Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Start codon

From Wikipedia, the free encyclopedia
First codon of a messenger RNA translated by a ribosome
Start codon (blue circle) of the human mitochondrial DNAMT-ATP6 gene. For each nucleotide triplet (square brackets), the corresponding amino acid is given (one-letter code), either in the +1reading frame forMT-ATP8 (in red) or in the +3 frame forMT-ATP6 (in blue). In this genomic region, the two genesoverlap.

Thestart codon is the firstcodon of amessenger RNA (mRNA) transcript translated by aribosome. The start codon always codes formethionine ineukaryotes andarchaea and aN-formylmethionine(fMet) in bacteria,mitochondria andplastids.

The start codon is often preceded by a 5' untranslated region (5' UTR). Inprokaryotes this includes theribosome binding site.

Decoding

[edit]

In all three domains of life, the start codon is decoded by a special "initiation"transfer RNA different from the tRNAs used for elongation. There are important structural differences between an initiating tRNA and an elongating one, with distinguish features serving to satisfy the constraints of the translation system. In bacteria and organelles, an acceptor stem C1:A72 mismatch guide formylation, which directs recruitment by the 30S ribosome into the P site; so-called "3GC" base pairs allow assembly into the 70S ribosome.[1] In eukaryotes and archaea, the T stem prevents theelongation factors from binding, whileeIF2 specifically recognizes the attached methionine and a A1:U72 basepair.[2]

In any case, the natural initiating tRNA only codes for methionine.[3] Knowledge of the key recognizing features has allowed researchers to construct alternative initiating tRNAs that code for different amino acids; see below.

Alternative start codons

[edit]

Alternative start codons are different from the standard AUG codon and are found in bothprokaryotes (bacteria and archaea) andeukaryotes. Alternate start codons are still translated as Met when they are at the start of a protein (even if the codon encodes a different amino acid otherwise). This is because a separate tRNA is used for initiation.[3]

Eukaryotes

[edit]

Alternate start codons (non-AUG) are very rare in eukaryotic genomes: a wide range of mechanisms work to guarantee the relative fidelity of AUG initiation.[4] However, naturally occurring non-AUG start codons have been reported for some cellular mRNAs.[5] Seven out of the nine possible single-nucleotide substitutions at the AUG start codon ofdihydrofolate reductase are functional as translation start sites in mammalian cells.[6]

Bacteria

[edit]

Bacteria do not generally have the wide range of translation factors monitoring start codon fidelity. GUG and UUG are the main, even "canonical", alternate start codons.[4] GUG in particular is important to controlling the replication of plasmids.[4]

E. coli uses 83% AUG (3542/4284), 14% (612) GUG, 3% (103) UUG[7] and one or two others (e.g., an AUU and possibly a CUG).[8][9]

Well-known coding regions that do not have AUG initiation codons are those oflacI (GUG)[10][11] andlacA (UUG)[12] in theE. colilac operon. Two more recent studies have independently shown that 17 or more non-AUG start codons may initiate translation inE. coli.[13][14]

Mitochondria

[edit]

Mitochondrial genomes use alternate start codons more significantly (AUA and AUG in humans).[15] Many such examples, with codons, systematic range, and citations, are given in the NCBIlist of translation tables.[16]

Archaea

[edit]

Archaea, which are prokaryotes with a translation machinery similar to but simpler than that of eukaryotes, allow initiation at UUG and GUG.[4]

Upstream start codons

[edit]

These are "alternative" start codons in the sense that they are upstream of the regular start codons and thus could be used as alternative start codons. More than half of all humanmRNAs have at least one AUG codon upstream (uAUG) of their annotated translation initiation starts (TIS) (58% in the current versions of the humanRefSeq sequence). Their potential use as TISs could result in translation of so-called upstreamOpen Reading Frames (uORFs). uORF translation usually results in the synthesis of short polypeptides, some of which have been shown to be functional, e.g., in ASNSD1,MIEF1,MKKS, and SLC35A4.[17] However, it is believed that most translated uORFs only have a mild inhibitory effect on downstream translation because most uORF starts are leaky (i.e. don't initiate translation or because ribosomes terminating after translation of short ORFs are often capable of reinitiating).[17]

Standard genetic code

[edit]
Amino-acid biochemical propertiesNonpolarPolarBasicAcidicTermination: stop codon
Standard genetic code (NCBI table 1)[18]
1st
base
2nd base3rd
base
UCAG
UUUU(Phe/F)PhenylalanineUCU(Ser/S)SerineUAU(Tyr/Y)TyrosineUGU(Cys/C)CysteineU
UUCUCCUACUGCC
UUA(Leu/L)LeucineUCAUAAStop (Ochre)[B]UGAStop (Opal)[B]A
UUG[A]UCGUAGStop (Amber)[B]UGG(Trp/W)TryptophanG
CCUUCCU(Pro/P)ProlineCAU(His/H)HistidineCGU(Arg/R)ArginineU
CUCCCCCACCGCC
CUACCACAA(Gln/Q)GlutamineCGAA
CUGCCGCAGCGGG
AAUU(Ile/I)IsoleucineACU(Thr/T)ThreonineAAU(Asn/N)AsparagineAGU(Ser/S)SerineU
AUCACCAACAGCC
AUAACAAAA(Lys/K)LysineAGA(Arg/R)ArginineA
AUG[A](Met/M)MethionineACGAAGAGGG
GGUU(Val/V)ValineGCU(Ala/A)AlanineGAU(Asp/D)Aspartic acidGGU(Gly/G)GlycineU
GUCGCCGACGGCC
GUAGCAGAA(Glu/E)Glutamic acidGGAA
GUG[A]GCGGAGGGGG
A Possiblestart codons in NCBI table 1. AUG is most common.[19] The two other start codons listed by table 1 (GUG and UUG) are rare in eukaryotes.[20] Prokaryotes have less strigent start codon requirements; they are described byNCBI table 11.
B^^^ The historical basis for designating thestop codons as amber, ochre and opal is described in an autobiography by Sydney Brenner[21] and in a historical article by Bob Edgar.[22]

Non-methionine start codons

[edit]

Natural

[edit]

Translation started by aninternal ribosome entry site (IRES), which bypasses a number of regular eukaryotic initiation systems, can have a non-methinone start with GCU or CAA codons.[23]

Mammalian cells can initiate translation withleucine using a specific leucyl-tRNA that decodes the codon CUG. This mechanism is independent of eIF2. No secondary structure similar to that of an IRES is needed. It proceeds by ribosomal scanning, and aKozak context enhances initiation efficiency.[24][25][26]

Engineered start codons

[edit]

Engineered initiator tRNA (tRNAfMet
CUA
, changed from a MetY tRNAfMet
CAU
) have been used to initiate translation at theamber stop codon UAG inE. coli. Initiation with this tRNA not only inserts the traditionalformylmethionine, but also formylglutamine, as glutamyl-tRNA synthase also recognizes the new tRNA.[27] (Recall from above that the bacterial translation initiation system does not specifically check for methionine, only the formyl modification).[1] One study has shown that the amber initiator tRNA does not initiate translation to any measurable degree from genomically-encoded UAG codons, only plasmid-borne reporters with strong upstreamShine-Dalgarno sites.[28]

This sectionis missing information about new progress mentioned in introduction ofdoi:10.3389/fchem.2021.772648 (Ngo et al., 2013 might be worth a special mention). Please expand the section to include this information. Further details may exist on thetalk page.(December 2023)

See also

[edit]

References

[edit]
  1. ^abShetty, S; Shah, RA; Chembazhi, UV; Sah, S; Varshney, U (28 February 2017)."Two highly conserved features of bacterial initiator tRNAs license them to pass through distinct checkpoints in translation initiation".Nucleic Acids Research.45 (4):2040–2050.doi:10.1093/nar/gkw854.PMC 5389676.PMID 28204695.
  2. ^Kolitz, SE; Lorsch, JR (21 January 2010)."Eukaryotic initiator tRNA: finely tuned and ready for action".FEBS Letters.584 (2):396–404.doi:10.1016/j.febslet.2009.11.047.PMC 2795131.PMID 19925799.
  3. ^abLobanov, A. V.; Turanov, A. A.; Hatfield, D. L.; Gladyshev, V. N. (2010)."Dual functions of codons in the genetic code".Critical Reviews in Biochemistry and Molecular Biology.45 (4):257–65.doi:10.3109/10409231003786094.PMC 3311535.PMID 20446809.
  4. ^abcdAsano, K (2014)."Why is start codon selection so precise in eukaryotes?".Translation (Austin, Tex.).2 (1): e28387.doi:10.4161/trla.28387.PMC 4705826.PMID 26779403.
  5. ^Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV (2011)."Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences".Nucleic Acids Research.39 (10):4220–4234.doi:10.1093/nar/gkr007.PMC 3105428.PMID 21266472.
  6. ^Peabody, D. S. (1989)."Translation initiation at non-AUG triplets in mammalian cells".The Journal of Biological Chemistry.264 (9):5031–5.doi:10.1016/S0021-9258(18)83694-8.PMID 2538469.
  7. ^Blattner, F. R.; Plunkett g, G.; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y. (1997)."The Complete Genome Sequence of Escherichia coli K-12".Science.277 (5331):1453–1462.doi:10.1126/science.277.5331.1453.PMID 9278503.
  8. ^Sacerdot, C.; Fayat, G.; Dessen, P.; Springer, M.; Plumbridge, J. A.; Grunberg-Manago, M.; Blanquet, S. (1982)."Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: Presence of an AUU initiator codon".The EMBO Journal.1 (3):311–315.doi:10.1002/j.1460-2075.1982.tb01166.x.PMC 553041.PMID 6325158.
  9. ^Missiakas, D.; Georgopoulos, C.; Raina, S. (1993)."The Escherichia coli heat shock gene htpY: Mutational analysis, cloning, sequencing, and transcriptional regulation".Journal of Bacteriology.175 (9):2613–2624.doi:10.1128/jb.175.9.2613-2624.1993.PMC 204563.PMID 8478327.
  10. ^E.coli lactose operon with lacI, lacZ, lacY and lacA genes GenBank: J01636.1
  11. ^Farabaugh, P. J. (1978). "Sequence of the lacI gene".Nature.274 (5673):765–769.Bibcode:1978Natur.274..765F.doi:10.1038/274765a0.PMID 355891.S2CID 4208767.
  12. ^NCBI Sequence Viewer v2.0
  13. ^Hecht, Ariel; Glasgow, Jeff; Jaschke, Paul R.; Bawazer, Lukmaan A.; Munson, Matthew S.;Cochran, Jennifer R.; Endy, Drew; Salit, Marc (2017)."Measurements of translation initiation from all 64 codons in E. coli".Nucleic Acids Research.45 (7):3615–3626.doi:10.1093/nar/gkx070.PMC 5397182.PMID 28334756.
  14. ^Firnberg, Elad; Labonte, Jason; Gray, Jeffrey; Ostermeir, Marc A. (2014)."A comprehensive, high-resolution map of a gene's fitness landscape".Molecular Biology and Evolution.31 (6):1581–1592.doi:10.1093/molbev/msu081.PMC 4032126.PMID 24567513.
  15. ^Watanabe, Kimitsuna; Suzuki, Tsutomu (2001). "Genetic Code and its Variants".Encyclopedia of Life Sciences.doi:10.1038/npg.els.0000810.ISBN 978-0470015902.
  16. ^Elzanowski, Andrzej; Ostell, Jim."The Genetic Codes".NCBI. Retrieved29 March 2019.
  17. ^abAndreev, Dmitry E.; Loughran, Gary; Fedorova, Alla D.; Mikhaylova, Maria S.; Shatsky, Ivan N.; Baranov, Pavel V. (2022-05-09)."Non-AUG translation initiation in mammals".Genome Biology.23 (1): 111.doi:10.1186/s13059-022-02674-2.ISSN 1474-760X.PMC 9082881.PMID 35534899.
  18. ^Elzanowski A, Ostell J (7 January 2019)."The Genetic Codes". National Center for Biotechnology Information. Archived fromthe original on 5 October 2020. Retrieved21 February 2019.
  19. ^Nakamoto T (March 2009). "Evolution and the universality of the mechanism of initiation of protein synthesis".Gene.432 (1–2):1–6.doi:10.1016/j.gene.2008.11.001.PMID 19056476.
  20. ^Asano, K (2014). "Why is start codon selection so precise in eukaryotes?".Translation (Austin, Tex.).2 (1): e28387.doi:10.4161/trla.28387.PMID 26779403.
  21. ^Brenner S. A Life in Science (2001) Published by Biomed Central LimitedISBN 0-9540278-0-9 see pages 101-104
  22. ^Edgar B (2004)."The genome of bacteriophage T4: an archeological dig".Genetics.168 (2):575–82.PMC 1448817.PMID 15514035. see pages 580-581
  23. ^RajBhandary, Uttam L. (15 February 2000)."More surprises in translation: Initiation without the initiator tRNA".Proceedings of the National Academy of Sciences.97 (4):1325–1327.Bibcode:2000PNAS...97.1325R.doi:10.1073/pnas.040579197.PMC 34295.PMID 10677458.
  24. ^"Where to Start? Alternate Protein Translation Mechanism Creates Unanticipated Antigens".PLOS Biology.2 (11): e397. 26 October 2004.doi:10.1371/journal.pbio.0020397.PMC 524256.
  25. ^Starck, S. R.; Jiang, V; Pavon-Eternod, M; Prasad, S; McCarthy, B; Pan, T; Shastri, N (2012). "Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I".Science.336 (6089):1719–23.Bibcode:2012Sci...336.1719S.doi:10.1126/science.1220270.PMID 22745432.S2CID 206540614.
  26. ^Dever, T. E. (2012)."Molecular biology. A new start for protein synthesis".Science.336 (6089):1645–6.doi:10.1126/science.1224439.PMID 22745408.S2CID 44326947.
  27. ^Varshney, U.; RajBhandary, U. L. (1990-02-01)."Initiation of protein synthesis from a termination codon".Proceedings of the National Academy of Sciences.87 (4):1586–1590.Bibcode:1990PNAS...87.1586V.doi:10.1073/pnas.87.4.1586.ISSN 0027-8424.PMC 53520.PMID 2406724.
  28. ^Vincent, Russel M.; Wright, Bradley W.; Jaschke, Paul R. (2019-03-15)."Measuring Amber Initiator tRNA Orthogonality in a Genomically Recoded Organism"(PDF).ACS Synthetic Biology.8 (4):675–685.doi:10.1021/acssynbio.9b00021.ISSN 2161-5063.PMID 30856316.S2CID 75136654.

External links

[edit]
  • The Genetic Codes. Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell, National Center for Biotechnology Information (NCBI), Bethesda, Maryland, US[1]
Proteins
Initiation factor
Bacterial
Mitochondrial
Archaeal
Eukaryotic
eIF1
eIF2
eIF3
eIF4
eIF5
eIF6
Elongation factor
Bacterial/Mitochondrial
Archaeal/Eukaryotic
Release factor
Ribosomal Proteins
Cytoplasmic
60S subunit
40S subunit
Mitochondrial
39S subunit
28S subunit
Other concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Start_codon&oldid=1270319371"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp