieldResumption takes argumentresumptionValue (aCompletion Record) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. IfresumptionValue is not areturn completion, return ? resumptionValue.
  2. Letawaited beCompletion(Await(resumptionValue.[[Value]])).
  3. Ifawaited is athrow completion, return ? awaited.
  4. Assert:awaited is anormal completion.
  5. ReturnCompletion Record {[[Type]]:return,[[Value]]:awaited.[[Value]],[[Target]]:empty }.

27.6.3.8 AsyncGeneratorYield (value )

The abstract operation AsyncGeneratorYield takes argumentvalue (anECMAScript language value) and returns either anormal completion containing anECMAScript language value or anabrupt completion. It performs the following steps when called:

  1. LetgenContext be therunning execution context.
  2. Assert:genContext is theexecution context of a generator.
  3. Letgenerator be the value of the Generator component ofgenContext.
  4. Assert:GetGeneratorKind() isasync.
  5. Letcompletion beNormalCompletion(value).
  6. Assert: Theexecution context stack has at least two elements.
  7. LetpreviousContext be the second to top element of theexecution context stack.
  8. LetpreviousRealm bepreviousContext'sRealm.
  9. PerformAsyncGeneratorCompleteStep(generator,completion,false,previousRealm).
  10. Letqueue begenerator.[[AsyncGeneratorQueue]].
  11. Ifqueue is not empty, then
    1. NOTE: Execution continues without suspending the generator.
    2. LettoYield be the first element ofqueue.
    3. LetresumptionValue beCompletion(toYield.[[Completion]]).
    4. Return ? AsyncGeneratorUnwrapYieldResumption(resumptionValue).
  12. Else,
    1. Setgenerator.[[AsyncGeneratorState]] tosuspended-yield.
    2. RemovegenContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    3. LetcallerContext be therunning execution context.
    4. ResumecallerContext passingundefined. IfgenContext is ever resumed again, letresumptionValue be theCompletion Record with which it is resumed.
    5. Assert: If control reaches here, thengenContext is therunning execution context again.
    6. Return ? AsyncGeneratorUnwrapYieldResumption(resumptionValue).

27.6.3.9 AsyncGeneratorAwaitReturn (generator )

The abstract operation AsyncGeneratorAwaitReturn takes argumentgenerator (an AsyncGenerator) and returns either anormal completion containingunused or athrow completion. It performs the following steps when called:

  1. Letqueue begenerator.[[AsyncGeneratorQueue]].
  2. Assert:queue is not empty.
  3. Letnext be the first element ofqueue.
  4. Letcompletion beCompletion(next.[[Completion]]).
  5. Assert:completion is areturn completion.
  6. Letpromise be ? PromiseResolve(%Promise%,completion.[[Value]]).
  7. LetfulfilledClosure be a newAbstract Closure with parameters (value) that capturesgenerator and performs the following steps when called:
    1. Setgenerator.[[AsyncGeneratorState]] tocompleted.
    2. Letresult beNormalCompletion(value).
    3. PerformAsyncGeneratorCompleteStep(generator,result,true).
    4. PerformAsyncGeneratorDrainQueue(generator).
    5. Returnundefined.
  8. LetonFulfilled beCreateBuiltinFunction(fulfilledClosure, 1,"", « »).
  9. LetrejectedClosure be a newAbstract Closure with parameters (reason) that capturesgenerator and performs the following steps when called:
    1. Setgenerator.[[AsyncGeneratorState]] tocompleted.
    2. Letresult beThrowCompletion(reason).
    3. PerformAsyncGeneratorCompleteStep(generator,result,true).
    4. PerformAsyncGeneratorDrainQueue(generator).
    5. Returnundefined.
  10. LetonRejected beCreateBuiltinFunction(rejectedClosure, 1,"", « »).
  11. PerformPerformPromiseThen(promise,onFulfilled,onRejected).
  12. Returnunused.

27.6.3.10 AsyncGeneratorDrainQueue (generator )

The abstract operation AsyncGeneratorDrainQueue takes argumentgenerator (an AsyncGenerator) and returnsunused. It drains the generator's AsyncGeneratorQueue until it encounters anAsyncGeneratorRequest which holds areturn completion. It performs the following steps when called:

  1. Assert:generator.[[AsyncGeneratorState]] iscompleted.
  2. Letqueue begenerator.[[AsyncGeneratorQueue]].
  3. Ifqueue is empty, returnunused.
  4. Letdone befalse.
  5. Repeat, whiledone isfalse,
    1. Letnext be the first element ofqueue.
    2. Letcompletion beCompletion(next.[[Completion]]).
    3. Ifcompletion is areturn completion, then
      1. Setgenerator.[[AsyncGeneratorState]] toawaiting-return.
      2. Perform ! AsyncGeneratorAwaitReturn(generator).
      3. Setdone totrue.
    4. Else,
      1. Ifcompletion is anormal completion, then
        1. Setcompletion toNormalCompletion(undefined).
      2. PerformAsyncGeneratorCompleteStep(generator,completion,true).
      3. Ifqueue is empty, setdone totrue.
  6. Returnunused.

27.6.3.11 CreateAsyncIteratorFromClosure (closure,generatorBrand,generatorPrototype )

The abstract operation CreateAsyncIteratorFromClosure takes argumentsclosure (anAbstract Closure with no parameters),generatorBrand (a String orempty), andgeneratorPrototype (an Object) and returns an AsyncGenerator. It performs the following steps when called:

  1. NOTE:closure can contain uses of theAwait operation and uses of theYield operation to yield an IteratorResult object.
  2. LetinternalSlotsList be «[[AsyncGeneratorState]],[[AsyncGeneratorContext]],[[AsyncGeneratorQueue]],[[GeneratorBrand]] ».
  3. Letgenerator beOrdinaryObjectCreate(generatorPrototype,internalSlotsList).
  4. Setgenerator.[[GeneratorBrand]] togeneratorBrand.
  5. Setgenerator.[[AsyncGeneratorState]] toundefined.
  6. LetcallerContext be therunning execution context.
  7. LetcalleeContext be a newexecution context.
  8. Set the Function ofcalleeContext tonull.
  9. Set theRealm ofcalleeContext tothe current Realm Record.
  10. Set the ScriptOrModule ofcalleeContext tocallerContext's ScriptOrModule.
  11. IfcallerContext is not already suspended, suspendcallerContext.
  12. PushcalleeContext onto theexecution context stack;calleeContext is now therunning execution context.
  13. PerformAsyncGeneratorStart(generator,closure).
  14. RemovecalleeContext from theexecution context stack and restorecallerContext as therunning execution context.
  15. Returngenerator.

27.7 AsyncFunction Objects

AsyncFunctions are functions that are usually created by evaluatingAsyncFunctionDeclarations,AsyncFunctionExpressions,AsyncMethods, andAsyncArrowFunctions. They may also be created by calling the%AsyncFunction% intrinsic.

27.7.1 The AsyncFunction Constructor

The AsyncFunctionconstructor:

  • is%AsyncFunction%.
  • is a subclass ofFunction.
  • creates and initializes a new AsyncFunction when called as a function rather than as aconstructor. Thus the function callAsyncFunction(…) is equivalent to the object creation expressionnew AsyncFunction(…) with the same arguments.
  • may be used as the value of anextends clause of a class definition. Subclassconstructors that intend to inherit the specified AsyncFunction behaviour must include asuper call to the AsyncFunctionconstructor to create and initialize a subclass instance with the internal slots necessary for built-in async function behaviour. All ECMAScript syntactic forms for defining asyncfunction objects create direct instances of AsyncFunction. There is no syntactic means to create instances of AsyncFunction subclasses.

27.7.1.1 AsyncFunction ( ...parameterArgs,bodyArg )

The last argument (if any) specifies the body (executable code) of an async function. Any preceding arguments specify formal parameters.

This function performs the following steps when called:

  1. LetC be theactive function object.
  2. IfbodyArg is not present, setbodyArg to the empty String.
  3. Return ? CreateDynamicFunction(C, NewTarget,async,parameterArgs,bodyArg).
Note
See NOTE for20.2.1.1.

27.7.2 Properties of the AsyncFunction Constructor

The AsyncFunctionconstructor:

  • is a standard built-infunction object that inherits from the Functionconstructor.
  • has a[[Prototype]] internal slot whose value is%Function%.
  • has a"length" property whose value is1𝔽.
  • has a"name" property whose value is"AsyncFunction".
  • has the following properties:

27.7.2.1 AsyncFunction.prototype

The initial value ofAsyncFunction.prototype is theAsyncFunction prototype object.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

27.7.3 Properties of the AsyncFunction Prototype Object

TheAsyncFunction prototype object:

27.7.3.1 AsyncFunction.prototype.constructor

The initial value ofAsyncFunction.prototype.constructor is%AsyncFunction%.

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.7.3.2 AsyncFunction.prototype [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"AsyncFunction".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

27.7.4 AsyncFunction Instances

Every AsyncFunction instance is an ECMAScriptfunction object and has the internal slots listed inTable 30. The value of the[[IsClassConstructor]] internal slot for all such instances isfalse. AsyncFunction instances are notconstructors and do not have a[[Construct]] internal method. AsyncFunction instances do not have a prototype property as they are not constructible.

Each AsyncFunction instance has the following own properties:

27.7.4.1 length

The specification for the"length" property of Function instances given in20.2.4.1 also applies to AsyncFunction instances.

27.7.4.2 name

The specification for the"name" property of Function instances given in20.2.4.2 also applies to AsyncFunction instances.

27.7.5 Async Functions Abstract Operations

27.7.5.1 AsyncFunctionStart (promiseCapability,asyncFunctionBody )

The abstract operation AsyncFunctionStart takes argumentspromiseCapability (aPromiseCapability Record) andasyncFunctionBody (aFunctionBodyParse Node or anExpressionBodyParse Node) and returnsunused. It performs the following steps when called:

  1. LetrunningContext be therunning execution context.
  2. LetasyncContext be a copy ofrunningContext.
  3. NOTE: Copying the execution state is required forAsyncBlockStart to resume its execution. It is ill-defined to resume a currently executing context.
  4. PerformAsyncBlockStart(promiseCapability,asyncFunctionBody,asyncContext).
  5. Returnunused.

27.7.5.2 AsyncBlockStart (promiseCapability,asyncBody,asyncContext )

The abstract operation AsyncBlockStart takes argumentspromiseCapability (aPromiseCapability Record),asyncBody (aParse Node), andasyncContext (anexecution context) and returnsunused. It performs the following steps when called:

  1. Assert:promiseCapability is aPromiseCapability Record.
  2. LetrunningContext be therunning execution context.
  3. Letclosure be a newAbstract Closure with no parameters that capturespromiseCapability andasyncBody and performs the following steps when called:
    1. LetacAsyncContext be therunning execution context.
    2. Letresult beCompletion(Evaluation ofasyncBody).
    3. Assert: If we return here, the async function either threw an exception or performed an implicit or explicit return; all awaiting is done.
    4. RemoveacAsyncContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
    5. Ifresult is anormal completion, then
      1. Perform ! Call(promiseCapability.[[Resolve]],undefined, «undefined »).
    6. Else ifresult is areturn completion, then
      1. Perform ! Call(promiseCapability.[[Resolve]],undefined, «result.[[Value]] »).
    7. Else,
      1. Assert:result is athrow completion.
      2. Perform ! Call(promiseCapability.[[Reject]],undefined, «result.[[Value]] »).
    8. Returnunused.
  4. Set the code evaluation state ofasyncContext such that when evaluation is resumed for thatexecution context,closure will be called with no arguments.
  5. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
  6. Resume the suspended evaluation ofasyncContext. Letresult be the value returned by the resumed computation.
  7. Assert: When we return here,asyncContext has already been removed from theexecution context stack andrunningContext is the currentlyrunning execution context.
  8. Assert:result is anormal completion with a value ofunused. The possible sources of this value areAwait or, if the async function doesn't await anything, step3.h above.
  9. Returnunused.

27.7.5.3 Await (value )

The abstract operation Await takes argumentvalue (anECMAScript language value) and returns either anormal completion containing either anECMAScript language value orempty, or athrow completion. It performs the following steps when called:

  1. LetasyncContext be therunning execution context.
  2. Letpromise be ? PromiseResolve(%Promise%,value).
  3. LetfulfilledClosure be a newAbstract Closure with parameters (v) that capturesasyncContext and performs the following steps when called:
    1. LetprevContext be therunning execution context.
    2. SuspendprevContext.
    3. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
    4. Resume the suspended evaluation ofasyncContext usingNormalCompletion(v) as the result of the operation that suspended it.
    5. Assert: When we reach this step,asyncContext has already been removed from theexecution context stack andprevContext is the currentlyrunning execution context.
    6. Returnundefined.
  4. LetonFulfilled beCreateBuiltinFunction(fulfilledClosure, 1,"", « »).
  5. LetrejectedClosure be a newAbstract Closure with parameters (reason) that capturesasyncContext and performs the following steps when called:
    1. LetprevContext be therunning execution context.
    2. SuspendprevContext.
    3. PushasyncContext onto theexecution context stack;asyncContext is now therunning execution context.
    4. Resume the suspended evaluation ofasyncContext usingThrowCompletion(reason) as the result of the operation that suspended it.
    5. Assert: When we reach this step,asyncContext has already been removed from theexecution context stack andprevContext is the currentlyrunning execution context.
    6. Returnundefined.
  6. LetonRejected beCreateBuiltinFunction(rejectedClosure, 1,"", « »).
  7. PerformPerformPromiseThen(promise,onFulfilled,onRejected).
  8. RemoveasyncContext from theexecution context stack and restore theexecution context that is at the top of theexecution context stack as therunning execution context.
  9. LetcallerContext be therunning execution context.
  10. ResumecallerContext passingempty. IfasyncContext is ever resumed again, letcompletion be theCompletion Record with which it is resumed.
  11. Assert: If control reaches here, thenasyncContext is therunning execution context again.
  12. Returncompletion.

28 Reflection

28.1 The Reflect Object

The Reflect object:

  • is%Reflect%.
  • is the initial value of the"Reflect" property of theglobal object.
  • is anordinary object.
  • has a[[Prototype]] internal slot whose value is%Object.prototype%.
  • is not afunction object.
  • does not have a[[Construct]] internal method; it cannot be used as aconstructor with thenew operator.
  • does not have a[[Call]] internal method; it cannot be invoked as a function.

28.1.1 Reflect.apply (target,thisArgument,argumentsList )

This function performs the following steps when called:

  1. IfIsCallable(target) isfalse, throw aTypeError exception.
  2. Letargs be ? CreateListFromArrayLike(argumentsList).
  3. PerformPrepareForTailCall().
  4. Return ? Call(target,thisArgument,args).

28.1.2 Reflect.construct (target,argumentsList [ ,newTarget ] )

This function performs the following steps when called:

  1. IfIsConstructor(target) isfalse, throw aTypeError exception.
  2. IfnewTarget is not present, setnewTarget totarget.
  3. Else ifIsConstructor(newTarget) isfalse, throw aTypeError exception.
  4. Letargs be ? CreateListFromArrayLike(argumentsList).
  5. Return ? Construct(target,args,newTarget).

28.1.3 Reflect.defineProperty (target,propertyKey,attributes )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Letdesc be ? ToPropertyDescriptor(attributes).
  4. Return ? target.[[DefineOwnProperty]](key,desc).

28.1.4 Reflect.deleteProperty (target,propertyKey )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Return ? target.[[Delete]](key).

28.1.5 Reflect.get (target,propertyKey [ ,receiver ] )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Ifreceiver is not present, then
    1. Setreceiver totarget.
  4. Return ? target.[[Get]](key,receiver).

28.1.6 Reflect.getOwnPropertyDescriptor (target,propertyKey )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Letdesc be ? target.[[GetOwnProperty]](key).
  4. ReturnFromPropertyDescriptor(desc).

28.1.7 Reflect.getPrototypeOf (target )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Return ? target.[[GetPrototypeOf]]().

28.1.8 Reflect.has (target,propertyKey )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Return ? target.[[HasProperty]](key).

28.1.9 Reflect.isExtensible (target )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Return ? target.[[IsExtensible]]().

28.1.10 Reflect.ownKeys (target )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkeys be ? target.[[OwnPropertyKeys]]().
  3. ReturnCreateArrayFromList(keys).

28.1.11 Reflect.preventExtensions (target )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Return ? target.[[PreventExtensions]]().

28.1.12 Reflect.set (target,propertyKey,V [ ,receiver ] )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Letkey be ? ToPropertyKey(propertyKey).
  3. Ifreceiver is not present, then
    1. Setreceiver totarget.
  4. Return ? target.[[Set]](key,V,receiver).

28.1.13 Reflect.setPrototypeOf (target,proto )

This function performs the following steps when called:

  1. Iftargetis not an Object, throw aTypeError exception.
  2. Ifprotois not an Object andproto is notnull, throw aTypeError exception.
  3. Return ? target.[[SetPrototypeOf]](proto).

28.1.14 Reflect [ @@toStringTag ]

The initial value of the@@toStringTag property is the String value"Reflect".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:true }.

28.2 Proxy Objects

28.2.1 The Proxy Constructor

The Proxyconstructor:

  • is%Proxy%.
  • is the initial value of the"Proxy" property of theglobal object.
  • creates and initializes a new Proxy object when called as aconstructor.
  • is not intended to be called as a function and will throw an exception when called in that manner.

28.2.1.1 Proxy (target,handler )

This function performs the following steps when called:

  1. If NewTarget isundefined, throw aTypeError exception.
  2. Return ? ProxyCreate(target,handler).

28.2.2 Properties of the Proxy Constructor

The Proxyconstructor:

  • has a[[Prototype]] internal slot whose value is%Function.prototype%.
  • does not have a"prototype" property because Proxy objects do not have a[[Prototype]] internal slot that requires initialization.
  • has the following properties:

28.2.2.1 Proxy.revocable (target,handler )

This function creates a revocable Proxy object.

It performs the following steps when called:

  1. Letproxy be ? ProxyCreate(target,handler).
  2. LetrevokerClosure be a newAbstract Closure with no parameters that captures nothing and performs the following steps when called:
    1. LetF be theactive function object.
    2. Letp beF.[[RevocableProxy]].
    3. Ifp isnull, returnundefined.
    4. SetF.[[RevocableProxy]] tonull.
    5. Assert:p is aProxy exotic object.
    6. Setp.[[ProxyTarget]] tonull.
    7. Setp.[[ProxyHandler]] tonull.
    8. Returnundefined.
  3. Letrevoker beCreateBuiltinFunction(revokerClosure, 0,"", «[[RevocableProxy]] »).
  4. Setrevoker.[[RevocableProxy]] toproxy.
  5. Letresult beOrdinaryObjectCreate(%Object.prototype%).
  6. Perform ! CreateDataPropertyOrThrow(result,"proxy",proxy).
  7. Perform ! CreateDataPropertyOrThrow(result,"revoke",revoker).
  8. Returnresult.

28.3 Module Namespace Objects

A Module Namespace Object is amodule namespace exotic object that provides runtime property-based access to a module's exported bindings. There is noconstructor function for Module Namespace Objects. Instead, such an object is created for each module that is imported by anImportDeclaration that contains aNameSpaceImport.

In addition to the properties specified in10.4.6 each Module Namespace Object has the following own property:

28.3.1 @@toStringTag

The initial value of the@@toStringTag property is the String value"Module".

This property has the attributes {[[Writable]]:false,[[Enumerable]]:false,[[Configurable]]:false }.

29 Memory Model

The memory consistency model, ormemory model, specifies the possible orderings ofShared Data Block events, arising via accessingTypedArray instances backed by a SharedArrayBuffer and via methods on the Atomics object. When the program has no data races (defined below), the ordering of events appears as sequentially consistent, i.e., as an interleaving of actions from eachagent. When the program has data races, shared memory operations may appear sequentially inconsistent. For example, programs may exhibit causality-violating behaviour and other astonishments. These astonishments arise from compiler transforms and the design of CPUs (e.g., out-of-order execution and speculation). The memory model defines both the precise conditions under which a program exhibits sequentially consistent behaviour as well as the possible values read from data races. To wit, there is no undefined behaviour.

The memory model is defined as relational constraints on events introduced byabstract operations on SharedArrayBuffer or by methods on the Atomics object during an evaluation.

Note

This section provides an axiomatic model on events introduced by theabstract operations on SharedArrayBuffers. It bears stressing that the model is not expressible algorithmically, unlike the rest of this specification. The nondeterministic introduction of events byabstract operations is the interface between the operational semantics of ECMAScript evaluation and the axiomatic semantics of the memory model. The semantics of these events is defined by considering graphs of all events in an evaluation. These are neither Static Semantics nor Runtime Semantics. There is no demonstrated algorithmic implementation, but instead a set of constraints that determine if a particular event graph is allowed or disallowed.

29.1 Memory Model Fundamentals

Shared memory accesses (reads and writes) are divided into two groups, atomic accesses and data accesses, defined below. Atomic accesses are sequentially consistent, i.e., there is a strict total ordering of events agreed upon by allagents in anagent cluster. Non-atomic accesses do not have a strict total ordering agreed upon by allagents, i.e., unordered.

Note 1

No orderings weaker than sequentially consistent and stronger than unordered, such as release-acquire, are supported.

AShared Data Block event is either aReadSharedMemory,WriteSharedMemory, orReadModifyWriteSharedMemoryRecord.

Table 91:ReadSharedMemory Event Fields
Field NameValueMeaning
[[Order]]seq-cst orunorderedThe weakest ordering guaranteed by thememory model for the event.
[[NoTear]]a BooleanWhether this event is allowed to read from multiple write events with equal range as this event.
[[Block]]aShared Data BlockThe block the event operates on.
[[ByteIndex]]a non-negativeintegerThe byte address of the read in[[Block]].
[[ElementSize]]a non-negativeintegerThe size of the read.
Table 92:WriteSharedMemory Event Fields
Field NameValueMeaning
[[Order]]seq-cst,unordered, orinitThe weakest ordering guaranteed by thememory model for the event.
[[NoTear]]a BooleanWhether this event is allowed to be read from multiple read events with equal range as this event.
[[Block]]aShared Data BlockThe block the event operates on.
[[ByteIndex]]a non-negativeintegerThe byte address of the write in[[Block]].
[[ElementSize]]a non-negativeintegerThe size of the write.
[[Payload]]aList ofbyte valuesTheList ofbyte values to be read by other events.
Table 93:ReadModifyWriteSharedMemory Event Fields
Field NameValueMeaning
[[Order]]seq-cstRead-modify-write events are always sequentially consistent.
[[NoTear]]trueRead-modify-write events cannot tear.
[[Block]]aShared Data BlockThe block the event operates on.
[[ByteIndex]]a non-negativeintegerThe byte address of the read-modify-write in[[Block]].
[[ElementSize]]a non-negativeintegerThe size of the read-modify-write.
[[Payload]]aList ofbyte valuesTheList ofbyte values to be passed to[[ModifyOp]].
[[ModifyOp]]aread-modify-write modification functionAn abstract closure that returns a modifiedList ofbyte values from a readList ofbyte values and[[Payload]].

These events are introduced byabstract operations or by methods on the Atomics object.

Some operations may also introduceSynchronize events. ASynchronize event has no fields, and exists purely to directly constrain the permitted orderings of other events.

In addition toShared Data Block and Synchronize events, there arehost-specific events.

Let the range of a ReadSharedMemory, WriteSharedMemory, or ReadModifyWriteSharedMemory event be the Set of contiguousintegers from its[[ByteIndex]] to[[ByteIndex]] +[[ElementSize]] - 1. Two events' ranges are equal when the events have the same[[Block]], and the ranges are element-wise equal. Two events' ranges are overlapping when the events have the same[[Block]], the ranges are not equal and their intersection is non-empty. Two events' ranges are disjoint when the events do not have the same[[Block]] or their ranges are neither equal nor overlapping.

Note 2

Examples ofhost-specific synchronizing events that should be accounted for are: sending a SharedArrayBuffer from oneagent to another (e.g., bypostMessage in a browser), starting and stoppingagents, and communicating within theagent cluster via channels other than shared memory. It is assumed those events are appended toagent-order during evaluation like the other SharedArrayBuffer events.

Events are ordered withincandidate executions by the relations defined below.

29.2 Agent Events Records

AnAgent Events Record is aRecord with the following fields.

Table 94:Agent Events Record Fields
Field NameValueMeaning
[[AgentSignifier]]anagent signifierTheagent whose evaluation resulted in this ordering.
[[EventList]]aList of eventsEvents are appended to the list during evaluation.
[[AgentSynchronizesWith]]aList of pairs ofSynchronize eventsSynchronize relationships introduced by the operational semantics.

29.3 Chosen Value Records

AChosen Value Record is aRecord with the following fields.

Table 95:Chosen Value Record Fields
Field NameValueMeaning
[[Event]]aShared Data Block eventTheReadSharedMemory orReadModifyWriteSharedMemory event that was introduced for this chosen value.
[[ChosenValue]]aList ofbyte valuesThe bytes that were nondeterministically chosen during evaluation.

29.4 Candidate Executions

Acandidate execution of the evaluation of anagent cluster is aRecord with the following fields.

Table 96: Candidate ExecutionRecord Fields
Field NameValueMeaning
[[EventsRecords]]aList ofAgent Events RecordsMaps anagent toLists of events appended during the evaluation.
[[ChosenValues]]aList ofChosen Value RecordsMapsReadSharedMemory orReadModifyWriteSharedMemory events to theList ofbyte values chosen during the evaluation.
[[AgentOrder]]anagent-orderRelationDefined below.
[[ReadsBytesFrom]]areads-bytes-from mathematical functionDefined below.
[[ReadsFrom]]areads-fromRelationDefined below.
[[HostSynchronizesWith]]ahost-synchronizes-withRelationDefined below.
[[SynchronizesWith]]asynchronizes-withRelationDefined below.
[[HappensBefore]]ahappens-beforeRelationDefined below.

Anempty candidate execution is a candidate executionRecord whose fields are emptyLists andRelations.

29.5 Abstract Operations for the Memory Model

29.5.1 EventSet (execution )

The abstract operation EventSet takes argumentexecution (acandidate execution) and returns a Set of events. It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For eachAgent Events Recordaer ofexecution.[[EventsRecords]], do
    1. For each eventE ofaer.[[EventList]], do
      1. AddE toevents.
  3. Returnevents.

29.5.2 SharedDataBlockEventSet (execution )

The abstract operation SharedDataBlockEventSet takes argumentexecution (acandidate execution) and returns a Set of events. It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For each eventE ofEventSet(execution), do
    1. IfE is aReadSharedMemory,WriteSharedMemory, orReadModifyWriteSharedMemory event, addE toevents.
  3. Returnevents.

29.5.3 HostEventSet (execution )

The abstract operation HostEventSet takes argumentexecution (acandidate execution) and returns a Set of events. It performs the following steps when called:

  1. Letevents be an empty Set.
  2. For each eventE ofEventSet(execution), do
    1. IfE is not inSharedDataBlockEventSet(execution), addE toevents.
  3. Returnevents.

29.5.4 ComposeWriteEventBytes (execution,byteIndex,Ws )

The abstract operation ComposeWriteEventBytes takes argumentsexecution (acandidate execution),byteIndex (a non-negativeinteger), andWs (aList of eitherWriteSharedMemory orReadModifyWriteSharedMemory events) and returns aList ofbyte values. It performs the following steps when called:

  1. LetbyteLocation bebyteIndex.
  2. LetbytesRead be a new emptyList.
  3. For each elementW ofWs, do
    1. Assert:W hasbyteLocation in its range.
    2. LetpayloadIndex bebyteLocation -W.[[ByteIndex]].
    3. IfW is aWriteSharedMemory event, then
      1. Letbyte beW.[[Payload]][payloadIndex].
    4. Else,
      1. Assert:W is aReadModifyWriteSharedMemory event.
      2. Letbytes beValueOfReadEvent(execution,W).
      3. LetbytesModified beW.[[ModifyOp]](bytes,W.[[Payload]]).
      4. Letbyte bebytesModified[payloadIndex].
    5. Appendbyte tobytesRead.
    6. SetbyteLocation tobyteLocation + 1.
  4. ReturnbytesRead.
Note 1

The read-modify-write modification[[ModifyOp]] is given by the function properties on the Atomics object that introduceReadModifyWriteSharedMemory events.

Note 2

This abstract operation composes aList of write events into aList ofbyte values. It is used in the event semantics ofReadSharedMemory andReadModifyWriteSharedMemory events.

29.5.5 ValueOfReadEvent (execution,R )

The abstract operation ValueOfReadEvent takes argumentsexecution (acandidate execution) andR (aReadSharedMemory orReadModifyWriteSharedMemory event) and returns aList ofbyte values. It performs the following steps when called:

  1. LetWs beexecution.[[ReadsBytesFrom]](R).
  2. Assert:Ws is aList ofWriteSharedMemory orReadModifyWriteSharedMemory events with length equal toR.[[ElementSize]].
  3. ReturnComposeWriteEventBytes(execution,R.[[ByteIndex]],Ws).

29.6 Relations of Candidate Executions

29.6.1 agent-order

For acandidate executionexecution,execution.[[AgentOrder]] is aRelation on events that satisfies the following.

  • For each pair (E,D) inEventSet(execution),execution.[[AgentOrder]] contains (E,D) if there is someAgent Events Recordaer inexecution.[[EventsRecords]] such thatE andD are inaer.[[EventList]] andE is beforeD inList order ofaer.[[EventList]].
Note

Eachagent introduces events in a per-agentstrict total order during the evaluation. This is the union of thosestrict total orders.

29.6.2 reads-bytes-from

For acandidate executionexecution,execution.[[ReadsBytesFrom]] is a mathematical function mapping events inSharedDataBlockEventSet(execution) toLists of events inSharedDataBlockEventSet(execution) that satisfies the following conditions.

29.6.3 reads-from

For acandidate executionexecution,execution.[[ReadsFrom]] is the leastRelation on events that satisfies the following.

  • For each pair (R,W) inSharedDataBlockEventSet(execution),execution.[[ReadsFrom]] contains (R,W) ifexecution.[[ReadsBytesFrom]](R) containsW.

29.6.4 host-synchronizes-with

For acandidate executionexecution,execution.[[HostSynchronizesWith]] is ahost-providedstrict partial order onhost-specific events that satisfies at least the following.

  • Ifexecution.[[HostSynchronizesWith]] contains (E,D),E andD are inHostEventSet(execution).
  • There is no cycle in the union ofexecution.[[HostSynchronizesWith]] andexecution.[[AgentOrder]].
Note 1

For twohost-specific eventsE andD,E host-synchronizes-withD impliesEhappens-beforeD.

Note 2

The host-synchronizes-with relation allows thehost to provide additional synchronization mechanisms, such aspostMessage between HTML workers.

29.6.5 synchronizes-with

For acandidate executionexecution,execution.[[SynchronizesWith]] is the leastRelation on events that satisfies the following.

  • For each pair (R,W) inexecution.[[ReadsFrom]],execution.[[SynchronizesWith]] contains (W,R) ifR.[[Order]] isseq-cst,W.[[Order]] isseq-cst, andR andW have equal ranges.
  • For each elementeventsRecord ofexecution.[[EventsRecords]], the following is true.
    • For each pair (S,Sw) ineventsRecord.[[AgentSynchronizesWith]],execution.[[SynchronizesWith]] contains (S,Sw).
  • For each pair (E,D) inexecution.[[HostSynchronizesWith]],execution.[[SynchronizesWith]] contains (E,D).
Note 1

Owing to convention, write events synchronizes-with read events, instead of read events synchronizes-with write events.

Note 2

init events do not participate in synchronizes-with, and are instead constrained directly byhappens-before.

Note 3

Not allseq-cst events related byreads-from are related by synchronizes-with. Only events that also have equal ranges are related by synchronizes-with.

Note 4

ForShared Data Block eventsR andW such thatW synchronizes-withR,R mayreads-from other writes thanW.

29.6.6 happens-before

For acandidate executionexecution,execution.[[HappensBefore]] is the leastRelation on events that satisfies the following.

  • For each pair (E,D) inexecution.[[AgentOrder]],execution.[[HappensBefore]] contains (E,D).
  • For each pair (E,D) inexecution.[[SynchronizesWith]],execution.[[HappensBefore]] contains (E,D).
  • For each pair (E,D) inSharedDataBlockEventSet(execution),execution.[[HappensBefore]] contains (E,D) ifE.[[Order]] isinit andE andD have overlapping ranges.
  • For each pair (E,D) inEventSet(execution),execution.[[HappensBefore]] contains (E,D) if there is an eventF such that the pairs (E,F) and (F,D) are inexecution.[[HappensBefore]].
Note

Because happens-before is a superset ofagent-order,candidate executions are consistent with the single-thread evaluation semantics of ECMAScript.

29.7 Properties of Valid Executions

29.7.1 Valid Chosen Reads

Acandidate executionexecution has valid chosen reads if the following algorithm returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. LetchosenValueRecord be the element ofexecution.[[ChosenValues]] whose[[Event]] field isR.
    2. LetchosenValue bechosenValueRecord.[[ChosenValue]].
    3. LetreadValue beValueOfReadEvent(execution,R).
    4. LetchosenLen be the number of elements inchosenValue.
    5. LetreadLen be the number of elements inreadValue.
    6. IfchosenLenreadLen, then
      1. Returnfalse.
    7. IfchosenValue[i] ≠readValue[i] for someintegeri in theinterval from 0 (inclusive) tochosenLen (exclusive), then
      1. Returnfalse.
  2. Returntrue.

29.7.2 Coherent Reads

Acandidate executionexecution has coherent reads if the following algorithm returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. LetWs beexecution.[[ReadsBytesFrom]](R).
    2. LetbyteLocation beR.[[ByteIndex]].
    3. For each elementW ofWs, do
      1. Ifexecution.[[HappensBefore]] contains (R,W), then
        1. Returnfalse.
      2. If there exists aWriteSharedMemory orReadModifyWriteSharedMemory eventV that hasbyteLocation in its range such that the pairs (W,V) and (V,R) are inexecution.[[HappensBefore]], then
        1. Returnfalse.
      3. SetbyteLocation tobyteLocation + 1.
  2. Returntrue.

29.7.3 Tear Free Reads

Acandidate executionexecution has tear free reads if the following algorithm returnstrue.

  1. For eachReadSharedMemory orReadModifyWriteSharedMemory eventR ofSharedDataBlockEventSet(execution), do
    1. IfR.[[NoTear]] istrue, then
      1. Assert: The remainder of dividingR.[[ByteIndex]] byR.[[ElementSize]] is 0.
      2. For each eventW such thatexecution.[[ReadsFrom]] contains (R,W) andW.[[NoTear]] istrue, do
        1. IfR andW have equal ranges and there exists an eventV such thatV andW have equal ranges,V.[[NoTear]] istrue,W is notV, andexecution.[[ReadsFrom]] contains (R,V), then
          1. Returnfalse.
  2. Returntrue.
Note

An event's[[NoTear]] field istrue when that event was introduced via accessing anintegerTypedArray, andfalse when introduced via accessing a floating pointTypedArray or DataView.

Intuitively, this requirement says when a memory range is accessed in an aligned fashion via anintegerTypedArray, a single write event on that range must "win" when in a data race with other write events with equal ranges. More precisely, this requirement says an aligned read event cannot read a value composed of bytes from multiple, different write events all with equal ranges. It is possible, however, for an aligned read event to read from multiple write events with overlapping ranges.

29.7.4 Sequentially Consistent Atomics

For acandidate executionexecution, memory-order is astrict total order of all events inEventSet(execution) that satisfies the following.

  • For each pair (E,D) inexecution.[[HappensBefore]], (E,D) is in memory-order.
  • For each pair (R,W) inexecution.[[ReadsFrom]], there is noWriteSharedMemory orReadModifyWriteSharedMemory eventV inSharedDataBlockEventSet(execution) such thatV.[[Order]] isseq-cst, the pairs (W,V) and (V,R) are in memory-order, and any of the following conditions are true.

    • execution.[[SynchronizesWith]] contains the pair (W,R), andV andR have equal ranges.
    • The pairs (W,R) and (V,R) are inexecution.[[HappensBefore]],W.[[Order]] isseq-cst, andW andV have equal ranges.
    • The pairs (W,R) and (W,V) are inexecution.[[HappensBefore]],R.[[Order]] isseq-cst, andV andR have equal ranges.
    Note 1

    This clause additionally constrainsseq-cst events on equal ranges.

  • For eachWriteSharedMemory orReadModifyWriteSharedMemory eventW inSharedDataBlockEventSet(execution), ifW.[[Order]] isseq-cst, then it is not the case that there is an infinite number ofReadSharedMemory orReadModifyWriteSharedMemory events inSharedDataBlockEventSet(execution) with equal range that is memory-order beforeW.

    Note 2

    This clause together with the forward progress guarantee onagents ensure the liveness condition thatseq-cst writes become visible toseq-cst reads with equal range infinite time.

Acandidate execution has sequentially consistent atomics if a memory-order exists.

Note 3

While memory-order includes all events inEventSet(execution), those that are not constrained byhappens-before orsynchronizes-with are allowed to occur anywhere in the order.

29.7.5 Valid Executions

Acandidate executionexecution is a valid execution (or simply an execution) if all of the following are true.

  • Thehost provides ahost-synchronizes-withRelation forexecution.[[HostSynchronizesWith]].
  • execution.[[HappensBefore]] is astrict partial order.
  • execution has valid chosen reads.
  • execution has coherent reads.
  • execution has tear free reads.
  • execution has sequentially consistent atomics.

All programs have at least one valid execution.

29.8 Races

For an executionexecution, two eventsE andD inSharedDataBlockEventSet(execution) are in a race if the following algorithm returnstrue.

  1. IfE is notD, then
    1. If the pairs (E,D) and (D,E) are not inexecution.[[HappensBefore]], then
      1. IfE andD are bothWriteSharedMemory orReadModifyWriteSharedMemory events andE andD do not have disjoint ranges, then
        1. Returntrue.
      2. Ifexecution.[[ReadsFrom]] contains either (E,D) or (D,E), then
        1. Returntrue.
  2. Returnfalse.

29.9 Data Races

For an executionexecution, two eventsE andD inSharedDataBlockEventSet(execution) are in a data race if the following algorithm returnstrue.

  1. IfE andD are in a race inexecution, then
    1. IfE.[[Order]] is notseq-cst orD.[[Order]] is notseq-cst, then
      1. Returntrue.
    2. IfE andD have overlapping ranges, then
      1. Returntrue.
  2. Returnfalse.

29.10 Data Race Freedom

An executionexecution is data race free if there are no two events inSharedDataBlockEventSet(execution) that are in a data race.

A program is data race free if all its executions are data race free.

Thememory model guarantees sequential consistency of all events for data race free programs.

29.11 Shared Memory Guidelines

Note 1

The following are guidelines for ECMAScript programmers working with shared memory.

We recommend programs be kept data race free, i.e., make it so that it is impossible for there to be concurrent non-atomic operations on the same memory location. Data race free programs have interleaving semantics where each step in the evaluation semantics of eachagent are interleaved with each other. For data race free programs, it is not necessary to understand the details of thememory model. The details are unlikely to build intuition that will help one to better write ECMAScript.

More generally, even if a program is not data race free it may have predictable behaviour, so long as atomic operations are not involved in any data races and the operations that race all have the same access size. The simplest way to arrange for atomics not to be involved in races is to ensure that different memory cells are used by atomic and non-atomic operations and that atomic accesses of different sizes are not used to access the same cells at the same time. Effectively, the program should treat shared memory as strongly typed as much as possible. One still cannot depend on the ordering and timing of non-atomic accesses that race, but if memory is treated as strongly typed the racing accesses will not "tear" (bits of their values will not be mixed).

Note 2

The following are guidelines for ECMAScript implementers writing compiler transformations for programs using shared memory.

It is desirable to allow most program transformations that are valid in a single-agent setting in a multi-agent setting, to ensure that the performance of eachagent in a multi-agent program is as good as it would be in a single-agent setting. Frequently these transformations are hard to judge. We outline some rules about program transformations that are intended to be taken as normative (in that they are implied by thememory model or stronger than what thememory model implies) but which are likely not exhaustive. These rules are intended to apply to program transformations that precede the introductions of the events that make up theagent-order.

Let anagent-order slice be the subset of theagent-order pertaining to a singleagent.

Letpossible read values of a read event be the set of all values ofValueOfReadEvent for that event across all valid executions.

Any transformation of an agent-order slice that is valid in the absence of shared memory is valid in the presence of shared memory, with the following exceptions.

  • Atomics are carved in stone: Program transformations must not cause theseq-cst events in an agent-order slice to be reordered with itsunordered operations, nor itsseq-cst operations to be reordered with each other, nor may a program transformation remove aseq-cst operation from theagent-order.

    (In practice, the prohibition on reorderings forces a compiler to assume that everyseq-cst operation is a synchronization and included in the finalmemory-order, which it would usually have to assume anyway in the absence of inter-agent program analysis. It also forces the compiler to assume that every call where the callee's effects on thememory-order are unknown may containseq-cst operations.)

  • Reads must be stable: Any given shared memory read must only observe a single value in an execution.

    (For example, if what is semantically a single read in the program is executed multiple times then the program is subsequently allowed to observe only one of the values read. A transformation known as rematerialization can violate this rule.)

  • Writes must be stable: All observable writes to shared memory must follow from program semantics in an execution.

    (For example, a transformation may not introduce certain observable writes, such as by using read-modify-write operations on a larger location to write a smaller datum, writing a value to memory that the program could not have written, or writing a just-read value back to the location it was read from, if that location could have been overwritten by anotheragent after the read.)

  • Possible read values must be non-empty: Program transformations cannot cause the possible read values of a shared memory read to become empty.

    (Counterintuitively, this rule in effect restricts transformations on writes, because writes have force inmemory model insofar as to be read by read events. For example, writes may be moved and coalesced and sometimes reordered between twoseq-cst operations, but the transformation may not remove every write that updates a location; some write must be preserved.)

Examples of transformations that remain valid are: merging multiple non-atomic reads from the same location, reordering non-atomic reads, introducing speculative non-atomic reads, merging multiple non-atomic writes to the same location, reordering non-atomic writes to different locations, and hoisting non-atomic reads out of loops even if that affects termination. Note in general that aliasedTypedArrays make it hard to prove that locations are different.

Note 3

The following are guidelines for ECMAScript implementers generating machine code for shared memory accesses.

For architectures with memory models no weaker than those of ARM or Power, non-atomic stores and loads may be compiled to bare stores and loads on the target architecture. Atomic stores and loads may be compiled down to instructions that guarantee sequential consistency. If no such instructions exist, memory barriers are to be employed, such as placing barriers on both sides of a bare store or load. Read-modify-write operations may be compiled to read-modify-write instructions on the target architecture, such asLOCK-prefixed instructions on x86, load-exclusive/store-exclusive instructions on ARM, and load-link/store-conditional instructions on Power.

Specifically, thememory model is intended to allow code generation as follows.

  • Every atomic operation in the program is assumed to be necessary.
  • Atomic operations are never rearranged with each other or with non-atomic operations.
  • Functions are always assumed to perform atomic operations.
  • Atomic operations are never implemented as read-modify-write operations on larger data, but as non-lock-free atomics if the platform does not have atomic operations of the appropriate size. (We already assume that every platform has normal memory access operations of every interesting size.)

Naive code generation uses these patterns:

  • Regular loads and stores compile to single load and store instructions.
  • Lock-free atomic loads and stores compile to a full (sequentially consistent) fence, a regular load or store, and a full fence.
  • Lock-free atomic read-modify-write accesses compile to a full fence, an atomic read-modify-write instruction sequence, and a full fence.
  • Non-lock-free atomics compile to a spinlock acquire, a full fence, a series of non-atomic load and store instructions, a full fence, and a spinlock release.

That mapping is correct so long as an atomic operation on an address range does not race with a non-atomic write or with an atomic operation of different size. However, that is all we need: thememory model effectively demotes the atomic operations involved in a race to non-atomic status. On the other hand, the naive mapping is quite strong: it allows atomic operations to be used as sequentially consistent fences, which thememory model does not actually guarantee.

Local improvements to those basic patterns are also allowed, subject to the constraints of thememory model. For example:

  • There are obvious platform-dependent improvements that remove redundant fences. For example, on x86 the fences around lock-free atomic loads and stores can always be omitted except for the fence following a store, and no fence is needed for lock-free read-modify-write instructions, as these all useLOCK-prefixed instructions. On many platforms there are fences of several strengths, and weaker fences can be used in certain contexts without destroying sequential consistency.
  • Most modern platforms support lock-free atomics for all the data sizes required by ECMAScript atomics. Should non-lock-free atomics be needed, the fences surrounding the body of the atomic operation can usually be folded into the lock and unlock steps. The simplest solution for non-lock-free atomics is to have a single lock word per SharedArrayBuffer.
  • There are also more complicated platform-dependent local improvements, requiring some code analysis. For example, two back-to-back fences often have the same effect as a single fence, so if code is generated for two atomic operations in sequence, only a single fence need separate them. On x86, even a single fence separating atomic stores can be omitted, as the fence following a store is only needed to separate the store from a subsequent load.

A Grammar Summary

A.1 Lexical Grammar

SourceCharacter::any Unicode code pointInputElementDiv::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorRightBracePunctuatorInputElementRegExp::WhiteSpaceLineTerminatorCommentCommonTokenRightBracePunctuatorRegularExpressionLiteralInputElementRegExpOrTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenRegularExpressionLiteralTemplateSubstitutionTailInputElementTemplateTail::WhiteSpaceLineTerminatorCommentCommonTokenDivPunctuatorTemplateSubstitutionTailInputElementHashbangOrRegExp::WhiteSpaceLineTerminatorCommentCommonTokenHashbangCommentRegularExpressionLiteralWhiteSpace::<TAB><VT><FF><ZWNBSP><USP>LineTerminator::<LF><CR><LS><PS>LineTerminatorSequence::<LF><CR>[lookahead ≠<LF>]<LS><PS><CR><LF>Comment::MultiLineCommentSingleLineCommentMultiLineComment::/*MultiLineCommentCharsopt*/MultiLineCommentChars::MultiLineNotAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptPostAsteriskCommentChars::MultiLineNotForwardSlashOrAsteriskCharMultiLineCommentCharsopt*PostAsteriskCommentCharsoptMultiLineNotAsteriskChar::SourceCharacterbut not*MultiLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or*SingleLineComment:://SingleLineCommentCharsoptSingleLineCommentChars::SingleLineCommentCharSingleLineCommentCharsoptSingleLineCommentChar::SourceCharacterbut notLineTerminatorHashbangComment::#!SingleLineCommentCharsoptCommonToken::IdentifierNamePrivateIdentifierPunctuatorNumericLiteralStringLiteralTemplatePrivateIdentifier::#IdentifierNameIdentifierName::IdentifierStartIdentifierNameIdentifierPartIdentifierStart::IdentifierStartChar\UnicodeEscapeSequenceIdentifierPart::IdentifierPartChar\UnicodeEscapeSequenceIdentifierStartChar::UnicodeIDStart$_IdentifierPartChar::UnicodeIDContinue$<ZWNJ><ZWJ>AsciiLetter::one ofabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZUnicodeIDStart::any Unicode code point with the Unicode property “ID_Start”UnicodeIDContinue::any Unicode code point with the Unicode property “ID_Continue”ReservedWord::one ofawaitbreakcasecatchclassconstcontinuedebuggerdefaultdeletedoelseenumexportextendsfalsefinallyforfunctionifimportininstanceofnewnullreturnsuperswitchthisthrowtruetrytypeofvarvoidwhilewithyieldPunctuator::OptionalChainingPunctuatorOtherPunctuatorOptionalChainingPunctuator::?.[lookahead ∉DecimalDigit]OtherPunctuator::one of{()[]....;,<><=>===!====!==+-*%**++--<<>>>>>&|^!~&&||???:=+=-=*=%=**=<<=>>=>>>=&=|=^=&&=||=??==>DivPunctuator:://=RightBracePunctuator::}NullLiteral::nullBooleanLiteral::truefalseNumericLiteralSeparator::_NumericLiteral::DecimalLiteralDecimalBigIntegerLiteralNonDecimalIntegerLiteral[+Sep]NonDecimalIntegerLiteral[+Sep]BigIntLiteralSuffixLegacyOctalIntegerLiteralDecimalBigIntegerLiteral::0BigIntLiteralSuffixNonZeroDigitDecimalDigits[+Sep]optBigIntLiteralSuffixNonZeroDigitNumericLiteralSeparatorDecimalDigits[+Sep]BigIntLiteralSuffixNonDecimalIntegerLiteral[Sep]::BinaryIntegerLiteral[?Sep]OctalIntegerLiteral[?Sep]HexIntegerLiteral[?Sep]BigIntLiteralSuffix::nDecimalLiteral::DecimalIntegerLiteral.DecimalDigits[+Sep]optExponentPart[+Sep]opt.DecimalDigits[+Sep]ExponentPart[+Sep]optDecimalIntegerLiteralExponentPart[+Sep]optDecimalIntegerLiteral::0NonZeroDigitNonZeroDigitNumericLiteralSeparatoroptDecimalDigits[+Sep]NonOctalDecimalIntegerLiteralDecimalDigits[Sep]::DecimalDigitDecimalDigits[?Sep]DecimalDigit[+Sep]DecimalDigits[+Sep]NumericLiteralSeparatorDecimalDigitDecimalDigit::one of0123456789NonZeroDigit::one of123456789ExponentPart[Sep]::ExponentIndicatorSignedInteger[?Sep]ExponentIndicator::one ofeESignedInteger[Sep]::DecimalDigits[?Sep]+DecimalDigits[?Sep]-DecimalDigits[?Sep]BinaryIntegerLiteral[Sep]::0bBinaryDigits[?Sep]0BBinaryDigits[?Sep]BinaryDigits[Sep]::BinaryDigitBinaryDigits[?Sep]BinaryDigit[+Sep]BinaryDigits[+Sep]NumericLiteralSeparatorBinaryDigitBinaryDigit::one of01OctalIntegerLiteral[Sep]::0oOctalDigits[?Sep]0OOctalDigits[?Sep]OctalDigits[Sep]::OctalDigitOctalDigits[?Sep]OctalDigit[+Sep]OctalDigits[+Sep]NumericLiteralSeparatorOctalDigitLegacyOctalIntegerLiteral::0OctalDigitLegacyOctalIntegerLiteralOctalDigitNonOctalDecimalIntegerLiteral::0NonOctalDigitLegacyOctalLikeDecimalIntegerLiteralNonOctalDigitNonOctalDecimalIntegerLiteralDecimalDigitLegacyOctalLikeDecimalIntegerLiteral::0OctalDigitLegacyOctalLikeDecimalIntegerLiteralOctalDigitOctalDigit::one of01234567NonOctalDigit::one of89HexIntegerLiteral[Sep]::0xHexDigits[?Sep]0XHexDigits[?Sep]HexDigits[Sep]::HexDigitHexDigits[?Sep]HexDigit[+Sep]HexDigits[+Sep]NumericLiteralSeparatorHexDigitHexDigit::one of0123456789abcdefABCDEFStringLiteral::"DoubleStringCharactersopt"'SingleStringCharactersopt'DoubleStringCharacters::DoubleStringCharacterDoubleStringCharactersoptSingleStringCharacters::SingleStringCharacterSingleStringCharactersoptDoubleStringCharacter::SourceCharacterbut not one of" or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationSingleStringCharacter::SourceCharacterbut not one of' or\ orLineTerminator<LS><PS>\EscapeSequenceLineContinuationLineContinuation::\LineTerminatorSequenceEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]LegacyOctalEscapeSequenceNonOctalDecimalEscapeSequenceHexEscapeSequenceUnicodeEscapeSequenceCharacterEscapeSequence::SingleEscapeCharacterNonEscapeCharacterSingleEscapeCharacter::one of'"\bfnrtvNonEscapeCharacter::SourceCharacterbut not one ofEscapeCharacter orLineTerminatorEscapeCharacter::SingleEscapeCharacterDecimalDigitxuLegacyOctalEscapeSequence::0[lookahead ∈ {8,9 }]NonZeroOctalDigit[lookahead ∉OctalDigit]ZeroToThreeOctalDigit[lookahead ∉OctalDigit]FourToSevenOctalDigitZeroToThreeOctalDigitOctalDigitNonZeroOctalDigit::OctalDigitbut not0ZeroToThree::one of0123FourToSeven::one of4567NonOctalDecimalEscapeSequence::one of89HexEscapeSequence::xHexDigitHexDigitUnicodeEscapeSequence::uHex4Digitsu{CodePoint}Hex4Digits::HexDigitHexDigitHexDigitHexDigitRegularExpressionLiteral::/RegularExpressionBody/RegularExpressionFlagsRegularExpressionBody::RegularExpressionFirstCharRegularExpressionCharsRegularExpressionChars::[empty]RegularExpressionCharsRegularExpressionCharRegularExpressionFirstChar::RegularExpressionNonTerminatorbut not one of* or\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionChar::RegularExpressionNonTerminatorbut not one of\ or/ or[RegularExpressionBackslashSequenceRegularExpressionClassRegularExpressionBackslashSequence::\RegularExpressionNonTerminatorRegularExpressionNonTerminator::SourceCharacterbut notLineTerminatorRegularExpressionClass::[RegularExpressionClassChars]RegularExpressionClassChars::[empty]RegularExpressionClassCharsRegularExpressionClassCharRegularExpressionClassChar::RegularExpressionNonTerminatorbut not one of] or\RegularExpressionBackslashSequenceRegularExpressionFlags::[empty]RegularExpressionFlagsIdentifierPartCharTemplate::NoSubstitutionTemplateTemplateHeadNoSubstitutionTemplate::`TemplateCharactersopt`TemplateHead::`TemplateCharactersopt${TemplateSubstitutionTail::TemplateMiddleTemplateTailTemplateMiddle::}TemplateCharactersopt${TemplateTail::}TemplateCharactersopt`TemplateCharacters::TemplateCharacterTemplateCharactersoptTemplateCharacter::$[lookahead ≠{]\TemplateEscapeSequence\NotEscapeSequenceLineContinuationLineTerminatorSequenceSourceCharacterbut not one of` or\ or$ orLineTerminatorTemplateEscapeSequence::CharacterEscapeSequence0[lookahead ∉DecimalDigit]HexEscapeSequenceUnicodeEscapeSequenceNotEscapeSequence::0DecimalDigitDecimalDigitbut not0x[lookahead ∉HexDigit]xHexDigit[lookahead ∉HexDigit]u[lookahead ∉HexDigit][lookahead ≠{]uHexDigit[lookahead ∉HexDigit]uHexDigitHexDigit[lookahead ∉HexDigit]uHexDigitHexDigitHexDigit[lookahead ∉HexDigit]u{[lookahead ∉HexDigit]u{NotCodePoint[lookahead ∉HexDigit]u{CodePoint[lookahead ∉HexDigit][lookahead ≠}]NotCodePoint::HexDigits[~Sep]but only if MV ofHexDigits > 0x10FFFFCodePoint::HexDigits[~Sep]but only if MV ofHexDigits ≤ 0x10FFFF

A.2 Expressions

IdentifierReference[Yield, Await]:Identifier[~Yield]yield[~Await]awaitBindingIdentifier[Yield, Await]:IdentifieryieldawaitLabelIdentifier[Yield, Await]:Identifier[~Yield]yield[~Await]awaitIdentifier:IdentifierNamebut notReservedWordPrimaryExpression[Yield, Await]:thisIdentifierReference[?Yield, ?Await]LiteralArrayLiteral[?Yield, ?Await]ObjectLiteral[?Yield, ?Await]FunctionExpressionClassExpression[?Yield, ?Await]GeneratorExpressionAsyncFunctionExpressionAsyncGeneratorExpressionRegularExpressionLiteralTemplateLiteral[?Yield, ?Await, ~Tagged]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[Yield, Await]:(Expression[+In, ?Yield, ?Await])(Expression[+In, ?Yield, ?Await],)()(...BindingIdentifier[?Yield, ?Await])(...BindingPattern[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingIdentifier[?Yield, ?Await])(Expression[+In, ?Yield, ?Await],...BindingPattern[?Yield, ?Await])

When processing an instance of the production
PrimaryExpression[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ParenthesizedExpression[Yield, Await]:(Expression[+In, ?Yield, ?Await])

 

Literal:NullLiteralBooleanLiteralNumericLiteralStringLiteralArrayLiteral[Yield, Await]:[Elisionopt][ElementList[?Yield, ?Await]][ElementList[?Yield, ?Await],Elisionopt]ElementList[Yield, Await]:ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElisionoptSpreadElement[?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptAssignmentExpression[+In, ?Yield, ?Await]ElementList[?Yield, ?Await],ElisionoptSpreadElement[?Yield, ?Await]Elision:,Elision,SpreadElement[Yield, Await]:...AssignmentExpression[+In, ?Yield, ?Await]ObjectLiteral[Yield, Await]:{}{PropertyDefinitionList[?Yield, ?Await]}{PropertyDefinitionList[?Yield, ?Await],}PropertyDefinitionList[Yield, Await]:PropertyDefinition[?Yield, ?Await]PropertyDefinitionList[?Yield, ?Await],PropertyDefinition[?Yield, ?Await]PropertyDefinition[Yield, Await]:IdentifierReference[?Yield, ?Await]CoverInitializedName[?Yield, ?Await]PropertyName[?Yield, ?Await]:AssignmentExpression[+In, ?Yield, ?Await]MethodDefinition[?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]PropertyName[Yield, Await]:LiteralPropertyNameComputedPropertyName[?Yield, ?Await]LiteralPropertyName:IdentifierNameStringLiteralNumericLiteralComputedPropertyName[Yield, Await]:[AssignmentExpression[+In, ?Yield, ?Await]]CoverInitializedName[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]Initializer[In, Yield, Await]:=AssignmentExpression[?In, ?Yield, ?Await]TemplateLiteral[Yield, Await, Tagged]:NoSubstitutionTemplateSubstitutionTemplate[?Yield, ?Await, ?Tagged]SubstitutionTemplate[Yield, Await, Tagged]:TemplateHeadExpression[+In, ?Yield, ?Await]TemplateSpans[?Yield, ?Await, ?Tagged]TemplateSpans[Yield, Await, Tagged]:TemplateTailTemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateTailTemplateMiddleList[Yield, Await, Tagged]:TemplateMiddleExpression[+In, ?Yield, ?Await]TemplateMiddleList[?Yield, ?Await, ?Tagged]TemplateMiddleExpression[+In, ?Yield, ?Await]MemberExpression[Yield, Await]:PrimaryExpression[?Yield, ?Await]MemberExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]MemberExpression[?Yield, ?Await].IdentifierNameMemberExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]SuperProperty[?Yield, ?Await]MetaPropertynewMemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]MemberExpression[?Yield, ?Await].PrivateIdentifierSuperProperty[Yield, Await]:super[Expression[+In, ?Yield, ?Await]]super.IdentifierNameMetaProperty:NewTargetImportMetaNewTarget:new.targetImportMeta:import.metaNewExpression[Yield, Await]:MemberExpression[?Yield, ?Await]newNewExpression[?Yield, ?Await]CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]SuperCall[?Yield, ?Await]ImportCall[?Yield, ?Await]CallExpression[?Yield, ?Await]Arguments[?Yield, ?Await]CallExpression[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]CallExpression[?Yield, ?Await].IdentifierNameCallExpression[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]CallExpression[?Yield, ?Await].PrivateIdentifier

When processing an instance of the production
CallExpression[Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await]
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

 

SuperCall[Yield, Await]:superArguments[?Yield, ?Await]ImportCall[Yield, Await]:import(AssignmentExpression[+In, ?Yield, ?Await])Arguments[Yield, Await]:()(ArgumentList[?Yield, ?Await])(ArgumentList[?Yield, ?Await],)ArgumentList[Yield, Await]:AssignmentExpression[+In, ?Yield, ?Await]...AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],AssignmentExpression[+In, ?Yield, ?Await]ArgumentList[?Yield, ?Await],...AssignmentExpression[+In, ?Yield, ?Await]OptionalExpression[Yield, Await]:MemberExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalExpression[?Yield, ?Await]OptionalChain[?Yield, ?Await]OptionalChain[Yield, Await]:?.Arguments[?Yield, ?Await]?.[Expression[+In, ?Yield, ?Await]]?.IdentifierName?.TemplateLiteral[?Yield, ?Await, +Tagged]?.PrivateIdentifierOptionalChain[?Yield, ?Await]Arguments[?Yield, ?Await]OptionalChain[?Yield, ?Await][Expression[+In, ?Yield, ?Await]]OptionalChain[?Yield, ?Await].IdentifierNameOptionalChain[?Yield, ?Await]TemplateLiteral[?Yield, ?Await, +Tagged]OptionalChain[?Yield, ?Await].PrivateIdentifierLeftHandSideExpression[Yield, Await]:NewExpression[?Yield, ?Await]CallExpression[?Yield, ?Await]OptionalExpression[?Yield, ?Await]UpdateExpression[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]++LeftHandSideExpression[?Yield, ?Await][noLineTerminator here]--++UnaryExpression[?Yield, ?Await]--UnaryExpression[?Yield, ?Await]UnaryExpression[Yield, Await]:UpdateExpression[?Yield, ?Await]deleteUnaryExpression[?Yield, ?Await]voidUnaryExpression[?Yield, ?Await]typeofUnaryExpression[?Yield, ?Await]+UnaryExpression[?Yield, ?Await]-UnaryExpression[?Yield, ?Await]~UnaryExpression[?Yield, ?Await]!UnaryExpression[?Yield, ?Await][+Await]AwaitExpression[?Yield]ExponentiationExpression[Yield, Await]:UnaryExpression[?Yield, ?Await]UpdateExpression[?Yield, ?Await]**ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[Yield, Await]:ExponentiationExpression[?Yield, ?Await]MultiplicativeExpression[?Yield, ?Await]MultiplicativeOperatorExponentiationExpression[?Yield, ?Await]MultiplicativeOperator:one of*/%AdditiveExpression[Yield, Await]:MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]+MultiplicativeExpression[?Yield, ?Await]AdditiveExpression[?Yield, ?Await]-MultiplicativeExpression[?Yield, ?Await]ShiftExpression[Yield, Await]:AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]<<AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>AdditiveExpression[?Yield, ?Await]ShiftExpression[?Yield, ?Await]>>>AdditiveExpression[?Yield, ?Await]RelationalExpression[In, Yield, Await]:ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]<=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]>=ShiftExpression[?Yield, ?Await]RelationalExpression[?In, ?Yield, ?Await]instanceofShiftExpression[?Yield, ?Await][+In]RelationalExpression[+In, ?Yield, ?Await]inShiftExpression[?Yield, ?Await][+In]PrivateIdentifierinShiftExpression[?Yield, ?Await]EqualityExpression[In, Yield, Await]:RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]==RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!=RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]===RelationalExpression[?In, ?Yield, ?Await]EqualityExpression[?In, ?Yield, ?Await]!==RelationalExpression[?In, ?Yield, ?Await]BitwiseANDExpression[In, Yield, Await]:EqualityExpression[?In, ?Yield, ?Await]BitwiseANDExpression[?In, ?Yield, ?Await]&EqualityExpression[?In, ?Yield, ?Await]BitwiseXORExpression[In, Yield, Await]:BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseXORExpression[?In, ?Yield, ?Await]^BitwiseANDExpression[?In, ?Yield, ?Await]BitwiseORExpression[In, Yield, Await]:BitwiseXORExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]|BitwiseXORExpression[?In, ?Yield, ?Await]LogicalANDExpression[In, Yield, Await]:BitwiseORExpression[?In, ?Yield, ?Await]LogicalANDExpression[?In, ?Yield, ?Await]&&BitwiseORExpression[?In, ?Yield, ?Await]LogicalORExpression[In, Yield, Await]:LogicalANDExpression[?In, ?Yield, ?Await]LogicalORExpression[?In, ?Yield, ?Await]||LogicalANDExpression[?In, ?Yield, ?Await]CoalesceExpression[In, Yield, Await]:CoalesceExpressionHead[?In, ?Yield, ?Await]??BitwiseORExpression[?In, ?Yield, ?Await]CoalesceExpressionHead[In, Yield, Await]:CoalesceExpression[?In, ?Yield, ?Await]BitwiseORExpression[?In, ?Yield, ?Await]ShortCircuitExpression[In, Yield, Await]:LogicalORExpression[?In, ?Yield, ?Await]CoalesceExpression[?In, ?Yield, ?Await]ConditionalExpression[In, Yield, Await]:ShortCircuitExpression[?In, ?Yield, ?Await]ShortCircuitExpression[?In, ?Yield, ?Await]?AssignmentExpression[+In, ?Yield, ?Await]:AssignmentExpression[?In, ?Yield, ?Await]AssignmentExpression[In, Yield, Await]:ConditionalExpression[?In, ?Yield, ?Await][+Yield]YieldExpression[?In, ?Await]ArrowFunction[?In, ?Yield, ?Await]AsyncArrowFunction[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]AssignmentOperatorAssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]&&=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]||=AssignmentExpression[?In, ?Yield, ?Await]LeftHandSideExpression[?Yield, ?Await]??=AssignmentExpression[?In, ?Yield, ?Await]AssignmentOperator:one of*=/=%=+=-=<<=>>=>>>=&=^=|=**=

In certain circumstances when processing an instance of the production
AssignmentExpression[In, Yield, Await]:LeftHandSideExpression[?Yield, ?Await]=AssignmentExpression[?In, ?Yield, ?Await]
the interpretation ofLeftHandSideExpression is refined using the following grammar:

AssignmentPattern[Yield, Await]:ObjectAssignmentPattern[?Yield, ?Await]ArrayAssignmentPattern[?Yield, ?Await]ObjectAssignmentPattern[Yield, Await]:{}{AssignmentRestProperty[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await]}{AssignmentPropertyList[?Yield, ?Await],AssignmentRestProperty[?Yield, ?Await]opt}ArrayAssignmentPattern[Yield, Await]:[ElisionoptAssignmentRestElement[?Yield, ?Await]opt][AssignmentElementList[?Yield, ?Await]][AssignmentElementList[?Yield, ?Await],ElisionoptAssignmentRestElement[?Yield, ?Await]opt]AssignmentRestProperty[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]AssignmentPropertyList[Yield, Await]:AssignmentProperty[?Yield, ?Await]AssignmentPropertyList[?Yield, ?Await],AssignmentProperty[?Yield, ?Await]AssignmentElementList[Yield, Await]:AssignmentElisionElement[?Yield, ?Await]AssignmentElementList[?Yield, ?Await],AssignmentElisionElement[?Yield, ?Await]AssignmentElisionElement[Yield, Await]:ElisionoptAssignmentElement[?Yield, ?Await]AssignmentProperty[Yield, Await]:IdentifierReference[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optPropertyName[?Yield, ?Await]:AssignmentElement[?Yield, ?Await]AssignmentElement[Yield, Await]:DestructuringAssignmentTarget[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optAssignmentRestElement[Yield, Await]:...DestructuringAssignmentTarget[?Yield, ?Await]DestructuringAssignmentTarget[Yield, Await]:LeftHandSideExpression[?Yield, ?Await]

 

Expression[In, Yield, Await]:AssignmentExpression[?In, ?Yield, ?Await]Expression[?In, ?Yield, ?Await],AssignmentExpression[?In, ?Yield, ?Await]

A.3 Statements

Statement[Yield, Await, Return]:BlockStatement[?Yield, ?Await, ?Return]VariableStatement[?Yield, ?Await]EmptyStatementExpressionStatement[?Yield, ?Await]IfStatement[?Yield, ?Await, ?Return]BreakableStatement[?Yield, ?Await, ?Return]ContinueStatement[?Yield, ?Await]BreakStatement[?Yield, ?Await][+Return]ReturnStatement[?Yield, ?Await]WithStatement[?Yield, ?Await, ?Return]LabelledStatement[?Yield, ?Await, ?Return]ThrowStatement[?Yield, ?Await]TryStatement[?Yield, ?Await, ?Return]DebuggerStatementDeclaration[Yield, Await]:HoistableDeclaration[?Yield, ?Await, ~Default]ClassDeclaration[?Yield, ?Await, ~Default]LexicalDeclaration[+In, ?Yield, ?Await]HoistableDeclaration[Yield, Await, Default]:FunctionDeclaration[?Yield, ?Await, ?Default]GeneratorDeclaration[?Yield, ?Await, ?Default]AsyncFunctionDeclaration[?Yield, ?Await, ?Default]AsyncGeneratorDeclaration[?Yield, ?Await, ?Default]BreakableStatement[Yield, Await, Return]:IterationStatement[?Yield, ?Await, ?Return]SwitchStatement[?Yield, ?Await, ?Return]BlockStatement[Yield, Await, Return]:Block[?Yield, ?Await, ?Return]Block[Yield, Await, Return]:{StatementList[?Yield, ?Await, ?Return]opt}StatementList[Yield, Await, Return]:StatementListItem[?Yield, ?Await, ?Return]StatementList[?Yield, ?Await, ?Return]StatementListItem[?Yield, ?Await, ?Return]StatementListItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]Declaration[?Yield, ?Await]LexicalDeclaration[In, Yield, Await]:LetOrConstBindingList[?In, ?Yield, ?Await];LetOrConst:letconstBindingList[In, Yield, Await]:LexicalBinding[?In, ?Yield, ?Await]BindingList[?In, ?Yield, ?Await],LexicalBinding[?In, ?Yield, ?Await]LexicalBinding[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]VariableStatement[Yield, Await]:varVariableDeclarationList[+In, ?Yield, ?Await];VariableDeclarationList[In, Yield, Await]:VariableDeclaration[?In, ?Yield, ?Await]VariableDeclarationList[?In, ?Yield, ?Await],VariableDeclaration[?In, ?Yield, ?Await]VariableDeclaration[In, Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]optBindingPattern[?Yield, ?Await]Initializer[?In, ?Yield, ?Await]BindingPattern[Yield, Await]:ObjectBindingPattern[?Yield, ?Await]ArrayBindingPattern[?Yield, ?Await]ObjectBindingPattern[Yield, Await]:{}{BindingRestProperty[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await]}{BindingPropertyList[?Yield, ?Await],BindingRestProperty[?Yield, ?Await]opt}ArrayBindingPattern[Yield, Await]:[ElisionoptBindingRestElement[?Yield, ?Await]opt][BindingElementList[?Yield, ?Await]][BindingElementList[?Yield, ?Await],ElisionoptBindingRestElement[?Yield, ?Await]opt]BindingRestProperty[Yield, Await]:...BindingIdentifier[?Yield, ?Await]BindingPropertyList[Yield, Await]:BindingProperty[?Yield, ?Await]BindingPropertyList[?Yield, ?Await],BindingProperty[?Yield, ?Await]BindingElementList[Yield, Await]:BindingElisionElement[?Yield, ?Await]BindingElementList[?Yield, ?Await],BindingElisionElement[?Yield, ?Await]BindingElisionElement[Yield, Await]:ElisionoptBindingElement[?Yield, ?Await]BindingProperty[Yield, Await]:SingleNameBinding[?Yield, ?Await]PropertyName[?Yield, ?Await]:BindingElement[?Yield, ?Await]BindingElement[Yield, Await]:SingleNameBinding[?Yield, ?Await]BindingPattern[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optSingleNameBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optBindingRestElement[Yield, Await]:...BindingIdentifier[?Yield, ?Await]...BindingPattern[?Yield, ?Await]EmptyStatement:;ExpressionStatement[Yield, Await]:[lookahead ∉ {{,function,async[noLineTerminator here]function,class,let[ }]Expression[+In, ?Yield, ?Await];IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][lookahead ≠else]IterationStatement[Yield, Await, Return]:DoWhileStatement[?Yield, ?Await, ?Return]WhileStatement[?Yield, ?Await, ?Return]ForStatement[?Yield, ?Await, ?Return]ForInOfStatement[?Yield, ?Await, ?Return]DoWhileStatement[Yield, Await, Return]:doStatement[?Yield, ?Await, ?Return]while(Expression[+In, ?Yield, ?Await]);WhileStatement[Yield, Await, Return]:while(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForStatement[Yield, Await, Return]:for([lookahead ≠let[]Expression[~In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(varVariableDeclarationList[~In, ?Yield, ?Await];Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]for(LexicalDeclaration[~In, ?Yield, ?Await]Expression[+In, ?Yield, ?Await]opt;Expression[+In, ?Yield, ?Await]opt)Statement[?Yield, ?Await, ?Return]ForInOfStatement[Yield, Await, Return]:for([lookahead ≠let[]LeftHandSideExpression[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for([lookahead ∉ {let,asyncof }]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]for(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait([lookahead ≠let]LeftHandSideExpression[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(varForBinding[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return][+Await]forawait(ForDeclaration[?Yield, ?Await]ofAssignmentExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]ForDeclaration[Yield, Await]:LetOrConstForBinding[?Yield, ?Await]ForBinding[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]ContinueStatement[Yield, Await]:continue;continue[noLineTerminator here]LabelIdentifier[?Yield, ?Await];BreakStatement[Yield, Await]:break;break[noLineTerminator here]LabelIdentifier[?Yield, ?Await];ReturnStatement[Yield, Await]:return;return[noLineTerminator here]Expression[+In, ?Yield, ?Await];WithStatement[Yield, Await, Return]:with(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]SwitchStatement[Yield, Await, Return]:switch(Expression[+In, ?Yield, ?Await])CaseBlock[?Yield, ?Await, ?Return]CaseBlock[Yield, Await, Return]:{CaseClauses[?Yield, ?Await, ?Return]opt}{CaseClauses[?Yield, ?Await, ?Return]optDefaultClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]opt}CaseClauses[Yield, Await, Return]:CaseClause[?Yield, ?Await, ?Return]CaseClauses[?Yield, ?Await, ?Return]CaseClause[?Yield, ?Await, ?Return]CaseClause[Yield, Await, Return]:caseExpression[+In, ?Yield, ?Await]:StatementList[?Yield, ?Await, ?Return]optDefaultClause[Yield, Await, Return]:default:StatementList[?Yield, ?Await, ?Return]optLabelledStatement[Yield, Await, Return]:LabelIdentifier[?Yield, ?Await]:LabelledItem[?Yield, ?Await, ?Return]LabelledItem[Yield, Await, Return]:Statement[?Yield, ?Await, ?Return]FunctionDeclaration[?Yield, ?Await, ~Default]ThrowStatement[Yield, Await]:throw[noLineTerminator here]Expression[+In, ?Yield, ?Await];TryStatement[Yield, Await, Return]:tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]tryBlock[?Yield, ?Await, ?Return]Catch[?Yield, ?Await, ?Return]Finally[?Yield, ?Await, ?Return]Catch[Yield, Await, Return]:catch(CatchParameter[?Yield, ?Await])Block[?Yield, ?Await, ?Return]catchBlock[?Yield, ?Await, ?Return]Finally[Yield, Await, Return]:finallyBlock[?Yield, ?Await, ?Return]CatchParameter[Yield, Await]:BindingIdentifier[?Yield, ?Await]BindingPattern[?Yield, ?Await]DebuggerStatement:debugger;

A.4 Functions and Classes

UniqueFormalParameters[Yield, Await]:FormalParameters[?Yield, ?Await]FormalParameters[Yield, Await]:[empty]FunctionRestParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameterList[?Yield, ?Await],FunctionRestParameter[?Yield, ?Await]FormalParameterList[Yield, Await]:FormalParameter[?Yield, ?Await]FormalParameterList[?Yield, ?Await],FormalParameter[?Yield, ?Await]FunctionRestParameter[Yield, Await]:BindingRestElement[?Yield, ?Await]FormalParameter[Yield, Await]:BindingElement[?Yield, ?Await]FunctionDeclaration[Yield, Await, Default]:functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}[+Default]function(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionExpression:functionBindingIdentifier[~Yield, ~Await]opt(FormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}FunctionBody[Yield, Await]:FunctionStatementList[?Yield, ?Await]FunctionStatementList[Yield, Await]:StatementList[?Yield, ?Await, +Return]optArrowFunction[In, Yield, Await]:ArrowParameters[?Yield, ?Await][noLineTerminator here]=>ConciseBody[?In]ArrowParameters[Yield, Await]:BindingIdentifier[?Yield, ?Await]CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]ConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, ~Await]{FunctionBody[~Yield, ~Await]}ExpressionBody[In, Await]:AssignmentExpression[?In, ~Yield, ?Await]

When processing an instance of the production
ArrowParameters[Yield, Await]:CoverParenthesizedExpressionAndArrowParameterList[?Yield, ?Await]
the interpretation ofCoverParenthesizedExpressionAndArrowParameterList is refined using the following grammar:

ArrowFormalParameters[Yield, Await]:(UniqueFormalParameters[?Yield, ?Await])

 

AsyncArrowFunction[In, Yield, Await]:async[noLineTerminator here]AsyncArrowBindingIdentifier[?Yield][noLineTerminator here]=>AsyncConciseBody[?In]CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]AsyncConciseBody[In]:[lookahead ≠{]ExpressionBody[?In, +Await]{AsyncFunctionBody}AsyncArrowBindingIdentifier[Yield]:BindingIdentifier[?Yield, +Await]CoverCallExpressionAndAsyncArrowHead[Yield, Await]:MemberExpression[?Yield, ?Await]Arguments[?Yield, ?Await]

When processing an instance of the production
AsyncArrowFunction[In, Yield, Await]:CoverCallExpressionAndAsyncArrowHead[?Yield, ?Await][noLineTerminator here]=>AsyncConciseBody[?In]
the interpretation ofCoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

AsyncArrowHead:async[noLineTerminator here]ArrowFormalParameters[~Yield, +Await]

 

MethodDefinition[Yield, Await]:ClassElementName[?Yield, ?Await](UniqueFormalParameters[~Yield, ~Await]){FunctionBody[~Yield, ~Await]}GeneratorMethod[?Yield, ?Await]AsyncMethod[?Yield, ?Await]AsyncGeneratorMethod[?Yield, ?Await]getClassElementName[?Yield, ?Await](){FunctionBody[~Yield, ~Await]}setClassElementName[?Yield, ?Await](PropertySetParameterList){FunctionBody[~Yield, ~Await]}PropertySetParameterList:FormalParameter[~Yield, ~Await]GeneratorDeclaration[Yield, Await, Default]:function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, ~Await]){GeneratorBody}[+Default]function*(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorExpression:function*BindingIdentifier[+Yield, ~Await]opt(FormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorMethod[Yield, Await]:*ClassElementName[?Yield, ?Await](UniqueFormalParameters[+Yield, ~Await]){GeneratorBody}GeneratorBody:FunctionBody[+Yield, ~Await]YieldExpression[In, Await]:yieldyield[noLineTerminator here]AssignmentExpression[?In, +Yield, ?Await]yield[noLineTerminator here]*AssignmentExpression[?In, +Yield, ?Await]AsyncGeneratorDeclaration[Yield, Await, Default]:async[noLineTerminator here]function*BindingIdentifier[?Yield, ?Await](FormalParameters[+Yield, +Await]){AsyncGeneratorBody}[+Default]async[noLineTerminator here]function*(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorExpression:async[noLineTerminator here]function*BindingIdentifier[+Yield, +Await]opt(FormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorMethod[Yield, Await]:async[noLineTerminator here]*ClassElementName[?Yield, ?Await](UniqueFormalParameters[+Yield, +Await]){AsyncGeneratorBody}AsyncGeneratorBody:FunctionBody[+Yield, +Await]AsyncFunctionDeclaration[Yield, Await, Default]:async[noLineTerminator here]functionBindingIdentifier[?Yield, ?Await](FormalParameters[~Yield, +Await]){AsyncFunctionBody}[+Default]async[noLineTerminator here]function(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionExpression:async[noLineTerminator here]functionBindingIdentifier[~Yield, +Await]opt(FormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncMethod[Yield, Await]:async[noLineTerminator here]ClassElementName[?Yield, ?Await](UniqueFormalParameters[~Yield, +Await]){AsyncFunctionBody}AsyncFunctionBody:FunctionBody[~Yield, +Await]AwaitExpression[Yield]:awaitUnaryExpression[?Yield, +Await]ClassDeclaration[Yield, Await, Default]:classBindingIdentifier[?Yield, ?Await]ClassTail[?Yield, ?Await][+Default]classClassTail[?Yield, ?Await]ClassExpression[Yield, Await]:classBindingIdentifier[?Yield, ?Await]optClassTail[?Yield, ?Await]ClassTail[Yield, Await]:ClassHeritage[?Yield, ?Await]opt{ClassBody[?Yield, ?Await]opt}ClassHeritage[Yield, Await]:extendsLeftHandSideExpression[?Yield, ?Await]ClassBody[Yield, Await]:ClassElementList[?Yield, ?Await]ClassElementList[Yield, Await]:ClassElement[?Yield, ?Await]ClassElementList[?Yield, ?Await]ClassElement[?Yield, ?Await]ClassElement[Yield, Await]:MethodDefinition[?Yield, ?Await]staticMethodDefinition[?Yield, ?Await]FieldDefinition[?Yield, ?Await];staticFieldDefinition[?Yield, ?Await];ClassStaticBlock;FieldDefinition[Yield, Await]:ClassElementName[?Yield, ?Await]Initializer[+In, ?Yield, ?Await]optClassElementName[Yield, Await]:PropertyName[?Yield, ?Await]PrivateIdentifierClassStaticBlock:static{ClassStaticBlockBody}ClassStaticBlockBody:ClassStaticBlockStatementListClassStaticBlockStatementList:StatementList[~Yield, +Await, ~Return]opt

A.5 Scripts and Modules

Script:ScriptBodyoptScriptBody:StatementList[~Yield, ~Await, ~Return]Module:ModuleBodyoptModuleBody:ModuleItemListModuleItemList:ModuleItemModuleItemListModuleItemModuleItem:ImportDeclarationExportDeclarationStatementListItem[~Yield, +Await, ~Return]ModuleExportName:IdentifierNameStringLiteralImportDeclaration:importImportClauseFromClause;importModuleSpecifier;ImportClause:ImportedDefaultBindingNameSpaceImportNamedImportsImportedDefaultBinding,NameSpaceImportImportedDefaultBinding,NamedImportsImportedDefaultBinding:ImportedBindingNameSpaceImport:*asImportedBindingNamedImports:{}{ImportsList}{ImportsList,}FromClause:fromModuleSpecifierImportsList:ImportSpecifierImportsList,ImportSpecifierImportSpecifier:ImportedBindingModuleExportNameasImportedBindingModuleSpecifier:StringLiteralImportedBinding:BindingIdentifier[~Yield, +Await]ExportDeclaration:exportExportFromClauseFromClause;exportNamedExports;exportVariableStatement[~Yield, +Await]exportDeclaration[~Yield, +Await]exportdefaultHoistableDeclaration[~Yield, +Await, +Default]exportdefaultClassDeclaration[~Yield, +Await, +Default]exportdefault[lookahead ∉ {function,async[noLineTerminator here]function,class }]AssignmentExpression[+In, ~Yield, +Await];ExportFromClause:**asModuleExportNameNamedExportsNamedExports:{}{ExportsList}{ExportsList,}ExportsList:ExportSpecifierExportsList,ExportSpecifierExportSpecifier:ModuleExportNameModuleExportNameasModuleExportName

A.6 Number Conversions

StringNumericLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrNumericLiteralStrWhiteSpaceoptStrWhiteSpace:::StrWhiteSpaceCharStrWhiteSpaceoptStrWhiteSpaceChar:::WhiteSpaceLineTerminatorStrNumericLiteral:::StrDecimalLiteralNonDecimalIntegerLiteral[~Sep]StrDecimalLiteral:::StrUnsignedDecimalLiteral+StrUnsignedDecimalLiteral-StrUnsignedDecimalLiteralStrUnsignedDecimalLiteral:::InfinityDecimalDigits[~Sep].DecimalDigits[~Sep]optExponentPart[~Sep]opt.DecimalDigits[~Sep]ExponentPart[~Sep]optDecimalDigits[~Sep]ExponentPart[~Sep]opt

All grammar symbols not explicitly defined by theStringNumericLiteral grammar have the definitions used in theLexical Grammar for numeric literals.

StringIntegerLiteral:::StrWhiteSpaceoptStrWhiteSpaceoptStrIntegerLiteralStrWhiteSpaceoptStrIntegerLiteral:::SignedInteger[~Sep]NonDecimalIntegerLiteral[~Sep]

A.7 Time Zone Offset String Format

UTCOffset:::TemporalSignHourTemporalSignHourHourSubcomponents[+Extended]TemporalSignHourHourSubcomponents[~Extended]TemporalSign:::ASCIISign<MINUS>ASCIISign:::one of+-Hour:::0DecimalDigit1DecimalDigit20212223HourSubcomponents[Extended]:::TimeSeparator[?Extended]MinuteSecondTimeSeparator[?Extended]MinuteSecondTimeSeparator[?Extended]MinuteSecondTemporalDecimalFractionoptTimeSeparator[Extended]:::[+Extended]:[~Extended][empty]MinuteSecond:::0DecimalDigit1DecimalDigit2DecimalDigit3DecimalDigit4DecimalDigit5DecimalDigitTemporalDecimalFraction:::TemporalDecimalSeparatorDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparatorDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitDecimalDigitTemporalDecimalSeparator:::one of.,

A.8 Regular Expressions

Pattern[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Disjunction[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]|Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Alternative[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::[empty]Alternative[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Term[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Term[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::Assertion[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Atom[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Atom[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]QuantifierAssertion[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::^$\b\B(?=Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?!Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?<=Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?<!Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])Quantifier::QuantifierPrefixQuantifierPrefix?QuantifierPrefix::*+?{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}Atom[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::PatternCharacter.\AtomEscape[?UnicodeMode, ?NamedCaptureGroups]CharacterClass[?UnicodeMode, ?UnicodeSetsMode](GroupSpecifier[?UnicodeMode]optDisjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?:Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])SyntaxCharacter::one of^$\.*+?()[]{}|PatternCharacter::SourceCharacterbut notSyntaxCharacterAtomEscape[UnicodeMode, NamedCaptureGroups]::DecimalEscapeCharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode][+NamedCaptureGroups]kGroupName[?UnicodeMode]CharacterEscape[UnicodeMode]::ControlEscapecAsciiLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?UnicodeMode]IdentityEscape[?UnicodeMode]ControlEscape::one offnrtvGroupSpecifier[UnicodeMode]::?GroupName[?UnicodeMode]GroupName[UnicodeMode]::<RegExpIdentifierName[?UnicodeMode]>RegExpIdentifierName[UnicodeMode]::RegExpIdentifierStart[?UnicodeMode]RegExpIdentifierName[?UnicodeMode]RegExpIdentifierPart[?UnicodeMode]RegExpIdentifierStart[UnicodeMode]::IdentifierStartChar\RegExpUnicodeEscapeSequence[+UnicodeMode][~UnicodeMode]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpIdentifierPart[UnicodeMode]::IdentifierPartChar\RegExpUnicodeEscapeSequence[+UnicodeMode][~UnicodeMode]UnicodeLeadSurrogateUnicodeTrailSurrogateRegExpUnicodeEscapeSequence[UnicodeMode]::[+UnicodeMode]uHexLeadSurrogate\uHexTrailSurrogate[+UnicodeMode]uHexLeadSurrogate[+UnicodeMode]uHexTrailSurrogate[+UnicodeMode]uHexNonSurrogate[~UnicodeMode]uHex4Digits[+UnicodeMode]u{CodePoint}UnicodeLeadSurrogate::any Unicode code point in the inclusive interval from U+D800 to U+DBFFUnicodeTrailSurrogate::any Unicode code point in the inclusive interval from U+DC00 to U+DFFF

Each\uHexTrailSurrogate for which the choice of associateduHexLeadSurrogate is ambiguous shall be associated with the nearest possibleuHexLeadSurrogate that would otherwise have no corresponding\uHexTrailSurrogate.

 

HexLeadSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in theinclusive interval from 0xD800 to 0xDBFFHexTrailSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is in theinclusive interval from 0xDC00 to 0xDFFFHexNonSurrogate::Hex4Digitsbut only if the MV ofHex4Digits is not in theinclusive interval from 0xD800 to 0xDFFFIdentityEscape[UnicodeMode]::[+UnicodeMode]SyntaxCharacter[+UnicodeMode]/[~UnicodeMode]SourceCharacterbut notUnicodeIDContinueDecimalEscape::NonZeroDigitDecimalDigits[~Sep]opt[lookahead ∉DecimalDigit]CharacterClassEscape[UnicodeMode]::dDsSwW[+UnicodeMode]p{UnicodePropertyValueExpression}[+UnicodeMode]P{UnicodePropertyValueExpression}UnicodePropertyValueExpression::UnicodePropertyName=UnicodePropertyValueLoneUnicodePropertyNameOrValueUnicodePropertyName::UnicodePropertyNameCharactersUnicodePropertyNameCharacters::UnicodePropertyNameCharacterUnicodePropertyNameCharactersoptUnicodePropertyValue::UnicodePropertyValueCharactersLoneUnicodePropertyNameOrValue::UnicodePropertyValueCharactersUnicodePropertyValueCharacters::UnicodePropertyValueCharacterUnicodePropertyValueCharactersoptUnicodePropertyValueCharacter::UnicodePropertyNameCharacterDecimalDigitUnicodePropertyNameCharacter::AsciiLetter_CharacterClass[UnicodeMode, UnicodeSetsMode]::[[lookahead ≠^]ClassContents[?UnicodeMode, ?UnicodeSetsMode]][^ClassContents[?UnicodeMode, ?UnicodeSetsMode]]ClassContents[UnicodeMode, UnicodeSetsMode]::[empty][~UnicodeSetsMode]NonemptyClassRanges[?UnicodeMode][+UnicodeSetsMode]ClassSetExpressionNonemptyClassRanges[UnicodeMode]::ClassAtom[?UnicodeMode]ClassAtom[?UnicodeMode]NonemptyClassRangesNoDash[?UnicodeMode]ClassAtom[?UnicodeMode]-ClassAtom[?UnicodeMode]ClassContents[?UnicodeMode, ~UnicodeSetsMode]NonemptyClassRangesNoDash[UnicodeMode]::ClassAtom[?UnicodeMode]ClassAtomNoDash[?UnicodeMode]NonemptyClassRangesNoDash[?UnicodeMode]ClassAtomNoDash[?UnicodeMode]-ClassAtom[?UnicodeMode]ClassContents[?UnicodeMode, ~UnicodeSetsMode]ClassAtom[UnicodeMode]::-ClassAtomNoDash[?UnicodeMode]ClassAtomNoDash[UnicodeMode]::SourceCharacterbut not one of\ or] or-\ClassEscape[?UnicodeMode]ClassEscape[UnicodeMode]::b[+UnicodeMode]-CharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode]ClassSetExpression::ClassUnionClassIntersectionClassSubtractionClassUnion::ClassSetRangeClassUnionoptClassSetOperandClassUnionoptClassIntersection::ClassSetOperand&&[lookahead ≠&]ClassSetOperandClassIntersection&&[lookahead ≠&]ClassSetOperandClassSubtraction::ClassSetOperand--ClassSetOperandClassSubtraction--ClassSetOperandClassSetRange::ClassSetCharacter-ClassSetCharacterClassSetOperand::NestedClassClassStringDisjunctionClassSetCharacterNestedClass::[[lookahead ≠^]ClassContents[+UnicodeMode, +UnicodeSetsMode]][^ClassContents[+UnicodeMode, +UnicodeSetsMode]]\CharacterClassEscape[+UnicodeMode]ClassStringDisjunction::\q{ClassStringDisjunctionContents}ClassStringDisjunctionContents::ClassStringClassString|ClassStringDisjunctionContentsClassString::[empty]NonEmptyClassStringNonEmptyClassString::ClassSetCharacterNonEmptyClassStringoptClassSetCharacter::[lookahead ∉ClassSetReservedDoublePunctuator]SourceCharacterbut notClassSetSyntaxCharacter\CharacterEscape[+UnicodeMode]\ClassSetReservedPunctuator\bClassSetReservedDoublePunctuator::one of&&!!##$$%%**++,,..::;;<<==>>??@@^^``~~ClassSetSyntaxCharacter::one of()[]{}/-\|ClassSetReservedPunctuator::one of&-!#%,:;<=>@`~

B Additional ECMAScript Features for Web Browsers

The ECMAScript language syntax and semantics defined in this annex are required when the ECMAScripthost is a web browser. The content of this annex is normative but optional if the ECMAScripthost is not a web browser.

Note

This annex describes various legacy features and other characteristics of web browser ECMAScripthosts. All of the language features and behaviours specified in this annex have one or more undesirable characteristics and in the absence of legacy usage would be removed from this specification. However, the usage of these features by large numbers of existing web pages means that web browsers must continue to support them. The specifications in this annex define the requirements for interoperable implementations of these legacy features.

These features are not considered part of the core ECMAScript language. Programmers should not use or assume the existence of these features and behaviours when writing new ECMAScript code. ECMAScript implementations are discouraged from implementing these features unless the implementation is part of a web browser or is required to run the same legacy ECMAScript code that web browsers encounter.

B.1 Additional Syntax

B.1.1 HTML-like Comments

The syntax and semantics of12.4 is extended as follows except that this extension is not allowed when parsing source text using thegoal symbolModule:

Syntax

InputElementHashbangOrRegExp::WhiteSpaceLineTerminatorCommentCommonTokenHashbangCommentRegularExpressionLiteralHTMLCloseCommentComment::MultiLineCommentSingleLineCommentSingleLineHTMLOpenCommentSingleLineHTMLCloseCommentSingleLineDelimitedCommentMultiLineComment::/*FirstCommentLineoptLineTerminatorMultiLineCommentCharsopt*/HTMLCloseCommentoptFirstCommentLine::SingleLineDelimitedCommentCharsSingleLineHTMLOpenComment::<!--SingleLineCommentCharsoptSingleLineHTMLCloseComment::LineTerminatorSequenceHTMLCloseCommentSingleLineDelimitedComment::/*SingleLineDelimitedCommentCharsopt*/HTMLCloseComment::WhiteSpaceSequenceoptSingleLineDelimitedCommentSequenceopt-->SingleLineCommentCharsoptSingleLineDelimitedCommentChars::SingleLineNotAsteriskCharSingleLineDelimitedCommentCharsopt*SingleLinePostAsteriskCommentCharsoptSingleLineNotAsteriskChar::SourceCharacterbut not one of* orLineTerminatorSingleLinePostAsteriskCommentChars::SingleLineNotForwardSlashOrAsteriskCharSingleLineDelimitedCommentCharsopt*SingleLinePostAsteriskCommentCharsoptSingleLineNotForwardSlashOrAsteriskChar::SourceCharacterbut not one of/ or* orLineTerminatorWhiteSpaceSequence::WhiteSpaceWhiteSpaceSequenceoptSingleLineDelimitedCommentSequence::SingleLineDelimitedCommentWhiteSpaceSequenceoptSingleLineDelimitedCommentSequenceopt

Similar to aMultiLineComment that contains a line terminator code point, aSingleLineHTMLCloseComment is considered to be aLineTerminator for purposes of parsing by the syntactic grammar.

B.1.2 Regular Expressions Patterns

The syntax of22.2.1 is modified and extended as follows. These changes introduce ambiguities that are broken by the ordering of grammar productions and by contextual information. When parsing using the following grammar, each alternative is considered only if previous production alternatives do not match.

This alternative pattern grammar and semantics only changes the syntax and semantics of BMP patterns. The following grammar extensions include productions parameterized with the [UnicodeMode] parameter. However, none of these extensions change the syntax of Unicode patterns recognized when parsing with the [UnicodeMode] parameter present on thegoal symbol.

Syntax

Term[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::[+UnicodeMode]Assertion[+UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups][+UnicodeMode]Atom[+UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups]Quantifier[+UnicodeMode]Atom[+UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups][~UnicodeMode]QuantifiableAssertion[?NamedCaptureGroups]Quantifier[~UnicodeMode]Assertion[~UnicodeMode, ~UnicodeSetsMode, ?NamedCaptureGroups][~UnicodeMode]ExtendedAtom[?NamedCaptureGroups]Quantifier[~UnicodeMode]ExtendedAtom[?NamedCaptureGroups]Assertion[UnicodeMode, UnicodeSetsMode, NamedCaptureGroups]::^$\b\B[+UnicodeMode](?=Disjunction[+UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])[+UnicodeMode](?!Disjunction[+UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])[~UnicodeMode]QuantifiableAssertion[?NamedCaptureGroups](?<=Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])(?<!Disjunction[?UnicodeMode, ?UnicodeSetsMode, ?NamedCaptureGroups])QuantifiableAssertion[NamedCaptureGroups]::(?=Disjunction[~UnicodeMode, ~UnicodeSetsMode, ?NamedCaptureGroups])(?!Disjunction[~UnicodeMode, ~UnicodeSetsMode, ?NamedCaptureGroups])ExtendedAtom[NamedCaptureGroups]::.\AtomEscape[~UnicodeMode, ?NamedCaptureGroups]\[lookahead =c]CharacterClass[~UnicodeMode, ~UnicodeSetsMode](GroupSpecifier[~UnicodeMode]optDisjunction[~UnicodeMode, ~UnicodeSetsMode, ?NamedCaptureGroups])(?:Disjunction[~UnicodeMode, ~UnicodeSetsMode, ?NamedCaptureGroups])InvalidBracedQuantifierExtendedPatternCharacterInvalidBracedQuantifier::{DecimalDigits[~Sep]}{DecimalDigits[~Sep],}{DecimalDigits[~Sep],DecimalDigits[~Sep]}ExtendedPatternCharacter::SourceCharacterbut not one of^$\.*+?()[|AtomEscape[UnicodeMode, NamedCaptureGroups]::[+UnicodeMode]DecimalEscape[~UnicodeMode]DecimalEscapebut only if theCapturingGroupNumber ofDecimalEscape is ≤CountLeftCapturingParensWithin(thePattern containingDecimalEscape)CharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode, ?NamedCaptureGroups][+NamedCaptureGroups]kGroupName[?UnicodeMode]CharacterEscape[UnicodeMode, NamedCaptureGroups]::ControlEscapecAsciiLetter0[lookahead ∉DecimalDigit]HexEscapeSequenceRegExpUnicodeEscapeSequence[?UnicodeMode][~UnicodeMode]LegacyOctalEscapeSequenceIdentityEscape[?UnicodeMode, ?NamedCaptureGroups]IdentityEscape[UnicodeMode, NamedCaptureGroups]::[+UnicodeMode]SyntaxCharacter[+UnicodeMode]/[~UnicodeMode]SourceCharacterIdentityEscape[?NamedCaptureGroups]SourceCharacterIdentityEscape[NamedCaptureGroups]::[~NamedCaptureGroups]SourceCharacterbut notc[+NamedCaptureGroups]SourceCharacterbut not one ofc orkClassAtomNoDash[UnicodeMode, NamedCaptureGroups]::SourceCharacterbut not one of\ or] or-\ClassEscape[?UnicodeMode, ?NamedCaptureGroups]\[lookahead =c]ClassEscape[UnicodeMode, NamedCaptureGroups]::b[+UnicodeMode]-[~UnicodeMode]cClassControlLetterCharacterClassEscape[?UnicodeMode]CharacterEscape[?UnicodeMode, ?NamedCaptureGroups]ClassControlLetter::DecimalDigit_Note

When the same left-hand sides occurs with both [+UnicodeMode] and [~UnicodeMode] guards it is to control the disambiguation priority.

B.1.2.1 Static Semantics: Early Errors

The semantics of22.2.1.1 is extended as follows:

ExtendedAtom::InvalidBracedQuantifier
  • It is a Syntax Error if any source text is matched by this production.

Additionally, the rules for the following productions are modified with the addition of thehighlighted text:

NonemptyClassRanges::ClassAtom-ClassAtomClassContentsNonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassContents

B.1.2.2 Static Semantics: CountLeftCapturingParensWithin and CountLeftCapturingParensBefore

In the definitions ofCountLeftCapturingParensWithin andCountLeftCapturingParensBefore, references to “Atom::(GroupSpecifieroptDisjunction) ” are to be interpreted as meaning “Atom::(GroupSpecifieroptDisjunction) ” or “ExtendedAtom::(GroupSpecifieroptDisjunction) ”.

B.1.2.3 Static Semantics: IsCharacterClass

The semantics of22.2.1.5 is extended as follows:

ClassAtomNoDash::\[lookahead =c]
  1. Returnfalse.

B.1.2.4 Static Semantics: CharacterValue

The semantics of22.2.1.6 is extended as follows:

ClassAtomNoDash::\[lookahead =c]
  1. Return the numeric value of U+005C (REVERSE SOLIDUS).
ClassEscape::cClassControlLetter
  1. Letch be the code point matched byClassControlLetter.
  2. Leti be the numeric value ofch.
  3. Return the remainder of dividingi by 32.
CharacterEscape::LegacyOctalEscapeSequence
  1. Return the MV ofLegacyOctalEscapeSequence (see12.9.4.3).

B.1.2.5 Runtime Semantics: CompileSubpattern

The semantics ofCompileSubpattern is extended as follows:

The rule forTerm::QuantifiableAssertionQuantifier is the same as forTerm::AtomQuantifier but withQuantifiableAssertion substituted forAtom.

The rule forTerm::ExtendedAtomQuantifier is the same as forTerm::AtomQuantifier but withExtendedAtom substituted forAtom.

The rule forTerm::ExtendedAtom is the same as forTerm::Atom but withExtendedAtom substituted forAtom.

B.1.2.6 Runtime Semantics: CompileAssertion

CompileAssertion rules for theAssertion::(?=Disjunction) andAssertion::(?!Disjunction) productions are also used for theQuantifiableAssertion productions, but withQuantifiableAssertion substituted forAssertion.

B.1.2.7 Runtime Semantics: CompileAtom

CompileAtom rules for theAtom productions except forAtom::PatternCharacter are also used for theExtendedAtom productions, but withExtendedAtom substituted forAtom. The following rules, with parameterdirection, are also added:

ExtendedAtom::\[lookahead =c]
  1. LetA be theCharSet containing the single character\ U+005C (REVERSE SOLIDUS).
  2. ReturnCharacterSetMatcher(rer,A,false,direction).
ExtendedAtom::ExtendedPatternCharacter
  1. Letch be the character represented byExtendedPatternCharacter.
  2. LetA be a one-elementCharSet containing the characterch.
  3. ReturnCharacterSetMatcher(rer,A,false,direction).

B.1.2.8 Runtime Semantics: CompileToCharSet

The semantics of22.2.2.9 is extended as follows:

The following two rules replace the corresponding rules ofCompileToCharSet.

NonemptyClassRanges::ClassAtom-ClassAtomClassContents
  1. LetA beCompileToCharSet of the firstClassAtom with argumentrer.
  2. LetB beCompileToCharSet of the secondClassAtom with argumentrer.
  3. LetC beCompileToCharSet ofClassContents with argumentrer.
  4. LetD beCharacterRangeOrUnion(rer,A,B).
  5. Return the union ofD andC.
NonemptyClassRangesNoDash::ClassAtomNoDash-ClassAtomClassContents
  1. LetA beCompileToCharSet ofClassAtomNoDash with argumentrer.
  2. LetB beCompileToCharSet ofClassAtom with argumentrer.
  3. LetC beCompileToCharSet ofClassContents with argumentrer.
  4. LetD beCharacterRangeOrUnion(rer,A,B).
  5. Return the union ofD andC.

In addition, the following rules are added toCompileToCharSet.

ClassEscape::cClassControlLetter
  1. Letcv be theCharacterValue of thisClassEscape.
  2. Letc be the character whose character value iscv.
  3. Return theCharSet containing the single characterc.
ClassAtomNoDash::\[lookahead =c]
  1. Return theCharSet containing the single character\ U+005C (REVERSE SOLIDUS).
Note
This production can only be reached from the sequence\c within a character class where it is not followed by an acceptable control character.

B.1.2.8.1 CharacterRangeOrUnion (rer,A,B )

The abstract operation CharacterRangeOrUnion takes argumentsrer (aRegExp Record),A (aCharSet), andB (aCharSet) and returns aCharSet. It performs the following steps when called:

  1. IfHasEitherUnicodeFlag(rer) isfalse, then
    1. IfA does not contain exactly one character orB does not contain exactly one character, then
      1. LetC be theCharSet containing the single character- U+002D (HYPHEN-MINUS).
      2. Return the union ofCharSetsA,B andC.
  2. ReturnCharacterRange(A,B).

B.1.2.9 Static Semantics: ParsePattern (patternText,u,v )

The semantics of22.2.3.4 is extended as follows:

The abstract operationParsePattern takes argumentspatternText (a sequence of Unicode code points),u (a Boolean), andv (a Boolean). It performs the following steps when called:

  1. Ifv istrue andu istrue, then
    1. LetparseResult be aList containing one or moreSyntaxError objects.
  2. Else ifv istrue, then
    1. LetparseResult beParseText(patternText,Pattern[+UnicodeMode, +UnicodeSetsMode, +NamedCaptureGroups]).
  3. Else ifu istrue, then
    1. LetparseResult beParseText(patternText,Pattern[+UnicodeMode, ~UnicodeSetsMode, +NamedCaptureGroups]).
  4. Else,
    1. LetparseResult beParseText(patternText,Pattern[~UnicodeMode, ~UnicodeSetsMode, ~NamedCaptureGroups]).
    2. IfparseResult is aParse Node andparseResult contains aGroupName, then
      1. SetparseResult toParseText(patternText,Pattern[~UnicodeMode, ~UnicodeSetsMode, +NamedCaptureGroups]).
  5. ReturnparseResult.

B.2 Additional Built-in Properties

When the ECMAScripthost is a web browser the following additional properties of the standard built-in objects are defined.

B.2.1 Additional Properties of the Global Object

The entries inTable 97 are added toTable 6.

Table 97: Additional Well-known Intrinsic Objects
Intrinsic Name Global Name ECMAScript Language Association
%escape%escape Theescape function (B.2.1.1)
%unescape%unescape Theunescape function (B.2.1.2)

B.2.1.1 escape (string )

This function is a property of theglobal object. It computes a new version of a String value in which certain code units have been replaced by a hexadecimal escape sequence.

When replacing a code unit of numeric value less than or equal to 0x00FF, a two-digit escape sequence of the form%xx is used. When replacing a code unit of numeric value strictly greater than 0x00FF, a four-digit escape sequence of the form%uxxxx is used.

It is the%escape% intrinsic object.

It performs the following steps when called:

  1. Setstring to ? ToString(string).
  2. Letlen be the length ofstring.
  3. LetR be the empty String.
  4. LetunescapedSet be thestring-concatenation ofthe ASCII word characters and"@*+-./".
  5. Letk be 0.
  6. Repeat, whilek <len,
    1. LetC be the code unit at indexk withinstring.
    2. IfunescapedSet containsC, then
      1. LetS beC.
    3. Else,
      1. Letn be the numeric value ofC.
      2. Ifn < 256, then
        1. Lethex be the String representation ofn, formatted as an uppercase hexadecimal number.
        2. LetS be thestring-concatenation of"%" andStringPad(hex, 2,"0",start).
      3. Else,
        1. Lethex be the String representation ofn, formatted as an uppercase hexadecimal number.
        2. LetS be thestring-concatenation of"%u" andStringPad(hex, 4,"0",start).
    4. SetR to thestring-concatenation ofR andS.
    5. Setk tok + 1.
  7. ReturnR.
Note

The encoding is partly based on the encoding described in RFC 1738, but the entire encoding specified in this standard is described above without regard to the contents of RFC 1738. This encoding does not reflect changes to RFC 1738 made by RFC 3986.

B.2.1.2 unescape (string )

This function is a property of theglobal object. It computes a new version of a String value in which each escape sequence of the sort that might be introduced by theescape function is replaced with the code unit that it represents.

It is the%unescape% intrinsic object.

It performs the following steps when called:

  1. Setstring to ? ToString(string).
  2. Letlen be the length ofstring.
  3. LetR be the empty String.
  4. Letk be 0.
  5. Repeat, whilek <len,
    1. LetC be the code unit at indexk withinstring.
    2. IfC is the code unit 0x0025 (PERCENT SIGN), then
      1. LethexDigits be the empty String.
      2. LetoptionalAdvance be 0.
      3. Ifk + 5 <len and the code unit at indexk + 1 withinstring is the code unit 0x0075 (LATIN SMALL LETTER U), then
        1. SethexDigits to thesubstring ofstring fromk + 2 tok + 6.
        2. SetoptionalAdvance to 5.
      4. Else ifk + 3 ≤len, then
        1. SethexDigits to thesubstring ofstring fromk + 1 tok + 3.
        2. SetoptionalAdvance to 2.
      5. LetparseResult beParseText(StringToCodePoints(hexDigits),HexDigits[~Sep]).
      6. IfparseResult is aParse Node, then
        1. Letn be the MV ofparseResult.
        2. SetC to the code unit whose numeric value isn.
        3. Setk tok +optionalAdvance.
    3. SetR to thestring-concatenation ofR andC.
    4. Setk tok + 1.
  6. ReturnR.

B.2.2 Additional Properties of the String.prototype Object

B.2.2.1 String.prototype.substr (start,length )

This method returns asubstring of the result of converting thethis value to a String, starting from indexstart and running forlength code units (or through the end of the String iflength isundefined). Ifstart is negative, it is treated assourceLength +start wheresourceLength is the length of the String. The resultis a String value, not a String object.

It performs the following steps when called:

  1. LetO be ? RequireObjectCoercible(this value).
  2. LetS be ? ToString(O).
  3. Letsize be the length ofS.
  4. LetintStart be ? ToIntegerOrInfinity(start).
  5. IfintStart = -∞, setintStart to 0.
  6. Else ifintStart < 0, setintStart tomax(size +intStart, 0).
  7. Else, setintStart tomin(intStart,size).
  8. Iflength isundefined, letintLength besize; otherwise letintLength be ? ToIntegerOrInfinity(length).
  9. SetintLength to the result ofclampingintLength between 0 andsize.
  10. LetintEnd bemin(intStart +intLength,size).
  11. Return thesubstring ofS fromintStart tointEnd.
Note

This method is intentionally generic; it does not require that itsthis value be a String object. Therefore it can be transferred to other kinds of objects for use as a method.

B.2.2.2 String.prototype.anchor (name )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"a","name",name).

B.2.2.2.1 CreateHTML (string,tag,attribute,value )

The abstract operation CreateHTML takes argumentsstring (anECMAScript language value),tag (a String),attribute (a String), andvalue (anECMAScript language value) and returns either anormal completion containing a String or athrow completion. It performs the following steps when called:

  1. Letstr be ? RequireObjectCoercible(string).
  2. LetS be ? ToString(str).
  3. Letp1 be thestring-concatenation of"<" andtag.
  4. Ifattribute is not the empty String, then
    1. LetV be ? ToString(value).
    2. LetescapedV be the String value that is the same asV except that each occurrence of the code unit 0x0022 (QUOTATION MARK) inV has been replaced with the six code unit sequence"&quot;".
    3. Setp1 to thestring-concatenation of:
      • p1
      • the code unit 0x0020 (SPACE)
      • attribute
      • the code unit 0x003D (EQUALS SIGN)
      • the code unit 0x0022 (QUOTATION MARK)
      • escapedV
      • the code unit 0x0022 (QUOTATION MARK)
  5. Letp2 be thestring-concatenation ofp1 and">".
  6. Letp3 be thestring-concatenation ofp2 andS.
  7. Letp4 be thestring-concatenation ofp3,"</",tag, and">".
  8. Returnp4.

B.2.2.3 String.prototype.big ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"big","","").

B.2.2.4 String.prototype.blink ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"blink","","").

B.2.2.5 String.prototype.bold ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"b","","").

B.2.2.6 String.prototype.fixed ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"tt","","").

B.2.2.7 String.prototype.fontcolor (color )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"font","color",color).

B.2.2.8 String.prototype.fontsize (size )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"font","size",size).

B.2.2.9 String.prototype.italics ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"i","","").

B.2.2.10 String.prototype.link (url )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"a","href",url).

B.2.2.11 String.prototype.small ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"small","","").

B.2.2.12 String.prototype.strike ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"strike","","").

B.2.2.13 String.prototype.sub ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"sub","","").

B.2.2.14 String.prototype.sup ( )

This method performs the following steps when called:

  1. LetS be thethis value.
  2. Return ? CreateHTML(S,"sup","","").

B.2.2.15 String.prototype.trimLeft ( )

Note

The property"trimStart" is preferred. The"trimLeft" property is provided principally for compatibility with old code. It is recommended that the"trimStart" property be used in new ECMAScript code.

The initial value of the"trimLeft" property is %String.prototype.trimStart%, defined in22.1.3.34.

B.2.2.16 String.prototype.trimRight ( )

Note

The property"trimEnd" is preferred. The"trimRight" property is provided principally for compatibility with old code. It is recommended that the"trimEnd" property be used in new ECMAScript code.

The initial value of the"trimRight" property is %String.prototype.trimEnd%, defined in22.1.3.33.

B.2.3 Additional Properties of the Date.prototype Object

B.2.3.1 Date.prototype.getYear ( )

Note

ThegetFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Ift isNaN, returnNaN.
  5. ReturnYearFromTime(LocalTime(t)) -1900𝔽.

B.2.3.2 Date.prototype.setYear (year )

Note

ThesetFullYear method is preferred for nearly all purposes, because it avoids the “year 2000 problem.”

This method performs the following steps when called:

  1. LetdateObject be thethis value.
  2. Perform ? RequireInternalSlot(dateObject,[[DateValue]]).
  3. Lett bedateObject.[[DateValue]].
  4. Lety be ? ToNumber(year).
  5. Ift isNaN, sett to+0𝔽; otherwise, sett toLocalTime(t).
  6. Letyyyy beMakeFullYear(y).
  7. Letd beMakeDay(yyyy,MonthFromTime(t),DateFromTime(t)).
  8. Letdate beMakeDate(d,TimeWithinDay(t)).
  9. Letu beTimeClip(UTC(date)).
  10. SetdateObject.[[DateValue]] tou.
  11. Returnu.

B.2.3.3 Date.prototype.toGMTString ( )

Note

ThetoUTCString method is preferred. This method is provided principally for compatibility with old code.

The initial value of the"toGMTString" property is %Date.prototype.toUTCString%, defined in21.4.4.43.

B.2.4 Additional Properties of the RegExp.prototype Object

B.2.4.1 RegExp.prototype.compile (pattern,flags )

This method performs the following steps when called:

  1. LetO be thethis value.
  2. Perform ? RequireInternalSlot(O,[[RegExpMatcher]]).
  3. Ifpatternis an Object andpattern has a[[RegExpMatcher]] internal slot, then
    1. Ifflags is notundefined, throw aTypeError exception.
    2. LetP bepattern.[[OriginalSource]].
    3. LetF bepattern.[[OriginalFlags]].
  4. Else,
    1. LetP bepattern.
    2. LetF beflags.
  5. Return ? RegExpInitialize(O,P,F).
Note

This method completely reinitializes thethis value RegExp with a new pattern and flags. An implementation may interpret use of this method as an assertion that the resulting RegExp object will be used multiple times and hence is a candidate for extra optimization.

B.3 Other Additional Features

B.3.1 Labelled Function Declarations

Prior to ECMAScript 2015, the specification ofLabelledStatement did not allow for the association of a statement label with aFunctionDeclaration. However, a labelledFunctionDeclaration was an allowable extension fornon-strict code and most browser-hosted ECMAScript implementations supported that extension. In ECMAScript 2015 and later, the grammar production forLabelledStatement permits use ofFunctionDeclaration as aLabelledItem but14.13.1 includes an Early Error rule that produces a Syntax Error if that occurs. That rule is modified with the addition of thehighlighted text:

LabelledItem:FunctionDeclaration
  • It is a Syntax Error if any source textthat isstrict mode code is matched by this production.
Note

Theearly error rules forWithStatement,IfStatement, andIterationStatement prevent these statements from containing a labelledFunctionDeclaration innon-strict code.

B.3.2 Block-Level Function Declarations Web Legacy Compatibility Semantics

Prior to ECMAScript 2015, the ECMAScript specification did not define the occurrence of aFunctionDeclaration as an element of aBlock statement'sStatementList. However, support for that form ofFunctionDeclaration was an allowable extension and most browser-hosted ECMAScript implementations permitted them. Unfortunately, the semantics of such declarations differ among those implementations. Because of these semantic differences, existing webECMAScript source text that usesBlock level function declarations is only portable among browser implementations if the usage only depends upon the semantic intersection of all of the browser implementations for such declarations. The following are the use cases that fall within that intersection semantics:

  1. A function is declared and only referenced within a single block.

  2. A function is declared and possibly used within a singleBlock but also referenced by an inner function definition that is not contained within that sameBlock.

    • One or moreFunctionDeclarations whoseBindingIdentifier is the namef occur within the function code of an enclosing functiong and that declaration is nested within aBlock.
    • No other declaration off that is not avar declaration occurs within the function code ofg.
    • There may be occurrences off as anIdentifierReference within theStatementList of theBlock containing the declaration off.
    • There is at least one occurrence off as anIdentifierReference within another functionh that is nested withing and no other declaration off shadows the references tof from withinh.
    • All invocations ofh occur after the declaration off has been evaluated.
  3. A function is declared and possibly used within a single block but also referenced within subsequent blocks.

    • One or moreFunctionDeclaration whoseBindingIdentifier is the namef occur within the function code of an enclosing functiong and that declaration is nested within aBlock.
    • No other declaration off that is not avar declaration occurs within the function code ofg.
    • There may be occurrences off as anIdentifierReference within theStatementList of theBlock containing the declaration off.
    • There is at least one occurrence off as anIdentifierReference within the function code ofg that lexically follows theBlock containing the declaration off.

The first use case is interoperable with the semantics ofBlock level function declarations provided by ECMAScript 2015. Any pre-existingECMAScript source text that employs that use case will operate using the Block level function declarations semantics defined by clauses10,14, and15.

ECMAScript 2015 interoperability for the second and third use cases requires the following extensions to the clause10, clause15, clause19.2.1 and clause16.1.7 semantics.

If an ECMAScript implementation has a mechanism for reporting diagnostic warning messages, a warning should be produced when code contains aFunctionDeclaration for which these compatibility semantics are applied and introduce observable differences from non-compatibility semantics. For example, if a var binding is not introduced because its introduction would create anearly error, a warning message should not be produced.

B.3.2.1 Changes to FunctionDeclarationInstantiation

DuringFunctionDeclarationInstantiation the following steps are performed in place of step29:

  1. Ifstrict isfalse, then
    1. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause, do
      1. LetF beStringValue of theBindingIdentifier off.
      2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forfunc andparameterNames does not containF, then
        1. NOTE: A var binding forF is only instantiated here if it is neither a VarDeclaredName, the name of a formal parameter, or anotherFunctionDeclaration.
        2. IfinstantiatedVarNames does not containF andF is not"arguments", then
          1. Perform ! varEnv.CreateMutableBinding(F,false).
          2. Perform ! varEnv.InitializeBinding(F,undefined).
          3. AppendF toinstantiatedVarNames.
        3. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclarationEvaluation algorithm provided in15.2.6:
          1. Letfenv be therunning execution context's VariableEnvironment.
          2. Letbenv be therunning execution context's LexicalEnvironment.
          3. Letfobj be ! benv.GetBindingValue(F,false).
          4. Perform ! fenv.SetMutableBinding(F,fobj,false).
          5. Returnunused.

B.3.2.2 Changes to GlobalDeclarationInstantiation

DuringGlobalDeclarationInstantiation the following steps are performed in place of step12:

  1. Perform the following steps:
    1. Letstrict beIsStrict ofscript.
    2. Ifstrict isfalse, then
      1. LetdeclaredFunctionOrVarNames be thelist-concatenation ofdeclaredFunctionNames anddeclaredVarNames.
      2. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause Contained withinscript, do
        1. LetF beStringValue of theBindingIdentifier off.
        2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forscript, then
          1. Ifenv.HasLexicalDeclaration(F) isfalse, then
            1. LetfnDefinable be ? env.CanDeclareGlobalVar(F).
            2. IffnDefinable istrue, then
              1. NOTE: A var binding forF is only instantiated here if it is neither a VarDeclaredName nor the name of anotherFunctionDeclaration.
              2. IfdeclaredFunctionOrVarNames does not containF, then
                1. Perform ? env.CreateGlobalVarBinding(F,false).
                2. AppendF todeclaredFunctionOrVarNames.
              3. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclarationEvaluation algorithm provided in15.2.6:
                1. Letgenv be therunning execution context's VariableEnvironment.
                2. Letbenv be therunning execution context's LexicalEnvironment.
                3. Letfobj be ! benv.GetBindingValue(F,false).
                4. Perform ? genv.SetMutableBinding(F,fobj,false).
                5. Returnunused.

B.3.2.3 Changes to EvalDeclarationInstantiation

DuringEvalDeclarationInstantiation the following steps are performed in place of step13:

  1. Ifstrict isfalse, then
    1. LetdeclaredFunctionOrVarNames be thelist-concatenation ofdeclaredFunctionNames anddeclaredVarNames.
    2. For eachFunctionDeclarationf that is directly contained in theStatementList of aBlock,CaseClause, orDefaultClause Contained withinbody, do
      1. LetF beStringValue of theBindingIdentifier off.
      2. If replacing theFunctionDeclarationf with aVariableStatement that hasF as aBindingIdentifier would not produce any Early Errors forbody, then
        1. LetbindingExists befalse.
        2. LetthisEnv belexEnv.
        3. Assert: The following loop will terminate.
        4. Repeat, whilethisEnv is notvarEnv,
          1. IfthisEnvis not an ObjectEnvironment Record, then
            1. If ! thisEnv.HasBinding(F) istrue, then
              1. LetbindingExists betrue.
          2. SetthisEnv tothisEnv.[[OuterEnv]].
        5. IfbindingExists isfalse andvarEnv is aGlobal Environment Record, then
          1. IfvarEnv.HasLexicalDeclaration(F) isfalse, then
            1. LetfnDefinable be ? varEnv.CanDeclareGlobalVar(F).
          2. Else,
            1. LetfnDefinable befalse.
        6. Else,
          1. LetfnDefinable betrue.
        7. IfbindingExists isfalse andfnDefinable istrue, then
          1. IfdeclaredFunctionOrVarNames does not containF, then
            1. IfvarEnv is aGlobal Environment Record, then
              1. Perform ? varEnv.CreateGlobalVarBinding(F,true).
            2. Else,
              1. LetbindingExists be ! varEnv.HasBinding(F).
              2. IfbindingExists isfalse, then
                1. Perform ! varEnv.CreateMutableBinding(F,true).
                2. Perform ! varEnv.InitializeBinding(F,undefined).
            3. AppendF todeclaredFunctionOrVarNames.
          2. When theFunctionDeclarationf is evaluated, perform the following steps in place of theFunctionDeclarationEvaluation algorithm provided in15.2.6:
            1. Letgenv be therunning execution context's VariableEnvironment.
            2. Letbenv be therunning execution context's LexicalEnvironment.
            3. Letfobj be ! benv.GetBindingValue(F,false).
            4. Perform ? genv.SetMutableBinding(F,fobj,false).
            5. Returnunused.

B.3.2.4 Changes to Block Static Semantics: Early Errors

The rules for the following production in14.2.1 are modified with the addition of thehighlighted text:

Block:{StatementList}

B.3.2.5 Changes toswitch Statement Static Semantics: Early Errors

The rules for the following production in14.12.1 are modified with the addition of thehighlighted text:

SwitchStatement:switch(Expression)CaseBlock

B.3.2.6 Changes to BlockDeclarationInstantiation

DuringBlockDeclarationInstantiation the following steps are performed in place of step3.a.ii.1:

  1. If ! env.HasBinding(dn) isfalse, then
    1. Perform ! env.CreateMutableBinding(dn,false).

DuringBlockDeclarationInstantiation the following steps are performed in place of step3.b.iii:

  1. Perform the following steps:
    1. If the binding forfn inenv is an uninitialized binding, then
      1. Perform ! env.InitializeBinding(fn,fo).
    2. Else,
      1. Assert:d is aFunctionDeclaration.
      2. Perform ! env.SetMutableBinding(fn,fo,false).

B.3.3 FunctionDeclarations in IfStatement Statement Clauses

The following augments theIfStatement production in14.6:

IfStatement[Yield, Await, Return]:if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default]elseStatement[?Yield, ?Await, ?Return]if(Expression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]elseFunctionDeclaration[?Yield, ?Await, ~Default]if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default]elseFunctionDeclaration[?Yield, ?Await, ~Default]if(Expression[+In, ?Yield, ?Await])FunctionDeclaration[?Yield, ?Await, ~Default][lookahead ≠else]

This production only applies when parsingnon-strict code.Source text matched by this production is processed as if each matching occurrence ofFunctionDeclaration[?Yield, ?Await, ~Default] was the soleStatementListItem of aBlockStatement occupying that position in the source text. The semantics of such a syntheticBlockStatement includes the web legacy compatibility semantics specified inB.3.2.

B.3.4 VariableStatements in Catch Blocks

The content of subclause14.15.1 is replaced with the following:

Catch:catch(CatchParameter)BlockNote

TheBlock of aCatch clause may containvar declarations that bind a name that is also bound by theCatchParameter. At runtime, such bindings are instantiated in the VariableDeclarationEnvironment. They do not shadow the same-named bindings introduced by theCatchParameter and hence theInitializer for suchvar declarations will assign to the corresponding catch parameter rather than thevar binding.

This modified behaviour also applies tovar andfunction declarations introduced bydirect eval calls contained within theBlock of aCatch clause. This change is accomplished by modifying the algorithm of19.2.1.3 as follows:

Step3.d.i.2.a.i is replaced by:

  1. IfthisEnv is not theEnvironment Record for aCatch clause, throw aSyntaxError exception.

Step13.b.ii.4.a.i.i is replaced by:

  1. IfthisEnv is not theEnvironment Record for aCatch clause, letbindingExists betrue.

B.3.5 Initializers in ForIn Statement Heads

The following augments theForInOfStatement production in14.7.5:

ForInOfStatement[Yield, Await, Return]:for(varBindingIdentifier[?Yield, ?Await]Initializer[~In, ?Yield, ?Await]inExpression[+In, ?Yield, ?Await])Statement[?Yield, ?Await, ?Return]

This production only applies when parsingnon-strict code.

Thestatic semantics ofContainsDuplicateLabels in8.3.1 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsDuplicateLabels ofStatement with argumentlabelSet.

Thestatic semantics ofContainsUndefinedBreakTarget in8.3.2 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsUndefinedBreakTarget ofStatement with argumentlabelSet.

Thestatic semantics ofContainsUndefinedContinueTarget in8.3.3 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. ReturnContainsUndefinedContinueTarget ofStatement with argumentsiterationSet and « ».

Thestatic semantics ofIsDestructuring in14.7.5.2 are augmented with the following:

BindingIdentifier:Identifieryieldawait
  1. Returnfalse.

Thestatic semantics ofVarDeclaredNames in8.2.6 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. Letnames1 be theBoundNames ofBindingIdentifier.
  2. Letnames2 be theVarDeclaredNames ofStatement.
  3. Return thelist-concatenation ofnames1 andnames2.

Thestatic semantics ofVarScopedDeclarations in8.2.7 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. Letdeclarations1 be «BindingIdentifier ».
  2. Letdeclarations2 be theVarScopedDeclarations ofStatement.
  3. Return thelist-concatenation ofdeclarations1 anddeclarations2.

Theruntime semantics ofForInOfLoopEvaluation in14.7.5.5 are augmented with the following:

ForInOfStatement:for(varBindingIdentifierInitializerinExpression)Statement
  1. LetbindingId beStringValue ofBindingIdentifier.
  2. Letlhs be ? ResolveBinding(bindingId).
  3. IfIsAnonymousFunctionDefinition(Initializer) istrue, then
    1. Letvalue be ? NamedEvaluation ofInitializer with argumentbindingId.
  4. Else,
    1. Letrhs be ? Evaluation ofInitializer.
    2. Letvalue be ? GetValue(rhs).
  5. Perform ? PutValue(lhs,value).
  6. LetkeyResult be ? ForIn/OfHeadEvaluation(« »,Expression,enumerate).
  7. Return ? ForIn/OfBodyEvaluation(BindingIdentifier,Statement,keyResult,enumerate,var-binding,labelSet).

B.3.6 The[[IsHTMLDDA]] Internal Slot

An[[IsHTMLDDA]] internal slot may exist onhost-defined objects. Objects with an[[IsHTMLDDA]] internal slot behave likeundefined in theToBoolean andIsLooselyEqualabstract operations and when used as an operand for thetypeof operator.

Note

Objects with an[[IsHTMLDDA]] internal slot are never created by this specification. However, thedocument.all object in web browsers is ahost-definedexotic object with this slot that exists for web compatibility purposes. There are no other known examples of this type of object and implementations should not create any with the exception ofdocument.all.

B.3.6.1 Changes to ToBoolean

The following step replaces step3 ofToBoolean:

  1. Ifargumentis an Object andargument has an[[IsHTMLDDA]] internal slot, returnfalse.

B.3.6.2 Changes to IsLooselyEqual

The following steps replace step4 ofIsLooselyEqual:

  1. Perform the following steps:
    1. Ifxis an Object,x has an[[IsHTMLDDA]] internal slot, andy is eitherundefined ornull, returntrue.
    2. Ifx is eitherundefined ornull,yis an Object, andy has an[[IsHTMLDDA]] internal slot, returntrue.

B.3.6.3 Changes to thetypeof Operator

The following step replaces step12 ofthe evaluation semantics fortypeof:

  1. Ifval has an[[IsHTMLDDA]] internal slot, return"undefined".

B.3.7 Non-default behaviour in HostMakeJobCallback

TheHostMakeJobCallback abstract operation allowshosts which are web browsers to specify non-default behaviour.

B.3.8 Non-default behaviour in HostEnsureCanAddPrivateElement

TheHostEnsureCanAddPrivateElement abstract operation allowshosts which are web browsers to specify non-default behaviour.

C The Strict Mode of ECMAScript

The strict mode restriction and exceptions

D Host Layering Points

See4.2 for the definition ofhost.

D.1 Host Hooks

HostCallJobCallback(...)

HostEnqueueFinalizationRegistryCleanupJob(...)

HostEnqueueGenericJob(...)

HostEnqueuePromiseJob(...)

HostEnqueueTimeoutJob(...)

HostEnsureCanCompileStrings(...)

HostFinalizeImportMeta(...)

HostGetImportMetaProperties(...)

HostGrowSharedArrayBuffer(...)

HostHasSourceTextAvailable(...)

HostLoadImportedModule(...)

HostMakeJobCallback(...)

HostPromiseRejectionTracker(...)

HostResizeArrayBuffer(...)

InitializeHostDefinedRealm(...)

D.2 Host-defined Fields

[[HostDefined]] onRealm Records: SeeTable 24.

[[HostDefined]] onScript Records: SeeTable 40.

[[HostDefined]] onModule Records: SeeTable 41.

[[HostDefined]] onJobCallback Records: SeeTable 28.

[[HostSynchronizesWith]] on Candidate Executions: SeeTable 96.

[[IsHTMLDDA]]: SeeB.3.6.

D.3 Host-defined Objects

Theglobal object: See clause19.

D.4 Running Jobs

Preparation steps before, and cleanup steps after, invocation ofJobAbstract Closures. See9.5.

D.5 Internal Methods of Exotic Objects

Any of the essential internal methods inTable 4 for anyexotic object not specified within this specification.

D.6 Built-in Objects and Methods

Any built-in objects and methods not defined within this specification, except as restricted in17.1.

E Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact

9.1.1.4.15-9.1.1.4.18 Edition 5 and 5.1 used a property existence test to determine whether aglobal object property corresponding to a new global declaration already existed. ECMAScript 2015 uses an own property existence test. This corresponds to what has been most commonly implemented by web browsers.

10.4.2.1: The 5th Edition moved the capture of the current array length prior to theinteger conversion of thearray index or new length value. However, the captured length value could become invalid if the conversion process has the side-effect of changing the array length. ECMAScript 2015 specifies that the current array length must be captured after the possible occurrence of such side-effects.

21.4.1.31: Previous editions permitted theTimeClip abstract operation to return either+0𝔽 or-0𝔽 as the representation of a 0time value. ECMAScript 2015 specifies that+0𝔽 always returned. This means that for ECMAScript 2015 thetime value of a Date is never observably-0𝔽 and methods that returntime values never return-0𝔽.

21.4.1.32: If a UTC offset representation is not present, the local time zone is used. Edition 5.1 incorrectly stated that a missing time zone should be interpreted as"z".

21.4.4.36: If the year cannot be represented using the Date Time String Format specified in21.4.1.32 a RangeError exception is thrown. Previous editions did not specify the behaviour for that case.

21.4.4.41: Previous editions did not specify the value returned byDate.prototype.toString when thetime value isNaN. ECMAScript 2015 specifies the result to be the String value"Invalid Date".

22.2.4.1,22.2.6.13.1: Any LineTerminator code points in the value of the"source" property of a RegExp instance must be expressed using an escape sequence. Edition 5.1 only required the escaping of/.

22.2.6.8,22.2.6.11: In previous editions, the specifications forString.prototype.match andString.prototype.replace was incorrect for cases where the pattern argument was a RegExp value whoseglobal flag is set. The previous specifications stated that for each attempt to match the pattern, iflastIndex did not change, it should be incremented by 1. The correct behaviour is thatlastIndex should be incremented by 1 only if the pattern matched the empty String.

23.1.3.30: Previous editions did not specify how aNaN value returned by acomparefn was interpreted byArray.prototype.sort. ECMAScript 2015 specifies that such as value is treated as if+0𝔽 was returned from thecomparefn. ECMAScript 2015 also specifies thatToNumber is applied to the result returned by acomparefn. In previous editions, the effect of acomparefn result thatis not a Number value wasimplementation-defined. In practice, implementations callToNumber.

F Additions and Changes That Introduce Incompatibilities with Prior Editions

6.2.5: In ECMAScript 2015, Function calls are not allowed to return aReference Record.

7.1.4.1: In ECMAScript 2015,ToNumber applied to a String value now recognizes and convertsBinaryIntegerLiteral andOctalIntegerLiteral numeric strings. In previous editions such strings were converted toNaN.

9.3: In ECMAScript 2018, Template objects are canonicalized based onParse Node (source location), instead of across all occurrences of that template literal or tagged template in aRealm in previous editions.

12.2: In ECMAScript 2016, Unicode 8.0.0 or higher is mandated, as opposed to ECMAScript 2015 which mandated Unicode 5.1. In particular, this caused U+180E MONGOLIAN VOWEL SEPARATOR, which was in theSpace_Separator (Zs) category and thus treated as whitespace in ECMAScript 2015, to be moved to theFormat (Cf) category (as of Unicode 6.3.0). This causes whitespace-sensitive methods to behave differently. For example,"\u180E".trim().length was0 in previous editions, but1 in ECMAScript 2016 and later. Additionally, ECMAScript 2017 mandated always using the latest version of the Unicode Standard.

12.7: In ECMAScript 2015, the valid code points for anIdentifierName are specified in terms of the Unicode properties “ID_Start” and “ID_Continue”. In previous editions, the validIdentifierName orIdentifier code points were specified by enumerating various Unicode code point categories.

12.10.1: In ECMAScript 2015, Automatic Semicolon Insertion adds a semicolon at the end of a do-while statement if the semicolon is missing. This change aligns the specification with the actual behaviour of most existing implementations.

13.2.5.1: In ECMAScript 2015, it is no longer anearly error to have duplicate property names in Object Initializers.

13.15.1: In ECMAScript 2015,strict mode code containing an assignment to an immutable binding such as the function name of aFunctionExpression does not produce anearly error. Instead it produces a runtime error.

14.2: In ECMAScript 2015, aStatementList beginning with the token let followed by the input elementsLineTerminator thenIdentifier is the start of aLexicalDeclaration. In previous editions, automatic semicolon insertion would always insert a semicolon before theIdentifier input element.

14.5: In ECMAScript 2015, aStatementListItem beginning with the tokenlet followed by the token[ is the start of aLexicalDeclaration. In previous editions such a sequence would be the start of anExpressionStatement.

14.6.2: In ECMAScript 2015, the normal result of anIfStatement is never the valueempty. If noStatement part is evaluated or if the evaluatedStatement part produces anormal completion containingempty, the result of theIfStatement isundefined.

14.7: In ECMAScript 2015, if the( token of a for statement is immediately followed by the token sequencelet [ then thelet is treated as the start of aLexicalDeclaration. In previous editions such a token sequence would be the start of anExpression.

14.7: In ECMAScript 2015, if the ( token of a for-in statement is immediately followed by the token sequencelet [ then thelet is treated as the start of aForDeclaration. In previous editions such a token sequence would be the start of anLeftHandSideExpression.

14.7: Prior to ECMAScript 2015, an initialization expression could appear as part of theVariableDeclaration that precedes theinkeyword. In ECMAScript 2015, theForBinding in that same position does not allow the occurrence of such an initializer. In ECMAScript 2017, such an initializer is permitted only innon-strict code.

14.7: In ECMAScript 2015, the result of evaluating anIterationStatement is never anormal completion whose[[Value]] isempty. If theStatement part of anIterationStatement is not evaluated or if the final evaluation of theStatement part produces anormal completion whose[[Value]] isempty, the result of evaluating theIterationStatement is anormal completion whose[[Value]] isundefined.

14.11.2: In ECMAScript 2015, the result of evaluating aWithStatement is never anormal completion whose[[Value]] isempty. If evaluation of theStatement part of aWithStatement produces anormal completion whose[[Value]] isempty, the result of evaluating theWithStatement is anormal completion whose[[Value]] isundefined.

14.12.4: In ECMAScript 2015, the result of evaluating aSwitchStatement is never anormal completion whose[[Value]] isempty. If evaluation of theCaseBlock part of aSwitchStatement produces anormal completion whose[[Value]] isempty, the result of evaluating theSwitchStatement is anormal completion whose[[Value]] isundefined.

14.15: In ECMAScript 2015, it is anearly error for aCatch clause to contain avar declaration for the sameIdentifier that appears as theCatch clause parameter. In previous editions, such a variable declaration would be instantiated in the enclosing variable environment but the declaration'sInitializer value would be assigned to theCatch parameter.

14.15,19.2.1.3: In ECMAScript 2015, a runtimeSyntaxError is thrown if aCatch clause evaluates a non-strict directeval whose eval code includes avar orFunctionDeclaration declaration that binds the sameIdentifier that appears as theCatch clause parameter.

14.15.3: In ECMAScript 2015, the result of aTryStatement is never the valueempty. If theBlock part of aTryStatement evaluates to anormal completion containingempty, the result of theTryStatement isundefined. If theBlock part of aTryStatement evaluates to athrow completion and it has aCatch part that evaluates to anormal completion containingempty, the result of theTryStatement isundefined if there is noFinally clause or if itsFinally clause evaluates to anemptynormal completion.

15.4.5 In ECMAScript 2015, thefunction objects that are created as the values of the[[Get]] or[[Set]] attribute ofaccessor properties in anObjectLiteral are notconstructor functions and they do not have a"prototype" own property. In the previous edition, they wereconstructors and had a"prototype" property.

20.1.2.6: In ECMAScript 2015, if the argument toObject.freeze is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.8: In ECMAScript 2015, if the argument toObject.getOwnPropertyDescriptor is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.10: In ECMAScript 2015, if the argument toObject.getOwnPropertyNames is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.12: In ECMAScript 2015, if the argument toObject.getPrototypeOf is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.16: In ECMAScript 2015, if the argument toObject.isExtensible is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.17: In ECMAScript 2015, if the argument toObject.isFrozen is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.18: In ECMAScript 2015, if the argument toObject.isSealed is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.19: In ECMAScript 2015, if the argument toObject.keys is not an object an attempt is made to coerce the argument usingToObject. If the coercion is successful the result is used in place of the original argument value. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.20: In ECMAScript 2015, if the argument toObject.preventExtensions is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.1.2.22: In ECMAScript 2015, if the argument toObject.seal is not an object it is treated as if it was a non-extensibleordinary object with no own properties. In the previous edition, a non-object argument always causes aTypeError to be thrown.

20.2.3.2: In ECMAScript 2015, the[[Prototype]] internal slot of a bound function is set to the[[GetPrototypeOf]] value of its target function. In the previous edition,[[Prototype]] was always set to%Function.prototype%.

20.2.4.1: In ECMAScript 2015, the"length" property of function instances is configurable. In previous editions it was non-configurable.

20.5.6.2: In ECMAScript 2015, the[[Prototype]] internal slot of aNativeErrorconstructor is the Errorconstructor. In previous editions it was theFunction prototype object.

21.4.4 In ECMAScript 2015, theDate prototype object is not a Date instance. In previous editions it was a Date instance whose TimeValue wasNaN.

22.1.3.12 In ECMAScript 2015, theString.prototype.localeCompare function must treat Strings that are canonically equivalent according to the Unicode Standard as being identical. In previous editions implementations were permitted to ignore canonical equivalence and could instead use a bit-wise comparison.

22.1.3.28 and22.1.3.30 In ECMAScript 2015, lowercase/upper conversion processing operates on code points. In previous editions such the conversion processing was only applied to individual code units. The only affected code points are those in the Deseret block of Unicode.

22.1.3.32 In ECMAScript 2015, theString.prototype.trim method is defined to recognize white space code points that may exist outside of the Unicode BMP. However, as of Unicode 7 no such code points are defined. In previous editions such code points would not have been recognized as white space.

22.2.4.1 In ECMAScript 2015, If thepattern argument is a RegExp instance and theflags argument is notundefined, a new RegExp instance is created just likepattern except thatpattern's flags are replaced by the argumentflags. In previous editions aTypeError exception was thrown whenpattern was a RegExp instance andflags was notundefined.

22.2.6 In ECMAScript 2015, theRegExp prototype object is not a RegExp instance. In previous editions it was a RegExp instance whose pattern is the empty String.

22.2.6 In ECMAScript 2015,"source","global","ignoreCase", and"multiline" areaccessor properties defined on theRegExp prototype object. In previous editions they weredata properties defined on RegExp instances.

25.4.15: In ECMAScript 2019,Atomics.wake has been renamed toAtomics.notify to prevent confusion withAtomics.wait.

27.1.4.4,27.6.3.6: In ECMAScript 2019, the number ofJobs enqueued byawait was reduced, which could create an observable difference in resolution order between athen() call and anawait expression.

G Colophon

This specification is authored onGitHub in a plaintext source format calledEcmarkup. Ecmarkup is an HTML and Markdown dialect that provides a framework and toolset for authoring ECMAScript specifications in plaintext and processing the specification into a full-featured HTML rendering that follows the editorial conventions for this document. Ecmarkup builds on and integrates a number of other formats and technologies includingGrammarkdown for defining syntax andEcmarkdown for authoring algorithm steps. PDF renderings of this specification are produced by printing the HTML rendering to a PDF.

Prior editions of this specification were authored using Word—the Ecmarkup source text that formed the basis of this edition was produced by converting the ECMAScript 2015 Word document to Ecmarkup using an automated conversion tool.

H Bibliography

  1. IEEE 754-2019:IEEE Standard for Floating-Point Arithmetic. Institute of Electrical and Electronic Engineers, New York (2019)Note

    There are no normative changes between IEEE 754-2008 and IEEE 754-2019 that affect the ECMA-262 specification.

  2. The Unicode Standard, available at <https://unicode.org/versions/latest>
  3. Unicode Technical Note #5: Canonical Equivalence in Applications, available at <https://unicode.org/notes/tn5/>
  4. Unicode Technical Standard #10: Unicode Collation Algorithm, available at <https://unicode.org/reports/tr10/>
  5. Unicode Standard Annex #15, Unicode Normalization Forms, available at <https://unicode.org/reports/tr15/>
  6. Unicode Standard Annex #18: Unicode Regular Expressions, available at <https://unicode.org/reports/tr18/>
  7. Unicode Standard Annex #24: UnicodeScript Property, available at <https://unicode.org/reports/tr24/>
  8. Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, available at <https://unicode.org/reports/tr31/>
  9. Unicode Standard Annex #44: Unicode Character Database, available at <https://unicode.org/reports/tr44/>
  10. Unicode Technical Standard #51: Unicode Emoji, available at <https://unicode.org/reports/tr51/>
  11. IANA Time Zone Database, available at <https://www.iana.org/time-zones>
  12. ISO 8601:2004(E)Data elements and interchange formats — Information interchange — Representation of dates and times
  13. RFC 1738 “Uniform Resource Locators (URL)”, available at <https://tools.ietf.org/html/rfc1738>
  14. RFC 2396 “Uniform Resource Identifiers (URI): Generic Syntax”, available at <https://tools.ietf.org/html/rfc2396>
  15. RFC 3629 “UTF-8, a transformation format of ISO 10646”, available at <https://tools.ietf.org/html/rfc3629>
  16. RFC 7231 “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, available at <https://tools.ietf.org/html/rfc7231>

I Copyright & Software License

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web:https://ecma-international.org/

Copyright Notice

© 2024 Ecma International

By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions.

Permission under Ecma’s copyright to copy, modify, prepare derivative works of, and distribute this work, with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the work or portions thereof, including modifications:

  1. (i) The full text of this COPYRIGHT NOTICE AND COPYRIGHT LICENSE in a location viewable to users of the redistributed or derivative work.
  2. (ii) Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the Ecma alternative copyright notice should be included.
  3. (iii) Notice of any changes or modifications, through a copyright statement on the document such as “This document includes material copied from or derived from [title and URI of the Ecma document]. Copyright © Ecma International.”

Disclaimers

THIS WORK IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the work without specific, written prior permission. Title to copyright in this work will at all times remain with copyright holders.

Software License

All Software contained in this document ("Software") is protected by copyright and is being made available under the "BSD License", included below. This Software may be subject to third party rights (rights from parties other than Ecma International), including patent rights, and no licenses under such third party rights are granted under this license even if the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AThttps://ecma-international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Syntax-Directed Operations
PermalinkPin

[8]ページ先頭

©2009-2025 Movatter.jp