Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

User:Maschen/sandbox

    From Wikipedia, the free encyclopedia
    <User:Maschen

    Wikitasks

    [edit]

    Main space

    [edit]

    User space

    [edit]

    Rapidity

    [edit]

    Rapidity composition in 3d

    [edit]

    Definitions

    [edit]

    Start with two Lorentz boostsB(ζ1) andB(ζ2) with rapidities

    ζ1=n1tanh1β1,ζ2=n2tanh1β2{\displaystyle {\boldsymbol {\zeta }}_{1}=\mathbf {n} _{1}\tanh ^{-1}\beta _{1}\,,\quad {\boldsymbol {\zeta }}_{2}=\mathbf {n} _{2}\tanh ^{-1}\beta _{2}}

    where the unit vectors are in the direction of the boosts,

    n1=β1β1,n2=β2β2{\displaystyle \mathbf {n} _{1}={\frac {{\boldsymbol {\beta }}_{1}}{\beta _{1}}}\,,\quad \mathbf {n} _{2}={\frac {{\boldsymbol {\beta }}_{2}}{\beta _{2}}}}

    and in turn the betas are simply the relative velocities between frames defined by

    β1=v1c,β2=v2c{\displaystyle {\boldsymbol {\beta }}_{1}={\frac {\mathbf {v} _{1}}{c}}\,,\quad {\boldsymbol {\beta }}_{2}={\frac {\mathbf {v} _{2}}{c}}}

    Composite formulae

    [edit]

    There are two inequivalent composite Lorentz transformationsB(ζ1)B(ζ2) andB(ζ2)B(ζ1). There are two composite boosts

    β1β2=11+β1β2[β1+β2γ1+γ11+γ1(β1β2)β1]{\displaystyle {\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}={\frac {1}{1+{\boldsymbol {\beta }}_{1}\cdot {\boldsymbol {\beta }}_{2}}}\left[{\boldsymbol {\beta }}_{1}+{\frac {{\boldsymbol {\beta }}_{2}}{\gamma _{1}}}+{\frac {\gamma _{1}}{1+\gamma _{1}}}({\boldsymbol {\beta }}_{1}\cdot {\boldsymbol {\beta }}_{2}){\boldsymbol {\beta }}_{1}\right]}
    β2β1=11+β2β2[β2+β1γ2+γ21+γ2(β2β1)β2]{\displaystyle {\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}={\frac {1}{1+{\boldsymbol {\beta }}_{2}\cdot {\boldsymbol {\beta }}_{2}}}\left[{\boldsymbol {\beta }}_{2}+{\frac {{\boldsymbol {\beta }}_{1}}{\gamma _{2}}}+{\frac {\gamma _{2}}{1+\gamma _{2}}}({\boldsymbol {\beta }}_{2}\cdot {\boldsymbol {\beta }}_{1}){\boldsymbol {\beta }}_{2}\right]}

    where ⊕ is the relativisticvelocity-addition, defined by the first expression above (second one follows immediately by switching betas).

    Cross product formula (keep for reference)


    β1β2=11+β1β2[β1+β2+γ11+γ1β1×(β1×β2)]{\displaystyle {\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}={\frac {1}{1+{\boldsymbol {\beta }}_{1}\cdot {\boldsymbol {\beta }}_{2}}}\left[{\boldsymbol {\beta }}_{1}+{\boldsymbol {\beta }}_{2}+{\frac {\gamma _{1}}{1+\gamma _{1}}}{\boldsymbol {\beta }}_{1}\times ({\boldsymbol {\beta }}_{1}\times {\boldsymbol {\beta }}_{2})\right]}

    The composite rapidities are

    ζ=ntanh1β,ζ¯=n¯tanh1β¯{\displaystyle {\boldsymbol {\zeta }}=\mathbf {n} \tanh ^{-1}\beta \,,\quad {\overline {\boldsymbol {\zeta }}}={\overline {\mathbf {n} }}\tanh ^{-1}{\overline {\beta }}}

    The unit vectors

    n=β1β2|β1β2|,n¯=β2β1|β2β1|{\displaystyle \mathbf {n} ={\frac {{\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}}{|{\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}|}}\,,\quad {\overline {\mathbf {n} }}={\frac {{\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}}{|{\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}|}}}

    are separated by an angle (Wigner rotation). The magnitudes are equal,

    β=|β1β2|=|β2β1|=β¯=(β1+β2)2(β1×β2)21+β1β2{\displaystyle \beta =|{\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}|=|{\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}|={\overline {\beta }}={\frac {\sqrt {({\boldsymbol {\beta }}_{1}+{\boldsymbol {\beta }}_{2})^{2}-({\boldsymbol {\beta }}_{1}\times {\boldsymbol {\beta }}_{2})^{2}}}{1+{\boldsymbol {\beta }}_{1}\cdot {\boldsymbol {\beta }}_{2}}}}

    In summary

    ζ=β1β2βtanh1β,ζ¯=β2β1βtanh1β{\displaystyle {\boldsymbol {\zeta }}={\frac {{\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}}{\beta }}\tanh ^{-1}\beta \,,\quad {\overline {\boldsymbol {\zeta }}}={\frac {{\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}}{\beta }}\tanh ^{-1}\beta }

    so these vectors have the same magnitude

    ζ=ζ¯=tanh1β{\displaystyle \zeta ={\overline {\zeta }}=\tanh ^{-1}\beta }

    which is to be expected since composite boost velocities have the same magnitudes, but different directions.

    In terms of rapidity

    β1β2=11+n1n2tanhζ1tanhζ2[n1tanhζ1+n2tanhζ2coshζ1+coshζ11+coshζ1(n1n2)n1tanh2ζ1tanhζ2]{\displaystyle {\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}={\frac {1}{1+\mathbf {n} _{1}\cdot \mathbf {n} _{2}\tanh \zeta _{1}\tanh \zeta _{2}}}\left[\mathbf {n} _{1}\tanh \zeta _{1}+{\frac {\mathbf {n} _{2}\tanh \zeta _{2}}{\cosh \zeta _{1}}}+{\frac {\cosh \zeta _{1}}{1+\cosh \zeta _{1}}}(\mathbf {n} _{1}\cdot \mathbf {n} _{2})\mathbf {n} _{1}\tanh ^{2}\zeta _{1}\tanh \zeta _{2}\right]}
    β2β1=11+n2n1tanhζ2tanhζ1[n2tanhζ2+n1tanhζ1coshζ2+coshζ21+coshζ2(n2n1)n2tanh2ζ2tanhζ1]{\displaystyle {\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}={\frac {1}{1+\mathbf {n} _{2}\cdot \mathbf {n} _{1}\tanh \zeta _{2}\tanh \zeta _{1}}}\left[\mathbf {n} _{2}\tanh \zeta _{2}+{\frac {\mathbf {n} _{1}\tanh \zeta _{1}}{\cosh \zeta _{2}}}+{\frac {\cosh \zeta _{2}}{1+\cosh \zeta _{2}}}(\mathbf {n} _{2}\cdot \mathbf {n} _{1})\mathbf {n} _{2}\tanh ^{2}\zeta _{2}\tanh \zeta _{1}\right]}
    β=(n1tanhζ1+n2tanhζ2)2(n1×n2)2tanh2ζ1tanh2ζ21+n1n2tanhζ1tanhζ2{\displaystyle \beta ={\frac {\sqrt {(\mathbf {n} _{1}\tanh \zeta _{1}+\mathbf {n} _{2}\tanh \zeta _{2})^{2}-(\mathbf {n} _{1}\times \mathbf {n} _{2})^{2}\tanh ^{2}\zeta _{1}\tanh ^{2}\zeta _{2}}}{1+\mathbf {n} _{1}\cdot \mathbf {n} _{2}\tanh \zeta _{1}\tanh \zeta _{2}}}}

    so in full,

    ζ=β1β2βtanh1β,ζ¯=β2β1βtanh1β{\displaystyle {\boldsymbol {\zeta }}={\frac {{\boldsymbol {\beta }}_{1}\oplus {\boldsymbol {\beta }}_{2}}{\beta }}\tanh ^{-1}\beta \,,\quad {\overline {\boldsymbol {\zeta }}}={\frac {{\boldsymbol {\beta }}_{2}\oplus {\boldsymbol {\beta }}_{1}}{\beta }}\tanh ^{-1}\beta }

    Hyperbolic triangles

    [edit]

    Ifζ1 andζ2 are separated by an angle, and have magnitudesζ1 andζ2, these are related toζ by (add formula later...)

    Extra relations are the following (keep for reference)
    γ1=coshζ1,γ2=coshζ2{\displaystyle \gamma _{1}=\cosh \zeta _{1}\,,\quad \gamma _{2}=\cosh \zeta _{2}}
    β1=n1tanhζ1,β2=n2tanhζ2{\displaystyle {\boldsymbol {\beta }}_{1}=\mathbf {n} _{1}\tanh \zeta _{1}\,,\quad {\boldsymbol {\beta }}_{2}=\mathbf {n} _{2}\tanh \zeta _{2}}
    γ1β1=n1sinhζ1,γ2β2=n2sinhζ2{\displaystyle \gamma _{1}{\boldsymbol {\beta }}_{1}=\mathbf {n} _{1}\sinh \zeta _{1}\,,\quad \gamma _{2}{\boldsymbol {\beta }}_{2}=\mathbf {n} _{2}\sinh \zeta _{2}}

    Relativistic wave equations

    [edit]

    Constructing RWEs

    [edit]

    General considerations

    [edit]
    Line element and energy-momentum relation

    In the following, the four spacetime coordinates of the particle arex = (ct,x) (a.k.a. "four position vector"), and itsfour momentum isp = (E/c,p). TheMinkowski metricη throughout is (+, −, −, −). Natural unitsc =ħ = 1 will be used as standard in RQM.

    Using the relativistic invariance of the infinitesimalline element

    dxμdxμ=dτ2{\displaystyle dx_{\mu }dx^{\mu }=d\tau ^{2}}

    and the definition offour momentum

    pμ=mdxμdτ{\displaystyle p_{\mu }=m{\frac {dx_{\mu }}{d\tau }}}

    for a massive particle obtains theenergy-momentum relation in its covariant form

    pμpμ=m2{\displaystyle p_{\mu }p^{\mu }=m^{2}}

    or explicitly in terms of energy and 3-momentum

    E2p2=m2{\displaystyle E^{2}-\mathbf {p} ^{2}=m^{2}}

    This must also hold in relativistic quantum mechanics. There are a number of possibilities resulting from the equation which must be considered separately:

    Wigner's classification

    Here is Wigner's classification [Ohlsson 2011, p.15] for the irreducible representations of thePoincaré group:

    p2=m2>0,p0>0{\displaystyle p^{2}=m^{2}>0\,,\quad p^{0}>0}
    p2=0,p0<0{\displaystyle p^{2}=0\,,\quad p^{0}<0}
    p2=0,p0,p0>0{\displaystyle p^{2}=0\,,\quad p\neq 0\,,\quad p^{0}>0}
    p2=0,p0,p0<0{\displaystyle p^{2}=0\,,\quad p\neq 0\,,\quad p^{0}<0}
    p2=p=0{\displaystyle p^{2}=p=0}
    p2=m2=<0{\displaystyle p^{2}=m^{2}=<0}
    Postulates of QM

    All RWEs must also be consistent with theSchrödinger equation, a linear partial differential equation in the wave function, because this is one of the fundamental postulates of QM. Even if the RWE does not directly take the form of the SE, it should be possible to reproduce the SE from it somehow.

    In non-relativistic quantum mechanics, the energy and momentum observables are differential operators, and their eigenvalues are the results of measurement. In the index notation and four vector formalism here, these derivatives collect into a four momentum operator in terms of thefour gradient with components

    p^μ=iμ{\displaystyle {\hat {p}}_{\mu }=i\partial _{\mu }}
    p^=(E^,p^)=i(t,){\displaystyle {\hat {p}}=({\hat {E}},{\hat {\mathbf {p} }})=i\left({\frac {\partial }{\partial t}},-\nabla \right)}
    Spin and angular momentum

    Further, in non-relativistic quantum mechanics a particle with spins is described by a wavefunctionψ with 2s + 1 componentsψσ indexed by the spin projection quantum numberσ = −s, −s + 1, ...,s − 1,s, often these are arranged into a column vector

    ψ=(ψsψs1ψs+1ψs){\displaystyle \psi ={\begin{pmatrix}\psi _{s}\\\psi _{s-1}\\\vdots \\\psi _{-s+1}\\\psi _{-s}\end{pmatrix}}}

    Still in non-relativistic quantum mechanics, thespin operator for a particle of spins is a vectors of matricessx,sy,sz, each are (2s + 1)×(2s + 1) matrices.

    There is also therelativistic angular momentum tensorM, and thePauli-lubanski pseudovector is defined fromM andp. The spacelike component of the PL four pseudovector are related to spin.

    Poincaré group

    The four momentum and angular momentum relations satisfy the commutation relations of the Poincaré group.

    [pμ,pν]=0{\displaystyle [p_{\mu },p_{\nu }]=0\,}
    1i[Mμν,pρ]=ημρpνηνρpμ{\displaystyle {\frac {1}{i}}[M_{\mu \nu },p_{\rho }]=\eta _{\mu \rho }p_{\nu }-\eta _{\nu \rho }p_{\mu }\,}
    1i[Mμν,Mρσ]=ημρMνσημσMνρηνρMμσ+ηνσMμρ,{\displaystyle {\frac {1}{i}}[M_{\mu \nu },M_{\rho \sigma }]=\eta _{\mu \rho }M_{\nu \sigma }-\eta _{\mu \sigma }M_{\nu \rho }-\eta _{\nu \rho }M_{\mu \sigma }+\eta _{\nu \sigma }M_{\mu \rho }\,,}

    For any representation of the Poincare group, the infinitesimal unitary operators corresponding to boostsU(B), rotationsU(R), and translationsU(a) on the Hilbert space for the system are

    U(B)IiζK{\displaystyle U(B)\approx I-i{\boldsymbol {\zeta }}\cdot \mathbf {K} }
    U(R)IiθJ{\displaystyle U(R)\approx I-i{\boldsymbol {\theta }}\cdot \mathbf {J} }
    U(a)I+iap{\displaystyle U(a)\approx I+ia\cdot p}

    or

    U(Λ)Ii2ωαβMαβ{\displaystyle U(\Lambda )\approx I-{\frac {i}{2}}\omega _{\alpha \beta }M^{\alpha \beta }}
    U(a)I+iaμpμ{\displaystyle U(a)\approx I+ia^{\mu }p_{\mu }}

    whereω is an antisymmetric parameter matrix for boosts and rotations.

    In the finite case, one obtains the matrix exponentials. The generatorsJ,K, and four displacement (not four position)a are all operators satisfying the commutation relations. They are not unique and can take different forms depending on the representation, provided the commutation relations are satisfied.

    Heuristic construction of the KG and Dirac equations

    [edit]

    Combining the four momentum operator and energy momentum relation leads to the KG eqn

    p^μp^μψ=m2ψ{\displaystyle {\hat {p}}_{\mu }{\hat {p}}^{\mu }\psi =m^{2}\psi }

    which applies for spin-0 particles, massive or massless. This can be factorized bydifference of two squares into

    (γμp^μ+m)(γνp^νm)ψ=0{\displaystyle (\gamma ^{\mu }{\hat {p}}_{\mu }+m)(\gamma ^{\nu }{\hat {p}}_{\nu }-m)\psi =0}

    for suitable quantitiesγμ. Following LL vol 4 (at top of my head), expand the brackets

    γμp^μγνp^νψmγμp^μψ+mγνp^νψm2ψ=0{\displaystyle \gamma ^{\mu }{\hat {p}}_{\mu }\gamma ^{\nu }{\hat {p}}_{\nu }\psi -m\gamma ^{\mu }{\hat {p}}_{\mu }\psi +m\gamma ^{\nu }{\hat {p}}_{\nu }\psi -m^{2}\psi =0}

    and split the productγμγν into symmetric and antisymmetric products

    12(γμγν+γμγν)p^μp^νψ+12(γμγνγμγν)p^μp^νψm2ψ=0{\displaystyle {\frac {1}{2}}(\gamma ^{\mu }\gamma ^{\nu }+\gamma ^{\mu }\gamma ^{\nu }){\hat {p}}_{\mu }{\hat {p}}_{\nu }\psi +{\frac {1}{2}}(\gamma ^{\mu }\gamma ^{\nu }-\gamma ^{\mu }\gamma ^{\nu }){\hat {p}}_{\mu }{\hat {p}}_{\nu }\psi -m^{2}\psi =0}

    The summation of the antisymmetric tensorγμγνγνγμ with the symmetric tensorpμpν is zero (this applies generally for the summation of any antisymmetric and symmetric tensors). Since the KG eqn must be recovered, the quantitiesγμ must satisfy the anticommutation relation

    γμγν+γνγμ=2ημν.{\displaystyle \gamma ^{\mu }\gamma ^{\nu }+\gamma ^{\nu }\gamma ^{\mu }=2\eta ^{\mu \nu }\,.}

    One of the factors

    (γμp^μm)ψ=0{\displaystyle (\gamma ^{\mu }{\hat {p}}_{\mu }-m)\psi =0}

    is theDirac equation, which applies to any spin-1/2 particle, massive or massless. Ifψ satisfies this equation, it will also satisfy the KG equation, but the converse is not true because it can be shown theγμ, known as thegamma matrices, are related to the spin of the particle.

    The KG equation is a second order linear PDE and cannot be put into the form of a Schrödinger equation, which is always first order in time. However this is not a problem. The Dirac equation can be by separating the (first order) time derivative then choosing a suitable Hamiltonian.

    RWEs for particles of spin higher than 1/2 can be constructed heuristically from the Dirac equation. One approach is to form symmetric products of Dirac spinors to form a multicomponent spinor describing a particle of the appropriate spin. A set of Dirac equations apply to each index of the multicomponent spinor. Additional constraints are required. The results are theBargmann-Wigner equations. Another approach is to form a homogenous polynomial of derivative operators involving a contraction with a symmetric (matrix-valued) multi-index coefficient. The degree of the polynomial is related to the spin particle spin. The entire resulting operator acts on the wavefunction in a single equation. This is theJoos–Weinberg equation.

    Lagrangian densities

    [edit]

    Using the field theoretic EL equations, there are Lagrangian densities for the KG and Dirac equations. For higher spin RWEs, finding a Lagrangian is not trivial.

    Construction of any RWE using Lorentz group theory

    [edit]

    Jaroszewicz and Kurzepa (1992), Sexl and Urbantke (1992), Weinberg's QFT (vol 1), Ryder's QFT, Tung's Group theory in Physics...

    Tung's paper

    Aims...

    For the transformations of coordinates and wavefunctions/fields:

    • Summarize LTs using theJ,K andA,B generators.Done
    • Link theA,B generators to representations of the Lorentz group (not just the labels (A,B) for classifying representations, but actually connect the generatorsA andB themselves to theD matrices)
    • Plainly write down how spinors corresponding to a particle of spinj transform according to the relevant D matrices.
    • Derive the transformation of Pauli spinors under boosts and rotations. Provide explicit formulae for the D(1/2,0) and D(0,1/2) for boosts and rotations (in terms of the complex parametersα =θ +iζ andα* =θiζ and spin-1/2 operator, rather than Pauli matrices).
    • Explain how to construct explicit formulae for D(j,0) and D(0,j) under boosts and rotations (at least in principle, ideally actually provide the explicit formulae). Any connection to the spin-j or spin-1/2 operator?
    • Discrete transformations (CPT, complex/Hermitian conjugation)

    For the construction of RWEs:

    • establish the general conditions a RWE must satisfy (write the RWE in operator form, illustrate transformation properties)
    • Fourier transform of RWE
    • RWE in rest frame, then any frame
    • use the established representations to write down the RWEs

    Extra background (LL vol 4, SU, Barut, Carmeli, description of spinors):

    • Connect spinors to vectors (and generally tensors)
    • spinor indices
    • relate quantities transforming under a given D representation to spinors or tensors

    Summary of Lorentz transformations using the (J,K) generators

    [edit]

    For every Lorentz transformation Λ on the coordinates in Minkowski spacetimeM, there is a unitary operatorD(Λ) on the Hilbert spaceH of allowed quantum statesψ of the physical system. The representationsD depend on the system.

    Any Λ can be decomposed into pure boostsB and pure rotationsR. Boosts have parametersζ and generatorsK. Rotations have parametersθ and generatorsJ. The generatorsJ andK can be expressed as the following 4×4 matrices

    Kx=[0100100000000000],Ky=[0010000010000000],Kz=[0001000000001000]{\displaystyle K_{x}={\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&0&0\\0&0&0&0\\\end{bmatrix}}\,,\quad K_{y}={\begin{bmatrix}0&0&1&0\\0&0&0&0\\1&0&0&0\\0&0&0&0\end{bmatrix}}\,,\quad K_{z}={\begin{bmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&0\end{bmatrix}}}
    Jx=[0000000000010010],Jy=[0000000100000100],Jz=[0000001001000000]{\displaystyle J_{x}={\begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&0&-1\\0&0&1&0\\\end{bmatrix}}\,,\quad J_{y}={\begin{bmatrix}0&0&0&0\\0&0&0&1\\0&0&0&0\\0&-1&0&0\end{bmatrix}}\,,\quad J_{z}={\begin{bmatrix}0&0&0&0\\0&0&-1&0\\0&1&0&0\\0&0&0&0\end{bmatrix}}}

    The Λ form a group of transformations on spacetime coordinates leaving the line element invariant. The full set of Lorentz transformations (including parity and time reversal) is the Lie group O(1,3). Boosts and rotations are the Lie group SO(1,3).

    The finite LT is

    Λ(ζ,θ)=eζK+θJ{\displaystyle \Lambda ({\boldsymbol {\zeta }},{\boldsymbol {\theta }})=e^{-{\boldsymbol {\zeta }}\cdot \mathbf {K} +{\boldsymbol {\theta }}\cdot \mathbf {J} }}

    Individual boosts and rotations are

    R(θ)=eθJ{\displaystyle R({\boldsymbol {\theta }})=e^{{\boldsymbol {\theta }}\cdot \mathbf {J} }}
    B(ζ)=eζK{\displaystyle B({\boldsymbol {\zeta }})=e^{-{\boldsymbol {\zeta }}\cdot \mathbf {K} }}

    Explicit formulae for the representations for ann component object are

    D(Λ(ζ,θ))={\displaystyle D(\Lambda ({\boldsymbol {\zeta }},{\boldsymbol {\theta }}))=}
    D(R(θ))={\displaystyle D(R({\boldsymbol {\theta }}))=}
    D(B(ζ))={\displaystyle D(B({\boldsymbol {\zeta }}))=}

    Summary of Lorentz transformations using the (A,B) generators

    [edit]

    Another basis for the Lorentz generators takes complex conjugates of theJ andK generators:A = (J +iK)/2 andB = (JiK)/2. The corresponding parameters areα =θ +iζ andα* =θiζ.

    Using the above 4×4 matrices forJ andK,A andB take the form

    Ax=12[0i00i00000010010],Ay=12[00i00001i0000100],Az=12[000i00100100i000]{\displaystyle A_{x}={\frac {1}{2}}{\begin{bmatrix}0&i&0&0\\i&0&0&0\\0&0&0&-1\\0&0&1&0\\\end{bmatrix}}\,,\quad A_{y}={\frac {1}{2}}{\begin{bmatrix}0&0&i&0\\0&0&0&1\\i&0&0&0\\0&-1&0&0\end{bmatrix}}\,,\quad A_{z}={\frac {1}{2}}{\begin{bmatrix}0&0&0&i\\0&0&-1&0\\0&1&0&0\\i&0&0&0\end{bmatrix}}}
    Bx=12[0i00i00000010010],By=12[00i00001i0000100],Bz=12[000i00100100i000]{\displaystyle B_{x}={\frac {1}{2}}{\begin{bmatrix}0&-i&0&0\\-i&0&0&0\\0&0&0&-1\\0&0&1&0\\\end{bmatrix}}\,,\quad B_{y}={\frac {1}{2}}{\begin{bmatrix}0&0&-i&0\\0&0&0&1\\-i&0&0&0\\0&-1&0&0\end{bmatrix}}\,,\quad B_{z}={\frac {1}{2}}{\begin{bmatrix}0&0&0&-i\\0&0&-1&0\\0&1&0&0\\-i&0&0&0\end{bmatrix}}}

    which satisfy the commutation relations

    [Ax,Ay]=iAz,[Bx,By]=iBz{\displaystyle [A_{x},A_{y}]=iA_{z}\,,\quad [B_{x},B_{y}]=iB_{z}}

    where the rest can be found from cyclic permutations of x-, y-, and z-components ofA andB. Each component ofA commutes with each component ofB. All the commutation relations in index notation are

    [Ai,Aj]=iεijkAk,[Bi,Bj]=iεijkBk,[Ai,Bj]=0{\displaystyle [A_{i},A_{j}]=i\varepsilon _{ijk}A_{k}\,,\quad [B_{i},B_{j}]=i\varepsilon _{ijk}B_{k}\,,\quad [A_{i},B_{j}]=0}

    The components ofA andB each satisfy the commutation relations of the Lie algebra su(2). Taken together,A andB satisfy the commutation relations of the direct sum of their Lie algebras, su(2) ⊕ su(2). The corresponding Lie group is the tensor product SU(2) ⊗ SU(2).

    The finite Lorentz transformation is

    Λ(α,α)=eαA+αB{\displaystyle \Lambda ({\boldsymbol {\alpha }},{\boldsymbol {\alpha }}^{*})=e^{{\boldsymbol {\alpha }}\cdot \mathbf {A} +{\boldsymbol {\alpha }}^{*}\cdot \mathbf {B} }}

    The generatorsA andB do not have to be the 4×4 matrices matrices above. The commutation relations they satisfy are exactly those of thespin operator, indicating they can be spin matrices. LetS(j) be the spin operator corresponding to spinj. ThenA =S(A), a vector of three (2A + 1)×(2A + 1) matrices, andB =S(B), a vector of three (2B + 1)×(2B + 1) matrices. The z-component spin projection quantum numbers forAz area = −A, −A + 1, ...,A − 1,A, likewise forBz they areb = −B, −B + 1, ...,B − 1,B. When these are exponentiated (with appropriate parameters included), the results will also be matrices of sizes (2A + 1)×(2A + 1) and (2B + 1)×(2B + 1). These matrices have the correct size for transformation matrices of (2A + 1)-component and (2B + 1)-component wave functions, respectively. Representations of the Lorentz group can be labelled and classified by this pair of angular momenta (A,B), each integer or half integer.

    The inverse formulae areJ =A +B andiK =AB. In the extreme cases,

    • A =0 (henceA = 0) whileB arbitrary:B = −iK =J, in other wordsB =J =S(B) whileK =iS(B).
    • B =0 (henceB = 0) whileA arbitrary:A =iK =J, in other wordsA =J =S(A) whileK = −iS(A).

    NoticeJ is both the generator of spatial rotations in spacetime, and an angular momentum operator as the sum of two angular momenta. The operator for their total angular momentumJ is more accurately written using the direct or tensor product ⊗ as follows

    J=AI2B+1+I2A+1B{\displaystyle \mathbf {J} =\mathbf {A} \otimes I_{2B+1}+I_{2A+1}\otimes \mathbf {B} }

    which has allowed quantum numbersJ =A +B,A +B − 1..., |AB| + 1, |AB|, andIn is then-dimensional identity operator. As a matrix,J has the size ((2A + 1)(2B + 1))×((2A + 1)(2B + 1)), andIn is then×n identity matrix.

    In index notation, the above operator is [Weinberg vol 1 somewhere]

    [J]abab=[A]aaδbb+δaa[B]bb{\displaystyle [\mathbf {J} ]_{a'b'ab}=[\mathbf {A} ]_{a'a}\delta _{b'b}+\delta _{a'a}[\mathbf {B} ]_{b'b}}

    where the multiple indices select the components of spinors the operatorJ acts on. Explicitly, ifξa is a 2A + 1 component spin wave function andηb a 2B + 1 component spin wave function,J acts on the their tensor product as follows:

    [J]ababξaηb=([A]aaξa)ηb+ξa([B]bbηb){\displaystyle [\mathbf {J} ]_{a'b'ab}\xi _{a}\eta _{b}=([\mathbf {A} ]_{a'a}\xi _{a})\eta _{b'}+\xi _{a'}([\mathbf {B} ]_{b'b}\eta _{b})}

    useful link

    another

    another

    Transformations of spinors according to the (A,B) representations (massive particles)

    [edit]

    The tensor product representation is denoted and defined by [SU Particles and Fields p.231 eq 8.1.8 (in notation used here)]

    D(A,B)(α,α)=D(A)(α)D(B)(α){\displaystyle D^{(A,B)}({\boldsymbol {\alpha }},{\boldsymbol {\alpha }}^{*})=D^{(A)}({\boldsymbol {\alpha }}^{*})\otimes D^{(B)}({\boldsymbol {\alpha }})}

    See alsoClebsch-Gordan decomposition (c.f. addition of quantum angular momentum)

    D(A,B)=D(A)D(B)=D(A+B)D(A+B1)D(|AB|){\displaystyle D^{(A,B)}=D^{(A)}\otimes D^{(B)}=D^{(A+B)}\oplus D^{(A+B-1)}\oplus \cdots D^{(|A-B|)}}

    Need to find connections between representations and generators, for boosts and rotations:

    D(A,0)(α)=?eiαAA=S(A),α{\displaystyle D^{(A,0)}({\boldsymbol {\alpha }}^{*}){\color {grey}{\overset {?}{=}}e^{i{\boldsymbol {\alpha }}^{*}\cdot \mathbf {A} }}\leftrightarrow \mathbf {A} =\mathbf {S} ^{(A)},{\boldsymbol {\alpha }}^{*}}
    D(0,B)(α)=?eiαBB=S(B),α{\displaystyle D^{(0,B)}({\boldsymbol {\alpha }}){\color {grey}{\overset {?}{=}}e^{i{\boldsymbol {\alpha }}\cdot \mathbf {B} }}\leftrightarrow \mathbf {B} =\mathbf {S} ^{(B)},{\boldsymbol {\alpha }}}
    D(j)(α)=?eiαS(j)S(j),α{\displaystyle D^{(j)}({\boldsymbol {\alpha }}){\color {grey}{\overset {?}{=}}e^{i{\boldsymbol {\alpha }}\cdot \mathbf {S} ^{(j)}}}\leftrightarrow \mathbf {S} ^{(j)},{\boldsymbol {\alpha }}}

    One can findD(1/2,0) andD(0,1/2) (to be derived soon).

    General transformation of 2-component spinors

    LL vol 4 "Fermions" chapter

    A 2 component left handed spinorζ and right handed spinorη generally transform according to

    ξ=Mξ,η=Mη{\displaystyle \xi '=M\xi \,,\quad \eta '=M^{*}\eta }

    in matrix notation

    (ξ1ξ2)=(αβγδ)(ξ1ξ2),(η1η2)=(αβγδ)(η1η2){\displaystyle {\begin{pmatrix}{\xi '}_{1}\\{\xi '}_{2}\end{pmatrix}}={\begin{pmatrix}\alpha &\beta \\\gamma &\delta \end{pmatrix}}{\begin{pmatrix}\xi _{1}\\\xi _{2}\end{pmatrix}}\,,\quad {\begin{pmatrix}{\eta '}_{1}\\{\eta '}_{2}\end{pmatrix}}={\begin{pmatrix}\alpha ^{*}&\beta ^{*}\\\gamma ^{*}&\delta ^{*}\end{pmatrix}}{\begin{pmatrix}\eta _{1}\\\eta _{2}\end{pmatrix}}}

    in spinor index notation

    ξλ=Mλμξμ,ηλ˙=Mλ˙μ˙ημ˙{\displaystyle {\xi '}_{\lambda }=M_{\lambda }{}^{\mu }\xi _{\mu }\,,\quad {\eta '}_{\dot {\lambda }}={M^{*}}_{\dot {\lambda }}{}^{\dot {\mu }}\eta _{\dot {\mu }}}

    where det(M) =αδγβ = 1. Spinor indices take the values 1 and 2.

    D(1/2,0) andD(0,1/2)

    Using Ryder QFT (p.38?), under boosts and rotations, a left handed Pauli spinorζ transforms according to the (1/2,0) representation, while the right handed spinorη according to the (0,1/2) representation, explicitly

    ξ=D(1/2,0)ξ,η=D(0,1/2)η{\displaystyle \xi '=D^{(1/2,0)}\xi \,,\quad \eta '=D^{(0,1/2)}\eta }

    where

    D(1/2,0)=eiS(1/2)α,D(0,1/2)=eiS(1/2)α{\displaystyle D^{(1/2,0)}=e^{i\mathbf {S} ^{(1/2)}\cdot {\boldsymbol {\alpha }}^{*}}\,,\quad D^{(0,1/2)}=e^{i\mathbf {S} ^{(1/2)}\cdot {\boldsymbol {\alpha }}}}

    and

    S(1/2)=12σ{\displaystyle \mathbf {S} ^{(1/2)}={\frac {1}{2}}{\boldsymbol {\sigma }}}

    is the spin-1/2 operator, directly proportional to thePauli matricesσ.

    D(1/2,0)D(0,1/2)

    Dirac spinors transform as

    ψ=D(1/2,0)D(0,1/2)ψ{\displaystyle \psi '=D^{(1/2,0)}\oplus D^{(0,1/2)}\psi }

    explicitly in matrix form

    ψ=(ξη),D(1/2,0)D(0,1/2)=(D(1/2,0)00D(0,1/2)){\displaystyle \psi ={\begin{pmatrix}\xi \\\eta \end{pmatrix}}\,,\quad D^{(1/2,0)}\oplus D^{(0,1/2)}={\begin{pmatrix}D^{(1/2,0)}&0\\0&D^{(0,1/2)}\end{pmatrix}}}
    (D(1/2,0)D(0,1/2))⊗n

    For a tensor product ofn Dirac spinors

    ψρ1ψρ2ψρn=Dρ1σ1ψσ1Dρ2σ2ψσ2Dρnσnψσn=Dρ1σ1Dρ2σ2Dρnσnψσ1ψσ2ψσn{\displaystyle {\begin{aligned}{\psi '}_{\rho _{1}}{\psi '}_{\rho _{2}}\cdots {\psi '}_{\rho _{n}}&=D_{\rho _{1}\sigma _{1}}\psi _{\sigma _{1}}D_{\rho _{2}\sigma _{2}}\psi _{\sigma _{2}}\cdots D_{\rho _{n}\sigma _{n}}\psi _{\sigma _{n}}\\&=D_{\rho _{1}\sigma _{1}}D_{\rho _{2}\sigma _{2}}\cdots D_{\rho _{n}\sigma _{n}}\psi _{\sigma _{1}}\psi _{\sigma _{2}}\cdots \psi _{\sigma _{n}}\end{aligned}}}

    in whichD =D(1/2,0)D(0,1/2), the product transforms as then "tensor power" (tensor product of representation with itselfn times)

    (D(1/2,0)D(0,1/2))n{\displaystyle (D^{(1/2,0)}\oplus D^{(0,1/2)})^{\otimes n}}

    Likewise, a multicomponent spinor transforms in the same way

    ψρ1ρ2ρn=Dρ1σ1Dρ2σ2Dρnσnψσ1σ2σn{\displaystyle {\psi '}_{\rho _{1}\rho _{2}\cdots \rho _{n}}=D_{\rho _{1}\sigma _{1}}D_{\rho _{2}\sigma _{2}}\cdots D_{\rho _{n}\sigma _{n}}\psi _{\sigma _{1}\sigma _{2}\cdots \sigma _{n}}}

    Bargmann–Wigner spinors transform like this.

    D(j,0) andD(0,j)

    Under boosts and rotations, a (2j + 1)-component left handed spinorζ transforms according to the (j,0) representation, while a right handed spinorη transforms according to the (0,j) representation. Explicitly

    ξ=D(j,0)ξ,η=D(0,j)η{\displaystyle \xi '=D^{(j,0)}\xi \,,\quad \eta '=D^{(0,j)}\eta }

    Need to find correspondence

    D(j,0),D(0,j)S(j),α,α{\displaystyle D^{(j,0)},D^{(0,j)}\leftrightarrow \mathbf {S} ^{(j)},{\boldsymbol {\alpha }},{\boldsymbol {\alpha }}^{*}}
    D(j,0)D(0,j)

    The 2(2j + 1)-component spinor

    ψ=(ξη){\displaystyle \psi ={\begin{pmatrix}\xi \\\eta \end{pmatrix}}}

    transforms as

    ψ=D(j,0)D(0,j)ψ{\displaystyle \psi '=D^{(j,0)}\oplus D^{(0,j)}\psi }

    where

    D(j,0)D(0,j)=(D(j,0)00D(0,j)){\displaystyle D^{(j,0)}\oplus D^{(0,j)}={\begin{pmatrix}D^{(j,0)}&0\\0&D^{(0,j)}\end{pmatrix}}}

    The Joos-Weinberg wave function transforms like this.

    Massive particles with spins

    [edit]

    Start by writing the RWE in general form

    Π(p^,m)ψ(x)=0{\displaystyle \Pi ({\hat {p}},m)\psi (x)=0}

    where Π is a linear differential operator, and depends on the massm of the particle. The linearity is required for consistency with the SE. (If the RWE equation was a nonlinear PDE, Π andψ would not be separable from each other, because Π would be a function ofψ). For generality letψ haven components, and Π be ann×n matrix to act on all the components ofψ. The relation betweenn and the spin quantum numbers will be found later.

    The four spacetime coordinatesx change under aLorentz transformation Λ, while then components of the wave function collectively transform according to an×n transformation matrixD(Λ),

    x=Λx,ψ(x)=D(Λ)ψ(x),{\displaystyle x'=\Lambda x\,,\quad \psi '(x')=D(\Lambda )\psi (x)\,,}

    explicitly for all the components

    xα=Λαβxβ,ψ(x)ρ=D(Λ)ρσψ(x)σ.{\displaystyle {x'}^{\alpha }=\Lambda ^{\alpha }{}_{\beta }x^{\beta }\,,\quad \psi '(x')_{\rho }=D(\Lambda )_{\rho \sigma }\psi (x)_{\sigma }\,.}

    Notice the four spacetime coordinatesx have spacetime (or "Lorentz") indicesα andβ which take values 0, 1, 2, 3. The wave functionsψ and transformation matrixD(Λ) simply have matrix indicesρ andσ which take the values 1, 2, ...n. The transformed wave function in terms of the original wave function, in the transformed coordinates throughout, is

    ψ(x)=D(Λ)ψ(Λ1x),{\displaystyle \psi '(x')=D(\Lambda )\psi (\Lambda ^{-1}x')\,,}

    The transformation matricesD(Λ) must preserve the group composition properties of Lorentz transformations Λ, because for each coordinate change, the wave functions must also change correspondingly. In particular,

    Composition:D(Λ1Λ2)=D(Λ1)D(Λ2){\displaystyle D(\Lambda _{1}\Lambda _{2})=D(\Lambda _{1})D(\Lambda _{2})}
    Identity element:D(I)=I{\displaystyle D(I)=I}
    Inverse element:D(Λ)1=D(Λ1){\displaystyle D(\Lambda )^{-1}=D(\Lambda ^{-1})}

    which indicates theD(Λ) must be appropriate representations of the Lorentz group.

    The transformed wave equation is

    Π(p^,m)ψ(x)=0.{\displaystyle \Pi '({\hat {p}}',m)\psi '(x')=0\,.}

    Projecting theHermitian conjugate wave functionsψ onto their own wave equations (temporarily suppressing arguments for clarity),

    ψΠψ=0,{\displaystyle \psi ^{\dagger }\Pi \psi =0\,,}
    ψΠψ=ψDΠDψ=0,{\displaystyle {\psi '}^{\dagger }\Pi '\psi '={\psi }^{\dagger }D^{\dagger }\Pi 'D\psi =0\,,}

    IfD(Λ) is unitary (D(Λ) =D(Λ)−1), comparing these equations leads to thesimilarity transformation

    Π=D1ΠD,{\displaystyle \Pi =D^{-1}\Pi 'D\,,}

    in full

    Π(p^,m)=D(Λ)1Π(p^,m)D(Λ),{\displaystyle \Pi ({\hat {p}},m)=D(\Lambda )^{-1}\Pi '({\hat {p}}',m)D(\Lambda )\,,}

    Now the transformed operator Π′ can be expressed in in terms of the original Π, and in terms of the original momentum operators:

    D(Λ)Π(p^,m)D(Λ1)=Π(Λp^,m).{\displaystyle D(\Lambda )\Pi ({\hat {p}},m)D(\Lambda ^{-1})=\Pi '(\Lambda {\hat {p}},m)\,.}

    This is the general transformation of Π. Explicit forms of Π will be derived later.

    Not clearly useful, keep for reference

    If Π is a first order derivative operator, the only general form it can take is

    Π(p^,m)=πα(m)p^α+C(m){\displaystyle \Pi ({\hat {p}},m)=\pi ^{\alpha }(m){\hat {p}}_{\alpha }+C(m)}

    where then×n matricesπα(m) andC(m) may all depend on the particle massm. Since the four momentum is a covariant four vector, theπα form the components of a contravariant four vector so that Π is invariant under Lorentz transformations of momentum. The matrixC(m) must be invariant in all frames, which can only be possible if it is the identity matrix multiplied by a relativistic scalar invariant.

    The transformed Π operator in the original momentum operators is

    Π(Λp^,m)=D(Λ)πα(m)D(Λ1)p^α+D(Λ)C(m)D(Λ1){\displaystyle \Pi '(\Lambda {\hat {p}},m)=D(\Lambda )\pi ^{\alpha }(m)D(\Lambda ^{-1}){\hat {p}}_{\alpha }+D(\Lambda )C(m)D(\Lambda ^{-1})}

    hence eachπα must transform as

    πα=Λαβπβ,D(Λ)πα(m)D(Λ1)=πα(m).{\displaystyle {\pi '}^{\alpha }=\Lambda ^{\alpha }{}_{\beta }\pi ^{\beta }\,,\quad D(\Lambda )\pi ^{\alpha }(m)D(\Lambda ^{-1})={\pi '}^{\alpha }(m)\,.}

    Starting from the rest frame of the particle, the coordinates, momenta, wave function, and RWE in this rest frame can all be transformed appropriately to obtain the corresponding quantities or operators in any other boosted frame. It will be easier to use the momentum representation because in the rest frame,p = (p0,0), so there are fewer variables to keep track of, and the differential equation will be converted to an algebraic equation.

    Take theFourier transform of the original equation to obtain the momentum space equation

    Π(p,m)ϕ(p)=0{\displaystyle \Pi (p,m)\phi (p)=0}

    where the FT ofψ(x) is

    ϕ(p)=Nd4x(2π)3eipαxαψ(x){\displaystyle \phi (p)=\int {\frac {Nd^{4}x}{(2\pi )^{3}}}e^{-ip_{\alpha }x^{\alpha }}\psi (x)\quad }

    (including an extra normalization factorN to be adjusted later).

    The FT of the Π operator is still Π, but all derivative operators are replaced by momentum components. For the first order case,

    Π(p,m)=πα(m)pα+C(m){\displaystyle \Pi (p,m)=\pi ^{\alpha }(m)p_{\alpha }+C(m)}

    In the rest frame of the particle, the momentum space wavefunctionφ(prest) orφ(p0,0) only has energy dependence. Now transform to a boosted frame with momentump, so the new wave function isφ′(p′) or

    ϕ(p0,p)=D(L)ϕ(p0,0){\displaystyle \phi '(p_{0},\mathbf {p} )=D(L)\phi (p_{0},{\boldsymbol {0}})}

    whereL is a Lorentz transformation for the boost, andD(L) a corresponding representation.

    The momentum space Π operator in the rest frame is (given in Tung's book, can't find in Weinberg.Can't understand this formula, how do we arrive attwoJ andtwoσ values?? It must have something to do with the direct products in expression forJ =AI +IB which each need twoa andb values. Need to explain origin properly...)

    Π(prest,m)JσJσδJsδJsδσσ,{\displaystyle \Pi (p_{\text{rest}},m)^{J'\sigma '}{}_{J\sigma }\propto \delta ^{J'}{}_{s}\delta ^{J}{}_{s}\delta ^{\sigma '}{}_{\sigma }\,,}

    which filters only thoseJ values which equal the spins of the particle (σ = −s, ...,s is the z-component projection spin quantum number fors). In the particle's rest frame, the only degrees of freedom are rotations. The wave function can transform under rotations, withJ =AI +IB the generator.

    In terms of thea andb labels this is related to the CG coefficients (will add formula later).

    The corresponding operator in the boosted frame is

    D(L)Π(prest,m)D(L1)=Π(Lprest,m){\displaystyle D(L)\Pi (p_{\text{rest}},m)D(L^{-1})=\Pi '(Lp_{\text{rest}},m)}

    in detail

    D(L)kJσΠ(prest,m)JσJσD(L1)Jσk=Π(Lprest,m)kk{\displaystyle D(L)^{k'\ell '}{}_{J'\sigma '}\Pi (p_{\text{rest}},m)^{J'\sigma '}{}_{J\sigma }D(L^{-1})^{J\sigma }{}_{k\ell }=\Pi '(Lp_{\text{rest}},m)^{k'\ell '}{}_{k\ell }}

    so that

    D(L)ksσD(L1)sσk=Π(Lprest,m)kk{\displaystyle D(L)^{k'\ell '}{}_{s\sigma }D(L^{-1})^{s\sigma }{}_{k\ell }=\Pi '(Lp_{\text{rest}},m)^{k'\ell '}{}_{k\ell }}

    Massless particles with spins

    [edit]

    Wave function

    [edit]

    General representations

    [edit]

    Letα = (α1,α2, ...,αn) be dimensionless discrete-valued observables, andω = (ω1,ω2, ...,ωm) be continuous-valued observables (not necessarily dimensionless). Allα are in ann-dimensionalsetA =A1 ×A2 × ...An where eachAi is the set of allowed values forαi, likewise allω are in anm-dimensional "volume"Ω ⊆ ℝm whereΩ = Ω1 × Ω2 × ... Ωm and eachΩi ⊆ ℝ is the set of allowed values forωi, asubset of thereal numbers. For generalityn andm are not necessarily equal.

    Then,Ψ(α,ω,t) is referred to as the"wave function" of the system.

    For example, for a single particle in 3d with spins, neglecting other degrees of freedom, using Cartesian coordinates, we could takeα = (sz) for the spin quantum number of the particle along the z direction, andω = (x,y,z) for the particle's position coordinates. HereA = {−s, −s + 1, ...,s − 1,s} is the set of allowed spin quantum numbers andΩ = ℝ3 is the set of of all possible particle positions throughout 3d position space. An alternative choice isα = (sy) for the spin quantum number along the y direction andω = (px,py,pz) for the particle's momentum components. In this caseA andΩ are the same.

    In theCopenhagen interpretation, theprobability density of finding the system in any state is

    ρ=|Ψ(α,ω,t)|2{\displaystyle \rho =|\Psi ({\boldsymbol {\alpha }},{\boldsymbol {\omega }},t)|^{2}}

    The probability of finding system withα in some or all possible discrete-variable configurations,DA, andω in some or all possible continuous-variable configurations,C ⊆ Ω, is the sum and integral over the density,[nb 1]

    P=αDCρdmω{\displaystyle P=\sum _{{\boldsymbol {\alpha }}\in D}\int _{C}\rho \,d^{m}{\boldsymbol {\omega }}}

    wheredmω =12...m is a "differential volume element" in the continuous degrees of freedom. The units of the wavefunction are then such thatρ dmω is dimensionless, bydimensional analysisΨ must have the same units as(ω1ω2...ωm)−1/2. Since the sum of all probabilities must be 1, thenormalization condition

    1=αAΩρdmω{\displaystyle 1=\sum _{{\boldsymbol {\alpha }}\in A}\int _{\Omega }\rho \,d^{m}{\boldsymbol {\omega }}}

    must hold at all times during the evolution of the system. The interpretation is the system will be in a particular state, all theαi andωj will have particular values at the timet the system is measured.

    Every value of the wave function is accumulated into a single vector inDirac notation

    |Ψ=αdmωΨ(α,ω,t)|α,ω{\displaystyle |\Psi \rangle =\sum _{\boldsymbol {\alpha }}\int d^{m}{\boldsymbol {\omega }}\Psi ({\boldsymbol {\alpha }},{\boldsymbol {\omega }},t)|{\boldsymbol {\alpha }},{\boldsymbol {\omega }}\rangle }

    in which(α,ω) index the components of the vector, and|α,ω are the basis vectors in this representation.

    One particle states in 3d position space

    [edit]

    The position-space wave function of a single particle without spin in three spatial dimensions is similar to the case of one spatial dimension above:

    Ψ(r,t){\displaystyle \Psi (\mathbf {r} ,t)}

    wherer is theposition vector in three-dimensional space, andt is time. As alwaysΨ(r, t) is a complex-valued function of real variables. As a single vector in Dirac notation

    |Ψ(t)=d3rΨ(r,t)|r{\displaystyle |\Psi (t)\rangle =\int d^{3}\mathbf {r} \Psi (\mathbf {r} ,t)|\mathbf {r} \rangle }

    All the previous remarks on inner products, momentum space wave functions, Fourier transforms, and so on extend to higher dimensions.

    For a particle withspin, ignoring the position degrees of freedom, the wave function is a function of spin only (time is a parameter);

    ξ(sz,t){\displaystyle \xi (s_{z},t)}

    wheresz is thespin projection quantum number along thez axis. (Thez axis is an arbitrary choice; other axes can be used instead if the wave function is transformed appropriately, see below.) Thesz parameter, unliker andt, is adiscrete variable. For example, for aspin-1/2 particle,sz can only be+1/2 or−1/2, and not any other value. (In general, for spins,sz can bes,s − 1, ... , −s + 1, −s). Inserting each quantum number gives a complex valued function of space and time, there are2s + 1 of them. These can be arranged into acolumn vector[nb 2]

    ξ=[ξ(s,t)ξ(s1,t)ξ((s1),t)ξ(s,t)]=ξ(s,t)[1000]+ξ(s1,t)[0100]++ξ((s1),t)[0010]+ξ(s,t)[0001]{\displaystyle {\xi ={\begin{bmatrix}\xi (s,t)\\\xi (s-1,t)\\\vdots \\\xi (-(s-1),t)\\\xi (-s,t)\\\end{bmatrix}}=\xi (s,t){\begin{bmatrix}1\\0\\\vdots \\0\\0\\\end{bmatrix}}+\xi (s-1,t){\begin{bmatrix}0\\1\\\vdots \\0\\0\\\end{bmatrix}}+\cdots +\xi (-(s-1),t){\begin{bmatrix}0\\0\\\vdots \\1\\0\\\end{bmatrix}}+\xi (-s,t){\begin{bmatrix}0\\0\\\vdots \\0\\1\\\end{bmatrix}}}}

    In bra ket notation, these easily arrange into the components of a vector[nb 3]

    |ξ(t)=sz=ssξ(sz,t)|sz{\displaystyle |\xi (t)\rangle =\sum _{s_{z}=-s}^{s}\xi (s_{z},t)|s_{z}\rangle }

    The entire vectorξ is a solution of the Schrödinger equation (with a suitable Hamiltonian), which unfolds to a coupled system of2s + 1 ordinary differential equations with solutionsξ(s,t),ξ(s − 1,t), ...,ξ(−s,t). This contrasts the solutions to position space wave functions, the position coordinates being continuous degrees of freedom, because then the Schrödinger equation does take the form of a wave equation.

    More generally, for a particle in 3d with any spin, the wave function can be written in "position–spin space" as:

    Ψ(r,sz,t){\displaystyle \Psi (\mathbf {r} ,s_{z},t)}

    and these can also be arranged into a column vector

    Ψ(r,t)=[Ψ(r,s,t)Ψ(r,s1,t)Ψ(r,(s1),t)Ψ(r,s,t)]{\displaystyle \Psi (\mathbf {r} ,t)={\begin{bmatrix}\Psi (\mathbf {r} ,s,t)\\\Psi (\mathbf {r} ,s-1,t)\\\vdots \\\Psi (\mathbf {r} ,-(s-1),t)\\\Psi (\mathbf {r} ,-s,t)\\\end{bmatrix}}}

    in which the spin dependence is placed in indexing the entries, and the wave function is a complex vector-valued function of space and time only.

    All values of the wave function, not only for discrete but continuous variables also, collect into a single vector

    |Ψ(t)=szd3rΨ(r,sz,t)|r,sz{\displaystyle |\Psi (t)\rangle =\sum _{s_{z}}\int d^{3}\mathbf {r} \Psi (\mathbf {r} ,s_{z},t)|\mathbf {r} ,s_{z}\rangle }

    For a single particle, thetensor product of its position state vector|ψ and spin state vector|ξ gives the composite position-spin state vector

    |ψ(t)|ξ(t)=szd3rψ(r,t)ξ(sz,t)|r|sz{\displaystyle |\psi (t)\rangle \otimes |\xi (t)\rangle =\sum _{s_{z}}\int d^{3}\mathbf {r} \psi (\mathbf {r} ,t)\xi (s_{z},t)|\mathbf {r} \rangle \otimes |s_{z}\rangle }

    with the identifications

    |Ψ(t)=|ψ(t)|ξ(t){\displaystyle |\Psi (t)\rangle =|\psi (t)\rangle \otimes |\xi (t)\rangle }
    Ψ(r,sz,t)=ψ(r,t)ξ(sz,t){\displaystyle \Psi (\mathbf {r} ,s_{z},t)=\psi (\mathbf {r} ,t)\xi (s_{z},t)}
    |r,sz=|r|sz{\displaystyle |\mathbf {r} ,s_{z}\rangle =|\mathbf {r} \rangle \otimes |s_{z}\rangle }

    The tensor product factorization is only possible if the orbital and spin angular momenta of the particle are separable in theHamiltonian operator underlying the system's dynamics (in other words, the Hamiltonian can be split into the sum of orbital and spin terms[1]). The time dependence can be placed in either factor, and time evolution of each can be studied separately. The factorization is not possible for those interactions where an external field or any space-dependent quantity couples to the spin; examples include a particle in amagnetic field, andspin-orbit coupling.

    The preceding discussion is not limited to spin as a discrete variable, the totalangular momentumJ may also be used.[2] Other discrete degrees of freedom, likeisospin, can expressed similarly to the case of spin above.

    Notes

    [edit]
    1. ^Here
      αα1,α2,,αnα1α2αn{\displaystyle \sum _{\boldsymbol {\alpha }}\equiv \sum _{\alpha _{1},\alpha _{2},\ldots ,\alpha _{n}}\equiv \sum _{\alpha _{1}}\sum _{\alpha _{2}}\cdots \sum _{\alpha _{n}}}
      is a multiple sum.
    2. ^Column vectors can be motivated by the convenience of expressing thespin operator for a given spin as amatrix, for the z-component spin operator (divided by hbar to nondimensionalize)
      1S^z=[s0000s10000(s1)0000s]{\displaystyle {\frac {1}{\hbar }}{\hat {S}}_{z}={\begin{bmatrix}s&0&\cdots &0&0\\0&s-1&\cdots &0&0\\\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&\cdots &-(s-1)&0\\0&0&\cdots &0&-s\end{bmatrix}}}
      Theeigenvectors of this matrix are the above column vectors, with eigenvalues being the corresponding spin quantum numbers.
    3. ^ Each|sz is usually identified as a column vector
      |s[1000],|s1[0100],,|(s1)[0010],|s[0001]{\displaystyle |s\rangle \leftrightarrow {\begin{bmatrix}1\\0\\\vdots \\0\\0\\\end{bmatrix}}\,,\quad |s-1\rangle \leftrightarrow {\begin{bmatrix}0\\1\\\vdots \\0\\0\\\end{bmatrix}}\,,\ldots \,,\quad |-(s-1)\rangle \leftrightarrow {\begin{bmatrix}0\\0\\\vdots \\1\\0\\\end{bmatrix}}\,,\quad |-s\rangle \leftrightarrow {\begin{bmatrix}0\\0\\\vdots \\0\\1\\\end{bmatrix}}}
      but it is a common abuse of notation to write
      |s=[1000],{\displaystyle |s\rangle ={\begin{bmatrix}1\\0\\\vdots \\0\\0\\\end{bmatrix}}\,\ldots \,,}
      because the kets|sz are not synonymous or equal to the column vectors. Column vectors simply provide a convenient way to express the spin components.

    References

    [edit]
    1. ^Shankar 1994, p. 378–379 harvnb error: no target: CITEREFShankar1994 (help)
    2. ^Landau & Lifshitz 1977 harvnb error: no target: CITEREFLandauLifshitz1977 (help)

    Wigner rotation (needs additional detail)

    [edit]

    Thomas rotation

    [edit]

    In the composition of two Lorentz boosts (seeWigner rotation), we encounter

    M=γuγvvuTc2+(I+γv2γv+1vvTc2)(I+γu2γu+1uuTc2)=I+γuγvvuTc2+γu2γu+1uuTc2+γv2γv+1vvTc2+γv2γv+1γu2γu+1vvTc2uuTc2=I+γu2γu+1uuTc2+γv2γv+1vvTc2+γuγv(1+γvγv+1γuγu+1vTuc2)vuTc2{\displaystyle {\begin{aligned}\mathbf {M} &=\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }{\frac {\mathbf {vu} ^{\mathrm {T} }}{c^{2}}}+\left(\mathbf {I} +{\dfrac {\gamma _{\mathbf {v} }^{2}}{\gamma _{\mathbf {v} }+1}}{\frac {\mathbf {vv} ^{\mathrm {T} }}{c^{2}}}\right)\left(\mathbf {I} +{\dfrac {\gamma _{\mathbf {u} }^{2}}{\gamma _{\mathbf {u} }+1}}{\frac {\mathbf {uu} ^{\mathrm {T} }}{c^{2}}}\right)\\&=\mathbf {I} +\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }{\frac {\mathbf {vu} ^{\mathrm {T} }}{c^{2}}}+{\dfrac {\gamma _{\mathbf {u} }^{2}}{\gamma _{\mathbf {u} }+1}}{\frac {\mathbf {uu} ^{\mathrm {T} }}{c^{2}}}+{\dfrac {\gamma _{\mathbf {v} }^{2}}{\gamma _{\mathbf {v} }+1}}{\frac {\mathbf {vv} ^{\mathrm {T} }}{c^{2}}}+{\dfrac {\gamma _{\mathbf {v} }^{2}}{\gamma _{\mathbf {v} }+1}}{\dfrac {\gamma _{\mathbf {u} }^{2}}{\gamma _{\mathbf {u} }+1}}{\frac {\mathbf {vv} ^{\mathrm {T} }}{c^{2}}}{\frac {\mathbf {uu} ^{\mathrm {T} }}{c^{2}}}\\&=\mathbf {I} +{\dfrac {\gamma _{\mathbf {u} }^{2}}{\gamma _{\mathbf {u} }+1}}{\frac {\mathbf {uu} ^{\mathrm {T} }}{c^{2}}}+{\dfrac {\gamma _{\mathbf {v} }^{2}}{\gamma _{\mathbf {v} }+1}}{\frac {\mathbf {vv} ^{\mathrm {T} }}{c^{2}}}+\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }\left(1+{\dfrac {\gamma _{\mathbf {v} }}{\gamma _{\mathbf {v} }+1}}{\dfrac {\gamma _{\mathbf {u} }}{\gamma _{\mathbf {u} }+1}}{\frac {\mathbf {v} ^{\mathrm {T} }\mathbf {u} }{c^{2}}}\right){\frac {\mathbf {vu} ^{\mathrm {T} }}{c^{2}}}\end{aligned}}}

    The above formulae constitute the relativistic velocity addition and theThomas rotation explicitly in the general Lorentz transformations. Throughout, the important formula

    M=R+1γ+1baT{\displaystyle \mathbf {M} =\mathbf {R} +{\frac {1}{\gamma +1}}\mathbf {b} \mathbf {a} ^{\mathrm {T} }}

    holds, allowing the rotation matrix (and hence the axis and angle) to be defined completely in terms of the relative velocitiesu andv.

    In theaxis–angle representation, the general 3d rotation matrix is[nb 1]

    R=I+Esinϵ+E2(1cosϵ),{\displaystyle \mathbf {R} =\mathbf {I} +\mathbf {E} \sin \epsilon +\mathbf {E} ^{2}(1-\cos \epsilon )\,,}

    where the components of a unit vectore parallel to the axis are arranged into theantisymmetric matrix

    E=[0ezeyez0exeyex0]{\displaystyle \mathbf {E} ={\begin{bmatrix}0&-e_{z}&e_{y}\\e_{z}&0&-e_{x}\\-e_{y}&e_{x}&0\end{bmatrix}}}

    (which should not be confused for the Cartesian unit vectorsex,ey,ez). Here theright-handed convention for the spatial coordinates is used (seeorientation (vector space)), so that rotations are positive in the anticlockwise sense according to theright-hand rule, and negative in the clockwise sense. This matrix rotates any 3d vector about the axise through angleε anticlockwise (an active transformation), which has the equivalent effect of rotating the coordinate frame clockwise about the same axis through the same angle (a passive transformation).

    Starting froma, the matrixR rotates this intob anticlockwise, it follows theircross product (in the right-hand convention)

    a×b=γuγv(γ21)(γ+γv+γu+1)(γv+1)(γu+1)(γ+1)c2u×v{\displaystyle \mathbf {a} \times \mathbf {b} ={\frac {\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }(\gamma ^{2}-1)(\gamma +\gamma _{\mathbf {v} }+\gamma _{\mathbf {u} }+1)}{(\gamma _{\mathbf {v} }+1)(\gamma _{\mathbf {u} }+1)(\gamma +1)c^{2}}}\mathbf {u} \times \mathbf {v} }

    defines the axis correctly, therefore the axis is also parallel tou×v, geometrically this is perpendicular to the plane of the boost velocities. Since the magnitude ofu×v is neither interesting nor important, only the direction is, it is customary to normalize the vector into theunit vector above thus

    e=u×v|u×v|{\displaystyle \mathbf {e} ={\frac {\mathbf {u} \times \mathbf {v} }{|\mathbf {u} \times \mathbf {v} |}}}

    which still completely defines the direction of the axis without loss of information.

    The angleε betweena andb isnot the same as the angleα betweenu andv.

    Dubious, keep for reference

    The two cross products are

    a×b=|a||b|sinϵe{\displaystyle \mathbf {a} \times \mathbf {b} =|\mathbf {a} ||\mathbf {b} |\sin \epsilon \mathbf {e} }
    u×v=|u||v|sinαe{\displaystyle \mathbf {u} \times \mathbf {v} =|\mathbf {u} ||\mathbf {v} |\sin \alpha \mathbf {e} }

    hence the angles are related by[1]

    sinϵ=|u||v|sinαγuγv(γ+γv+γu+1)(γv+1)(γu+1)(γ+1){\displaystyle \sin \epsilon =|\mathbf {u} ||\mathbf {v} |\sin \alpha {\frac {\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }(\gamma +\gamma _{\mathbf {v} }+\gamma _{\mathbf {u} }+1)}{(\gamma _{\mathbf {v} }+1)(\gamma _{\mathbf {u} }+1)(\gamma +1)}}}

    so they cannot be equal in general.

    The angle of a rotation matrix in the axis–angle representation can be found from thetrace of the rotation matrix, the general result forany axis is

    tr(R)=1+2cosϵ{\displaystyle \mathrm {tr} (\mathbf {R} )=1+2\cos \epsilon }

    which in turn is equivalent to, by the linearity of the trace

    tr(R)=tr(M)1γ+1tr(baT){\displaystyle \mathrm {tr} (\mathbf {R} )=\mathrm {tr} (\mathbf {M} )-{\frac {1}{\gamma +1}}\mathrm {tr} (\mathbf {ba} ^{\mathrm {T} })}

    The trace ofM appears to be messy, but can be reduced to a compact expression using the facts that

    tr(I)=3,tr(uuTc2)=u2c2=γu21γu2,tr(vvTc2)=v2c2=γv21γv2{\displaystyle \mathrm {tr} (\mathbf {I} )=3\,,\quad \mathrm {tr} \left({\frac {\mathbf {uu} ^{\mathrm {T} }}{c^{2}}}\right)={\frac {u^{2}}{c^{2}}}={\frac {\gamma _{\mathbf {u} }^{2}-1}{\gamma _{\mathbf {u} }^{2}}}\,,\quad \mathrm {tr} \left({\frac {\mathbf {vv} ^{\mathrm {T} }}{c^{2}}}\right)={\frac {v^{2}}{c^{2}}}={\frac {\gamma _{\mathbf {v} }^{2}-1}{\gamma _{\mathbf {v} }^{2}}}}
    tr(vuT)=vu=γγuγvγuγv,vTu=vu{\displaystyle \mathrm {tr} (\mathbf {v} \mathbf {u} ^{\mathrm {T} })=\mathbf {v} \cdot \mathbf {u} ={\frac {\gamma -\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }}{\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }}}\,,\quad \mathbf {v} ^{\mathrm {T} }\mathbf {u} =\mathbf {v} \cdot \mathbf {u} }

    which result from

    γu=11u2c2γv=11v2c2γ=γuγv(1+uvc2){\displaystyle \gamma _{\mathbf {u} }={\frac {1}{\sqrt {1-{\frac {\mathbf {u} ^{2}}{c^{2}}}}}}\quad \gamma _{\mathbf {v} }={\frac {1}{\sqrt {1-{\frac {\mathbf {v} ^{2}}{c^{2}}}}}}\quad \gamma =\gamma _{\mathbf {u} }\gamma _{\mathbf {v} }\left(1+{\frac {\mathbf {u} \cdot \mathbf {v} }{c^{2}}}\right)}

    and for reference

    tr(M)=(1+γu+γv+γ)2(γv+1)(γu+1)γ{\displaystyle \mathrm {tr} (\mathbf {M} )={\frac {(1+\gamma _{\mathbf {u} }+\gamma _{\mathbf {v} }+\gamma )^{2}}{(\gamma _{\mathbf {v} }+1)(\gamma _{\mathbf {u} }+1)}}-\gamma }

    The trace ofbaT is numerically equal to the dot product of the vectorsa andb, and can be immediately connected to the angleε between them and the overall Lorentz factor through their magnitudes, therefore

    tr(baT)=ab=(γ21)cosϵ{\displaystyle \mathrm {tr} (\mathbf {ba} ^{\mathrm {T} })=\mathbf {a} \cdot \mathbf {b} =(\gamma ^{2}-1)\cos \epsilon }

    Combining these trace formulae gives an established result[2][3][4]

    cosϵ=(1+γ+γu+γv)2(1+γ)(1+γu)(1+γv)1{\displaystyle \cos \epsilon ={\frac {(1+\gamma +\gamma _{\mathbf {u} }+\gamma _{\mathbf {v} })^{2}}{(1+\gamma )(1+\gamma _{\mathbf {u} })(1+\gamma _{\mathbf {v} })}}-1}

    The rotation is simply a "static" rotation and there is no relativerotational motion between the frames, there is relative translational motion in the boost. However, if the frames accelerate, then the rotated frame rotates with an angular velocity. This effect is known as theThomas precession, and arises purely from the kinematics of successive Lorentz boosts.

    Interpreting the axes of rotation

    [edit]

    In frame Σ′, Σ moves with velocityu and F moves with velocityv, neither of which are rotated. This observer can define the angleπε betweenu andv, so the angle betweenu andv isε, and the cross product of them in this frame is

    (u)×v=u×v=|u||v|sinϵe{\displaystyle (-\mathbf {u} )\times \mathbf {v} =-\mathbf {u} \times \mathbf {v} =-|\mathbf {u} ||\mathbf {v} |\sin \epsilon \mathbf {e} }

    wheree is a unit vector parallel tou×v.[nb 2]

    In this frame Σ′, it is valid that

    u×v=|u||v|sinϵe{\displaystyle \mathbf {u} \times \mathbf {v} =|\mathbf {u} ||\mathbf {v} |\sin \epsilon \mathbf {e} }

    The other observers do not measure the angleε (orπε) because they only measureone ofu orv (or their negatives), as well asone of the composite velocitiesuv orvu (or their negatives). Also, therelativity of simultaneity means the angles betweenu andv is meaningless in the other frames. As perceived from the other frames Σ and Σ′′, is the rotation axis the same as in Σ′, in other words in the same direction ofu×v? Or are there different directions of rotation axes which somehow accounts for all/part of the Wigner rotation? The answer is the direction of the rotation axis is the same in all frames, but only the relative velocities of the other frames may be used to define the axis.

    In frame Σ, Σ′ moves with velocityu, Σ′′ moves with velocity

    uv=cγa{\displaystyle \mathbf {u} \oplus \mathbf {v} ={\frac {c}{\gamma }}\mathbf {a} }

    and is rotated clockwise about an axis parallel to

    u×cγa=u×(uv)=γvγu×v{\displaystyle \mathbf {u} \times {\frac {c}{\gamma }}\mathbf {a} =\mathbf {u} \times (\mathbf {u} \oplus \mathbf {v} )={\frac {\gamma _{\mathbf {v} }}{\gamma }}\mathbf {u} \times \mathbf {v} }

    In frame Σ′′, Σ′ moves with velocityv, Σ moves with velocity

    vu=cγb{\displaystyle -\mathbf {v} \oplus \mathbf {u} =-{\frac {c}{\gamma }}\mathbf {b} }

    and is rotated clockwise about an axis parallel to

    cγb×v=(vu)×v=γuγu×v{\displaystyle -{\frac {c}{\gamma }}\mathbf {b} \times \mathbf {v} =-(\mathbf {v} \oplus \mathbf {u} )\times \mathbf {v} =-{\frac {\gamma _{\mathbf {u} }}{\gamma }}\mathbf {u} \times \mathbf {v} }

    but since the axis is reversed for the same angle, this corresponds to a rotation in the opposite sense aboutu×v, here anticlockwise.

    The rotation axes in each frame are all proportional tou×v, only the direction of the rotation axis is important, the proportionality factors are not because they have no effect on direction. (They do indicate what happens to the rotation axes in the nonrelativistic limit, when relative velocities are much less than light). In all we can conclude

    e=u×v|u×v|{\displaystyle \mathbf {e} ={\frac {\mathbf {u} \times \mathbf {v} }{|\mathbf {u} \times \mathbf {v} |}}}

    is the axis of the Thomas rotation.

    Footnotes

    [edit]
    1. ^In the literature, the 3d rotation matrix may be denoted by other symbols likeD, others use a name and the relative velocity vectorsu,v involved, e.g.,tom[u,v] for "Thomas rotation" orgyr[u,v] for "gyration" (seegyrovector space). These are nothing more than alternative names for the sameR in this article. Correspondingly the 4d rotation matrices may be denoted
      Tom=[100tom[u,v]]orGyr=[100gyr[u,v]]{\displaystyle \mathrm {Tom} ={\begin{bmatrix}1&0\\0&\mathrm {tom} [\mathbf {u} ,\mathbf {v} ]\end{bmatrix}}\quad {\text{or}}\quad \mathrm {Gyr} ={\begin{bmatrix}1&0\\0&\mathrm {gyr} [\mathbf {u} ,\mathbf {v} ]\end{bmatrix}}}
      which are nothing more than alternative names for the sameR (non-bold italic) in this article.
    2. ^The angle betweenu andv isπε, but this has the same sine asε,
      sin(πϵ)=sinπcosϵsinϵcosπ=sinϵ.{\displaystyle \sin(\pi -\epsilon )=\sin \pi \cos \epsilon -\sin \epsilon \cos \pi =\sin \epsilon \,.}

    Notes

    [edit]
    1. ^Ungar 1989, p. 170 harvnb error: no target: CITEREFUngar1989 (help)
    2. ^Macfarlane 1962 harvnb error: no target: CITEREFMacfarlane1962 (help)
    3. ^Sexl & Urbantke 1992, pp. 4, 11, 41 harvnb error: no target: CITEREFSexlUrbantke1992 (help)
    4. ^Gourgoulhon 2013, pp. 213 harvnb error: no target: CITEREFGourgoulhon2013 (help)

    Relativistic angular momentum

    [edit]

    Six-angular momentum (orbital)

    [edit]
    calculation

    Add to the tensor section.

    The transformation of boost components are

    Mk0=ΛkμΛ0νMμν=Λk0Λ00M00+ΛkiΛ00Mi0+Λk0Λ0jM0j+ΛkiΛ0jMij=(ΛkiΛ00Λk0Λ0i)Mi0+ΛkiΛ0jMij{\displaystyle {\begin{aligned}M'^{k0}&=\Lambda ^{k}{}_{\mu }\Lambda ^{0}{}_{\nu }M^{\mu \nu }\\&=\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{0}M^{00}+\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{0}M^{i0}+\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{j}M^{0j}+\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{j}M^{ij}\\&=(\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{i})M^{i0}+\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{j}M^{ij}\\\end{aligned}}}

    as for the orbital angular momentum

    Mk=ΛkμΛνMμν=Λk0Λ0M00+ΛkiΛ0Mi0+Λk0ΛjM0j+ΛkiΛjMij=(ΛkiΛ0Λk0Λi)Mi0+ΛkiΛjMij{\displaystyle {\begin{aligned}M'^{k\ell }&=\Lambda ^{k}{}_{\mu }\Lambda ^{\ell }{}_{\nu }M^{\mu \nu }\\&=\Lambda ^{k}{}_{0}\Lambda ^{\ell }{}_{0}M^{00}+\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{0}M^{i0}+\Lambda ^{k}{}_{0}\Lambda ^{\ell }{}_{j}M^{0j}+\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{j}M^{ij}\\&=(\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{\ell }{}_{i})M^{i0}+\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{j}M^{ij}\end{aligned}}}

    Since

    M0i=Mi0=cNi{\displaystyle M^{0i}=-M^{i0}=-cN^{i}}
    Mij=xipjxjpi=Lij=εijkLk{\displaystyle M^{ij}=x^{i}p^{j}-x^{j}p^{i}=L^{ij}=\varepsilon ^{ijk}L_{k}}

    and

    Λ00=γΛi0=γβiΛ0i=γβiΛij=δij+(γ1)β2βiβj{\displaystyle {\begin{aligned}\Lambda ^{0}{}_{0}&=\gamma \\\Lambda ^{i}{}_{0}&=-\gamma \beta ^{i}\quad \Lambda ^{0}{}_{i}=-\gamma \beta _{i}\\\Lambda ^{i}{}_{j}&=\delta ^{i}{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{i}\beta _{j}\end{aligned}}}

    we have

    ΛkiΛ0Λk0Λi=(δki+(γ1)β2βkβi)(γβ)(γβk)(δi+(γ1)β2ββi)=γ(βkδiβδki){\displaystyle {\begin{aligned}\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{\ell }{}_{i}&=\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)(-\gamma \beta ^{\ell })-(-\gamma \beta ^{k})\left(\delta ^{\ell }{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{\ell }\beta _{i}\right)\\&=\gamma \left(\beta ^{k}\delta ^{\ell }{}_{i}-\beta ^{\ell }\delta ^{k}{}_{i}\right)\end{aligned}}}
    ΛkiΛ00Λk0Λ0i=(δki+(γ1)β2βkβi)γ(γβk)(γβi)=γ[δki+(γ1)β2βkβiγβkβi]=γ[δki+((γ1)β2γ)βkβi]=γ[δki+(γγβ21β2)βkβi]=γ[δki+(γ11β2)βkβi]=γδki(γ1β2)βkβi{\displaystyle {\begin{aligned}\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{i}&=\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)\gamma -(-\gamma \beta ^{k})(-\gamma \beta ^{i})\\&=\gamma \left[\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}-\gamma \beta ^{k}\beta ^{i}\right]\\&=\gamma \left[\delta ^{k}{}_{i}+\left({\frac {(\gamma -1)}{\beta ^{2}}}-\gamma \right)\beta ^{k}\beta _{i}\right]\\&=\gamma \left[\delta ^{k}{}_{i}+\left({\frac {\gamma -\gamma \beta ^{2}-1}{\beta ^{2}}}\right)\beta ^{k}\beta _{i}\right]\\&=\gamma \left[\delta ^{k}{}_{i}+\left({\frac {\gamma ^{-1}-1}{\beta ^{2}}}\right)\beta ^{k}\beta _{i}\right]\\&=\gamma \delta ^{k}{}_{i}-\left({\frac {\gamma -1}{\beta ^{2}}}\right)\beta ^{k}\beta _{i}\end{aligned}}}
    ΛkiΛ0=ΛkiΛ0=γβ(δki+(γ1)β2βkβi){\displaystyle \Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{0}=\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{\ell }=-\gamma \beta ^{\ell }\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)}
    ΛkiΛ00=(δki+(γ1)β2βkβi)γΛk0Λ0i=γ2βkβi{\displaystyle {\begin{aligned}\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{0}&=\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)\gamma \\\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{i}&=\gamma ^{2}\beta ^{k}\beta ^{i}\\\end{aligned}}}
    ΛkiΛj=(δki+(γ1)β2βkβi)(δj+(γ1)β2ββj)=δkiδj+(γ1)β2δkiββj+(γ1)β2βkβiδj+(γ1)β2(γ1)β2ββjβkβi{\displaystyle {\begin{aligned}\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{j}&=\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)\left(\delta ^{\ell }{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{\ell }\beta _{j}\right)\\&=\delta ^{k}{}_{i}\delta ^{\ell }{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\delta ^{k}{}_{i}\beta ^{\ell }\beta _{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\delta ^{\ell }{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{\ell }\beta _{j}\beta ^{k}\beta _{i}\end{aligned}}}

    gives

    cNk=(ΛkiΛ00Λk0Λ0i)cNi+ΛkiΛ0jεijnLn=(γδki(γ1β2)βkβi)cNi+γβj(δki+(γ1)β2βkβi)εijnLn=γcNk(γ1β2)βk(βicNi)γβjδkiεijnLnγ(γ1)β2βjβkβiεijnLn=γcNk(γ1β2)βk(βicNi)γβjεkjnLn{\displaystyle {\begin{aligned}cN'^{k}&=(\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{0}{}_{i})cN^{i}+\Lambda ^{k}{}_{i}\Lambda ^{0}{}_{j}\varepsilon ^{ijn}L_{n}\\&=\left(\gamma \delta ^{k}{}_{i}-\left({\frac {\gamma -1}{\beta ^{2}}}\right)\beta ^{k}\beta _{i}\right)cN^{i}+-\gamma \beta ^{j}\left(\delta ^{k}{}_{i}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\right)\varepsilon ^{ijn}L_{n}\\&=\gamma cN^{k}-\left({\frac {\gamma -1}{\beta ^{2}}}\right)\beta ^{k}(\beta _{i}cN^{i})-\gamma \beta ^{j}\delta ^{k}{}_{i}\varepsilon ^{ijn}L_{n}-\gamma {\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{j}\beta ^{k}\beta _{i}\varepsilon ^{ijn}L_{n}\\&=\gamma cN^{k}-\left({\frac {\gamma -1}{\beta ^{2}}}\right)\beta ^{k}(\beta _{i}cN^{i})-\gamma \beta ^{j}\varepsilon ^{kjn}L_{n}\\\end{aligned}}}

    or in vector form, dividing byc

    N=γN(γ1β2)β(βN)1cγβ×L{\displaystyle \mathbf {N} '=\gamma \mathbf {N} -\left({\frac {\gamma -1}{\beta ^{2}}}\right){\boldsymbol {\beta }}({\boldsymbol {\beta }}\cdot \mathbf {N} )-{\frac {1}{c}}\gamma {\boldsymbol {\beta }}\times \mathbf {L} }

    or reinstatingβ =v/c,

    N=γN(γ1v2)v(vN)γv×L{\displaystyle \mathbf {N} '=\gamma \mathbf {N} -\left({\frac {\gamma -1}{v^{2}}}\right)\mathbf {v} (\mathbf {v} \cdot \mathbf {N} )-\gamma \mathbf {v} \times \mathbf {L} }

    and

    Lk=(ΛkiΛ0Λk0Λi)cNi+ΛkiΛjLij=γc(βkδiβδki)Ni+(δkiδj+(γ1)β2δkiββj+(γ1)β2βkβiδj+(γ1)β2(γ1)β2ββjβkβi)Lij=γc(βkNβNk)+Lk+(γ1)β2ββjLkj+(γ1)β2βkβiLi=γc(βkNβNk)+Lk+(γ1)β2(ββi(Lik)+βkβiLi){\displaystyle {\begin{aligned}L'^{k\ell }&=(\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{0}-\Lambda ^{k}{}_{0}\Lambda ^{\ell }{}_{i})cN^{i}+\Lambda ^{k}{}_{i}\Lambda ^{\ell }{}_{j}L^{ij}\\&=\gamma c\left(\beta ^{k}\delta ^{\ell }{}_{i}-\beta ^{\ell }\delta ^{k}{}_{i}\right)N^{i}+\left(\delta ^{k}{}_{i}\delta ^{\ell }{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\delta ^{k}{}_{i}\beta ^{\ell }\beta _{j}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}\delta ^{\ell }{}_{j}+{\frac {(\gamma -1)}{\beta ^{2}}}{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{\ell }\beta _{j}\beta ^{k}\beta _{i}\right)L^{ij}\\&=\gamma c(\beta ^{k}N^{\ell }-\beta ^{\ell }N^{k})+L^{k\ell }+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{\ell }\beta _{j}L^{kj}+{\frac {(\gamma -1)}{\beta ^{2}}}\beta ^{k}\beta _{i}L^{i\ell }\\&=\gamma c(\beta ^{k}N^{\ell }-\beta ^{\ell }N^{k})+L^{k\ell }+{\frac {(\gamma -1)}{\beta ^{2}}}\left(\beta ^{\ell }\beta _{i}(-L^{ik})+\beta ^{k}\beta _{i}L^{i\ell }\right)\end{aligned}}}

    or converting to pseudovector form

    εknLn=γc(βkNβNk)+εknLn+(γ1)β2(ββi(εiknLn)+βkβiεinLn)=γc(βkNβNk)+εknLn+(γ1)β2(β(εkinβiLn)βkεinβiLn){\displaystyle {\begin{aligned}\varepsilon ^{k\ell n}L'_{n}&=\gamma c(\beta ^{k}N^{\ell }-\beta ^{\ell }N^{k})+\varepsilon ^{k\ell n}L_{n}+{\frac {(\gamma -1)}{\beta ^{2}}}\left(\beta ^{\ell }\beta _{i}(-\varepsilon ^{ikn}L_{n})+\beta ^{k}\beta _{i}\varepsilon ^{i\ell n}L_{n}\right)\\&=\gamma c(\beta ^{k}N^{\ell }-\beta ^{\ell }N^{k})+\varepsilon ^{k\ell n}L_{n}+{\frac {(\gamma -1)}{\beta ^{2}}}\left(\beta ^{\ell }(\varepsilon ^{kin}\beta _{i}L_{n})-\beta ^{k}\varepsilon ^{\ell in}\beta _{i}L_{n}\right)\\\end{aligned}}}

    in vector notation

    L=γcβ×N+L+(γ1)β2β×(β×L){\displaystyle \mathbf {L} '=\gamma c{\boldsymbol {\beta }}\times \mathbf {N} +\mathbf {L} +{\frac {(\gamma -1)}{\beta ^{2}}}{\boldsymbol {\beta }}\times ({\boldsymbol {\beta }}\times \mathbf {L} )}

    or reinstatingβ =v/c,

    L=γv×N+L+(γ1)v2v×(v×L){\displaystyle \mathbf {L} '=\gamma \mathbf {v} \times \mathbf {N} +\mathbf {L} +{\frac {(\gamma -1)}{v^{2}}}\mathbf {v} \times (\mathbf {v} \times \mathbf {L} )}


    Tensors and spinors

    [edit]

    Co-/contra-variance

    [edit]

    This table summarizes how the manipulation of covariant and contravariant indices fit in with invariance under apassive transformation between bases, and with the inner product. The barred indices refer to the final coordinate system after the transformation.

    Summary of above
    Geometry/AlgebraCovarianceContravariance
    A...vector (or contravariant vector)covector (or 1-form, covariant vector, dual vector)
    ...has abasis...eα=αr=rxα{\displaystyle \mathbf {e} _{\alpha }=\partial _{\alpha }\mathbf {r} ={\frac {\partial \mathbf {r} }{\partial x^{\alpha }}}}, which are tangenteα=xα{\displaystyle \mathbf {e} ^{\alpha }=\nabla x^{\alpha }}, which are normal
    ...tocoordinate...curvessurfaces
    ...in which...one coordinate varies, all others are constant.one coordinate is constant, all others vary.
    Thecoordinate vector transformation is...aα¯=aβLα¯β{\displaystyle a^{\bar {\alpha }}=a^{\beta }L^{\bar {\alpha }}{}_{\beta }}Ωα¯=ΩγLγα¯{\displaystyle \Omega _{\bar {\alpha }}=\Omega _{\gamma }L^{\gamma }{}_{\bar {\alpha }}}
    ...while thebasis transformation is...eα¯=Lγα¯eγ{\displaystyle \mathbf {e} _{\bar {\alpha }}=L^{\gamma }{}_{\bar {\alpha }}\mathbf {e} _{\gamma }}eα¯=Lα¯βeβ{\displaystyle \mathbf {e} ^{\bar {\alpha }}=L^{\bar {\alpha }}{}_{\beta }\mathbf {e} ^{\beta }}
    ...which areinvariant because...aα¯eα¯=aβLα¯βLγα¯eγ=aβδβγeγ=aγeγ{\displaystyle a^{\bar {\alpha }}\mathbf {e} _{\bar {\alpha }}=a^{\beta }L^{\bar {\alpha }}{}_{\beta }L^{\gamma }{}_{\bar {\alpha }}\mathbf {e} _{\gamma }=a^{\beta }\delta _{\beta }{}^{\gamma }\mathbf {e} _{\gamma }=a^{\gamma }\mathbf {e} _{\gamma }}Ωα¯eα¯=ΩγLγα¯Lα¯βeβ=Ωγδγβeβ=Ωβeβ{\displaystyle \Omega _{\bar {\alpha }}\mathbf {e} ^{\bar {\alpha }}=\Omega _{\gamma }L^{\gamma }{}_{\bar {\alpha }}L^{\bar {\alpha }}{}_{\beta }\mathbf {e} ^{\beta }=\Omega _{\gamma }\delta ^{\gamma }{}_{\beta }\mathbf {e} ^{\beta }=\Omega _{\beta }\mathbf {e} ^{\beta }}
    Theinner product is...

    a,Ω=aαeα,Ωβeβ=aαeα,eβΩβ=aαδβαΩβ=aαΩα{\displaystyle {\begin{aligned}\langle \mathbf {a} ,{\boldsymbol {\Omega }}\rangle &=\langle a^{\alpha }\mathbf {e} _{\alpha },\Omega _{\beta }\mathbf {e} ^{\beta }\rangle \\&=a^{\alpha }\langle \mathbf {e} _{\alpha },\mathbf {e} ^{\beta }\rangle \Omega _{\beta }\\&=a^{\alpha }\delta ^{\beta }{}_{\alpha }\Omega _{\beta }\\&=a^{\alpha }\Omega _{\alpha }\\\end{aligned}}}

    Retrieved from "https://en.wikipedia.org/w/index.php?title=User:Maschen/sandbox&oldid=902450836"

    [8]ページ先頭

    ©2009-2025 Movatter.jp