Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

True anomaly

From Wikipedia, the free encyclopedia
Parameter of Keplerian orbits
The true anomaly of pointP is the anglef. The center of the ellipse is pointC, and the focus is pointF.
Part of a series on
Astrodynamics
Efficiency measures

Incelestial mechanics,true anomaly is an angularparameter that defines the position of a body moving along aKeplerian orbit. It is the angle between the direction ofperiapsis and the current position of the body, as seen from the main focus of theellipse (the point around which the object orbits).

The true anomaly is usually denoted by theGreek lettersν orθ, or theLatin letterf, and is usually restricted to the range 0–360° (0–2π rad).

The true anomalyf is one of three angular parameters (anomalies) that defines a position along an orbit, the other two being theeccentric anomaly and themean anomaly.

Formulas

[edit]

From state vectors

[edit]

For elliptic orbits, thetrue anomalyν can be calculated fromorbital state vectors as:

ν=arccoser|e||r|{\displaystyle \nu =\arccos {{\mathbf {e} \cdot \mathbf {r} } \over {\mathbf {\left|e\right|} \mathbf {\left|r\right|} }}}
(ifrv < 0 then replaceν by2πν)

where:

Circular orbit

[edit]

Forcircular orbits the true anomaly is undefined, because circular orbits do not have a uniquely determined periapsis. Instead theargument of latitudeu is used:

u=arccosnr|n||r|{\displaystyle u=\arccos {{\mathbf {n} \cdot \mathbf {r} } \over {\mathbf {\left|n\right|} \mathbf {\left|r\right|} }}}
(ifrz < 0 then replaceu by 2πu)

where:

  • n is a vector pointing towards the ascending node (i.e. thez-component ofn is zero).
  • rz is thez-component of theorbital position vectorr

Circular orbit with zero inclination

[edit]

Forcircular orbits with zero inclination the argument of latitude is also undefined, because there is no uniquely determined line of nodes. One uses thetrue longitude instead:

l=arccosrx|r|{\displaystyle l=\arccos {r_{x} \over {\mathbf {\left|r\right|} }}}
(ifvx > 0 then replacel by2πl)

where:

From the eccentric anomaly

[edit]

The relation between the true anomalyν and theeccentric anomalyE{\displaystyle E} is:

cosν=cosEe1ecosE{\displaystyle \cos {\nu }={{\cos {E}-e} \over {1-e\cos {E}}}}

or using thesine[1] andtangent:

sinν=1e2sinE1ecosEtanν=sinνcosν=1e2sinEcosEe{\displaystyle {\begin{aligned}\sin {\nu }&={{{\sqrt {1-e^{2}\,}}\sin {E}} \over {1-e\cos {E}}}\\[4pt]\tan {\nu }={{\sin {\nu }} \over {\cos {\nu }}}&={{{\sqrt {1-e^{2}\,}}\sin {E}} \over {\cos {E}-e}}\end{aligned}}}

or equivalently:

tanν2=1+e1etanE2{\displaystyle \tan {\nu \over 2}={\sqrt {{1+e\,} \over {1-e\,}}}\tan {E \over 2}}

so

ν=2arctan(1+e1etanE2){\displaystyle \nu =2\,\operatorname {arctan} \left(\,{\sqrt {{1+e\,} \over {1-e\,}}}\tan {E \over 2}\,\right)}

Alternatively, a form of this equation was derived by[2] that avoids numerical issues when the arguments are near±π{\displaystyle \pm \pi }, as the two tangents become infinite. Additionally, sinceE2{\displaystyle {\frac {E}{2}}} andν2{\displaystyle {\frac {\nu }{2}}} are always in the same quadrant, there will not be any sign problems.

tan12(νE)=βsinE1βcosE{\displaystyle \tan {{\frac {1}{2}}(\nu -E)}={\frac {\beta \sin {E}}{1-\beta \cos {E}}}} whereβ=e1+1e2{\displaystyle \beta ={\frac {e}{1+{\sqrt {1-e^{2}}}}}}

so

ν=E+2arctan(βsinE1βcosE){\displaystyle \nu =E+2\operatorname {arctan} \left(\,{\frac {\beta \sin {E}}{1-\beta \cos {E}}}\,\right)}

From the mean anomaly

[edit]

The true anomaly can be calculated directly from themean anomalyM{\displaystyle M} via aFourier expansion:[3]

ν=M+2k=11k[n=Jn(ke)β|k+n|]sinkM{\displaystyle \nu =M+2\sum _{k=1}^{\infty }{\frac {1}{k}}\left[\sum _{n=-\infty }^{\infty }J_{n}(-ke)\beta ^{|k+n|}\right]\sin {kM}}

withBessel functionsJn{\displaystyle J_{n}} and parameterβ=11e2e{\displaystyle \beta ={\frac {1-{\sqrt {1-e^{2}}}}{e}}}.

Omitting all terms of ordere4{\displaystyle e^{4}} or higher (indicated byO(e4){\displaystyle \operatorname {\mathcal {O}} \left(e^{4}\right)}), it can be written as[3][4][5]

ν=M+(2e14e3)sinM+54e2sin2M+1312e3sin3M+O(e4).{\displaystyle \nu =M+\left(2e-{\frac {1}{4}}e^{3}\right)\sin {M}+{\frac {5}{4}}e^{2}\sin {2M}+{\frac {13}{12}}e^{3}\sin {3M}+\operatorname {\mathcal {O}} \left(e^{4}\right).}

Note that for reasons of accuracy this approximation is usually limited to orbits where the eccentricitye{\displaystyle e} is small.

The expressionνM{\displaystyle \nu -M} is known as theequation of the center, where more details about the expansion are given.

Radius from true anomaly

[edit]

The radius (distance between the focus of attraction and the orbiting body) is related to the true anomaly by the formula

r(t)=a1e21+ecosν(t){\displaystyle r(t)=a\,{1-e^{2} \over 1+e\cos \nu (t)}\,\!}

wherea is the orbit'ssemi-major axis.

Incelestial mechanics,Projective anomaly is an angularparameter that defines the position of a body moving along aKeplerian orbit. It is the angle between the direction ofperiapsis and the current position of the body in the projective space.

The projective anomaly is usually denoted by theθ{\displaystyle \theta } and is usually restricted to the range 0 - 360 degree (0 - 2π{\displaystyle \pi } radian).

The projective anomalyθ{\displaystyle \theta } is one of four angular parameters (anomalies) that defines a position along an orbit, the other two being theeccentric anomaly,true anomaly and themean anomaly.

In the projective geometry, circle, ellipse, parabolla, hyperbolla are treated as a same kind of quadratic curves.

projective parameters and projective anomaly

[edit]

An orbit type is classified by two project parametersα{\displaystyle \alpha } andβ{\displaystyle \beta } as follows,

where

α=(1+e)(qp)+(1+e)2(q+p)2+4e22{\displaystyle \alpha ={\frac {(1+e)(q-p)+{\sqrt {(1+e)^{2}(q+p)^{2}+4e^{2}}}}{2}}}

β=2e(1+e)(q+p)+(1+e)2(q+p)2+4e2{\displaystyle \beta ={\frac {2e}{(1+e)(q+p)+{\sqrt {(1+e)^{2}(q+p)^{2}+4e^{2}}}}}}

q=(1e)a{\displaystyle q=(1-e)a}

p=1Q=1(1+e)a{\displaystyle p={\frac {1}{Q}}={\frac {1}{(1+e)a}}}

whereα{\displaystyle \alpha } issemi major axis,e{\displaystyle e} iseccentricity,q{\displaystyle q} isperihelion distanceQ{\displaystyle Q} isaphelion distance.

Position and heliocentric distance of the planetx{\displaystyle x},y{\displaystyle y} andr{\displaystyle r} can be calculated as functions of the projective anomalyθ{\displaystyle \theta } :

x=β+αcosθ1+αβcosθ{\displaystyle x={\frac {-\beta +\alpha \cos \theta }{1+\alpha \beta \cos \theta }}}

y=α2β2sinθ1+αβcosθ{\displaystyle y={\frac {{\sqrt {\alpha ^{2}-\beta ^{2}}}\sin \theta }{1+\alpha \beta \cos \theta }}}

r=αβcosθ1+αβcosθ{\displaystyle r={\frac {\alpha -\beta \cos \theta }{1+\alpha \beta \cos \theta }}}

Kepler's equation

[edit]

The projective anomalyθ{\displaystyle \theta } can be calculated from the eccentric anomalyu{\displaystyle u} as follows,

tanθ2=1+αβ1αβtanu2{\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {1+\alpha \beta }{1-\alpha \beta }}}\tan {\frac {u}{2}}}

uesinu=M=(1α2β2α(1+β2))3/2k(tT0){\displaystyle u-e\sin u=M=\left({\frac {1-\alpha ^{2}\beta ^{2}}{\alpha (1+\beta ^{2})}}\right)^{3/2}k(t-T_{0})}

s33+α21α2+1s=2k(tT0)α(α2+1)3{\displaystyle {\frac {s^{3}}{3}}+{\frac {\alpha ^{2}-1}{\alpha ^{2}+1}}s={\frac {2k(t-T_{0})}{\sqrt {\alpha (\alpha ^{2}+1)^{3}}}}}

s=tanθ2{\displaystyle s=\tan {\frac {\theta }{2}}}

tanθ2=αβ+1αβ1tanhu2{\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {\alpha \beta +1}{\alpha \beta -1}}}\tanh {\frac {u}{2}}}

esinhuu=M=(α2β21α(1+β2))3/2k(tT0){\displaystyle e\sinh u-u=M=\left({\frac {\alpha ^{2}\beta ^{2}-1}{\alpha (1+\beta ^{2})}}\right)^{3/2}k(t-T_{0})}

The above equations are calledKepler's equation.

Generalized anomaly

[edit]

For arbitrary constantλ{\displaystyle \lambda }, the generalized anomalyΘ{\displaystyle \Theta } is related as

tanΘ2=λtanu2{\displaystyle \tan {\frac {\Theta }{2}}=\lambda \tan {\frac {u}{2}}}

The eccentric anomaly, the true anomaly, and the projective anomaly are the cases ofλ=1{\displaystyle \lambda =1},λ=1+e1e{\displaystyle \lambda ={\sqrt {\frac {1+e}{1-e}}}},λ=1+αβ1αβ{\displaystyle \lambda ={\sqrt {\frac {1+\alpha \beta }{1-\alpha \beta }}}}, respectively.

  • Sato, I., "A New Anomaly of Keplerian Motion", Astronomical Journal Vol.116, pp.2038-3039, (1997)

See also

[edit]

References

[edit]
  1. ^Fundamentals of Astrodynamics and Applications by David A. Vallado
  2. ^Broucke, R.; Cefola, P. (1973)."A Note on the Relations between True and Eccentric Anomalies in the Two-Body Problem".Celestial Mechanics.7 (3):388–389.Bibcode:1973CeMec...7..388B.doi:10.1007/BF01227859.ISSN 0008-8714.S2CID 122878026.
  3. ^abBattin, R.H. (1999).An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. American Institute of Aeronautics & Astronautics. p. 212 (Eq. (5.32)).ISBN 978-1-60086-026-3. Retrieved2022-08-02.
  4. ^Smart, W. M. (1977).Textbook on Spherical Astronomy(PDF). p. 120 (Eq. (87)).Bibcode:1977tsa..book.....S.
  5. ^Roy, A.E. (2005).Orbital Motion (4 ed.). Bristol, UK; Philadelphia, PA: Institute of Physics (IoP). p. 78 (Eq. (4.65)).Bibcode:2005ormo.book.....R.ISBN 0750310154. Archived fromthe original on 2021-05-15. Retrieved2020-08-29.

Further reading

[edit]
  • Murray, C. D. & Dermott, S. F., 1999,Solar System Dynamics, Cambridge University Press, Cambridge.ISBN 0-521-57597-4
  • Plummer, H. C., 1960,An Introductory Treatise on Dynamical Astronomy, Dover Publications, New York.OCLC 1311887 (Reprint of the 1918 Cambridge University Press edition.)

External links

[edit]
Gravitationalorbits
Types
General
Geocentric
About
other points
Parameters
  • Shape
  • Size
Orientation
Position
Variation
Maneuvers
Orbital
mechanics
Retrieved from "https://en.wikipedia.org/w/index.php?title=True_anomaly&oldid=1271965935"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp