Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ursescu theorem

From Wikipedia, the free encyclopedia
Generalization of closed graph, open mapping, and uniform boundedness theorem

In mathematics, particularly infunctional analysis andconvex analysis, theUrsescu theorem is a theorem that generalizes theclosed graph theorem, theopen mapping theorem, and theuniform boundedness principle.

Ursescu theorem

[edit]

The following notation and notions are used, whereR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is aset-valued function andS{\displaystyle S} is a non-empty subset of atopological vector spaceX{\displaystyle X}:

Statement

[edit]

Theorem[1] (Ursescu)LetX{\displaystyle X} be acompletesemi-metrizablelocally convextopological vector space andR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be aclosedconvex multifunction with non-empty domain. Assume thatspan(ImRy){\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} is abarrelled space for some/everyyImR.{\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume thaty0i(ImR){\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and letx0R1(y0){\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right)} (so thaty0R(x0){\displaystyle y_{0}\in {\mathcal {R}}\left(x_{0}\right)}). Then for every neighborhoodU{\displaystyle U} ofx0{\displaystyle x_{0}} inX,{\displaystyle X,}y0{\displaystyle y_{0}} belongs to the relative interior ofR(U){\displaystyle {\mathcal {R}}(U)} inaff(ImR){\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (that is,y0intaff(ImR)R(U){\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)}). In particular, ifib(ImR){\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } thenib(ImR)=i(ImR)=rint(ImR).{\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}

Corollaries

[edit]

Closed graph theorem

[edit]

Closed graph theoremLetX{\displaystyle X} andY{\displaystyle Y} beFréchet spaces andT:XY{\displaystyle T:X\to Y} be a linear map. ThenT{\displaystyle T} is continuous if and only if the graph ofT{\displaystyle T} is closed inX×Y.{\displaystyle X\times Y.}

Proof

For the non-trivial direction, assume that the graph ofT{\displaystyle T} is closed and letR:=T1:YX.{\displaystyle {\mathcal {R}}:=T^{-1}:Y\rightrightarrows X.} It is easy to see thatgrR{\displaystyle \operatorname {gr} {\mathcal {R}}} is closed and convex and that its image isX.{\displaystyle X.} GivenxX,{\displaystyle x\in X,}(Tx,x){\displaystyle (Tx,x)} belongs toY×X{\displaystyle Y\times X} so that for every open neighborhoodV{\displaystyle V} ofTx{\displaystyle Tx} inY,{\displaystyle Y,}R(V)=T1(V){\displaystyle {\mathcal {R}}(V)=T^{-1}(V)} is a neighborhood ofx{\displaystyle x} inX.{\displaystyle X.} ThusT{\displaystyle T} is continuous atx.{\displaystyle x.}Q.E.D.

Uniform boundedness principle

[edit]

Uniform boundedness principleLetX{\displaystyle X} andY{\displaystyle Y} beFréchet spaces andT:XY{\displaystyle T:X\to Y} be a bijective linear map. ThenT{\displaystyle T} is continuous if and only ifT1:YX{\displaystyle T^{-1}:Y\to X} is continuous. Furthermore, ifT{\displaystyle T} is continuous thenT{\displaystyle T} is an isomorphism ofFréchet spaces.

Proof

Apply the closed graph theorem toT{\displaystyle T} andT1.{\displaystyle T^{-1}.} Q.E.D.

Open mapping theorem

[edit]

Open mapping theoremLetX{\displaystyle X} andY{\displaystyle Y} beFréchet spaces andT:XY{\displaystyle T:X\to Y} be a continuous surjective linear map. Then T is anopen map.

Proof

Clearly,T{\displaystyle T} is a closed and convex relation whose image isY.{\displaystyle Y.} LetU{\displaystyle U} be a non-empty open subset ofX,{\displaystyle X,} lety{\displaystyle y} be inT(U),{\displaystyle T(U),} and letx{\displaystyle x} inU{\displaystyle U} be such thaty=Tx.{\displaystyle y=Tx.} From the Ursescu theorem it follows thatT(U){\displaystyle T(U)} is a neighborhood ofy.{\displaystyle y.} Q.E.D.

Additional corollaries

[edit]

The following notation and notions are used for these corollaries, whereR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a set-valued function,S{\displaystyle S} is a non-empty subset of atopological vector spaceX{\displaystyle X}:

CorollaryLetX{\displaystyle X} be a barreledfirst countable space and letC{\displaystyle C} be a subset ofX.{\displaystyle X.} Then:

  1. IfC{\displaystyle C} is lower ideally convex thenCi=intC.{\displaystyle C^{i}=\operatorname {int} C.}
  2. IfC{\displaystyle C} is ideally convex thenCi=intC=int(clC)=(clC)i.{\displaystyle C^{i}=\operatorname {int} C=\operatorname {int} \left(\operatorname {cl} C\right)=\left(\operatorname {cl} C\right)^{i}.}

Related theorems

[edit]

Simons' theorem

[edit]

Simons' theorem[2]LetX{\displaystyle X} andY{\displaystyle Y} befirst countable withX{\displaystyle X} locally convex. Suppose thatR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y} is a multimap with non-empty domain that satisfiescondition (Hwx) or else assume thatX{\displaystyle X} is aFréchet space and thatR{\displaystyle {\mathcal {R}}} islower ideally convex. Assume thatspan(ImRy){\displaystyle \operatorname {span} (\operatorname {Im} {\mathcal {R}}-y)} isbarreled for some/everyyImR.{\displaystyle y\in \operatorname {Im} {\mathcal {R}}.} Assume thaty0i(ImR){\displaystyle y_{0}\in {}^{i}(\operatorname {Im} {\mathcal {R}})} and letx0R1(y0).{\displaystyle x_{0}\in {\mathcal {R}}^{-1}\left(y_{0}\right).} Then for every neighborhoodU{\displaystyle U} ofx0{\displaystyle x_{0}} inX,{\displaystyle X,}y0{\displaystyle y_{0}} belongs to the relative interior ofR(U){\displaystyle {\mathcal {R}}(U)} inaff(ImR){\displaystyle \operatorname {aff} (\operatorname {Im} {\mathcal {R}})} (i.e.y0intaff(ImR)R(U){\displaystyle y_{0}\in \operatorname {int} _{\operatorname {aff} (\operatorname {Im} {\mathcal {R}})}{\mathcal {R}}(U)}). In particular, ifib(ImR){\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})\neq \varnothing } thenib(ImR)=i(ImR)=rint(ImR).{\displaystyle {}^{ib}(\operatorname {Im} {\mathcal {R}})={}^{i}(\operatorname {Im} {\mathcal {R}})=\operatorname {rint} (\operatorname {Im} {\mathcal {R}}).}

Robinson–Ursescu theorem

[edit]

The implication (1){\displaystyle \implies } (2) in the following theorem is known as the Robinson–Ursescu theorem.[3]

Robinson–Ursescu theorem[3]Let(X,){\displaystyle (X,\|\,\cdot \,\|)} and(Y,){\displaystyle (Y,\|\,\cdot \,\|)} benormed spaces andR:XY{\displaystyle {\mathcal {R}}:X\rightrightarrows Y} be a multimap with non-empty domain. Suppose thatY{\displaystyle Y} is abarreled space, the graph ofR{\displaystyle {\mathcal {R}}} verifies conditioncondition (Hwx), and that(x0,y0)grR.{\displaystyle (x_{0},y_{0})\in \operatorname {gr} {\mathcal {R}}.} LetCX{\displaystyle C_{X}} (resp.CY{\displaystyle C_{Y}}) denote the closed unit ball inX{\displaystyle X} (resp.Y{\displaystyle Y}) (soCX={xX:x1}{\displaystyle C_{X}=\{x\in X:\|x\|\leq 1\}}). Then the following are equivalent:

  1. y0{\displaystyle y_{0}} belongs to thealgebraic interior ofImR.{\displaystyle \operatorname {Im} {\mathcal {R}}.}
  2. y0intR(x0+CX).{\displaystyle y_{0}\in \operatorname {int} {\mathcal {R}}\left(x_{0}+C_{X}\right).}
  3. There existsB>0{\displaystyle B>0} such that for all0r1,{\displaystyle 0\leq r\leq 1,}y0+BrCYR(x0+rCX).{\displaystyle y_{0}+BrC_{Y}\subseteq {\mathcal {R}}\left(x_{0}+rC_{X}\right).}
  4. There existA>0{\displaystyle A>0} andB>0{\displaystyle B>0} such that for allxx0+ACX{\displaystyle x\in x_{0}+AC_{X}} and allyy0+ACY,{\displaystyle y\in y_{0}+AC_{Y},}d(x,R1(y))Bd(y,R(x)).{\displaystyle d\left(x,{\mathcal {R}}^{-1}(y)\right)\leq B\cdot d(y,{\mathcal {R}}(x)).}
  5. There existsB>0{\displaystyle B>0} such that for allxX{\displaystyle x\in X} and allyy0+BCY,{\displaystyle y\in y_{0}+BC_{Y},}d(x,R1(y))1+xx0Byy0d(y,R(x)).{\displaystyle d\left(x,{\mathcal {R}}^{-1}(y)\right)\leq {\frac {1+\left\|x-x_{0}\right\|}{B-\left\|y-y_{0}\right\|}}\cdot d(y,{\mathcal {R}}(x)).}

See also

[edit]

Notes

[edit]
  1. ^Zălinescu 2002, p. 23.
  2. ^Zălinescu 2002, p. 22-23.
  3. ^abZălinescu 2002, p. 24.

References

[edit]
Basic concepts
Topics (list)
Maps
Mainresults (list)
Sets
Series
Duality
Applications and related
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ursescu_theorem&oldid=1300604779"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp