Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Support vector machine

From Wikipedia, the free encyclopedia
Set of methods for supervised statistical learning
Part of a series on
Machine learning
anddata mining
Journals and conferences

Inmachine learning,support vector machines (SVMs, alsosupport vector networks[1]) aresupervisedmax-margin models with associated learningalgorithms that analyze data forclassification andregression analysis. Developed atAT&T Bell Laboratories,[1][2] SVMs are one of the most studied models, being based on statistical learning frameworks ofVC theory proposed byVapnik (1982, 1995) andChervonenkis (1974).

In addition to performinglinear classification, SVMs can efficiently perform non-linear classification using thekernel trick, representing the data only through a set of pairwise similarity comparisons between the original data points using a kernel function, which transforms them into coordinates in a higher-dimensionalfeature space. Thus, SVMs use the kernel trick to implicitly map their inputs into high-dimensional feature spaces, where linear classification can be performed.[3] Being max-margin models, SVMs are resilient to noisy data (e.g., misclassified examples). SVMs can also be used forregression tasks, where the objective becomesϵ{\displaystyle \epsilon }-sensitive.

The support vector clustering[4] algorithm, created byHava Siegelmann andVladimir Vapnik, applies the statistics of support vectors, developed in the support vector machines algorithm, to categorize unlabeled data.[citation needed] These data sets requireunsupervised learning approaches, which attempt to find naturalclustering of the data into groups, and then to map new data according to these clusters.

The popularity of SVMs is likely due to their amenability to theoretical analysis, and their flexibility in being applied to a wide variety of tasks, includingstructured prediction problems. It is not clear that SVMs have better predictive performance than other linear models, such aslogistic regression andlinear regression.[5]

Motivation

[edit]
H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them with the maximal margin.

Classifying data is a common task inmachine learning.Suppose some given data points each belong to one of two classes, and the goal is to decide which class anewdata point will be in. In the case of support vector machines, a data point is viewed as ap{\displaystyle p}-dimensional vector (a list ofp{\displaystyle p} numbers), and we want to know whether we can separate such points with a(p1){\displaystyle (p-1)}-dimensionalhyperplane. This is called alinear classifier. There are many hyperplanes that might classify the data. One reasonable choice as the best hyperplane is the one that represents the largest separation, ormargin, between the two classes. So we choose the hyperplane so that the distance from it to the nearest data point on each side is maximized. If such a hyperplane exists, it is known as themaximum-margin hyperplane and the linear classifier it defines is known as amaximum-margin classifier; or equivalently, theperceptron of optimal stability.[6]

More formally, a support vector machine constructs ahyperplane or set of hyperplanes in a high or infinite-dimensional space, which can be used forclassification,regression, or other tasks like outliers detection.[7] Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training-data point of any class (so-called functional margin), since in general the larger the margin, the lower thegeneralization error of the classifier.[8] A lowergeneralization error means that the implementer is less likely to experienceoverfitting.

Kernel machine

Whereas the original problem may be stated in a finite-dimensional space, it often happens that the sets to discriminate are notlinearly separable in that space. For this reason, it was proposed[9] that the original finite-dimensional space be mapped into a much higher-dimensional space, presumably making the separation easier in that space. To keep the computational load reasonable, the mappings used by SVM schemes are designed to ensure thatdot products of pairs of input data vectors may be computed easily in terms of the variables in the original space, by defining them in terms of akernel functionk(x,y){\displaystyle k(x,y)} selected to suit the problem.[10] The hyperplanes in the higher-dimensional space are defined as the set of points whose dot product with a vector in that space is constant, where such a set of vectors is an orthogonal (and thus minimal) set of vectors that defines a hyperplane. The vectors defining the hyperplanes can be chosen to be linear combinations with parametersαi{\displaystyle \alpha _{i}} of images offeature vectorsxi{\displaystyle x_{i}} that occur in the data base. With this choice of a hyperplane, the pointsx{\displaystyle x} in thefeature space that are mapped into the hyperplane are defined by the relationiαik(xi,x)=constant.{\displaystyle \textstyle \sum _{i}\alpha _{i}k(x_{i},x)={\text{constant}}.} Note that ifk(x,y){\displaystyle k(x,y)} becomes small asy{\displaystyle y} grows further away fromx{\displaystyle x}, each term in the sum measures the degree of closeness of the test pointx{\displaystyle x} to the corresponding data base pointxi{\displaystyle x_{i}}. In this way, the sum of kernels above can be used to measure the relative nearness of each test point to the data points originating in one or the other of the sets to be discriminated. Note the fact that the set of pointsx{\displaystyle x} mapped into any hyperplane can be quite convoluted as a result, allowing much more complex discrimination between sets that are not convex at all in the original space.

Applications

[edit]

SVMs can be used to solve various real-world problems:

  • SVMs are helpful intext and hypertext categorization, as their application can significantly reduce the need for labeled training instances in both the standard inductive andtransductive settings.[11] Some methods forshallow semantic parsing are based on support vector machines.[12]
  • Classification of images can also be performed using SVMs. Experimental results show that SVMs achieve significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of relevance feedback. This is also true forimage segmentation systems, including those using a modified version SVM that uses the privileged approach as suggested by Vapnik.[13][14]
  • Classification of satellite data likeSAR data using supervised SVM.[15]
  • Hand-written characters can berecognized using SVM.[16][17]
  • The SVM algorithm has been widely applied in the biological and other sciences. They have been used to classify proteins with up to 90% of the compounds classified correctly.Permutation tests based on SVM weights have been suggested as a mechanism for interpretation of SVM models.[18][19] Support vector machine weights have also been used to interpret SVM models in the past.[20] Posthoc interpretation of support vector machine models in order to identify features used by the model to make predictions is a relatively new area of research with special significance in the biological sciences.

History

[edit]

The original SVM algorithm was invented byVladimir N. Vapnik andAlexey Ya. Chervonenkis in 1964.[citation needed] In 1992, Bernhard Boser,Isabelle Guyon andVladimir Vapnik suggested a way to create nonlinear classifiers by applying thekernel trick to maximum-margin hyperplanes.[9] The "soft margin" incarnation, as is commonly used in software packages, was proposed byCorinna Cortes and Vapnik in 1993 and published in 1995.[1]

Linear SVM

[edit]
Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. Samples on the margin are called the support vectors.

We are given a training dataset ofn{\displaystyle n} points of the form(x1,y1),,(xn,yn),{\displaystyle (\mathbf {x} _{1},y_{1}),\ldots ,(\mathbf {x} _{n},y_{n}),}where theyi{\displaystyle y_{i}} are either 1 or −1, each indicating the class to which the pointxi{\displaystyle \mathbf {x} _{i}} belongs. Eachxi{\displaystyle \mathbf {x} _{i}} is ap{\displaystyle p}-dimensionalreal vector. We want to find the "maximum-margin hyperplane" that divides the group of pointsxi{\displaystyle \mathbf {x} _{i}} for whichyi=1{\displaystyle y_{i}=1} from the group of points for whichyi=1{\displaystyle y_{i}=-1}, which is defined so that the distance between the hyperplane and the nearest pointxi{\displaystyle \mathbf {x} _{i}} from either group is maximized.

Anyhyperplane can be written as the set of pointsx{\displaystyle \mathbf {x} } satisfyingwTxb=0,{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} -b=0,}wherew{\displaystyle \mathbf {w} } is the (not necessarily normalized)normal vector to the hyperplane. This is much likeHesse normal form, except thatw{\displaystyle \mathbf {w} } is not necessarily a unit vector. The parameterbw{\displaystyle {\tfrac {b}{\|\mathbf {w} \|}}} determines the offset of the hyperplane from the origin along the normal vectorw{\displaystyle \mathbf {w} }.

Warning: most of the literature on the subject defines the bias so thatwTx+b=0.{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} +b=0.}

Hard-margin

[edit]

If the training data islinearly separable, we can select two parallel hyperplanes that separate the two classes of data, so that the distance between them is as large as possible. The region bounded by these two hyperplanes is called the "margin", and the maximum-margin hyperplane is the hyperplane that lies halfway between them. With a normalized or standardized dataset, these hyperplanes can be described by the equations

wTxb=1{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} -b=1} (anything on or above this boundary is of one class, with label 1)

and

wTxb=1{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} -b=-1} (anything on or below this boundary is of the other class, with label −1).

Geometrically, the distance between these two hyperplanes is2w{\displaystyle {\tfrac {2}{\|\mathbf {w} \|}}},[21] so to maximize the distance between the planes we want to minimizew{\displaystyle \|\mathbf {w} \|}. The distance is computed using thedistance from a point to a plane equation. We also have to prevent data points from falling into the margin, we add the following constraint: for eachi{\displaystyle i} eitherwTxib1, if yi=1,{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b\geq 1\,,{\text{ if }}y_{i}=1,}orwTxib1, if yi=1.{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b\leq -1\,,{\text{ if }}y_{i}=-1.}These constraints state that each data point must lie on the correct side of the margin.

This can be rewritten as

yi(wTxib)1, for all 1in.{\displaystyle y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\geq 1,\quad {\text{ for all }}1\leq i\leq n.}1

We can put this together to get the optimization problem:

minimizew,b12w2subject toyi(wxib)1i{1,,n}{\displaystyle {\begin{aligned}&{\underset {\mathbf {w} ,\;b}{\operatorname {minimize} }}&&{\frac {1}{2}}\|\mathbf {w} \|^{2}\\&{\text{subject to}}&&y_{i}(\mathbf {w} ^{\top }\mathbf {x} _{i}-b)\geq 1\quad \forall i\in \{1,\dots ,n\}\end{aligned}}}

Thew{\displaystyle \mathbf {w} } andb{\displaystyle b} that solve this problem determine the final classifier,xsgn(wTxb){\displaystyle \mathbf {x} \mapsto \operatorname {sgn}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} -b)}, wheresgn(){\displaystyle \operatorname {sgn}(\cdot )} is thesign function.

An important consequence of this geometric description is that the max-margin hyperplane is completely determined by thosexi{\displaystyle \mathbf {x} _{i}} that lie nearest to it (explained below). Thesexi{\displaystyle \mathbf {x} _{i}} are calledsupport vectors.

Soft-margin

[edit]

To extend SVM to cases in which the data are not linearly separable, thehinge loss function is helpfulmax(0,1yi(wTxib)).{\displaystyle \max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\right).}

Note thatyi{\displaystyle y_{i}} is thei-th target (i.e., in this case, 1 or −1), andwTxib{\displaystyle \mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b} is thei-th output.

This function is zero if the constraint in(1) is satisfied, in other words, ifxi{\displaystyle \mathbf {x} _{i}} lies on the correct side of the margin. For data on the wrong side of the margin, the function's value is proportional to the distance from the margin.

The goal of the optimization then is to minimize:

w2+C[1ni=1nmax(0,1yi(wTxib))],{\displaystyle \lVert \mathbf {w} \rVert ^{2}+C\left[{\frac {1}{n}}\sum _{i=1}^{n}\max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\right)\right],}

where the parameterC>0{\displaystyle C>0} determines the trade-off between increasing the margin size and ensuring that thexi{\displaystyle \mathbf {x} _{i}} lie on the correct side of the margin (Note we can add a weight to either term in the equation above). By deconstructing the hinge loss, this optimization problem can be formulated into the following:

minimizew,b,ζw22+Ci=1nζisubject toyi(wxib)1ζi,ζi0i{1,,n}{\displaystyle {\begin{aligned}&{\underset {\mathbf {w} ,\;b,\;\mathbf {\zeta } }{\operatorname {minimize} }}&&\|\mathbf {w} \|_{2}^{2}+C\sum _{i=1}^{n}\zeta _{i}\\&{\text{subject to}}&&y_{i}(\mathbf {w} ^{\top }\mathbf {x} _{i}-b)\geq 1-\zeta _{i},\quad \zeta _{i}\geq 0\quad \forall i\in \{1,\dots ,n\}\end{aligned}}}

Thus, for large values ofC{\displaystyle C}, it will behave similar to the hard-margin SVM, if the input data are linearly classifiable, but will still learn if a classification rule is viable or not.

Nonlinear kernels

[edit]
Kernel machine

The original maximum-margin hyperplane algorithm proposed by Vapnik in 1963 constructed alinear classifier. However, in 1992,Bernhard Boser,Isabelle Guyon andVladimir Vapnik suggested a way to create nonlinear classifiers by applying thekernel trick (originally proposed by Aizerman et al.[22]) to maximum-margin hyperplanes.[9] The kernel trick, wheredot products are replaced by kernels, is easily derived in the dual representation of the SVM problem. This allows the algorithm to fit the maximum-margin hyperplane in a transformedfeature space. The transformation may be nonlinear and the transformed space high-dimensional; although the classifier is a hyperplane in the transformed feature space, it may be nonlinear in the original input space.

It is noteworthy that working in a higher-dimensional feature space increases thegeneralization error of support vector machines, although given enough samples the algorithm still performs well.[23]

Some common kernels include:

The kernel is related to the transformφ(xi){\displaystyle \varphi (\mathbf {x} _{i})} by the equationk(xi,xj)=φ(xi)φ(xj){\displaystyle k(\mathbf {x} _{i},\mathbf {x} _{j})=\varphi (\mathbf {x} _{i})\cdot \varphi (\mathbf {x} _{j})}. The valuew is also in the transformed space, withw=iαiyiφ(xi){\textstyle \mathbf {w} =\sum _{i}\alpha _{i}y_{i}\varphi (\mathbf {x} _{i})}. Dot products withw for classification can again be computed by the kernel trick, i.e.wφ(x)=iαiyik(xi,x){\textstyle \mathbf {w} \cdot \varphi (\mathbf {x} )=\sum _{i}\alpha _{i}y_{i}k(\mathbf {x} _{i},\mathbf {x} )}.

Computing the SVM classifier

[edit]

Computing the (soft-margin) SVM classifier amounts to minimizing an expression of the form

[1ni=1nmax(0,1yi(wTxib))]+λw2.{\displaystyle \left[{\frac {1}{n}}\sum _{i=1}^{n}\max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\right)\right]+\lambda \|\mathbf {w} \|^{2}.}2

We focus on the soft-margin classifier since, as noted above, choosing a sufficiently small value forλ{\displaystyle \lambda } yields the hard-margin classifier for linearly classifiable input data. The classical approach, which involves reducing(2) to aquadratic programming problem, is detailed below. Then, more recent approaches such as sub-gradient descent and coordinate descent will be discussed.

Primal

[edit]

Minimizing(2) can be rewritten as a constrained optimization problem with a differentiable objective function in the following way.

For eachi{1,,n}{\displaystyle i\in \{1,\,\ldots ,\,n\}} we introduce a variableζi=max(0,1yi(wTxib)){\displaystyle \zeta _{i}=\max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\right)}. Note thatζi{\displaystyle \zeta _{i}} is the smallest nonnegative number satisfyingyi(wTxib)1ζi.{\displaystyle y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\geq 1-\zeta _{i}.}

Thus we can rewrite the optimization problem as follows

minimize 1ni=1nζi+λw2subject to yi(wTxib)1ζi and ζi0,for all i.{\displaystyle {\begin{aligned}&{\text{minimize }}{\frac {1}{n}}\sum _{i=1}^{n}\zeta _{i}+\lambda \|\mathbf {w} \|^{2}\\[0.5ex]&{\text{subject to }}y_{i}\left(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b\right)\geq 1-\zeta _{i}\,{\text{ and }}\,\zeta _{i}\geq 0,\,{\text{for all }}i.\end{aligned}}}

This is called theprimal problem.

Dual

[edit]

By solving for theLagrangian dual of the above problem, one obtains the simplified problem

maximizef(c1cn)=i=1nci12i=1nj=1nyici(xiTxj)yjcj,subject to i=1nciyi=0,and 0ci12nλfor all i.{\displaystyle {\begin{aligned}&{\text{maximize}}\,\,f(c_{1}\ldots c_{n})=\sum _{i=1}^{n}c_{i}-{\frac {1}{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}y_{i}c_{i}(\mathbf {x} _{i}^{\mathsf {T}}\mathbf {x} _{j})y_{j}c_{j},\\&{\text{subject to }}\sum _{i=1}^{n}c_{i}y_{i}=0,\,{\text{and }}0\leq c_{i}\leq {\frac {1}{2n\lambda }}\;{\text{for all }}i.\end{aligned}}}

This is called thedual problem. Since the dual maximization problem is a quadratic function of theci{\displaystyle c_{i}} subject to linear constraints, it is efficiently solvable byquadratic programming algorithms.

Here, the variablesci{\displaystyle c_{i}} are defined such that

w=i=1nciyixi.{\displaystyle \mathbf {w} =\sum _{i=1}^{n}c_{i}y_{i}\mathbf {x} _{i}.}

Moreover,ci=0{\displaystyle c_{i}=0} exactly whenxi{\displaystyle \mathbf {x} _{i}} lies on the correct side of the margin, and0<ci<(2nλ)1{\displaystyle 0<c_{i}<(2n\lambda )^{-1}} whenxi{\displaystyle \mathbf {x} _{i}} lies on the margin's boundary. It follows thatw{\displaystyle \mathbf {w} } can be written as a linear combination of the support vectors.

The offset,b{\displaystyle b}, can be recovered by finding anxi{\displaystyle \mathbf {x} _{i}} on the margin's boundary and solvingyi(wTxib)=1b=wTxiyi.{\displaystyle y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)=1\iff b=\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-y_{i}.}

(Note thatyi1=yi{\displaystyle y_{i}^{-1}=y_{i}} sinceyi=±1{\displaystyle y_{i}=\pm 1}.)

Kernel trick

[edit]
Main article:Kernel method
A training example of SVM with kernel given by φ((a,b)) = (a,b,a2 +b2)

Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data pointsφ(xi).{\displaystyle \varphi (\mathbf {x} _{i}).} Moreover, we are given a kernel functionk{\displaystyle k} which satisfiesk(xi,xj)=φ(xi)φ(xj){\displaystyle k(\mathbf {x} _{i},\mathbf {x} _{j})=\varphi (\mathbf {x} _{i})\cdot \varphi (\mathbf {x} _{j})}.

We know the classification vectorw{\displaystyle \mathbf {w} } in the transformed space satisfies

w=i=1nciyiφ(xi),{\displaystyle \mathbf {w} =\sum _{i=1}^{n}c_{i}y_{i}\varphi (\mathbf {x} _{i}),}

where, theci{\displaystyle c_{i}} are obtained by solving the optimization problem

maximizef(c1cn)=i=1nci12i=1nj=1nyici(φ(xi)φ(xj))yjcj=i=1nci12i=1nj=1nyicik(xi,xj)yjcjsubject to i=1nciyi=0,and 0ci12nλfor all i.{\displaystyle {\begin{aligned}{\text{maximize}}\,\,f(c_{1}\ldots c_{n})&=\sum _{i=1}^{n}c_{i}-{\frac {1}{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}y_{i}c_{i}(\varphi (\mathbf {x} _{i})\cdot \varphi (\mathbf {x} _{j}))y_{j}c_{j}\\&=\sum _{i=1}^{n}c_{i}-{\frac {1}{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}y_{i}c_{i}k(\mathbf {x} _{i},\mathbf {x} _{j})y_{j}c_{j}\\{\text{subject to }}\sum _{i=1}^{n}c_{i}y_{i}&=0,\,{\text{and }}0\leq c_{i}\leq {\frac {1}{2n\lambda }}\;{\text{for all }}i.\end{aligned}}}

The coefficientsci{\displaystyle c_{i}} can be solved for using quadratic programming, as before. Again, we can find some indexi{\displaystyle i} such that0<ci<(2nλ)1{\displaystyle 0<c_{i}<(2n\lambda )^{-1}}, so thatφ(xi){\displaystyle \varphi (\mathbf {x} _{i})} lies on the boundary of the margin in the transformed space, and then solve

b=wTφ(xi)yi=[j=1ncjyjφ(xj)φ(xi)]yi=[j=1ncjyjk(xj,xi)]yi.{\displaystyle {\begin{aligned}b=\mathbf {w} ^{\mathsf {T}}\varphi (\mathbf {x} _{i})-y_{i}&=\left[\sum _{j=1}^{n}c_{j}y_{j}\varphi (\mathbf {x} _{j})\cdot \varphi (\mathbf {x} _{i})\right]-y_{i}\\&=\left[\sum _{j=1}^{n}c_{j}y_{j}k(\mathbf {x} _{j},\mathbf {x} _{i})\right]-y_{i}.\end{aligned}}}

Finally,

zsgn(wTφ(z)b)=sgn([i=1nciyik(xi,z)]b).{\displaystyle \mathbf {z} \mapsto \operatorname {sgn}(\mathbf {w} ^{\mathsf {T}}\varphi (\mathbf {z} )-b)=\operatorname {sgn} \left(\left[\sum _{i=1}^{n}c_{i}y_{i}k(\mathbf {x} _{i},\mathbf {z} )\right]-b\right).}

Modern methods

[edit]

Recent algorithms for finding the SVM classifier include sub-gradient descent and coordinate descent. Both techniques have proven to offer significant advantages over the traditional approach when dealing with large, sparse datasets—sub-gradient methods are especially efficient when there are many training examples, and coordinate descent when the dimension of the feature space is high.

Sub-gradient descent

[edit]

Sub-gradient descent algorithms for the SVM work directly with the expression

f(w,b)=[1ni=1nmax(0,1yi(wTxib))]+λw2.{\displaystyle f(\mathbf {w} ,b)=\left[{\frac {1}{n}}\sum _{i=1}^{n}\max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} _{i}-b)\right)\right]+\lambda \|\mathbf {w} \|^{2}.}

Note thatf{\displaystyle f} is aconvex function ofw{\displaystyle \mathbf {w} } andb{\displaystyle b}. As such, traditionalgradient descent (orSGD) methods can be adapted, where instead of taking a step in the direction of the function's gradient, a step is taken in the direction of a vector selected from the function'ssub-gradient. This approach has the advantage that, for certain implementations, the number of iterations does not scale withn{\displaystyle n}, the number of data points.[24]

Coordinate descent

[edit]

Coordinate descent algorithms for the SVM work from the dual problem

maximizef(c1cn)=i=1nci12i=1nj=1nyici(xixj)yjcj,subject to i=1nciyi=0,and 0ci12nλfor all i.{\displaystyle {\begin{aligned}&{\text{maximize}}\,\,f(c_{1}\ldots c_{n})=\sum _{i=1}^{n}c_{i}-{\frac {1}{2}}\sum _{i=1}^{n}\sum _{j=1}^{n}y_{i}c_{i}(x_{i}\cdot x_{j})y_{j}c_{j},\\&{\text{subject to }}\sum _{i=1}^{n}c_{i}y_{i}=0,\,{\text{and }}0\leq c_{i}\leq {\frac {1}{2n\lambda }}\;{\text{for all }}i.\end{aligned}}}

For eachi{1,,n}{\displaystyle i\in \{1,\,\ldots ,\,n\}}, iteratively, the coefficientci{\displaystyle c_{i}} is adjusted in the direction off/ci{\displaystyle \partial f/\partial c_{i}}. Then, the resulting vector of coefficients(c1,,cn){\displaystyle (c_{1}',\,\ldots ,\,c_{n}')} is projected onto the nearest vector of coefficients that satisfies the given constraints. (Typically Euclidean distances are used.) The process is then repeated until a near-optimal vector of coefficients is obtained. The resulting algorithm is extremely fast in practice, although few performance guarantees have been proven.[25]

Empirical risk minimization

[edit]

The soft-margin support vector machine described above is an example of anempirical risk minimization (ERM) algorithm for thehinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss. This perspective can provide further insight into how and why SVMs work, and allow us to better analyze their statistical properties.

Risk minimization

[edit]

In supervised learning, one is given a set of training examplesX1Xn{\displaystyle X_{1}\ldots X_{n}} with labelsy1yn{\displaystyle y_{1}\ldots y_{n}}, and wishes to predictyn+1{\displaystyle y_{n+1}} givenXn+1{\displaystyle X_{n+1}}. To do so one forms ahypothesis,f{\displaystyle f}, such thatf(Xn+1){\displaystyle f(X_{n+1})} is a "good" approximation ofyn+1{\displaystyle y_{n+1}}. A "good" approximation is usually defined with the help of aloss function,(y,z){\displaystyle \ell (y,z)}, which characterizes how badz{\displaystyle z} is as a prediction ofy{\displaystyle y}. We would then like to choose a hypothesis that minimizes theexpected risk:

ε(f)=E[(yn+1,f(Xn+1))].{\displaystyle \varepsilon (f)=\mathbb {E} \left[\ell (y_{n+1},f(X_{n+1}))\right].}

In most cases, we don't know the joint distribution ofXn+1,yn+1{\displaystyle X_{n+1},\,y_{n+1}} outright. In these cases, a common strategy is to choose the hypothesis that minimizes theempirical risk:

ε^(f)=1nk=1n(yk,f(Xk)).{\displaystyle {\hat {\varepsilon }}(f)={\frac {1}{n}}\sum _{k=1}^{n}\ell (y_{k},f(X_{k})).}

Under certain assumptions about the sequence of random variablesXk,yk{\displaystyle X_{k},\,y_{k}} (for example, that they are generated by a finite Markov process), if the set of hypotheses being considered is small enough, the minimizer of the empirical risk will closely approximate the minimizer of the expected risk asn{\displaystyle n} grows large. This approach is calledempirical risk minimization, or ERM.

Regularization and stability

[edit]

In order for the minimization problem to have a well-defined solution, we have to place constraints on the setH{\displaystyle {\mathcal {H}}} of hypotheses being considered. IfH{\displaystyle {\mathcal {H}}} is anormed space (as is the case for SVM), a particularly effective technique is to consider only those hypothesesf{\displaystyle f} for whichfH<k{\displaystyle \lVert f\rVert _{\mathcal {H}}<k} . This is equivalent to imposing aregularization penaltyR(f)=λkfH{\displaystyle {\mathcal {R}}(f)=\lambda _{k}\lVert f\rVert _{\mathcal {H}}}, and solving the new optimization problem

f^=argminfHε^(f)+R(f).{\displaystyle {\hat {f}}=\mathrm {arg} \min _{f\in {\mathcal {H}}}{\hat {\varepsilon }}(f)+{\mathcal {R}}(f).}

This approach is calledTikhonov regularization.

More generally,R(f){\displaystyle {\mathcal {R}}(f)} can be some measure of the complexity of the hypothesisf{\displaystyle f}, so that simpler hypotheses are preferred.

SVM and the hinge loss

[edit]

Recall that the (soft-margin) SVM classifierw^,b:xsgn(w^Txb){\displaystyle {\hat {\mathbf {w} }},b:\mathbf {x} \mapsto \operatorname {sgn}({\hat {\mathbf {w} }}^{\mathsf {T}}\mathbf {x} -b)} is chosen to minimize the following expression:

[1ni=1nmax(0,1yi(wTxb))]+λw2.{\displaystyle \left[{\frac {1}{n}}\sum _{i=1}^{n}\max \left(0,1-y_{i}(\mathbf {w} ^{\mathsf {T}}\mathbf {x} -b)\right)\right]+\lambda \|\mathbf {w} \|^{2}.}

In light of the above discussion, we see that the SVM technique is equivalent to empirical risk minimization with Tikhonov regularization, where in this case the loss function is thehinge loss

(y,z)=max(0,1yz).{\displaystyle \ell (y,z)=\max \left(0,1-yz\right).}

From this perspective, SVM is closely related to other fundamentalclassification algorithms such asregularized least-squares andlogistic regression. The difference between the three lies in the choice of loss function: regularized least-squares amounts to empirical risk minimization with thesquare-loss,sq(y,z)=(yz)2{\displaystyle \ell _{sq}(y,z)=(y-z)^{2}}; logistic regression employs thelog-loss,

log(y,z)=ln(1+eyz).{\displaystyle \ell _{\log }(y,z)=\ln(1+e^{-yz}).}

Target functions

[edit]

The difference between the hinge loss and these other loss functions is best stated in terms oftarget functions - the function that minimizes expected risk for a given pair of random variablesX,y{\displaystyle X,\,y}.

In particular, letyx{\displaystyle y_{x}} denotey{\displaystyle y} conditional on the event thatX=x{\displaystyle X=x}. In the classification setting, we have:

yx={1with probability px1with probability 1px{\displaystyle y_{x}={\begin{cases}1&{\text{with probability }}p_{x}\\-1&{\text{with probability }}1-p_{x}\end{cases}}}

The optimal classifier is therefore:

f(x)={1if px1/21otherwise{\displaystyle f^{*}(x)={\begin{cases}1&{\text{if }}p_{x}\geq 1/2\\-1&{\text{otherwise}}\end{cases}}}

For the square-loss, the target function is the conditional expectation function,fsq(x)=E[yx]{\displaystyle f_{sq}(x)=\mathbb {E} \left[y_{x}\right]}; For the logistic loss, it's the logit function,flog(x)=ln(px/(1px)){\displaystyle f_{\log }(x)=\ln \left(p_{x}/({1-p_{x}})\right)}. While both of these target functions yield the correct classifier, assgn(fsq)=sgn(flog)=f{\displaystyle \operatorname {sgn}(f_{sq})=\operatorname {sgn}(f_{\log })=f^{*}}, they give us more information than we need. In fact, they give us enough information to completely describe the distribution ofyx{\displaystyle y_{x}}.

On the other hand, one can check that the target function for the hinge loss isexactlyf{\displaystyle f^{*}}. Thus, in a sufficiently rich hypothesis space—or equivalently, for an appropriately chosen kernel—the SVM classifier will converge to the simplest function (in terms ofR{\displaystyle {\mathcal {R}}}) that correctly classifies the data. This extends the geometric interpretation of SVM—for linear classification, the empirical risk is minimized by any function whose margins lie between the support vectors, and the simplest of these is the max-margin classifier.[26]

Properties

[edit]

SVMs belong to a family of generalizedlinear classifiers and can be interpreted as an extension of theperceptron.[27] They can also be considered a special case ofTikhonov regularization. A special property is that they simultaneously minimize the empiricalclassification error and maximize thegeometric margin; hence they are also known asmaximummargin classifiers.

A comparison of the SVM to other classifiers has been made by Meyer, Leisch and Hornik.[28]

Parameter selection

[edit]

The effectiveness of SVM depends on the selection of kernel, the kernel's parameters, and soft margin parameterλ{\displaystyle \lambda }.A common choice is a Gaussian kernel, which has a single parameterγ{\displaystyle \gamma }. The best combination ofλ{\displaystyle \lambda } andγ{\displaystyle \gamma } is often selected by agrid search with exponentially growing sequences ofλ{\displaystyle \lambda } andγ{\displaystyle \gamma }, for example,λ{25,23,,213,215}{\displaystyle \lambda \in \{2^{-5},2^{-3},\dots ,2^{13},2^{15}\}};γ{215,213,,21,23}{\displaystyle \gamma \in \{2^{-15},2^{-13},\dots ,2^{1},2^{3}\}}. Typically, each combination of parameter choices is checked usingcross validation, and the parameters with best cross-validation accuracy are picked. Alternatively, recent work inBayesian optimization can be used to selectλ{\displaystyle \lambda } andγ{\displaystyle \gamma } , often requiring the evaluation of far fewer parameter combinations than grid search. The final model, which is used for testing and for classifying new data, is then trained on the whole training set using the selected parameters.[29]

Issues

[edit]

Potential drawbacks of the SVM include the following aspects:

  • Requires full labeling of input data
  • Uncalibratedclass membership probabilities—SVM stems from Vapnik's theory which avoids estimating probabilities on finite data
  • The SVM is only directly applicable for two-class tasks. Therefore, algorithms that reduce the multi-class task to several binary problems have to be applied; see themulti-class SVM section.
  • Parameters of a solved model are difficult to interpret.

Extensions

[edit]

Multiclass SVM

[edit]

Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements.

The dominant approach for doing so is to reduce the singlemulticlass problem into multiplebinary classification problems.[30] Common methods for such reduction include:[30][31]

  • Building binary classifiers that distinguish between one of the labels and the rest (one-versus-all) or between every pair of classes (one-versus-one). Classification of new instances for the one-versus-all case is done by a winner-takes-all strategy, in which the classifier with the highest-output function assigns the class (it is important that the output functions be calibrated to produce comparable scores). For the one-versus-one approach, classification is done by a max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, then the vote for the assigned class is increased by one vote, and finally the class with the most votes determines the instance classification.
  • Directed acyclic graph SVM (DAGSVM)[32]
  • Error-correcting output codes[33]

Crammer and Singer proposed a multiclass SVM method which casts themulticlass classification problem into a single optimization problem, rather than decomposing it into multiple binary classification problems.[34] See also Lee, Lin and Wahba[35][36] and Van den Burg and Groenen.[37]

Transductive support vector machines

[edit]

Transductive support vector machines extend SVMs in that they could also treat partially labeled data insemi-supervised learning by following the principles oftransduction. Here, in addition to the training setD{\displaystyle {\mathcal {D}}}, the learner is also given a set

D={xixiRp}i=1k{\displaystyle {\mathcal {D}}^{\star }=\{\mathbf {x} _{i}^{\star }\mid \mathbf {x} _{i}^{\star }\in \mathbb {R} ^{p}\}_{i=1}^{k}}

of test examples to be classified. Formally, a transductive support vector machine is defined by the following primal optimization problem:[38]

Minimize (inw,b,y{\displaystyle \mathbf {w} ,b,\mathbf {y} ^{\star }})

12w2{\displaystyle {\frac {1}{2}}\|\mathbf {w} \|^{2}}

subject to (for anyi=1,,n{\displaystyle i=1,\dots ,n} and anyj=1,,k{\displaystyle j=1,\dots ,k})

yi(wxib)1,yj(wxjb)1,{\displaystyle {\begin{aligned}&y_{i}(\mathbf {w} \cdot \mathbf {x} _{i}-b)\geq 1,\\&y_{j}^{\star }(\mathbf {w} \cdot \mathbf {x} _{j}^{\star }-b)\geq 1,\end{aligned}}}

and

yj{1,1}.{\displaystyle y_{j}^{\star }\in \{-1,1\}.}

Transductive support vector machines were introduced by Vladimir N. Vapnik in 1998.

Structured SVM

[edit]
Main article:structured SVM

Structured support-vector machine is an extension of the traditional SVM model. While the SVM model is primarily designed for binary classification, multiclass classification, and regression tasks, structured SVM broadens its application to handle general structured output labels, for example parse trees, classification with taxonomies, sequence alignment and many more.[39]

Regression

[edit]
Support vector regression (prediction) with different thresholdsε. Asε increases, the prediction becomes less sensitive to errors.

A version of SVM forregression was proposed in 1996 byVladimir N. Vapnik, Harris Drucker, Christopher J. C. Burges, Linda Kaufman and Alexander J. Smola.[40] This method is called support vector regression (SVR). The model produced by support vector classification (as described above) depends only on a subset of the training data, because the cost function for building the model does not care about training points that lie beyond the margin. Analogously, the model produced by SVR depends only on a subset of the training data, because the cost function for building the model ignores any training data close to the model prediction. Another SVM version known asleast-squares support vector machine (LS-SVM) has been proposed by Suykens and Vandewalle.[41]

Training the original SVR means solving[42]

minimize12w2{\displaystyle {\tfrac {1}{2}}\|w\|^{2}}
subject to|yiw,xib|ε{\displaystyle |y_{i}-\langle w,x_{i}\rangle -b|\leq \varepsilon }

wherexi{\displaystyle x_{i}} is a training sample with target valueyi{\displaystyle y_{i}}. The inner product plus interceptw,xi+b{\displaystyle \langle w,x_{i}\rangle +b} is the prediction for that sample, andε{\displaystyle \varepsilon } is a free parameter that serves as a threshold: all predictions have to be within anε{\displaystyle \varepsilon } range of the true predictions. Slack variables are usually added into the above to allow for errors and to allow approximation in the case the above problem is infeasible.

Bayesian SVM

[edit]

In 2011 it was shown by Polson and Scott that the SVM admits aBayesian interpretation through the technique ofdata augmentation.[43] In this approach the SVM is viewed as agraphical model (where the parameters are connected via probability distributions). This extended view allows the application ofBayesian techniques to SVMs, such as flexible feature modeling, automatichyperparameter tuning, andpredictive uncertainty quantification. Recently, a scalable version of the Bayesian SVM was developed byFlorian Wenzel, enabling the application of Bayesian SVMs tobig data.[44] Florian Wenzel developed two different versions, a variational inference (VI) scheme for the Bayesian kernel support vector machine (SVM) and a stochastic version (SVI) for the linear Bayesian SVM.[45]

Implementation

[edit]

The parameters of the maximum-margin hyperplane are derived by solving the optimization. There exist several specialized algorithms for quickly solving thequadratic programming (QP) problem that arises from SVMs, mostly relying on heuristics for breaking the problem down into smaller, more manageable chunks.

Another approach is to use aninterior-point method that usesNewton-like iterations to find a solution of theKarush–Kuhn–Tucker conditions of the primal and dual problems.[46]Instead of solving a sequence of broken-down problems, this approach directly solves the problem altogether. To avoid solving a linear system involving the large kernel matrix, a low-rank approximation to the matrix is often used in the kernel trick.

Another common method is Platt'ssequential minimal optimization (SMO) algorithm, which breaks the problem down into 2-dimensional sub-problems that are solved analytically, eliminating the need for a numerical optimization algorithm and matrix storage. This algorithm is conceptually simple, easy to implement, generally faster, and has better scaling properties for difficult SVM problems.[47]

The special case of linear support vector machines can be solved more efficiently by the same kind of algorithms used to optimize its close cousin,logistic regression; this class of algorithms includessub-gradient descent (e.g., PEGASOS[48]) andcoordinate descent (e.g., LIBLINEAR[49]). LIBLINEAR has some attractive training-time properties. Each convergence iteration takes time linear in the time taken to read the train data, and the iterations also have aQ-linear convergence property, making the algorithm extremely fast.

The general kernel SVMs can also be solved more efficiently usingsub-gradient descent (e.g. P-packSVM[50]), especially whenparallelization is allowed.

Kernel SVMs are available in many machine-learning toolkits, includingLIBSVM,MATLAB,SAS, SVMlight,kernlab,scikit-learn,Shogun,Weka,Shark,JKernelMachines,OpenCV and others.

Preprocessing of data (standardization) is highly recommended to enhance accuracy of classification.[51] There are a few methods of standardization, such as min-max, normalization by decimal scaling, Z-score.[52] Subtraction of mean and division by variance of each feature is usually used for SVM.[53]

See also

[edit]

References

[edit]
  1. ^abcCortes, Corinna;Vapnik, Vladimir (1995)."Support-vector networks"(PDF).Machine Learning.20 (3):273–297.CiteSeerX 10.1.1.15.9362.doi:10.1007/BF00994018.S2CID 206787478.
  2. ^Vapnik, Vladimir N. (1997)."The Support Vector method". In Gerstner, Wulfram; Germond, Alain; Hasler, Martin; Nicoud, Jean-Daniel (eds.).Artificial Neural Networks — ICANN'97. Lecture Notes in Computer Science. Vol. 1327. Berlin, Heidelberg: Springer. pp. 261–271.doi:10.1007/BFb0020166.ISBN 978-3-540-69620-9.
  3. ^Awad, Mariette; Khanna, Rahul (2015). "Support Vector Machines for Classification".Efficient Learning Machines. Apress. pp. 39–66.doi:10.1007/978-1-4302-5990-9_3.ISBN 978-1-4302-5990-9.
  4. ^Ben-Hur, Asa; Horn, David; Siegelmann, Hava; Vapnik, Vladimir N. ""Support vector clustering" (2001);".Journal of Machine Learning Research.2:125–137.
  5. ^Huang, H. H.; Xu, T.; Yang, J. (2014)."Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension".BMC Proceedings.8 (Suppl 1): S96.doi:10.1186/1753-6561-8-S1-S96.PMC 4143639.PMID 25519351.
  6. ^Opper, M; Kinzel, W; Kleinz, J; Nehl, R (1990)."On the ability of the optimal perceptron to generalise".Journal of Physics A: Mathematical and General.23 (11): L581.Bibcode:1990JPhA...23L.581O.doi:10.1088/0305-4470/23/11/012.
  7. ^"1.4. Support Vector Machines — scikit-learn 0.20.2 documentation".Archived from the original on 2017-11-08. Retrieved2017-11-08.
  8. ^Hastie, Trevor;Tibshirani, Robert;Friedman, Jerome (2008).The Elements of Statistical Learning : Data Mining, Inference, and Prediction(PDF) (Second ed.). New York: Springer. p. 134.
  9. ^abcBoser, Bernhard E.; Guyon, Isabelle M.; Vapnik, Vladimir N. (1992)."A training algorithm for optimal margin classifiers".Proceedings of the fifth annual workshop on Computational learning theory – COLT '92. p. 144.CiteSeerX 10.1.1.21.3818.doi:10.1145/130385.130401.ISBN 978-0897914970.S2CID 207165665.
  10. ^Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007)."Section 16.5. Support Vector Machines".Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press.ISBN 978-0-521-88068-8.Archived from the original on 2011-08-11.
  11. ^Joachims, Thorsten (1998). "Text categorization with Support Vector Machines: Learning with many relevant features".Machine Learning: ECML-98. Lecture Notes in Computer Science. Vol. 1398. Springer. pp. 137–142.doi:10.1007/BFb0026683.ISBN 978-3-540-64417-0.
  12. ^Pradhan, Sameer S.; et al. (2 May 2004).Shallow Semantic Parsing using Support Vector Machines. Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004. Association for Computational Linguistics. pp. 233–240.
  13. ^Vapnik, Vladimir N.: Invited Speaker. IPMU Information Processing and Management 2014).
  14. ^Barghout, Lauren (2015)."Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation"(PDF).Granular Computing and Decision-Making. Studies in Big Data. Vol. 10. pp. 285–318.doi:10.1007/978-3-319-16829-6_12.ISBN 978-3-319-16828-9.S2CID 4154772. Archived fromthe original(PDF) on 2018-01-08. Retrieved2018-01-08.
  15. ^A. Maity (2016). "Supervised Classification of RADARSAT-2 Polarimetric Data for Different Land Features".arXiv:1608.00501 [cs.CV].
  16. ^DeCoste, Dennis (2002)."Training Invariant Support Vector Machines"(PDF).Machine Learning.46:161–190.doi:10.1023/A:1012454411458.S2CID 85843.
  17. ^Maitra, D. S.; Bhattacharya, U.; Parui, S. K. (August 2015)."CNN based common approach to handwritten character recognition of multiple scripts".2015 13th International Conference on Document Analysis and Recognition (ICDAR). pp. 1021–1025.doi:10.1109/ICDAR.2015.7333916.ISBN 978-1-4799-1805-8.S2CID 25739012.
  18. ^Gaonkar, B.; Davatzikos, C. (2013)."Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification".NeuroImage.78:270–283.doi:10.1016/j.neuroimage.2013.03.066.PMC 3767485.PMID 23583748.
  19. ^Cuingnet, Rémi; Rosso, Charlotte; Chupin, Marie; Lehéricy, Stéphane; Dormont, Didier; Benali, Habib; Samson, Yves; Colliot, Olivier (2011)."Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome"(PDF).Medical Image Analysis.15 (5):729–737.doi:10.1016/j.media.2011.05.007.PMID 21752695. Archived fromthe original(PDF) on 2018-12-22. Retrieved2018-01-08.
  20. ^Statnikov, Alexander; Hardin, Douglas; & Aliferis, Constantin; (2006);"Using SVM weight-based methods to identify causally relevant and non-causally relevant variables",Sign, 1, 4.
  21. ^"Why is the SVM margin equal to2w{\displaystyle {\frac {2}{\|\mathbf {w} \|}}}".Mathematics Stack Exchange. 30 May 2015.
  22. ^Aizerman, Mark A.; Braverman, Emmanuel M. & Rozonoer, Lev I. (1964). "Theoretical foundations of the potential function method in pattern recognition learning".Automation and Remote Control.25:821–837.
  23. ^Jin, Chi; Wang, Liwei (2012).Dimensionality dependent PAC-Bayes margin bound. Advances in Neural Information Processing Systems.CiteSeerX 10.1.1.420.3487.Archived from the original on 2015-04-02.
  24. ^Shalev-Shwartz, Shai; Singer, Yoram; Srebro, Nathan; Cotter, Andrew (2010-10-16). "Pegasos: primal estimated sub-gradient solver for SVM".Mathematical Programming.127 (1):3–30.CiteSeerX 10.1.1.161.9629.doi:10.1007/s10107-010-0420-4.ISSN 0025-5610.S2CID 53306004.
  25. ^Hsieh, Cho-Jui; Chang, Kai-Wei; Lin, Chih-Jen; Keerthi, S. Sathiya; Sundararajan, S. (2008-01-01). "A dual coordinate descent method for large-scale linear SVM".Proceedings of the 25th international conference on Machine learning - ICML '08. New York, NY, USA: ACM. pp. 408–415.CiteSeerX 10.1.1.149.5594.doi:10.1145/1390156.1390208.ISBN 978-1-60558-205-4.S2CID 7880266.
  26. ^Rosasco, Lorenzo; De Vito, Ernesto; Caponnetto, Andrea; Piana, Michele; Verri, Alessandro (2004-05-01)."Are Loss Functions All the Same?".Neural Computation.16 (5):1063–1076.CiteSeerX 10.1.1.109.6786.doi:10.1162/089976604773135104.ISSN 0899-7667.PMID 15070510.S2CID 11845688.
  27. ^R. Collobert and S. Bengio (2004). Links between Perceptrons, MLPs and SVMs. Proc. Int'l Conf. on Machine Learning (ICML).
  28. ^Meyer, David; Leisch, Friedrich; Hornik, Kurt (September 2003). "The support vector machine under test".Neurocomputing.55 (1–2):169–186.doi:10.1016/S0925-2312(03)00431-4.
  29. ^Hsu, Chih-Wei; Chang, Chih-Chung & Lin, Chih-Jen (2003).A Practical Guide to Support Vector Classification(PDF) (Technical report). Department of Computer Science and Information Engineering, National Taiwan University.Archived(PDF) from the original on 2013-06-25.
  30. ^abDuan, Kai-Bo; Keerthi, S. Sathiya (2005)."Which Is the Best Multiclass SVM Method? An Empirical Study"(PDF).Multiple Classifier Systems.LNCS. Vol. 3541. pp. 278–285.CiteSeerX 10.1.1.110.6789.doi:10.1007/11494683_28.ISBN 978-3-540-26306-7. Archived fromthe original(PDF) on 2013-05-03. Retrieved2019-07-18.
  31. ^Hsu, Chih-Wei & Lin, Chih-Jen (2002)."A Comparison of Methods for Multiclass Support Vector Machines"(PDF).IEEE Transactions on Neural Networks.13 (2):415–25.doi:10.1109/72.991427.PMID 18244442. Archived fromthe original(PDF) on 2013-05-03. Retrieved2018-01-08.
  32. ^Platt, John;Cristianini, Nello;Shawe-Taylor, John (2000)."Large margin DAGs for multiclass classification"(PDF). InSolla, Sara A.; Leen, Todd K.;Müller, Klaus-Robert (eds.).Advances in Neural Information Processing Systems. MIT Press. pp. 547–553.Archived(PDF) from the original on 2012-06-16.
  33. ^Dietterich, Thomas G.; Bakiri, Ghulum (1995)."Solving Multiclass Learning Problems via Error-Correcting Output Codes"(PDF).Journal of Artificial Intelligence Research.2:263–286.arXiv:cs/9501101.Bibcode:1995cs........1101D.doi:10.1613/jair.105.S2CID 47109072.Archived(PDF) from the original on 2013-05-09.
  34. ^Crammer, Koby & Singer, Yoram (2001)."On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines"(PDF).Journal of Machine Learning Research.2:265–292.Archived(PDF) from the original on 2015-08-29.
  35. ^Lee, Yoonkyung; Lin, Yi & Wahba, Grace (2001)."Multicategory Support Vector Machines"(PDF).Computing Science and Statistics.33. Archived from the original on 2013-06-17.
  36. ^Lee, Yoonkyung; Lin, Yi; Wahba, Grace (2004). "Multicategory Support Vector Machines".Journal of the American Statistical Association.99 (465):67–81.CiteSeerX 10.1.1.22.1879.doi:10.1198/016214504000000098.S2CID 7066611.
  37. ^Van den Burg, Gerrit J. J. & Groenen, Patrick J. F. (2016)."GenSVM: A Generalized Multiclass Support Vector Machine"(PDF).Journal of Machine Learning Research.17 (224):1–42.
  38. ^Joachims, Thorsten.Transductive Inference for Text Classification using Support Vector Machines(PDF). Proceedings of the 1999 International Conference on Machine Learning (ICML 1999). pp. 200–209.
  39. ^"Support Vector Machine Learning for Interdependent and Structured Output Spaces"(PDF).www.cs.cornell.edu.
  40. ^Drucker, Harris; Burges, Christ. C.; Kaufman, Linda; Smola, Alexander J.; and Vapnik, Vladimir N. (1997); "Support Vector Regression Machines", inAdvances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT Press.
  41. ^Suykens, Johan A. K.; Vandewalle, Joos P. L.; "Least squares support vector machine classifiers",Neural Processing Letters, vol. 9, no. 3, Jun. 1999, pp. 293–300.
  42. ^Smola, Alex J.; Schölkopf, Bernhard (2004)."A tutorial on support vector regression"(PDF).Statistics and Computing.14 (3):199–222.CiteSeerX 10.1.1.41.1452.doi:10.1023/B:STCO.0000035301.49549.88.S2CID 15475.Archived(PDF) from the original on 2012-01-31.
  43. ^Polson, Nicholas G.; Scott, Steven L. (2011)."Data Augmentation for Support Vector Machines".Bayesian Analysis.6 (1):1–23.doi:10.1214/11-BA601.
  44. ^Wenzel, Florian; Galy-Fajou, Theo; Deutsch, Matthäus; Kloft, Marius (2017). "Bayesian Nonlinear Support Vector Machines for Big Data".Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. Vol. 10534. pp. 307–322.arXiv:1707.05532.Bibcode:2017arXiv170705532W.doi:10.1007/978-3-319-71249-9_19.ISBN 978-3-319-71248-2.S2CID 4018290.
  45. ^Florian Wenzel; Matthäus Deutsch; Théo Galy-Fajou; Marius Kloft;”Scalable Approximate Inference for the Bayesian Nonlinear Support Vector Machine”
  46. ^Ferris, Michael C.; Munson, Todd S. (2002)."Interior-Point Methods for Massive Support Vector Machines"(PDF).SIAM Journal on Optimization.13 (3):783–804.CiteSeerX 10.1.1.216.6893.doi:10.1137/S1052623400374379.S2CID 13563302.Archived(PDF) from the original on 2008-12-04.
  47. ^Platt, John C. (1998).Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines(PDF). NIPS.Archived(PDF) from the original on 2015-07-02.
  48. ^Shalev-Shwartz, Shai; Singer, Yoram; Srebro, Nathan (2007).Pegasos: Primal Estimated sub-GrAdient SOlver for SVM(PDF). ICML.Archived(PDF) from the original on 2013-12-15.
  49. ^Fan, Rong-En; Chang, Kai-Wei; Hsieh, Cho-Jui; Wang, Xiang-Rui; Lin, Chih-Jen (2008)."LIBLINEAR: A library for large linear classification"(PDF).Journal of Machine Learning Research.9:1871–1874.
  50. ^Allen Zhu, Zeyuan; Chen, Weizhu; Wang, Gang; Zhu, Chenguang; Chen, Zheng (2009).P-packSVM: Parallel Primal grAdient desCent Kernel SVM(PDF). ICDM.Archived(PDF) from the original on 2014-04-07.
  51. ^Fan, Rong-En; Chang, Kai-Wei; Hsieh, Cho-Jui; Wang, Xiang-Rui; Lin, Chih-Jen (2008). "LIBLINEAR: A library for large linear classification".Journal of Machine Learning Research.9 (Aug):1871–1874.
  52. ^Mohamad, Ismail; Usman, Dauda (2013-09-01)."Standardization and Its Effects on K-Means Clustering Algorithm".Research Journal of Applied Sciences, Engineering and Technology.6 (17):3299–3303.doi:10.19026/rjaset.6.3638.
  53. ^Fennell, Peter; Zuo, Zhiya;Lerman, Kristina (2019-12-01)."Predicting and explaining behavioral data with structured feature space decomposition".EPJ Data Science.8.arXiv:1810.09841.doi:10.1140/epjds/s13688-019-0201-0.

Further reading

[edit]

External links

[edit]
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=1287757199"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp