![]() | |
![]() OpenVMS V7.3-1 running theCDE-based DECwindows "New Desktop" GUI | |
Developer | VMS Software Inc (VSI)[1] (previouslyDigital Equipment Corporation,Compaq,Hewlett-Packard) |
---|---|
Written in | PrimarilyC,BLISS,VAX MACRO,DCL.[2] Other languages also used.[3] |
Working state | Current |
Source model | Closed-source withopen-source components. Formerlysource available[4][5] |
Initial release | Announced: October 25, 1977; 47 years ago (1977-10-25) V1.0 / August 1978; 46 years ago (1978-08) |
Latest release | V9.2-3 / November 20, 2024; 4 months ago (2024-11-20) |
Marketing target | Servers (historicallyMinicomputers,Workstations) |
Available in | English,Japanese.[6] Historical support forChinese (bothTraditional andSimplified characters),Korean,Thai.[7] |
Update method | Concurrent upgrades, rolling upgrades |
Package manager | PCSI and VMSINSTAL |
Platforms | VAX,Alpha,Itanium,x86-64 |
Kernel type | Monolithic kernel with loadable modules |
Influenced | VAXELN,MICA,Windows NT |
Influenced by | RSX-11M |
Default user interface | DCLCLI andDECwindowsGUI |
License | Proprietary |
Official website | vmssoftware |
OpenVMS, often referred to as justVMS,[8] is amulti-user,multiprocessing andvirtual memory-basedoperating system. It is designed to supporttime-sharing,batch processing,transaction processing andworkstation applications.[9] Customers using OpenVMS include banks and financial services, hospitals and healthcare, telecommunications operators, network information services, and industrial manufacturers.[10][11] During the 1990s and 2000s, there were approximately half a million VMS systems in operation worldwide.[12][13][14]
It was first announced byDigital Equipment Corporation (DEC) asVAX/VMS (Virtual Address eXtension/Virtual Memory System[15]) alongside theVAX-11/780 minicomputer in 1977.[16][17][18] OpenVMS has subsequently beenported to run onDEC Alpha systems, theItanium-basedHPE Integrity Servers,[19] and selectx86-64 hardware andhypervisors.[20] Since 2014, OpenVMS is developed and supported by VMS Software Inc. (VSI).[21][22] OpenVMS offershigh availability throughclustering—the ability to distribute the system over multiple physical machines.[23] This allows clustered applications and data to remain continuously available while operating system software and hardware maintenance and upgrades are performed,[24] or if part of the cluster is destroyed.[25] VMS cluster uptimes of 17 years have been reported.[26]
In April 1975,Digital Equipment Corporation embarked on a project to design a32-bit extension to itsPDP-11 computer line. The hardware component was code namedStar; the operating system was code namedStarlet. Roger Gourd was the project lead for VMS. Software engineersDave Cutler,Dick Hustvedt, and Peter Lipman acted as technical project leaders.[27] The Star and Starlet projects culminated in theVAX-11/780 computer and the VAX/VMS operating system. The Starlet project's code name survives in VMS in the name of several of the system libraries, includingSTARLET.OLB
andSTARLET.MLB
.[28] VMS was mostly written inVAX MACRO with some components written inBLISS.[8]
One of the original goals for VMS wasbackward compatibility with DEC's existingRSX-11M operating system.[8] Prior to the V3.0 release, VAX/VMS included a compatibility layer named theRSX Application Migration Executive (RSX AME), which allowed user-mode RSX-11M software to be run unmodified on top of VMS.[29] The RSX AME played an important role on early versions of VAX/VMS, which used certain RSX-11M user-mode utilities before native VAX versions had been developed.[8] By the V3.0 release, all compatibility-mode utilities were replaced with native implementations.[30] In VAX/VMS V4.0, RSX AME was removed from the base system, and replaced with an optional layered product namedVAX-11 RSX.[31]
A number of distributions of VAX/VMS were created:
With the V5.0 release in April 1988, DEC began to refer to VAX/VMS as simply VMS in its documentation.[46] In July 1992,[47] DEC renamed VAX/VMS to OpenVMS as an indication of its support ofopen systems industry standards such asPOSIX andUnix compatibility,[48] and to drop the VAX connection since a migration to a different architecture was underway. The OpenVMS name was first used with the OpenVMS AXP V1.0 release in November 1992. DEC began using the OpenVMS VAX name with the V6.0 release in June 1993.[49]
During the 1980s, DEC planned to replace the VAX platform and the VMS operating system with thePRISM architecture and theMICA operating system.[51] When these projects were cancelled in 1988, a team was set up to design new VAX/VMS systems of comparable performance toRISC-based Unix systems.[52] After a number of failed attempts to design a faster VAX-compatible processor, the group demonstrated the feasibility ofporting VMS and its applications to a RISC architecture based on PRISM.[53] This led to the creation of theAlpha architecture.[54] The project to port VMS to Alpha began in 1989, and first booted on a prototypeAlpha EV3-basedAlpha Demonstration Unit in early 1991.[53][55]
The main challenge in porting VMS to a new architecture was that VMS and the VAX were designed together, meaning that VMS was dependent on certain details of the VAX architecture.[56] Furthermore, a significant amount of the VMS kernel, layered products, and customer-developed applications were implemented inVAX MACRO assembly code.[8] Some of the changes needed to decouple VMS from the VAX architecture included the creation of theMACRO-32 compiler, which treated VAX MACRO as ahigh-level language, and compiled it to Alphaobject code,[57] and the emulation of certain low-level details of the VAX architecture inPALcode, such asinterrupt handling and atomic queue instructions.
The VMS port to Alpha resulted in the creation of two separate codebases: one forVAX, and another for Alpha.[4] The Alpha code library was based on a snapshot of the VAX/VMS code base circa V5.4-2.[58] 1992 saw the release of the first version of OpenVMS forAlpha AXP systems, designatedOpenVMS AXP V1.0. In 1994, with the release of OpenVMS V6.1, feature (and version number) parity between the VAX and Alpha variants was achieved; this was the so-called Functional Equivalence release.[58] The decision to use the 1.x version numbering stream for the pre-production quality releases of OpenVMS AXP confused some customers, and was not repeated in the subsequent ports of OpenVMS to new platforms.[56]
When VMS was ported to Alpha, it was initially left as a 32-bit only operating system.[57] This was done to ensure backwards compatibility with software written for the 32-bit VAX. 64-bit addressing was first added for Alpha in the V7.0 release.[59] In order to allow 64-bit code to interoperate with older 32-bit code, OpenVMS does not create a distinction between 32-bit and 64-bit executables, but instead allows for both 32-bit and 64-bit pointers to be used within the same code.[60] This is known as mixed pointer support. The 64-bit OpenVMS Alpha releases support a maximum virtual address space size of 8TiB (a 43-bit address space), which is the maximum supported by theAlpha 21064 andAlpha 21164.[61]
One of the more noteworthy Alpha-only features of OpenVMS wasOpenVMS Galaxy, which allowed thepartitioning of a single SMP server to run multiple instances of OpenVMS. Galaxy supported dynamic resource allocation to running partitions, and the ability to share memory between partitions.[62][63]
In 2001, prior to its acquisition byHewlett-Packard,Compaq announced the port of OpenVMS to theIntelItanium architecture.[64] The Itanium port was the result of Compaq's decision to discontinue future development of the Alpha architecture in favour of adopting the then-new Itanium architecture.[65] The porting began in late 2001, and the first boot on took place on January 31, 2003.[66] The first boot consisted of booting a minimal system configuration on aHP i2000 workstation, logging in as theSYSTEM
user, and running theDIRECTORY
command. The Itanium port of OpenVMS supports specific models and configurations ofHPE Integrity Servers.[9] The Itanium releases were originally namedHP OpenVMS Industry Standard 64 for Integrity Servers, although the namesOpenVMS I64 orOpenVMS for Integrity Servers are more commonly used.[67]
The Itanium port was accomplished using source code maintained in common within the OpenVMS Alpha source code library, with the addition of conditional code and additional modules where changes specific to Itanium were required.[56] This required certain architectural dependencies of OpenVMS to be replaced, or emulated in software. Some of the changes included using theExtensible Firmware Interface (EFI) to boot the operating system,[68] reimplementing the functionality previously provided by Alpha PALcode inside the kernel,[69] using new executable file formats (Executable and Linkable Format andDWARF),[70] and adoptingIEEE 754 as the default floating point format.[71]
As with the VAX to Alpha port, a binary translator for Alpha to Itanium was made available, allowing user-mode OpenVMS Alpha software to be ported to Itanium in situations where it was not possible to recompile the source code. This translator is known as theAlpha Environment Software Translator (AEST), and it also supported translating VAX executables which had already been translated with VEST.[72]
Two pre-production releases, OpenVMS I64 V8.0 and V8.1, were available on June 30, 2003, and on December 18, 2003. These releases were intended for HP organizations and third-party vendors involved with porting software packages to OpenVMS I64. The first production release, V8.2, was released in February 2005. V8.2 was also released for Alpha; subsequent V8.x releases of OpenVMS have maintained feature parity between the Alpha and Itanium architectures.[73]
When VMS Software Inc. (VSI) announced that they had secured the rights to develop the OpenVMS operating system from HP, they also announced their intention to port OpenVMS to thex86-64 architecture.[74] The porting effort ran concurrently with the establishment of the company, as well as the development of VSI's own Itanium and Alpha releases of OpenVMS V8.4-x.
The x86-64 port is targeted for specific servers fromHPE andDell, as well as certain virtual machinehypervisors.[75] Initial support was targeted forKVM andVirtualBox. Support forVMware was announced in 2020, andHyper-V is being explored as a future target.[76] In 2021, the x86-64 port was demonstrated running on anIntel Atom-basedsingle-board computer.[77]
As with the Alpha and Itanium ports, the x86-64 port made some changes to simplify porting and supporting OpenVMS on the new platform including: replacing the proprietary GEM compiler backend used by the VMS compilers withLLVM,[78] changing the boot process so that OpenVMS is booted from a memory disk,[79] and simulating the four privilege levels of OpenVMS in software since only two of x86-64's privilege levels are usable by OpenVMS.[69]
The first boot was announced on May 14, 2019. This involved booting OpenVMS on VirtualBox, and successfully running theDIRECTORY
command.[80] In May 2020, the V9.0 Early Adopter's Kit release was made available to a small number of customers. This consisted of the OpenVMS operating system running in a VirtualBox VM with certain limitations; most significantly, few layered products were available, and code can only be compiled for x86-64 using cross compilers which run on Itanium-based OpenVMS systems.[20] Following the V9.0 release, VSI released a series of updates on a monthly or bimonthly basis which added additional functionality and hypervisor support. These were designated V9.0-A through V9.0-H.[81] In June 2021, VSI released the V9.1 Field Test, making it available to VSI's customers and partners.[82] V9.1 shipped as anISO image which can be installed onto a variety of hypervisors, and ontoHPE ProLiant DL380 servers starting with the V9.1-A release.[83]
During the 1980s, the MICA operating system for the PRISM architecture was intended to be the eventual successor to VMS. MICA was designed to maintain backwards compatibility with VMS applications while also supportingUltrix applications on top of the same kernel.[84] MICA was ultimately cancelled along with the rest of the PRISM platform, leading Dave Cutler to leave DEC for Microsoft. At Microsoft, Cutler led the creation of theWindows NT operating system, which was heavily inspired by the architecture of MICA.[85] As a result, VMS is considered an ancestor ofWindows NT, together withRSX-11,VAXELN and MICA, and many similarities exist between VMS and NT.[86]
A now-defunct project namedFreeVMS attempted to develop anopen-source operating system following VMS conventions.[87][88] FreeVMS was built on top of theL4 microkernel and supported thex86-64 architecture. Prior work investigating the implementation of VMS using a microkernel-based architecture had previously been undertaken as a prototyping exercise by DEC employees with assistance fromCarnegie Mellon University using theMach 3.0 microkernel ported toVAXstation 3100 hardware, adopting a multiserver architectural model.[89]
The OpenVMS operating system has a layered architecture, consisting of a privilegedExecutive, an intermediately privileged Command Language Interpreter, and unprivileged utilities andrun-time libraries (RTLs).[90] Unprivileged code typically invokes the functionality of the Executive throughsystem services (equivalent tosystem calls in other operating systems).
OpenVMS' layers and mechanisms are built around certain features of the VAX architecture, including:[90][91]
These VAX architecture mechanisms are implemented on Alpha, Itanium and x86-64 by either mapping to corresponding hardware mechanisms on those architectures, or through emulation (viaPALcode on Alpha, or in software on Itanium and x86-64).[69]
The OpenVMS Executive comprises the privileged code and data structures which reside in the system space. The Executive is further subdivided between theKernel, which consists of the code which runs at the kernel access mode, and the less-privileged code outside of the Kernel which runs at the executive access mode.[90]
The components of the Executive which run at executive access mode include theRecord Management Services, and certain system services such as image activation. The main distinction between the kernel and executive access modes is that most of the operating system's core data structures can be read from executive mode, but require kernel mode to be written to.[91] Code running at executive mode can switch to kernel mode at will, meaning that the barrier between the kernel and executive modes is intended as a safeguard against accidental corruption as opposed to a security mechanism.[92]
TheKernel comprises the operating system's core data structures (e.g. page tables, the I/O database and scheduling data), and the routines which operate on these structures. The Kernel is typically described as having three major subsystems: I/O, Process and Time Management, Memory Management.[90][91] In addition, other functionality such aslogical name management, synchronization and system service dispatch are implemented inside the Kernel.
OpenVMS allows user-mode code with suitable privileges to switch to executive or kernel mode using the$CMEXEC
and$CMKRNL
system services, respectively.[93] This allows code outside of system space to have direct access to the Executive's routines and system services. In addition to allowing third-party extensions to the operating system, Privileged Images are used by core operating system utilities to manipulate operating system data structures through undocumented interfaces.[94]
The typical user and application interface into thefile system is theRecord Management Services (RMS), although applications can interface directly with the underlying file system through theQIO system services.[95] The file systems supported by VMS are referred to as theFiles-11On-Disk Structures (ODS), the most significant of which areODS-2 andODS-5.[96] VMS is also capable of accessing files onISO 9660CD-ROMs andmagnetic tape withANSI tape labels.[97]
Files-11 is limited to 2 TiB volumes.[96] DEC attempted to replace it with alog-structured file system named Spiralog, first released in 1995.[98] However, Spiralog was discontinued due to a variety of problems, including issues with handling full volumes.[98] Instead, there has been discussion of porting the open-source GFS2 file system to OpenVMS.[99]
An OpenVMS Command Language Interpreter (CLI) implements acommand-line interface for OpenVMS, responsible for executing individual commands andcommand procedures (equivalent toshell scripts orbatch files).[100] The standard CLI for OpenVMS is theDIGITAL Command Language, although other options are available.
UnlikeUnix shells, which typically run in their own isolated process and behave like any other user-mode program, OpenVMS CLIs are an optional component of a process, which exist alongside any executable image which that process may run.[101] Whereas a Unix shell will typically run executables by creating a separate process usingfork-exec, an OpenVMS CLI will typically load the executable image into the same process, transfer control to the image, and ensure that control is transferred back to CLI once the image has exited and that the process is returned to its original state.[90]
Because the CLI is loaded into the same address space as user code, and the CLI is responsible for invoking image activation and image rundown, the CLI is mapped into the process address space at supervisor access mode, a higher level of privilege than most user code. This is in order to prevent accidental or malicious manipulation of the CLI's code and data structures by user-mode code.[90][101]
OpenVMS supportsclustering (first calledVAXcluster and laterVMScluster), where multiple computers run their own instance of the operating system. Clustered computers (nodes) may be fully independent from each other, or they may share devices like disk drives and printers. Communication across nodes provides asingle system image abstraction.[102] Nodes may be connected to each other via a proprietary hardware connection called Cluster Interconnect or via a standardEthernetLAN.
OpenVMS supports up to 96 nodes in a single cluster. It also allows mixed-architecture clusters.[23] OpenVMS clusters allow applications to function during planned or unplanned outages.[103] Planned outages include hardware and software upgrades.[24]
TheDECnet protocol suite is tightly integrated into VMS, allowing remote logins, as well as transparent access to files, printers and other resources on VMS systems over a network.[104] VAX/VMS V1.0 featured support for DECnet Phase II,[105] and modern versions of VMS support both the traditional Phase IV DECnet protocol, as well as theOSI-compatible Phase V (also known asDECnet-Plus).[106] Support forTCP/IP is provided by the optionalTCP/IP Services for OpenVMS layered product (originally known as theVMS/ULTRIX Connection, then as theULTRIX Communications Extensions or UCX).[107][108] TCP/IP Services is based on a port of theBSD network stack to OpenVMS,[109] along with support for common protocols such asSSH,DHCP,FTP andSMTP.
DEC sold a software package namedPATHWORKS (originally known as thePersonal Computer Systems Architecture or PCSA) which allowedpersonal computers runningMS-DOS,Microsoft Windows orOS/2, or theApple Macintosh to serve as a terminal for VMS systems, or to use VMS systems as a file or print server.[110] PATHWORKS was later renamed toAdvanced Server for OpenVMS, and was eventually replaced with a VMS port ofSamba at the time of the Itanium port.[111]
DEC provided theLocal Area Transport (LAT) protocol which allowed remote terminals and printers to be attached to a VMS system through aterminal server such as one of theDECserver family.[112]
DEC (and its successor companies) provided a wide variety of programming languages for VMS. Officially supported languages on VMS, either current or historical, include:[113][114][115]
Among OpenVMS's notable features is theCommon Language Environment, a strictly defined standard that specifies calling conventions for functions and routines, including use ofstacks,registers, etc., independent of programming language.[116] Because of this, it is possible to call a routine written in one language (for example, Fortran) from another (for example, COBOL), without needing to know the implementation details of the target language. OpenVMS itself is implemented in a variety of different languages and the common language environment and calling standard supports freely mixing these languages.[117] DEC created a tool named theStructure Definition Language (SDL), which alloweddata type definitions to be generated for different languages from a common definition.[118]
DEC provided a collection of software development tools in a layered product namedDECset (originally namedVAXset).[113] This consisted of the following tools:[119]
The OpenVMS Debugger supports all DEC compilers and many third-party languages. It allows breakpoints, watchpoints and interactive runtime program debugging using either acommand line orgraphical user interface.[121] A pair of lower-level debuggers, namedDELTA andXDELTA, can be used to debug privileged code in additional to normal application code.[122]
In 2019, VSI released an officially supportedIntegrated Development Environment for VMS based onVisual Studio Code.[75] This allows VMS applications to be developed and debugged remotely from aMicrosoft Windows,macOS orLinux workstation.[123]
DEC created a number of optionaldatabase products for VMS, some of which were marketed as theVAX Information Architecture family.[124] These products included:
In 1994, DEC sold Rdb, DBMS and CDD toOracle, where they remain under active development.[129] In 1995, DEC sold DSM toInterSystems, who renamed itOpen M, and eventually replaced it with theirCaché product.[130]
Examples of third-party database management systems for OpenVMS includeMariaDB,[131]Mimer SQL[132] (Itanium andx86-64[133]), andSystem 1032.[134]
VMS was originally designed to be used and managed interactively using DEC's text-basedvideo terminals such as theVT100, or hardcopy terminals such as theDECwriter series. Since the introduction of theVAXstation line in 1984, VMS has optionally supported graphical user interfaces for use with workstations orX terminals such as theVT1000 series.
TheDIGITAL Command Language (DCL) has served as the primarycommand language interpreter (CLI) of OpenVMS since the first release.[135][29][9] Other official CLIs available for VMS include theRSX-11 Monitor Console Routine (MCR) (VAX only), and variousUnix shells.[113] DEC provided tools for creatingtext-based user interface applications – theForm Management System (FMS) andTerminal Data Management System (TDMS), later succeeded byDECforms.[136][137][138] A lower level interface namedScreen Management Services (SMG$), comparable to Unixcurses, also exists.[139]
Over the years, VMS has gone through a number of different GUI toolkits and interfaces:
Versions of VMS running on DEC Alpha workstations in the 1990s supportedOpenGL[150] andAccelerated Graphics Port (AGP) graphics adapters. VMS also provides support for older graphics standards such asGKS andPHIGS.[151][152] Modern versions of DECwindows are based onX.Org Server.[9]
OpenVMS provides various security features and mechanisms, including security identifiers, resource identifiers, subsystem identifiers,ACLs,intrusion detection and detailed security auditing and alarms.[153] Specific versions evaluated atTrusted Computer System Evaluation Criteria Class C2 and, with the SEVMS security enhanced release at Class B1.[154] OpenVMS also holds an ITSEC E3 rating (seeNCSC andCommon Criteria).[155] Passwords are hashed using thePurdy Polynomial.
SYSTEM
,FIELD
,SYSTEST
andDECNET
) with default passwords which were often left unchanged by system managers.[156][157] A number ofcomputer worms for VMS including theWANK worm and theFather Christmas worm exploited these default passwords to gain access to nodes on DECnet networks.[158] This issue was also described byClifford Stoll inThe Cuckoo's Egg as a means by whichMarkus Hess gained unauthorized access to VAX/VMS systems.[159] In V5.0, the default passwords were removed, and it became mandatory to provide passwords for these accounts during system setup.[37]Various officialUnix andPOSIX compatibility layers were created for VMS. The first of these wasDEC/Shell, which was a layered product consisting of ports of theBourne shell fromVersion 7 Unix and several other Unix utilities to VAX/VMS.[113] In 1992, DEC released thePOSIX for OpenVMS layered product, which included a shell based on theKornShell.[162] POSIX for OpenVMS was later replaced by the open-sourceGNV (GNU's not VMS) project, which was first included in OpenVMS media in 2002.[163] Amongst other GNU tools, GNV includes a port of theBash shell to VMS.[164] Examples of third-party Unix compatibility layers for VMS includeEunice.[165]
In 1997, OpenVMS and a number of layered products were made available free of charge for hobbyist, non-commercial use as part of theOpenVMS Hobbyist Program.[166] Since then, several companies producing OpenVMS software have made their products available under the same terms, such as Process Software.[167] Prior to the x86-64 port, the age and cost of hardware capable of running OpenVMS madeemulators such asSIMH a common choice for hobbyist installations.[168]
In March 2020, HPE announced the end of the OpenVMS Hobbyist Program.[169] This was followed by VSI's announcement of theCommunity License Program (CLP) in April 2020, which was intended as a replacement for the HPE Hobbyist Program.[170] The CLP was launched in July 2020, and provides licenses for VSI OpenVMS releases on Alpha, Integrity and x86-64 systems.[171] OpenVMS for VAX is not covered by the CLP, since there are no VSI releases of OpenVMS VAX, and the old versions are still owned by HPE.[172]
Version | Vendor | Release date [173][8][174] | End of support [175][176][177] | Platform | Significant changes, new hardware support [178][144] |
---|---|---|---|---|---|
Old version, not maintained: X0.5[n 1] | DEC | April 1978[179] | ? | VAX | First version shipped to customers[28] |
Old version, not maintained: V1.0 | August 1978 | First production release | |||
Old version, not maintained: V1.01 | ?[n 2] | Bug fixes[180] | |||
Old version, not maintained: V1.5 | February 1979[n 3] | Support for native COBOL, BLISS compilers[180] | |||
Old version, not maintained: V1.6 | August 1979 | RMS-11 updates[181] | |||
Old version, not maintained: V2.0 | April 1980 | VAX-11/750, new utilities includingEDT | |||
Old version, not maintained: V2.1 | ?[n 4] | ? | |||
Old version, not maintained: V2.2 | April 1981 | Process limit increased to 8,192[183] | |||
Old version, not maintained: V2.3 | May 1981[184] | Security enhancements[185] | |||
Old version, not maintained: V2.4 | ? | ? | |||
Old version, not maintained: V2.5 | ? | BACKUP utility[186] | |||
Old version, not maintained: V3.0 | April 1982 | VAX-11/730,VAX-11/725,VAX-11/782,ASMP | |||
Old version, not maintained: V3.1 | August 1982 | PL/I runtime bundled with base OS[187] | |||
Old version, not maintained: V3.2 | December 1982 | Support for RA60, RA80, RA81 disks[188] | |||
Old version, not maintained: V3.3 | April 1983 | HSC50 disk controller, BACKUP changes[189] | |||
Old version, not maintained: V3.4 | June 1983 | Ethernet support for DECnet,[190] VAX-11/785 | |||
Old version, not maintained: V3.5 | November 1983 | Support for new I/O devices[191] | |||
Old version, not maintained: V3.6 | April 1984 | Bug fixes[192] | |||
Old version, not maintained: V3.7 | August 1984 | Support for new I/O devices[193] | |||
Old version, not maintained: V4.0 | September 1984 | VAX 8600, MicroVMS, VAXclusters[194] | |||
Old version, not maintained: V4.1 | January 1985 | MicroVAX/VAXstation I, II[195] | |||
Old version, not maintained: V4.2 | October 1985 | Text Processing Utility | |||
Old version, not maintained: V4.3 | December 1985 | DELUA Ethernet adapter support | |||
Old version, not maintained: V4.3A | January 1986 | VAX 8200 | |||
Old version, not maintained: V4.4 | July 1986 | VAX 8800/8700/85xx, Volume Shadowing | |||
Old version, not maintained: V4.5 | November 1986 | Support for more memory in MicroVAX II | |||
Old version, not maintained: V4.5A | December 1986 | Ethernet VAXclusters | |||
Old version, not maintained: V4.5B | March 1987 | VAXstation/MicroVAX 2000 | |||
Old version, not maintained: V4.5C | May 1987 | MicroVAX 2000 cluster support | |||
Old version, not maintained: V4.6 | August 1987 | VAX 8250/8350/8530, RMS Journalling | |||
Old version, not maintained: V4.7 | January 1988 | First release installable from CD-ROM | |||
Old version, not maintained: V4.7A | March 1988 | VAXstation 3200/3500, MicroVAX 3500/3600 | |||
Old version, not maintained: V5.0 | April 1988 | VAX 6000,SMP, LMF, Modular Executive | |||
Old version, not maintained: V5.0-1 | August 1988 | Bug fixes | |||
Old version, not maintained: V5.0-2 | October 1988 | ||||
Old version, not maintained: V5.0-2A | MicroVAX 3300/3400 | ||||
Old version, not maintained: V5.1 | February 1989 | DECwindows | |||
Old version, not maintained: V5.1-B | VAXstation 3100 30/40, Desktop-VMS | ||||
Old version, not maintained: V5.1-1 | June 1989 | VAXstation 3520/3540, MicroVAX 3800/3900 | |||
Old version, not maintained: V5.2 | September 1989 | Cluster-wide process visibility/management | |||
Old version, not maintained: V5.2-1 | October 1989 | VAXstation 3100 38/48 | |||
Old version, not maintained: V5.3 | January 1990 | Support for third-party SCSI devices | |||
Old version, not maintained: V5.3-1 | April 1990 | Support for VAXstation SPX graphics | |||
Old version, not maintained: V5.3-2 | May 1990 | Support for new I/O devices | |||
Old version, not maintained: V5.4 | October 1990 | VAX 65xx, VAX Vector Architecture | |||
Old version, not maintained: V5.4-0A | VAX 9000, bug fixes for VAX 6000 systems | ||||
Old version, not maintained: V5.4-1 | November 1990 | New models of VAX 9000, VAXstation, VAXft | |||
Old version, not maintained: V5.4-1A | January 1991 | VAX 6000-400 | |||
Old version, not maintained: V5.4-2 | March 1991 | VAX 4000 Model 200, new I/O devices | |||
Old version, not maintained: V5.4-3 | October 1991 | FDDI adapter support | |||
Old version, not maintained: V5.5 | November 1991 | Cluster-wide batch queue, new VAX models | |||
Old version, not maintained: A5.5 | Same as V5.5 but without new batch queue | ||||
Old version, not maintained: V5.5-1 | July 1992 | Bug fixes for batch/print queue | |||
Old version, not maintained: V5.5-2HW | September 1992 | VAX 7000/10000, and other new VAX hardware | |||
Old version, not maintained: V5.5-2 | November 1992 | September 1995 | Consolidation of previous hardware releases | ||
Old version, not maintained: V5.5-2H4 | August 1993 | NewVAX 4000 models, additional I/O devices | |||
Old version, not maintained: V5.5-2HF | ? | VAXft 810 | |||
Old version, not maintained: V1.0[n 5] | November 1992 | Alpha | First release for Alpha architecture | ||
Old version, not maintained: V1.5 | May 1993 | Cluster and SMP support for Alpha | |||
Old version, not maintained: V1.5-1H1 | October 1993 | New DEC 2000, DEC 3000 models | |||
Old version, not maintained: V6.0 | June 1993 | VAX | TCSEC C2 compliance,ISO 9660, Motif | ||
Old version, not maintained: V6.1 | April 1994 | VAX, Alpha | Merger of VAX and Alpha releases, PCSI | ||
Old version, not maintained: V6.1-1H1 | September 1994 | Alpha | New AlphaStation, AlphaServer models | ||
Old version, not maintained: V6.1-1H2 | November 1994 | ||||
Old version, not maintained: V6.2 | June 1995 | March 1998 | VAX, Alpha | Command Recall, DCL$PATH, SCSI clusters | |
Old version, not maintained: V6.2-1H1 | December 1995 | Alpha | New AlphaStation, AlphaServer models | ||
Old version, not maintained: V6.2-1H2 | March 1996 | ||||
Old version, not maintained: V6.2-1H3 | May 1996 | ||||
Old version, not maintained: V7.0 | January 1996 | VAX, Alpha | 64-bit addressing, Fast I/O,Kernel Threads | ||
Old version, not maintained: V7.1 | January 1997 | July 2000 | Very Large Memory support, DCL PIPE, CDE | ||
Old version, not maintained: V7.1-1H1 | November 1997 | Alpha | AlphaServer 800 5/500, 1200 | ||
Old version, not maintained: V7.1-1H2 | April 1998 | Support for booting from third-party devices | |||
Old version, not maintained: V7.1-2 | Compaq | December 1998 | Additional I/O device support | ||
Old version, not maintained: V7.2 | February 1999 | June 2002 | VAX, Alpha | OpenVMS Galaxy, ODS-5,DCOM | |
Old version, not maintained: V7.2-1 | July 1999 | Alpha | AlphaServer GS140, GS60,Tsunami | ||
Old version, not maintained: V7.2-1H1 | June 2000 | AlphaServer GS160, GS320 | |||
Old version, not maintained: V7.2-2 | September 2001 | December 2002 | Minicopy support for Volume Shadowing | ||
Old version, not maintained: V7.2-6C1 | August 2001 | ? | DII COE conformance[196] | ||
Old version, not maintained: V7.2-6C2 | July 2002 | ||||
Old version, not maintained: V7.3 | June 2001 | December 2012 | VAX | Final release for VAX architecture | |
June 2004 | Alpha | ATM andGBE clusters, Extended File Cache | |||
Old version, not maintained: V7.3-1 | HP | August 2002 | December 2004 | Alpha | Security and performance improvements |
Old version, not maintained: V7.3-2 | December 2003 | December 2006 | AlphaServer GS1280, DS15 | ||
Old version, not maintained: V8.0 | June 2003 | December 2003 | IA64 | Evaluation release for Integrity servers | |
Old version, not maintained: V8.1 | December 2003 | February 2005 | Second evaluation release for Integrity servers | ||
Old version, not maintained: V8.2 | February 2005 | June 2010 | Alpha, IA64 | Production release for Integrity servers | |
Old version, not maintained: V8.2-1 | September 2005 | IA64 | Support for HP Superdome, rx7620, rx8620 | ||
Old version, not maintained: V8.3 | August 2006 | December 2015 | Alpha, IA64 | Support for additional Integrity server models | |
Old version, not maintained: V8.3-1H1 | November 2007 | IA64 | Support for HP BL860c, dual-core Itanium | ||
Old version, not maintained: V8.4 | June 2010 | December 2020 | Alpha, IA64 | Support forHPVM, clusters over TCP/IP[197] | |
Old version, not maintained: V8.4-1H1 | VSI | May 2015 | December 2022 | IA64 | Support forPoulson processors[198] |
Old version, not maintained: V8.4-2 | March 2016 | Support for HPE BL890c systems, UEFI 2.3 | |||
Old version, still maintained: V8.4-2L1 | September 2016 | December 2024 | OpenSSL updated to 1.0.2[199] | ||
January 2017[200] | TBA | Alpha | |||
Old version, still maintained: V8.4-2L2 | July 2017 | Final release for Alpha architecture[201] | |||
Old version, still maintained: V8.4-2L3 | April 2021 | IA64 | Final release for Integrity servers[201] | ||
Old version, not maintained: V9.0 | May 2020 | June 2021 | x86-64 | x86-64 Early Adopter's Kit[202] | |
Old version, not maintained: V9.1 | June 2021 | September 2021 | x86-64 Field Test[82] | ||
Old version, not maintained: V9.1-A | September 2021 | April 2022 | DECnet-Plus for x86-64[83] | ||
Old version, not maintained: V9.2 | July 2022 | June 2023 | x86-64 Limited Production Release[203] | ||
Old version, still maintained: V9.2-1 | June 2023 | June 2025 | AMD CPUs, OpenSSL 3.0, native compilers[204] | ||
Old version, still maintained: V9.2-2 | January 2024 | December 2027 | Bug fixes[205] | ||
Latest version:V9.2-3 | November 2024 | December 2028 | VMware vMotion, VMDirectPath | ||
Future version: V9.2-4 | June 2026 | TBA | iSCSI support | ||
Legend: Old version, not maintained Old version, still maintained Latest version Latest preview version Future version |
The Micro VMS operating system announced last week by Digital Equipment Corp. for its Microvax I family of microcomputers is a prepackaged version of ...