Inmathematics , theVitali–Hahn–Saks theorem , introduced byVitali (1907 ),Hahn (1922 ), andSaks (1933 ), proves that under some conditions a sequence ofmeasures converging point-wise does so uniformly and the limit is also a measure.
Statement of the theorem [ edit ] If( S , B , m ) {\displaystyle (S,{\mathcal {B}},m)} is ameasure space withm ( S ) < ∞ , {\displaystyle m(S)<\infty ,} and a sequenceλ n {\displaystyle \lambda _{n}} ofcomplex measures . Assuming that eachλ n {\displaystyle \lambda _{n}} isabsolutely continuous with respect tom , {\displaystyle m,} and that for allB ∈ B {\displaystyle B\in {\mathcal {B}}} the finite limits existlim n → ∞ λ n ( B ) = λ ( B ) {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)} . Then the absolute continuity of theλ n {\displaystyle \lambda _{n}} with respect tom {\displaystyle m} is uniform inn {\displaystyle n} , that is,lim B m ( B ) = 0 {\displaystyle \lim _{B}m(B)=0} implies thatlim B λ n ( B ) = 0 {\displaystyle \lim _{B}\lambda _{n}(B)=0} uniformly inn {\displaystyle n} . Alsoλ {\displaystyle \lambda } is countably additive onB {\displaystyle {\mathcal {B}}} .
Given a measure space( S , B , m ) , {\displaystyle (S,{\mathcal {B}},m),} a distance can be constructed onB 0 , {\displaystyle {\mathcal {B}}_{0},} the set of measurable setsB ∈ B {\displaystyle B\in {\mathcal {B}}} withm ( B ) < ∞ . {\displaystyle m(B)<\infty .} This is done by defining
d ( B 1 , B 2 ) = m ( B 1 Δ B 2 ) , {\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),} whereB 1 Δ B 2 = ( B 1 ∖ B 2 ) ∪ ( B 2 ∖ B 1 ) {\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})} is thesymmetric difference of the setsB 1 , B 2 ∈ B 0 . {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.} This gives rise to a metric spaceB 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} by identifying two setsB 1 , B 2 ∈ B 0 {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}} whenm ( B 1 Δ B 2 ) = 0. {\displaystyle m(B_{1}\Delta B_{2})=0.} Thus a pointB ¯ ∈ B 0 ~ {\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}} with representativeB ∈ B 0 {\displaystyle B\in {\mathcal {B}}_{0}} is the set of allB 1 ∈ B 0 {\displaystyle B_{1}\in {\mathcal {B}}_{0}} such thatm ( B Δ B 1 ) = 0. {\displaystyle m(B\Delta B_{1})=0.}
Proposition: B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} with the metric defined above is acomplete metric space .
Proof: Letχ B ( x ) = { 1 , x ∈ B 0 , x ∉ B {\displaystyle \chi _{B}(x)={\begin{cases}1,&x\in B\\0,&x\notin B\end{cases}}} Thend ( B 1 , B 2 ) = ∫ S | χ B 1 ( s ) − χ B 2 ( x ) | d m {\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm} This means that the metric spaceB 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} can be identified with a subset of theBanach space L 1 ( S , B , m ) {\displaystyle L^{1}(S,{\mathcal {B}},m)} .
LetB n ∈ B 0 {\displaystyle B_{n}\in {\mathcal {B}}_{0}} , withlim n , k → ∞ d ( B n , B k ) = lim n , k → ∞ ∫ S | χ B n ( x ) − χ B k ( x ) | d m = 0 {\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0} Then we can choose a sub-sequenceχ B n ′ {\displaystyle \chi _{B_{n'}}} such thatlim n ′ → ∞ χ B n ′ ( x ) = χ ( x ) {\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)} existsalmost everywhere andlim n ′ → ∞ ∫ S | χ ( x ) − χ B n ′ ( x ) | d m = 0 {\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0} . It follows thatχ = χ B ∞ {\displaystyle \chi =\chi _{B_{\infty }}} for someB ∞ ∈ B 0 {\displaystyle B_{\infty }\in {\mathcal {B}}_{0}} (furthermoreχ ( x ) = 1 {\displaystyle \chi (x)=1} if and only if χ B n ′ ( x ) = 1 {\displaystyle \chi _{B_{n'}}(x)=1} forn ′ {\displaystyle n'} large enough, then we have thatB ∞ = lim inf n ′ → ∞ B n ′ = ⋃ n ′ = 1 ∞ ( ⋂ m = n ′ ∞ B m ) {\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)} thelimit inferior of the sequence) and hencelim n → ∞ d ( B ∞ , B n ) = 0. {\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.} Therefore,B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} is complete.
Proof of Vitali-Hahn-Saks theorem [ edit ] Eachλ n {\displaystyle \lambda _{n}} defines a functionλ ¯ n ( B ¯ ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})} onB ~ {\displaystyle {\tilde {\mathcal {B}}}} by takingλ ¯ n ( B ¯ ) = λ n ( B ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)} . This function is well defined, this is it is independent on the representativeB {\displaystyle B} of the classB ¯ {\displaystyle {\overline {B}}} due to the absolute continuity ofλ n {\displaystyle \lambda _{n}} with respect tom {\displaystyle m} . Moreoverλ ¯ n {\displaystyle {\overline {\lambda }}_{n}} is continuous.
For everyϵ > 0 {\displaystyle \epsilon >0} the setF k , ϵ = { B ¯ ∈ B ~ : sup n ≥ 1 | λ ¯ k ( B ¯ ) − λ ¯ k + n ( B ¯ ) | ≤ ϵ } {\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}} is closed inB ~ {\displaystyle {\tilde {\mathcal {B}}}} , and by the hypothesislim n → ∞ λ n ( B ) = λ ( B ) {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)} we have thatB ~ = ⋃ k = 1 ∞ F k , ϵ {\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }} ByBaire category theorem at least oneF k 0 , ϵ {\displaystyle F_{k_{0},\epsilon }} must contain a non-empty open set ofB ~ {\displaystyle {\tilde {\mathcal {B}}}} . This means that there isB 0 ∈ B {\displaystyle B_{0}\in {\mathcal {B}}} and aδ > 0 {\displaystyle \delta >0} such thatd ( B , B 0 ) < δ ⇒ sup n ≥ 1 | λ ¯ k 0 ( B ¯ ) − λ ¯ k 0 + n ( B ¯ ) | ≤ ϵ . {\displaystyle d(B,B_{0})<\delta \Rightarrow \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon .} On the other hand, anyB ∈ B {\displaystyle B\in {\mathcal {B}}} withm ( B ) ≤ δ {\displaystyle m(B)\leq \delta } can be represented asB = B 1 ∖ B 2 {\displaystyle B=B_{1}\setminus B_{2}} withd ( B 1 , B 0 ) ≤ δ {\displaystyle d(B_{1},B_{0})\leq \delta } andd ( B 2 , B 0 ) ≤ δ {\displaystyle d(B_{2},B_{0})\leq \delta } . This can be done, for example by takingB 1 = B ∪ B 0 {\displaystyle B_{1}=B\cup B_{0}} andB 2 = B 0 ∖ ( B ∩ B 0 ) {\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})} . Thus, ifm ( B ) ≤ δ {\displaystyle m(B)\leq \delta } andk ≥ k 0 {\displaystyle k\geq k_{0}} then| λ k ( B ) | ≤ | λ k 0 ( B ) | + | λ k 0 ( B ) − λ k ( B ) | ≤ | λ k 0 ( B ) | + | λ k 0 ( B 1 ) − λ k ( B 1 ) | + | λ k 0 ( B 2 ) − λ k ( B 2 ) | ≤ | λ k 0 ( B ) | + 2 ϵ {\displaystyle {\begin{aligned}|\lambda _{k}(B)|&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}} Therefore, by the absolute continuity ofλ k 0 {\displaystyle \lambda _{k_{0}}} with respect tom {\displaystyle m} , and sinceϵ {\displaystyle \epsilon } is arbitrary, we get thatm ( B ) → 0 {\displaystyle m(B)\to 0} impliesλ n ( B ) → 0 {\displaystyle \lambda _{n}(B)\to 0} uniformly inn . {\displaystyle n.} In particular,m ( B ) → 0 {\displaystyle m(B)\to 0} impliesλ ( B ) → 0. {\displaystyle \lambda (B)\to 0.}
By the additivity of the limit it follows thatλ {\displaystyle \lambda } isfinitely-additive . Then, sincelim m ( B ) → 0 λ ( B ) = 0 {\displaystyle \lim _{m(B)\to 0}\lambda (B)=0} it follows thatλ {\displaystyle \lambda } is actually countably additive.
Hahn, H. (1922),"Über Folgen linearer Operationen" ,Monatsh. Math. (in German),32 :3– 88,doi :10.1007/bf01696876 Saks, Stanislaw (1933), "Addition to the Note on Some Functionals",Transactions of the American Mathematical Society ,35 (4):965– 970,doi :10.2307/1989603 ,JSTOR 1989603 Vitali, G. (1907),"Sull' integrazione per serie" ,Rendiconti del Circolo Matematico di Palermo (in Italian),23 :137– 155,doi :10.1007/BF03013514 Yosida, K. (1971),Functional Analysis , Springer, pp. 70– 71,ISBN 0-387-05506-1