Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Styrene-butadiene

From Wikipedia, the free encyclopedia
Synthetic rubber polymer
Styrene-butadiene
Identifiers
ECHA InfoCard100.127.439Edit this at Wikidata
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Styrene-butadiene orstyrene-butadiene rubber (SBR) describe families ofsynthetic rubbers derived fromstyrene andbutadiene (the version developed byGoodyear is calledNeolite[1]). These materials have goodabrasion resistance and good aging stability when protected by additives. In 2012, more than 5.4 million tonnes of SBR were processed worldwide.[2] About 50% of cartires are made from various types of SBR. The styrene/butadiene ratio influences the properties of the polymer: with high styrene content, the rubbers are harder and less rubbery.[3] SBR is not to be confused with thethermoplastic elastomer, styrene-butadieneblock copolymer, although being derived from the same monomers.

Types

[edit]

SBR is derived from twomonomers,styrene andbutadiene. The mixture of these two monomers is polymerized by two processes: from solution (S-SBR) or as an emulsion (E-SBR).[4] E-SBR is more widely used.

Emulsion polymerization

[edit]

E-SBR produced by emulsion polymerization is initiated byfree radicals. Reaction vessels are typically charged with the two monomers, a free radical generator, and a chain transfer agent such as an alkylmercaptan. Radical initiators includepotassium persulfate andhydroperoxides in combination with ferrous salts. Emulsifying agents include varioussoaps. By "capping" the growing organic radicals, mercaptans (e.g.dodecylthiol), control the molecular weight of the product. Typically, polymerizations are allowed to proceed only to ca. 70%, a method called "short stopping". In this way, various additives can be removed from the polymer.[3]

Solution polymerization

[edit]

Solution-SBR is produced by an anionic polymerization process. Polymerization is initiated byalkyl lithium compounds. Water and oxygen are strictly excluded. The process is homogeneous (all components are dissolved), which provides greater control over the process, allowing tailoring of the polymer. The organolithium compound adds to one of the monomers , generating acarbanion that then adds to another monomer, and so on. For tire manufacture, S-SBR is increasingly favored because it offers improved wet grip and reduced rolling resistance, which translate to greater safety and better fuel economy, respectively.[5]

Buna S

[edit]

The material was initially marketed with the brand nameBuna S. Its name derives Bu forbutadiene and Na forsodium (natrium in several languages including Latin, German, and Dutch), andS forstyrene.[6][7][5] Buna S is an addition copolymer.

Properties

[edit]
PropertyS-SBRE-SBR
Tensile strength (MPa)3620
Elongation at tear (%)565635
Mooney viscosity, 100 °C48.051.6
Glass transition temperature (°C)−65−50
Polydispersity2.14.5

Applications

[edit]
An SBR chain
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(September 2015) (Learn how and when to remove this message)

Styrene-butadiene is a commodity material which competes withnatural rubber. Theelastomer is used widely in pneumatictires. This application mainly calls for E-SBR, although S-SBR is growing in popularity. Other uses include shoe heels and soles,gaskets, and evenchewing gum.[3]

Latex (emulsion) SBR is extensively used incoated papers, being one of the cheapest resins to bind pigmented coatings. In 2010, more than half (54%) of all used dry binders consisted of SB-based latexes.[8] This amounted for roughly 1.2 million tonnes.

It is also used in building applications, as a sealing and binding agent behind renders as an alternative toPVA, but is more expensive. In the latter application, it offers better durability, reduced shrinkage and increased flexibility, as well as being resistant to emulsification in damp conditions.

SBR is often used as part of cement based substructural (basement)waterproofing systems where as a liquid it is mixed with water to form the Gauging solution for mixing the powdered Tanking material to a slurry. SBR aids the bond strength, reduces the potential for shrinkage and adds an element of flexibility.

It is also used by speaker driver manufacturers as the material for low damping rubber surrounds.

Additionally, it is used in some rubbercutting boards.

SBR is also used as a binder inlithium-ion battery electrodes, in combination withcarboxymethyl cellulose as a water-based alternative for, e.g.polyvinylidene fluoride.[9]

Styrene-butane rubber is also used in gasketed-plate heat exchangers. It is used at moderate temperature up to 85 deg C, (358 K) for aqueous systems.[10]

SBS Filaments[11] also exist forFDM3D printing

History

[edit]

SBR is a replacement fornatural rubber. It was originally developed prior toWorld War II in Germany by chemistWalter Bock in 1929.[12] Industrial manufacture began during World War II, and was used extensively by theU.S. Synthetic Rubber Program to produceGovernment Rubber-Styrene (GR-S) to replace theSoutheast Asian supply of natural rubber which, under Japanese occupation, was unavailable toAllied nations.[13][14]

See also

[edit]

References

[edit]
  1. ^Steven Di Pilla (2 June 2004),Slip and Fall Prevention: A Practical Handbook, CRC, p. 82,ISBN 978-0-203-49672-5
  2. ^Market Study Synthetic Rubber"Marktstudie Synthetische Elastomere von Ceresana". Archived fromthe original on 2015-03-18. Retrieved2013-08-23., published by Ceresana, June 2013
  3. ^abcWerner Obrecht; Jean-Pierre Lambert; Michael Happ; Christiane Oppenheimer-Stix; John Dunn; Ralf Krüger (2012). "Rubber, 4. Emulsion Rubber".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.o23_o01.ISBN 978-3-527-30673-2.
  4. ^International Institute of Synthetic rubber Producers, Inc. (IISRP) article on S-SBR (retrieved 2011-12-02)
  5. ^abH.-D.Brandt et al. "Rubber, 5. Solution Rubbers" in Ullmann's Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH, Weinheim.doi:10.1002/14356007.o23_o02
  6. ^Mark Michalovic (2000)"The Story of Rubber. Germany: The Birth of Buna" from The Polymer Learning Center andChemical Heritage Foundation
  7. ^Evonik IndustriesInvention and Production of Buna
  8. ^Holik, Herbert (2013). Holik, Herbert (ed.).Handbook of Paper and Board. Wiley-VCH Verlag GmbH & Co. p. 250.doi:10.1002/9783527652495.ISBN 9783527331840.
  9. ^"Water based anode binder | JSR Micro NV". Archived fromthe original on 2016-03-25.
  10. ^K., Sinnott, R. (2009).Chemical engineering design. Towler, Gavin. (5th ed., SI ed.). Oxford: Butterworth-Heinemamn.ISBN 978-0-7506-8551-1.OCLC 774295558.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^"SBS PLUS - SA FILAMENT".
  12. ^Malcolm TatumWhat is syrene-butadiene rubber from Wisegeek
  13. ^Wendt, Paul (1947). "The Control of Rubber in World War II".Southern Economic Journal.13 (3).Southern Economic Association:203–227.doi:10.2307/1053336.JSTOR 1053336.
  14. ^"Rubber Matters: Solving the World War II Rubber Problem & Collaboration".Chemical Heritage Foundation. Archived fromthe original on December 5, 2014. Retrieved24 June 2013.
Rubber
Chemical types
Mechanical types
Additives
Rubber processing
Industry
Products
Waste
Retrieved from "https://en.wikipedia.org/w/index.php?title=Styrene-butadiene&oldid=1274118845"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp