Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vitali convergence theorem

From Wikipedia, the free encyclopedia
Mathematical theorem

Inreal analysis andmeasure theory, theVitali convergence theorem, named after theItalianmathematicianGiuseppe Vitali, is a generalization of the better-knowndominated convergence theorem ofHenri Lebesgue. It is a characterization of the convergence inLp in terms of convergence in measure and a condition related touniform integrability.

Preliminary definitions

[edit]

Let(X,A,μ){\displaystyle (X,{\mathcal {A}},\mu )} be ameasure space, i.e.μ:A[0,]{\displaystyle \mu :{\mathcal {A}}\to [0,\infty ]} is a set function such thatμ()=0{\displaystyle \mu (\emptyset )=0} andμ{\displaystyle \mu } is countably-additive. All functions considered in the sequel will be functionsf:XK{\displaystyle f:X\to \mathbb {K} }, whereK=R{\displaystyle \mathbb {K} =\mathbb {R} } orC{\displaystyle \mathbb {C} }. We adopt the following definitions according to Bogachev's terminology.[1]


Whenμ(X)<{\displaystyle \mu (X)<\infty }, a set of functionsFL1(X,A,μ){\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is uniformly integrable if and only if it is bounded inL1(X,A,μ){\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. If, in addition,μ{\displaystyle \mu } is atomless, then the uniform integrability is equivalent to the uniform absolute continuity of integrals.

Finite measure case

[edit]

Let(X,A,μ){\displaystyle (X,{\mathcal {A}},\mu )} be a measure space withμ(X)<{\displaystyle \mu (X)<\infty }. Let(fn)Lp(X,A,μ){\displaystyle (f_{n})\subset L^{p}(X,{\mathcal {A}},\mu )} andf{\displaystyle f} be anA{\displaystyle {\mathcal {A}}}-measurable function. Then, the following are equivalent :

  1. fLp(X,A,μ){\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )} and(fn){\displaystyle (f_{n})} converges tof{\displaystyle f} inLp(X,A,μ){\displaystyle L^{p}(X,{\mathcal {A}},\mu )} ;
  2. The sequence of functions(fn){\displaystyle (f_{n})} converges inμ{\displaystyle \mu }-measure tof{\displaystyle f} and(|fn|p)n1{\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable ;


For a proof, see Bogachev's monograph "Measure Theory, Volume I".[1]

Infinite measure case

[edit]

Let(X,A,μ){\displaystyle (X,{\mathcal {A}},\mu )} be a measure space and1p<{\displaystyle 1\leq p<\infty }. Let(fn)n1Lp(X,A,μ){\displaystyle (f_{n})_{n\geq 1}\subseteq L^{p}(X,{\mathcal {A}},\mu )} andfLp(X,A,μ){\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )}. Then,(fn){\displaystyle (f_{n})} converges tof{\displaystyle f} inLp(X,A,μ){\displaystyle L^{p}(X,{\mathcal {A}},\mu )} if and only if the following holds :

  1. The sequence of functions(fn){\displaystyle (f_{n})} converges inμ{\displaystyle \mu }-measure tof{\displaystyle f} ;
  2. (fn){\displaystyle (f_{n})} has uniformly absolutely continuous integrals;
  3. For everyε>0{\displaystyle \varepsilon >0}, there existsXεA{\displaystyle X_{\varepsilon }\in {\mathcal {A}}} such thatμ(Xε)<{\displaystyle \mu (X_{\varepsilon })<\infty } andsupn1XXε|fn|pdμ<ε.{\displaystyle \sup _{n\geq 1}\int _{X\setminus X_{\varepsilon }}|f_{n}|^{p}\,d\mu <\varepsilon .}

Whenμ(X)<{\displaystyle \mu (X)<\infty }, the third condition becomes superfluous (one can simply takeXε=X{\displaystyle X_{\varepsilon }=X}) and the first two conditions give the usual form of Lebesgue-Vitali's convergence theorem originally stated for measure spaces with finite measure. In this case, one can show that conditions 1 and 2 imply that the sequence(|fn|p)n1{\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable.

Converse of the theorem

[edit]

Let(X,A,μ){\displaystyle (X,{\mathcal {A}},\mu )} be measure space. Let(fn)n1L1(X,A,μ){\displaystyle (f_{n})_{n\geq 1}\subseteq L^{1}(X,{\mathcal {A}},\mu )} and assume thatlimnAfndμ{\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu } exists for everyAA{\displaystyle A\in {\mathcal {A}}}. Then, the sequence(fn){\displaystyle (f_{n})} is bounded inL1(X,A,μ){\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. In addition, there existsfL1(X,A,μ){\displaystyle f\in L^{1}(X,{\mathcal {A}},\mu )} such thatlimnAfndμ=Afdμ{\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu =\int _{A}f\,d\mu } for everyAA{\displaystyle A\in {\mathcal {A}}}.

Whenμ(X)<{\displaystyle \mu (X)<\infty }, this implies that(fn){\displaystyle (f_{n})} is uniformly integrable.

For a proof, see Bogachev's monograph "Measure Theory, Volume I".[1]

Citations

[edit]
  1. ^abcBogachev, Vladimir I. (2007).Measure Theory Volume I. New York: Springer. pp. 267–271.ISBN 978-3-540-34513-8.
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vitali_convergence_theorem&oldid=1258651797"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp